1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 select LIB_MEMNEQ 19 help 20 This option provides the core Cryptographic API. 21 22if CRYPTO 23 24comment "Crypto core or helper" 25 26config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 30 help 31 This option enables the fips boot option which is 32 required if you want the system to operate in a FIPS 200 33 certification. You should say no unless you know what 34 this is. 35 36# CRYPTO_FIPS140 just enables the support in the kernel for loading fips140.ko. 37# The module still needs to be built and loaded if you need FIPS 140 compliance. 38config CRYPTO_FIPS140 39 def_bool y 40 depends on MODULES && ARM64 && ARM64_MODULE_PLTS 41 42config CRYPTO_FIPS140_MOD 43 bool "Enable FIPS 140 cryptographic module" 44 depends on LTO_CLANG && CRYPTO_FIPS140 45 help 46 This option enables building a loadable module fips140.ko, which 47 contains various crypto algorithms that are also built into vmlinux. 48 At load time, this module overrides the built-in implementations of 49 these algorithms with its implementations. It also runs self-tests on 50 these algorithms and verifies the integrity of its code and data. If 51 either of these steps fails, the kernel will panic. 52 53 This module is intended to be loaded at early boot time in order to 54 meet FIPS 140 and NIAP FPT_TST_EXT.1 requirements. It shouldn't be 55 used if you don't need to meet these requirements. 56 57config CRYPTO_FIPS140_MOD_EVAL_TESTING 58 bool "Enable evaluation testing features in FIPS 140 module" 59 depends on CRYPTO_FIPS140_MOD 60 help 61 This option adds some features to the FIPS 140 module which are needed 62 for lab evaluation testing of the module, e.g. support for injecting 63 errors and support for a userspace interface to some of the module's 64 services. This option should not be enabled in production builds. 65 66config CRYPTO_ALGAPI 67 tristate 68 select CRYPTO_ALGAPI2 69 help 70 This option provides the API for cryptographic algorithms. 71 72config CRYPTO_ALGAPI2 73 tristate 74 75config CRYPTO_AEAD 76 tristate 77 select CRYPTO_AEAD2 78 select CRYPTO_ALGAPI 79 80config CRYPTO_AEAD2 81 tristate 82 select CRYPTO_ALGAPI2 83 select CRYPTO_NULL2 84 select CRYPTO_RNG2 85 86config CRYPTO_SKCIPHER 87 tristate 88 select CRYPTO_SKCIPHER2 89 select CRYPTO_ALGAPI 90 91config CRYPTO_SKCIPHER2 92 tristate 93 select CRYPTO_ALGAPI2 94 select CRYPTO_RNG2 95 96config CRYPTO_HASH 97 tristate 98 select CRYPTO_HASH2 99 select CRYPTO_ALGAPI 100 101config CRYPTO_HASH2 102 tristate 103 select CRYPTO_ALGAPI2 104 105config CRYPTO_RNG 106 tristate 107 select CRYPTO_RNG2 108 select CRYPTO_ALGAPI 109 110config CRYPTO_RNG2 111 tristate 112 select CRYPTO_ALGAPI2 113 114config CRYPTO_RNG_DEFAULT 115 tristate 116 select CRYPTO_DRBG_MENU 117 118config CRYPTO_AKCIPHER2 119 tristate 120 select CRYPTO_ALGAPI2 121 122config CRYPTO_AKCIPHER 123 tristate 124 select CRYPTO_AKCIPHER2 125 select CRYPTO_ALGAPI 126 127config CRYPTO_KPP2 128 tristate 129 select CRYPTO_ALGAPI2 130 131config CRYPTO_KPP 132 tristate 133 select CRYPTO_ALGAPI 134 select CRYPTO_KPP2 135 136config CRYPTO_ACOMP2 137 tristate 138 select CRYPTO_ALGAPI2 139 select SGL_ALLOC 140 141config CRYPTO_ACOMP 142 tristate 143 select CRYPTO_ALGAPI 144 select CRYPTO_ACOMP2 145 146config CRYPTO_MANAGER 147 tristate "Cryptographic algorithm manager" 148 select CRYPTO_MANAGER2 149 help 150 Create default cryptographic template instantiations such as 151 cbc(aes). 152 153config CRYPTO_MANAGER2 154 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 155 select CRYPTO_AEAD2 156 select CRYPTO_HASH2 157 select CRYPTO_SKCIPHER2 158 select CRYPTO_AKCIPHER2 159 select CRYPTO_KPP2 160 select CRYPTO_ACOMP2 161 162config CRYPTO_USER 163 tristate "Userspace cryptographic algorithm configuration" 164 depends on NET 165 select CRYPTO_MANAGER 166 help 167 Userspace configuration for cryptographic instantiations such as 168 cbc(aes). 169 170config CRYPTO_MANAGER_DISABLE_TESTS 171 bool "Disable run-time self tests" 172 default y 173 help 174 Disable run-time self tests that normally take place at 175 algorithm registration. 176 177config CRYPTO_MANAGER_EXTRA_TESTS 178 bool "Enable extra run-time crypto self tests" 179 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 180 help 181 Enable extra run-time self tests of registered crypto algorithms, 182 including randomized fuzz tests. 183 184 This is intended for developer use only, as these tests take much 185 longer to run than the normal self tests. 186 187config CRYPTO_GF128MUL 188 tristate 189 190config CRYPTO_NULL 191 tristate "Null algorithms" 192 select CRYPTO_NULL2 193 help 194 These are 'Null' algorithms, used by IPsec, which do nothing. 195 196config CRYPTO_NULL2 197 tristate 198 select CRYPTO_ALGAPI2 199 select CRYPTO_SKCIPHER2 200 select CRYPTO_HASH2 201 202config CRYPTO_PCRYPT 203 tristate "Parallel crypto engine" 204 depends on SMP 205 select PADATA 206 select CRYPTO_MANAGER 207 select CRYPTO_AEAD 208 help 209 This converts an arbitrary crypto algorithm into a parallel 210 algorithm that executes in kernel threads. 211 212config CRYPTO_CRYPTD 213 tristate "Software async crypto daemon" 214 select CRYPTO_SKCIPHER 215 select CRYPTO_HASH 216 select CRYPTO_MANAGER 217 help 218 This is a generic software asynchronous crypto daemon that 219 converts an arbitrary synchronous software crypto algorithm 220 into an asynchronous algorithm that executes in a kernel thread. 221 222config CRYPTO_AUTHENC 223 tristate "Authenc support" 224 select CRYPTO_AEAD 225 select CRYPTO_SKCIPHER 226 select CRYPTO_MANAGER 227 select CRYPTO_HASH 228 select CRYPTO_NULL 229 help 230 Authenc: Combined mode wrapper for IPsec. 231 This is required for IPSec. 232 233config CRYPTO_TEST 234 tristate "Testing module" 235 depends on m || EXPERT 236 select CRYPTO_MANAGER 237 help 238 Quick & dirty crypto test module. 239 240config CRYPTO_SIMD 241 tristate 242 select CRYPTO_CRYPTD 243 244config CRYPTO_ENGINE 245 tristate 246 247comment "Public-key cryptography" 248 249config CRYPTO_RSA 250 tristate "RSA algorithm" 251 select CRYPTO_AKCIPHER 252 select CRYPTO_MANAGER 253 select MPILIB 254 select ASN1 255 help 256 Generic implementation of the RSA public key algorithm. 257 258config CRYPTO_DH 259 tristate "Diffie-Hellman algorithm" 260 select CRYPTO_KPP 261 select MPILIB 262 help 263 Generic implementation of the Diffie-Hellman algorithm. 264 265config CRYPTO_ECC 266 tristate 267 select CRYPTO_RNG_DEFAULT 268 269config CRYPTO_ECDH 270 tristate "ECDH algorithm" 271 select CRYPTO_ECC 272 select CRYPTO_KPP 273 help 274 Generic implementation of the ECDH algorithm 275 276config CRYPTO_ECDSA 277 tristate "ECDSA (NIST P192, P256 etc.) algorithm" 278 select CRYPTO_ECC 279 select CRYPTO_AKCIPHER 280 select ASN1 281 help 282 Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) 283 is A NIST cryptographic standard algorithm. Only signature verification 284 is implemented. 285 286config CRYPTO_ECRDSA 287 tristate "EC-RDSA (GOST 34.10) algorithm" 288 select CRYPTO_ECC 289 select CRYPTO_AKCIPHER 290 select CRYPTO_STREEBOG 291 select OID_REGISTRY 292 select ASN1 293 help 294 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 295 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 296 standard algorithms (called GOST algorithms). Only signature verification 297 is implemented. 298 299config CRYPTO_SM2 300 tristate "SM2 algorithm" 301 select CRYPTO_SM3 302 select CRYPTO_AKCIPHER 303 select CRYPTO_MANAGER 304 select MPILIB 305 select ASN1 306 help 307 Generic implementation of the SM2 public key algorithm. It was 308 published by State Encryption Management Bureau, China. 309 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 310 311 References: 312 https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 313 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml 314 http://www.gmbz.org.cn/main/bzlb.html 315 316config CRYPTO_CURVE25519 317 tristate "Curve25519 algorithm" 318 select CRYPTO_KPP 319 select CRYPTO_LIB_CURVE25519_GENERIC 320 321config CRYPTO_CURVE25519_X86 322 tristate "x86_64 accelerated Curve25519 scalar multiplication library" 323 depends on X86 && 64BIT 324 select CRYPTO_LIB_CURVE25519_GENERIC 325 select CRYPTO_ARCH_HAVE_LIB_CURVE25519 326 327comment "Authenticated Encryption with Associated Data" 328 329config CRYPTO_CCM 330 tristate "CCM support" 331 select CRYPTO_CTR 332 select CRYPTO_HASH 333 select CRYPTO_AEAD 334 select CRYPTO_MANAGER 335 help 336 Support for Counter with CBC MAC. Required for IPsec. 337 338config CRYPTO_GCM 339 tristate "GCM/GMAC support" 340 select CRYPTO_CTR 341 select CRYPTO_AEAD 342 select CRYPTO_GHASH 343 select CRYPTO_NULL 344 select CRYPTO_MANAGER 345 help 346 Support for Galois/Counter Mode (GCM) and Galois Message 347 Authentication Code (GMAC). Required for IPSec. 348 349config CRYPTO_CHACHA20POLY1305 350 tristate "ChaCha20-Poly1305 AEAD support" 351 select CRYPTO_CHACHA20 352 select CRYPTO_POLY1305 353 select CRYPTO_AEAD 354 select CRYPTO_MANAGER 355 help 356 ChaCha20-Poly1305 AEAD support, RFC7539. 357 358 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 359 with the Poly1305 authenticator. It is defined in RFC7539 for use in 360 IETF protocols. 361 362config CRYPTO_AEGIS128 363 tristate "AEGIS-128 AEAD algorithm" 364 select CRYPTO_AEAD 365 select CRYPTO_AES # for AES S-box tables 366 help 367 Support for the AEGIS-128 dedicated AEAD algorithm. 368 369config CRYPTO_AEGIS128_SIMD 370 bool "Support SIMD acceleration for AEGIS-128" 371 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 372 default y 373 374config CRYPTO_AEGIS128_AESNI_SSE2 375 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 376 depends on X86 && 64BIT 377 select CRYPTO_AEAD 378 select CRYPTO_SIMD 379 help 380 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 381 382config CRYPTO_SEQIV 383 tristate "Sequence Number IV Generator" 384 select CRYPTO_AEAD 385 select CRYPTO_SKCIPHER 386 select CRYPTO_NULL 387 select CRYPTO_RNG_DEFAULT 388 select CRYPTO_MANAGER 389 help 390 This IV generator generates an IV based on a sequence number by 391 xoring it with a salt. This algorithm is mainly useful for CTR 392 393config CRYPTO_ECHAINIV 394 tristate "Encrypted Chain IV Generator" 395 select CRYPTO_AEAD 396 select CRYPTO_NULL 397 select CRYPTO_RNG_DEFAULT 398 select CRYPTO_MANAGER 399 help 400 This IV generator generates an IV based on the encryption of 401 a sequence number xored with a salt. This is the default 402 algorithm for CBC. 403 404comment "Block modes" 405 406config CRYPTO_CBC 407 tristate "CBC support" 408 select CRYPTO_SKCIPHER 409 select CRYPTO_MANAGER 410 help 411 CBC: Cipher Block Chaining mode 412 This block cipher algorithm is required for IPSec. 413 414config CRYPTO_CFB 415 tristate "CFB support" 416 select CRYPTO_SKCIPHER 417 select CRYPTO_MANAGER 418 help 419 CFB: Cipher FeedBack mode 420 This block cipher algorithm is required for TPM2 Cryptography. 421 422config CRYPTO_CTR 423 tristate "CTR support" 424 select CRYPTO_SKCIPHER 425 select CRYPTO_MANAGER 426 help 427 CTR: Counter mode 428 This block cipher algorithm is required for IPSec. 429 430config CRYPTO_CTS 431 tristate "CTS support" 432 select CRYPTO_SKCIPHER 433 select CRYPTO_MANAGER 434 help 435 CTS: Cipher Text Stealing 436 This is the Cipher Text Stealing mode as described by 437 Section 8 of rfc2040 and referenced by rfc3962 438 (rfc3962 includes errata information in its Appendix A) or 439 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 440 This mode is required for Kerberos gss mechanism support 441 for AES encryption. 442 443 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 444 445config CRYPTO_ECB 446 tristate "ECB support" 447 select CRYPTO_SKCIPHER 448 select CRYPTO_MANAGER 449 help 450 ECB: Electronic CodeBook mode 451 This is the simplest block cipher algorithm. It simply encrypts 452 the input block by block. 453 454config CRYPTO_LRW 455 tristate "LRW support" 456 select CRYPTO_SKCIPHER 457 select CRYPTO_MANAGER 458 select CRYPTO_GF128MUL 459 help 460 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 461 narrow block cipher mode for dm-crypt. Use it with cipher 462 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 463 The first 128, 192 or 256 bits in the key are used for AES and the 464 rest is used to tie each cipher block to its logical position. 465 466config CRYPTO_OFB 467 tristate "OFB support" 468 select CRYPTO_SKCIPHER 469 select CRYPTO_MANAGER 470 help 471 OFB: the Output Feedback mode makes a block cipher into a synchronous 472 stream cipher. It generates keystream blocks, which are then XORed 473 with the plaintext blocks to get the ciphertext. Flipping a bit in the 474 ciphertext produces a flipped bit in the plaintext at the same 475 location. This property allows many error correcting codes to function 476 normally even when applied before encryption. 477 478config CRYPTO_PCBC 479 tristate "PCBC support" 480 select CRYPTO_SKCIPHER 481 select CRYPTO_MANAGER 482 help 483 PCBC: Propagating Cipher Block Chaining mode 484 This block cipher algorithm is required for RxRPC. 485 486config CRYPTO_XCTR 487 tristate 488 select CRYPTO_SKCIPHER 489 select CRYPTO_MANAGER 490 help 491 XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode 492 using XORs and little-endian addition rather than big-endian arithmetic. 493 XCTR mode is used to implement HCTR2. 494 495config CRYPTO_XTS 496 tristate "XTS support" 497 select CRYPTO_SKCIPHER 498 select CRYPTO_MANAGER 499 select CRYPTO_ECB 500 help 501 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 502 key size 256, 384 or 512 bits. This implementation currently 503 can't handle a sectorsize which is not a multiple of 16 bytes. 504 505config CRYPTO_KEYWRAP 506 tristate "Key wrapping support" 507 select CRYPTO_SKCIPHER 508 select CRYPTO_MANAGER 509 help 510 Support for key wrapping (NIST SP800-38F / RFC3394) without 511 padding. 512 513config CRYPTO_NHPOLY1305 514 tristate 515 select CRYPTO_HASH 516 select CRYPTO_LIB_POLY1305_GENERIC 517 518config CRYPTO_NHPOLY1305_SSE2 519 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 520 depends on X86 && 64BIT 521 select CRYPTO_NHPOLY1305 522 help 523 SSE2 optimized implementation of the hash function used by the 524 Adiantum encryption mode. 525 526config CRYPTO_NHPOLY1305_AVX2 527 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 528 depends on X86 && 64BIT 529 select CRYPTO_NHPOLY1305 530 help 531 AVX2 optimized implementation of the hash function used by the 532 Adiantum encryption mode. 533 534config CRYPTO_ADIANTUM 535 tristate "Adiantum support" 536 select CRYPTO_CHACHA20 537 select CRYPTO_LIB_POLY1305_GENERIC 538 select CRYPTO_NHPOLY1305 539 select CRYPTO_MANAGER 540 help 541 Adiantum is a tweakable, length-preserving encryption mode 542 designed for fast and secure disk encryption, especially on 543 CPUs without dedicated crypto instructions. It encrypts 544 each sector using the XChaCha12 stream cipher, two passes of 545 an ε-almost-∆-universal hash function, and an invocation of 546 the AES-256 block cipher on a single 16-byte block. On CPUs 547 without AES instructions, Adiantum is much faster than 548 AES-XTS. 549 550 Adiantum's security is provably reducible to that of its 551 underlying stream and block ciphers, subject to a security 552 bound. Unlike XTS, Adiantum is a true wide-block encryption 553 mode, so it actually provides an even stronger notion of 554 security than XTS, subject to the security bound. 555 556 If unsure, say N. 557 558config CRYPTO_HCTR2 559 tristate "HCTR2 support" 560 select CRYPTO_XCTR 561 select CRYPTO_POLYVAL 562 select CRYPTO_MANAGER 563 help 564 HCTR2 is a length-preserving encryption mode for storage encryption that 565 is efficient on processors with instructions to accelerate AES and 566 carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and 567 ARM processors with the ARMv8 crypto extensions. 568 569config CRYPTO_ESSIV 570 tristate "ESSIV support for block encryption" 571 select CRYPTO_AUTHENC 572 help 573 Encrypted salt-sector initialization vector (ESSIV) is an IV 574 generation method that is used in some cases by fscrypt and/or 575 dm-crypt. It uses the hash of the block encryption key as the 576 symmetric key for a block encryption pass applied to the input 577 IV, making low entropy IV sources more suitable for block 578 encryption. 579 580 This driver implements a crypto API template that can be 581 instantiated either as an skcipher or as an AEAD (depending on the 582 type of the first template argument), and which defers encryption 583 and decryption requests to the encapsulated cipher after applying 584 ESSIV to the input IV. Note that in the AEAD case, it is assumed 585 that the keys are presented in the same format used by the authenc 586 template, and that the IV appears at the end of the authenticated 587 associated data (AAD) region (which is how dm-crypt uses it.) 588 589 Note that the use of ESSIV is not recommended for new deployments, 590 and so this only needs to be enabled when interoperability with 591 existing encrypted volumes of filesystems is required, or when 592 building for a particular system that requires it (e.g., when 593 the SoC in question has accelerated CBC but not XTS, making CBC 594 combined with ESSIV the only feasible mode for h/w accelerated 595 block encryption) 596 597comment "Hash modes" 598 599config CRYPTO_CMAC 600 tristate "CMAC support" 601 select CRYPTO_HASH 602 select CRYPTO_MANAGER 603 help 604 Cipher-based Message Authentication Code (CMAC) specified by 605 The National Institute of Standards and Technology (NIST). 606 607 https://tools.ietf.org/html/rfc4493 608 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 609 610config CRYPTO_HMAC 611 tristate "HMAC support" 612 select CRYPTO_HASH 613 select CRYPTO_MANAGER 614 help 615 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 616 This is required for IPSec. 617 618config CRYPTO_XCBC 619 tristate "XCBC support" 620 select CRYPTO_HASH 621 select CRYPTO_MANAGER 622 help 623 XCBC: Keyed-Hashing with encryption algorithm 624 https://www.ietf.org/rfc/rfc3566.txt 625 http://csrc.nist.gov/encryption/modes/proposedmodes/ 626 xcbc-mac/xcbc-mac-spec.pdf 627 628config CRYPTO_VMAC 629 tristate "VMAC support" 630 select CRYPTO_HASH 631 select CRYPTO_MANAGER 632 help 633 VMAC is a message authentication algorithm designed for 634 very high speed on 64-bit architectures. 635 636 See also: 637 <https://fastcrypto.org/vmac> 638 639comment "Digest" 640 641config CRYPTO_CRC32C 642 tristate "CRC32c CRC algorithm" 643 select CRYPTO_HASH 644 select CRC32 645 help 646 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 647 by iSCSI for header and data digests and by others. 648 See Castagnoli93. Module will be crc32c. 649 650config CRYPTO_CRC32C_INTEL 651 tristate "CRC32c INTEL hardware acceleration" 652 depends on X86 653 select CRYPTO_HASH 654 help 655 In Intel processor with SSE4.2 supported, the processor will 656 support CRC32C implementation using hardware accelerated CRC32 657 instruction. This option will create 'crc32c-intel' module, 658 which will enable any routine to use the CRC32 instruction to 659 gain performance compared with software implementation. 660 Module will be crc32c-intel. 661 662config CRYPTO_CRC32C_VPMSUM 663 tristate "CRC32c CRC algorithm (powerpc64)" 664 depends on PPC64 && ALTIVEC 665 select CRYPTO_HASH 666 select CRC32 667 help 668 CRC32c algorithm implemented using vector polynomial multiply-sum 669 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 670 and newer processors for improved performance. 671 672 673config CRYPTO_CRC32C_SPARC64 674 tristate "CRC32c CRC algorithm (SPARC64)" 675 depends on SPARC64 676 select CRYPTO_HASH 677 select CRC32 678 help 679 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 680 when available. 681 682config CRYPTO_CRC32 683 tristate "CRC32 CRC algorithm" 684 select CRYPTO_HASH 685 select CRC32 686 help 687 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 688 Shash crypto api wrappers to crc32_le function. 689 690config CRYPTO_CRC32_PCLMUL 691 tristate "CRC32 PCLMULQDQ hardware acceleration" 692 depends on X86 693 select CRYPTO_HASH 694 select CRC32 695 help 696 From Intel Westmere and AMD Bulldozer processor with SSE4.2 697 and PCLMULQDQ supported, the processor will support 698 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 699 instruction. This option will create 'crc32-pclmul' module, 700 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 701 and gain better performance as compared with the table implementation. 702 703config CRYPTO_CRC32_MIPS 704 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 705 depends on MIPS_CRC_SUPPORT 706 select CRYPTO_HASH 707 help 708 CRC32c and CRC32 CRC algorithms implemented using mips crypto 709 instructions, when available. 710 711 712config CRYPTO_XXHASH 713 tristate "xxHash hash algorithm" 714 select CRYPTO_HASH 715 select XXHASH 716 help 717 xxHash non-cryptographic hash algorithm. Extremely fast, working at 718 speeds close to RAM limits. 719 720config CRYPTO_BLAKE2B 721 tristate "BLAKE2b digest algorithm" 722 select CRYPTO_HASH 723 help 724 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 725 optimized for 64bit platforms and can produce digests of any size 726 between 1 to 64. The keyed hash is also implemented. 727 728 This module provides the following algorithms: 729 730 - blake2b-160 731 - blake2b-256 732 - blake2b-384 733 - blake2b-512 734 735 See https://blake2.net for further information. 736 737config CRYPTO_BLAKE2S_X86 738 bool "BLAKE2s digest algorithm (x86 accelerated version)" 739 depends on X86 && 64BIT 740 select CRYPTO_LIB_BLAKE2S_GENERIC 741 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 742 743config CRYPTO_CRCT10DIF 744 tristate "CRCT10DIF algorithm" 745 select CRYPTO_HASH 746 help 747 CRC T10 Data Integrity Field computation is being cast as 748 a crypto transform. This allows for faster crc t10 diff 749 transforms to be used if they are available. 750 751config CRYPTO_CRCT10DIF_PCLMUL 752 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 753 depends on X86 && 64BIT && CRC_T10DIF 754 select CRYPTO_HASH 755 help 756 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 757 CRC T10 DIF PCLMULQDQ computation can be hardware 758 accelerated PCLMULQDQ instruction. This option will create 759 'crct10dif-pclmul' module, which is faster when computing the 760 crct10dif checksum as compared with the generic table implementation. 761 762config CRYPTO_CRCT10DIF_VPMSUM 763 tristate "CRC32T10DIF powerpc64 hardware acceleration" 764 depends on PPC64 && ALTIVEC && CRC_T10DIF 765 select CRYPTO_HASH 766 help 767 CRC10T10DIF algorithm implemented using vector polynomial 768 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 769 POWER8 and newer processors for improved performance. 770 771config CRYPTO_VPMSUM_TESTER 772 tristate "Powerpc64 vpmsum hardware acceleration tester" 773 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 774 help 775 Stress test for CRC32c and CRC-T10DIF algorithms implemented with 776 POWER8 vpmsum instructions. 777 Unless you are testing these algorithms, you don't need this. 778 779config CRYPTO_GHASH 780 tristate "GHASH hash function" 781 select CRYPTO_GF128MUL 782 select CRYPTO_HASH 783 help 784 GHASH is the hash function used in GCM (Galois/Counter Mode). 785 It is not a general-purpose cryptographic hash function. 786 787config CRYPTO_POLYVAL 788 tristate 789 select CRYPTO_GF128MUL 790 select CRYPTO_HASH 791 help 792 POLYVAL is the hash function used in HCTR2. It is not a general-purpose 793 cryptographic hash function. 794 795config CRYPTO_POLYVAL_CLMUL_NI 796 tristate "POLYVAL hash function (CLMUL-NI accelerated)" 797 depends on X86 && 64BIT 798 select CRYPTO_POLYVAL 799 help 800 This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is 801 used to efficiently implement HCTR2 on x86-64 processors that support 802 carry-less multiplication instructions. 803 804config CRYPTO_POLY1305 805 tristate "Poly1305 authenticator algorithm" 806 select CRYPTO_HASH 807 select CRYPTO_LIB_POLY1305_GENERIC 808 help 809 Poly1305 authenticator algorithm, RFC7539. 810 811 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 812 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 813 in IETF protocols. This is the portable C implementation of Poly1305. 814 815config CRYPTO_POLY1305_X86_64 816 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 817 depends on X86 && 64BIT 818 select CRYPTO_LIB_POLY1305_GENERIC 819 select CRYPTO_ARCH_HAVE_LIB_POLY1305 820 help 821 Poly1305 authenticator algorithm, RFC7539. 822 823 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 824 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 825 in IETF protocols. This is the x86_64 assembler implementation using SIMD 826 instructions. 827 828config CRYPTO_POLY1305_MIPS 829 tristate "Poly1305 authenticator algorithm (MIPS optimized)" 830 depends on MIPS 831 select CRYPTO_ARCH_HAVE_LIB_POLY1305 832 833config CRYPTO_MD4 834 tristate "MD4 digest algorithm" 835 select CRYPTO_HASH 836 help 837 MD4 message digest algorithm (RFC1320). 838 839config CRYPTO_MD5 840 tristate "MD5 digest algorithm" 841 select CRYPTO_HASH 842 help 843 MD5 message digest algorithm (RFC1321). 844 845config CRYPTO_MD5_OCTEON 846 tristate "MD5 digest algorithm (OCTEON)" 847 depends on CPU_CAVIUM_OCTEON 848 select CRYPTO_MD5 849 select CRYPTO_HASH 850 help 851 MD5 message digest algorithm (RFC1321) implemented 852 using OCTEON crypto instructions, when available. 853 854config CRYPTO_MD5_PPC 855 tristate "MD5 digest algorithm (PPC)" 856 depends on PPC 857 select CRYPTO_HASH 858 help 859 MD5 message digest algorithm (RFC1321) implemented 860 in PPC assembler. 861 862config CRYPTO_MD5_SPARC64 863 tristate "MD5 digest algorithm (SPARC64)" 864 depends on SPARC64 865 select CRYPTO_MD5 866 select CRYPTO_HASH 867 help 868 MD5 message digest algorithm (RFC1321) implemented 869 using sparc64 crypto instructions, when available. 870 871config CRYPTO_MICHAEL_MIC 872 tristate "Michael MIC keyed digest algorithm" 873 select CRYPTO_HASH 874 help 875 Michael MIC is used for message integrity protection in TKIP 876 (IEEE 802.11i). This algorithm is required for TKIP, but it 877 should not be used for other purposes because of the weakness 878 of the algorithm. 879 880config CRYPTO_RMD160 881 tristate "RIPEMD-160 digest algorithm" 882 select CRYPTO_HASH 883 help 884 RIPEMD-160 (ISO/IEC 10118-3:2004). 885 886 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 887 to be used as a secure replacement for the 128-bit hash functions 888 MD4, MD5 and it's predecessor RIPEMD 889 (not to be confused with RIPEMD-128). 890 891 It's speed is comparable to SHA1 and there are no known attacks 892 against RIPEMD-160. 893 894 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 895 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 896 897config CRYPTO_SHA1 898 tristate "SHA1 digest algorithm" 899 select CRYPTO_HASH 900 help 901 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 902 903config CRYPTO_SHA1_SSSE3 904 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 905 depends on X86 && 64BIT 906 select CRYPTO_SHA1 907 select CRYPTO_HASH 908 help 909 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 910 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 911 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 912 when available. 913 914config CRYPTO_SHA256_SSSE3 915 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 916 depends on X86 && 64BIT 917 select CRYPTO_SHA256 918 select CRYPTO_HASH 919 help 920 SHA-256 secure hash standard (DFIPS 180-2) implemented 921 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 922 Extensions version 1 (AVX1), or Advanced Vector Extensions 923 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 924 Instructions) when available. 925 926config CRYPTO_SHA512_SSSE3 927 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 928 depends on X86 && 64BIT 929 select CRYPTO_SHA512 930 select CRYPTO_HASH 931 help 932 SHA-512 secure hash standard (DFIPS 180-2) implemented 933 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 934 Extensions version 1 (AVX1), or Advanced Vector Extensions 935 version 2 (AVX2) instructions, when available. 936 937config CRYPTO_SHA1_OCTEON 938 tristate "SHA1 digest algorithm (OCTEON)" 939 depends on CPU_CAVIUM_OCTEON 940 select CRYPTO_SHA1 941 select CRYPTO_HASH 942 help 943 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 944 using OCTEON crypto instructions, when available. 945 946config CRYPTO_SHA1_SPARC64 947 tristate "SHA1 digest algorithm (SPARC64)" 948 depends on SPARC64 949 select CRYPTO_SHA1 950 select CRYPTO_HASH 951 help 952 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 953 using sparc64 crypto instructions, when available. 954 955config CRYPTO_SHA1_PPC 956 tristate "SHA1 digest algorithm (powerpc)" 957 depends on PPC 958 help 959 This is the powerpc hardware accelerated implementation of the 960 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 961 962config CRYPTO_SHA1_PPC_SPE 963 tristate "SHA1 digest algorithm (PPC SPE)" 964 depends on PPC && SPE 965 help 966 SHA-1 secure hash standard (DFIPS 180-4) implemented 967 using powerpc SPE SIMD instruction set. 968 969config CRYPTO_SHA256 970 tristate "SHA224 and SHA256 digest algorithm" 971 select CRYPTO_HASH 972 select CRYPTO_LIB_SHA256 973 help 974 SHA256 secure hash standard (DFIPS 180-2). 975 976 This version of SHA implements a 256 bit hash with 128 bits of 977 security against collision attacks. 978 979 This code also includes SHA-224, a 224 bit hash with 112 bits 980 of security against collision attacks. 981 982config CRYPTO_SHA256_PPC_SPE 983 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 984 depends on PPC && SPE 985 select CRYPTO_SHA256 986 select CRYPTO_HASH 987 help 988 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 989 implemented using powerpc SPE SIMD instruction set. 990 991config CRYPTO_SHA256_OCTEON 992 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 993 depends on CPU_CAVIUM_OCTEON 994 select CRYPTO_SHA256 995 select CRYPTO_HASH 996 help 997 SHA-256 secure hash standard (DFIPS 180-2) implemented 998 using OCTEON crypto instructions, when available. 999 1000config CRYPTO_SHA256_SPARC64 1001 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 1002 depends on SPARC64 1003 select CRYPTO_SHA256 1004 select CRYPTO_HASH 1005 help 1006 SHA-256 secure hash standard (DFIPS 180-2) implemented 1007 using sparc64 crypto instructions, when available. 1008 1009config CRYPTO_SHA512 1010 tristate "SHA384 and SHA512 digest algorithms" 1011 select CRYPTO_HASH 1012 help 1013 SHA512 secure hash standard (DFIPS 180-2). 1014 1015 This version of SHA implements a 512 bit hash with 256 bits of 1016 security against collision attacks. 1017 1018 This code also includes SHA-384, a 384 bit hash with 192 bits 1019 of security against collision attacks. 1020 1021config CRYPTO_SHA512_OCTEON 1022 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 1023 depends on CPU_CAVIUM_OCTEON 1024 select CRYPTO_SHA512 1025 select CRYPTO_HASH 1026 help 1027 SHA-512 secure hash standard (DFIPS 180-2) implemented 1028 using OCTEON crypto instructions, when available. 1029 1030config CRYPTO_SHA512_SPARC64 1031 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 1032 depends on SPARC64 1033 select CRYPTO_SHA512 1034 select CRYPTO_HASH 1035 help 1036 SHA-512 secure hash standard (DFIPS 180-2) implemented 1037 using sparc64 crypto instructions, when available. 1038 1039config CRYPTO_SHA3 1040 tristate "SHA3 digest algorithm" 1041 select CRYPTO_HASH 1042 help 1043 SHA-3 secure hash standard (DFIPS 202). It's based on 1044 cryptographic sponge function family called Keccak. 1045 1046 References: 1047 http://keccak.noekeon.org/ 1048 1049config CRYPTO_SM3 1050 tristate "SM3 digest algorithm" 1051 select CRYPTO_HASH 1052 help 1053 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1054 It is part of the Chinese Commercial Cryptography suite. 1055 1056 References: 1057 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 1058 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 1059 1060config CRYPTO_STREEBOG 1061 tristate "Streebog Hash Function" 1062 select CRYPTO_HASH 1063 help 1064 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1065 cryptographic standard algorithms (called GOST algorithms). 1066 This setting enables two hash algorithms with 256 and 512 bits output. 1067 1068 References: 1069 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1070 https://tools.ietf.org/html/rfc6986 1071 1072config CRYPTO_WP512 1073 tristate "Whirlpool digest algorithms" 1074 select CRYPTO_HASH 1075 help 1076 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1077 1078 Whirlpool-512 is part of the NESSIE cryptographic primitives. 1079 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1080 1081 See also: 1082 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1083 1084config CRYPTO_GHASH_CLMUL_NI_INTEL 1085 tristate "GHASH hash function (CLMUL-NI accelerated)" 1086 depends on X86 && 64BIT 1087 select CRYPTO_CRYPTD 1088 help 1089 This is the x86_64 CLMUL-NI accelerated implementation of 1090 GHASH, the hash function used in GCM (Galois/Counter mode). 1091 1092comment "Ciphers" 1093 1094config CRYPTO_AES 1095 tristate "AES cipher algorithms" 1096 select CRYPTO_ALGAPI 1097 select CRYPTO_LIB_AES 1098 help 1099 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1100 algorithm. 1101 1102 Rijndael appears to be consistently a very good performer in 1103 both hardware and software across a wide range of computing 1104 environments regardless of its use in feedback or non-feedback 1105 modes. Its key setup time is excellent, and its key agility is 1106 good. Rijndael's very low memory requirements make it very well 1107 suited for restricted-space environments, in which it also 1108 demonstrates excellent performance. Rijndael's operations are 1109 among the easiest to defend against power and timing attacks. 1110 1111 The AES specifies three key sizes: 128, 192 and 256 bits 1112 1113 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1114 1115config CRYPTO_AES_TI 1116 tristate "Fixed time AES cipher" 1117 select CRYPTO_ALGAPI 1118 select CRYPTO_LIB_AES 1119 help 1120 This is a generic implementation of AES that attempts to eliminate 1121 data dependent latencies as much as possible without affecting 1122 performance too much. It is intended for use by the generic CCM 1123 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1124 solely on encryption (although decryption is supported as well, but 1125 with a more dramatic performance hit) 1126 1127 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1128 8 for decryption), this implementation only uses just two S-boxes of 1129 256 bytes each, and attempts to eliminate data dependent latencies by 1130 prefetching the entire table into the cache at the start of each 1131 block. Interrupts are also disabled to avoid races where cachelines 1132 are evicted when the CPU is interrupted to do something else. 1133 1134config CRYPTO_AES_NI_INTEL 1135 tristate "AES cipher algorithms (AES-NI)" 1136 depends on X86 1137 select CRYPTO_AEAD 1138 select CRYPTO_LIB_AES 1139 select CRYPTO_ALGAPI 1140 select CRYPTO_SKCIPHER 1141 select CRYPTO_SIMD 1142 help 1143 Use Intel AES-NI instructions for AES algorithm. 1144 1145 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1146 algorithm. 1147 1148 Rijndael appears to be consistently a very good performer in 1149 both hardware and software across a wide range of computing 1150 environments regardless of its use in feedback or non-feedback 1151 modes. Its key setup time is excellent, and its key agility is 1152 good. Rijndael's very low memory requirements make it very well 1153 suited for restricted-space environments, in which it also 1154 demonstrates excellent performance. Rijndael's operations are 1155 among the easiest to defend against power and timing attacks. 1156 1157 The AES specifies three key sizes: 128, 192 and 256 bits 1158 1159 See <http://csrc.nist.gov/encryption/aes/> for more information. 1160 1161 In addition to AES cipher algorithm support, the acceleration 1162 for some popular block cipher mode is supported too, including 1163 ECB, CBC, LRW, XTS. The 64 bit version has additional 1164 acceleration for CTR and XCTR. 1165 1166config CRYPTO_AES_SPARC64 1167 tristate "AES cipher algorithms (SPARC64)" 1168 depends on SPARC64 1169 select CRYPTO_SKCIPHER 1170 help 1171 Use SPARC64 crypto opcodes for AES algorithm. 1172 1173 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1174 algorithm. 1175 1176 Rijndael appears to be consistently a very good performer in 1177 both hardware and software across a wide range of computing 1178 environments regardless of its use in feedback or non-feedback 1179 modes. Its key setup time is excellent, and its key agility is 1180 good. Rijndael's very low memory requirements make it very well 1181 suited for restricted-space environments, in which it also 1182 demonstrates excellent performance. Rijndael's operations are 1183 among the easiest to defend against power and timing attacks. 1184 1185 The AES specifies three key sizes: 128, 192 and 256 bits 1186 1187 See <http://csrc.nist.gov/encryption/aes/> for more information. 1188 1189 In addition to AES cipher algorithm support, the acceleration 1190 for some popular block cipher mode is supported too, including 1191 ECB and CBC. 1192 1193config CRYPTO_AES_PPC_SPE 1194 tristate "AES cipher algorithms (PPC SPE)" 1195 depends on PPC && SPE 1196 select CRYPTO_SKCIPHER 1197 help 1198 AES cipher algorithms (FIPS-197). Additionally the acceleration 1199 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1200 This module should only be used for low power (router) devices 1201 without hardware AES acceleration (e.g. caam crypto). It reduces the 1202 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1203 timining attacks. Nevertheless it might be not as secure as other 1204 architecture specific assembler implementations that work on 1KB 1205 tables or 256 bytes S-boxes. 1206 1207config CRYPTO_ANUBIS 1208 tristate "Anubis cipher algorithm" 1209 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1210 select CRYPTO_ALGAPI 1211 help 1212 Anubis cipher algorithm. 1213 1214 Anubis is a variable key length cipher which can use keys from 1215 128 bits to 320 bits in length. It was evaluated as a entrant 1216 in the NESSIE competition. 1217 1218 See also: 1219 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1220 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1221 1222config CRYPTO_ARC4 1223 tristate "ARC4 cipher algorithm" 1224 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1225 select CRYPTO_SKCIPHER 1226 select CRYPTO_LIB_ARC4 1227 help 1228 ARC4 cipher algorithm. 1229 1230 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1231 bits in length. This algorithm is required for driver-based 1232 WEP, but it should not be for other purposes because of the 1233 weakness of the algorithm. 1234 1235config CRYPTO_BLOWFISH 1236 tristate "Blowfish cipher algorithm" 1237 select CRYPTO_ALGAPI 1238 select CRYPTO_BLOWFISH_COMMON 1239 help 1240 Blowfish cipher algorithm, by Bruce Schneier. 1241 1242 This is a variable key length cipher which can use keys from 32 1243 bits to 448 bits in length. It's fast, simple and specifically 1244 designed for use on "large microprocessors". 1245 1246 See also: 1247 <https://www.schneier.com/blowfish.html> 1248 1249config CRYPTO_BLOWFISH_COMMON 1250 tristate 1251 help 1252 Common parts of the Blowfish cipher algorithm shared by the 1253 generic c and the assembler implementations. 1254 1255 See also: 1256 <https://www.schneier.com/blowfish.html> 1257 1258config CRYPTO_BLOWFISH_X86_64 1259 tristate "Blowfish cipher algorithm (x86_64)" 1260 depends on X86 && 64BIT 1261 select CRYPTO_SKCIPHER 1262 select CRYPTO_BLOWFISH_COMMON 1263 imply CRYPTO_CTR 1264 help 1265 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1266 1267 This is a variable key length cipher which can use keys from 32 1268 bits to 448 bits in length. It's fast, simple and specifically 1269 designed for use on "large microprocessors". 1270 1271 See also: 1272 <https://www.schneier.com/blowfish.html> 1273 1274config CRYPTO_CAMELLIA 1275 tristate "Camellia cipher algorithms" 1276 select CRYPTO_ALGAPI 1277 help 1278 Camellia cipher algorithms module. 1279 1280 Camellia is a symmetric key block cipher developed jointly 1281 at NTT and Mitsubishi Electric Corporation. 1282 1283 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1284 1285 See also: 1286 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1287 1288config CRYPTO_CAMELLIA_X86_64 1289 tristate "Camellia cipher algorithm (x86_64)" 1290 depends on X86 && 64BIT 1291 select CRYPTO_SKCIPHER 1292 imply CRYPTO_CTR 1293 help 1294 Camellia cipher algorithm module (x86_64). 1295 1296 Camellia is a symmetric key block cipher developed jointly 1297 at NTT and Mitsubishi Electric Corporation. 1298 1299 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1300 1301 See also: 1302 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1303 1304config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1305 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1306 depends on X86 && 64BIT 1307 select CRYPTO_SKCIPHER 1308 select CRYPTO_CAMELLIA_X86_64 1309 select CRYPTO_SIMD 1310 imply CRYPTO_XTS 1311 help 1312 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1313 1314 Camellia is a symmetric key block cipher developed jointly 1315 at NTT and Mitsubishi Electric Corporation. 1316 1317 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1318 1319 See also: 1320 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1321 1322config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1323 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1324 depends on X86 && 64BIT 1325 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1326 help 1327 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1328 1329 Camellia is a symmetric key block cipher developed jointly 1330 at NTT and Mitsubishi Electric Corporation. 1331 1332 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1333 1334 See also: 1335 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1336 1337config CRYPTO_CAMELLIA_SPARC64 1338 tristate "Camellia cipher algorithm (SPARC64)" 1339 depends on SPARC64 1340 select CRYPTO_ALGAPI 1341 select CRYPTO_SKCIPHER 1342 help 1343 Camellia cipher algorithm module (SPARC64). 1344 1345 Camellia is a symmetric key block cipher developed jointly 1346 at NTT and Mitsubishi Electric Corporation. 1347 1348 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1349 1350 See also: 1351 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1352 1353config CRYPTO_CAST_COMMON 1354 tristate 1355 help 1356 Common parts of the CAST cipher algorithms shared by the 1357 generic c and the assembler implementations. 1358 1359config CRYPTO_CAST5 1360 tristate "CAST5 (CAST-128) cipher algorithm" 1361 select CRYPTO_ALGAPI 1362 select CRYPTO_CAST_COMMON 1363 help 1364 The CAST5 encryption algorithm (synonymous with CAST-128) is 1365 described in RFC2144. 1366 1367config CRYPTO_CAST5_AVX_X86_64 1368 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1369 depends on X86 && 64BIT 1370 select CRYPTO_SKCIPHER 1371 select CRYPTO_CAST5 1372 select CRYPTO_CAST_COMMON 1373 select CRYPTO_SIMD 1374 imply CRYPTO_CTR 1375 help 1376 The CAST5 encryption algorithm (synonymous with CAST-128) is 1377 described in RFC2144. 1378 1379 This module provides the Cast5 cipher algorithm that processes 1380 sixteen blocks parallel using the AVX instruction set. 1381 1382config CRYPTO_CAST6 1383 tristate "CAST6 (CAST-256) cipher algorithm" 1384 select CRYPTO_ALGAPI 1385 select CRYPTO_CAST_COMMON 1386 help 1387 The CAST6 encryption algorithm (synonymous with CAST-256) is 1388 described in RFC2612. 1389 1390config CRYPTO_CAST6_AVX_X86_64 1391 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1392 depends on X86 && 64BIT 1393 select CRYPTO_SKCIPHER 1394 select CRYPTO_CAST6 1395 select CRYPTO_CAST_COMMON 1396 select CRYPTO_SIMD 1397 imply CRYPTO_XTS 1398 imply CRYPTO_CTR 1399 help 1400 The CAST6 encryption algorithm (synonymous with CAST-256) is 1401 described in RFC2612. 1402 1403 This module provides the Cast6 cipher algorithm that processes 1404 eight blocks parallel using the AVX instruction set. 1405 1406config CRYPTO_DES 1407 tristate "DES and Triple DES EDE cipher algorithms" 1408 select CRYPTO_ALGAPI 1409 select CRYPTO_LIB_DES 1410 help 1411 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1412 1413config CRYPTO_DES_SPARC64 1414 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1415 depends on SPARC64 1416 select CRYPTO_ALGAPI 1417 select CRYPTO_LIB_DES 1418 select CRYPTO_SKCIPHER 1419 help 1420 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1421 optimized using SPARC64 crypto opcodes. 1422 1423config CRYPTO_DES3_EDE_X86_64 1424 tristate "Triple DES EDE cipher algorithm (x86-64)" 1425 depends on X86 && 64BIT 1426 select CRYPTO_SKCIPHER 1427 select CRYPTO_LIB_DES 1428 imply CRYPTO_CTR 1429 help 1430 Triple DES EDE (FIPS 46-3) algorithm. 1431 1432 This module provides implementation of the Triple DES EDE cipher 1433 algorithm that is optimized for x86-64 processors. Two versions of 1434 algorithm are provided; regular processing one input block and 1435 one that processes three blocks parallel. 1436 1437config CRYPTO_FCRYPT 1438 tristate "FCrypt cipher algorithm" 1439 select CRYPTO_ALGAPI 1440 select CRYPTO_SKCIPHER 1441 help 1442 FCrypt algorithm used by RxRPC. 1443 1444config CRYPTO_KHAZAD 1445 tristate "Khazad cipher algorithm" 1446 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1447 select CRYPTO_ALGAPI 1448 help 1449 Khazad cipher algorithm. 1450 1451 Khazad was a finalist in the initial NESSIE competition. It is 1452 an algorithm optimized for 64-bit processors with good performance 1453 on 32-bit processors. Khazad uses an 128 bit key size. 1454 1455 See also: 1456 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1457 1458config CRYPTO_CHACHA20 1459 tristate "ChaCha stream cipher algorithms" 1460 select CRYPTO_LIB_CHACHA_GENERIC 1461 select CRYPTO_SKCIPHER 1462 help 1463 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1464 1465 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1466 Bernstein and further specified in RFC7539 for use in IETF protocols. 1467 This is the portable C implementation of ChaCha20. See also: 1468 <https://cr.yp.to/chacha/chacha-20080128.pdf> 1469 1470 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1471 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1472 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1473 while provably retaining ChaCha20's security. See also: 1474 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1475 1476 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1477 reduced security margin but increased performance. It can be needed 1478 in some performance-sensitive scenarios. 1479 1480config CRYPTO_CHACHA20_X86_64 1481 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1482 depends on X86 && 64BIT 1483 select CRYPTO_SKCIPHER 1484 select CRYPTO_LIB_CHACHA_GENERIC 1485 select CRYPTO_ARCH_HAVE_LIB_CHACHA 1486 help 1487 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 1488 XChaCha20, and XChaCha12 stream ciphers. 1489 1490config CRYPTO_CHACHA_MIPS 1491 tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 1492 depends on CPU_MIPS32_R2 1493 select CRYPTO_SKCIPHER 1494 select CRYPTO_ARCH_HAVE_LIB_CHACHA 1495 1496config CRYPTO_SEED 1497 tristate "SEED cipher algorithm" 1498 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1499 select CRYPTO_ALGAPI 1500 help 1501 SEED cipher algorithm (RFC4269). 1502 1503 SEED is a 128-bit symmetric key block cipher that has been 1504 developed by KISA (Korea Information Security Agency) as a 1505 national standard encryption algorithm of the Republic of Korea. 1506 It is a 16 round block cipher with the key size of 128 bit. 1507 1508 See also: 1509 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1510 1511config CRYPTO_SERPENT 1512 tristate "Serpent cipher algorithm" 1513 select CRYPTO_ALGAPI 1514 help 1515 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1516 1517 Keys are allowed to be from 0 to 256 bits in length, in steps 1518 of 8 bits. 1519 1520 See also: 1521 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1522 1523config CRYPTO_SERPENT_SSE2_X86_64 1524 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1525 depends on X86 && 64BIT 1526 select CRYPTO_SKCIPHER 1527 select CRYPTO_SERPENT 1528 select CRYPTO_SIMD 1529 imply CRYPTO_CTR 1530 help 1531 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1532 1533 Keys are allowed to be from 0 to 256 bits in length, in steps 1534 of 8 bits. 1535 1536 This module provides Serpent cipher algorithm that processes eight 1537 blocks parallel using SSE2 instruction set. 1538 1539 See also: 1540 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1541 1542config CRYPTO_SERPENT_SSE2_586 1543 tristate "Serpent cipher algorithm (i586/SSE2)" 1544 depends on X86 && !64BIT 1545 select CRYPTO_SKCIPHER 1546 select CRYPTO_SERPENT 1547 select CRYPTO_SIMD 1548 imply CRYPTO_CTR 1549 help 1550 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1551 1552 Keys are allowed to be from 0 to 256 bits in length, in steps 1553 of 8 bits. 1554 1555 This module provides Serpent cipher algorithm that processes four 1556 blocks parallel using SSE2 instruction set. 1557 1558 See also: 1559 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1560 1561config CRYPTO_SERPENT_AVX_X86_64 1562 tristate "Serpent cipher algorithm (x86_64/AVX)" 1563 depends on X86 && 64BIT 1564 select CRYPTO_SKCIPHER 1565 select CRYPTO_SERPENT 1566 select CRYPTO_SIMD 1567 imply CRYPTO_XTS 1568 imply CRYPTO_CTR 1569 help 1570 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1571 1572 Keys are allowed to be from 0 to 256 bits in length, in steps 1573 of 8 bits. 1574 1575 This module provides the Serpent cipher algorithm that processes 1576 eight blocks parallel using the AVX instruction set. 1577 1578 See also: 1579 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1580 1581config CRYPTO_SERPENT_AVX2_X86_64 1582 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1583 depends on X86 && 64BIT 1584 select CRYPTO_SERPENT_AVX_X86_64 1585 help 1586 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1587 1588 Keys are allowed to be from 0 to 256 bits in length, in steps 1589 of 8 bits. 1590 1591 This module provides Serpent cipher algorithm that processes 16 1592 blocks parallel using AVX2 instruction set. 1593 1594 See also: 1595 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1596 1597config CRYPTO_SM4 1598 tristate "SM4 cipher algorithm" 1599 select CRYPTO_ALGAPI 1600 select CRYPTO_LIB_SM4 1601 help 1602 SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1603 1604 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1605 Organization of State Commercial Administration of China (OSCCA) 1606 as an authorized cryptographic algorithms for the use within China. 1607 1608 SMS4 was originally created for use in protecting wireless 1609 networks, and is mandated in the Chinese National Standard for 1610 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1611 (GB.15629.11-2003). 1612 1613 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1614 standardized through TC 260 of the Standardization Administration 1615 of the People's Republic of China (SAC). 1616 1617 The input, output, and key of SMS4 are each 128 bits. 1618 1619 See also: <https://eprint.iacr.org/2008/329.pdf> 1620 1621 If unsure, say N. 1622 1623config CRYPTO_SM4_AESNI_AVX_X86_64 1624 tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" 1625 depends on X86 && 64BIT 1626 select CRYPTO_SKCIPHER 1627 select CRYPTO_SIMD 1628 select CRYPTO_ALGAPI 1629 select CRYPTO_LIB_SM4 1630 help 1631 SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). 1632 1633 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1634 Organization of State Commercial Administration of China (OSCCA) 1635 as an authorized cryptographic algorithms for the use within China. 1636 1637 This is SM4 optimized implementation using AES-NI/AVX/x86_64 1638 instruction set for block cipher. Through two affine transforms, 1639 we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1640 effect of instruction acceleration. 1641 1642 If unsure, say N. 1643 1644config CRYPTO_SM4_AESNI_AVX2_X86_64 1645 tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" 1646 depends on X86 && 64BIT 1647 select CRYPTO_SKCIPHER 1648 select CRYPTO_SIMD 1649 select CRYPTO_ALGAPI 1650 select CRYPTO_LIB_SM4 1651 select CRYPTO_SM4_AESNI_AVX_X86_64 1652 help 1653 SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). 1654 1655 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1656 Organization of State Commercial Administration of China (OSCCA) 1657 as an authorized cryptographic algorithms for the use within China. 1658 1659 This is SM4 optimized implementation using AES-NI/AVX2/x86_64 1660 instruction set for block cipher. Through two affine transforms, 1661 we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1662 effect of instruction acceleration. 1663 1664 If unsure, say N. 1665 1666config CRYPTO_TEA 1667 tristate "TEA, XTEA and XETA cipher algorithms" 1668 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1669 select CRYPTO_ALGAPI 1670 help 1671 TEA cipher algorithm. 1672 1673 Tiny Encryption Algorithm is a simple cipher that uses 1674 many rounds for security. It is very fast and uses 1675 little memory. 1676 1677 Xtendend Tiny Encryption Algorithm is a modification to 1678 the TEA algorithm to address a potential key weakness 1679 in the TEA algorithm. 1680 1681 Xtendend Encryption Tiny Algorithm is a mis-implementation 1682 of the XTEA algorithm for compatibility purposes. 1683 1684config CRYPTO_TWOFISH 1685 tristate "Twofish cipher algorithm" 1686 select CRYPTO_ALGAPI 1687 select CRYPTO_TWOFISH_COMMON 1688 help 1689 Twofish cipher algorithm. 1690 1691 Twofish was submitted as an AES (Advanced Encryption Standard) 1692 candidate cipher by researchers at CounterPane Systems. It is a 1693 16 round block cipher supporting key sizes of 128, 192, and 256 1694 bits. 1695 1696 See also: 1697 <https://www.schneier.com/twofish.html> 1698 1699config CRYPTO_TWOFISH_COMMON 1700 tristate 1701 help 1702 Common parts of the Twofish cipher algorithm shared by the 1703 generic c and the assembler implementations. 1704 1705config CRYPTO_TWOFISH_586 1706 tristate "Twofish cipher algorithms (i586)" 1707 depends on (X86 || UML_X86) && !64BIT 1708 select CRYPTO_ALGAPI 1709 select CRYPTO_TWOFISH_COMMON 1710 imply CRYPTO_CTR 1711 help 1712 Twofish cipher algorithm. 1713 1714 Twofish was submitted as an AES (Advanced Encryption Standard) 1715 candidate cipher by researchers at CounterPane Systems. It is a 1716 16 round block cipher supporting key sizes of 128, 192, and 256 1717 bits. 1718 1719 See also: 1720 <https://www.schneier.com/twofish.html> 1721 1722config CRYPTO_TWOFISH_X86_64 1723 tristate "Twofish cipher algorithm (x86_64)" 1724 depends on (X86 || UML_X86) && 64BIT 1725 select CRYPTO_ALGAPI 1726 select CRYPTO_TWOFISH_COMMON 1727 imply CRYPTO_CTR 1728 help 1729 Twofish cipher algorithm (x86_64). 1730 1731 Twofish was submitted as an AES (Advanced Encryption Standard) 1732 candidate cipher by researchers at CounterPane Systems. It is a 1733 16 round block cipher supporting key sizes of 128, 192, and 256 1734 bits. 1735 1736 See also: 1737 <https://www.schneier.com/twofish.html> 1738 1739config CRYPTO_TWOFISH_X86_64_3WAY 1740 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1741 depends on X86 && 64BIT 1742 select CRYPTO_SKCIPHER 1743 select CRYPTO_TWOFISH_COMMON 1744 select CRYPTO_TWOFISH_X86_64 1745 help 1746 Twofish cipher algorithm (x86_64, 3-way parallel). 1747 1748 Twofish was submitted as an AES (Advanced Encryption Standard) 1749 candidate cipher by researchers at CounterPane Systems. It is a 1750 16 round block cipher supporting key sizes of 128, 192, and 256 1751 bits. 1752 1753 This module provides Twofish cipher algorithm that processes three 1754 blocks parallel, utilizing resources of out-of-order CPUs better. 1755 1756 See also: 1757 <https://www.schneier.com/twofish.html> 1758 1759config CRYPTO_TWOFISH_AVX_X86_64 1760 tristate "Twofish cipher algorithm (x86_64/AVX)" 1761 depends on X86 && 64BIT 1762 select CRYPTO_SKCIPHER 1763 select CRYPTO_SIMD 1764 select CRYPTO_TWOFISH_COMMON 1765 select CRYPTO_TWOFISH_X86_64 1766 select CRYPTO_TWOFISH_X86_64_3WAY 1767 imply CRYPTO_XTS 1768 help 1769 Twofish cipher algorithm (x86_64/AVX). 1770 1771 Twofish was submitted as an AES (Advanced Encryption Standard) 1772 candidate cipher by researchers at CounterPane Systems. It is a 1773 16 round block cipher supporting key sizes of 128, 192, and 256 1774 bits. 1775 1776 This module provides the Twofish cipher algorithm that processes 1777 eight blocks parallel using the AVX Instruction Set. 1778 1779 See also: 1780 <https://www.schneier.com/twofish.html> 1781 1782comment "Compression" 1783 1784config CRYPTO_DEFLATE 1785 tristate "Deflate compression algorithm" 1786 select CRYPTO_ALGAPI 1787 select CRYPTO_ACOMP2 1788 select ZLIB_INFLATE 1789 select ZLIB_DEFLATE 1790 help 1791 This is the Deflate algorithm (RFC1951), specified for use in 1792 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1793 1794 You will most probably want this if using IPSec. 1795 1796config CRYPTO_LZO 1797 tristate "LZO compression algorithm" 1798 select CRYPTO_ALGAPI 1799 select CRYPTO_ACOMP2 1800 select LZO_COMPRESS 1801 select LZO_DECOMPRESS 1802 help 1803 This is the LZO algorithm. 1804 1805config CRYPTO_842 1806 tristate "842 compression algorithm" 1807 select CRYPTO_ALGAPI 1808 select CRYPTO_ACOMP2 1809 select 842_COMPRESS 1810 select 842_DECOMPRESS 1811 help 1812 This is the 842 algorithm. 1813 1814config CRYPTO_LZ4 1815 tristate "LZ4 compression algorithm" 1816 select CRYPTO_ALGAPI 1817 select CRYPTO_ACOMP2 1818 select LZ4_COMPRESS 1819 select LZ4_DECOMPRESS 1820 help 1821 This is the LZ4 algorithm. 1822 1823config CRYPTO_LZ4HC 1824 tristate "LZ4HC compression algorithm" 1825 select CRYPTO_ALGAPI 1826 select CRYPTO_ACOMP2 1827 select LZ4HC_COMPRESS 1828 select LZ4_DECOMPRESS 1829 help 1830 This is the LZ4 high compression mode algorithm. 1831 1832config CRYPTO_ZSTD 1833 tristate "Zstd compression algorithm" 1834 select CRYPTO_ALGAPI 1835 select CRYPTO_ACOMP2 1836 select ZSTD_COMPRESS 1837 select ZSTD_DECOMPRESS 1838 help 1839 This is the zstd algorithm. 1840 1841comment "Random Number Generation" 1842 1843config CRYPTO_ANSI_CPRNG 1844 tristate "Pseudo Random Number Generation for Cryptographic modules" 1845 select CRYPTO_AES 1846 select CRYPTO_RNG 1847 help 1848 This option enables the generic pseudo random number generator 1849 for cryptographic modules. Uses the Algorithm specified in 1850 ANSI X9.31 A.2.4. Note that this option must be enabled if 1851 CRYPTO_FIPS is selected 1852 1853menuconfig CRYPTO_DRBG_MENU 1854 tristate "NIST SP800-90A DRBG" 1855 help 1856 NIST SP800-90A compliant DRBG. In the following submenu, one or 1857 more of the DRBG types must be selected. 1858 1859if CRYPTO_DRBG_MENU 1860 1861config CRYPTO_DRBG_HMAC 1862 bool 1863 default y 1864 select CRYPTO_HMAC 1865 select CRYPTO_SHA512 1866 1867config CRYPTO_DRBG_HASH 1868 bool "Enable Hash DRBG" 1869 select CRYPTO_SHA256 1870 help 1871 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1872 1873config CRYPTO_DRBG_CTR 1874 bool "Enable CTR DRBG" 1875 select CRYPTO_AES 1876 select CRYPTO_CTR 1877 help 1878 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1879 1880config CRYPTO_DRBG 1881 tristate 1882 default CRYPTO_DRBG_MENU 1883 select CRYPTO_RNG 1884 select CRYPTO_JITTERENTROPY 1885 1886endif # if CRYPTO_DRBG_MENU 1887 1888config CRYPTO_JITTERENTROPY 1889 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1890 select CRYPTO_RNG 1891 help 1892 The Jitterentropy RNG is a noise that is intended 1893 to provide seed to another RNG. The RNG does not 1894 perform any cryptographic whitening of the generated 1895 random numbers. This Jitterentropy RNG registers with 1896 the kernel crypto API and can be used by any caller. 1897 1898config CRYPTO_USER_API 1899 tristate 1900 1901config CRYPTO_USER_API_HASH 1902 tristate "User-space interface for hash algorithms" 1903 depends on NET 1904 select CRYPTO_HASH 1905 select CRYPTO_USER_API 1906 help 1907 This option enables the user-spaces interface for hash 1908 algorithms. 1909 1910config CRYPTO_USER_API_SKCIPHER 1911 tristate "User-space interface for symmetric key cipher algorithms" 1912 depends on NET 1913 select CRYPTO_SKCIPHER 1914 select CRYPTO_USER_API 1915 help 1916 This option enables the user-spaces interface for symmetric 1917 key cipher algorithms. 1918 1919config CRYPTO_USER_API_RNG 1920 tristate "User-space interface for random number generator algorithms" 1921 depends on NET 1922 select CRYPTO_RNG 1923 select CRYPTO_USER_API 1924 help 1925 This option enables the user-spaces interface for random 1926 number generator algorithms. 1927 1928config CRYPTO_USER_API_RNG_CAVP 1929 bool "Enable CAVP testing of DRBG" 1930 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 1931 help 1932 This option enables extra API for CAVP testing via the user-space 1933 interface: resetting of DRBG entropy, and providing Additional Data. 1934 This should only be enabled for CAVP testing. You should say 1935 no unless you know what this is. 1936 1937config CRYPTO_USER_API_AEAD 1938 tristate "User-space interface for AEAD cipher algorithms" 1939 depends on NET 1940 select CRYPTO_AEAD 1941 select CRYPTO_SKCIPHER 1942 select CRYPTO_NULL 1943 select CRYPTO_USER_API 1944 help 1945 This option enables the user-spaces interface for AEAD 1946 cipher algorithms. 1947 1948config CRYPTO_USER_API_ENABLE_OBSOLETE 1949 bool "Enable obsolete cryptographic algorithms for userspace" 1950 depends on CRYPTO_USER_API 1951 default y 1952 help 1953 Allow obsolete cryptographic algorithms to be selected that have 1954 already been phased out from internal use by the kernel, and are 1955 only useful for userspace clients that still rely on them. 1956 1957config CRYPTO_STATS 1958 bool "Crypto usage statistics for User-space" 1959 depends on CRYPTO_USER 1960 help 1961 This option enables the gathering of crypto stats. 1962 This will collect: 1963 - encrypt/decrypt size and numbers of symmeric operations 1964 - compress/decompress size and numbers of compress operations 1965 - size and numbers of hash operations 1966 - encrypt/decrypt/sign/verify numbers for asymmetric operations 1967 - generate/seed numbers for rng operations 1968 1969config CRYPTO_HASH_INFO 1970 bool 1971 1972source "drivers/crypto/Kconfig" 1973source "crypto/asymmetric_keys/Kconfig" 1974source "certs/Kconfig" 1975 1976endif # if CRYPTO 1977