1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6 <http://rt2x00.serialmonkey.com>
7
8 */
9
10 /*
11 Module: rt2x00lib
12 Abstract: rt2x00 queue specific routines.
13 */
14
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/dma-mapping.h>
19
20 #include "rt2x00.h"
21 #include "rt2x00lib.h"
22
rt2x00queue_alloc_rxskb(struct queue_entry * entry,gfp_t gfp)23 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
24 {
25 struct data_queue *queue = entry->queue;
26 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
27 struct sk_buff *skb;
28 struct skb_frame_desc *skbdesc;
29 unsigned int frame_size;
30 unsigned int head_size = 0;
31 unsigned int tail_size = 0;
32
33 /*
34 * The frame size includes descriptor size, because the
35 * hardware directly receive the frame into the skbuffer.
36 */
37 frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
38
39 /*
40 * The payload should be aligned to a 4-byte boundary,
41 * this means we need at least 3 bytes for moving the frame
42 * into the correct offset.
43 */
44 head_size = 4;
45
46 /*
47 * For IV/EIV/ICV assembly we must make sure there is
48 * at least 8 bytes bytes available in headroom for IV/EIV
49 * and 8 bytes for ICV data as tailroon.
50 */
51 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
52 head_size += 8;
53 tail_size += 8;
54 }
55
56 /*
57 * Allocate skbuffer.
58 */
59 skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
60 if (!skb)
61 return NULL;
62
63 /*
64 * Make sure we not have a frame with the requested bytes
65 * available in the head and tail.
66 */
67 skb_reserve(skb, head_size);
68 skb_put(skb, frame_size);
69
70 /*
71 * Populate skbdesc.
72 */
73 skbdesc = get_skb_frame_desc(skb);
74 memset(skbdesc, 0, sizeof(*skbdesc));
75
76 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
77 dma_addr_t skb_dma;
78
79 skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
80 DMA_FROM_DEVICE);
81 if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
82 dev_kfree_skb_any(skb);
83 return NULL;
84 }
85
86 skbdesc->skb_dma = skb_dma;
87 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
88 }
89
90 return skb;
91 }
92
rt2x00queue_map_txskb(struct queue_entry * entry)93 int rt2x00queue_map_txskb(struct queue_entry *entry)
94 {
95 struct device *dev = entry->queue->rt2x00dev->dev;
96 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
97
98 skbdesc->skb_dma =
99 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
100
101 if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
102 return -ENOMEM;
103
104 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
105 rt2x00lib_dmadone(entry);
106 return 0;
107 }
108 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
109
rt2x00queue_unmap_skb(struct queue_entry * entry)110 void rt2x00queue_unmap_skb(struct queue_entry *entry)
111 {
112 struct device *dev = entry->queue->rt2x00dev->dev;
113 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
114
115 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
116 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
117 DMA_FROM_DEVICE);
118 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
119 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
120 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
121 DMA_TO_DEVICE);
122 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
123 }
124 }
125 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
126
rt2x00queue_free_skb(struct queue_entry * entry)127 void rt2x00queue_free_skb(struct queue_entry *entry)
128 {
129 if (!entry->skb)
130 return;
131
132 rt2x00queue_unmap_skb(entry);
133 dev_kfree_skb_any(entry->skb);
134 entry->skb = NULL;
135 }
136
rt2x00queue_align_frame(struct sk_buff * skb)137 void rt2x00queue_align_frame(struct sk_buff *skb)
138 {
139 unsigned int frame_length = skb->len;
140 unsigned int align = ALIGN_SIZE(skb, 0);
141
142 if (!align)
143 return;
144
145 skb_push(skb, align);
146 memmove(skb->data, skb->data + align, frame_length);
147 skb_trim(skb, frame_length);
148 }
149
150 /*
151 * H/W needs L2 padding between the header and the paylod if header size
152 * is not 4 bytes aligned.
153 */
rt2x00queue_insert_l2pad(struct sk_buff * skb,unsigned int hdr_len)154 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
155 {
156 unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
157
158 if (!l2pad)
159 return;
160
161 skb_push(skb, l2pad);
162 memmove(skb->data, skb->data + l2pad, hdr_len);
163 }
164
rt2x00queue_remove_l2pad(struct sk_buff * skb,unsigned int hdr_len)165 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
166 {
167 unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
168
169 if (!l2pad)
170 return;
171
172 memmove(skb->data + l2pad, skb->data, hdr_len);
173 skb_pull(skb, l2pad);
174 }
175
rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc)176 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
177 struct sk_buff *skb,
178 struct txentry_desc *txdesc)
179 {
180 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
181 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
182 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
183 u16 seqno;
184
185 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
186 return;
187
188 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
189
190 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
191 /*
192 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
193 * seqno on retransmitted data (non-QOS) and management frames.
194 * To workaround the problem let's generate seqno in software.
195 * Except for beacons which are transmitted periodically by H/W
196 * hence hardware has to assign seqno for them.
197 */
198 if (ieee80211_is_beacon(hdr->frame_control)) {
199 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
200 /* H/W will generate sequence number */
201 return;
202 }
203
204 __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
205 }
206
207 /*
208 * The hardware is not able to insert a sequence number. Assign a
209 * software generated one here.
210 *
211 * This is wrong because beacons are not getting sequence
212 * numbers assigned properly.
213 *
214 * A secondary problem exists for drivers that cannot toggle
215 * sequence counting per-frame, since those will override the
216 * sequence counter given by mac80211.
217 */
218 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
219 seqno = atomic_add_return(0x10, &intf->seqno);
220 else
221 seqno = atomic_read(&intf->seqno);
222
223 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
224 hdr->seq_ctrl |= cpu_to_le16(seqno);
225 }
226
rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,const struct rt2x00_rate * hwrate)227 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
228 struct sk_buff *skb,
229 struct txentry_desc *txdesc,
230 const struct rt2x00_rate *hwrate)
231 {
232 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
233 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
234 unsigned int data_length;
235 unsigned int duration;
236 unsigned int residual;
237
238 /*
239 * Determine with what IFS priority this frame should be send.
240 * Set ifs to IFS_SIFS when the this is not the first fragment,
241 * or this fragment came after RTS/CTS.
242 */
243 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
244 txdesc->u.plcp.ifs = IFS_BACKOFF;
245 else
246 txdesc->u.plcp.ifs = IFS_SIFS;
247
248 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
249 data_length = skb->len + 4;
250 data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
251
252 /*
253 * PLCP setup
254 * Length calculation depends on OFDM/CCK rate.
255 */
256 txdesc->u.plcp.signal = hwrate->plcp;
257 txdesc->u.plcp.service = 0x04;
258
259 if (hwrate->flags & DEV_RATE_OFDM) {
260 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
261 txdesc->u.plcp.length_low = data_length & 0x3f;
262 } else {
263 /*
264 * Convert length to microseconds.
265 */
266 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
267 duration = GET_DURATION(data_length, hwrate->bitrate);
268
269 if (residual != 0) {
270 duration++;
271
272 /*
273 * Check if we need to set the Length Extension
274 */
275 if (hwrate->bitrate == 110 && residual <= 30)
276 txdesc->u.plcp.service |= 0x80;
277 }
278
279 txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
280 txdesc->u.plcp.length_low = duration & 0xff;
281
282 /*
283 * When preamble is enabled we should set the
284 * preamble bit for the signal.
285 */
286 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
287 txdesc->u.plcp.signal |= 0x08;
288 }
289 }
290
rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,struct ieee80211_sta * sta,const struct rt2x00_rate * hwrate)291 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
292 struct sk_buff *skb,
293 struct txentry_desc *txdesc,
294 struct ieee80211_sta *sta,
295 const struct rt2x00_rate *hwrate)
296 {
297 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
298 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
299 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
300 struct rt2x00_sta *sta_priv = NULL;
301 u8 density = 0;
302
303 if (sta) {
304 sta_priv = sta_to_rt2x00_sta(sta);
305 txdesc->u.ht.wcid = sta_priv->wcid;
306 density = sta->ht_cap.ampdu_density;
307 }
308
309 /*
310 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
311 * mcs rate to be used
312 */
313 if (txrate->flags & IEEE80211_TX_RC_MCS) {
314 txdesc->u.ht.mcs = txrate->idx;
315
316 /*
317 * MIMO PS should be set to 1 for STA's using dynamic SM PS
318 * when using more then one tx stream (>MCS7).
319 */
320 if (sta && txdesc->u.ht.mcs > 7 &&
321 sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
322 __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
323 } else {
324 txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
325 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
326 txdesc->u.ht.mcs |= 0x08;
327 }
328
329 if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
330 if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
331 txdesc->u.ht.txop = TXOP_SIFS;
332 else
333 txdesc->u.ht.txop = TXOP_BACKOFF;
334
335 /* Left zero on all other settings. */
336 return;
337 }
338
339 /*
340 * Only one STBC stream is supported for now.
341 */
342 if (tx_info->flags & IEEE80211_TX_CTL_STBC)
343 txdesc->u.ht.stbc = 1;
344
345 /*
346 * This frame is eligible for an AMPDU, however, don't aggregate
347 * frames that are intended to probe a specific tx rate.
348 */
349 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
350 !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
351 __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
352 txdesc->u.ht.mpdu_density = density;
353 txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
354 }
355
356 /*
357 * Set 40Mhz mode if necessary (for legacy rates this will
358 * duplicate the frame to both channels).
359 */
360 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
361 txrate->flags & IEEE80211_TX_RC_DUP_DATA)
362 __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
363 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
364 __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
365
366 /*
367 * Determine IFS values
368 * - Use TXOP_BACKOFF for management frames except beacons
369 * - Use TXOP_SIFS for fragment bursts
370 * - Use TXOP_HTTXOP for everything else
371 *
372 * Note: rt2800 devices won't use CTS protection (if used)
373 * for frames not transmitted with TXOP_HTTXOP
374 */
375 if (ieee80211_is_mgmt(hdr->frame_control) &&
376 !ieee80211_is_beacon(hdr->frame_control))
377 txdesc->u.ht.txop = TXOP_BACKOFF;
378 else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
379 txdesc->u.ht.txop = TXOP_SIFS;
380 else
381 txdesc->u.ht.txop = TXOP_HTTXOP;
382 }
383
rt2x00queue_create_tx_descriptor(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,struct ieee80211_sta * sta)384 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
385 struct sk_buff *skb,
386 struct txentry_desc *txdesc,
387 struct ieee80211_sta *sta)
388 {
389 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
390 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
391 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
392 struct ieee80211_rate *rate;
393 const struct rt2x00_rate *hwrate = NULL;
394
395 memset(txdesc, 0, sizeof(*txdesc));
396
397 /*
398 * Header and frame information.
399 */
400 txdesc->length = skb->len;
401 txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
402
403 /*
404 * Check whether this frame is to be acked.
405 */
406 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
407 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
408
409 /*
410 * Check if this is a RTS/CTS frame
411 */
412 if (ieee80211_is_rts(hdr->frame_control) ||
413 ieee80211_is_cts(hdr->frame_control)) {
414 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
415 if (ieee80211_is_rts(hdr->frame_control))
416 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
417 else
418 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
419 if (tx_info->control.rts_cts_rate_idx >= 0)
420 rate =
421 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
422 }
423
424 /*
425 * Determine retry information.
426 */
427 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
428 if (txdesc->retry_limit >= rt2x00dev->long_retry)
429 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
430
431 /*
432 * Check if more fragments are pending
433 */
434 if (ieee80211_has_morefrags(hdr->frame_control)) {
435 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
436 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
437 }
438
439 /*
440 * Check if more frames (!= fragments) are pending
441 */
442 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
443 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
444
445 /*
446 * Beacons and probe responses require the tsf timestamp
447 * to be inserted into the frame.
448 */
449 if (ieee80211_is_beacon(hdr->frame_control) ||
450 ieee80211_is_probe_resp(hdr->frame_control))
451 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
452
453 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
454 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
455 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
456
457 /*
458 * Determine rate modulation.
459 */
460 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
461 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
462 else if (txrate->flags & IEEE80211_TX_RC_MCS)
463 txdesc->rate_mode = RATE_MODE_HT_MIX;
464 else {
465 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
466 hwrate = rt2x00_get_rate(rate->hw_value);
467 if (hwrate->flags & DEV_RATE_OFDM)
468 txdesc->rate_mode = RATE_MODE_OFDM;
469 else
470 txdesc->rate_mode = RATE_MODE_CCK;
471 }
472
473 /*
474 * Apply TX descriptor handling by components
475 */
476 rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
477 rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
478
479 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
480 rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
481 sta, hwrate);
482 else
483 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
484 hwrate);
485 }
486
rt2x00queue_write_tx_data(struct queue_entry * entry,struct txentry_desc * txdesc)487 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
488 struct txentry_desc *txdesc)
489 {
490 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
491
492 /*
493 * This should not happen, we already checked the entry
494 * was ours. When the hardware disagrees there has been
495 * a queue corruption!
496 */
497 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
498 rt2x00dev->ops->lib->get_entry_state(entry))) {
499 rt2x00_err(rt2x00dev,
500 "Corrupt queue %d, accessing entry which is not ours\n"
501 "Please file bug report to %s\n",
502 entry->queue->qid, DRV_PROJECT);
503 return -EINVAL;
504 }
505
506 /*
507 * Add the requested extra tx headroom in front of the skb.
508 */
509 skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
510 memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
511
512 /*
513 * Call the driver's write_tx_data function, if it exists.
514 */
515 if (rt2x00dev->ops->lib->write_tx_data)
516 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
517
518 /*
519 * Map the skb to DMA.
520 */
521 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
522 rt2x00queue_map_txskb(entry))
523 return -ENOMEM;
524
525 return 0;
526 }
527
rt2x00queue_write_tx_descriptor(struct queue_entry * entry,struct txentry_desc * txdesc)528 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
529 struct txentry_desc *txdesc)
530 {
531 struct data_queue *queue = entry->queue;
532
533 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
534
535 /*
536 * All processing on the frame has been completed, this means
537 * it is now ready to be dumped to userspace through debugfs.
538 */
539 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry);
540 }
541
rt2x00queue_kick_tx_queue(struct data_queue * queue,struct txentry_desc * txdesc)542 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
543 struct txentry_desc *txdesc)
544 {
545 /*
546 * Check if we need to kick the queue, there are however a few rules
547 * 1) Don't kick unless this is the last in frame in a burst.
548 * When the burst flag is set, this frame is always followed
549 * by another frame which in some way are related to eachother.
550 * This is true for fragments, RTS or CTS-to-self frames.
551 * 2) Rule 1 can be broken when the available entries
552 * in the queue are less then a certain threshold.
553 */
554 if (rt2x00queue_threshold(queue) ||
555 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
556 queue->rt2x00dev->ops->lib->kick_queue(queue);
557 }
558
rt2x00queue_bar_check(struct queue_entry * entry)559 static void rt2x00queue_bar_check(struct queue_entry *entry)
560 {
561 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
562 struct ieee80211_bar *bar = (void *) (entry->skb->data +
563 rt2x00dev->extra_tx_headroom);
564 struct rt2x00_bar_list_entry *bar_entry;
565
566 if (likely(!ieee80211_is_back_req(bar->frame_control)))
567 return;
568
569 bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
570
571 /*
572 * If the alloc fails we still send the BAR out but just don't track
573 * it in our bar list. And as a result we will report it to mac80211
574 * back as failed.
575 */
576 if (!bar_entry)
577 return;
578
579 bar_entry->entry = entry;
580 bar_entry->block_acked = 0;
581
582 /*
583 * Copy the relevant parts of the 802.11 BAR into out check list
584 * such that we can use RCU for less-overhead in the RX path since
585 * sending BARs and processing the according BlockAck should be
586 * the exception.
587 */
588 memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
589 memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
590 bar_entry->control = bar->control;
591 bar_entry->start_seq_num = bar->start_seq_num;
592
593 /*
594 * Insert BAR into our BAR check list.
595 */
596 spin_lock_bh(&rt2x00dev->bar_list_lock);
597 list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
598 spin_unlock_bh(&rt2x00dev->bar_list_lock);
599 }
600
rt2x00queue_write_tx_frame(struct data_queue * queue,struct sk_buff * skb,struct ieee80211_sta * sta,bool local)601 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
602 struct ieee80211_sta *sta, bool local)
603 {
604 struct ieee80211_tx_info *tx_info;
605 struct queue_entry *entry;
606 struct txentry_desc txdesc;
607 struct skb_frame_desc *skbdesc;
608 u8 rate_idx, rate_flags;
609 int ret = 0;
610
611 /*
612 * Copy all TX descriptor information into txdesc,
613 * after that we are free to use the skb->cb array
614 * for our information.
615 */
616 rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
617
618 /*
619 * All information is retrieved from the skb->cb array,
620 * now we should claim ownership of the driver part of that
621 * array, preserving the bitrate index and flags.
622 */
623 tx_info = IEEE80211_SKB_CB(skb);
624 rate_idx = tx_info->control.rates[0].idx;
625 rate_flags = tx_info->control.rates[0].flags;
626 skbdesc = get_skb_frame_desc(skb);
627 memset(skbdesc, 0, sizeof(*skbdesc));
628 skbdesc->tx_rate_idx = rate_idx;
629 skbdesc->tx_rate_flags = rate_flags;
630
631 if (local)
632 skbdesc->flags |= SKBDESC_NOT_MAC80211;
633
634 /*
635 * When hardware encryption is supported, and this frame
636 * is to be encrypted, we should strip the IV/EIV data from
637 * the frame so we can provide it to the driver separately.
638 */
639 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
640 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
641 if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
642 rt2x00crypto_tx_copy_iv(skb, &txdesc);
643 else
644 rt2x00crypto_tx_remove_iv(skb, &txdesc);
645 }
646
647 /*
648 * When DMA allocation is required we should guarantee to the
649 * driver that the DMA is aligned to a 4-byte boundary.
650 * However some drivers require L2 padding to pad the payload
651 * rather then the header. This could be a requirement for
652 * PCI and USB devices, while header alignment only is valid
653 * for PCI devices.
654 */
655 if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
656 rt2x00queue_insert_l2pad(skb, txdesc.header_length);
657 else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
658 rt2x00queue_align_frame(skb);
659
660 /*
661 * That function must be called with bh disabled.
662 */
663 spin_lock(&queue->tx_lock);
664
665 if (unlikely(rt2x00queue_full(queue))) {
666 rt2x00_dbg(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
667 queue->qid);
668 ret = -ENOBUFS;
669 goto out;
670 }
671
672 entry = rt2x00queue_get_entry(queue, Q_INDEX);
673
674 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
675 &entry->flags))) {
676 rt2x00_err(queue->rt2x00dev,
677 "Arrived at non-free entry in the non-full queue %d\n"
678 "Please file bug report to %s\n",
679 queue->qid, DRV_PROJECT);
680 ret = -EINVAL;
681 goto out;
682 }
683
684 entry->skb = skb;
685
686 /*
687 * It could be possible that the queue was corrupted and this
688 * call failed. Since we always return NETDEV_TX_OK to mac80211,
689 * this frame will simply be dropped.
690 */
691 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
692 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
693 entry->skb = NULL;
694 ret = -EIO;
695 goto out;
696 }
697
698 /*
699 * Put BlockAckReqs into our check list for driver BA processing.
700 */
701 rt2x00queue_bar_check(entry);
702
703 set_bit(ENTRY_DATA_PENDING, &entry->flags);
704
705 rt2x00queue_index_inc(entry, Q_INDEX);
706 rt2x00queue_write_tx_descriptor(entry, &txdesc);
707 rt2x00queue_kick_tx_queue(queue, &txdesc);
708
709 out:
710 /*
711 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
712 * do this under queue->tx_lock. Bottom halve was already disabled
713 * before ieee80211_xmit() call.
714 */
715 if (rt2x00queue_threshold(queue))
716 rt2x00queue_pause_queue(queue);
717
718 spin_unlock(&queue->tx_lock);
719 return ret;
720 }
721
rt2x00queue_clear_beacon(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)722 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
723 struct ieee80211_vif *vif)
724 {
725 struct rt2x00_intf *intf = vif_to_intf(vif);
726
727 if (unlikely(!intf->beacon))
728 return -ENOBUFS;
729
730 /*
731 * Clean up the beacon skb.
732 */
733 rt2x00queue_free_skb(intf->beacon);
734
735 /*
736 * Clear beacon (single bssid devices don't need to clear the beacon
737 * since the beacon queue will get stopped anyway).
738 */
739 if (rt2x00dev->ops->lib->clear_beacon)
740 rt2x00dev->ops->lib->clear_beacon(intf->beacon);
741
742 return 0;
743 }
744
rt2x00queue_update_beacon(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)745 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
746 struct ieee80211_vif *vif)
747 {
748 struct rt2x00_intf *intf = vif_to_intf(vif);
749 struct skb_frame_desc *skbdesc;
750 struct txentry_desc txdesc;
751
752 if (unlikely(!intf->beacon))
753 return -ENOBUFS;
754
755 /*
756 * Clean up the beacon skb.
757 */
758 rt2x00queue_free_skb(intf->beacon);
759
760 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
761 if (!intf->beacon->skb)
762 return -ENOMEM;
763
764 /*
765 * Copy all TX descriptor information into txdesc,
766 * after that we are free to use the skb->cb array
767 * for our information.
768 */
769 rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
770
771 /*
772 * Fill in skb descriptor
773 */
774 skbdesc = get_skb_frame_desc(intf->beacon->skb);
775 memset(skbdesc, 0, sizeof(*skbdesc));
776
777 /*
778 * Send beacon to hardware.
779 */
780 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
781
782 return 0;
783
784 }
785
rt2x00queue_for_each_entry(struct data_queue * queue,enum queue_index start,enum queue_index end,void * data,bool (* fn)(struct queue_entry * entry,void * data))786 bool rt2x00queue_for_each_entry(struct data_queue *queue,
787 enum queue_index start,
788 enum queue_index end,
789 void *data,
790 bool (*fn)(struct queue_entry *entry,
791 void *data))
792 {
793 unsigned long irqflags;
794 unsigned int index_start;
795 unsigned int index_end;
796 unsigned int i;
797
798 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
799 rt2x00_err(queue->rt2x00dev,
800 "Entry requested from invalid index range (%d - %d)\n",
801 start, end);
802 return true;
803 }
804
805 /*
806 * Only protect the range we are going to loop over,
807 * if during our loop a extra entry is set to pending
808 * it should not be kicked during this run, since it
809 * is part of another TX operation.
810 */
811 spin_lock_irqsave(&queue->index_lock, irqflags);
812 index_start = queue->index[start];
813 index_end = queue->index[end];
814 spin_unlock_irqrestore(&queue->index_lock, irqflags);
815
816 /*
817 * Start from the TX done pointer, this guarantees that we will
818 * send out all frames in the correct order.
819 */
820 if (index_start < index_end) {
821 for (i = index_start; i < index_end; i++) {
822 if (fn(&queue->entries[i], data))
823 return true;
824 }
825 } else {
826 for (i = index_start; i < queue->limit; i++) {
827 if (fn(&queue->entries[i], data))
828 return true;
829 }
830
831 for (i = 0; i < index_end; i++) {
832 if (fn(&queue->entries[i], data))
833 return true;
834 }
835 }
836
837 return false;
838 }
839 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
840
rt2x00queue_get_entry(struct data_queue * queue,enum queue_index index)841 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
842 enum queue_index index)
843 {
844 struct queue_entry *entry;
845 unsigned long irqflags;
846
847 if (unlikely(index >= Q_INDEX_MAX)) {
848 rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
849 index);
850 return NULL;
851 }
852
853 spin_lock_irqsave(&queue->index_lock, irqflags);
854
855 entry = &queue->entries[queue->index[index]];
856
857 spin_unlock_irqrestore(&queue->index_lock, irqflags);
858
859 return entry;
860 }
861 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
862
rt2x00queue_index_inc(struct queue_entry * entry,enum queue_index index)863 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
864 {
865 struct data_queue *queue = entry->queue;
866 unsigned long irqflags;
867
868 if (unlikely(index >= Q_INDEX_MAX)) {
869 rt2x00_err(queue->rt2x00dev,
870 "Index change on invalid index type (%d)\n", index);
871 return;
872 }
873
874 spin_lock_irqsave(&queue->index_lock, irqflags);
875
876 queue->index[index]++;
877 if (queue->index[index] >= queue->limit)
878 queue->index[index] = 0;
879
880 entry->last_action = jiffies;
881
882 if (index == Q_INDEX) {
883 queue->length++;
884 } else if (index == Q_INDEX_DONE) {
885 queue->length--;
886 queue->count++;
887 }
888
889 spin_unlock_irqrestore(&queue->index_lock, irqflags);
890 }
891
rt2x00queue_pause_queue_nocheck(struct data_queue * queue)892 static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
893 {
894 switch (queue->qid) {
895 case QID_AC_VO:
896 case QID_AC_VI:
897 case QID_AC_BE:
898 case QID_AC_BK:
899 /*
900 * For TX queues, we have to disable the queue
901 * inside mac80211.
902 */
903 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
904 break;
905 default:
906 break;
907 }
908 }
rt2x00queue_pause_queue(struct data_queue * queue)909 void rt2x00queue_pause_queue(struct data_queue *queue)
910 {
911 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
912 !test_bit(QUEUE_STARTED, &queue->flags) ||
913 test_and_set_bit(QUEUE_PAUSED, &queue->flags))
914 return;
915
916 rt2x00queue_pause_queue_nocheck(queue);
917 }
918 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
919
rt2x00queue_unpause_queue(struct data_queue * queue)920 void rt2x00queue_unpause_queue(struct data_queue *queue)
921 {
922 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
923 !test_bit(QUEUE_STARTED, &queue->flags) ||
924 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
925 return;
926
927 switch (queue->qid) {
928 case QID_AC_VO:
929 case QID_AC_VI:
930 case QID_AC_BE:
931 case QID_AC_BK:
932 /*
933 * For TX queues, we have to enable the queue
934 * inside mac80211.
935 */
936 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
937 break;
938 case QID_RX:
939 /*
940 * For RX we need to kick the queue now in order to
941 * receive frames.
942 */
943 queue->rt2x00dev->ops->lib->kick_queue(queue);
944 default:
945 break;
946 }
947 }
948 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
949
rt2x00queue_start_queue(struct data_queue * queue)950 void rt2x00queue_start_queue(struct data_queue *queue)
951 {
952 mutex_lock(&queue->status_lock);
953
954 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
955 test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
956 mutex_unlock(&queue->status_lock);
957 return;
958 }
959
960 set_bit(QUEUE_PAUSED, &queue->flags);
961
962 queue->rt2x00dev->ops->lib->start_queue(queue);
963
964 rt2x00queue_unpause_queue(queue);
965
966 mutex_unlock(&queue->status_lock);
967 }
968 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
969
rt2x00queue_stop_queue(struct data_queue * queue)970 void rt2x00queue_stop_queue(struct data_queue *queue)
971 {
972 mutex_lock(&queue->status_lock);
973
974 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
975 mutex_unlock(&queue->status_lock);
976 return;
977 }
978
979 rt2x00queue_pause_queue_nocheck(queue);
980
981 queue->rt2x00dev->ops->lib->stop_queue(queue);
982
983 mutex_unlock(&queue->status_lock);
984 }
985 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
986
rt2x00queue_flush_queue(struct data_queue * queue,bool drop)987 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
988 {
989 bool tx_queue =
990 (queue->qid == QID_AC_VO) ||
991 (queue->qid == QID_AC_VI) ||
992 (queue->qid == QID_AC_BE) ||
993 (queue->qid == QID_AC_BK);
994
995 if (rt2x00queue_empty(queue))
996 return;
997
998 /*
999 * If we are not supposed to drop any pending
1000 * frames, this means we must force a start (=kick)
1001 * to the queue to make sure the hardware will
1002 * start transmitting.
1003 */
1004 if (!drop && tx_queue)
1005 queue->rt2x00dev->ops->lib->kick_queue(queue);
1006
1007 /*
1008 * Check if driver supports flushing, if that is the case we can
1009 * defer the flushing to the driver. Otherwise we must use the
1010 * alternative which just waits for the queue to become empty.
1011 */
1012 if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1013 queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1014
1015 /*
1016 * The queue flush has failed...
1017 */
1018 if (unlikely(!rt2x00queue_empty(queue)))
1019 rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
1020 queue->qid);
1021 }
1022 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1023
rt2x00queue_start_queues(struct rt2x00_dev * rt2x00dev)1024 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1025 {
1026 struct data_queue *queue;
1027
1028 /*
1029 * rt2x00queue_start_queue will call ieee80211_wake_queue
1030 * for each queue after is has been properly initialized.
1031 */
1032 tx_queue_for_each(rt2x00dev, queue)
1033 rt2x00queue_start_queue(queue);
1034
1035 rt2x00queue_start_queue(rt2x00dev->rx);
1036 }
1037 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1038
rt2x00queue_stop_queues(struct rt2x00_dev * rt2x00dev)1039 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1040 {
1041 struct data_queue *queue;
1042
1043 /*
1044 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1045 * as well, but we are completely shutting doing everything
1046 * now, so it is much safer to stop all TX queues at once,
1047 * and use rt2x00queue_stop_queue for cleaning up.
1048 */
1049 ieee80211_stop_queues(rt2x00dev->hw);
1050
1051 tx_queue_for_each(rt2x00dev, queue)
1052 rt2x00queue_stop_queue(queue);
1053
1054 rt2x00queue_stop_queue(rt2x00dev->rx);
1055 }
1056 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1057
rt2x00queue_flush_queues(struct rt2x00_dev * rt2x00dev,bool drop)1058 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1059 {
1060 struct data_queue *queue;
1061
1062 tx_queue_for_each(rt2x00dev, queue)
1063 rt2x00queue_flush_queue(queue, drop);
1064
1065 rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1066 }
1067 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1068
rt2x00queue_reset(struct data_queue * queue)1069 static void rt2x00queue_reset(struct data_queue *queue)
1070 {
1071 unsigned long irqflags;
1072 unsigned int i;
1073
1074 spin_lock_irqsave(&queue->index_lock, irqflags);
1075
1076 queue->count = 0;
1077 queue->length = 0;
1078
1079 for (i = 0; i < Q_INDEX_MAX; i++)
1080 queue->index[i] = 0;
1081
1082 spin_unlock_irqrestore(&queue->index_lock, irqflags);
1083 }
1084
rt2x00queue_init_queues(struct rt2x00_dev * rt2x00dev)1085 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1086 {
1087 struct data_queue *queue;
1088 unsigned int i;
1089
1090 queue_for_each(rt2x00dev, queue) {
1091 rt2x00queue_reset(queue);
1092
1093 for (i = 0; i < queue->limit; i++)
1094 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1095 }
1096 }
1097
rt2x00queue_alloc_entries(struct data_queue * queue)1098 static int rt2x00queue_alloc_entries(struct data_queue *queue)
1099 {
1100 struct queue_entry *entries;
1101 unsigned int entry_size;
1102 unsigned int i;
1103
1104 rt2x00queue_reset(queue);
1105
1106 /*
1107 * Allocate all queue entries.
1108 */
1109 entry_size = sizeof(*entries) + queue->priv_size;
1110 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1111 if (!entries)
1112 return -ENOMEM;
1113
1114 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1115 (((char *)(__base)) + ((__limit) * (__esize)) + \
1116 ((__index) * (__psize)))
1117
1118 for (i = 0; i < queue->limit; i++) {
1119 entries[i].flags = 0;
1120 entries[i].queue = queue;
1121 entries[i].skb = NULL;
1122 entries[i].entry_idx = i;
1123 entries[i].priv_data =
1124 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1125 sizeof(*entries), queue->priv_size);
1126 }
1127
1128 #undef QUEUE_ENTRY_PRIV_OFFSET
1129
1130 queue->entries = entries;
1131
1132 return 0;
1133 }
1134
rt2x00queue_free_skbs(struct data_queue * queue)1135 static void rt2x00queue_free_skbs(struct data_queue *queue)
1136 {
1137 unsigned int i;
1138
1139 if (!queue->entries)
1140 return;
1141
1142 for (i = 0; i < queue->limit; i++) {
1143 rt2x00queue_free_skb(&queue->entries[i]);
1144 }
1145 }
1146
rt2x00queue_alloc_rxskbs(struct data_queue * queue)1147 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1148 {
1149 unsigned int i;
1150 struct sk_buff *skb;
1151
1152 for (i = 0; i < queue->limit; i++) {
1153 skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1154 if (!skb)
1155 return -ENOMEM;
1156 queue->entries[i].skb = skb;
1157 }
1158
1159 return 0;
1160 }
1161
rt2x00queue_initialize(struct rt2x00_dev * rt2x00dev)1162 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1163 {
1164 struct data_queue *queue;
1165 int status;
1166
1167 status = rt2x00queue_alloc_entries(rt2x00dev->rx);
1168 if (status)
1169 goto exit;
1170
1171 tx_queue_for_each(rt2x00dev, queue) {
1172 status = rt2x00queue_alloc_entries(queue);
1173 if (status)
1174 goto exit;
1175 }
1176
1177 status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
1178 if (status)
1179 goto exit;
1180
1181 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
1182 status = rt2x00queue_alloc_entries(rt2x00dev->atim);
1183 if (status)
1184 goto exit;
1185 }
1186
1187 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1188 if (status)
1189 goto exit;
1190
1191 return 0;
1192
1193 exit:
1194 rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
1195
1196 rt2x00queue_uninitialize(rt2x00dev);
1197
1198 return status;
1199 }
1200
rt2x00queue_uninitialize(struct rt2x00_dev * rt2x00dev)1201 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1202 {
1203 struct data_queue *queue;
1204
1205 rt2x00queue_free_skbs(rt2x00dev->rx);
1206
1207 queue_for_each(rt2x00dev, queue) {
1208 kfree(queue->entries);
1209 queue->entries = NULL;
1210 }
1211 }
1212
rt2x00queue_init(struct rt2x00_dev * rt2x00dev,struct data_queue * queue,enum data_queue_qid qid)1213 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1214 struct data_queue *queue, enum data_queue_qid qid)
1215 {
1216 mutex_init(&queue->status_lock);
1217 spin_lock_init(&queue->tx_lock);
1218 spin_lock_init(&queue->index_lock);
1219
1220 queue->rt2x00dev = rt2x00dev;
1221 queue->qid = qid;
1222 queue->txop = 0;
1223 queue->aifs = 2;
1224 queue->cw_min = 5;
1225 queue->cw_max = 10;
1226
1227 rt2x00dev->ops->queue_init(queue);
1228
1229 queue->threshold = DIV_ROUND_UP(queue->limit, 10);
1230 }
1231
rt2x00queue_allocate(struct rt2x00_dev * rt2x00dev)1232 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1233 {
1234 struct data_queue *queue;
1235 enum data_queue_qid qid;
1236 unsigned int req_atim =
1237 rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
1238
1239 /*
1240 * We need the following queues:
1241 * RX: 1
1242 * TX: ops->tx_queues
1243 * Beacon: 1
1244 * Atim: 1 (if required)
1245 */
1246 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1247
1248 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1249 if (!queue)
1250 return -ENOMEM;
1251
1252 /*
1253 * Initialize pointers
1254 */
1255 rt2x00dev->rx = queue;
1256 rt2x00dev->tx = &queue[1];
1257 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1258 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1259
1260 /*
1261 * Initialize queue parameters.
1262 * RX: qid = QID_RX
1263 * TX: qid = QID_AC_VO + index
1264 * TX: cw_min: 2^5 = 32.
1265 * TX: cw_max: 2^10 = 1024.
1266 * BCN: qid = QID_BEACON
1267 * ATIM: qid = QID_ATIM
1268 */
1269 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1270
1271 qid = QID_AC_VO;
1272 tx_queue_for_each(rt2x00dev, queue)
1273 rt2x00queue_init(rt2x00dev, queue, qid++);
1274
1275 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1276 if (req_atim)
1277 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1278
1279 return 0;
1280 }
1281
rt2x00queue_free(struct rt2x00_dev * rt2x00dev)1282 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1283 {
1284 kfree(rt2x00dev->rx);
1285 rt2x00dev->rx = NULL;
1286 rt2x00dev->tx = NULL;
1287 rt2x00dev->bcn = NULL;
1288 }
1289