• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2019 Intel Corporation. */
3 
4 #include <linux/types.h>
5 #include <linux/module.h>
6 #include <net/ipv6.h>
7 #include <net/ip.h>
8 #include <net/tcp.h>
9 #include <linux/if_macvlan.h>
10 #include <linux/prefetch.h>
11 
12 #include "fm10k.h"
13 
14 #define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver"
15 char fm10k_driver_name[] = "fm10k";
16 static const char fm10k_driver_string[] = DRV_SUMMARY;
17 static const char fm10k_copyright[] =
18 	"Copyright(c) 2013 - 2019 Intel Corporation.";
19 
20 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
21 MODULE_DESCRIPTION(DRV_SUMMARY);
22 MODULE_LICENSE("GPL v2");
23 
24 /* single workqueue for entire fm10k driver */
25 struct workqueue_struct *fm10k_workqueue;
26 
27 /**
28  * fm10k_init_module - Driver Registration Routine
29  *
30  * fm10k_init_module is the first routine called when the driver is
31  * loaded.  All it does is register with the PCI subsystem.
32  **/
fm10k_init_module(void)33 static int __init fm10k_init_module(void)
34 {
35 	int ret;
36 
37 	pr_info("%s\n", fm10k_driver_string);
38 	pr_info("%s\n", fm10k_copyright);
39 
40 	/* create driver workqueue */
41 	fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
42 					  fm10k_driver_name);
43 	if (!fm10k_workqueue)
44 		return -ENOMEM;
45 
46 	fm10k_dbg_init();
47 
48 	ret = fm10k_register_pci_driver();
49 	if (ret) {
50 		fm10k_dbg_exit();
51 		destroy_workqueue(fm10k_workqueue);
52 	}
53 
54 	return ret;
55 }
56 module_init(fm10k_init_module);
57 
58 /**
59  * fm10k_exit_module - Driver Exit Cleanup Routine
60  *
61  * fm10k_exit_module is called just before the driver is removed
62  * from memory.
63  **/
fm10k_exit_module(void)64 static void __exit fm10k_exit_module(void)
65 {
66 	fm10k_unregister_pci_driver();
67 
68 	fm10k_dbg_exit();
69 
70 	/* destroy driver workqueue */
71 	destroy_workqueue(fm10k_workqueue);
72 }
73 module_exit(fm10k_exit_module);
74 
fm10k_alloc_mapped_page(struct fm10k_ring * rx_ring,struct fm10k_rx_buffer * bi)75 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
76 				    struct fm10k_rx_buffer *bi)
77 {
78 	struct page *page = bi->page;
79 	dma_addr_t dma;
80 
81 	/* Only page will be NULL if buffer was consumed */
82 	if (likely(page))
83 		return true;
84 
85 	/* alloc new page for storage */
86 	page = dev_alloc_page();
87 	if (unlikely(!page)) {
88 		rx_ring->rx_stats.alloc_failed++;
89 		return false;
90 	}
91 
92 	/* map page for use */
93 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
94 
95 	/* if mapping failed free memory back to system since
96 	 * there isn't much point in holding memory we can't use
97 	 */
98 	if (dma_mapping_error(rx_ring->dev, dma)) {
99 		__free_page(page);
100 
101 		rx_ring->rx_stats.alloc_failed++;
102 		return false;
103 	}
104 
105 	bi->dma = dma;
106 	bi->page = page;
107 	bi->page_offset = 0;
108 
109 	return true;
110 }
111 
112 /**
113  * fm10k_alloc_rx_buffers - Replace used receive buffers
114  * @rx_ring: ring to place buffers on
115  * @cleaned_count: number of buffers to replace
116  **/
fm10k_alloc_rx_buffers(struct fm10k_ring * rx_ring,u16 cleaned_count)117 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
118 {
119 	union fm10k_rx_desc *rx_desc;
120 	struct fm10k_rx_buffer *bi;
121 	u16 i = rx_ring->next_to_use;
122 
123 	/* nothing to do */
124 	if (!cleaned_count)
125 		return;
126 
127 	rx_desc = FM10K_RX_DESC(rx_ring, i);
128 	bi = &rx_ring->rx_buffer[i];
129 	i -= rx_ring->count;
130 
131 	do {
132 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
133 			break;
134 
135 		/* Refresh the desc even if buffer_addrs didn't change
136 		 * because each write-back erases this info.
137 		 */
138 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
139 
140 		rx_desc++;
141 		bi++;
142 		i++;
143 		if (unlikely(!i)) {
144 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
145 			bi = rx_ring->rx_buffer;
146 			i -= rx_ring->count;
147 		}
148 
149 		/* clear the status bits for the next_to_use descriptor */
150 		rx_desc->d.staterr = 0;
151 
152 		cleaned_count--;
153 	} while (cleaned_count);
154 
155 	i += rx_ring->count;
156 
157 	if (rx_ring->next_to_use != i) {
158 		/* record the next descriptor to use */
159 		rx_ring->next_to_use = i;
160 
161 		/* update next to alloc since we have filled the ring */
162 		rx_ring->next_to_alloc = i;
163 
164 		/* Force memory writes to complete before letting h/w
165 		 * know there are new descriptors to fetch.  (Only
166 		 * applicable for weak-ordered memory model archs,
167 		 * such as IA-64).
168 		 */
169 		wmb();
170 
171 		/* notify hardware of new descriptors */
172 		writel(i, rx_ring->tail);
173 	}
174 }
175 
176 /**
177  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
178  * @rx_ring: rx descriptor ring to store buffers on
179  * @old_buff: donor buffer to have page reused
180  *
181  * Synchronizes page for reuse by the interface
182  **/
fm10k_reuse_rx_page(struct fm10k_ring * rx_ring,struct fm10k_rx_buffer * old_buff)183 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
184 				struct fm10k_rx_buffer *old_buff)
185 {
186 	struct fm10k_rx_buffer *new_buff;
187 	u16 nta = rx_ring->next_to_alloc;
188 
189 	new_buff = &rx_ring->rx_buffer[nta];
190 
191 	/* update, and store next to alloc */
192 	nta++;
193 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
194 
195 	/* transfer page from old buffer to new buffer */
196 	*new_buff = *old_buff;
197 
198 	/* sync the buffer for use by the device */
199 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
200 					 old_buff->page_offset,
201 					 FM10K_RX_BUFSZ,
202 					 DMA_FROM_DEVICE);
203 }
204 
fm10k_page_is_reserved(struct page * page)205 static inline bool fm10k_page_is_reserved(struct page *page)
206 {
207 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
208 }
209 
fm10k_can_reuse_rx_page(struct fm10k_rx_buffer * rx_buffer,struct page * page,unsigned int __maybe_unused truesize)210 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
211 				    struct page *page,
212 				    unsigned int __maybe_unused truesize)
213 {
214 	/* avoid re-using remote pages */
215 	if (unlikely(fm10k_page_is_reserved(page)))
216 		return false;
217 
218 #if (PAGE_SIZE < 8192)
219 	/* if we are only owner of page we can reuse it */
220 	if (unlikely(page_count(page) != 1))
221 		return false;
222 
223 	/* flip page offset to other buffer */
224 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
225 #else
226 	/* move offset up to the next cache line */
227 	rx_buffer->page_offset += truesize;
228 
229 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
230 		return false;
231 #endif
232 
233 	/* Even if we own the page, we are not allowed to use atomic_set()
234 	 * This would break get_page_unless_zero() users.
235 	 */
236 	page_ref_inc(page);
237 
238 	return true;
239 }
240 
241 /**
242  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
243  * @rx_buffer: buffer containing page to add
244  * @size: packet size from rx_desc
245  * @rx_desc: descriptor containing length of buffer written by hardware
246  * @skb: sk_buff to place the data into
247  *
248  * This function will add the data contained in rx_buffer->page to the skb.
249  * This is done either through a direct copy if the data in the buffer is
250  * less than the skb header size, otherwise it will just attach the page as
251  * a frag to the skb.
252  *
253  * The function will then update the page offset if necessary and return
254  * true if the buffer can be reused by the interface.
255  **/
fm10k_add_rx_frag(struct fm10k_rx_buffer * rx_buffer,unsigned int size,union fm10k_rx_desc * rx_desc,struct sk_buff * skb)256 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
257 			      unsigned int size,
258 			      union fm10k_rx_desc *rx_desc,
259 			      struct sk_buff *skb)
260 {
261 	struct page *page = rx_buffer->page;
262 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
263 #if (PAGE_SIZE < 8192)
264 	unsigned int truesize = FM10K_RX_BUFSZ;
265 #else
266 	unsigned int truesize = ALIGN(size, 512);
267 #endif
268 	unsigned int pull_len;
269 
270 	if (unlikely(skb_is_nonlinear(skb)))
271 		goto add_tail_frag;
272 
273 	if (likely(size <= FM10K_RX_HDR_LEN)) {
274 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
275 
276 		/* page is not reserved, we can reuse buffer as-is */
277 		if (likely(!fm10k_page_is_reserved(page)))
278 			return true;
279 
280 		/* this page cannot be reused so discard it */
281 		__free_page(page);
282 		return false;
283 	}
284 
285 	/* we need the header to contain the greater of either ETH_HLEN or
286 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
287 	 */
288 	pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
289 
290 	/* align pull length to size of long to optimize memcpy performance */
291 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
292 
293 	/* update all of the pointers */
294 	va += pull_len;
295 	size -= pull_len;
296 
297 add_tail_frag:
298 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
299 			(unsigned long)va & ~PAGE_MASK, size, truesize);
300 
301 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
302 }
303 
fm10k_fetch_rx_buffer(struct fm10k_ring * rx_ring,union fm10k_rx_desc * rx_desc,struct sk_buff * skb)304 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
305 					     union fm10k_rx_desc *rx_desc,
306 					     struct sk_buff *skb)
307 {
308 	unsigned int size = le16_to_cpu(rx_desc->w.length);
309 	struct fm10k_rx_buffer *rx_buffer;
310 	struct page *page;
311 
312 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
313 	page = rx_buffer->page;
314 	prefetchw(page);
315 
316 	if (likely(!skb)) {
317 		void *page_addr = page_address(page) +
318 				  rx_buffer->page_offset;
319 
320 		/* prefetch first cache line of first page */
321 		net_prefetch(page_addr);
322 
323 		/* allocate a skb to store the frags */
324 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
325 				     FM10K_RX_HDR_LEN);
326 		if (unlikely(!skb)) {
327 			rx_ring->rx_stats.alloc_failed++;
328 			return NULL;
329 		}
330 
331 		/* we will be copying header into skb->data in
332 		 * pskb_may_pull so it is in our interest to prefetch
333 		 * it now to avoid a possible cache miss
334 		 */
335 		prefetchw(skb->data);
336 	}
337 
338 	/* we are reusing so sync this buffer for CPU use */
339 	dma_sync_single_range_for_cpu(rx_ring->dev,
340 				      rx_buffer->dma,
341 				      rx_buffer->page_offset,
342 				      size,
343 				      DMA_FROM_DEVICE);
344 
345 	/* pull page into skb */
346 	if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
347 		/* hand second half of page back to the ring */
348 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
349 	} else {
350 		/* we are not reusing the buffer so unmap it */
351 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
352 			       PAGE_SIZE, DMA_FROM_DEVICE);
353 	}
354 
355 	/* clear contents of rx_buffer */
356 	rx_buffer->page = NULL;
357 
358 	return skb;
359 }
360 
fm10k_rx_checksum(struct fm10k_ring * ring,union fm10k_rx_desc * rx_desc,struct sk_buff * skb)361 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
362 				     union fm10k_rx_desc *rx_desc,
363 				     struct sk_buff *skb)
364 {
365 	skb_checksum_none_assert(skb);
366 
367 	/* Rx checksum disabled via ethtool */
368 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
369 		return;
370 
371 	/* TCP/UDP checksum error bit is set */
372 	if (fm10k_test_staterr(rx_desc,
373 			       FM10K_RXD_STATUS_L4E |
374 			       FM10K_RXD_STATUS_L4E2 |
375 			       FM10K_RXD_STATUS_IPE |
376 			       FM10K_RXD_STATUS_IPE2)) {
377 		ring->rx_stats.csum_err++;
378 		return;
379 	}
380 
381 	/* It must be a TCP or UDP packet with a valid checksum */
382 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
383 		skb->encapsulation = true;
384 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
385 		return;
386 
387 	skb->ip_summed = CHECKSUM_UNNECESSARY;
388 
389 	ring->rx_stats.csum_good++;
390 }
391 
392 #define FM10K_RSS_L4_TYPES_MASK \
393 	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
394 	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
395 	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
396 	 BIT(FM10K_RSSTYPE_IPV6_UDP))
397 
fm10k_rx_hash(struct fm10k_ring * ring,union fm10k_rx_desc * rx_desc,struct sk_buff * skb)398 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
399 				 union fm10k_rx_desc *rx_desc,
400 				 struct sk_buff *skb)
401 {
402 	u16 rss_type;
403 
404 	if (!(ring->netdev->features & NETIF_F_RXHASH))
405 		return;
406 
407 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
408 	if (!rss_type)
409 		return;
410 
411 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
412 		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
413 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
414 }
415 
fm10k_type_trans(struct fm10k_ring * rx_ring,union fm10k_rx_desc __maybe_unused * rx_desc,struct sk_buff * skb)416 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
417 			     union fm10k_rx_desc __maybe_unused *rx_desc,
418 			     struct sk_buff *skb)
419 {
420 	struct net_device *dev = rx_ring->netdev;
421 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
422 
423 	/* check to see if DGLORT belongs to a MACVLAN */
424 	if (l2_accel) {
425 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
426 
427 		idx -= l2_accel->dglort;
428 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
429 			dev = l2_accel->macvlan[idx];
430 		else
431 			l2_accel = NULL;
432 	}
433 
434 	/* Record Rx queue, or update macvlan statistics */
435 	if (!l2_accel)
436 		skb_record_rx_queue(skb, rx_ring->queue_index);
437 	else
438 		macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
439 				 false);
440 
441 	skb->protocol = eth_type_trans(skb, dev);
442 }
443 
444 /**
445  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
446  * @rx_ring: rx descriptor ring packet is being transacted on
447  * @rx_desc: pointer to the EOP Rx descriptor
448  * @skb: pointer to current skb being populated
449  *
450  * This function checks the ring, descriptor, and packet information in
451  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
452  * other fields within the skb.
453  **/
fm10k_process_skb_fields(struct fm10k_ring * rx_ring,union fm10k_rx_desc * rx_desc,struct sk_buff * skb)454 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
455 					     union fm10k_rx_desc *rx_desc,
456 					     struct sk_buff *skb)
457 {
458 	unsigned int len = skb->len;
459 
460 	fm10k_rx_hash(rx_ring, rx_desc, skb);
461 
462 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
463 
464 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
465 
466 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
467 
468 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
469 
470 	if (rx_desc->w.vlan) {
471 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
472 
473 		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
474 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
475 		else if (vid & VLAN_PRIO_MASK)
476 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
477 					       vid & VLAN_PRIO_MASK);
478 	}
479 
480 	fm10k_type_trans(rx_ring, rx_desc, skb);
481 
482 	return len;
483 }
484 
485 /**
486  * fm10k_is_non_eop - process handling of non-EOP buffers
487  * @rx_ring: Rx ring being processed
488  * @rx_desc: Rx descriptor for current buffer
489  *
490  * This function updates next to clean.  If the buffer is an EOP buffer
491  * this function exits returning false, otherwise it will place the
492  * sk_buff in the next buffer to be chained and return true indicating
493  * that this is in fact a non-EOP buffer.
494  **/
fm10k_is_non_eop(struct fm10k_ring * rx_ring,union fm10k_rx_desc * rx_desc)495 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
496 			     union fm10k_rx_desc *rx_desc)
497 {
498 	u32 ntc = rx_ring->next_to_clean + 1;
499 
500 	/* fetch, update, and store next to clean */
501 	ntc = (ntc < rx_ring->count) ? ntc : 0;
502 	rx_ring->next_to_clean = ntc;
503 
504 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
505 
506 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
507 		return false;
508 
509 	return true;
510 }
511 
512 /**
513  * fm10k_cleanup_headers - Correct corrupted or empty headers
514  * @rx_ring: rx descriptor ring packet is being transacted on
515  * @rx_desc: pointer to the EOP Rx descriptor
516  * @skb: pointer to current skb being fixed
517  *
518  * Address the case where we are pulling data in on pages only
519  * and as such no data is present in the skb header.
520  *
521  * In addition if skb is not at least 60 bytes we need to pad it so that
522  * it is large enough to qualify as a valid Ethernet frame.
523  *
524  * Returns true if an error was encountered and skb was freed.
525  **/
fm10k_cleanup_headers(struct fm10k_ring * rx_ring,union fm10k_rx_desc * rx_desc,struct sk_buff * skb)526 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
527 				  union fm10k_rx_desc *rx_desc,
528 				  struct sk_buff *skb)
529 {
530 	if (unlikely((fm10k_test_staterr(rx_desc,
531 					 FM10K_RXD_STATUS_RXE)))) {
532 #define FM10K_TEST_RXD_BIT(rxd, bit) \
533 	((rxd)->w.csum_err & cpu_to_le16(bit))
534 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
535 			rx_ring->rx_stats.switch_errors++;
536 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
537 			rx_ring->rx_stats.drops++;
538 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
539 			rx_ring->rx_stats.pp_errors++;
540 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
541 			rx_ring->rx_stats.link_errors++;
542 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
543 			rx_ring->rx_stats.length_errors++;
544 		dev_kfree_skb_any(skb);
545 		rx_ring->rx_stats.errors++;
546 		return true;
547 	}
548 
549 	/* if eth_skb_pad returns an error the skb was freed */
550 	if (eth_skb_pad(skb))
551 		return true;
552 
553 	return false;
554 }
555 
556 /**
557  * fm10k_receive_skb - helper function to handle rx indications
558  * @q_vector: structure containing interrupt and ring information
559  * @skb: packet to send up
560  **/
fm10k_receive_skb(struct fm10k_q_vector * q_vector,struct sk_buff * skb)561 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
562 			      struct sk_buff *skb)
563 {
564 	napi_gro_receive(&q_vector->napi, skb);
565 }
566 
fm10k_clean_rx_irq(struct fm10k_q_vector * q_vector,struct fm10k_ring * rx_ring,int budget)567 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
568 			      struct fm10k_ring *rx_ring,
569 			      int budget)
570 {
571 	struct sk_buff *skb = rx_ring->skb;
572 	unsigned int total_bytes = 0, total_packets = 0;
573 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
574 
575 	while (likely(total_packets < budget)) {
576 		union fm10k_rx_desc *rx_desc;
577 
578 		/* return some buffers to hardware, one at a time is too slow */
579 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
580 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
581 			cleaned_count = 0;
582 		}
583 
584 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
585 
586 		if (!rx_desc->d.staterr)
587 			break;
588 
589 		/* This memory barrier is needed to keep us from reading
590 		 * any other fields out of the rx_desc until we know the
591 		 * descriptor has been written back
592 		 */
593 		dma_rmb();
594 
595 		/* retrieve a buffer from the ring */
596 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
597 
598 		/* exit if we failed to retrieve a buffer */
599 		if (!skb)
600 			break;
601 
602 		cleaned_count++;
603 
604 		/* fetch next buffer in frame if non-eop */
605 		if (fm10k_is_non_eop(rx_ring, rx_desc))
606 			continue;
607 
608 		/* verify the packet layout is correct */
609 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
610 			skb = NULL;
611 			continue;
612 		}
613 
614 		/* populate checksum, timestamp, VLAN, and protocol */
615 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
616 
617 		fm10k_receive_skb(q_vector, skb);
618 
619 		/* reset skb pointer */
620 		skb = NULL;
621 
622 		/* update budget accounting */
623 		total_packets++;
624 	}
625 
626 	/* place incomplete frames back on ring for completion */
627 	rx_ring->skb = skb;
628 
629 	u64_stats_update_begin(&rx_ring->syncp);
630 	rx_ring->stats.packets += total_packets;
631 	rx_ring->stats.bytes += total_bytes;
632 	u64_stats_update_end(&rx_ring->syncp);
633 	q_vector->rx.total_packets += total_packets;
634 	q_vector->rx.total_bytes += total_bytes;
635 
636 	return total_packets;
637 }
638 
639 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
fm10k_port_is_vxlan(struct sk_buff * skb)640 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
641 {
642 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
643 
644 	if (interface->vxlan_port != udp_hdr(skb)->dest)
645 		return NULL;
646 
647 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
648 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
649 }
650 
651 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
652 #define NVGRE_TNI htons(0x2000)
653 struct fm10k_nvgre_hdr {
654 	__be16 flags;
655 	__be16 proto;
656 	__be32 tni;
657 };
658 
fm10k_gre_is_nvgre(struct sk_buff * skb)659 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
660 {
661 	struct fm10k_nvgre_hdr *nvgre_hdr;
662 	int hlen = ip_hdrlen(skb);
663 
664 	/* currently only IPv4 is supported due to hlen above */
665 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
666 		return NULL;
667 
668 	/* our transport header should be NVGRE */
669 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
670 
671 	/* verify all reserved flags are 0 */
672 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
673 		return NULL;
674 
675 	/* report start of ethernet header */
676 	if (nvgre_hdr->flags & NVGRE_TNI)
677 		return (struct ethhdr *)(nvgre_hdr + 1);
678 
679 	return (struct ethhdr *)(&nvgre_hdr->tni);
680 }
681 
fm10k_tx_encap_offload(struct sk_buff * skb)682 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
683 {
684 	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
685 	struct ethhdr *eth_hdr;
686 
687 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
688 	    skb->inner_protocol != htons(ETH_P_TEB))
689 		return 0;
690 
691 	switch (vlan_get_protocol(skb)) {
692 	case htons(ETH_P_IP):
693 		l4_hdr = ip_hdr(skb)->protocol;
694 		break;
695 	case htons(ETH_P_IPV6):
696 		l4_hdr = ipv6_hdr(skb)->nexthdr;
697 		break;
698 	default:
699 		return 0;
700 	}
701 
702 	switch (l4_hdr) {
703 	case IPPROTO_UDP:
704 		eth_hdr = fm10k_port_is_vxlan(skb);
705 		break;
706 	case IPPROTO_GRE:
707 		eth_hdr = fm10k_gre_is_nvgre(skb);
708 		break;
709 	default:
710 		return 0;
711 	}
712 
713 	if (!eth_hdr)
714 		return 0;
715 
716 	switch (eth_hdr->h_proto) {
717 	case htons(ETH_P_IP):
718 		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
719 		break;
720 	case htons(ETH_P_IPV6):
721 		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
722 		break;
723 	default:
724 		return 0;
725 	}
726 
727 	switch (inner_l4_hdr) {
728 	case IPPROTO_TCP:
729 		inner_l4_hlen = inner_tcp_hdrlen(skb);
730 		break;
731 	case IPPROTO_UDP:
732 		inner_l4_hlen = 8;
733 		break;
734 	default:
735 		return 0;
736 	}
737 
738 	/* The hardware allows tunnel offloads only if the combined inner and
739 	 * outer header is 184 bytes or less
740 	 */
741 	if (skb_inner_transport_header(skb) + inner_l4_hlen -
742 	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
743 		return 0;
744 
745 	return eth_hdr->h_proto;
746 }
747 
fm10k_tso(struct fm10k_ring * tx_ring,struct fm10k_tx_buffer * first)748 static int fm10k_tso(struct fm10k_ring *tx_ring,
749 		     struct fm10k_tx_buffer *first)
750 {
751 	struct sk_buff *skb = first->skb;
752 	struct fm10k_tx_desc *tx_desc;
753 	unsigned char *th;
754 	u8 hdrlen;
755 
756 	if (skb->ip_summed != CHECKSUM_PARTIAL)
757 		return 0;
758 
759 	if (!skb_is_gso(skb))
760 		return 0;
761 
762 	/* compute header lengths */
763 	if (skb->encapsulation) {
764 		if (!fm10k_tx_encap_offload(skb))
765 			goto err_vxlan;
766 		th = skb_inner_transport_header(skb);
767 	} else {
768 		th = skb_transport_header(skb);
769 	}
770 
771 	/* compute offset from SOF to transport header and add header len */
772 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
773 
774 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
775 
776 	/* update gso size and bytecount with header size */
777 	first->gso_segs = skb_shinfo(skb)->gso_segs;
778 	first->bytecount += (first->gso_segs - 1) * hdrlen;
779 
780 	/* populate Tx descriptor header size and mss */
781 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
782 	tx_desc->hdrlen = hdrlen;
783 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
784 
785 	return 1;
786 
787 err_vxlan:
788 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
789 	if (net_ratelimit())
790 		netdev_err(tx_ring->netdev,
791 			   "TSO requested for unsupported tunnel, disabling offload\n");
792 	return -1;
793 }
794 
fm10k_tx_csum(struct fm10k_ring * tx_ring,struct fm10k_tx_buffer * first)795 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
796 			  struct fm10k_tx_buffer *first)
797 {
798 	struct sk_buff *skb = first->skb;
799 	struct fm10k_tx_desc *tx_desc;
800 	union {
801 		struct iphdr *ipv4;
802 		struct ipv6hdr *ipv6;
803 		u8 *raw;
804 	} network_hdr;
805 	u8 *transport_hdr;
806 	__be16 frag_off;
807 	__be16 protocol;
808 	u8 l4_hdr = 0;
809 
810 	if (skb->ip_summed != CHECKSUM_PARTIAL)
811 		goto no_csum;
812 
813 	if (skb->encapsulation) {
814 		protocol = fm10k_tx_encap_offload(skb);
815 		if (!protocol) {
816 			if (skb_checksum_help(skb)) {
817 				dev_warn(tx_ring->dev,
818 					 "failed to offload encap csum!\n");
819 				tx_ring->tx_stats.csum_err++;
820 			}
821 			goto no_csum;
822 		}
823 		network_hdr.raw = skb_inner_network_header(skb);
824 		transport_hdr = skb_inner_transport_header(skb);
825 	} else {
826 		protocol = vlan_get_protocol(skb);
827 		network_hdr.raw = skb_network_header(skb);
828 		transport_hdr = skb_transport_header(skb);
829 	}
830 
831 	switch (protocol) {
832 	case htons(ETH_P_IP):
833 		l4_hdr = network_hdr.ipv4->protocol;
834 		break;
835 	case htons(ETH_P_IPV6):
836 		l4_hdr = network_hdr.ipv6->nexthdr;
837 		if (likely((transport_hdr - network_hdr.raw) ==
838 			   sizeof(struct ipv6hdr)))
839 			break;
840 		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
841 				      sizeof(struct ipv6hdr),
842 				 &l4_hdr, &frag_off);
843 		if (unlikely(frag_off))
844 			l4_hdr = NEXTHDR_FRAGMENT;
845 		break;
846 	default:
847 		break;
848 	}
849 
850 	switch (l4_hdr) {
851 	case IPPROTO_TCP:
852 	case IPPROTO_UDP:
853 		break;
854 	case IPPROTO_GRE:
855 		if (skb->encapsulation)
856 			break;
857 		fallthrough;
858 	default:
859 		if (unlikely(net_ratelimit())) {
860 			dev_warn(tx_ring->dev,
861 				 "partial checksum, version=%d l4 proto=%x\n",
862 				 protocol, l4_hdr);
863 		}
864 		skb_checksum_help(skb);
865 		tx_ring->tx_stats.csum_err++;
866 		goto no_csum;
867 	}
868 
869 	/* update TX checksum flag */
870 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
871 	tx_ring->tx_stats.csum_good++;
872 
873 no_csum:
874 	/* populate Tx descriptor header size and mss */
875 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
876 	tx_desc->hdrlen = 0;
877 	tx_desc->mss = 0;
878 }
879 
880 #define FM10K_SET_FLAG(_input, _flag, _result) \
881 	((_flag <= _result) ? \
882 	 ((u32)(_input & _flag) * (_result / _flag)) : \
883 	 ((u32)(_input & _flag) / (_flag / _result)))
884 
fm10k_tx_desc_flags(struct sk_buff * skb,u32 tx_flags)885 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
886 {
887 	/* set type for advanced descriptor with frame checksum insertion */
888 	u32 desc_flags = 0;
889 
890 	/* set checksum offload bits */
891 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
892 				     FM10K_TXD_FLAG_CSUM);
893 
894 	return desc_flags;
895 }
896 
fm10k_tx_desc_push(struct fm10k_ring * tx_ring,struct fm10k_tx_desc * tx_desc,u16 i,dma_addr_t dma,unsigned int size,u8 desc_flags)897 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
898 			       struct fm10k_tx_desc *tx_desc, u16 i,
899 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
900 {
901 	/* set RS and INT for last frame in a cache line */
902 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
903 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
904 
905 	/* record values to descriptor */
906 	tx_desc->buffer_addr = cpu_to_le64(dma);
907 	tx_desc->flags = desc_flags;
908 	tx_desc->buflen = cpu_to_le16(size);
909 
910 	/* return true if we just wrapped the ring */
911 	return i == tx_ring->count;
912 }
913 
__fm10k_maybe_stop_tx(struct fm10k_ring * tx_ring,u16 size)914 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
915 {
916 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
917 
918 	/* Memory barrier before checking head and tail */
919 	smp_mb();
920 
921 	/* Check again in a case another CPU has just made room available */
922 	if (likely(fm10k_desc_unused(tx_ring) < size))
923 		return -EBUSY;
924 
925 	/* A reprieve! - use start_queue because it doesn't call schedule */
926 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
927 	++tx_ring->tx_stats.restart_queue;
928 	return 0;
929 }
930 
fm10k_maybe_stop_tx(struct fm10k_ring * tx_ring,u16 size)931 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
932 {
933 	if (likely(fm10k_desc_unused(tx_ring) >= size))
934 		return 0;
935 	return __fm10k_maybe_stop_tx(tx_ring, size);
936 }
937 
fm10k_tx_map(struct fm10k_ring * tx_ring,struct fm10k_tx_buffer * first)938 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
939 			 struct fm10k_tx_buffer *first)
940 {
941 	struct sk_buff *skb = first->skb;
942 	struct fm10k_tx_buffer *tx_buffer;
943 	struct fm10k_tx_desc *tx_desc;
944 	skb_frag_t *frag;
945 	unsigned char *data;
946 	dma_addr_t dma;
947 	unsigned int data_len, size;
948 	u32 tx_flags = first->tx_flags;
949 	u16 i = tx_ring->next_to_use;
950 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
951 
952 	tx_desc = FM10K_TX_DESC(tx_ring, i);
953 
954 	/* add HW VLAN tag */
955 	if (skb_vlan_tag_present(skb))
956 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
957 	else
958 		tx_desc->vlan = 0;
959 
960 	size = skb_headlen(skb);
961 	data = skb->data;
962 
963 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
964 
965 	data_len = skb->data_len;
966 	tx_buffer = first;
967 
968 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
969 		if (dma_mapping_error(tx_ring->dev, dma))
970 			goto dma_error;
971 
972 		/* record length, and DMA address */
973 		dma_unmap_len_set(tx_buffer, len, size);
974 		dma_unmap_addr_set(tx_buffer, dma, dma);
975 
976 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
977 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
978 					       FM10K_MAX_DATA_PER_TXD, flags)) {
979 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
980 				i = 0;
981 			}
982 
983 			dma += FM10K_MAX_DATA_PER_TXD;
984 			size -= FM10K_MAX_DATA_PER_TXD;
985 		}
986 
987 		if (likely(!data_len))
988 			break;
989 
990 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
991 				       dma, size, flags)) {
992 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
993 			i = 0;
994 		}
995 
996 		size = skb_frag_size(frag);
997 		data_len -= size;
998 
999 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1000 				       DMA_TO_DEVICE);
1001 
1002 		tx_buffer = &tx_ring->tx_buffer[i];
1003 	}
1004 
1005 	/* write last descriptor with LAST bit set */
1006 	flags |= FM10K_TXD_FLAG_LAST;
1007 
1008 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1009 		i = 0;
1010 
1011 	/* record bytecount for BQL */
1012 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1013 
1014 	/* record SW timestamp if HW timestamp is not available */
1015 	skb_tx_timestamp(first->skb);
1016 
1017 	/* Force memory writes to complete before letting h/w know there
1018 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1019 	 * memory model archs, such as IA-64).
1020 	 *
1021 	 * We also need this memory barrier to make certain all of the
1022 	 * status bits have been updated before next_to_watch is written.
1023 	 */
1024 	wmb();
1025 
1026 	/* set next_to_watch value indicating a packet is present */
1027 	first->next_to_watch = tx_desc;
1028 
1029 	tx_ring->next_to_use = i;
1030 
1031 	/* Make sure there is space in the ring for the next send. */
1032 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1033 
1034 	/* notify HW of packet */
1035 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1036 		writel(i, tx_ring->tail);
1037 	}
1038 
1039 	return;
1040 dma_error:
1041 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1042 
1043 	/* clear dma mappings for failed tx_buffer map */
1044 	for (;;) {
1045 		tx_buffer = &tx_ring->tx_buffer[i];
1046 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1047 		if (tx_buffer == first)
1048 			break;
1049 		if (i == 0)
1050 			i = tx_ring->count;
1051 		i--;
1052 	}
1053 
1054 	tx_ring->next_to_use = i;
1055 }
1056 
fm10k_xmit_frame_ring(struct sk_buff * skb,struct fm10k_ring * tx_ring)1057 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1058 				  struct fm10k_ring *tx_ring)
1059 {
1060 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1061 	struct fm10k_tx_buffer *first;
1062 	unsigned short f;
1063 	u32 tx_flags = 0;
1064 	int tso;
1065 
1066 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1067 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1068 	 *       + 2 desc gap to keep tail from touching head
1069 	 * otherwise try next time
1070 	 */
1071 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1072 		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1073 
1074 		count += TXD_USE_COUNT(skb_frag_size(frag));
1075 	}
1076 
1077 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1078 		tx_ring->tx_stats.tx_busy++;
1079 		return NETDEV_TX_BUSY;
1080 	}
1081 
1082 	/* record the location of the first descriptor for this packet */
1083 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1084 	first->skb = skb;
1085 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1086 	first->gso_segs = 1;
1087 
1088 	/* record initial flags and protocol */
1089 	first->tx_flags = tx_flags;
1090 
1091 	tso = fm10k_tso(tx_ring, first);
1092 	if (tso < 0)
1093 		goto out_drop;
1094 	else if (!tso)
1095 		fm10k_tx_csum(tx_ring, first);
1096 
1097 	fm10k_tx_map(tx_ring, first);
1098 
1099 	return NETDEV_TX_OK;
1100 
1101 out_drop:
1102 	dev_kfree_skb_any(first->skb);
1103 	first->skb = NULL;
1104 
1105 	return NETDEV_TX_OK;
1106 }
1107 
fm10k_get_tx_completed(struct fm10k_ring * ring)1108 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1109 {
1110 	return ring->stats.packets;
1111 }
1112 
1113 /**
1114  * fm10k_get_tx_pending - how many Tx descriptors not processed
1115  * @ring: the ring structure
1116  * @in_sw: is tx_pending being checked in SW or in HW?
1117  */
fm10k_get_tx_pending(struct fm10k_ring * ring,bool in_sw)1118 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1119 {
1120 	struct fm10k_intfc *interface = ring->q_vector->interface;
1121 	struct fm10k_hw *hw = &interface->hw;
1122 	u32 head, tail;
1123 
1124 	if (likely(in_sw)) {
1125 		head = ring->next_to_clean;
1126 		tail = ring->next_to_use;
1127 	} else {
1128 		head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1129 		tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1130 	}
1131 
1132 	return ((head <= tail) ? tail : tail + ring->count) - head;
1133 }
1134 
fm10k_check_tx_hang(struct fm10k_ring * tx_ring)1135 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1136 {
1137 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1138 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1139 	u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1140 
1141 	clear_check_for_tx_hang(tx_ring);
1142 
1143 	/* Check for a hung queue, but be thorough. This verifies
1144 	 * that a transmit has been completed since the previous
1145 	 * check AND there is at least one packet pending. By
1146 	 * requiring this to fail twice we avoid races with
1147 	 * clearing the ARMED bit and conditions where we
1148 	 * run the check_tx_hang logic with a transmit completion
1149 	 * pending but without time to complete it yet.
1150 	 */
1151 	if (!tx_pending || (tx_done_old != tx_done)) {
1152 		/* update completed stats and continue */
1153 		tx_ring->tx_stats.tx_done_old = tx_done;
1154 		/* reset the countdown */
1155 		clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1156 
1157 		return false;
1158 	}
1159 
1160 	/* make sure it is true for two checks in a row */
1161 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1162 }
1163 
1164 /**
1165  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1166  * @interface: driver private struct
1167  **/
fm10k_tx_timeout_reset(struct fm10k_intfc * interface)1168 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1169 {
1170 	/* Do the reset outside of interrupt context */
1171 	if (!test_bit(__FM10K_DOWN, interface->state)) {
1172 		interface->tx_timeout_count++;
1173 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1174 		fm10k_service_event_schedule(interface);
1175 	}
1176 }
1177 
1178 /**
1179  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1180  * @q_vector: structure containing interrupt and ring information
1181  * @tx_ring: tx ring to clean
1182  * @napi_budget: Used to determine if we are in netpoll
1183  **/
fm10k_clean_tx_irq(struct fm10k_q_vector * q_vector,struct fm10k_ring * tx_ring,int napi_budget)1184 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1185 			       struct fm10k_ring *tx_ring, int napi_budget)
1186 {
1187 	struct fm10k_intfc *interface = q_vector->interface;
1188 	struct fm10k_tx_buffer *tx_buffer;
1189 	struct fm10k_tx_desc *tx_desc;
1190 	unsigned int total_bytes = 0, total_packets = 0;
1191 	unsigned int budget = q_vector->tx.work_limit;
1192 	unsigned int i = tx_ring->next_to_clean;
1193 
1194 	if (test_bit(__FM10K_DOWN, interface->state))
1195 		return true;
1196 
1197 	tx_buffer = &tx_ring->tx_buffer[i];
1198 	tx_desc = FM10K_TX_DESC(tx_ring, i);
1199 	i -= tx_ring->count;
1200 
1201 	do {
1202 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1203 
1204 		/* if next_to_watch is not set then there is no work pending */
1205 		if (!eop_desc)
1206 			break;
1207 
1208 		/* prevent any other reads prior to eop_desc */
1209 		smp_rmb();
1210 
1211 		/* if DD is not set pending work has not been completed */
1212 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1213 			break;
1214 
1215 		/* clear next_to_watch to prevent false hangs */
1216 		tx_buffer->next_to_watch = NULL;
1217 
1218 		/* update the statistics for this packet */
1219 		total_bytes += tx_buffer->bytecount;
1220 		total_packets += tx_buffer->gso_segs;
1221 
1222 		/* free the skb */
1223 		napi_consume_skb(tx_buffer->skb, napi_budget);
1224 
1225 		/* unmap skb header data */
1226 		dma_unmap_single(tx_ring->dev,
1227 				 dma_unmap_addr(tx_buffer, dma),
1228 				 dma_unmap_len(tx_buffer, len),
1229 				 DMA_TO_DEVICE);
1230 
1231 		/* clear tx_buffer data */
1232 		tx_buffer->skb = NULL;
1233 		dma_unmap_len_set(tx_buffer, len, 0);
1234 
1235 		/* unmap remaining buffers */
1236 		while (tx_desc != eop_desc) {
1237 			tx_buffer++;
1238 			tx_desc++;
1239 			i++;
1240 			if (unlikely(!i)) {
1241 				i -= tx_ring->count;
1242 				tx_buffer = tx_ring->tx_buffer;
1243 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1244 			}
1245 
1246 			/* unmap any remaining paged data */
1247 			if (dma_unmap_len(tx_buffer, len)) {
1248 				dma_unmap_page(tx_ring->dev,
1249 					       dma_unmap_addr(tx_buffer, dma),
1250 					       dma_unmap_len(tx_buffer, len),
1251 					       DMA_TO_DEVICE);
1252 				dma_unmap_len_set(tx_buffer, len, 0);
1253 			}
1254 		}
1255 
1256 		/* move us one more past the eop_desc for start of next pkt */
1257 		tx_buffer++;
1258 		tx_desc++;
1259 		i++;
1260 		if (unlikely(!i)) {
1261 			i -= tx_ring->count;
1262 			tx_buffer = tx_ring->tx_buffer;
1263 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1264 		}
1265 
1266 		/* issue prefetch for next Tx descriptor */
1267 		prefetch(tx_desc);
1268 
1269 		/* update budget accounting */
1270 		budget--;
1271 	} while (likely(budget));
1272 
1273 	i += tx_ring->count;
1274 	tx_ring->next_to_clean = i;
1275 	u64_stats_update_begin(&tx_ring->syncp);
1276 	tx_ring->stats.bytes += total_bytes;
1277 	tx_ring->stats.packets += total_packets;
1278 	u64_stats_update_end(&tx_ring->syncp);
1279 	q_vector->tx.total_bytes += total_bytes;
1280 	q_vector->tx.total_packets += total_packets;
1281 
1282 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1283 		/* schedule immediate reset if we believe we hung */
1284 		struct fm10k_hw *hw = &interface->hw;
1285 
1286 		netif_err(interface, drv, tx_ring->netdev,
1287 			  "Detected Tx Unit Hang\n"
1288 			  "  Tx Queue             <%d>\n"
1289 			  "  TDH, TDT             <%x>, <%x>\n"
1290 			  "  next_to_use          <%x>\n"
1291 			  "  next_to_clean        <%x>\n",
1292 			  tx_ring->queue_index,
1293 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1294 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1295 			  tx_ring->next_to_use, i);
1296 
1297 		netif_stop_subqueue(tx_ring->netdev,
1298 				    tx_ring->queue_index);
1299 
1300 		netif_info(interface, probe, tx_ring->netdev,
1301 			   "tx hang %d detected on queue %d, resetting interface\n",
1302 			   interface->tx_timeout_count + 1,
1303 			   tx_ring->queue_index);
1304 
1305 		fm10k_tx_timeout_reset(interface);
1306 
1307 		/* the netdev is about to reset, no point in enabling stuff */
1308 		return true;
1309 	}
1310 
1311 	/* notify netdev of completed buffers */
1312 	netdev_tx_completed_queue(txring_txq(tx_ring),
1313 				  total_packets, total_bytes);
1314 
1315 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1316 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1317 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1318 		/* Make sure that anybody stopping the queue after this
1319 		 * sees the new next_to_clean.
1320 		 */
1321 		smp_mb();
1322 		if (__netif_subqueue_stopped(tx_ring->netdev,
1323 					     tx_ring->queue_index) &&
1324 		    !test_bit(__FM10K_DOWN, interface->state)) {
1325 			netif_wake_subqueue(tx_ring->netdev,
1326 					    tx_ring->queue_index);
1327 			++tx_ring->tx_stats.restart_queue;
1328 		}
1329 	}
1330 
1331 	return !!budget;
1332 }
1333 
1334 /**
1335  * fm10k_update_itr - update the dynamic ITR value based on packet size
1336  *
1337  *      Stores a new ITR value based on strictly on packet size.  The
1338  *      divisors and thresholds used by this function were determined based
1339  *      on theoretical maximum wire speed and testing data, in order to
1340  *      minimize response time while increasing bulk throughput.
1341  *
1342  * @ring_container: Container for rings to have ITR updated
1343  **/
fm10k_update_itr(struct fm10k_ring_container * ring_container)1344 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1345 {
1346 	unsigned int avg_wire_size, packets, itr_round;
1347 
1348 	/* Only update ITR if we are using adaptive setting */
1349 	if (!ITR_IS_ADAPTIVE(ring_container->itr))
1350 		goto clear_counts;
1351 
1352 	packets = ring_container->total_packets;
1353 	if (!packets)
1354 		goto clear_counts;
1355 
1356 	avg_wire_size = ring_container->total_bytes / packets;
1357 
1358 	/* The following is a crude approximation of:
1359 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1360 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1361 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1362 	 *
1363 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1364 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1365 	 * formula down to
1366 	 *
1367 	 *  (34 * (size + 24)) / (size + 640) = ITR
1368 	 *
1369 	 * We first do some math on the packet size and then finally bitshift
1370 	 * by 8 after rounding up. We also have to account for PCIe link speed
1371 	 * difference as ITR scales based on this.
1372 	 */
1373 	if (avg_wire_size <= 360) {
1374 		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1375 		avg_wire_size *= 8;
1376 		avg_wire_size += 376;
1377 	} else if (avg_wire_size <= 1152) {
1378 		/* 77K ints/sec to 45K ints/sec */
1379 		avg_wire_size *= 3;
1380 		avg_wire_size += 2176;
1381 	} else if (avg_wire_size <= 1920) {
1382 		/* 45K ints/sec to 38K ints/sec */
1383 		avg_wire_size += 4480;
1384 	} else {
1385 		/* plateau at a limit of 38K ints/sec */
1386 		avg_wire_size = 6656;
1387 	}
1388 
1389 	/* Perform final bitshift for division after rounding up to ensure
1390 	 * that the calculation will never get below a 1. The bit shift
1391 	 * accounts for changes in the ITR due to PCIe link speed.
1392 	 */
1393 	itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1394 	avg_wire_size += BIT(itr_round) - 1;
1395 	avg_wire_size >>= itr_round;
1396 
1397 	/* write back value and retain adaptive flag */
1398 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1399 
1400 clear_counts:
1401 	ring_container->total_bytes = 0;
1402 	ring_container->total_packets = 0;
1403 }
1404 
fm10k_qv_enable(struct fm10k_q_vector * q_vector)1405 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1406 {
1407 	/* Enable auto-mask and clear the current mask */
1408 	u32 itr = FM10K_ITR_ENABLE;
1409 
1410 	/* Update Tx ITR */
1411 	fm10k_update_itr(&q_vector->tx);
1412 
1413 	/* Update Rx ITR */
1414 	fm10k_update_itr(&q_vector->rx);
1415 
1416 	/* Store Tx itr in timer slot 0 */
1417 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1418 
1419 	/* Shift Rx itr to timer slot 1 */
1420 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1421 
1422 	/* Write the final value to the ITR register */
1423 	writel(itr, q_vector->itr);
1424 }
1425 
fm10k_poll(struct napi_struct * napi,int budget)1426 static int fm10k_poll(struct napi_struct *napi, int budget)
1427 {
1428 	struct fm10k_q_vector *q_vector =
1429 			       container_of(napi, struct fm10k_q_vector, napi);
1430 	struct fm10k_ring *ring;
1431 	int per_ring_budget, work_done = 0;
1432 	bool clean_complete = true;
1433 
1434 	fm10k_for_each_ring(ring, q_vector->tx) {
1435 		if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1436 			clean_complete = false;
1437 	}
1438 
1439 	/* Handle case where we are called by netpoll with a budget of 0 */
1440 	if (budget <= 0)
1441 		return budget;
1442 
1443 	/* attempt to distribute budget to each queue fairly, but don't
1444 	 * allow the budget to go below 1 because we'll exit polling
1445 	 */
1446 	if (q_vector->rx.count > 1)
1447 		per_ring_budget = max(budget / q_vector->rx.count, 1);
1448 	else
1449 		per_ring_budget = budget;
1450 
1451 	fm10k_for_each_ring(ring, q_vector->rx) {
1452 		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1453 
1454 		work_done += work;
1455 		if (work >= per_ring_budget)
1456 			clean_complete = false;
1457 	}
1458 
1459 	/* If all work not completed, return budget and keep polling */
1460 	if (!clean_complete)
1461 		return budget;
1462 
1463 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1464 	 * poll us due to busy-polling
1465 	 */
1466 	if (likely(napi_complete_done(napi, work_done)))
1467 		fm10k_qv_enable(q_vector);
1468 
1469 	return min(work_done, budget - 1);
1470 }
1471 
1472 /**
1473  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1474  * @interface: board private structure to initialize
1475  *
1476  * When QoS (Quality of Service) is enabled, allocate queues for
1477  * each traffic class.  If multiqueue isn't available,then abort QoS
1478  * initialization.
1479  *
1480  * This function handles all combinations of Qos and RSS.
1481  *
1482  **/
fm10k_set_qos_queues(struct fm10k_intfc * interface)1483 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1484 {
1485 	struct net_device *dev = interface->netdev;
1486 	struct fm10k_ring_feature *f;
1487 	int rss_i, i;
1488 	int pcs;
1489 
1490 	/* Map queue offset and counts onto allocated tx queues */
1491 	pcs = netdev_get_num_tc(dev);
1492 
1493 	if (pcs <= 1)
1494 		return false;
1495 
1496 	/* set QoS mask and indices */
1497 	f = &interface->ring_feature[RING_F_QOS];
1498 	f->indices = pcs;
1499 	f->mask = BIT(fls(pcs - 1)) - 1;
1500 
1501 	/* determine the upper limit for our current DCB mode */
1502 	rss_i = interface->hw.mac.max_queues / pcs;
1503 	rss_i = BIT(fls(rss_i) - 1);
1504 
1505 	/* set RSS mask and indices */
1506 	f = &interface->ring_feature[RING_F_RSS];
1507 	rss_i = min_t(u16, rss_i, f->limit);
1508 	f->indices = rss_i;
1509 	f->mask = BIT(fls(rss_i - 1)) - 1;
1510 
1511 	/* configure pause class to queue mapping */
1512 	for (i = 0; i < pcs; i++)
1513 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1514 
1515 	interface->num_rx_queues = rss_i * pcs;
1516 	interface->num_tx_queues = rss_i * pcs;
1517 
1518 	return true;
1519 }
1520 
1521 /**
1522  * fm10k_set_rss_queues: Allocate queues for RSS
1523  * @interface: board private structure to initialize
1524  *
1525  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1526  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1527  *
1528  **/
fm10k_set_rss_queues(struct fm10k_intfc * interface)1529 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1530 {
1531 	struct fm10k_ring_feature *f;
1532 	u16 rss_i;
1533 
1534 	f = &interface->ring_feature[RING_F_RSS];
1535 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1536 
1537 	/* record indices and power of 2 mask for RSS */
1538 	f->indices = rss_i;
1539 	f->mask = BIT(fls(rss_i - 1)) - 1;
1540 
1541 	interface->num_rx_queues = rss_i;
1542 	interface->num_tx_queues = rss_i;
1543 
1544 	return true;
1545 }
1546 
1547 /**
1548  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1549  * @interface: board private structure to initialize
1550  *
1551  * This is the top level queue allocation routine.  The order here is very
1552  * important, starting with the "most" number of features turned on at once,
1553  * and ending with the smallest set of features.  This way large combinations
1554  * can be allocated if they're turned on, and smaller combinations are the
1555  * fall through conditions.
1556  *
1557  **/
fm10k_set_num_queues(struct fm10k_intfc * interface)1558 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1559 {
1560 	/* Attempt to setup QoS and RSS first */
1561 	if (fm10k_set_qos_queues(interface))
1562 		return;
1563 
1564 	/* If we don't have QoS, just fallback to only RSS. */
1565 	fm10k_set_rss_queues(interface);
1566 }
1567 
1568 /**
1569  * fm10k_reset_num_queues - Reset the number of queues to zero
1570  * @interface: board private structure
1571  *
1572  * This function should be called whenever we need to reset the number of
1573  * queues after an error condition.
1574  */
fm10k_reset_num_queues(struct fm10k_intfc * interface)1575 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1576 {
1577 	interface->num_tx_queues = 0;
1578 	interface->num_rx_queues = 0;
1579 	interface->num_q_vectors = 0;
1580 }
1581 
1582 /**
1583  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1584  * @interface: board private structure to initialize
1585  * @v_count: q_vectors allocated on interface, used for ring interleaving
1586  * @v_idx: index of vector in interface struct
1587  * @txr_count: total number of Tx rings to allocate
1588  * @txr_idx: index of first Tx ring to allocate
1589  * @rxr_count: total number of Rx rings to allocate
1590  * @rxr_idx: index of first Rx ring to allocate
1591  *
1592  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1593  **/
fm10k_alloc_q_vector(struct fm10k_intfc * interface,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)1594 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1595 				unsigned int v_count, unsigned int v_idx,
1596 				unsigned int txr_count, unsigned int txr_idx,
1597 				unsigned int rxr_count, unsigned int rxr_idx)
1598 {
1599 	struct fm10k_q_vector *q_vector;
1600 	struct fm10k_ring *ring;
1601 	int ring_count;
1602 
1603 	ring_count = txr_count + rxr_count;
1604 
1605 	/* allocate q_vector and rings */
1606 	q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1607 	if (!q_vector)
1608 		return -ENOMEM;
1609 
1610 	/* initialize NAPI */
1611 	netif_napi_add(interface->netdev, &q_vector->napi,
1612 		       fm10k_poll, NAPI_POLL_WEIGHT);
1613 
1614 	/* tie q_vector and interface together */
1615 	interface->q_vector[v_idx] = q_vector;
1616 	q_vector->interface = interface;
1617 	q_vector->v_idx = v_idx;
1618 
1619 	/* initialize pointer to rings */
1620 	ring = q_vector->ring;
1621 
1622 	/* save Tx ring container info */
1623 	q_vector->tx.ring = ring;
1624 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1625 	q_vector->tx.itr = interface->tx_itr;
1626 	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1627 	q_vector->tx.count = txr_count;
1628 
1629 	while (txr_count) {
1630 		/* assign generic ring traits */
1631 		ring->dev = &interface->pdev->dev;
1632 		ring->netdev = interface->netdev;
1633 
1634 		/* configure backlink on ring */
1635 		ring->q_vector = q_vector;
1636 
1637 		/* apply Tx specific ring traits */
1638 		ring->count = interface->tx_ring_count;
1639 		ring->queue_index = txr_idx;
1640 
1641 		/* assign ring to interface */
1642 		interface->tx_ring[txr_idx] = ring;
1643 
1644 		/* update count and index */
1645 		txr_count--;
1646 		txr_idx += v_count;
1647 
1648 		/* push pointer to next ring */
1649 		ring++;
1650 	}
1651 
1652 	/* save Rx ring container info */
1653 	q_vector->rx.ring = ring;
1654 	q_vector->rx.itr = interface->rx_itr;
1655 	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1656 	q_vector->rx.count = rxr_count;
1657 
1658 	while (rxr_count) {
1659 		/* assign generic ring traits */
1660 		ring->dev = &interface->pdev->dev;
1661 		ring->netdev = interface->netdev;
1662 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1663 
1664 		/* configure backlink on ring */
1665 		ring->q_vector = q_vector;
1666 
1667 		/* apply Rx specific ring traits */
1668 		ring->count = interface->rx_ring_count;
1669 		ring->queue_index = rxr_idx;
1670 
1671 		/* assign ring to interface */
1672 		interface->rx_ring[rxr_idx] = ring;
1673 
1674 		/* update count and index */
1675 		rxr_count--;
1676 		rxr_idx += v_count;
1677 
1678 		/* push pointer to next ring */
1679 		ring++;
1680 	}
1681 
1682 	fm10k_dbg_q_vector_init(q_vector);
1683 
1684 	return 0;
1685 }
1686 
1687 /**
1688  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1689  * @interface: board private structure to initialize
1690  * @v_idx: Index of vector to be freed
1691  *
1692  * This function frees the memory allocated to the q_vector.  In addition if
1693  * NAPI is enabled it will delete any references to the NAPI struct prior
1694  * to freeing the q_vector.
1695  **/
fm10k_free_q_vector(struct fm10k_intfc * interface,int v_idx)1696 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1697 {
1698 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1699 	struct fm10k_ring *ring;
1700 
1701 	fm10k_dbg_q_vector_exit(q_vector);
1702 
1703 	fm10k_for_each_ring(ring, q_vector->tx)
1704 		interface->tx_ring[ring->queue_index] = NULL;
1705 
1706 	fm10k_for_each_ring(ring, q_vector->rx)
1707 		interface->rx_ring[ring->queue_index] = NULL;
1708 
1709 	interface->q_vector[v_idx] = NULL;
1710 	netif_napi_del(&q_vector->napi);
1711 	kfree_rcu(q_vector, rcu);
1712 }
1713 
1714 /**
1715  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1716  * @interface: board private structure to initialize
1717  *
1718  * We allocate one q_vector per queue interrupt.  If allocation fails we
1719  * return -ENOMEM.
1720  **/
fm10k_alloc_q_vectors(struct fm10k_intfc * interface)1721 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1722 {
1723 	unsigned int q_vectors = interface->num_q_vectors;
1724 	unsigned int rxr_remaining = interface->num_rx_queues;
1725 	unsigned int txr_remaining = interface->num_tx_queues;
1726 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1727 	int err;
1728 
1729 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1730 		for (; rxr_remaining; v_idx++) {
1731 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1732 						   0, 0, 1, rxr_idx);
1733 			if (err)
1734 				goto err_out;
1735 
1736 			/* update counts and index */
1737 			rxr_remaining--;
1738 			rxr_idx++;
1739 		}
1740 	}
1741 
1742 	for (; v_idx < q_vectors; v_idx++) {
1743 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1744 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1745 
1746 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1747 					   tqpv, txr_idx,
1748 					   rqpv, rxr_idx);
1749 
1750 		if (err)
1751 			goto err_out;
1752 
1753 		/* update counts and index */
1754 		rxr_remaining -= rqpv;
1755 		txr_remaining -= tqpv;
1756 		rxr_idx++;
1757 		txr_idx++;
1758 	}
1759 
1760 	return 0;
1761 
1762 err_out:
1763 	fm10k_reset_num_queues(interface);
1764 
1765 	while (v_idx--)
1766 		fm10k_free_q_vector(interface, v_idx);
1767 
1768 	return -ENOMEM;
1769 }
1770 
1771 /**
1772  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1773  * @interface: board private structure to initialize
1774  *
1775  * This function frees the memory allocated to the q_vectors.  In addition if
1776  * NAPI is enabled it will delete any references to the NAPI struct prior
1777  * to freeing the q_vector.
1778  **/
fm10k_free_q_vectors(struct fm10k_intfc * interface)1779 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1780 {
1781 	int v_idx = interface->num_q_vectors;
1782 
1783 	fm10k_reset_num_queues(interface);
1784 
1785 	while (v_idx--)
1786 		fm10k_free_q_vector(interface, v_idx);
1787 }
1788 
1789 /**
1790  * f10k_reset_msix_capability - reset MSI-X capability
1791  * @interface: board private structure to initialize
1792  *
1793  * Reset the MSI-X capability back to its starting state
1794  **/
fm10k_reset_msix_capability(struct fm10k_intfc * interface)1795 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1796 {
1797 	pci_disable_msix(interface->pdev);
1798 	kfree(interface->msix_entries);
1799 	interface->msix_entries = NULL;
1800 }
1801 
1802 /**
1803  * f10k_init_msix_capability - configure MSI-X capability
1804  * @interface: board private structure to initialize
1805  *
1806  * Attempt to configure the interrupts using the best available
1807  * capabilities of the hardware and the kernel.
1808  **/
fm10k_init_msix_capability(struct fm10k_intfc * interface)1809 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1810 {
1811 	struct fm10k_hw *hw = &interface->hw;
1812 	int v_budget, vector;
1813 
1814 	/* It's easy to be greedy for MSI-X vectors, but it really
1815 	 * doesn't do us much good if we have a lot more vectors
1816 	 * than CPU's.  So let's be conservative and only ask for
1817 	 * (roughly) the same number of vectors as there are CPU's.
1818 	 * the default is to use pairs of vectors
1819 	 */
1820 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1821 	v_budget = min_t(u16, v_budget, num_online_cpus());
1822 
1823 	/* account for vectors not related to queues */
1824 	v_budget += NON_Q_VECTORS;
1825 
1826 	/* At the same time, hardware can only support a maximum of
1827 	 * hw.mac->max_msix_vectors vectors.  With features
1828 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1829 	 * descriptor queues supported by our device.  Thus, we cap it off in
1830 	 * those rare cases where the cpu count also exceeds our vector limit.
1831 	 */
1832 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1833 
1834 	/* A failure in MSI-X entry allocation is fatal. */
1835 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1836 					  GFP_KERNEL);
1837 	if (!interface->msix_entries)
1838 		return -ENOMEM;
1839 
1840 	/* populate entry values */
1841 	for (vector = 0; vector < v_budget; vector++)
1842 		interface->msix_entries[vector].entry = vector;
1843 
1844 	/* Attempt to enable MSI-X with requested value */
1845 	v_budget = pci_enable_msix_range(interface->pdev,
1846 					 interface->msix_entries,
1847 					 MIN_MSIX_COUNT(hw),
1848 					 v_budget);
1849 	if (v_budget < 0) {
1850 		kfree(interface->msix_entries);
1851 		interface->msix_entries = NULL;
1852 		return v_budget;
1853 	}
1854 
1855 	/* record the number of queues available for q_vectors */
1856 	interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1857 
1858 	return 0;
1859 }
1860 
1861 /**
1862  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1863  * @interface: Interface structure continaining rings and devices
1864  *
1865  * Cache the descriptor ring offsets for Qos
1866  **/
fm10k_cache_ring_qos(struct fm10k_intfc * interface)1867 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1868 {
1869 	struct net_device *dev = interface->netdev;
1870 	int pc, offset, rss_i, i;
1871 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1872 	u8 num_pcs = netdev_get_num_tc(dev);
1873 
1874 	if (num_pcs <= 1)
1875 		return false;
1876 
1877 	rss_i = interface->ring_feature[RING_F_RSS].indices;
1878 
1879 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1880 		int q_idx = pc;
1881 
1882 		for (i = 0; i < rss_i; i++) {
1883 			interface->tx_ring[offset + i]->reg_idx = q_idx;
1884 			interface->tx_ring[offset + i]->qos_pc = pc;
1885 			interface->rx_ring[offset + i]->reg_idx = q_idx;
1886 			interface->rx_ring[offset + i]->qos_pc = pc;
1887 			q_idx += pc_stride;
1888 		}
1889 	}
1890 
1891 	return true;
1892 }
1893 
1894 /**
1895  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1896  * @interface: Interface structure continaining rings and devices
1897  *
1898  * Cache the descriptor ring offsets for RSS
1899  **/
fm10k_cache_ring_rss(struct fm10k_intfc * interface)1900 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1901 {
1902 	int i;
1903 
1904 	for (i = 0; i < interface->num_rx_queues; i++)
1905 		interface->rx_ring[i]->reg_idx = i;
1906 
1907 	for (i = 0; i < interface->num_tx_queues; i++)
1908 		interface->tx_ring[i]->reg_idx = i;
1909 }
1910 
1911 /**
1912  * fm10k_assign_rings - Map rings to network devices
1913  * @interface: Interface structure containing rings and devices
1914  *
1915  * This function is meant to go though and configure both the network
1916  * devices so that they contain rings, and configure the rings so that
1917  * they function with their network devices.
1918  **/
fm10k_assign_rings(struct fm10k_intfc * interface)1919 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1920 {
1921 	if (fm10k_cache_ring_qos(interface))
1922 		return;
1923 
1924 	fm10k_cache_ring_rss(interface);
1925 }
1926 
fm10k_init_reta(struct fm10k_intfc * interface)1927 static void fm10k_init_reta(struct fm10k_intfc *interface)
1928 {
1929 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1930 	u32 reta;
1931 
1932 	/* If the Rx flow indirection table has been configured manually, we
1933 	 * need to maintain it when possible.
1934 	 */
1935 	if (netif_is_rxfh_configured(interface->netdev)) {
1936 		for (i = FM10K_RETA_SIZE; i--;) {
1937 			reta = interface->reta[i];
1938 			if ((((reta << 24) >> 24) < rss_i) &&
1939 			    (((reta << 16) >> 24) < rss_i) &&
1940 			    (((reta <<  8) >> 24) < rss_i) &&
1941 			    (((reta)       >> 24) < rss_i))
1942 				continue;
1943 
1944 			/* this should never happen */
1945 			dev_err(&interface->pdev->dev,
1946 				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1947 			goto repopulate_reta;
1948 		}
1949 
1950 		/* do nothing if all of the elements are in bounds */
1951 		return;
1952 	}
1953 
1954 repopulate_reta:
1955 	fm10k_write_reta(interface, NULL);
1956 }
1957 
1958 /**
1959  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1960  * @interface: board private structure to initialize
1961  *
1962  * We determine which queueing scheme to use based on...
1963  * - Hardware queue count (num_*_queues)
1964  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1965  **/
fm10k_init_queueing_scheme(struct fm10k_intfc * interface)1966 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1967 {
1968 	int err;
1969 
1970 	/* Number of supported queues */
1971 	fm10k_set_num_queues(interface);
1972 
1973 	/* Configure MSI-X capability */
1974 	err = fm10k_init_msix_capability(interface);
1975 	if (err) {
1976 		dev_err(&interface->pdev->dev,
1977 			"Unable to initialize MSI-X capability\n");
1978 		goto err_init_msix;
1979 	}
1980 
1981 	/* Allocate memory for queues */
1982 	err = fm10k_alloc_q_vectors(interface);
1983 	if (err) {
1984 		dev_err(&interface->pdev->dev,
1985 			"Unable to allocate queue vectors\n");
1986 		goto err_alloc_q_vectors;
1987 	}
1988 
1989 	/* Map rings to devices, and map devices to physical queues */
1990 	fm10k_assign_rings(interface);
1991 
1992 	/* Initialize RSS redirection table */
1993 	fm10k_init_reta(interface);
1994 
1995 	return 0;
1996 
1997 err_alloc_q_vectors:
1998 	fm10k_reset_msix_capability(interface);
1999 err_init_msix:
2000 	fm10k_reset_num_queues(interface);
2001 	return err;
2002 }
2003 
2004 /**
2005  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2006  * @interface: board private structure to clear queueing scheme on
2007  *
2008  * We go through and clear queueing specific resources and reset the structure
2009  * to pre-load conditions
2010  **/
fm10k_clear_queueing_scheme(struct fm10k_intfc * interface)2011 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2012 {
2013 	fm10k_free_q_vectors(interface);
2014 	fm10k_reset_msix_capability(interface);
2015 }
2016