• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 /**
55  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56  * @hw:   pointer to the HW structure
57  * @mem:  ptr to mem struct to fill out
58  * @size: size of memory requested
59  * @alignment: what to align the allocation to
60  **/
iavf_allocate_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem,u64 size,u32 alignment)61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 					 struct iavf_dma_mem *mem,
63 					 u64 size, u32 alignment)
64 {
65 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66 
67 	if (!mem)
68 		return IAVF_ERR_PARAM;
69 
70 	mem->size = ALIGN(size, alignment);
71 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 	if (mem->va)
74 		return 0;
75 	else
76 		return IAVF_ERR_NO_MEMORY;
77 }
78 
79 /**
80  * iavf_free_dma_mem_d - OS specific memory free for shared code
81  * @hw:   pointer to the HW structure
82  * @mem:  ptr to mem struct to free
83  **/
iavf_free_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem)84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 				     struct iavf_dma_mem *mem)
86 {
87 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88 
89 	if (!mem || !mem->va)
90 		return IAVF_ERR_PARAM;
91 	dma_free_coherent(&adapter->pdev->dev, mem->size,
92 			  mem->va, (dma_addr_t)mem->pa);
93 	return 0;
94 }
95 
96 /**
97  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98  * @hw:   pointer to the HW structure
99  * @mem:  ptr to mem struct to fill out
100  * @size: size of memory requested
101  **/
iavf_allocate_virt_mem_d(struct iavf_hw * hw,struct iavf_virt_mem * mem,u32 size)102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 					  struct iavf_virt_mem *mem, u32 size)
104 {
105 	if (!mem)
106 		return IAVF_ERR_PARAM;
107 
108 	mem->size = size;
109 	mem->va = kzalloc(size, GFP_KERNEL);
110 
111 	if (mem->va)
112 		return 0;
113 	else
114 		return IAVF_ERR_NO_MEMORY;
115 }
116 
117 /**
118  * iavf_free_virt_mem_d - OS specific memory free for shared code
119  * @hw:   pointer to the HW structure
120  * @mem:  ptr to mem struct to free
121  **/
iavf_free_virt_mem_d(struct iavf_hw * hw,struct iavf_virt_mem * mem)122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 				      struct iavf_virt_mem *mem)
124 {
125 	if (!mem)
126 		return IAVF_ERR_PARAM;
127 
128 	/* it's ok to kfree a NULL pointer */
129 	kfree(mem->va);
130 
131 	return 0;
132 }
133 
134 /**
135  * iavf_lock_timeout - try to set bit but give up after timeout
136  * @adapter: board private structure
137  * @bit: bit to set
138  * @msecs: timeout in msecs
139  *
140  * Returns 0 on success, negative on failure
141  **/
iavf_lock_timeout(struct iavf_adapter * adapter,enum iavf_critical_section_t bit,unsigned int msecs)142 static int iavf_lock_timeout(struct iavf_adapter *adapter,
143 			     enum iavf_critical_section_t bit,
144 			     unsigned int msecs)
145 {
146 	unsigned int wait, delay = 10;
147 
148 	for (wait = 0; wait < msecs; wait += delay) {
149 		if (!test_and_set_bit(bit, &adapter->crit_section))
150 			return 0;
151 
152 		msleep(delay);
153 	}
154 
155 	return -1;
156 }
157 
158 /**
159  * iavf_schedule_reset - Set the flags and schedule a reset event
160  * @adapter: board private structure
161  **/
iavf_schedule_reset(struct iavf_adapter * adapter)162 void iavf_schedule_reset(struct iavf_adapter *adapter)
163 {
164 	if (!(adapter->flags &
165 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
166 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
167 		queue_work(iavf_wq, &adapter->reset_task);
168 	}
169 }
170 
171 /**
172  * iavf_tx_timeout - Respond to a Tx Hang
173  * @netdev: network interface device structure
174  * @txqueue: queue number that is timing out
175  **/
iavf_tx_timeout(struct net_device * netdev,unsigned int txqueue)176 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
177 {
178 	struct iavf_adapter *adapter = netdev_priv(netdev);
179 
180 	adapter->tx_timeout_count++;
181 	iavf_schedule_reset(adapter);
182 }
183 
184 /**
185  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
186  * @adapter: board private structure
187  **/
iavf_misc_irq_disable(struct iavf_adapter * adapter)188 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
189 {
190 	struct iavf_hw *hw = &adapter->hw;
191 
192 	if (!adapter->msix_entries)
193 		return;
194 
195 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
196 
197 	iavf_flush(hw);
198 
199 	synchronize_irq(adapter->msix_entries[0].vector);
200 }
201 
202 /**
203  * iavf_misc_irq_enable - Enable default interrupt generation settings
204  * @adapter: board private structure
205  **/
iavf_misc_irq_enable(struct iavf_adapter * adapter)206 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
207 {
208 	struct iavf_hw *hw = &adapter->hw;
209 
210 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
211 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
212 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
213 
214 	iavf_flush(hw);
215 }
216 
217 /**
218  * iavf_irq_disable - Mask off interrupt generation on the NIC
219  * @adapter: board private structure
220  **/
iavf_irq_disable(struct iavf_adapter * adapter)221 static void iavf_irq_disable(struct iavf_adapter *adapter)
222 {
223 	int i;
224 	struct iavf_hw *hw = &adapter->hw;
225 
226 	if (!adapter->msix_entries)
227 		return;
228 
229 	for (i = 1; i < adapter->num_msix_vectors; i++) {
230 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
231 		synchronize_irq(adapter->msix_entries[i].vector);
232 	}
233 	iavf_flush(hw);
234 }
235 
236 /**
237  * iavf_irq_enable_queues - Enable interrupt for all queues
238  * @adapter: board private structure
239  **/
iavf_irq_enable_queues(struct iavf_adapter * adapter)240 void iavf_irq_enable_queues(struct iavf_adapter *adapter)
241 {
242 	struct iavf_hw *hw = &adapter->hw;
243 	int i;
244 
245 	for (i = 1; i < adapter->num_msix_vectors; i++) {
246 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
247 		     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
248 		     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
249 	}
250 }
251 
252 /**
253  * iavf_irq_enable - Enable default interrupt generation settings
254  * @adapter: board private structure
255  * @flush: boolean value whether to run rd32()
256  **/
iavf_irq_enable(struct iavf_adapter * adapter,bool flush)257 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
258 {
259 	struct iavf_hw *hw = &adapter->hw;
260 
261 	iavf_misc_irq_enable(adapter);
262 	iavf_irq_enable_queues(adapter);
263 
264 	if (flush)
265 		iavf_flush(hw);
266 }
267 
268 /**
269  * iavf_msix_aq - Interrupt handler for vector 0
270  * @irq: interrupt number
271  * @data: pointer to netdev
272  **/
iavf_msix_aq(int irq,void * data)273 static irqreturn_t iavf_msix_aq(int irq, void *data)
274 {
275 	struct net_device *netdev = data;
276 	struct iavf_adapter *adapter = netdev_priv(netdev);
277 	struct iavf_hw *hw = &adapter->hw;
278 
279 	/* handle non-queue interrupts, these reads clear the registers */
280 	rd32(hw, IAVF_VFINT_ICR01);
281 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
282 
283 	/* schedule work on the private workqueue */
284 	queue_work(iavf_wq, &adapter->adminq_task);
285 
286 	return IRQ_HANDLED;
287 }
288 
289 /**
290  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
291  * @irq: interrupt number
292  * @data: pointer to a q_vector
293  **/
iavf_msix_clean_rings(int irq,void * data)294 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
295 {
296 	struct iavf_q_vector *q_vector = data;
297 
298 	if (!q_vector->tx.ring && !q_vector->rx.ring)
299 		return IRQ_HANDLED;
300 
301 	napi_schedule_irqoff(&q_vector->napi);
302 
303 	return IRQ_HANDLED;
304 }
305 
306 /**
307  * iavf_map_vector_to_rxq - associate irqs with rx queues
308  * @adapter: board private structure
309  * @v_idx: interrupt number
310  * @r_idx: queue number
311  **/
312 static void
iavf_map_vector_to_rxq(struct iavf_adapter * adapter,int v_idx,int r_idx)313 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
314 {
315 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
316 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
317 	struct iavf_hw *hw = &adapter->hw;
318 
319 	rx_ring->q_vector = q_vector;
320 	rx_ring->next = q_vector->rx.ring;
321 	rx_ring->vsi = &adapter->vsi;
322 	q_vector->rx.ring = rx_ring;
323 	q_vector->rx.count++;
324 	q_vector->rx.next_update = jiffies + 1;
325 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
326 	q_vector->ring_mask |= BIT(r_idx);
327 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
328 	     q_vector->rx.current_itr >> 1);
329 	q_vector->rx.current_itr = q_vector->rx.target_itr;
330 }
331 
332 /**
333  * iavf_map_vector_to_txq - associate irqs with tx queues
334  * @adapter: board private structure
335  * @v_idx: interrupt number
336  * @t_idx: queue number
337  **/
338 static void
iavf_map_vector_to_txq(struct iavf_adapter * adapter,int v_idx,int t_idx)339 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
340 {
341 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
342 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
343 	struct iavf_hw *hw = &adapter->hw;
344 
345 	tx_ring->q_vector = q_vector;
346 	tx_ring->next = q_vector->tx.ring;
347 	tx_ring->vsi = &adapter->vsi;
348 	q_vector->tx.ring = tx_ring;
349 	q_vector->tx.count++;
350 	q_vector->tx.next_update = jiffies + 1;
351 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
352 	q_vector->num_ringpairs++;
353 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
354 	     q_vector->tx.target_itr >> 1);
355 	q_vector->tx.current_itr = q_vector->tx.target_itr;
356 }
357 
358 /**
359  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
360  * @adapter: board private structure to initialize
361  *
362  * This function maps descriptor rings to the queue-specific vectors
363  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
364  * one vector per ring/queue, but on a constrained vector budget, we
365  * group the rings as "efficiently" as possible.  You would add new
366  * mapping configurations in here.
367  **/
iavf_map_rings_to_vectors(struct iavf_adapter * adapter)368 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
369 {
370 	int rings_remaining = adapter->num_active_queues;
371 	int ridx = 0, vidx = 0;
372 	int q_vectors;
373 
374 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
375 
376 	for (; ridx < rings_remaining; ridx++) {
377 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
378 		iavf_map_vector_to_txq(adapter, vidx, ridx);
379 
380 		/* In the case where we have more queues than vectors, continue
381 		 * round-robin on vectors until all queues are mapped.
382 		 */
383 		if (++vidx >= q_vectors)
384 			vidx = 0;
385 	}
386 
387 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
388 }
389 
390 /**
391  * iavf_irq_affinity_notify - Callback for affinity changes
392  * @notify: context as to what irq was changed
393  * @mask: the new affinity mask
394  *
395  * This is a callback function used by the irq_set_affinity_notifier function
396  * so that we may register to receive changes to the irq affinity masks.
397  **/
iavf_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)398 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
399 				     const cpumask_t *mask)
400 {
401 	struct iavf_q_vector *q_vector =
402 		container_of(notify, struct iavf_q_vector, affinity_notify);
403 
404 	cpumask_copy(&q_vector->affinity_mask, mask);
405 }
406 
407 /**
408  * iavf_irq_affinity_release - Callback for affinity notifier release
409  * @ref: internal core kernel usage
410  *
411  * This is a callback function used by the irq_set_affinity_notifier function
412  * to inform the current notification subscriber that they will no longer
413  * receive notifications.
414  **/
iavf_irq_affinity_release(struct kref * ref)415 static void iavf_irq_affinity_release(struct kref *ref) {}
416 
417 /**
418  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
419  * @adapter: board private structure
420  * @basename: device basename
421  *
422  * Allocates MSI-X vectors for tx and rx handling, and requests
423  * interrupts from the kernel.
424  **/
425 static int
iavf_request_traffic_irqs(struct iavf_adapter * adapter,char * basename)426 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
427 {
428 	unsigned int vector, q_vectors;
429 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
430 	int irq_num, err;
431 	int cpu;
432 
433 	iavf_irq_disable(adapter);
434 	/* Decrement for Other and TCP Timer vectors */
435 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
436 
437 	for (vector = 0; vector < q_vectors; vector++) {
438 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
439 
440 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
441 
442 		if (q_vector->tx.ring && q_vector->rx.ring) {
443 			snprintf(q_vector->name, sizeof(q_vector->name),
444 				 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
445 			tx_int_idx++;
446 		} else if (q_vector->rx.ring) {
447 			snprintf(q_vector->name, sizeof(q_vector->name),
448 				 "iavf-%s-rx-%d", basename, rx_int_idx++);
449 		} else if (q_vector->tx.ring) {
450 			snprintf(q_vector->name, sizeof(q_vector->name),
451 				 "iavf-%s-tx-%d", basename, tx_int_idx++);
452 		} else {
453 			/* skip this unused q_vector */
454 			continue;
455 		}
456 		err = request_irq(irq_num,
457 				  iavf_msix_clean_rings,
458 				  0,
459 				  q_vector->name,
460 				  q_vector);
461 		if (err) {
462 			dev_info(&adapter->pdev->dev,
463 				 "Request_irq failed, error: %d\n", err);
464 			goto free_queue_irqs;
465 		}
466 		/* register for affinity change notifications */
467 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
468 		q_vector->affinity_notify.release =
469 						   iavf_irq_affinity_release;
470 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
471 		/* Spread the IRQ affinity hints across online CPUs. Note that
472 		 * get_cpu_mask returns a mask with a permanent lifetime so
473 		 * it's safe to use as a hint for irq_set_affinity_hint.
474 		 */
475 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
476 		irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
477 	}
478 
479 	return 0;
480 
481 free_queue_irqs:
482 	while (vector) {
483 		vector--;
484 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
485 		irq_set_affinity_notifier(irq_num, NULL);
486 		irq_set_affinity_hint(irq_num, NULL);
487 		free_irq(irq_num, &adapter->q_vectors[vector]);
488 	}
489 	return err;
490 }
491 
492 /**
493  * iavf_request_misc_irq - Initialize MSI-X interrupts
494  * @adapter: board private structure
495  *
496  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
497  * vector is only for the admin queue, and stays active even when the netdev
498  * is closed.
499  **/
iavf_request_misc_irq(struct iavf_adapter * adapter)500 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
501 {
502 	struct net_device *netdev = adapter->netdev;
503 	int err;
504 
505 	snprintf(adapter->misc_vector_name,
506 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
507 		 dev_name(&adapter->pdev->dev));
508 	err = request_irq(adapter->msix_entries[0].vector,
509 			  &iavf_msix_aq, 0,
510 			  adapter->misc_vector_name, netdev);
511 	if (err) {
512 		dev_err(&adapter->pdev->dev,
513 			"request_irq for %s failed: %d\n",
514 			adapter->misc_vector_name, err);
515 		free_irq(adapter->msix_entries[0].vector, netdev);
516 	}
517 	return err;
518 }
519 
520 /**
521  * iavf_free_traffic_irqs - Free MSI-X interrupts
522  * @adapter: board private structure
523  *
524  * Frees all MSI-X vectors other than 0.
525  **/
iavf_free_traffic_irqs(struct iavf_adapter * adapter)526 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
527 {
528 	int vector, irq_num, q_vectors;
529 
530 	if (!adapter->msix_entries)
531 		return;
532 
533 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
534 
535 	for (vector = 0; vector < q_vectors; vector++) {
536 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
537 		irq_set_affinity_notifier(irq_num, NULL);
538 		irq_set_affinity_hint(irq_num, NULL);
539 		free_irq(irq_num, &adapter->q_vectors[vector]);
540 	}
541 }
542 
543 /**
544  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
545  * @adapter: board private structure
546  *
547  * Frees MSI-X vector 0.
548  **/
iavf_free_misc_irq(struct iavf_adapter * adapter)549 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
550 {
551 	struct net_device *netdev = adapter->netdev;
552 
553 	if (!adapter->msix_entries)
554 		return;
555 
556 	free_irq(adapter->msix_entries[0].vector, netdev);
557 }
558 
559 /**
560  * iavf_configure_tx - Configure Transmit Unit after Reset
561  * @adapter: board private structure
562  *
563  * Configure the Tx unit of the MAC after a reset.
564  **/
iavf_configure_tx(struct iavf_adapter * adapter)565 static void iavf_configure_tx(struct iavf_adapter *adapter)
566 {
567 	struct iavf_hw *hw = &adapter->hw;
568 	int i;
569 
570 	for (i = 0; i < adapter->num_active_queues; i++)
571 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
572 }
573 
574 /**
575  * iavf_configure_rx - Configure Receive Unit after Reset
576  * @adapter: board private structure
577  *
578  * Configure the Rx unit of the MAC after a reset.
579  **/
iavf_configure_rx(struct iavf_adapter * adapter)580 static void iavf_configure_rx(struct iavf_adapter *adapter)
581 {
582 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
583 	struct iavf_hw *hw = &adapter->hw;
584 	int i;
585 
586 	/* Legacy Rx will always default to a 2048 buffer size. */
587 #if (PAGE_SIZE < 8192)
588 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
589 		struct net_device *netdev = adapter->netdev;
590 
591 		/* For jumbo frames on systems with 4K pages we have to use
592 		 * an order 1 page, so we might as well increase the size
593 		 * of our Rx buffer to make better use of the available space
594 		 */
595 		rx_buf_len = IAVF_RXBUFFER_3072;
596 
597 		/* We use a 1536 buffer size for configurations with
598 		 * standard Ethernet mtu.  On x86 this gives us enough room
599 		 * for shared info and 192 bytes of padding.
600 		 */
601 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
602 		    (netdev->mtu <= ETH_DATA_LEN))
603 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
604 	}
605 #endif
606 
607 	for (i = 0; i < adapter->num_active_queues; i++) {
608 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
609 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
610 
611 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
612 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
613 		else
614 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
615 	}
616 }
617 
618 /**
619  * iavf_find_vlan - Search filter list for specific vlan filter
620  * @adapter: board private structure
621  * @vlan: vlan tag
622  *
623  * Returns ptr to the filter object or NULL. Must be called while holding the
624  * mac_vlan_list_lock.
625  **/
626 static struct
iavf_find_vlan(struct iavf_adapter * adapter,u16 vlan)627 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
628 {
629 	struct iavf_vlan_filter *f;
630 
631 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
632 		if (vlan == f->vlan)
633 			return f;
634 	}
635 	return NULL;
636 }
637 
638 /**
639  * iavf_add_vlan - Add a vlan filter to the list
640  * @adapter: board private structure
641  * @vlan: VLAN tag
642  *
643  * Returns ptr to the filter object or NULL when no memory available.
644  **/
645 static struct
iavf_add_vlan(struct iavf_adapter * adapter,u16 vlan)646 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
647 {
648 	struct iavf_vlan_filter *f = NULL;
649 
650 	spin_lock_bh(&adapter->mac_vlan_list_lock);
651 
652 	f = iavf_find_vlan(adapter, vlan);
653 	if (!f) {
654 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
655 		if (!f)
656 			goto clearout;
657 
658 		f->vlan = vlan;
659 
660 		list_add_tail(&f->list, &adapter->vlan_filter_list);
661 		f->add = true;
662 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
663 	}
664 
665 clearout:
666 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
667 	return f;
668 }
669 
670 /**
671  * iavf_del_vlan - Remove a vlan filter from the list
672  * @adapter: board private structure
673  * @vlan: VLAN tag
674  **/
iavf_del_vlan(struct iavf_adapter * adapter,u16 vlan)675 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
676 {
677 	struct iavf_vlan_filter *f;
678 
679 	spin_lock_bh(&adapter->mac_vlan_list_lock);
680 
681 	f = iavf_find_vlan(adapter, vlan);
682 	if (f) {
683 		f->remove = true;
684 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
685 	}
686 
687 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
688 }
689 
690 /**
691  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
692  * @netdev: network device struct
693  * @proto: unused protocol data
694  * @vid: VLAN tag
695  **/
iavf_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)696 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
697 				__always_unused __be16 proto, u16 vid)
698 {
699 	struct iavf_adapter *adapter = netdev_priv(netdev);
700 
701 	if (!VLAN_ALLOWED(adapter))
702 		return -EIO;
703 	if (iavf_add_vlan(adapter, vid) == NULL)
704 		return -ENOMEM;
705 	return 0;
706 }
707 
708 /**
709  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
710  * @netdev: network device struct
711  * @proto: unused protocol data
712  * @vid: VLAN tag
713  **/
iavf_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)714 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
715 				 __always_unused __be16 proto, u16 vid)
716 {
717 	struct iavf_adapter *adapter = netdev_priv(netdev);
718 
719 	if (VLAN_ALLOWED(adapter)) {
720 		iavf_del_vlan(adapter, vid);
721 		return 0;
722 	}
723 	return -EIO;
724 }
725 
726 /**
727  * iavf_find_filter - Search filter list for specific mac filter
728  * @adapter: board private structure
729  * @macaddr: the MAC address
730  *
731  * Returns ptr to the filter object or NULL. Must be called while holding the
732  * mac_vlan_list_lock.
733  **/
734 static struct
iavf_find_filter(struct iavf_adapter * adapter,const u8 * macaddr)735 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
736 				  const u8 *macaddr)
737 {
738 	struct iavf_mac_filter *f;
739 
740 	if (!macaddr)
741 		return NULL;
742 
743 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
744 		if (ether_addr_equal(macaddr, f->macaddr))
745 			return f;
746 	}
747 	return NULL;
748 }
749 
750 /**
751  * iavf_add_filter - Add a mac filter to the filter list
752  * @adapter: board private structure
753  * @macaddr: the MAC address
754  *
755  * Returns ptr to the filter object or NULL when no memory available.
756  **/
iavf_add_filter(struct iavf_adapter * adapter,const u8 * macaddr)757 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
758 					const u8 *macaddr)
759 {
760 	struct iavf_mac_filter *f;
761 
762 	if (!macaddr)
763 		return NULL;
764 
765 	f = iavf_find_filter(adapter, macaddr);
766 	if (!f) {
767 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
768 		if (!f)
769 			return f;
770 
771 		ether_addr_copy(f->macaddr, macaddr);
772 
773 		list_add_tail(&f->list, &adapter->mac_filter_list);
774 		f->add = true;
775 		f->is_new_mac = true;
776 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
777 	} else {
778 		f->remove = false;
779 	}
780 
781 	return f;
782 }
783 
784 /**
785  * iavf_set_mac - NDO callback to set port mac address
786  * @netdev: network interface device structure
787  * @p: pointer to an address structure
788  *
789  * Returns 0 on success, negative on failure
790  **/
iavf_set_mac(struct net_device * netdev,void * p)791 static int iavf_set_mac(struct net_device *netdev, void *p)
792 {
793 	struct iavf_adapter *adapter = netdev_priv(netdev);
794 	struct iavf_hw *hw = &adapter->hw;
795 	struct iavf_mac_filter *f;
796 	struct sockaddr *addr = p;
797 
798 	if (!is_valid_ether_addr(addr->sa_data))
799 		return -EADDRNOTAVAIL;
800 
801 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
802 		return 0;
803 
804 	spin_lock_bh(&adapter->mac_vlan_list_lock);
805 
806 	f = iavf_find_filter(adapter, hw->mac.addr);
807 	if (f) {
808 		f->remove = true;
809 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
810 	}
811 
812 	f = iavf_add_filter(adapter, addr->sa_data);
813 
814 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
815 
816 	if (f) {
817 		ether_addr_copy(hw->mac.addr, addr->sa_data);
818 	}
819 
820 	return (f == NULL) ? -ENOMEM : 0;
821 }
822 
823 /**
824  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
825  * @netdev: the netdevice
826  * @addr: address to add
827  *
828  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
829  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
830  */
iavf_addr_sync(struct net_device * netdev,const u8 * addr)831 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
832 {
833 	struct iavf_adapter *adapter = netdev_priv(netdev);
834 
835 	if (iavf_add_filter(adapter, addr))
836 		return 0;
837 	else
838 		return -ENOMEM;
839 }
840 
841 /**
842  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
843  * @netdev: the netdevice
844  * @addr: address to add
845  *
846  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
847  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
848  */
iavf_addr_unsync(struct net_device * netdev,const u8 * addr)849 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
850 {
851 	struct iavf_adapter *adapter = netdev_priv(netdev);
852 	struct iavf_mac_filter *f;
853 
854 	/* Under some circumstances, we might receive a request to delete
855 	 * our own device address from our uc list. Because we store the
856 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
857 	 * such requests and not delete our device address from this list.
858 	 */
859 	if (ether_addr_equal(addr, netdev->dev_addr))
860 		return 0;
861 
862 	f = iavf_find_filter(adapter, addr);
863 	if (f) {
864 		f->remove = true;
865 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
866 	}
867 	return 0;
868 }
869 
870 /**
871  * iavf_set_rx_mode - NDO callback to set the netdev filters
872  * @netdev: network interface device structure
873  **/
iavf_set_rx_mode(struct net_device * netdev)874 static void iavf_set_rx_mode(struct net_device *netdev)
875 {
876 	struct iavf_adapter *adapter = netdev_priv(netdev);
877 
878 	spin_lock_bh(&adapter->mac_vlan_list_lock);
879 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
880 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
881 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
882 
883 	if (netdev->flags & IFF_PROMISC &&
884 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
885 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
886 	else if (!(netdev->flags & IFF_PROMISC) &&
887 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
888 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
889 
890 	if (netdev->flags & IFF_ALLMULTI &&
891 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
892 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
893 	else if (!(netdev->flags & IFF_ALLMULTI) &&
894 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
895 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
896 }
897 
898 /**
899  * iavf_napi_enable_all - enable NAPI on all queue vectors
900  * @adapter: board private structure
901  **/
iavf_napi_enable_all(struct iavf_adapter * adapter)902 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
903 {
904 	int q_idx;
905 	struct iavf_q_vector *q_vector;
906 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
907 
908 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
909 		struct napi_struct *napi;
910 
911 		q_vector = &adapter->q_vectors[q_idx];
912 		napi = &q_vector->napi;
913 		napi_enable(napi);
914 	}
915 }
916 
917 /**
918  * iavf_napi_disable_all - disable NAPI on all queue vectors
919  * @adapter: board private structure
920  **/
iavf_napi_disable_all(struct iavf_adapter * adapter)921 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
922 {
923 	int q_idx;
924 	struct iavf_q_vector *q_vector;
925 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
926 
927 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
928 		q_vector = &adapter->q_vectors[q_idx];
929 		napi_disable(&q_vector->napi);
930 	}
931 }
932 
933 /**
934  * iavf_configure - set up transmit and receive data structures
935  * @adapter: board private structure
936  **/
iavf_configure(struct iavf_adapter * adapter)937 static void iavf_configure(struct iavf_adapter *adapter)
938 {
939 	struct net_device *netdev = adapter->netdev;
940 	int i;
941 
942 	iavf_set_rx_mode(netdev);
943 
944 	iavf_configure_tx(adapter);
945 	iavf_configure_rx(adapter);
946 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
947 
948 	for (i = 0; i < adapter->num_active_queues; i++) {
949 		struct iavf_ring *ring = &adapter->rx_rings[i];
950 
951 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
952 	}
953 }
954 
955 /**
956  * iavf_up_complete - Finish the last steps of bringing up a connection
957  * @adapter: board private structure
958  *
959  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
960  **/
iavf_up_complete(struct iavf_adapter * adapter)961 static void iavf_up_complete(struct iavf_adapter *adapter)
962 {
963 	iavf_change_state(adapter, __IAVF_RUNNING);
964 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
965 
966 	iavf_napi_enable_all(adapter);
967 
968 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
969 	if (CLIENT_ENABLED(adapter))
970 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
971 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
972 }
973 
974 /**
975  * iavf_down - Shutdown the connection processing
976  * @adapter: board private structure
977  *
978  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
979  **/
iavf_down(struct iavf_adapter * adapter)980 void iavf_down(struct iavf_adapter *adapter)
981 {
982 	struct net_device *netdev = adapter->netdev;
983 	struct iavf_vlan_filter *vlf;
984 	struct iavf_mac_filter *f;
985 	struct iavf_cloud_filter *cf;
986 
987 	if (adapter->state <= __IAVF_DOWN_PENDING)
988 		return;
989 
990 	netif_carrier_off(netdev);
991 	netif_tx_disable(netdev);
992 	adapter->link_up = false;
993 	iavf_napi_disable_all(adapter);
994 	iavf_irq_disable(adapter);
995 
996 	spin_lock_bh(&adapter->mac_vlan_list_lock);
997 
998 	/* clear the sync flag on all filters */
999 	__dev_uc_unsync(adapter->netdev, NULL);
1000 	__dev_mc_unsync(adapter->netdev, NULL);
1001 
1002 	/* remove all MAC filters */
1003 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1004 		f->remove = true;
1005 	}
1006 
1007 	/* remove all VLAN filters */
1008 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1009 		vlf->remove = true;
1010 	}
1011 
1012 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1013 
1014 	/* remove all cloud filters */
1015 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1016 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1017 		cf->del = true;
1018 	}
1019 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1020 
1021 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1022 	    adapter->state != __IAVF_RESETTING) {
1023 		/* cancel any current operation */
1024 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1025 		/* Schedule operations to close down the HW. Don't wait
1026 		 * here for this to complete. The watchdog is still running
1027 		 * and it will take care of this.
1028 		 */
1029 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1030 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1031 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1032 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1033 	}
1034 
1035 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1036 }
1037 
1038 /**
1039  * iavf_acquire_msix_vectors - Setup the MSIX capability
1040  * @adapter: board private structure
1041  * @vectors: number of vectors to request
1042  *
1043  * Work with the OS to set up the MSIX vectors needed.
1044  *
1045  * Returns 0 on success, negative on failure
1046  **/
1047 static int
iavf_acquire_msix_vectors(struct iavf_adapter * adapter,int vectors)1048 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1049 {
1050 	int err, vector_threshold;
1051 
1052 	/* We'll want at least 3 (vector_threshold):
1053 	 * 0) Other (Admin Queue and link, mostly)
1054 	 * 1) TxQ[0] Cleanup
1055 	 * 2) RxQ[0] Cleanup
1056 	 */
1057 	vector_threshold = MIN_MSIX_COUNT;
1058 
1059 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1060 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1061 	 * Right now, we simply care about how many we'll get; we'll
1062 	 * set them up later while requesting irq's.
1063 	 */
1064 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1065 				    vector_threshold, vectors);
1066 	if (err < 0) {
1067 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1068 		kfree(adapter->msix_entries);
1069 		adapter->msix_entries = NULL;
1070 		return err;
1071 	}
1072 
1073 	/* Adjust for only the vectors we'll use, which is minimum
1074 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1075 	 * vectors we were allocated.
1076 	 */
1077 	adapter->num_msix_vectors = err;
1078 	return 0;
1079 }
1080 
1081 /**
1082  * iavf_free_queues - Free memory for all rings
1083  * @adapter: board private structure to initialize
1084  *
1085  * Free all of the memory associated with queue pairs.
1086  **/
iavf_free_queues(struct iavf_adapter * adapter)1087 static void iavf_free_queues(struct iavf_adapter *adapter)
1088 {
1089 	if (!adapter->vsi_res)
1090 		return;
1091 	adapter->num_active_queues = 0;
1092 	kfree(adapter->tx_rings);
1093 	adapter->tx_rings = NULL;
1094 	kfree(adapter->rx_rings);
1095 	adapter->rx_rings = NULL;
1096 }
1097 
1098 /**
1099  * iavf_alloc_queues - Allocate memory for all rings
1100  * @adapter: board private structure to initialize
1101  *
1102  * We allocate one ring per queue at run-time since we don't know the
1103  * number of queues at compile-time.  The polling_netdev array is
1104  * intended for Multiqueue, but should work fine with a single queue.
1105  **/
iavf_alloc_queues(struct iavf_adapter * adapter)1106 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1107 {
1108 	int i, num_active_queues;
1109 
1110 	/* If we're in reset reallocating queues we don't actually know yet for
1111 	 * certain the PF gave us the number of queues we asked for but we'll
1112 	 * assume it did.  Once basic reset is finished we'll confirm once we
1113 	 * start negotiating config with PF.
1114 	 */
1115 	if (adapter->num_req_queues)
1116 		num_active_queues = adapter->num_req_queues;
1117 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1118 		 adapter->num_tc)
1119 		num_active_queues = adapter->ch_config.total_qps;
1120 	else
1121 		num_active_queues = min_t(int,
1122 					  adapter->vsi_res->num_queue_pairs,
1123 					  (int)(num_online_cpus()));
1124 
1125 
1126 	adapter->tx_rings = kcalloc(num_active_queues,
1127 				    sizeof(struct iavf_ring), GFP_KERNEL);
1128 	if (!adapter->tx_rings)
1129 		goto err_out;
1130 	adapter->rx_rings = kcalloc(num_active_queues,
1131 				    sizeof(struct iavf_ring), GFP_KERNEL);
1132 	if (!adapter->rx_rings)
1133 		goto err_out;
1134 
1135 	for (i = 0; i < num_active_queues; i++) {
1136 		struct iavf_ring *tx_ring;
1137 		struct iavf_ring *rx_ring;
1138 
1139 		tx_ring = &adapter->tx_rings[i];
1140 
1141 		tx_ring->queue_index = i;
1142 		tx_ring->netdev = adapter->netdev;
1143 		tx_ring->dev = &adapter->pdev->dev;
1144 		tx_ring->count = adapter->tx_desc_count;
1145 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1146 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1147 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1148 
1149 		rx_ring = &adapter->rx_rings[i];
1150 		rx_ring->queue_index = i;
1151 		rx_ring->netdev = adapter->netdev;
1152 		rx_ring->dev = &adapter->pdev->dev;
1153 		rx_ring->count = adapter->rx_desc_count;
1154 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1155 	}
1156 
1157 	adapter->num_active_queues = num_active_queues;
1158 
1159 	return 0;
1160 
1161 err_out:
1162 	iavf_free_queues(adapter);
1163 	return -ENOMEM;
1164 }
1165 
1166 /**
1167  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1168  * @adapter: board private structure to initialize
1169  *
1170  * Attempt to configure the interrupts using the best available
1171  * capabilities of the hardware and the kernel.
1172  **/
iavf_set_interrupt_capability(struct iavf_adapter * adapter)1173 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1174 {
1175 	int vector, v_budget;
1176 	int pairs = 0;
1177 	int err = 0;
1178 
1179 	if (!adapter->vsi_res) {
1180 		err = -EIO;
1181 		goto out;
1182 	}
1183 	pairs = adapter->num_active_queues;
1184 
1185 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1186 	 * us much good if we have more vectors than CPUs. However, we already
1187 	 * limit the total number of queues by the number of CPUs so we do not
1188 	 * need any further limiting here.
1189 	 */
1190 	v_budget = min_t(int, pairs + NONQ_VECS,
1191 			 (int)adapter->vf_res->max_vectors);
1192 
1193 	adapter->msix_entries = kcalloc(v_budget,
1194 					sizeof(struct msix_entry), GFP_KERNEL);
1195 	if (!adapter->msix_entries) {
1196 		err = -ENOMEM;
1197 		goto out;
1198 	}
1199 
1200 	for (vector = 0; vector < v_budget; vector++)
1201 		adapter->msix_entries[vector].entry = vector;
1202 
1203 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1204 
1205 out:
1206 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1207 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1208 	return err;
1209 }
1210 
1211 /**
1212  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1213  * @adapter: board private structure
1214  *
1215  * Return 0 on success, negative on failure
1216  **/
iavf_config_rss_aq(struct iavf_adapter * adapter)1217 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1218 {
1219 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1220 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1221 	struct iavf_hw *hw = &adapter->hw;
1222 	int ret = 0;
1223 
1224 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1225 		/* bail because we already have a command pending */
1226 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1227 			adapter->current_op);
1228 		return -EBUSY;
1229 	}
1230 
1231 	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1232 	if (ret) {
1233 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1234 			iavf_stat_str(hw, ret),
1235 			iavf_aq_str(hw, hw->aq.asq_last_status));
1236 		return ret;
1237 
1238 	}
1239 
1240 	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1241 				  adapter->rss_lut, adapter->rss_lut_size);
1242 	if (ret) {
1243 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1244 			iavf_stat_str(hw, ret),
1245 			iavf_aq_str(hw, hw->aq.asq_last_status));
1246 	}
1247 
1248 	return ret;
1249 
1250 }
1251 
1252 /**
1253  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1254  * @adapter: board private structure
1255  *
1256  * Returns 0 on success, negative on failure
1257  **/
iavf_config_rss_reg(struct iavf_adapter * adapter)1258 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1259 {
1260 	struct iavf_hw *hw = &adapter->hw;
1261 	u32 *dw;
1262 	u16 i;
1263 
1264 	dw = (u32 *)adapter->rss_key;
1265 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1266 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1267 
1268 	dw = (u32 *)adapter->rss_lut;
1269 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1270 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1271 
1272 	iavf_flush(hw);
1273 
1274 	return 0;
1275 }
1276 
1277 /**
1278  * iavf_config_rss - Configure RSS keys and lut
1279  * @adapter: board private structure
1280  *
1281  * Returns 0 on success, negative on failure
1282  **/
iavf_config_rss(struct iavf_adapter * adapter)1283 int iavf_config_rss(struct iavf_adapter *adapter)
1284 {
1285 
1286 	if (RSS_PF(adapter)) {
1287 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1288 					IAVF_FLAG_AQ_SET_RSS_KEY;
1289 		return 0;
1290 	} else if (RSS_AQ(adapter)) {
1291 		return iavf_config_rss_aq(adapter);
1292 	} else {
1293 		return iavf_config_rss_reg(adapter);
1294 	}
1295 }
1296 
1297 /**
1298  * iavf_fill_rss_lut - Fill the lut with default values
1299  * @adapter: board private structure
1300  **/
iavf_fill_rss_lut(struct iavf_adapter * adapter)1301 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1302 {
1303 	u16 i;
1304 
1305 	for (i = 0; i < adapter->rss_lut_size; i++)
1306 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1307 }
1308 
1309 /**
1310  * iavf_init_rss - Prepare for RSS
1311  * @adapter: board private structure
1312  *
1313  * Return 0 on success, negative on failure
1314  **/
iavf_init_rss(struct iavf_adapter * adapter)1315 static int iavf_init_rss(struct iavf_adapter *adapter)
1316 {
1317 	struct iavf_hw *hw = &adapter->hw;
1318 
1319 	if (!RSS_PF(adapter)) {
1320 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1321 		if (adapter->vf_res->vf_cap_flags &
1322 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1323 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1324 		else
1325 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1326 
1327 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1328 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1329 	}
1330 
1331 	iavf_fill_rss_lut(adapter);
1332 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1333 
1334 	return iavf_config_rss(adapter);
1335 }
1336 
1337 /**
1338  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1339  * @adapter: board private structure to initialize
1340  *
1341  * We allocate one q_vector per queue interrupt.  If allocation fails we
1342  * return -ENOMEM.
1343  **/
iavf_alloc_q_vectors(struct iavf_adapter * adapter)1344 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1345 {
1346 	int q_idx = 0, num_q_vectors;
1347 	struct iavf_q_vector *q_vector;
1348 
1349 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1350 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1351 				     GFP_KERNEL);
1352 	if (!adapter->q_vectors)
1353 		return -ENOMEM;
1354 
1355 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1356 		q_vector = &adapter->q_vectors[q_idx];
1357 		q_vector->adapter = adapter;
1358 		q_vector->vsi = &adapter->vsi;
1359 		q_vector->v_idx = q_idx;
1360 		q_vector->reg_idx = q_idx;
1361 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1362 		netif_napi_add(adapter->netdev, &q_vector->napi,
1363 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1364 	}
1365 
1366 	return 0;
1367 }
1368 
1369 /**
1370  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1371  * @adapter: board private structure to initialize
1372  *
1373  * This function frees the memory allocated to the q_vectors.  In addition if
1374  * NAPI is enabled it will delete any references to the NAPI struct prior
1375  * to freeing the q_vector.
1376  **/
iavf_free_q_vectors(struct iavf_adapter * adapter)1377 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1378 {
1379 	int q_idx, num_q_vectors;
1380 
1381 	if (!adapter->q_vectors)
1382 		return;
1383 
1384 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1385 
1386 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1387 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1388 
1389 		netif_napi_del(&q_vector->napi);
1390 	}
1391 	kfree(adapter->q_vectors);
1392 	adapter->q_vectors = NULL;
1393 }
1394 
1395 /**
1396  * iavf_reset_interrupt_capability - Reset MSIX setup
1397  * @adapter: board private structure
1398  *
1399  **/
iavf_reset_interrupt_capability(struct iavf_adapter * adapter)1400 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1401 {
1402 	if (!adapter->msix_entries)
1403 		return;
1404 
1405 	pci_disable_msix(adapter->pdev);
1406 	kfree(adapter->msix_entries);
1407 	adapter->msix_entries = NULL;
1408 }
1409 
1410 /**
1411  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1412  * @adapter: board private structure to initialize
1413  *
1414  **/
iavf_init_interrupt_scheme(struct iavf_adapter * adapter)1415 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1416 {
1417 	int err;
1418 
1419 	err = iavf_alloc_queues(adapter);
1420 	if (err) {
1421 		dev_err(&adapter->pdev->dev,
1422 			"Unable to allocate memory for queues\n");
1423 		goto err_alloc_queues;
1424 	}
1425 
1426 	rtnl_lock();
1427 	err = iavf_set_interrupt_capability(adapter);
1428 	rtnl_unlock();
1429 	if (err) {
1430 		dev_err(&adapter->pdev->dev,
1431 			"Unable to setup interrupt capabilities\n");
1432 		goto err_set_interrupt;
1433 	}
1434 
1435 	err = iavf_alloc_q_vectors(adapter);
1436 	if (err) {
1437 		dev_err(&adapter->pdev->dev,
1438 			"Unable to allocate memory for queue vectors\n");
1439 		goto err_alloc_q_vectors;
1440 	}
1441 
1442 	/* If we've made it so far while ADq flag being ON, then we haven't
1443 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1444 	 * resources have been allocated in the reset path.
1445 	 * Now we can truly claim that ADq is enabled.
1446 	 */
1447 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1448 	    adapter->num_tc)
1449 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1450 			 adapter->num_tc);
1451 
1452 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1453 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1454 		 adapter->num_active_queues);
1455 
1456 	return 0;
1457 err_alloc_q_vectors:
1458 	iavf_reset_interrupt_capability(adapter);
1459 err_set_interrupt:
1460 	iavf_free_queues(adapter);
1461 err_alloc_queues:
1462 	return err;
1463 }
1464 
1465 /**
1466  * iavf_free_rss - Free memory used by RSS structs
1467  * @adapter: board private structure
1468  **/
iavf_free_rss(struct iavf_adapter * adapter)1469 static void iavf_free_rss(struct iavf_adapter *adapter)
1470 {
1471 	kfree(adapter->rss_key);
1472 	adapter->rss_key = NULL;
1473 
1474 	kfree(adapter->rss_lut);
1475 	adapter->rss_lut = NULL;
1476 }
1477 
1478 /**
1479  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1480  * @adapter: board private structure
1481  *
1482  * Returns 0 on success, negative on failure
1483  **/
iavf_reinit_interrupt_scheme(struct iavf_adapter * adapter)1484 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1485 {
1486 	struct net_device *netdev = adapter->netdev;
1487 	int err;
1488 
1489 	if (netif_running(netdev))
1490 		iavf_free_traffic_irqs(adapter);
1491 	iavf_free_misc_irq(adapter);
1492 	iavf_reset_interrupt_capability(adapter);
1493 	iavf_free_q_vectors(adapter);
1494 	iavf_free_queues(adapter);
1495 
1496 	err =  iavf_init_interrupt_scheme(adapter);
1497 	if (err)
1498 		goto err;
1499 
1500 	netif_tx_stop_all_queues(netdev);
1501 
1502 	err = iavf_request_misc_irq(adapter);
1503 	if (err)
1504 		goto err;
1505 
1506 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1507 
1508 	iavf_map_rings_to_vectors(adapter);
1509 err:
1510 	return err;
1511 }
1512 
1513 /**
1514  * iavf_process_aq_command - process aq_required flags
1515  * and sends aq command
1516  * @adapter: pointer to iavf adapter structure
1517  *
1518  * Returns 0 on success
1519  * Returns error code if no command was sent
1520  * or error code if the command failed.
1521  **/
iavf_process_aq_command(struct iavf_adapter * adapter)1522 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1523 {
1524 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1525 		return iavf_send_vf_config_msg(adapter);
1526 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1527 		iavf_disable_queues(adapter);
1528 		return 0;
1529 	}
1530 
1531 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1532 		iavf_map_queues(adapter);
1533 		return 0;
1534 	}
1535 
1536 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1537 		iavf_add_ether_addrs(adapter);
1538 		return 0;
1539 	}
1540 
1541 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1542 		iavf_add_vlans(adapter);
1543 		return 0;
1544 	}
1545 
1546 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1547 		iavf_del_ether_addrs(adapter);
1548 		return 0;
1549 	}
1550 
1551 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1552 		iavf_del_vlans(adapter);
1553 		return 0;
1554 	}
1555 
1556 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1557 		iavf_enable_vlan_stripping(adapter);
1558 		return 0;
1559 	}
1560 
1561 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1562 		iavf_disable_vlan_stripping(adapter);
1563 		return 0;
1564 	}
1565 
1566 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1567 		iavf_configure_queues(adapter);
1568 		return 0;
1569 	}
1570 
1571 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1572 		iavf_enable_queues(adapter);
1573 		return 0;
1574 	}
1575 
1576 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1577 		/* This message goes straight to the firmware, not the
1578 		 * PF, so we don't have to set current_op as we will
1579 		 * not get a response through the ARQ.
1580 		 */
1581 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1582 		return 0;
1583 	}
1584 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1585 		iavf_get_hena(adapter);
1586 		return 0;
1587 	}
1588 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1589 		iavf_set_hena(adapter);
1590 		return 0;
1591 	}
1592 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1593 		iavf_set_rss_key(adapter);
1594 		return 0;
1595 	}
1596 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1597 		iavf_set_rss_lut(adapter);
1598 		return 0;
1599 	}
1600 
1601 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1602 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1603 				       FLAG_VF_MULTICAST_PROMISC);
1604 		return 0;
1605 	}
1606 
1607 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1608 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1609 		return 0;
1610 	}
1611 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
1612 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1613 		iavf_set_promiscuous(adapter, 0);
1614 		return 0;
1615 	}
1616 
1617 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1618 		iavf_enable_channels(adapter);
1619 		return 0;
1620 	}
1621 
1622 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1623 		iavf_disable_channels(adapter);
1624 		return 0;
1625 	}
1626 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1627 		iavf_add_cloud_filter(adapter);
1628 		return 0;
1629 	}
1630 
1631 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1632 		iavf_del_cloud_filter(adapter);
1633 		return 0;
1634 	}
1635 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1636 		iavf_del_cloud_filter(adapter);
1637 		return 0;
1638 	}
1639 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1640 		iavf_add_cloud_filter(adapter);
1641 		return 0;
1642 	}
1643 	return -EAGAIN;
1644 }
1645 
1646 /**
1647  * iavf_startup - first step of driver startup
1648  * @adapter: board private structure
1649  *
1650  * Function process __IAVF_STARTUP driver state.
1651  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1652  * when fails it returns -EAGAIN
1653  **/
iavf_startup(struct iavf_adapter * adapter)1654 static int iavf_startup(struct iavf_adapter *adapter)
1655 {
1656 	struct pci_dev *pdev = adapter->pdev;
1657 	struct iavf_hw *hw = &adapter->hw;
1658 	int err;
1659 
1660 	WARN_ON(adapter->state != __IAVF_STARTUP);
1661 
1662 	/* driver loaded, probe complete */
1663 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1664 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1665 	err = iavf_set_mac_type(hw);
1666 	if (err) {
1667 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1668 		goto err;
1669 	}
1670 
1671 	err = iavf_check_reset_complete(hw);
1672 	if (err) {
1673 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1674 			 err);
1675 		goto err;
1676 	}
1677 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
1678 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
1679 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1680 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1681 
1682 	err = iavf_init_adminq(hw);
1683 	if (err) {
1684 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1685 		goto err;
1686 	}
1687 	err = iavf_send_api_ver(adapter);
1688 	if (err) {
1689 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1690 		iavf_shutdown_adminq(hw);
1691 		goto err;
1692 	}
1693 	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
1694 err:
1695 	return err;
1696 }
1697 
1698 /**
1699  * iavf_init_version_check - second step of driver startup
1700  * @adapter: board private structure
1701  *
1702  * Function process __IAVF_INIT_VERSION_CHECK driver state.
1703  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1704  * when fails it returns -EAGAIN
1705  **/
iavf_init_version_check(struct iavf_adapter * adapter)1706 static int iavf_init_version_check(struct iavf_adapter *adapter)
1707 {
1708 	struct pci_dev *pdev = adapter->pdev;
1709 	struct iavf_hw *hw = &adapter->hw;
1710 	int err = -EAGAIN;
1711 
1712 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1713 
1714 	if (!iavf_asq_done(hw)) {
1715 		dev_err(&pdev->dev, "Admin queue command never completed\n");
1716 		iavf_shutdown_adminq(hw);
1717 		iavf_change_state(adapter, __IAVF_STARTUP);
1718 		goto err;
1719 	}
1720 
1721 	/* aq msg sent, awaiting reply */
1722 	err = iavf_verify_api_ver(adapter);
1723 	if (err) {
1724 		if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1725 			err = iavf_send_api_ver(adapter);
1726 		else
1727 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1728 				adapter->pf_version.major,
1729 				adapter->pf_version.minor,
1730 				VIRTCHNL_VERSION_MAJOR,
1731 				VIRTCHNL_VERSION_MINOR);
1732 		goto err;
1733 	}
1734 	err = iavf_send_vf_config_msg(adapter);
1735 	if (err) {
1736 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1737 			err);
1738 		goto err;
1739 	}
1740 	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
1741 err:
1742 	return err;
1743 }
1744 
1745 /**
1746  * iavf_init_get_resources - third step of driver startup
1747  * @adapter: board private structure
1748  *
1749  * Function process __IAVF_INIT_GET_RESOURCES driver state and
1750  * finishes driver initialization procedure.
1751  * When success the state is changed to __IAVF_DOWN
1752  * when fails it returns -EAGAIN
1753  **/
iavf_init_get_resources(struct iavf_adapter * adapter)1754 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1755 {
1756 	struct net_device *netdev = adapter->netdev;
1757 	struct pci_dev *pdev = adapter->pdev;
1758 	struct iavf_hw *hw = &adapter->hw;
1759 	int err;
1760 
1761 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1762 	/* aq msg sent, awaiting reply */
1763 	if (!adapter->vf_res) {
1764 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1765 					  GFP_KERNEL);
1766 		if (!adapter->vf_res) {
1767 			err = -ENOMEM;
1768 			goto err;
1769 		}
1770 	}
1771 	err = iavf_get_vf_config(adapter);
1772 	if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1773 		err = iavf_send_vf_config_msg(adapter);
1774 		goto err;
1775 	} else if (err == IAVF_ERR_PARAM) {
1776 		/* We only get ERR_PARAM if the device is in a very bad
1777 		 * state or if we've been disabled for previous bad
1778 		 * behavior. Either way, we're done now.
1779 		 */
1780 		iavf_shutdown_adminq(hw);
1781 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1782 		return 0;
1783 	}
1784 	if (err) {
1785 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1786 		goto err_alloc;
1787 	}
1788 
1789 	err = iavf_process_config(adapter);
1790 	if (err)
1791 		goto err_alloc;
1792 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1793 
1794 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1795 
1796 	netdev->netdev_ops = &iavf_netdev_ops;
1797 	iavf_set_ethtool_ops(netdev);
1798 	netdev->watchdog_timeo = 5 * HZ;
1799 
1800 	/* MTU range: 68 - 9710 */
1801 	netdev->min_mtu = ETH_MIN_MTU;
1802 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1803 
1804 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1805 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1806 			 adapter->hw.mac.addr);
1807 		eth_hw_addr_random(netdev);
1808 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1809 	} else {
1810 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1811 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1812 	}
1813 
1814 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1815 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1816 	err = iavf_init_interrupt_scheme(adapter);
1817 	if (err)
1818 		goto err_sw_init;
1819 	iavf_map_rings_to_vectors(adapter);
1820 	if (adapter->vf_res->vf_cap_flags &
1821 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1822 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1823 
1824 	err = iavf_request_misc_irq(adapter);
1825 	if (err)
1826 		goto err_sw_init;
1827 
1828 	netif_carrier_off(netdev);
1829 	adapter->link_up = false;
1830 
1831 	/* set the semaphore to prevent any callbacks after device registration
1832 	 * up to time when state of driver will be set to __IAVF_DOWN
1833 	 */
1834 	rtnl_lock();
1835 	if (!adapter->netdev_registered) {
1836 		err = register_netdevice(netdev);
1837 		if (err) {
1838 			rtnl_unlock();
1839 			goto err_register;
1840 		}
1841 	}
1842 
1843 	adapter->netdev_registered = true;
1844 
1845 	netif_tx_stop_all_queues(netdev);
1846 	if (CLIENT_ALLOWED(adapter)) {
1847 		err = iavf_lan_add_device(adapter);
1848 		if (err)
1849 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1850 				 err);
1851 	}
1852 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1853 	if (netdev->features & NETIF_F_GRO)
1854 		dev_info(&pdev->dev, "GRO is enabled\n");
1855 
1856 	iavf_change_state(adapter, __IAVF_DOWN);
1857 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1858 	rtnl_unlock();
1859 
1860 	iavf_misc_irq_enable(adapter);
1861 	wake_up(&adapter->down_waitqueue);
1862 
1863 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1864 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1865 	if (!adapter->rss_key || !adapter->rss_lut) {
1866 		err = -ENOMEM;
1867 		goto err_mem;
1868 	}
1869 	if (RSS_AQ(adapter))
1870 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1871 	else
1872 		iavf_init_rss(adapter);
1873 
1874 	return err;
1875 err_mem:
1876 	iavf_free_rss(adapter);
1877 err_register:
1878 	iavf_free_misc_irq(adapter);
1879 err_sw_init:
1880 	iavf_reset_interrupt_capability(adapter);
1881 err_alloc:
1882 	kfree(adapter->vf_res);
1883 	adapter->vf_res = NULL;
1884 err:
1885 	return err;
1886 }
1887 
1888 /**
1889  * iavf_watchdog_task - Periodic call-back task
1890  * @work: pointer to work_struct
1891  **/
iavf_watchdog_task(struct work_struct * work)1892 static void iavf_watchdog_task(struct work_struct *work)
1893 {
1894 	struct iavf_adapter *adapter = container_of(work,
1895 						    struct iavf_adapter,
1896 						    watchdog_task.work);
1897 	struct iavf_hw *hw = &adapter->hw;
1898 	u32 reg_val;
1899 
1900 	if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1901 		goto restart_watchdog;
1902 
1903 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1904 		iavf_change_state(adapter, __IAVF_COMM_FAILED);
1905 
1906 	switch (adapter->state) {
1907 	case __IAVF_COMM_FAILED:
1908 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1909 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1910 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1911 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
1912 			/* A chance for redemption! */
1913 			dev_err(&adapter->pdev->dev,
1914 				"Hardware came out of reset. Attempting reinit.\n");
1915 			iavf_change_state(adapter, __IAVF_STARTUP);
1916 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1917 			queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1918 			clear_bit(__IAVF_IN_CRITICAL_TASK,
1919 				  &adapter->crit_section);
1920 			/* Don't reschedule the watchdog, since we've restarted
1921 			 * the init task. When init_task contacts the PF and
1922 			 * gets everything set up again, it'll restart the
1923 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
1924 			 */
1925 			return;
1926 		}
1927 		adapter->aq_required = 0;
1928 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1929 		clear_bit(__IAVF_IN_CRITICAL_TASK,
1930 			  &adapter->crit_section);
1931 		queue_delayed_work(iavf_wq,
1932 				   &adapter->watchdog_task,
1933 				   msecs_to_jiffies(10));
1934 		goto watchdog_done;
1935 	case __IAVF_RESETTING:
1936 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1937 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1938 		return;
1939 	case __IAVF_DOWN:
1940 	case __IAVF_DOWN_PENDING:
1941 	case __IAVF_TESTING:
1942 	case __IAVF_RUNNING:
1943 		if (adapter->current_op) {
1944 			if (!iavf_asq_done(hw)) {
1945 				dev_dbg(&adapter->pdev->dev,
1946 					"Admin queue timeout\n");
1947 				iavf_send_api_ver(adapter);
1948 			}
1949 		} else {
1950 			/* An error will be returned if no commands were
1951 			 * processed; use this opportunity to update stats
1952 			 */
1953 			if (iavf_process_aq_command(adapter) &&
1954 			    adapter->state == __IAVF_RUNNING)
1955 				iavf_request_stats(adapter);
1956 		}
1957 		break;
1958 	case __IAVF_REMOVE:
1959 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1960 		return;
1961 	default:
1962 		goto restart_watchdog;
1963 	}
1964 
1965 	/* check for hw reset */
1966 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1967 	if (!reg_val) {
1968 		iavf_change_state(adapter, __IAVF_RESETTING);
1969 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
1970 		adapter->aq_required = 0;
1971 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1972 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1973 		queue_work(iavf_wq, &adapter->reset_task);
1974 		goto watchdog_done;
1975 	}
1976 
1977 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1978 watchdog_done:
1979 	if (adapter->state == __IAVF_RUNNING ||
1980 	    adapter->state == __IAVF_COMM_FAILED)
1981 		iavf_detect_recover_hung(&adapter->vsi);
1982 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1983 restart_watchdog:
1984 	if (adapter->aq_required)
1985 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1986 				   msecs_to_jiffies(20));
1987 	else
1988 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1989 	queue_work(iavf_wq, &adapter->adminq_task);
1990 }
1991 
iavf_disable_vf(struct iavf_adapter * adapter)1992 static void iavf_disable_vf(struct iavf_adapter *adapter)
1993 {
1994 	struct iavf_mac_filter *f, *ftmp;
1995 	struct iavf_vlan_filter *fv, *fvtmp;
1996 	struct iavf_cloud_filter *cf, *cftmp;
1997 
1998 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1999 
2000 	/* We don't use netif_running() because it may be true prior to
2001 	 * ndo_open() returning, so we can't assume it means all our open
2002 	 * tasks have finished, since we're not holding the rtnl_lock here.
2003 	 */
2004 	if (adapter->state == __IAVF_RUNNING) {
2005 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2006 		netif_carrier_off(adapter->netdev);
2007 		netif_tx_disable(adapter->netdev);
2008 		adapter->link_up = false;
2009 		iavf_napi_disable_all(adapter);
2010 		iavf_irq_disable(adapter);
2011 		iavf_free_traffic_irqs(adapter);
2012 		iavf_free_all_tx_resources(adapter);
2013 		iavf_free_all_rx_resources(adapter);
2014 	}
2015 
2016 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2017 
2018 	/* Delete all of the filters */
2019 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2020 		list_del(&f->list);
2021 		kfree(f);
2022 	}
2023 
2024 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2025 		list_del(&fv->list);
2026 		kfree(fv);
2027 	}
2028 
2029 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2030 
2031 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2032 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2033 		list_del(&cf->list);
2034 		kfree(cf);
2035 		adapter->num_cloud_filters--;
2036 	}
2037 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2038 
2039 	iavf_free_misc_irq(adapter);
2040 	iavf_reset_interrupt_capability(adapter);
2041 	iavf_free_q_vectors(adapter);
2042 	iavf_free_queues(adapter);
2043 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2044 	iavf_shutdown_adminq(&adapter->hw);
2045 	adapter->netdev->flags &= ~IFF_UP;
2046 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2047 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2048 	iavf_change_state(adapter, __IAVF_DOWN);
2049 	wake_up(&adapter->down_waitqueue);
2050 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2051 }
2052 
2053 /**
2054  * iavf_reset_task - Call-back task to handle hardware reset
2055  * @work: pointer to work_struct
2056  *
2057  * During reset we need to shut down and reinitialize the admin queue
2058  * before we can use it to communicate with the PF again. We also clear
2059  * and reinit the rings because that context is lost as well.
2060  **/
iavf_reset_task(struct work_struct * work)2061 static void iavf_reset_task(struct work_struct *work)
2062 {
2063 	struct iavf_adapter *adapter = container_of(work,
2064 						      struct iavf_adapter,
2065 						      reset_task);
2066 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2067 	struct net_device *netdev = adapter->netdev;
2068 	struct iavf_hw *hw = &adapter->hw;
2069 	struct iavf_mac_filter *f, *ftmp;
2070 	struct iavf_vlan_filter *vlf;
2071 	struct iavf_cloud_filter *cf;
2072 	u32 reg_val;
2073 	int i = 0, err;
2074 	bool running;
2075 
2076 	/* When device is being removed it doesn't make sense to run the reset
2077 	 * task, just return in such a case.
2078 	 */
2079 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2080 		return;
2081 
2082 	if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 200)) {
2083 		schedule_work(&adapter->reset_task);
2084 		return;
2085 	}
2086 	while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2087 				&adapter->crit_section))
2088 		usleep_range(500, 1000);
2089 	if (CLIENT_ENABLED(adapter)) {
2090 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2091 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2092 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2093 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2094 		cancel_delayed_work_sync(&adapter->client_task);
2095 		iavf_notify_client_close(&adapter->vsi, true);
2096 	}
2097 	iavf_misc_irq_disable(adapter);
2098 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2099 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2100 		/* Restart the AQ here. If we have been reset but didn't
2101 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2102 		 */
2103 		iavf_shutdown_adminq(hw);
2104 		iavf_init_adminq(hw);
2105 		iavf_request_reset(adapter);
2106 	}
2107 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2108 
2109 	/* poll until we see the reset actually happen */
2110 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2111 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2112 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2113 		if (!reg_val)
2114 			break;
2115 		usleep_range(5000, 10000);
2116 	}
2117 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2118 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2119 		goto continue_reset; /* act like the reset happened */
2120 	}
2121 
2122 	/* wait until the reset is complete and the PF is responding to us */
2123 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2124 		/* sleep first to make sure a minimum wait time is met */
2125 		msleep(IAVF_RESET_WAIT_MS);
2126 
2127 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2128 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2129 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2130 			break;
2131 	}
2132 
2133 	pci_set_master(adapter->pdev);
2134 	pci_restore_msi_state(adapter->pdev);
2135 
2136 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2137 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2138 			reg_val);
2139 		iavf_disable_vf(adapter);
2140 		clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2141 		return; /* Do not attempt to reinit. It's dead, Jim. */
2142 	}
2143 
2144 continue_reset:
2145 	/* We don't use netif_running() because it may be true prior to
2146 	 * ndo_open() returning, so we can't assume it means all our open
2147 	 * tasks have finished, since we're not holding the rtnl_lock here.
2148 	 */
2149 	running = ((adapter->state == __IAVF_RUNNING) ||
2150 		   (adapter->state == __IAVF_RESETTING));
2151 
2152 	if (running) {
2153 		netif_carrier_off(netdev);
2154 		netif_tx_stop_all_queues(netdev);
2155 		adapter->link_up = false;
2156 		iavf_napi_disable_all(adapter);
2157 	}
2158 	iavf_irq_disable(adapter);
2159 
2160 	iavf_change_state(adapter, __IAVF_RESETTING);
2161 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2162 
2163 	/* free the Tx/Rx rings and descriptors, might be better to just
2164 	 * re-use them sometime in the future
2165 	 */
2166 	iavf_free_all_rx_resources(adapter);
2167 	iavf_free_all_tx_resources(adapter);
2168 
2169 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2170 	/* kill and reinit the admin queue */
2171 	iavf_shutdown_adminq(hw);
2172 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2173 	err = iavf_init_adminq(hw);
2174 	if (err)
2175 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2176 			 err);
2177 	adapter->aq_required = 0;
2178 
2179 	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2180 		err = iavf_reinit_interrupt_scheme(adapter);
2181 		if (err)
2182 			goto reset_err;
2183 	}
2184 
2185 	if (RSS_AQ(adapter)) {
2186 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2187 	} else {
2188 		err = iavf_init_rss(adapter);
2189 		if (err)
2190 			goto reset_err;
2191 	}
2192 
2193 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2194 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2195 
2196 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2197 
2198 	/* Delete filter for the current MAC address, it could have
2199 	 * been changed by the PF via administratively set MAC.
2200 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2201 	 */
2202 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2203 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2204 			list_del(&f->list);
2205 			kfree(f);
2206 		}
2207 	}
2208 	/* re-add all MAC filters */
2209 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2210 		f->add = true;
2211 	}
2212 	/* re-add all VLAN filters */
2213 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2214 		vlf->add = true;
2215 	}
2216 
2217 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2218 
2219 	/* check if TCs are running and re-add all cloud filters */
2220 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2221 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2222 	    adapter->num_tc) {
2223 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2224 			cf->add = true;
2225 		}
2226 	}
2227 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2228 
2229 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2230 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2231 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2232 	iavf_misc_irq_enable(adapter);
2233 
2234 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2235 
2236 	/* We were running when the reset started, so we need to restore some
2237 	 * state here.
2238 	 */
2239 	if (running) {
2240 		/* allocate transmit descriptors */
2241 		err = iavf_setup_all_tx_resources(adapter);
2242 		if (err)
2243 			goto reset_err;
2244 
2245 		/* allocate receive descriptors */
2246 		err = iavf_setup_all_rx_resources(adapter);
2247 		if (err)
2248 			goto reset_err;
2249 
2250 		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2251 			err = iavf_request_traffic_irqs(adapter, netdev->name);
2252 			if (err)
2253 				goto reset_err;
2254 
2255 			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2256 		}
2257 
2258 		iavf_configure(adapter);
2259 
2260 		/* iavf_up_complete() will switch device back
2261 		 * to __IAVF_RUNNING
2262 		 */
2263 		iavf_up_complete(adapter);
2264 
2265 		iavf_irq_enable(adapter, true);
2266 	} else {
2267 		iavf_change_state(adapter, __IAVF_DOWN);
2268 		wake_up(&adapter->down_waitqueue);
2269 	}
2270 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2271 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2272 
2273 	return;
2274 reset_err:
2275 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2276 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2277 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2278 	iavf_close(netdev);
2279 }
2280 
2281 /**
2282  * iavf_adminq_task - worker thread to clean the admin queue
2283  * @work: pointer to work_struct containing our data
2284  **/
iavf_adminq_task(struct work_struct * work)2285 static void iavf_adminq_task(struct work_struct *work)
2286 {
2287 	struct iavf_adapter *adapter =
2288 		container_of(work, struct iavf_adapter, adminq_task);
2289 	struct iavf_hw *hw = &adapter->hw;
2290 	struct iavf_arq_event_info event;
2291 	enum virtchnl_ops v_op;
2292 	enum iavf_status ret, v_ret;
2293 	u32 val, oldval;
2294 	u16 pending;
2295 
2296 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2297 		goto out;
2298 
2299 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2300 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2301 	if (!event.msg_buf)
2302 		goto out;
2303 
2304 	if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 200))
2305 		goto freedom;
2306 	do {
2307 		ret = iavf_clean_arq_element(hw, &event, &pending);
2308 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2309 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2310 
2311 		if (ret || !v_op)
2312 			break; /* No event to process or error cleaning ARQ */
2313 
2314 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2315 					 event.msg_len);
2316 		if (pending != 0)
2317 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2318 	} while (pending);
2319 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2320 
2321 	if ((adapter->flags &
2322 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2323 	    adapter->state == __IAVF_RESETTING)
2324 		goto freedom;
2325 
2326 	/* check for error indications */
2327 	val = rd32(hw, hw->aq.arq.len);
2328 	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
2329 		goto freedom;
2330 	oldval = val;
2331 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2332 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2333 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2334 	}
2335 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2336 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2337 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2338 	}
2339 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2340 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2341 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2342 	}
2343 	if (oldval != val)
2344 		wr32(hw, hw->aq.arq.len, val);
2345 
2346 	val = rd32(hw, hw->aq.asq.len);
2347 	oldval = val;
2348 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2349 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2350 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2351 	}
2352 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2353 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2354 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2355 	}
2356 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2357 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2358 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2359 	}
2360 	if (oldval != val)
2361 		wr32(hw, hw->aq.asq.len, val);
2362 
2363 freedom:
2364 	kfree(event.msg_buf);
2365 out:
2366 	/* re-enable Admin queue interrupt cause */
2367 	iavf_misc_irq_enable(adapter);
2368 }
2369 
2370 /**
2371  * iavf_client_task - worker thread to perform client work
2372  * @work: pointer to work_struct containing our data
2373  *
2374  * This task handles client interactions. Because client calls can be
2375  * reentrant, we can't handle them in the watchdog.
2376  **/
iavf_client_task(struct work_struct * work)2377 static void iavf_client_task(struct work_struct *work)
2378 {
2379 	struct iavf_adapter *adapter =
2380 		container_of(work, struct iavf_adapter, client_task.work);
2381 
2382 	/* If we can't get the client bit, just give up. We'll be rescheduled
2383 	 * later.
2384 	 */
2385 
2386 	if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2387 		return;
2388 
2389 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2390 		iavf_client_subtask(adapter);
2391 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2392 		goto out;
2393 	}
2394 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2395 		iavf_notify_client_l2_params(&adapter->vsi);
2396 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2397 		goto out;
2398 	}
2399 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2400 		iavf_notify_client_close(&adapter->vsi, false);
2401 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2402 		goto out;
2403 	}
2404 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2405 		iavf_notify_client_open(&adapter->vsi);
2406 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2407 	}
2408 out:
2409 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2410 }
2411 
2412 /**
2413  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2414  * @adapter: board private structure
2415  *
2416  * Free all transmit software resources
2417  **/
iavf_free_all_tx_resources(struct iavf_adapter * adapter)2418 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2419 {
2420 	int i;
2421 
2422 	if (!adapter->tx_rings)
2423 		return;
2424 
2425 	for (i = 0; i < adapter->num_active_queues; i++)
2426 		if (adapter->tx_rings[i].desc)
2427 			iavf_free_tx_resources(&adapter->tx_rings[i]);
2428 }
2429 
2430 /**
2431  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2432  * @adapter: board private structure
2433  *
2434  * If this function returns with an error, then it's possible one or
2435  * more of the rings is populated (while the rest are not).  It is the
2436  * callers duty to clean those orphaned rings.
2437  *
2438  * Return 0 on success, negative on failure
2439  **/
iavf_setup_all_tx_resources(struct iavf_adapter * adapter)2440 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2441 {
2442 	int i, err = 0;
2443 
2444 	for (i = 0; i < adapter->num_active_queues; i++) {
2445 		adapter->tx_rings[i].count = adapter->tx_desc_count;
2446 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2447 		if (!err)
2448 			continue;
2449 		dev_err(&adapter->pdev->dev,
2450 			"Allocation for Tx Queue %u failed\n", i);
2451 		break;
2452 	}
2453 
2454 	return err;
2455 }
2456 
2457 /**
2458  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2459  * @adapter: board private structure
2460  *
2461  * If this function returns with an error, then it's possible one or
2462  * more of the rings is populated (while the rest are not).  It is the
2463  * callers duty to clean those orphaned rings.
2464  *
2465  * Return 0 on success, negative on failure
2466  **/
iavf_setup_all_rx_resources(struct iavf_adapter * adapter)2467 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2468 {
2469 	int i, err = 0;
2470 
2471 	for (i = 0; i < adapter->num_active_queues; i++) {
2472 		adapter->rx_rings[i].count = adapter->rx_desc_count;
2473 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2474 		if (!err)
2475 			continue;
2476 		dev_err(&adapter->pdev->dev,
2477 			"Allocation for Rx Queue %u failed\n", i);
2478 		break;
2479 	}
2480 	return err;
2481 }
2482 
2483 /**
2484  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2485  * @adapter: board private structure
2486  *
2487  * Free all receive software resources
2488  **/
iavf_free_all_rx_resources(struct iavf_adapter * adapter)2489 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2490 {
2491 	int i;
2492 
2493 	if (!adapter->rx_rings)
2494 		return;
2495 
2496 	for (i = 0; i < adapter->num_active_queues; i++)
2497 		if (adapter->rx_rings[i].desc)
2498 			iavf_free_rx_resources(&adapter->rx_rings[i]);
2499 }
2500 
2501 /**
2502  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2503  * @adapter: board private structure
2504  * @max_tx_rate: max Tx bw for a tc
2505  **/
iavf_validate_tx_bandwidth(struct iavf_adapter * adapter,u64 max_tx_rate)2506 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2507 				      u64 max_tx_rate)
2508 {
2509 	int speed = 0, ret = 0;
2510 
2511 	if (ADV_LINK_SUPPORT(adapter)) {
2512 		if (adapter->link_speed_mbps < U32_MAX) {
2513 			speed = adapter->link_speed_mbps;
2514 			goto validate_bw;
2515 		} else {
2516 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2517 			return -EINVAL;
2518 		}
2519 	}
2520 
2521 	switch (adapter->link_speed) {
2522 	case VIRTCHNL_LINK_SPEED_40GB:
2523 		speed = SPEED_40000;
2524 		break;
2525 	case VIRTCHNL_LINK_SPEED_25GB:
2526 		speed = SPEED_25000;
2527 		break;
2528 	case VIRTCHNL_LINK_SPEED_20GB:
2529 		speed = SPEED_20000;
2530 		break;
2531 	case VIRTCHNL_LINK_SPEED_10GB:
2532 		speed = SPEED_10000;
2533 		break;
2534 	case VIRTCHNL_LINK_SPEED_5GB:
2535 		speed = SPEED_5000;
2536 		break;
2537 	case VIRTCHNL_LINK_SPEED_2_5GB:
2538 		speed = SPEED_2500;
2539 		break;
2540 	case VIRTCHNL_LINK_SPEED_1GB:
2541 		speed = SPEED_1000;
2542 		break;
2543 	case VIRTCHNL_LINK_SPEED_100MB:
2544 		speed = SPEED_100;
2545 		break;
2546 	default:
2547 		break;
2548 	}
2549 
2550 validate_bw:
2551 	if (max_tx_rate > speed) {
2552 		dev_err(&adapter->pdev->dev,
2553 			"Invalid tx rate specified\n");
2554 		ret = -EINVAL;
2555 	}
2556 
2557 	return ret;
2558 }
2559 
2560 /**
2561  * iavf_validate_channel_config - validate queue mapping info
2562  * @adapter: board private structure
2563  * @mqprio_qopt: queue parameters
2564  *
2565  * This function validates if the config provided by the user to
2566  * configure queue channels is valid or not. Returns 0 on a valid
2567  * config.
2568  **/
iavf_validate_ch_config(struct iavf_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio_qopt)2569 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2570 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
2571 {
2572 	u64 total_max_rate = 0;
2573 	u32 tx_rate_rem = 0;
2574 	int i, num_qps = 0;
2575 	u64 tx_rate = 0;
2576 	int ret = 0;
2577 
2578 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2579 	    mqprio_qopt->qopt.num_tc < 1)
2580 		return -EINVAL;
2581 
2582 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2583 		if (!mqprio_qopt->qopt.count[i] ||
2584 		    mqprio_qopt->qopt.offset[i] != num_qps)
2585 			return -EINVAL;
2586 		if (mqprio_qopt->min_rate[i]) {
2587 			dev_err(&adapter->pdev->dev,
2588 				"Invalid min tx rate (greater than 0) specified for TC%d\n",
2589 				i);
2590 			return -EINVAL;
2591 		}
2592 
2593 		/* convert to Mbps */
2594 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
2595 				  IAVF_MBPS_DIVISOR);
2596 
2597 		if (mqprio_qopt->max_rate[i] &&
2598 		    tx_rate < IAVF_MBPS_QUANTA) {
2599 			dev_err(&adapter->pdev->dev,
2600 				"Invalid max tx rate for TC%d, minimum %dMbps\n",
2601 				i, IAVF_MBPS_QUANTA);
2602 			return -EINVAL;
2603 		}
2604 
2605 		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
2606 
2607 		if (tx_rate_rem != 0) {
2608 			dev_err(&adapter->pdev->dev,
2609 				"Invalid max tx rate for TC%d, not divisible by %d\n",
2610 				i, IAVF_MBPS_QUANTA);
2611 			return -EINVAL;
2612 		}
2613 
2614 		total_max_rate += tx_rate;
2615 		num_qps += mqprio_qopt->qopt.count[i];
2616 	}
2617 	if (num_qps > adapter->num_active_queues) {
2618 		dev_err(&adapter->pdev->dev,
2619 			"Cannot support requested number of queues\n");
2620 		return -EINVAL;
2621 	}
2622 
2623 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2624 	return ret;
2625 }
2626 
2627 /**
2628  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2629  * @adapter: board private structure
2630  **/
iavf_del_all_cloud_filters(struct iavf_adapter * adapter)2631 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2632 {
2633 	struct iavf_cloud_filter *cf, *cftmp;
2634 
2635 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2636 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2637 				 list) {
2638 		list_del(&cf->list);
2639 		kfree(cf);
2640 		adapter->num_cloud_filters--;
2641 	}
2642 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2643 }
2644 
2645 /**
2646  * __iavf_setup_tc - configure multiple traffic classes
2647  * @netdev: network interface device structure
2648  * @type_data: tc offload data
2649  *
2650  * This function processes the config information provided by the
2651  * user to configure traffic classes/queue channels and packages the
2652  * information to request the PF to setup traffic classes.
2653  *
2654  * Returns 0 on success.
2655  **/
__iavf_setup_tc(struct net_device * netdev,void * type_data)2656 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2657 {
2658 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2659 	struct iavf_adapter *adapter = netdev_priv(netdev);
2660 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2661 	u8 num_tc = 0, total_qps = 0;
2662 	int ret = 0, netdev_tc = 0;
2663 	u64 max_tx_rate;
2664 	u16 mode;
2665 	int i;
2666 
2667 	num_tc = mqprio_qopt->qopt.num_tc;
2668 	mode = mqprio_qopt->mode;
2669 
2670 	/* delete queue_channel */
2671 	if (!mqprio_qopt->qopt.hw) {
2672 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2673 			/* reset the tc configuration */
2674 			netdev_reset_tc(netdev);
2675 			adapter->num_tc = 0;
2676 			netif_tx_stop_all_queues(netdev);
2677 			netif_tx_disable(netdev);
2678 			iavf_del_all_cloud_filters(adapter);
2679 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2680 			goto exit;
2681 		} else {
2682 			return -EINVAL;
2683 		}
2684 	}
2685 
2686 	/* add queue channel */
2687 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
2688 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2689 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
2690 			return -EOPNOTSUPP;
2691 		}
2692 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2693 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2694 			return -EINVAL;
2695 		}
2696 
2697 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2698 		if (ret)
2699 			return ret;
2700 		/* Return if same TC config is requested */
2701 		if (adapter->num_tc == num_tc)
2702 			return 0;
2703 		adapter->num_tc = num_tc;
2704 
2705 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2706 			if (i < num_tc) {
2707 				adapter->ch_config.ch_info[i].count =
2708 					mqprio_qopt->qopt.count[i];
2709 				adapter->ch_config.ch_info[i].offset =
2710 					mqprio_qopt->qopt.offset[i];
2711 				total_qps += mqprio_qopt->qopt.count[i];
2712 				max_tx_rate = mqprio_qopt->max_rate[i];
2713 				/* convert to Mbps */
2714 				max_tx_rate = div_u64(max_tx_rate,
2715 						      IAVF_MBPS_DIVISOR);
2716 				adapter->ch_config.ch_info[i].max_tx_rate =
2717 					max_tx_rate;
2718 			} else {
2719 				adapter->ch_config.ch_info[i].count = 1;
2720 				adapter->ch_config.ch_info[i].offset = 0;
2721 			}
2722 		}
2723 		adapter->ch_config.total_qps = total_qps;
2724 		netif_tx_stop_all_queues(netdev);
2725 		netif_tx_disable(netdev);
2726 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2727 		netdev_reset_tc(netdev);
2728 		/* Report the tc mapping up the stack */
2729 		netdev_set_num_tc(adapter->netdev, num_tc);
2730 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2731 			u16 qcount = mqprio_qopt->qopt.count[i];
2732 			u16 qoffset = mqprio_qopt->qopt.offset[i];
2733 
2734 			if (i < num_tc)
2735 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2736 						    qoffset);
2737 		}
2738 	}
2739 exit:
2740 	return ret;
2741 }
2742 
2743 /**
2744  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2745  * @adapter: board private structure
2746  * @f: pointer to struct flow_cls_offload
2747  * @filter: pointer to cloud filter structure
2748  */
iavf_parse_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * f,struct iavf_cloud_filter * filter)2749 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2750 				 struct flow_cls_offload *f,
2751 				 struct iavf_cloud_filter *filter)
2752 {
2753 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2754 	struct flow_dissector *dissector = rule->match.dissector;
2755 	u16 n_proto_mask = 0;
2756 	u16 n_proto_key = 0;
2757 	u8 field_flags = 0;
2758 	u16 addr_type = 0;
2759 	u16 n_proto = 0;
2760 	int i = 0;
2761 	struct virtchnl_filter *vf = &filter->f;
2762 
2763 	if (dissector->used_keys &
2764 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2765 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
2766 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2767 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
2768 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2769 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2770 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
2771 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2772 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2773 			dissector->used_keys);
2774 		return -EOPNOTSUPP;
2775 	}
2776 
2777 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2778 		struct flow_match_enc_keyid match;
2779 
2780 		flow_rule_match_enc_keyid(rule, &match);
2781 		if (match.mask->keyid != 0)
2782 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2783 	}
2784 
2785 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2786 		struct flow_match_basic match;
2787 
2788 		flow_rule_match_basic(rule, &match);
2789 		n_proto_key = ntohs(match.key->n_proto);
2790 		n_proto_mask = ntohs(match.mask->n_proto);
2791 
2792 		if (n_proto_key == ETH_P_ALL) {
2793 			n_proto_key = 0;
2794 			n_proto_mask = 0;
2795 		}
2796 		n_proto = n_proto_key & n_proto_mask;
2797 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2798 			return -EINVAL;
2799 		if (n_proto == ETH_P_IPV6) {
2800 			/* specify flow type as TCP IPv6 */
2801 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2802 		}
2803 
2804 		if (match.key->ip_proto != IPPROTO_TCP) {
2805 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2806 			return -EINVAL;
2807 		}
2808 	}
2809 
2810 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2811 		struct flow_match_eth_addrs match;
2812 
2813 		flow_rule_match_eth_addrs(rule, &match);
2814 
2815 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
2816 		if (!is_zero_ether_addr(match.mask->dst)) {
2817 			if (is_broadcast_ether_addr(match.mask->dst)) {
2818 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
2819 			} else {
2820 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2821 					match.mask->dst);
2822 				return IAVF_ERR_CONFIG;
2823 			}
2824 		}
2825 
2826 		if (!is_zero_ether_addr(match.mask->src)) {
2827 			if (is_broadcast_ether_addr(match.mask->src)) {
2828 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
2829 			} else {
2830 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2831 					match.mask->src);
2832 				return IAVF_ERR_CONFIG;
2833 			}
2834 		}
2835 
2836 		if (!is_zero_ether_addr(match.key->dst))
2837 			if (is_valid_ether_addr(match.key->dst) ||
2838 			    is_multicast_ether_addr(match.key->dst)) {
2839 				/* set the mask if a valid dst_mac address */
2840 				for (i = 0; i < ETH_ALEN; i++)
2841 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2842 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
2843 						match.key->dst);
2844 			}
2845 
2846 		if (!is_zero_ether_addr(match.key->src))
2847 			if (is_valid_ether_addr(match.key->src) ||
2848 			    is_multicast_ether_addr(match.key->src)) {
2849 				/* set the mask if a valid dst_mac address */
2850 				for (i = 0; i < ETH_ALEN; i++)
2851 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
2852 				ether_addr_copy(vf->data.tcp_spec.src_mac,
2853 						match.key->src);
2854 		}
2855 	}
2856 
2857 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2858 		struct flow_match_vlan match;
2859 
2860 		flow_rule_match_vlan(rule, &match);
2861 		if (match.mask->vlan_id) {
2862 			if (match.mask->vlan_id == VLAN_VID_MASK) {
2863 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2864 			} else {
2865 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2866 					match.mask->vlan_id);
2867 				return IAVF_ERR_CONFIG;
2868 			}
2869 		}
2870 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2871 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2872 	}
2873 
2874 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2875 		struct flow_match_control match;
2876 
2877 		flow_rule_match_control(rule, &match);
2878 		addr_type = match.key->addr_type;
2879 	}
2880 
2881 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2882 		struct flow_match_ipv4_addrs match;
2883 
2884 		flow_rule_match_ipv4_addrs(rule, &match);
2885 		if (match.mask->dst) {
2886 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2887 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2888 			} else {
2889 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2890 					be32_to_cpu(match.mask->dst));
2891 				return IAVF_ERR_CONFIG;
2892 			}
2893 		}
2894 
2895 		if (match.mask->src) {
2896 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
2897 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2898 			} else {
2899 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2900 					be32_to_cpu(match.mask->dst));
2901 				return IAVF_ERR_CONFIG;
2902 			}
2903 		}
2904 
2905 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2906 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2907 			return IAVF_ERR_CONFIG;
2908 		}
2909 		if (match.key->dst) {
2910 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2911 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2912 		}
2913 		if (match.key->src) {
2914 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2915 			vf->data.tcp_spec.src_ip[0] = match.key->src;
2916 		}
2917 	}
2918 
2919 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2920 		struct flow_match_ipv6_addrs match;
2921 
2922 		flow_rule_match_ipv6_addrs(rule, &match);
2923 
2924 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
2925 		if (ipv6_addr_any(&match.mask->dst)) {
2926 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2927 				IPV6_ADDR_ANY);
2928 			return IAVF_ERR_CONFIG;
2929 		}
2930 
2931 		/* src and dest IPv6 address should not be LOOPBACK
2932 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2933 		 */
2934 		if (ipv6_addr_loopback(&match.key->dst) ||
2935 		    ipv6_addr_loopback(&match.key->src)) {
2936 			dev_err(&adapter->pdev->dev,
2937 				"ipv6 addr should not be loopback\n");
2938 			return IAVF_ERR_CONFIG;
2939 		}
2940 		if (!ipv6_addr_any(&match.mask->dst) ||
2941 		    !ipv6_addr_any(&match.mask->src))
2942 			field_flags |= IAVF_CLOUD_FIELD_IIP;
2943 
2944 		for (i = 0; i < 4; i++)
2945 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2946 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2947 		       sizeof(vf->data.tcp_spec.dst_ip));
2948 		for (i = 0; i < 4; i++)
2949 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2950 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2951 		       sizeof(vf->data.tcp_spec.src_ip));
2952 	}
2953 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2954 		struct flow_match_ports match;
2955 
2956 		flow_rule_match_ports(rule, &match);
2957 		if (match.mask->src) {
2958 			if (match.mask->src == cpu_to_be16(0xffff)) {
2959 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2960 			} else {
2961 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2962 					be16_to_cpu(match.mask->src));
2963 				return IAVF_ERR_CONFIG;
2964 			}
2965 		}
2966 
2967 		if (match.mask->dst) {
2968 			if (match.mask->dst == cpu_to_be16(0xffff)) {
2969 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2970 			} else {
2971 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2972 					be16_to_cpu(match.mask->dst));
2973 				return IAVF_ERR_CONFIG;
2974 			}
2975 		}
2976 		if (match.key->dst) {
2977 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2978 			vf->data.tcp_spec.dst_port = match.key->dst;
2979 		}
2980 
2981 		if (match.key->src) {
2982 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2983 			vf->data.tcp_spec.src_port = match.key->src;
2984 		}
2985 	}
2986 	vf->field_flags = field_flags;
2987 
2988 	return 0;
2989 }
2990 
2991 /**
2992  * iavf_handle_tclass - Forward to a traffic class on the device
2993  * @adapter: board private structure
2994  * @tc: traffic class index on the device
2995  * @filter: pointer to cloud filter structure
2996  */
iavf_handle_tclass(struct iavf_adapter * adapter,u32 tc,struct iavf_cloud_filter * filter)2997 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2998 			      struct iavf_cloud_filter *filter)
2999 {
3000 	if (tc == 0)
3001 		return 0;
3002 	if (tc < adapter->num_tc) {
3003 		if (!filter->f.data.tcp_spec.dst_port) {
3004 			dev_err(&adapter->pdev->dev,
3005 				"Specify destination port to redirect to traffic class other than TC0\n");
3006 			return -EINVAL;
3007 		}
3008 	}
3009 	/* redirect to a traffic class on the same device */
3010 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3011 	filter->f.action_meta = tc;
3012 	return 0;
3013 }
3014 
3015 /**
3016  * iavf_configure_clsflower - Add tc flower filters
3017  * @adapter: board private structure
3018  * @cls_flower: Pointer to struct flow_cls_offload
3019  */
iavf_configure_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3020 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3021 				    struct flow_cls_offload *cls_flower)
3022 {
3023 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3024 	struct iavf_cloud_filter *filter = NULL;
3025 	int err = -EINVAL, count = 50;
3026 
3027 	if (tc < 0) {
3028 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3029 		return -EINVAL;
3030 	}
3031 
3032 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3033 	if (!filter)
3034 		return -ENOMEM;
3035 
3036 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3037 				&adapter->crit_section)) {
3038 		if (--count == 0)
3039 			goto err;
3040 		udelay(1);
3041 	}
3042 
3043 	filter->cookie = cls_flower->cookie;
3044 
3045 	/* set the mask to all zeroes to begin with */
3046 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3047 	/* start out with flow type and eth type IPv4 to begin with */
3048 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3049 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3050 	if (err)
3051 		goto err;
3052 
3053 	err = iavf_handle_tclass(adapter, tc, filter);
3054 	if (err)
3055 		goto err;
3056 
3057 	/* add filter to the list */
3058 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3059 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3060 	adapter->num_cloud_filters++;
3061 	filter->add = true;
3062 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3063 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3064 err:
3065 	if (err)
3066 		kfree(filter);
3067 
3068 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3069 	return err;
3070 }
3071 
3072 /* iavf_find_cf - Find the cloud filter in the list
3073  * @adapter: Board private structure
3074  * @cookie: filter specific cookie
3075  *
3076  * Returns ptr to the filter object or NULL. Must be called while holding the
3077  * cloud_filter_list_lock.
3078  */
iavf_find_cf(struct iavf_adapter * adapter,unsigned long * cookie)3079 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3080 					      unsigned long *cookie)
3081 {
3082 	struct iavf_cloud_filter *filter = NULL;
3083 
3084 	if (!cookie)
3085 		return NULL;
3086 
3087 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3088 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3089 			return filter;
3090 	}
3091 	return NULL;
3092 }
3093 
3094 /**
3095  * iavf_delete_clsflower - Remove tc flower filters
3096  * @adapter: board private structure
3097  * @cls_flower: Pointer to struct flow_cls_offload
3098  */
iavf_delete_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3099 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3100 				 struct flow_cls_offload *cls_flower)
3101 {
3102 	struct iavf_cloud_filter *filter = NULL;
3103 	int err = 0;
3104 
3105 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3106 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3107 	if (filter) {
3108 		filter->del = true;
3109 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3110 	} else {
3111 		err = -EINVAL;
3112 	}
3113 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3114 
3115 	return err;
3116 }
3117 
3118 /**
3119  * iavf_setup_tc_cls_flower - flower classifier offloads
3120  * @adapter: board private structure
3121  * @cls_flower: pointer to flow_cls_offload struct with flow info
3122  */
iavf_setup_tc_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3123 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3124 				    struct flow_cls_offload *cls_flower)
3125 {
3126 	switch (cls_flower->command) {
3127 	case FLOW_CLS_REPLACE:
3128 		return iavf_configure_clsflower(adapter, cls_flower);
3129 	case FLOW_CLS_DESTROY:
3130 		return iavf_delete_clsflower(adapter, cls_flower);
3131 	case FLOW_CLS_STATS:
3132 		return -EOPNOTSUPP;
3133 	default:
3134 		return -EOPNOTSUPP;
3135 	}
3136 }
3137 
3138 /**
3139  * iavf_setup_tc_block_cb - block callback for tc
3140  * @type: type of offload
3141  * @type_data: offload data
3142  * @cb_priv:
3143  *
3144  * This function is the block callback for traffic classes
3145  **/
iavf_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3146 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3147 				  void *cb_priv)
3148 {
3149 	struct iavf_adapter *adapter = cb_priv;
3150 
3151 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3152 		return -EOPNOTSUPP;
3153 
3154 	switch (type) {
3155 	case TC_SETUP_CLSFLOWER:
3156 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3157 	default:
3158 		return -EOPNOTSUPP;
3159 	}
3160 }
3161 
3162 static LIST_HEAD(iavf_block_cb_list);
3163 
3164 /**
3165  * iavf_setup_tc - configure multiple traffic classes
3166  * @netdev: network interface device structure
3167  * @type: type of offload
3168  * @type_data: tc offload data
3169  *
3170  * This function is the callback to ndo_setup_tc in the
3171  * netdev_ops.
3172  *
3173  * Returns 0 on success
3174  **/
iavf_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)3175 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3176 			 void *type_data)
3177 {
3178 	struct iavf_adapter *adapter = netdev_priv(netdev);
3179 
3180 	switch (type) {
3181 	case TC_SETUP_QDISC_MQPRIO:
3182 		return __iavf_setup_tc(netdev, type_data);
3183 	case TC_SETUP_BLOCK:
3184 		return flow_block_cb_setup_simple(type_data,
3185 						  &iavf_block_cb_list,
3186 						  iavf_setup_tc_block_cb,
3187 						  adapter, adapter, true);
3188 	default:
3189 		return -EOPNOTSUPP;
3190 	}
3191 }
3192 
3193 /**
3194  * iavf_open - Called when a network interface is made active
3195  * @netdev: network interface device structure
3196  *
3197  * Returns 0 on success, negative value on failure
3198  *
3199  * The open entry point is called when a network interface is made
3200  * active by the system (IFF_UP).  At this point all resources needed
3201  * for transmit and receive operations are allocated, the interrupt
3202  * handler is registered with the OS, the watchdog is started,
3203  * and the stack is notified that the interface is ready.
3204  **/
iavf_open(struct net_device * netdev)3205 static int iavf_open(struct net_device *netdev)
3206 {
3207 	struct iavf_adapter *adapter = netdev_priv(netdev);
3208 	int err;
3209 
3210 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3211 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3212 		return -EIO;
3213 	}
3214 
3215 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3216 				&adapter->crit_section))
3217 		usleep_range(500, 1000);
3218 
3219 	if (adapter->state != __IAVF_DOWN) {
3220 		err = -EBUSY;
3221 		goto err_unlock;
3222 	}
3223 
3224 	/* allocate transmit descriptors */
3225 	err = iavf_setup_all_tx_resources(adapter);
3226 	if (err)
3227 		goto err_setup_tx;
3228 
3229 	/* allocate receive descriptors */
3230 	err = iavf_setup_all_rx_resources(adapter);
3231 	if (err)
3232 		goto err_setup_rx;
3233 
3234 	/* clear any pending interrupts, may auto mask */
3235 	err = iavf_request_traffic_irqs(adapter, netdev->name);
3236 	if (err)
3237 		goto err_req_irq;
3238 
3239 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3240 
3241 	iavf_add_filter(adapter, adapter->hw.mac.addr);
3242 
3243 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3244 
3245 	iavf_configure(adapter);
3246 
3247 	iavf_up_complete(adapter);
3248 
3249 	iavf_irq_enable(adapter, true);
3250 
3251 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3252 
3253 	return 0;
3254 
3255 err_req_irq:
3256 	iavf_down(adapter);
3257 	iavf_free_traffic_irqs(adapter);
3258 err_setup_rx:
3259 	iavf_free_all_rx_resources(adapter);
3260 err_setup_tx:
3261 	iavf_free_all_tx_resources(adapter);
3262 err_unlock:
3263 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3264 
3265 	return err;
3266 }
3267 
3268 /**
3269  * iavf_close - Disables a network interface
3270  * @netdev: network interface device structure
3271  *
3272  * Returns 0, this is not allowed to fail
3273  *
3274  * The close entry point is called when an interface is de-activated
3275  * by the OS.  The hardware is still under the drivers control, but
3276  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3277  * are freed, along with all transmit and receive resources.
3278  **/
iavf_close(struct net_device * netdev)3279 static int iavf_close(struct net_device *netdev)
3280 {
3281 	struct iavf_adapter *adapter = netdev_priv(netdev);
3282 	int status;
3283 
3284 	if (adapter->state <= __IAVF_DOWN_PENDING)
3285 		return 0;
3286 
3287 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3288 				&adapter->crit_section))
3289 		usleep_range(500, 1000);
3290 
3291 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3292 	if (CLIENT_ENABLED(adapter))
3293 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3294 
3295 	iavf_down(adapter);
3296 	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
3297 	iavf_free_traffic_irqs(adapter);
3298 
3299 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3300 
3301 	/* We explicitly don't free resources here because the hardware is
3302 	 * still active and can DMA into memory. Resources are cleared in
3303 	 * iavf_virtchnl_completion() after we get confirmation from the PF
3304 	 * driver that the rings have been stopped.
3305 	 *
3306 	 * Also, we wait for state to transition to __IAVF_DOWN before
3307 	 * returning. State change occurs in iavf_virtchnl_completion() after
3308 	 * VF resources are released (which occurs after PF driver processes and
3309 	 * responds to admin queue commands).
3310 	 */
3311 
3312 	status = wait_event_timeout(adapter->down_waitqueue,
3313 				    adapter->state == __IAVF_DOWN,
3314 				    msecs_to_jiffies(500));
3315 	if (!status)
3316 		netdev_warn(netdev, "Device resources not yet released\n");
3317 	return 0;
3318 }
3319 
3320 /**
3321  * iavf_change_mtu - Change the Maximum Transfer Unit
3322  * @netdev: network interface device structure
3323  * @new_mtu: new value for maximum frame size
3324  *
3325  * Returns 0 on success, negative on failure
3326  **/
iavf_change_mtu(struct net_device * netdev,int new_mtu)3327 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3328 {
3329 	struct iavf_adapter *adapter = netdev_priv(netdev);
3330 
3331 	netdev->mtu = new_mtu;
3332 	if (CLIENT_ENABLED(adapter)) {
3333 		iavf_notify_client_l2_params(&adapter->vsi);
3334 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3335 	}
3336 
3337 	if (netif_running(netdev)) {
3338 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3339 		queue_work(iavf_wq, &adapter->reset_task);
3340 	}
3341 
3342 	return 0;
3343 }
3344 
3345 /**
3346  * iavf_set_features - set the netdev feature flags
3347  * @netdev: ptr to the netdev being adjusted
3348  * @features: the feature set that the stack is suggesting
3349  * Note: expects to be called while under rtnl_lock()
3350  **/
iavf_set_features(struct net_device * netdev,netdev_features_t features)3351 static int iavf_set_features(struct net_device *netdev,
3352 			     netdev_features_t features)
3353 {
3354 	struct iavf_adapter *adapter = netdev_priv(netdev);
3355 
3356 	/* Don't allow changing VLAN_RX flag when adapter is not capable
3357 	 * of VLAN offload
3358 	 */
3359 	if (!VLAN_ALLOWED(adapter)) {
3360 		if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3361 			return -EINVAL;
3362 	} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3363 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3364 			adapter->aq_required |=
3365 				IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3366 		else
3367 			adapter->aq_required |=
3368 				IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3369 	}
3370 
3371 	return 0;
3372 }
3373 
3374 /**
3375  * iavf_features_check - Validate encapsulated packet conforms to limits
3376  * @skb: skb buff
3377  * @dev: This physical port's netdev
3378  * @features: Offload features that the stack believes apply
3379  **/
iavf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3380 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3381 					     struct net_device *dev,
3382 					     netdev_features_t features)
3383 {
3384 	size_t len;
3385 
3386 	/* No point in doing any of this if neither checksum nor GSO are
3387 	 * being requested for this frame.  We can rule out both by just
3388 	 * checking for CHECKSUM_PARTIAL
3389 	 */
3390 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3391 		return features;
3392 
3393 	/* We cannot support GSO if the MSS is going to be less than
3394 	 * 64 bytes.  If it is then we need to drop support for GSO.
3395 	 */
3396 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3397 		features &= ~NETIF_F_GSO_MASK;
3398 
3399 	/* MACLEN can support at most 63 words */
3400 	len = skb_network_header(skb) - skb->data;
3401 	if (len & ~(63 * 2))
3402 		goto out_err;
3403 
3404 	/* IPLEN and EIPLEN can support at most 127 dwords */
3405 	len = skb_transport_header(skb) - skb_network_header(skb);
3406 	if (len & ~(127 * 4))
3407 		goto out_err;
3408 
3409 	if (skb->encapsulation) {
3410 		/* L4TUNLEN can support 127 words */
3411 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3412 		if (len & ~(127 * 2))
3413 			goto out_err;
3414 
3415 		/* IPLEN can support at most 127 dwords */
3416 		len = skb_inner_transport_header(skb) -
3417 		      skb_inner_network_header(skb);
3418 		if (len & ~(127 * 4))
3419 			goto out_err;
3420 	}
3421 
3422 	/* No need to validate L4LEN as TCP is the only protocol with a
3423 	 * a flexible value and we support all possible values supported
3424 	 * by TCP, which is at most 15 dwords
3425 	 */
3426 
3427 	return features;
3428 out_err:
3429 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3430 }
3431 
3432 /**
3433  * iavf_fix_features - fix up the netdev feature bits
3434  * @netdev: our net device
3435  * @features: desired feature bits
3436  *
3437  * Returns fixed-up features bits
3438  **/
iavf_fix_features(struct net_device * netdev,netdev_features_t features)3439 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3440 					   netdev_features_t features)
3441 {
3442 	struct iavf_adapter *adapter = netdev_priv(netdev);
3443 
3444 	if (adapter->vf_res &&
3445 	    !(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3446 		features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3447 			      NETIF_F_HW_VLAN_CTAG_RX |
3448 			      NETIF_F_HW_VLAN_CTAG_FILTER);
3449 
3450 	return features;
3451 }
3452 
3453 static const struct net_device_ops iavf_netdev_ops = {
3454 	.ndo_open		= iavf_open,
3455 	.ndo_stop		= iavf_close,
3456 	.ndo_start_xmit		= iavf_xmit_frame,
3457 	.ndo_set_rx_mode	= iavf_set_rx_mode,
3458 	.ndo_validate_addr	= eth_validate_addr,
3459 	.ndo_set_mac_address	= iavf_set_mac,
3460 	.ndo_change_mtu		= iavf_change_mtu,
3461 	.ndo_tx_timeout		= iavf_tx_timeout,
3462 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
3463 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
3464 	.ndo_features_check	= iavf_features_check,
3465 	.ndo_fix_features	= iavf_fix_features,
3466 	.ndo_set_features	= iavf_set_features,
3467 	.ndo_setup_tc		= iavf_setup_tc,
3468 };
3469 
3470 /**
3471  * iavf_check_reset_complete - check that VF reset is complete
3472  * @hw: pointer to hw struct
3473  *
3474  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3475  **/
iavf_check_reset_complete(struct iavf_hw * hw)3476 static int iavf_check_reset_complete(struct iavf_hw *hw)
3477 {
3478 	u32 rstat;
3479 	int i;
3480 
3481 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3482 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3483 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3484 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3485 		    (rstat == VIRTCHNL_VFR_COMPLETED))
3486 			return 0;
3487 		usleep_range(10, 20);
3488 	}
3489 	return -EBUSY;
3490 }
3491 
3492 /**
3493  * iavf_process_config - Process the config information we got from the PF
3494  * @adapter: board private structure
3495  *
3496  * Verify that we have a valid config struct, and set up our netdev features
3497  * and our VSI struct.
3498  **/
iavf_process_config(struct iavf_adapter * adapter)3499 int iavf_process_config(struct iavf_adapter *adapter)
3500 {
3501 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3502 	int i, num_req_queues = adapter->num_req_queues;
3503 	struct net_device *netdev = adapter->netdev;
3504 	struct iavf_vsi *vsi = &adapter->vsi;
3505 	netdev_features_t hw_enc_features;
3506 	netdev_features_t hw_features;
3507 
3508 	/* got VF config message back from PF, now we can parse it */
3509 	for (i = 0; i < vfres->num_vsis; i++) {
3510 		if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3511 			adapter->vsi_res = &vfres->vsi_res[i];
3512 	}
3513 	if (!adapter->vsi_res) {
3514 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3515 		return -ENODEV;
3516 	}
3517 
3518 	if (num_req_queues &&
3519 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
3520 		/* Problem.  The PF gave us fewer queues than what we had
3521 		 * negotiated in our request.  Need a reset to see if we can't
3522 		 * get back to a working state.
3523 		 */
3524 		dev_err(&adapter->pdev->dev,
3525 			"Requested %d queues, but PF only gave us %d.\n",
3526 			num_req_queues,
3527 			adapter->vsi_res->num_queue_pairs);
3528 		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3529 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3530 		iavf_schedule_reset(adapter);
3531 		return -ENODEV;
3532 	}
3533 	adapter->num_req_queues = 0;
3534 
3535 	hw_enc_features = NETIF_F_SG			|
3536 			  NETIF_F_IP_CSUM		|
3537 			  NETIF_F_IPV6_CSUM		|
3538 			  NETIF_F_HIGHDMA		|
3539 			  NETIF_F_SOFT_FEATURES	|
3540 			  NETIF_F_TSO			|
3541 			  NETIF_F_TSO_ECN		|
3542 			  NETIF_F_TSO6			|
3543 			  NETIF_F_SCTP_CRC		|
3544 			  NETIF_F_RXHASH		|
3545 			  NETIF_F_RXCSUM		|
3546 			  0;
3547 
3548 	/* advertise to stack only if offloads for encapsulated packets is
3549 	 * supported
3550 	 */
3551 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3552 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
3553 				   NETIF_F_GSO_GRE		|
3554 				   NETIF_F_GSO_GRE_CSUM		|
3555 				   NETIF_F_GSO_IPXIP4		|
3556 				   NETIF_F_GSO_IPXIP6		|
3557 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3558 				   NETIF_F_GSO_PARTIAL		|
3559 				   0;
3560 
3561 		if (!(vfres->vf_cap_flags &
3562 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3563 			netdev->gso_partial_features |=
3564 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
3565 
3566 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3567 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3568 		netdev->hw_enc_features |= hw_enc_features;
3569 	}
3570 	/* record features VLANs can make use of */
3571 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3572 
3573 	/* Write features and hw_features separately to avoid polluting
3574 	 * with, or dropping, features that are set when we registered.
3575 	 */
3576 	hw_features = hw_enc_features;
3577 
3578 	/* Enable VLAN features if supported */
3579 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3580 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3581 				NETIF_F_HW_VLAN_CTAG_RX);
3582 	/* Enable cloud filter if ADQ is supported */
3583 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3584 		hw_features |= NETIF_F_HW_TC;
3585 
3586 	netdev->hw_features |= hw_features;
3587 
3588 	netdev->features |= hw_features;
3589 
3590 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3591 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3592 
3593 	netdev->priv_flags |= IFF_UNICAST_FLT;
3594 
3595 	/* Do not turn on offloads when they are requested to be turned off.
3596 	 * TSO needs minimum 576 bytes to work correctly.
3597 	 */
3598 	if (netdev->wanted_features) {
3599 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
3600 		    netdev->mtu < 576)
3601 			netdev->features &= ~NETIF_F_TSO;
3602 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3603 		    netdev->mtu < 576)
3604 			netdev->features &= ~NETIF_F_TSO6;
3605 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3606 			netdev->features &= ~NETIF_F_TSO_ECN;
3607 		if (!(netdev->wanted_features & NETIF_F_GRO))
3608 			netdev->features &= ~NETIF_F_GRO;
3609 		if (!(netdev->wanted_features & NETIF_F_GSO))
3610 			netdev->features &= ~NETIF_F_GSO;
3611 	}
3612 
3613 	adapter->vsi.id = adapter->vsi_res->vsi_id;
3614 
3615 	adapter->vsi.back = adapter;
3616 	adapter->vsi.base_vector = 1;
3617 	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3618 	vsi->netdev = adapter->netdev;
3619 	vsi->qs_handle = adapter->vsi_res->qset_handle;
3620 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3621 		adapter->rss_key_size = vfres->rss_key_size;
3622 		adapter->rss_lut_size = vfres->rss_lut_size;
3623 	} else {
3624 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3625 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3626 	}
3627 
3628 	return 0;
3629 }
3630 
3631 /**
3632  * iavf_init_task - worker thread to perform delayed initialization
3633  * @work: pointer to work_struct containing our data
3634  *
3635  * This task completes the work that was begun in probe. Due to the nature
3636  * of VF-PF communications, we may need to wait tens of milliseconds to get
3637  * responses back from the PF. Rather than busy-wait in probe and bog down the
3638  * whole system, we'll do it in a task so we can sleep.
3639  * This task only runs during driver init. Once we've established
3640  * communications with the PF driver and set up our netdev, the watchdog
3641  * takes over.
3642  **/
iavf_init_task(struct work_struct * work)3643 static void iavf_init_task(struct work_struct *work)
3644 {
3645 	struct iavf_adapter *adapter = container_of(work,
3646 						    struct iavf_adapter,
3647 						    init_task.work);
3648 	struct iavf_hw *hw = &adapter->hw;
3649 
3650 	if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000)) {
3651 		dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3652 		return;
3653 	}
3654 	switch (adapter->state) {
3655 	case __IAVF_STARTUP:
3656 		if (iavf_startup(adapter) < 0)
3657 			goto init_failed;
3658 		break;
3659 	case __IAVF_INIT_VERSION_CHECK:
3660 		if (iavf_init_version_check(adapter) < 0)
3661 			goto init_failed;
3662 		break;
3663 	case __IAVF_INIT_GET_RESOURCES:
3664 		if (iavf_init_get_resources(adapter) < 0)
3665 			goto init_failed;
3666 		goto out;
3667 	default:
3668 		goto init_failed;
3669 	}
3670 
3671 	queue_delayed_work(iavf_wq, &adapter->init_task,
3672 			   msecs_to_jiffies(30));
3673 	goto out;
3674 init_failed:
3675 	if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3676 		dev_err(&adapter->pdev->dev,
3677 			"Failed to communicate with PF; waiting before retry\n");
3678 		adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3679 		iavf_shutdown_adminq(hw);
3680 		iavf_change_state(adapter, __IAVF_STARTUP);
3681 		queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3682 		goto out;
3683 	}
3684 	queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3685 out:
3686 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3687 }
3688 
3689 /**
3690  * iavf_shutdown - Shutdown the device in preparation for a reboot
3691  * @pdev: pci device structure
3692  **/
iavf_shutdown(struct pci_dev * pdev)3693 static void iavf_shutdown(struct pci_dev *pdev)
3694 {
3695 	struct net_device *netdev = pci_get_drvdata(pdev);
3696 	struct iavf_adapter *adapter = netdev_priv(netdev);
3697 
3698 	netif_device_detach(netdev);
3699 
3700 	if (netif_running(netdev))
3701 		iavf_close(netdev);
3702 
3703 	if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000))
3704 		dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3705 	/* Prevent the watchdog from running. */
3706 	iavf_change_state(adapter, __IAVF_REMOVE);
3707 	adapter->aq_required = 0;
3708 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3709 
3710 #ifdef CONFIG_PM
3711 	pci_save_state(pdev);
3712 
3713 #endif
3714 	pci_disable_device(pdev);
3715 }
3716 
3717 /**
3718  * iavf_probe - Device Initialization Routine
3719  * @pdev: PCI device information struct
3720  * @ent: entry in iavf_pci_tbl
3721  *
3722  * Returns 0 on success, negative on failure
3723  *
3724  * iavf_probe initializes an adapter identified by a pci_dev structure.
3725  * The OS initialization, configuring of the adapter private structure,
3726  * and a hardware reset occur.
3727  **/
iavf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3728 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3729 {
3730 	struct net_device *netdev;
3731 	struct iavf_adapter *adapter = NULL;
3732 	struct iavf_hw *hw = NULL;
3733 	int err;
3734 
3735 	err = pci_enable_device(pdev);
3736 	if (err)
3737 		return err;
3738 
3739 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3740 	if (err) {
3741 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3742 		if (err) {
3743 			dev_err(&pdev->dev,
3744 				"DMA configuration failed: 0x%x\n", err);
3745 			goto err_dma;
3746 		}
3747 	}
3748 
3749 	err = pci_request_regions(pdev, iavf_driver_name);
3750 	if (err) {
3751 		dev_err(&pdev->dev,
3752 			"pci_request_regions failed 0x%x\n", err);
3753 		goto err_pci_reg;
3754 	}
3755 
3756 	pci_enable_pcie_error_reporting(pdev);
3757 
3758 	pci_set_master(pdev);
3759 
3760 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3761 				   IAVF_MAX_REQ_QUEUES);
3762 	if (!netdev) {
3763 		err = -ENOMEM;
3764 		goto err_alloc_etherdev;
3765 	}
3766 
3767 	SET_NETDEV_DEV(netdev, &pdev->dev);
3768 
3769 	pci_set_drvdata(pdev, netdev);
3770 	adapter = netdev_priv(netdev);
3771 
3772 	adapter->netdev = netdev;
3773 	adapter->pdev = pdev;
3774 
3775 	hw = &adapter->hw;
3776 	hw->back = adapter;
3777 
3778 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3779 	iavf_change_state(adapter, __IAVF_STARTUP);
3780 
3781 	/* Call save state here because it relies on the adapter struct. */
3782 	pci_save_state(pdev);
3783 
3784 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3785 			      pci_resource_len(pdev, 0));
3786 	if (!hw->hw_addr) {
3787 		err = -EIO;
3788 		goto err_ioremap;
3789 	}
3790 	hw->vendor_id = pdev->vendor;
3791 	hw->device_id = pdev->device;
3792 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3793 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3794 	hw->subsystem_device_id = pdev->subsystem_device;
3795 	hw->bus.device = PCI_SLOT(pdev->devfn);
3796 	hw->bus.func = PCI_FUNC(pdev->devfn);
3797 	hw->bus.bus_id = pdev->bus->number;
3798 
3799 	/* set up the locks for the AQ, do this only once in probe
3800 	 * and destroy them only once in remove
3801 	 */
3802 	mutex_init(&hw->aq.asq_mutex);
3803 	mutex_init(&hw->aq.arq_mutex);
3804 
3805 	spin_lock_init(&adapter->mac_vlan_list_lock);
3806 	spin_lock_init(&adapter->cloud_filter_list_lock);
3807 
3808 	INIT_LIST_HEAD(&adapter->mac_filter_list);
3809 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
3810 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
3811 
3812 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
3813 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3814 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3815 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3816 	INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3817 	queue_delayed_work(iavf_wq, &adapter->init_task,
3818 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3819 
3820 	/* Setup the wait queue for indicating transition to down status */
3821 	init_waitqueue_head(&adapter->down_waitqueue);
3822 
3823 	return 0;
3824 
3825 err_ioremap:
3826 	free_netdev(netdev);
3827 err_alloc_etherdev:
3828 	pci_disable_pcie_error_reporting(pdev);
3829 	pci_release_regions(pdev);
3830 err_pci_reg:
3831 err_dma:
3832 	pci_disable_device(pdev);
3833 	return err;
3834 }
3835 
3836 /**
3837  * iavf_suspend - Power management suspend routine
3838  * @dev_d: device info pointer
3839  *
3840  * Called when the system (VM) is entering sleep/suspend.
3841  **/
iavf_suspend(struct device * dev_d)3842 static int __maybe_unused iavf_suspend(struct device *dev_d)
3843 {
3844 	struct net_device *netdev = dev_get_drvdata(dev_d);
3845 	struct iavf_adapter *adapter = netdev_priv(netdev);
3846 
3847 	netif_device_detach(netdev);
3848 
3849 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3850 				&adapter->crit_section))
3851 		usleep_range(500, 1000);
3852 
3853 	if (netif_running(netdev)) {
3854 		rtnl_lock();
3855 		iavf_down(adapter);
3856 		rtnl_unlock();
3857 	}
3858 	iavf_free_misc_irq(adapter);
3859 	iavf_reset_interrupt_capability(adapter);
3860 
3861 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3862 
3863 	return 0;
3864 }
3865 
3866 /**
3867  * iavf_resume - Power management resume routine
3868  * @dev_d: device info pointer
3869  *
3870  * Called when the system (VM) is resumed from sleep/suspend.
3871  **/
iavf_resume(struct device * dev_d)3872 static int __maybe_unused iavf_resume(struct device *dev_d)
3873 {
3874 	struct pci_dev *pdev = to_pci_dev(dev_d);
3875 	struct net_device *netdev = pci_get_drvdata(pdev);
3876 	struct iavf_adapter *adapter = netdev_priv(netdev);
3877 	u32 err;
3878 
3879 	pci_set_master(pdev);
3880 
3881 	rtnl_lock();
3882 	err = iavf_set_interrupt_capability(adapter);
3883 	if (err) {
3884 		rtnl_unlock();
3885 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3886 		return err;
3887 	}
3888 	err = iavf_request_misc_irq(adapter);
3889 	rtnl_unlock();
3890 	if (err) {
3891 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3892 		return err;
3893 	}
3894 
3895 	queue_work(iavf_wq, &adapter->reset_task);
3896 
3897 	netif_device_attach(netdev);
3898 
3899 	return err;
3900 }
3901 
3902 /**
3903  * iavf_remove - Device Removal Routine
3904  * @pdev: PCI device information struct
3905  *
3906  * iavf_remove is called by the PCI subsystem to alert the driver
3907  * that it should release a PCI device.  The could be caused by a
3908  * Hot-Plug event, or because the driver is going to be removed from
3909  * memory.
3910  **/
iavf_remove(struct pci_dev * pdev)3911 static void iavf_remove(struct pci_dev *pdev)
3912 {
3913 	struct net_device *netdev = pci_get_drvdata(pdev);
3914 	struct iavf_adapter *adapter = netdev_priv(netdev);
3915 	struct iavf_vlan_filter *vlf, *vlftmp;
3916 	struct iavf_mac_filter *f, *ftmp;
3917 	struct iavf_cloud_filter *cf, *cftmp;
3918 	struct iavf_hw *hw = &adapter->hw;
3919 	int err;
3920 	/* Indicate we are in remove and not to run reset_task */
3921 	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3922 	cancel_delayed_work_sync(&adapter->init_task);
3923 	cancel_work_sync(&adapter->reset_task);
3924 	cancel_delayed_work_sync(&adapter->client_task);
3925 	if (adapter->netdev_registered) {
3926 		unregister_netdev(netdev);
3927 		adapter->netdev_registered = false;
3928 	}
3929 	if (CLIENT_ALLOWED(adapter)) {
3930 		err = iavf_lan_del_device(adapter);
3931 		if (err)
3932 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3933 				 err);
3934 	}
3935 
3936 	iavf_request_reset(adapter);
3937 	msleep(50);
3938 	/* If the FW isn't responding, kick it once, but only once. */
3939 	if (!iavf_asq_done(hw)) {
3940 		iavf_request_reset(adapter);
3941 		msleep(50);
3942 	}
3943 	if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000))
3944 		dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3945 
3946 	/* Shut down all the garbage mashers on the detention level */
3947 	iavf_change_state(adapter, __IAVF_REMOVE);
3948 	adapter->aq_required = 0;
3949 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3950 	iavf_free_all_tx_resources(adapter);
3951 	iavf_free_all_rx_resources(adapter);
3952 	iavf_misc_irq_disable(adapter);
3953 	iavf_free_misc_irq(adapter);
3954 	iavf_reset_interrupt_capability(adapter);
3955 	iavf_free_q_vectors(adapter);
3956 
3957 	cancel_delayed_work_sync(&adapter->watchdog_task);
3958 
3959 	cancel_work_sync(&adapter->adminq_task);
3960 
3961 	iavf_free_rss(adapter);
3962 
3963 	if (hw->aq.asq.count)
3964 		iavf_shutdown_adminq(hw);
3965 
3966 	/* destroy the locks only once, here */
3967 	mutex_destroy(&hw->aq.arq_mutex);
3968 	mutex_destroy(&hw->aq.asq_mutex);
3969 
3970 	iounmap(hw->hw_addr);
3971 	pci_release_regions(pdev);
3972 	iavf_free_queues(adapter);
3973 	kfree(adapter->vf_res);
3974 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3975 	/* If we got removed before an up/down sequence, we've got a filter
3976 	 * hanging out there that we need to get rid of.
3977 	 */
3978 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3979 		list_del(&f->list);
3980 		kfree(f);
3981 	}
3982 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3983 				 list) {
3984 		list_del(&vlf->list);
3985 		kfree(vlf);
3986 	}
3987 
3988 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3989 
3990 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3991 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3992 		list_del(&cf->list);
3993 		kfree(cf);
3994 	}
3995 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3996 
3997 	free_netdev(netdev);
3998 
3999 	pci_disable_pcie_error_reporting(pdev);
4000 
4001 	pci_disable_device(pdev);
4002 }
4003 
4004 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4005 
4006 static struct pci_driver iavf_driver = {
4007 	.name      = iavf_driver_name,
4008 	.id_table  = iavf_pci_tbl,
4009 	.probe     = iavf_probe,
4010 	.remove    = iavf_remove,
4011 	.driver.pm = &iavf_pm_ops,
4012 	.shutdown  = iavf_shutdown,
4013 };
4014 
4015 /**
4016  * iavf_init_module - Driver Registration Routine
4017  *
4018  * iavf_init_module is the first routine called when the driver is
4019  * loaded. All it does is register with the PCI subsystem.
4020  **/
iavf_init_module(void)4021 static int __init iavf_init_module(void)
4022 {
4023 	int ret;
4024 
4025 	pr_info("iavf: %s\n", iavf_driver_string);
4026 
4027 	pr_info("%s\n", iavf_copyright);
4028 
4029 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4030 				  iavf_driver_name);
4031 	if (!iavf_wq) {
4032 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4033 		return -ENOMEM;
4034 	}
4035 
4036 	ret = pci_register_driver(&iavf_driver);
4037 	if (ret)
4038 		destroy_workqueue(iavf_wq);
4039 
4040 	return ret;
4041 }
4042 
4043 module_init(iavf_init_module);
4044 
4045 /**
4046  * iavf_exit_module - Driver Exit Cleanup Routine
4047  *
4048  * iavf_exit_module is called just before the driver is removed
4049  * from memory.
4050  **/
iavf_exit_module(void)4051 static void __exit iavf_exit_module(void)
4052 {
4053 	pci_unregister_driver(&iavf_driver);
4054 	destroy_workqueue(iavf_wq);
4055 }
4056 
4057 module_exit(iavf_exit_module);
4058 
4059 /* iavf_main.c */
4060