• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 /*
4     Copyright (c) 2001, 2002 by D-Link Corporation
5     Written by Edward Peng.<edward_peng@dlink.com.tw>
6     Created 03-May-2001, base on Linux' sundance.c.
7 
8 */
9 
10 #include "dl2k.h"
11 #include <linux/dma-mapping.h>
12 
13 #define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
14 #define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
15 #define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
16 #define dr32(reg)	ioread32(ioaddr + (reg))
17 #define dr16(reg)	ioread16(ioaddr + (reg))
18 #define dr8(reg)	ioread8(ioaddr + (reg))
19 
20 #define MAX_UNITS 8
21 static int mtu[MAX_UNITS];
22 static int vlan[MAX_UNITS];
23 static int jumbo[MAX_UNITS];
24 static char *media[MAX_UNITS];
25 static int tx_flow=-1;
26 static int rx_flow=-1;
27 static int copy_thresh;
28 static int rx_coalesce=10;	/* Rx frame count each interrupt */
29 static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
30 static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
31 
32 
33 MODULE_AUTHOR ("Edward Peng");
34 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
35 MODULE_LICENSE("GPL");
36 module_param_array(mtu, int, NULL, 0);
37 module_param_array(media, charp, NULL, 0);
38 module_param_array(vlan, int, NULL, 0);
39 module_param_array(jumbo, int, NULL, 0);
40 module_param(tx_flow, int, 0);
41 module_param(rx_flow, int, 0);
42 module_param(copy_thresh, int, 0);
43 module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
44 module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
45 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
46 
47 
48 /* Enable the default interrupts */
49 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
50        UpdateStats | LinkEvent)
51 
dl2k_enable_int(struct netdev_private * np)52 static void dl2k_enable_int(struct netdev_private *np)
53 {
54 	void __iomem *ioaddr = np->ioaddr;
55 
56 	dw16(IntEnable, DEFAULT_INTR);
57 }
58 
59 static const int max_intrloop = 50;
60 static const int multicast_filter_limit = 0x40;
61 
62 static int rio_open (struct net_device *dev);
63 static void rio_timer (struct timer_list *t);
64 static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
65 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
66 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
67 static void rio_free_tx (struct net_device *dev, int irq);
68 static void tx_error (struct net_device *dev, int tx_status);
69 static int receive_packet (struct net_device *dev);
70 static void rio_error (struct net_device *dev, int int_status);
71 static void set_multicast (struct net_device *dev);
72 static struct net_device_stats *get_stats (struct net_device *dev);
73 static int clear_stats (struct net_device *dev);
74 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
75 static int rio_close (struct net_device *dev);
76 static int find_miiphy (struct net_device *dev);
77 static int parse_eeprom (struct net_device *dev);
78 static int read_eeprom (struct netdev_private *, int eep_addr);
79 static int mii_wait_link (struct net_device *dev, int wait);
80 static int mii_set_media (struct net_device *dev);
81 static int mii_get_media (struct net_device *dev);
82 static int mii_set_media_pcs (struct net_device *dev);
83 static int mii_get_media_pcs (struct net_device *dev);
84 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
85 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
86 		      u16 data);
87 
88 static const struct ethtool_ops ethtool_ops;
89 
90 static const struct net_device_ops netdev_ops = {
91 	.ndo_open		= rio_open,
92 	.ndo_start_xmit	= start_xmit,
93 	.ndo_stop		= rio_close,
94 	.ndo_get_stats		= get_stats,
95 	.ndo_validate_addr	= eth_validate_addr,
96 	.ndo_set_mac_address 	= eth_mac_addr,
97 	.ndo_set_rx_mode	= set_multicast,
98 	.ndo_do_ioctl		= rio_ioctl,
99 	.ndo_tx_timeout		= rio_tx_timeout,
100 };
101 
102 static int
rio_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)103 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
104 {
105 	struct net_device *dev;
106 	struct netdev_private *np;
107 	static int card_idx;
108 	int chip_idx = ent->driver_data;
109 	int err, irq;
110 	void __iomem *ioaddr;
111 	void *ring_space;
112 	dma_addr_t ring_dma;
113 
114 	err = pci_enable_device (pdev);
115 	if (err)
116 		return err;
117 
118 	irq = pdev->irq;
119 	err = pci_request_regions (pdev, "dl2k");
120 	if (err)
121 		goto err_out_disable;
122 
123 	pci_set_master (pdev);
124 
125 	err = -ENOMEM;
126 
127 	dev = alloc_etherdev (sizeof (*np));
128 	if (!dev)
129 		goto err_out_res;
130 	SET_NETDEV_DEV(dev, &pdev->dev);
131 
132 	np = netdev_priv(dev);
133 
134 	/* IO registers range. */
135 	ioaddr = pci_iomap(pdev, 0, 0);
136 	if (!ioaddr)
137 		goto err_out_dev;
138 	np->eeprom_addr = ioaddr;
139 
140 #ifdef MEM_MAPPING
141 	/* MM registers range. */
142 	ioaddr = pci_iomap(pdev, 1, 0);
143 	if (!ioaddr)
144 		goto err_out_iounmap;
145 #endif
146 	np->ioaddr = ioaddr;
147 	np->chip_id = chip_idx;
148 	np->pdev = pdev;
149 	spin_lock_init (&np->tx_lock);
150 	spin_lock_init (&np->rx_lock);
151 
152 	/* Parse manual configuration */
153 	np->an_enable = 1;
154 	np->tx_coalesce = 1;
155 	if (card_idx < MAX_UNITS) {
156 		if (media[card_idx] != NULL) {
157 			np->an_enable = 0;
158 			if (strcmp (media[card_idx], "auto") == 0 ||
159 			    strcmp (media[card_idx], "autosense") == 0 ||
160 			    strcmp (media[card_idx], "0") == 0 ) {
161 				np->an_enable = 2;
162 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
163 			    strcmp (media[card_idx], "4") == 0) {
164 				np->speed = 100;
165 				np->full_duplex = 1;
166 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
167 				   strcmp (media[card_idx], "3") == 0) {
168 				np->speed = 100;
169 				np->full_duplex = 0;
170 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
171 				   strcmp (media[card_idx], "2") == 0) {
172 				np->speed = 10;
173 				np->full_duplex = 1;
174 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
175 				   strcmp (media[card_idx], "1") == 0) {
176 				np->speed = 10;
177 				np->full_duplex = 0;
178 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
179 				 strcmp (media[card_idx], "6") == 0) {
180 				np->speed=1000;
181 				np->full_duplex=1;
182 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
183 				 strcmp (media[card_idx], "5") == 0) {
184 				np->speed = 1000;
185 				np->full_duplex = 0;
186 			} else {
187 				np->an_enable = 1;
188 			}
189 		}
190 		if (jumbo[card_idx] != 0) {
191 			np->jumbo = 1;
192 			dev->mtu = MAX_JUMBO;
193 		} else {
194 			np->jumbo = 0;
195 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
196 				dev->mtu = mtu[card_idx];
197 		}
198 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
199 		    vlan[card_idx] : 0;
200 		if (rx_coalesce > 0 && rx_timeout > 0) {
201 			np->rx_coalesce = rx_coalesce;
202 			np->rx_timeout = rx_timeout;
203 			np->coalesce = 1;
204 		}
205 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
206 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
207 
208 		if (tx_coalesce < 1)
209 			tx_coalesce = 1;
210 		else if (tx_coalesce > TX_RING_SIZE-1)
211 			tx_coalesce = TX_RING_SIZE - 1;
212 	}
213 	dev->netdev_ops = &netdev_ops;
214 	dev->watchdog_timeo = TX_TIMEOUT;
215 	dev->ethtool_ops = &ethtool_ops;
216 #if 0
217 	dev->features = NETIF_F_IP_CSUM;
218 #endif
219 	/* MTU range: 68 - 1536 or 8000 */
220 	dev->min_mtu = ETH_MIN_MTU;
221 	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
222 
223 	pci_set_drvdata (pdev, dev);
224 
225 	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
226 					GFP_KERNEL);
227 	if (!ring_space)
228 		goto err_out_iounmap;
229 	np->tx_ring = ring_space;
230 	np->tx_ring_dma = ring_dma;
231 
232 	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
233 					GFP_KERNEL);
234 	if (!ring_space)
235 		goto err_out_unmap_tx;
236 	np->rx_ring = ring_space;
237 	np->rx_ring_dma = ring_dma;
238 
239 	/* Parse eeprom data */
240 	parse_eeprom (dev);
241 
242 	/* Find PHY address */
243 	err = find_miiphy (dev);
244 	if (err)
245 		goto err_out_unmap_rx;
246 
247 	/* Fiber device? */
248 	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
249 	np->link_status = 0;
250 	/* Set media and reset PHY */
251 	if (np->phy_media) {
252 		/* default Auto-Negotiation for fiber deivices */
253 	 	if (np->an_enable == 2) {
254 			np->an_enable = 1;
255 		}
256 	} else {
257 		/* Auto-Negotiation is mandatory for 1000BASE-T,
258 		   IEEE 802.3ab Annex 28D page 14 */
259 		if (np->speed == 1000)
260 			np->an_enable = 1;
261 	}
262 
263 	err = register_netdev (dev);
264 	if (err)
265 		goto err_out_unmap_rx;
266 
267 	card_idx++;
268 
269 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
270 		dev->name, np->name, dev->dev_addr, irq);
271 	if (tx_coalesce > 1)
272 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
273 				tx_coalesce);
274 	if (np->coalesce)
275 		printk(KERN_INFO
276 		       "rx_coalesce:\t%d packets\n"
277 		       "rx_timeout: \t%d ns\n",
278 				np->rx_coalesce, np->rx_timeout*640);
279 	if (np->vlan)
280 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
281 	return 0;
282 
283 err_out_unmap_rx:
284 	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
285 			  np->rx_ring_dma);
286 err_out_unmap_tx:
287 	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
288 			  np->tx_ring_dma);
289 err_out_iounmap:
290 #ifdef MEM_MAPPING
291 	pci_iounmap(pdev, np->ioaddr);
292 #endif
293 	pci_iounmap(pdev, np->eeprom_addr);
294 err_out_dev:
295 	free_netdev (dev);
296 err_out_res:
297 	pci_release_regions (pdev);
298 err_out_disable:
299 	pci_disable_device (pdev);
300 	return err;
301 }
302 
303 static int
find_miiphy(struct net_device * dev)304 find_miiphy (struct net_device *dev)
305 {
306 	struct netdev_private *np = netdev_priv(dev);
307 	int i, phy_found = 0;
308 
309 	np->phy_addr = 1;
310 
311 	for (i = 31; i >= 0; i--) {
312 		int mii_status = mii_read (dev, i, 1);
313 		if (mii_status != 0xffff && mii_status != 0x0000) {
314 			np->phy_addr = i;
315 			phy_found++;
316 		}
317 	}
318 	if (!phy_found) {
319 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
320 		return -ENODEV;
321 	}
322 	return 0;
323 }
324 
325 static int
parse_eeprom(struct net_device * dev)326 parse_eeprom (struct net_device *dev)
327 {
328 	struct netdev_private *np = netdev_priv(dev);
329 	void __iomem *ioaddr = np->ioaddr;
330 	int i, j;
331 	u8 sromdata[256];
332 	u8 *psib;
333 	u32 crc;
334 	PSROM_t psrom = (PSROM_t) sromdata;
335 
336 	int cid, next;
337 
338 	for (i = 0; i < 128; i++)
339 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
340 
341 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
342 		/* Check CRC */
343 		crc = ~ether_crc_le (256 - 4, sromdata);
344 		if (psrom->crc != cpu_to_le32(crc)) {
345 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
346 					dev->name);
347 			return -1;
348 		}
349 	}
350 
351 	/* Set MAC address */
352 	for (i = 0; i < 6; i++)
353 		dev->dev_addr[i] = psrom->mac_addr[i];
354 
355 	if (np->chip_id == CHIP_IP1000A) {
356 		np->led_mode = psrom->led_mode;
357 		return 0;
358 	}
359 
360 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
361 		return 0;
362 	}
363 
364 	/* Parse Software Information Block */
365 	i = 0x30;
366 	psib = (u8 *) sromdata;
367 	do {
368 		cid = psib[i++];
369 		next = psib[i++];
370 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
371 			printk (KERN_ERR "Cell data error\n");
372 			return -1;
373 		}
374 		switch (cid) {
375 		case 0:	/* Format version */
376 			break;
377 		case 1:	/* End of cell */
378 			return 0;
379 		case 2:	/* Duplex Polarity */
380 			np->duplex_polarity = psib[i];
381 			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
382 			break;
383 		case 3:	/* Wake Polarity */
384 			np->wake_polarity = psib[i];
385 			break;
386 		case 9:	/* Adapter description */
387 			j = (next - i > 255) ? 255 : next - i;
388 			memcpy (np->name, &(psib[i]), j);
389 			break;
390 		case 4:
391 		case 5:
392 		case 6:
393 		case 7:
394 		case 8:	/* Reversed */
395 			break;
396 		default:	/* Unknown cell */
397 			return -1;
398 		}
399 		i = next;
400 	} while (1);
401 
402 	return 0;
403 }
404 
rio_set_led_mode(struct net_device * dev)405 static void rio_set_led_mode(struct net_device *dev)
406 {
407 	struct netdev_private *np = netdev_priv(dev);
408 	void __iomem *ioaddr = np->ioaddr;
409 	u32 mode;
410 
411 	if (np->chip_id != CHIP_IP1000A)
412 		return;
413 
414 	mode = dr32(ASICCtrl);
415 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
416 
417 	if (np->led_mode & 0x01)
418 		mode |= IPG_AC_LED_MODE;
419 	if (np->led_mode & 0x02)
420 		mode |= IPG_AC_LED_MODE_BIT_1;
421 	if (np->led_mode & 0x08)
422 		mode |= IPG_AC_LED_SPEED;
423 
424 	dw32(ASICCtrl, mode);
425 }
426 
desc_to_dma(struct netdev_desc * desc)427 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
428 {
429 	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
430 }
431 
free_list(struct net_device * dev)432 static void free_list(struct net_device *dev)
433 {
434 	struct netdev_private *np = netdev_priv(dev);
435 	struct sk_buff *skb;
436 	int i;
437 
438 	/* Free all the skbuffs in the queue. */
439 	for (i = 0; i < RX_RING_SIZE; i++) {
440 		skb = np->rx_skbuff[i];
441 		if (skb) {
442 			dma_unmap_single(&np->pdev->dev,
443 					 desc_to_dma(&np->rx_ring[i]),
444 					 skb->len, DMA_FROM_DEVICE);
445 			dev_kfree_skb(skb);
446 			np->rx_skbuff[i] = NULL;
447 		}
448 		np->rx_ring[i].status = 0;
449 		np->rx_ring[i].fraginfo = 0;
450 	}
451 	for (i = 0; i < TX_RING_SIZE; i++) {
452 		skb = np->tx_skbuff[i];
453 		if (skb) {
454 			dma_unmap_single(&np->pdev->dev,
455 					 desc_to_dma(&np->tx_ring[i]),
456 					 skb->len, DMA_TO_DEVICE);
457 			dev_kfree_skb(skb);
458 			np->tx_skbuff[i] = NULL;
459 		}
460 	}
461 }
462 
rio_reset_ring(struct netdev_private * np)463 static void rio_reset_ring(struct netdev_private *np)
464 {
465 	int i;
466 
467 	np->cur_rx = 0;
468 	np->cur_tx = 0;
469 	np->old_rx = 0;
470 	np->old_tx = 0;
471 
472 	for (i = 0; i < TX_RING_SIZE; i++)
473 		np->tx_ring[i].status = cpu_to_le64(TFDDone);
474 
475 	for (i = 0; i < RX_RING_SIZE; i++)
476 		np->rx_ring[i].status = 0;
477 }
478 
479  /* allocate and initialize Tx and Rx descriptors */
alloc_list(struct net_device * dev)480 static int alloc_list(struct net_device *dev)
481 {
482 	struct netdev_private *np = netdev_priv(dev);
483 	int i;
484 
485 	rio_reset_ring(np);
486 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
487 
488 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
489 	for (i = 0; i < TX_RING_SIZE; i++) {
490 		np->tx_skbuff[i] = NULL;
491 		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
492 					      ((i + 1) % TX_RING_SIZE) *
493 					      sizeof(struct netdev_desc));
494 	}
495 
496 	/* Initialize Rx descriptors & allocate buffers */
497 	for (i = 0; i < RX_RING_SIZE; i++) {
498 		/* Allocated fixed size of skbuff */
499 		struct sk_buff *skb;
500 
501 		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
502 		np->rx_skbuff[i] = skb;
503 		if (!skb) {
504 			free_list(dev);
505 			return -ENOMEM;
506 		}
507 
508 		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
509 						((i + 1) % RX_RING_SIZE) *
510 						sizeof(struct netdev_desc));
511 		/* Rubicon now supports 40 bits of addressing space. */
512 		np->rx_ring[i].fraginfo =
513 		    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
514 					       np->rx_buf_sz, DMA_FROM_DEVICE));
515 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
516 	}
517 
518 	return 0;
519 }
520 
rio_hw_init(struct net_device * dev)521 static void rio_hw_init(struct net_device *dev)
522 {
523 	struct netdev_private *np = netdev_priv(dev);
524 	void __iomem *ioaddr = np->ioaddr;
525 	int i;
526 	u16 macctrl;
527 
528 	/* Reset all logic functions */
529 	dw16(ASICCtrl + 2,
530 	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
531 	mdelay(10);
532 
533 	rio_set_led_mode(dev);
534 
535 	/* DebugCtrl bit 4, 5, 9 must set */
536 	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
537 
538 	if (np->chip_id == CHIP_IP1000A &&
539 	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
540 		/* PHY magic taken from ipg driver, undocumented registers */
541 		mii_write(dev, np->phy_addr, 31, 0x0001);
542 		mii_write(dev, np->phy_addr, 27, 0x01e0);
543 		mii_write(dev, np->phy_addr, 31, 0x0002);
544 		mii_write(dev, np->phy_addr, 27, 0xeb8e);
545 		mii_write(dev, np->phy_addr, 31, 0x0000);
546 		mii_write(dev, np->phy_addr, 30, 0x005e);
547 		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
548 		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
549 	}
550 
551 	if (np->phy_media)
552 		mii_set_media_pcs(dev);
553 	else
554 		mii_set_media(dev);
555 
556 	/* Jumbo frame */
557 	if (np->jumbo != 0)
558 		dw16(MaxFrameSize, MAX_JUMBO+14);
559 
560 	/* Set RFDListPtr */
561 	dw32(RFDListPtr0, np->rx_ring_dma);
562 	dw32(RFDListPtr1, 0);
563 
564 	/* Set station address */
565 	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
566 	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
567 	 */
568 	for (i = 0; i < 3; i++)
569 		dw16(StationAddr0 + 2 * i,
570 		     cpu_to_le16(((u16 *)dev->dev_addr)[i]));
571 
572 	set_multicast (dev);
573 	if (np->coalesce) {
574 		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
575 	}
576 	/* Set RIO to poll every N*320nsec. */
577 	dw8(RxDMAPollPeriod, 0x20);
578 	dw8(TxDMAPollPeriod, 0xff);
579 	dw8(RxDMABurstThresh, 0x30);
580 	dw8(RxDMAUrgentThresh, 0x30);
581 	dw32(RmonStatMask, 0x0007ffff);
582 	/* clear statistics */
583 	clear_stats (dev);
584 
585 	/* VLAN supported */
586 	if (np->vlan) {
587 		/* priority field in RxDMAIntCtrl  */
588 		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
589 		/* VLANId */
590 		dw16(VLANId, np->vlan);
591 		/* Length/Type should be 0x8100 */
592 		dw32(VLANTag, 0x8100 << 16 | np->vlan);
593 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
594 		   VLAN information tagged by TFC' VID, CFI fields. */
595 		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
596 	}
597 
598 	/* Start Tx/Rx */
599 	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
600 
601 	macctrl = 0;
602 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
603 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
604 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
605 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
606 	dw16(MACCtrl, macctrl);
607 }
608 
rio_hw_stop(struct net_device * dev)609 static void rio_hw_stop(struct net_device *dev)
610 {
611 	struct netdev_private *np = netdev_priv(dev);
612 	void __iomem *ioaddr = np->ioaddr;
613 
614 	/* Disable interrupts */
615 	dw16(IntEnable, 0);
616 
617 	/* Stop Tx and Rx logics */
618 	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
619 }
620 
rio_open(struct net_device * dev)621 static int rio_open(struct net_device *dev)
622 {
623 	struct netdev_private *np = netdev_priv(dev);
624 	const int irq = np->pdev->irq;
625 	int i;
626 
627 	i = alloc_list(dev);
628 	if (i)
629 		return i;
630 
631 	rio_hw_init(dev);
632 
633 	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
634 	if (i) {
635 		rio_hw_stop(dev);
636 		free_list(dev);
637 		return i;
638 	}
639 
640 	timer_setup(&np->timer, rio_timer, 0);
641 	np->timer.expires = jiffies + 1 * HZ;
642 	add_timer(&np->timer);
643 
644 	netif_start_queue (dev);
645 
646 	dl2k_enable_int(np);
647 	return 0;
648 }
649 
650 static void
rio_timer(struct timer_list * t)651 rio_timer (struct timer_list *t)
652 {
653 	struct netdev_private *np = from_timer(np, t, timer);
654 	struct net_device *dev = pci_get_drvdata(np->pdev);
655 	unsigned int entry;
656 	int next_tick = 1*HZ;
657 	unsigned long flags;
658 
659 	spin_lock_irqsave(&np->rx_lock, flags);
660 	/* Recover rx ring exhausted error */
661 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
662 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
663 		/* Re-allocate skbuffs to fill the descriptor ring */
664 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
665 			struct sk_buff *skb;
666 			entry = np->old_rx % RX_RING_SIZE;
667 			/* Dropped packets don't need to re-allocate */
668 			if (np->rx_skbuff[entry] == NULL) {
669 				skb = netdev_alloc_skb_ip_align(dev,
670 								np->rx_buf_sz);
671 				if (skb == NULL) {
672 					np->rx_ring[entry].fraginfo = 0;
673 					printk (KERN_INFO
674 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
675 						dev->name, entry);
676 					break;
677 				}
678 				np->rx_skbuff[entry] = skb;
679 				np->rx_ring[entry].fraginfo =
680 				    cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
681 								np->rx_buf_sz, DMA_FROM_DEVICE));
682 			}
683 			np->rx_ring[entry].fraginfo |=
684 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
685 			np->rx_ring[entry].status = 0;
686 		} /* end for */
687 	} /* end if */
688 	spin_unlock_irqrestore (&np->rx_lock, flags);
689 	np->timer.expires = jiffies + next_tick;
690 	add_timer(&np->timer);
691 }
692 
693 static void
rio_tx_timeout(struct net_device * dev,unsigned int txqueue)694 rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
695 {
696 	struct netdev_private *np = netdev_priv(dev);
697 	void __iomem *ioaddr = np->ioaddr;
698 
699 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
700 		dev->name, dr32(TxStatus));
701 	rio_free_tx(dev, 0);
702 	dev->if_port = 0;
703 	netif_trans_update(dev); /* prevent tx timeout */
704 }
705 
706 static netdev_tx_t
start_xmit(struct sk_buff * skb,struct net_device * dev)707 start_xmit (struct sk_buff *skb, struct net_device *dev)
708 {
709 	struct netdev_private *np = netdev_priv(dev);
710 	void __iomem *ioaddr = np->ioaddr;
711 	struct netdev_desc *txdesc;
712 	unsigned entry;
713 	u64 tfc_vlan_tag = 0;
714 
715 	if (np->link_status == 0) {	/* Link Down */
716 		dev_kfree_skb(skb);
717 		return NETDEV_TX_OK;
718 	}
719 	entry = np->cur_tx % TX_RING_SIZE;
720 	np->tx_skbuff[entry] = skb;
721 	txdesc = &np->tx_ring[entry];
722 
723 #if 0
724 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
725 		txdesc->status |=
726 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
727 				 IPChecksumEnable);
728 	}
729 #endif
730 	if (np->vlan) {
731 		tfc_vlan_tag = VLANTagInsert |
732 		    ((u64)np->vlan << 32) |
733 		    ((u64)skb->priority << 45);
734 	}
735 	txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
736 						       skb->len, DMA_TO_DEVICE));
737 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
738 
739 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
740 	 * Work around: Always use 1 descriptor in 10Mbps mode */
741 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
742 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
743 					      WordAlignDisable |
744 					      TxDMAIndicate |
745 					      (1 << FragCountShift));
746 	else
747 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
748 					      WordAlignDisable |
749 					      (1 << FragCountShift));
750 
751 	/* TxDMAPollNow */
752 	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
753 	/* Schedule ISR */
754 	dw32(CountDown, 10000);
755 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
756 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
757 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
758 		/* do nothing */
759 	} else if (!netif_queue_stopped(dev)) {
760 		netif_stop_queue (dev);
761 	}
762 
763 	/* The first TFDListPtr */
764 	if (!dr32(TFDListPtr0)) {
765 		dw32(TFDListPtr0, np->tx_ring_dma +
766 		     entry * sizeof (struct netdev_desc));
767 		dw32(TFDListPtr1, 0);
768 	}
769 
770 	return NETDEV_TX_OK;
771 }
772 
773 static irqreturn_t
rio_interrupt(int irq,void * dev_instance)774 rio_interrupt (int irq, void *dev_instance)
775 {
776 	struct net_device *dev = dev_instance;
777 	struct netdev_private *np = netdev_priv(dev);
778 	void __iomem *ioaddr = np->ioaddr;
779 	unsigned int_status;
780 	int cnt = max_intrloop;
781 	int handled = 0;
782 
783 	while (1) {
784 		int_status = dr16(IntStatus);
785 		dw16(IntStatus, int_status);
786 		int_status &= DEFAULT_INTR;
787 		if (int_status == 0 || --cnt < 0)
788 			break;
789 		handled = 1;
790 		/* Processing received packets */
791 		if (int_status & RxDMAComplete)
792 			receive_packet (dev);
793 		/* TxDMAComplete interrupt */
794 		if ((int_status & (TxDMAComplete|IntRequested))) {
795 			int tx_status;
796 			tx_status = dr32(TxStatus);
797 			if (tx_status & 0x01)
798 				tx_error (dev, tx_status);
799 			/* Free used tx skbuffs */
800 			rio_free_tx (dev, 1);
801 		}
802 
803 		/* Handle uncommon events */
804 		if (int_status &
805 		    (HostError | LinkEvent | UpdateStats))
806 			rio_error (dev, int_status);
807 	}
808 	if (np->cur_tx != np->old_tx)
809 		dw32(CountDown, 100);
810 	return IRQ_RETVAL(handled);
811 }
812 
813 static void
rio_free_tx(struct net_device * dev,int irq)814 rio_free_tx (struct net_device *dev, int irq)
815 {
816 	struct netdev_private *np = netdev_priv(dev);
817 	int entry = np->old_tx % TX_RING_SIZE;
818 	int tx_use = 0;
819 	unsigned long flag = 0;
820 
821 	if (irq)
822 		spin_lock(&np->tx_lock);
823 	else
824 		spin_lock_irqsave(&np->tx_lock, flag);
825 
826 	/* Free used tx skbuffs */
827 	while (entry != np->cur_tx) {
828 		struct sk_buff *skb;
829 
830 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
831 			break;
832 		skb = np->tx_skbuff[entry];
833 		dma_unmap_single(&np->pdev->dev,
834 				 desc_to_dma(&np->tx_ring[entry]), skb->len,
835 				 DMA_TO_DEVICE);
836 		if (irq)
837 			dev_consume_skb_irq(skb);
838 		else
839 			dev_kfree_skb(skb);
840 
841 		np->tx_skbuff[entry] = NULL;
842 		entry = (entry + 1) % TX_RING_SIZE;
843 		tx_use++;
844 	}
845 	if (irq)
846 		spin_unlock(&np->tx_lock);
847 	else
848 		spin_unlock_irqrestore(&np->tx_lock, flag);
849 	np->old_tx = entry;
850 
851 	/* If the ring is no longer full, clear tx_full and
852 	   call netif_wake_queue() */
853 
854 	if (netif_queue_stopped(dev) &&
855 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
856 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
857 		netif_wake_queue (dev);
858 	}
859 }
860 
861 static void
tx_error(struct net_device * dev,int tx_status)862 tx_error (struct net_device *dev, int tx_status)
863 {
864 	struct netdev_private *np = netdev_priv(dev);
865 	void __iomem *ioaddr = np->ioaddr;
866 	int frame_id;
867 	int i;
868 
869 	frame_id = (tx_status & 0xffff0000);
870 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
871 		dev->name, tx_status, frame_id);
872 	dev->stats.tx_errors++;
873 	/* Ttransmit Underrun */
874 	if (tx_status & 0x10) {
875 		dev->stats.tx_fifo_errors++;
876 		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
877 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
878 		dw16(ASICCtrl + 2,
879 		     TxReset | DMAReset | FIFOReset | NetworkReset);
880 		/* Wait for ResetBusy bit clear */
881 		for (i = 50; i > 0; i--) {
882 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
883 				break;
884 			mdelay (1);
885 		}
886 		rio_set_led_mode(dev);
887 		rio_free_tx (dev, 1);
888 		/* Reset TFDListPtr */
889 		dw32(TFDListPtr0, np->tx_ring_dma +
890 		     np->old_tx * sizeof (struct netdev_desc));
891 		dw32(TFDListPtr1, 0);
892 
893 		/* Let TxStartThresh stay default value */
894 	}
895 	/* Late Collision */
896 	if (tx_status & 0x04) {
897 		dev->stats.tx_fifo_errors++;
898 		/* TxReset and clear FIFO */
899 		dw16(ASICCtrl + 2, TxReset | FIFOReset);
900 		/* Wait reset done */
901 		for (i = 50; i > 0; i--) {
902 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
903 				break;
904 			mdelay (1);
905 		}
906 		rio_set_led_mode(dev);
907 		/* Let TxStartThresh stay default value */
908 	}
909 	/* Maximum Collisions */
910 	if (tx_status & 0x08)
911 		dev->stats.collisions++;
912 	/* Restart the Tx */
913 	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
914 }
915 
916 static int
receive_packet(struct net_device * dev)917 receive_packet (struct net_device *dev)
918 {
919 	struct netdev_private *np = netdev_priv(dev);
920 	int entry = np->cur_rx % RX_RING_SIZE;
921 	int cnt = 30;
922 
923 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
924 	while (1) {
925 		struct netdev_desc *desc = &np->rx_ring[entry];
926 		int pkt_len;
927 		u64 frame_status;
928 
929 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
930 		    !(desc->status & cpu_to_le64(FrameStart)) ||
931 		    !(desc->status & cpu_to_le64(FrameEnd)))
932 			break;
933 
934 		/* Chip omits the CRC. */
935 		frame_status = le64_to_cpu(desc->status);
936 		pkt_len = frame_status & 0xffff;
937 		if (--cnt < 0)
938 			break;
939 		/* Update rx error statistics, drop packet. */
940 		if (frame_status & RFS_Errors) {
941 			dev->stats.rx_errors++;
942 			if (frame_status & (RxRuntFrame | RxLengthError))
943 				dev->stats.rx_length_errors++;
944 			if (frame_status & RxFCSError)
945 				dev->stats.rx_crc_errors++;
946 			if (frame_status & RxAlignmentError && np->speed != 1000)
947 				dev->stats.rx_frame_errors++;
948 			if (frame_status & RxFIFOOverrun)
949 				dev->stats.rx_fifo_errors++;
950 		} else {
951 			struct sk_buff *skb;
952 
953 			/* Small skbuffs for short packets */
954 			if (pkt_len > copy_thresh) {
955 				dma_unmap_single(&np->pdev->dev,
956 						 desc_to_dma(desc),
957 						 np->rx_buf_sz,
958 						 DMA_FROM_DEVICE);
959 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
960 				np->rx_skbuff[entry] = NULL;
961 			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
962 				dma_sync_single_for_cpu(&np->pdev->dev,
963 							desc_to_dma(desc),
964 							np->rx_buf_sz,
965 							DMA_FROM_DEVICE);
966 				skb_copy_to_linear_data (skb,
967 						  np->rx_skbuff[entry]->data,
968 						  pkt_len);
969 				skb_put (skb, pkt_len);
970 				dma_sync_single_for_device(&np->pdev->dev,
971 							   desc_to_dma(desc),
972 							   np->rx_buf_sz,
973 							   DMA_FROM_DEVICE);
974 			}
975 			skb->protocol = eth_type_trans (skb, dev);
976 #if 0
977 			/* Checksum done by hw, but csum value unavailable. */
978 			if (np->pdev->pci_rev_id >= 0x0c &&
979 				!(frame_status & (TCPError | UDPError | IPError))) {
980 				skb->ip_summed = CHECKSUM_UNNECESSARY;
981 			}
982 #endif
983 			netif_rx (skb);
984 		}
985 		entry = (entry + 1) % RX_RING_SIZE;
986 	}
987 	spin_lock(&np->rx_lock);
988 	np->cur_rx = entry;
989 	/* Re-allocate skbuffs to fill the descriptor ring */
990 	entry = np->old_rx;
991 	while (entry != np->cur_rx) {
992 		struct sk_buff *skb;
993 		/* Dropped packets don't need to re-allocate */
994 		if (np->rx_skbuff[entry] == NULL) {
995 			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
996 			if (skb == NULL) {
997 				np->rx_ring[entry].fraginfo = 0;
998 				printk (KERN_INFO
999 					"%s: receive_packet: "
1000 					"Unable to re-allocate Rx skbuff.#%d\n",
1001 					dev->name, entry);
1002 				break;
1003 			}
1004 			np->rx_skbuff[entry] = skb;
1005 			np->rx_ring[entry].fraginfo =
1006 			    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1007 						       np->rx_buf_sz, DMA_FROM_DEVICE));
1008 		}
1009 		np->rx_ring[entry].fraginfo |=
1010 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1011 		np->rx_ring[entry].status = 0;
1012 		entry = (entry + 1) % RX_RING_SIZE;
1013 	}
1014 	np->old_rx = entry;
1015 	spin_unlock(&np->rx_lock);
1016 	return 0;
1017 }
1018 
1019 static void
rio_error(struct net_device * dev,int int_status)1020 rio_error (struct net_device *dev, int int_status)
1021 {
1022 	struct netdev_private *np = netdev_priv(dev);
1023 	void __iomem *ioaddr = np->ioaddr;
1024 	u16 macctrl;
1025 
1026 	/* Link change event */
1027 	if (int_status & LinkEvent) {
1028 		if (mii_wait_link (dev, 10) == 0) {
1029 			printk (KERN_INFO "%s: Link up\n", dev->name);
1030 			if (np->phy_media)
1031 				mii_get_media_pcs (dev);
1032 			else
1033 				mii_get_media (dev);
1034 			if (np->speed == 1000)
1035 				np->tx_coalesce = tx_coalesce;
1036 			else
1037 				np->tx_coalesce = 1;
1038 			macctrl = 0;
1039 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1040 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1041 			macctrl |= (np->tx_flow) ?
1042 				TxFlowControlEnable : 0;
1043 			macctrl |= (np->rx_flow) ?
1044 				RxFlowControlEnable : 0;
1045 			dw16(MACCtrl, macctrl);
1046 			np->link_status = 1;
1047 			netif_carrier_on(dev);
1048 		} else {
1049 			printk (KERN_INFO "%s: Link off\n", dev->name);
1050 			np->link_status = 0;
1051 			netif_carrier_off(dev);
1052 		}
1053 	}
1054 
1055 	/* UpdateStats statistics registers */
1056 	if (int_status & UpdateStats) {
1057 		get_stats (dev);
1058 	}
1059 
1060 	/* PCI Error, a catastronphic error related to the bus interface
1061 	   occurs, set GlobalReset and HostReset to reset. */
1062 	if (int_status & HostError) {
1063 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1064 			dev->name, int_status);
1065 		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1066 		mdelay (500);
1067 		rio_set_led_mode(dev);
1068 	}
1069 }
1070 
1071 static struct net_device_stats *
get_stats(struct net_device * dev)1072 get_stats (struct net_device *dev)
1073 {
1074 	struct netdev_private *np = netdev_priv(dev);
1075 	void __iomem *ioaddr = np->ioaddr;
1076 #ifdef MEM_MAPPING
1077 	int i;
1078 #endif
1079 	unsigned int stat_reg;
1080 
1081 	/* All statistics registers need to be acknowledged,
1082 	   else statistic overflow could cause problems */
1083 
1084 	dev->stats.rx_packets += dr32(FramesRcvOk);
1085 	dev->stats.tx_packets += dr32(FramesXmtOk);
1086 	dev->stats.rx_bytes += dr32(OctetRcvOk);
1087 	dev->stats.tx_bytes += dr32(OctetXmtOk);
1088 
1089 	dev->stats.multicast = dr32(McstFramesRcvdOk);
1090 	dev->stats.collisions += dr32(SingleColFrames)
1091 			     +  dr32(MultiColFrames);
1092 
1093 	/* detailed tx errors */
1094 	stat_reg = dr16(FramesAbortXSColls);
1095 	dev->stats.tx_aborted_errors += stat_reg;
1096 	dev->stats.tx_errors += stat_reg;
1097 
1098 	stat_reg = dr16(CarrierSenseErrors);
1099 	dev->stats.tx_carrier_errors += stat_reg;
1100 	dev->stats.tx_errors += stat_reg;
1101 
1102 	/* Clear all other statistic register. */
1103 	dr32(McstOctetXmtOk);
1104 	dr16(BcstFramesXmtdOk);
1105 	dr32(McstFramesXmtdOk);
1106 	dr16(BcstFramesRcvdOk);
1107 	dr16(MacControlFramesRcvd);
1108 	dr16(FrameTooLongErrors);
1109 	dr16(InRangeLengthErrors);
1110 	dr16(FramesCheckSeqErrors);
1111 	dr16(FramesLostRxErrors);
1112 	dr32(McstOctetXmtOk);
1113 	dr32(BcstOctetXmtOk);
1114 	dr32(McstFramesXmtdOk);
1115 	dr32(FramesWDeferredXmt);
1116 	dr32(LateCollisions);
1117 	dr16(BcstFramesXmtdOk);
1118 	dr16(MacControlFramesXmtd);
1119 	dr16(FramesWEXDeferal);
1120 
1121 #ifdef MEM_MAPPING
1122 	for (i = 0x100; i <= 0x150; i += 4)
1123 		dr32(i);
1124 #endif
1125 	dr16(TxJumboFrames);
1126 	dr16(RxJumboFrames);
1127 	dr16(TCPCheckSumErrors);
1128 	dr16(UDPCheckSumErrors);
1129 	dr16(IPCheckSumErrors);
1130 	return &dev->stats;
1131 }
1132 
1133 static int
clear_stats(struct net_device * dev)1134 clear_stats (struct net_device *dev)
1135 {
1136 	struct netdev_private *np = netdev_priv(dev);
1137 	void __iomem *ioaddr = np->ioaddr;
1138 #ifdef MEM_MAPPING
1139 	int i;
1140 #endif
1141 
1142 	/* All statistics registers need to be acknowledged,
1143 	   else statistic overflow could cause problems */
1144 	dr32(FramesRcvOk);
1145 	dr32(FramesXmtOk);
1146 	dr32(OctetRcvOk);
1147 	dr32(OctetXmtOk);
1148 
1149 	dr32(McstFramesRcvdOk);
1150 	dr32(SingleColFrames);
1151 	dr32(MultiColFrames);
1152 	dr32(LateCollisions);
1153 	/* detailed rx errors */
1154 	dr16(FrameTooLongErrors);
1155 	dr16(InRangeLengthErrors);
1156 	dr16(FramesCheckSeqErrors);
1157 	dr16(FramesLostRxErrors);
1158 
1159 	/* detailed tx errors */
1160 	dr16(FramesAbortXSColls);
1161 	dr16(CarrierSenseErrors);
1162 
1163 	/* Clear all other statistic register. */
1164 	dr32(McstOctetXmtOk);
1165 	dr16(BcstFramesXmtdOk);
1166 	dr32(McstFramesXmtdOk);
1167 	dr16(BcstFramesRcvdOk);
1168 	dr16(MacControlFramesRcvd);
1169 	dr32(McstOctetXmtOk);
1170 	dr32(BcstOctetXmtOk);
1171 	dr32(McstFramesXmtdOk);
1172 	dr32(FramesWDeferredXmt);
1173 	dr16(BcstFramesXmtdOk);
1174 	dr16(MacControlFramesXmtd);
1175 	dr16(FramesWEXDeferal);
1176 #ifdef MEM_MAPPING
1177 	for (i = 0x100; i <= 0x150; i += 4)
1178 		dr32(i);
1179 #endif
1180 	dr16(TxJumboFrames);
1181 	dr16(RxJumboFrames);
1182 	dr16(TCPCheckSumErrors);
1183 	dr16(UDPCheckSumErrors);
1184 	dr16(IPCheckSumErrors);
1185 	return 0;
1186 }
1187 
1188 static void
set_multicast(struct net_device * dev)1189 set_multicast (struct net_device *dev)
1190 {
1191 	struct netdev_private *np = netdev_priv(dev);
1192 	void __iomem *ioaddr = np->ioaddr;
1193 	u32 hash_table[2];
1194 	u16 rx_mode = 0;
1195 
1196 	hash_table[0] = hash_table[1] = 0;
1197 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1198 	hash_table[1] |= 0x02000000;
1199 	if (dev->flags & IFF_PROMISC) {
1200 		/* Receive all frames promiscuously. */
1201 		rx_mode = ReceiveAllFrames;
1202 	} else if ((dev->flags & IFF_ALLMULTI) ||
1203 			(netdev_mc_count(dev) > multicast_filter_limit)) {
1204 		/* Receive broadcast and multicast frames */
1205 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1206 	} else if (!netdev_mc_empty(dev)) {
1207 		struct netdev_hw_addr *ha;
1208 		/* Receive broadcast frames and multicast frames filtering
1209 		   by Hashtable */
1210 		rx_mode =
1211 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1212 		netdev_for_each_mc_addr(ha, dev) {
1213 			int bit, index = 0;
1214 			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1215 			/* The inverted high significant 6 bits of CRC are
1216 			   used as an index to hashtable */
1217 			for (bit = 0; bit < 6; bit++)
1218 				if (crc & (1 << (31 - bit)))
1219 					index |= (1 << bit);
1220 			hash_table[index / 32] |= (1 << (index % 32));
1221 		}
1222 	} else {
1223 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1224 	}
1225 	if (np->vlan) {
1226 		/* ReceiveVLANMatch field in ReceiveMode */
1227 		rx_mode |= ReceiveVLANMatch;
1228 	}
1229 
1230 	dw32(HashTable0, hash_table[0]);
1231 	dw32(HashTable1, hash_table[1]);
1232 	dw16(ReceiveMode, rx_mode);
1233 }
1234 
rio_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1235 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1236 {
1237 	struct netdev_private *np = netdev_priv(dev);
1238 
1239 	strlcpy(info->driver, "dl2k", sizeof(info->driver));
1240 	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1241 }
1242 
rio_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1243 static int rio_get_link_ksettings(struct net_device *dev,
1244 				  struct ethtool_link_ksettings *cmd)
1245 {
1246 	struct netdev_private *np = netdev_priv(dev);
1247 	u32 supported, advertising;
1248 
1249 	if (np->phy_media) {
1250 		/* fiber device */
1251 		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1252 		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1253 		cmd->base.port = PORT_FIBRE;
1254 	} else {
1255 		/* copper device */
1256 		supported = SUPPORTED_10baseT_Half |
1257 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1258 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1259 			SUPPORTED_Autoneg | SUPPORTED_MII;
1260 		advertising = ADVERTISED_10baseT_Half |
1261 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1262 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1263 			ADVERTISED_Autoneg | ADVERTISED_MII;
1264 		cmd->base.port = PORT_MII;
1265 	}
1266 	if (np->link_status) {
1267 		cmd->base.speed = np->speed;
1268 		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1269 	} else {
1270 		cmd->base.speed = SPEED_UNKNOWN;
1271 		cmd->base.duplex = DUPLEX_UNKNOWN;
1272 	}
1273 	if (np->an_enable)
1274 		cmd->base.autoneg = AUTONEG_ENABLE;
1275 	else
1276 		cmd->base.autoneg = AUTONEG_DISABLE;
1277 
1278 	cmd->base.phy_address = np->phy_addr;
1279 
1280 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1281 						supported);
1282 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1283 						advertising);
1284 
1285 	return 0;
1286 }
1287 
rio_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1288 static int rio_set_link_ksettings(struct net_device *dev,
1289 				  const struct ethtool_link_ksettings *cmd)
1290 {
1291 	struct netdev_private *np = netdev_priv(dev);
1292 	u32 speed = cmd->base.speed;
1293 	u8 duplex = cmd->base.duplex;
1294 
1295 	netif_carrier_off(dev);
1296 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1297 		if (np->an_enable) {
1298 			return 0;
1299 		} else {
1300 			np->an_enable = 1;
1301 			mii_set_media(dev);
1302 			return 0;
1303 		}
1304 	} else {
1305 		np->an_enable = 0;
1306 		if (np->speed == 1000) {
1307 			speed = SPEED_100;
1308 			duplex = DUPLEX_FULL;
1309 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1310 		}
1311 		switch (speed) {
1312 		case SPEED_10:
1313 			np->speed = 10;
1314 			np->full_duplex = (duplex == DUPLEX_FULL);
1315 			break;
1316 		case SPEED_100:
1317 			np->speed = 100;
1318 			np->full_duplex = (duplex == DUPLEX_FULL);
1319 			break;
1320 		case SPEED_1000: /* not supported */
1321 		default:
1322 			return -EINVAL;
1323 		}
1324 		mii_set_media(dev);
1325 	}
1326 	return 0;
1327 }
1328 
rio_get_link(struct net_device * dev)1329 static u32 rio_get_link(struct net_device *dev)
1330 {
1331 	struct netdev_private *np = netdev_priv(dev);
1332 	return np->link_status;
1333 }
1334 
1335 static const struct ethtool_ops ethtool_ops = {
1336 	.get_drvinfo = rio_get_drvinfo,
1337 	.get_link = rio_get_link,
1338 	.get_link_ksettings = rio_get_link_ksettings,
1339 	.set_link_ksettings = rio_set_link_ksettings,
1340 };
1341 
1342 static int
rio_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1343 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1344 {
1345 	int phy_addr;
1346 	struct netdev_private *np = netdev_priv(dev);
1347 	struct mii_ioctl_data *miidata = if_mii(rq);
1348 
1349 	phy_addr = np->phy_addr;
1350 	switch (cmd) {
1351 	case SIOCGMIIPHY:
1352 		miidata->phy_id = phy_addr;
1353 		break;
1354 	case SIOCGMIIREG:
1355 		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1356 		break;
1357 	case SIOCSMIIREG:
1358 		if (!capable(CAP_NET_ADMIN))
1359 			return -EPERM;
1360 		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1361 		break;
1362 	default:
1363 		return -EOPNOTSUPP;
1364 	}
1365 	return 0;
1366 }
1367 
1368 #define EEP_READ 0x0200
1369 #define EEP_BUSY 0x8000
1370 /* Read the EEPROM word */
1371 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
read_eeprom(struct netdev_private * np,int eep_addr)1372 static int read_eeprom(struct netdev_private *np, int eep_addr)
1373 {
1374 	void __iomem *ioaddr = np->eeprom_addr;
1375 	int i = 1000;
1376 
1377 	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1378 	while (i-- > 0) {
1379 		if (!(dr16(EepromCtrl) & EEP_BUSY))
1380 			return dr16(EepromData);
1381 	}
1382 	return 0;
1383 }
1384 
1385 enum phy_ctrl_bits {
1386 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1387 	MII_DUPLEX = 0x08,
1388 };
1389 
1390 #define mii_delay() dr8(PhyCtrl)
1391 static void
mii_sendbit(struct net_device * dev,u32 data)1392 mii_sendbit (struct net_device *dev, u32 data)
1393 {
1394 	struct netdev_private *np = netdev_priv(dev);
1395 	void __iomem *ioaddr = np->ioaddr;
1396 
1397 	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1398 	dw8(PhyCtrl, data);
1399 	mii_delay ();
1400 	dw8(PhyCtrl, data | MII_CLK);
1401 	mii_delay ();
1402 }
1403 
1404 static int
mii_getbit(struct net_device * dev)1405 mii_getbit (struct net_device *dev)
1406 {
1407 	struct netdev_private *np = netdev_priv(dev);
1408 	void __iomem *ioaddr = np->ioaddr;
1409 	u8 data;
1410 
1411 	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1412 	dw8(PhyCtrl, data);
1413 	mii_delay ();
1414 	dw8(PhyCtrl, data | MII_CLK);
1415 	mii_delay ();
1416 	return (dr8(PhyCtrl) >> 1) & 1;
1417 }
1418 
1419 static void
mii_send_bits(struct net_device * dev,u32 data,int len)1420 mii_send_bits (struct net_device *dev, u32 data, int len)
1421 {
1422 	int i;
1423 
1424 	for (i = len - 1; i >= 0; i--) {
1425 		mii_sendbit (dev, data & (1 << i));
1426 	}
1427 }
1428 
1429 static int
mii_read(struct net_device * dev,int phy_addr,int reg_num)1430 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1431 {
1432 	u32 cmd;
1433 	int i;
1434 	u32 retval = 0;
1435 
1436 	/* Preamble */
1437 	mii_send_bits (dev, 0xffffffff, 32);
1438 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1439 	/* ST,OP = 0110'b for read operation */
1440 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1441 	mii_send_bits (dev, cmd, 14);
1442 	/* Turnaround */
1443 	if (mii_getbit (dev))
1444 		goto err_out;
1445 	/* Read data */
1446 	for (i = 0; i < 16; i++) {
1447 		retval |= mii_getbit (dev);
1448 		retval <<= 1;
1449 	}
1450 	/* End cycle */
1451 	mii_getbit (dev);
1452 	return (retval >> 1) & 0xffff;
1453 
1454       err_out:
1455 	return 0;
1456 }
1457 static int
mii_write(struct net_device * dev,int phy_addr,int reg_num,u16 data)1458 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1459 {
1460 	u32 cmd;
1461 
1462 	/* Preamble */
1463 	mii_send_bits (dev, 0xffffffff, 32);
1464 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1465 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1466 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1467 	mii_send_bits (dev, cmd, 32);
1468 	/* End cycle */
1469 	mii_getbit (dev);
1470 	return 0;
1471 }
1472 static int
mii_wait_link(struct net_device * dev,int wait)1473 mii_wait_link (struct net_device *dev, int wait)
1474 {
1475 	__u16 bmsr;
1476 	int phy_addr;
1477 	struct netdev_private *np;
1478 
1479 	np = netdev_priv(dev);
1480 	phy_addr = np->phy_addr;
1481 
1482 	do {
1483 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1484 		if (bmsr & BMSR_LSTATUS)
1485 			return 0;
1486 		mdelay (1);
1487 	} while (--wait > 0);
1488 	return -1;
1489 }
1490 static int
mii_get_media(struct net_device * dev)1491 mii_get_media (struct net_device *dev)
1492 {
1493 	__u16 negotiate;
1494 	__u16 bmsr;
1495 	__u16 mscr;
1496 	__u16 mssr;
1497 	int phy_addr;
1498 	struct netdev_private *np;
1499 
1500 	np = netdev_priv(dev);
1501 	phy_addr = np->phy_addr;
1502 
1503 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1504 	if (np->an_enable) {
1505 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1506 			/* Auto-Negotiation not completed */
1507 			return -1;
1508 		}
1509 		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1510 			mii_read (dev, phy_addr, MII_LPA);
1511 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1512 		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1513 		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1514 			np->speed = 1000;
1515 			np->full_duplex = 1;
1516 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1517 		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1518 			np->speed = 1000;
1519 			np->full_duplex = 0;
1520 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1521 		} else if (negotiate & ADVERTISE_100FULL) {
1522 			np->speed = 100;
1523 			np->full_duplex = 1;
1524 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1525 		} else if (negotiate & ADVERTISE_100HALF) {
1526 			np->speed = 100;
1527 			np->full_duplex = 0;
1528 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1529 		} else if (negotiate & ADVERTISE_10FULL) {
1530 			np->speed = 10;
1531 			np->full_duplex = 1;
1532 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1533 		} else if (negotiate & ADVERTISE_10HALF) {
1534 			np->speed = 10;
1535 			np->full_duplex = 0;
1536 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1537 		}
1538 		if (negotiate & ADVERTISE_PAUSE_CAP) {
1539 			np->tx_flow &= 1;
1540 			np->rx_flow &= 1;
1541 		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1542 			np->tx_flow = 0;
1543 			np->rx_flow &= 1;
1544 		}
1545 		/* else tx_flow, rx_flow = user select  */
1546 	} else {
1547 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1548 		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1549 		case BMCR_SPEED1000:
1550 			printk (KERN_INFO "Operating at 1000 Mbps, ");
1551 			break;
1552 		case BMCR_SPEED100:
1553 			printk (KERN_INFO "Operating at 100 Mbps, ");
1554 			break;
1555 		case 0:
1556 			printk (KERN_INFO "Operating at 10 Mbps, ");
1557 		}
1558 		if (bmcr & BMCR_FULLDPLX) {
1559 			printk (KERN_CONT "Full duplex\n");
1560 		} else {
1561 			printk (KERN_CONT "Half duplex\n");
1562 		}
1563 	}
1564 	if (np->tx_flow)
1565 		printk(KERN_INFO "Enable Tx Flow Control\n");
1566 	else
1567 		printk(KERN_INFO "Disable Tx Flow Control\n");
1568 	if (np->rx_flow)
1569 		printk(KERN_INFO "Enable Rx Flow Control\n");
1570 	else
1571 		printk(KERN_INFO "Disable Rx Flow Control\n");
1572 
1573 	return 0;
1574 }
1575 
1576 static int
mii_set_media(struct net_device * dev)1577 mii_set_media (struct net_device *dev)
1578 {
1579 	__u16 pscr;
1580 	__u16 bmcr;
1581 	__u16 bmsr;
1582 	__u16 anar;
1583 	int phy_addr;
1584 	struct netdev_private *np;
1585 	np = netdev_priv(dev);
1586 	phy_addr = np->phy_addr;
1587 
1588 	/* Does user set speed? */
1589 	if (np->an_enable) {
1590 		/* Advertise capabilities */
1591 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1592 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1593 			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1594 			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1595 			  ADVERTISE_100BASE4);
1596 		if (bmsr & BMSR_100FULL)
1597 			anar |= ADVERTISE_100FULL;
1598 		if (bmsr & BMSR_100HALF)
1599 			anar |= ADVERTISE_100HALF;
1600 		if (bmsr & BMSR_100BASE4)
1601 			anar |= ADVERTISE_100BASE4;
1602 		if (bmsr & BMSR_10FULL)
1603 			anar |= ADVERTISE_10FULL;
1604 		if (bmsr & BMSR_10HALF)
1605 			anar |= ADVERTISE_10HALF;
1606 		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1607 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1608 
1609 		/* Enable Auto crossover */
1610 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1611 		pscr |= 3 << 5;	/* 11'b */
1612 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1613 
1614 		/* Soft reset PHY */
1615 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1616 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1617 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1618 		mdelay(1);
1619 	} else {
1620 		/* Force speed setting */
1621 		/* 1) Disable Auto crossover */
1622 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1623 		pscr &= ~(3 << 5);
1624 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1625 
1626 		/* 2) PHY Reset */
1627 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1628 		bmcr |= BMCR_RESET;
1629 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1630 
1631 		/* 3) Power Down */
1632 		bmcr = 0x1940;	/* must be 0x1940 */
1633 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1634 		mdelay (100);	/* wait a certain time */
1635 
1636 		/* 4) Advertise nothing */
1637 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1638 
1639 		/* 5) Set media and Power Up */
1640 		bmcr = BMCR_PDOWN;
1641 		if (np->speed == 100) {
1642 			bmcr |= BMCR_SPEED100;
1643 			printk (KERN_INFO "Manual 100 Mbps, ");
1644 		} else if (np->speed == 10) {
1645 			printk (KERN_INFO "Manual 10 Mbps, ");
1646 		}
1647 		if (np->full_duplex) {
1648 			bmcr |= BMCR_FULLDPLX;
1649 			printk (KERN_CONT "Full duplex\n");
1650 		} else {
1651 			printk (KERN_CONT "Half duplex\n");
1652 		}
1653 #if 0
1654 		/* Set 1000BaseT Master/Slave setting */
1655 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1656 		mscr |= MII_MSCR_CFG_ENABLE;
1657 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1658 #endif
1659 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1660 		mdelay(10);
1661 	}
1662 	return 0;
1663 }
1664 
1665 static int
mii_get_media_pcs(struct net_device * dev)1666 mii_get_media_pcs (struct net_device *dev)
1667 {
1668 	__u16 negotiate;
1669 	__u16 bmsr;
1670 	int phy_addr;
1671 	struct netdev_private *np;
1672 
1673 	np = netdev_priv(dev);
1674 	phy_addr = np->phy_addr;
1675 
1676 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1677 	if (np->an_enable) {
1678 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1679 			/* Auto-Negotiation not completed */
1680 			return -1;
1681 		}
1682 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1683 			mii_read (dev, phy_addr, PCS_ANLPAR);
1684 		np->speed = 1000;
1685 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1686 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1687 			np->full_duplex = 1;
1688 		} else {
1689 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1690 			np->full_duplex = 0;
1691 		}
1692 		if (negotiate & PCS_ANAR_PAUSE) {
1693 			np->tx_flow &= 1;
1694 			np->rx_flow &= 1;
1695 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1696 			np->tx_flow = 0;
1697 			np->rx_flow &= 1;
1698 		}
1699 		/* else tx_flow, rx_flow = user select  */
1700 	} else {
1701 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1702 		printk (KERN_INFO "Operating at 1000 Mbps, ");
1703 		if (bmcr & BMCR_FULLDPLX) {
1704 			printk (KERN_CONT "Full duplex\n");
1705 		} else {
1706 			printk (KERN_CONT "Half duplex\n");
1707 		}
1708 	}
1709 	if (np->tx_flow)
1710 		printk(KERN_INFO "Enable Tx Flow Control\n");
1711 	else
1712 		printk(KERN_INFO "Disable Tx Flow Control\n");
1713 	if (np->rx_flow)
1714 		printk(KERN_INFO "Enable Rx Flow Control\n");
1715 	else
1716 		printk(KERN_INFO "Disable Rx Flow Control\n");
1717 
1718 	return 0;
1719 }
1720 
1721 static int
mii_set_media_pcs(struct net_device * dev)1722 mii_set_media_pcs (struct net_device *dev)
1723 {
1724 	__u16 bmcr;
1725 	__u16 esr;
1726 	__u16 anar;
1727 	int phy_addr;
1728 	struct netdev_private *np;
1729 	np = netdev_priv(dev);
1730 	phy_addr = np->phy_addr;
1731 
1732 	/* Auto-Negotiation? */
1733 	if (np->an_enable) {
1734 		/* Advertise capabilities */
1735 		esr = mii_read (dev, phy_addr, PCS_ESR);
1736 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1737 			~PCS_ANAR_HALF_DUPLEX &
1738 			~PCS_ANAR_FULL_DUPLEX;
1739 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1740 			anar |= PCS_ANAR_HALF_DUPLEX;
1741 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1742 			anar |= PCS_ANAR_FULL_DUPLEX;
1743 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1744 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1745 
1746 		/* Soft reset PHY */
1747 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1748 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1749 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1750 		mdelay(1);
1751 	} else {
1752 		/* Force speed setting */
1753 		/* PHY Reset */
1754 		bmcr = BMCR_RESET;
1755 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1756 		mdelay(10);
1757 		if (np->full_duplex) {
1758 			bmcr = BMCR_FULLDPLX;
1759 			printk (KERN_INFO "Manual full duplex\n");
1760 		} else {
1761 			bmcr = 0;
1762 			printk (KERN_INFO "Manual half duplex\n");
1763 		}
1764 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1765 		mdelay(10);
1766 
1767 		/*  Advertise nothing */
1768 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1769 	}
1770 	return 0;
1771 }
1772 
1773 
1774 static int
rio_close(struct net_device * dev)1775 rio_close (struct net_device *dev)
1776 {
1777 	struct netdev_private *np = netdev_priv(dev);
1778 	struct pci_dev *pdev = np->pdev;
1779 
1780 	netif_stop_queue (dev);
1781 
1782 	rio_hw_stop(dev);
1783 
1784 	free_irq(pdev->irq, dev);
1785 	del_timer_sync (&np->timer);
1786 
1787 	free_list(dev);
1788 
1789 	return 0;
1790 }
1791 
1792 static void
rio_remove1(struct pci_dev * pdev)1793 rio_remove1 (struct pci_dev *pdev)
1794 {
1795 	struct net_device *dev = pci_get_drvdata (pdev);
1796 
1797 	if (dev) {
1798 		struct netdev_private *np = netdev_priv(dev);
1799 
1800 		unregister_netdev (dev);
1801 		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1802 				  np->rx_ring_dma);
1803 		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1804 				  np->tx_ring_dma);
1805 #ifdef MEM_MAPPING
1806 		pci_iounmap(pdev, np->ioaddr);
1807 #endif
1808 		pci_iounmap(pdev, np->eeprom_addr);
1809 		free_netdev (dev);
1810 		pci_release_regions (pdev);
1811 		pci_disable_device (pdev);
1812 	}
1813 }
1814 
1815 #ifdef CONFIG_PM_SLEEP
rio_suspend(struct device * device)1816 static int rio_suspend(struct device *device)
1817 {
1818 	struct net_device *dev = dev_get_drvdata(device);
1819 	struct netdev_private *np = netdev_priv(dev);
1820 
1821 	if (!netif_running(dev))
1822 		return 0;
1823 
1824 	netif_device_detach(dev);
1825 	del_timer_sync(&np->timer);
1826 	rio_hw_stop(dev);
1827 
1828 	return 0;
1829 }
1830 
rio_resume(struct device * device)1831 static int rio_resume(struct device *device)
1832 {
1833 	struct net_device *dev = dev_get_drvdata(device);
1834 	struct netdev_private *np = netdev_priv(dev);
1835 
1836 	if (!netif_running(dev))
1837 		return 0;
1838 
1839 	rio_reset_ring(np);
1840 	rio_hw_init(dev);
1841 	np->timer.expires = jiffies + 1 * HZ;
1842 	add_timer(&np->timer);
1843 	netif_device_attach(dev);
1844 	dl2k_enable_int(np);
1845 
1846 	return 0;
1847 }
1848 
1849 static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1850 #define RIO_PM_OPS    (&rio_pm_ops)
1851 
1852 #else
1853 
1854 #define RIO_PM_OPS	NULL
1855 
1856 #endif /* CONFIG_PM_SLEEP */
1857 
1858 static struct pci_driver rio_driver = {
1859 	.name		= "dl2k",
1860 	.id_table	= rio_pci_tbl,
1861 	.probe		= rio_probe1,
1862 	.remove		= rio_remove1,
1863 	.driver.pm	= RIO_PM_OPS,
1864 };
1865 
1866 module_pci_driver(rio_driver);
1867 
1868 /* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
1869