1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_GFP_H
3 #define __LINUX_GFP_H
4
5 #include <linux/mmdebug.h>
6 #include <linux/mmzone.h>
7 #include <linux/stddef.h>
8 #include <linux/linkage.h>
9 #include <linux/topology.h>
10
11 /* The typedef is in types.h but we want the documentation here */
12 #if 0
13 /**
14 * typedef gfp_t - Memory allocation flags.
15 *
16 * GFP flags are commonly used throughout Linux to indicate how memory
17 * should be allocated. The GFP acronym stands for get_free_pages(),
18 * the underlying memory allocation function. Not every GFP flag is
19 * supported by every function which may allocate memory. Most users
20 * will want to use a plain ``GFP_KERNEL``.
21 */
22 typedef unsigned int __bitwise gfp_t;
23 #endif
24
25 struct vm_area_struct;
26
27 /*
28 * In case of changes, please don't forget to update
29 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
30 */
31
32 /* Plain integer GFP bitmasks. Do not use this directly. */
33 #define ___GFP_DMA 0x01u
34 #define ___GFP_HIGHMEM 0x02u
35 #define ___GFP_DMA32 0x04u
36 #define ___GFP_MOVABLE 0x08u
37 #define ___GFP_RECLAIMABLE 0x10u
38 #define ___GFP_HIGH 0x20u
39 #define ___GFP_IO 0x40u
40 #define ___GFP_FS 0x80u
41 #define ___GFP_ZERO 0x100u
42 #define ___GFP_ATOMIC 0x200u
43 #define ___GFP_DIRECT_RECLAIM 0x400u
44 #define ___GFP_KSWAPD_RECLAIM 0x800u
45 #define ___GFP_WRITE 0x1000u
46 #define ___GFP_NOWARN 0x2000u
47 #define ___GFP_RETRY_MAYFAIL 0x4000u
48 #define ___GFP_NOFAIL 0x8000u
49 #define ___GFP_NORETRY 0x10000u
50 #define ___GFP_MEMALLOC 0x20000u
51 #define ___GFP_COMP 0x40000u
52 #define ___GFP_NOMEMALLOC 0x80000u
53 #define ___GFP_HARDWALL 0x100000u
54 #define ___GFP_THISNODE 0x200000u
55 #define ___GFP_ACCOUNT 0x400000u
56 #define ___GFP_ZEROTAGS 0x800000u
57 #ifdef CONFIG_KASAN_HW_TAGS
58 #define ___GFP_SKIP_ZERO 0x1000000u
59 #define ___GFP_SKIP_KASAN_UNPOISON 0x2000000u
60 #define ___GFP_SKIP_KASAN_POISON 0x4000000u
61 #else
62 #define ___GFP_SKIP_ZERO 0
63 #define ___GFP_SKIP_KASAN_UNPOISON 0
64 #define ___GFP_SKIP_KASAN_POISON 0
65 #endif
66 #ifdef CONFIG_CMA
67 #define ___GFP_CMA 0x8000000u
68 #else
69 #define ___GFP_CMA 0
70 #endif
71 #ifdef CONFIG_LOCKDEP
72 #ifdef CONFIG_CMA
73 #define ___GFP_NOLOCKDEP 0x10000000u
74 #else
75 #define ___GFP_NOLOCKDEP 0x8000000u
76 #endif
77 #else
78 #define ___GFP_NOLOCKDEP 0
79 #endif
80
81 /* If the above are modified, __GFP_BITS_SHIFT may need updating */
82
83 /*
84 * Physical address zone modifiers (see linux/mmzone.h - low four bits)
85 *
86 * Do not put any conditional on these. If necessary modify the definitions
87 * without the underscores and use them consistently. The definitions here may
88 * be used in bit comparisons.
89 */
90 #define __GFP_DMA ((__force gfp_t)___GFP_DMA)
91 #define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM)
92 #define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32)
93 #define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */
94 #define __GFP_CMA ((__force gfp_t)___GFP_CMA)
95 #define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
96
97 /**
98 * DOC: Page mobility and placement hints
99 *
100 * Page mobility and placement hints
101 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
102 *
103 * These flags provide hints about how mobile the page is. Pages with similar
104 * mobility are placed within the same pageblocks to minimise problems due
105 * to external fragmentation.
106 *
107 * %__GFP_MOVABLE (also a zone modifier) indicates that the page can be
108 * moved by page migration during memory compaction or can be reclaimed.
109 *
110 * %__GFP_RECLAIMABLE is used for slab allocations that specify
111 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
112 *
113 * %__GFP_WRITE indicates the caller intends to dirty the page. Where possible,
114 * these pages will be spread between local zones to avoid all the dirty
115 * pages being in one zone (fair zone allocation policy).
116 *
117 * %__GFP_HARDWALL enforces the cpuset memory allocation policy.
118 *
119 * %__GFP_THISNODE forces the allocation to be satisfied from the requested
120 * node with no fallbacks or placement policy enforcements.
121 *
122 * %__GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
123 */
124 #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
125 #define __GFP_WRITE ((__force gfp_t)___GFP_WRITE)
126 #define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL)
127 #define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)
128 #define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT)
129
130 /**
131 * DOC: Watermark modifiers
132 *
133 * Watermark modifiers -- controls access to emergency reserves
134 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
135 *
136 * %__GFP_HIGH indicates that the caller is high-priority and that granting
137 * the request is necessary before the system can make forward progress.
138 * For example, creating an IO context to clean pages.
139 *
140 * %__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
141 * high priority. Users are typically interrupt handlers. This may be
142 * used in conjunction with %__GFP_HIGH
143 *
144 * %__GFP_MEMALLOC allows access to all memory. This should only be used when
145 * the caller guarantees the allocation will allow more memory to be freed
146 * very shortly e.g. process exiting or swapping. Users either should
147 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
148 * Users of this flag have to be extremely careful to not deplete the reserve
149 * completely and implement a throttling mechanism which controls the
150 * consumption of the reserve based on the amount of freed memory.
151 * Usage of a pre-allocated pool (e.g. mempool) should be always considered
152 * before using this flag.
153 *
154 * %__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
155 * This takes precedence over the %__GFP_MEMALLOC flag if both are set.
156 */
157 #define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC)
158 #define __GFP_HIGH ((__force gfp_t)___GFP_HIGH)
159 #define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)
160 #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
161
162 /**
163 * DOC: Reclaim modifiers
164 *
165 * Reclaim modifiers
166 * ~~~~~~~~~~~~~~~~~
167 * Please note that all the following flags are only applicable to sleepable
168 * allocations (e.g. %GFP_NOWAIT and %GFP_ATOMIC will ignore them).
169 *
170 * %__GFP_IO can start physical IO.
171 *
172 * %__GFP_FS can call down to the low-level FS. Clearing the flag avoids the
173 * allocator recursing into the filesystem which might already be holding
174 * locks.
175 *
176 * %__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
177 * This flag can be cleared to avoid unnecessary delays when a fallback
178 * option is available.
179 *
180 * %__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
181 * the low watermark is reached and have it reclaim pages until the high
182 * watermark is reached. A caller may wish to clear this flag when fallback
183 * options are available and the reclaim is likely to disrupt the system. The
184 * canonical example is THP allocation where a fallback is cheap but
185 * reclaim/compaction may cause indirect stalls.
186 *
187 * %__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
188 *
189 * The default allocator behavior depends on the request size. We have a concept
190 * of so called costly allocations (with order > %PAGE_ALLOC_COSTLY_ORDER).
191 * !costly allocations are too essential to fail so they are implicitly
192 * non-failing by default (with some exceptions like OOM victims might fail so
193 * the caller still has to check for failures) while costly requests try to be
194 * not disruptive and back off even without invoking the OOM killer.
195 * The following three modifiers might be used to override some of these
196 * implicit rules
197 *
198 * %__GFP_NORETRY: The VM implementation will try only very lightweight
199 * memory direct reclaim to get some memory under memory pressure (thus
200 * it can sleep). It will avoid disruptive actions like OOM killer. The
201 * caller must handle the failure which is quite likely to happen under
202 * heavy memory pressure. The flag is suitable when failure can easily be
203 * handled at small cost, such as reduced throughput
204 *
205 * %__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim
206 * procedures that have previously failed if there is some indication
207 * that progress has been made else where. It can wait for other
208 * tasks to attempt high level approaches to freeing memory such as
209 * compaction (which removes fragmentation) and page-out.
210 * There is still a definite limit to the number of retries, but it is
211 * a larger limit than with %__GFP_NORETRY.
212 * Allocations with this flag may fail, but only when there is
213 * genuinely little unused memory. While these allocations do not
214 * directly trigger the OOM killer, their failure indicates that
215 * the system is likely to need to use the OOM killer soon. The
216 * caller must handle failure, but can reasonably do so by failing
217 * a higher-level request, or completing it only in a much less
218 * efficient manner.
219 * If the allocation does fail, and the caller is in a position to
220 * free some non-essential memory, doing so could benefit the system
221 * as a whole.
222 *
223 * %__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
224 * cannot handle allocation failures. The allocation could block
225 * indefinitely but will never return with failure. Testing for
226 * failure is pointless.
227 * New users should be evaluated carefully (and the flag should be
228 * used only when there is no reasonable failure policy) but it is
229 * definitely preferable to use the flag rather than opencode endless
230 * loop around allocator.
231 * Using this flag for costly allocations is _highly_ discouraged.
232 */
233 #define __GFP_IO ((__force gfp_t)___GFP_IO)
234 #define __GFP_FS ((__force gfp_t)___GFP_FS)
235 #define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
236 #define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
237 #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
238 #define __GFP_RETRY_MAYFAIL ((__force gfp_t)___GFP_RETRY_MAYFAIL)
239 #define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL)
240 #define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY)
241
242 /**
243 * DOC: Action modifiers
244 *
245 * Action modifiers
246 * ~~~~~~~~~~~~~~~~
247 *
248 * %__GFP_NOWARN suppresses allocation failure reports.
249 *
250 * %__GFP_COMP address compound page metadata.
251 *
252 * %__GFP_ZERO returns a zeroed page on success.
253 *
254 * %__GFP_ZEROTAGS zeroes memory tags at allocation time if the memory itself
255 * is being zeroed (either via __GFP_ZERO or via init_on_alloc, provided that
256 * __GFP_SKIP_ZERO is not set). This flag is intended for optimization: setting
257 * memory tags at the same time as zeroing memory has minimal additional
258 * performace impact.
259 *
260 * %__GFP_SKIP_KASAN_UNPOISON makes KASAN skip unpoisoning on page allocation.
261 * Only effective in HW_TAGS mode.
262 *
263 * %__GFP_SKIP_KASAN_POISON makes KASAN skip poisoning on page deallocation.
264 * Typically, used for userspace pages. Only effective in HW_TAGS mode.
265 */
266 #define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN)
267 #define __GFP_COMP ((__force gfp_t)___GFP_COMP)
268 #define __GFP_ZERO ((__force gfp_t)___GFP_ZERO)
269 #define __GFP_ZEROTAGS ((__force gfp_t)___GFP_ZEROTAGS)
270 #define __GFP_SKIP_ZERO ((__force gfp_t)___GFP_SKIP_ZERO)
271 #define __GFP_SKIP_KASAN_UNPOISON ((__force gfp_t)___GFP_SKIP_KASAN_UNPOISON)
272 #define __GFP_SKIP_KASAN_POISON ((__force gfp_t)___GFP_SKIP_KASAN_POISON)
273
274 /* Disable lockdep for GFP context tracking */
275 #define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)
276
277 /* Room for N __GFP_FOO bits */
278 #ifdef CONFIG_CMA
279 #define __GFP_BITS_SHIFT (28 + IS_ENABLED(CONFIG_LOCKDEP))
280 #else
281 #define __GFP_BITS_SHIFT (27 + IS_ENABLED(CONFIG_LOCKDEP))
282 #endif
283 #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
284
285 /**
286 * DOC: Useful GFP flag combinations
287 *
288 * Useful GFP flag combinations
289 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
290 *
291 * Useful GFP flag combinations that are commonly used. It is recommended
292 * that subsystems start with one of these combinations and then set/clear
293 * %__GFP_FOO flags as necessary.
294 *
295 * %GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
296 * watermark is applied to allow access to "atomic reserves".
297 * The current implementation doesn't support NMI and few other strict
298 * non-preemptive contexts (e.g. raw_spin_lock). The same applies to %GFP_NOWAIT.
299 *
300 * %GFP_KERNEL is typical for kernel-internal allocations. The caller requires
301 * %ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
302 *
303 * %GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
304 * accounted to kmemcg.
305 *
306 * %GFP_NOWAIT is for kernel allocations that should not stall for direct
307 * reclaim, start physical IO or use any filesystem callback.
308 *
309 * %GFP_NOIO will use direct reclaim to discard clean pages or slab pages
310 * that do not require the starting of any physical IO.
311 * Please try to avoid using this flag directly and instead use
312 * memalloc_noio_{save,restore} to mark the whole scope which cannot
313 * perform any IO with a short explanation why. All allocation requests
314 * will inherit GFP_NOIO implicitly.
315 *
316 * %GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
317 * Please try to avoid using this flag directly and instead use
318 * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't
319 * recurse into the FS layer with a short explanation why. All allocation
320 * requests will inherit GFP_NOFS implicitly.
321 *
322 * %GFP_USER is for userspace allocations that also need to be directly
323 * accessibly by the kernel or hardware. It is typically used by hardware
324 * for buffers that are mapped to userspace (e.g. graphics) that hardware
325 * still must DMA to. cpuset limits are enforced for these allocations.
326 *
327 * %GFP_DMA exists for historical reasons and should be avoided where possible.
328 * The flags indicates that the caller requires that the lowest zone be
329 * used (%ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
330 * it would require careful auditing as some users really require it and
331 * others use the flag to avoid lowmem reserves in %ZONE_DMA and treat the
332 * lowest zone as a type of emergency reserve.
333 *
334 * %GFP_DMA32 is similar to %GFP_DMA except that the caller requires a 32-bit
335 * address.
336 *
337 * %GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
338 * do not need to be directly accessible by the kernel but that cannot
339 * move once in use. An example may be a hardware allocation that maps
340 * data directly into userspace but has no addressing limitations.
341 *
342 * %GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
343 * need direct access to but can use kmap() when access is required. They
344 * are expected to be movable via page reclaim or page migration. Typically,
345 * pages on the LRU would also be allocated with %GFP_HIGHUSER_MOVABLE.
346 *
347 * %GFP_TRANSHUGE and %GFP_TRANSHUGE_LIGHT are used for THP allocations. They
348 * are compound allocations that will generally fail quickly if memory is not
349 * available and will not wake kswapd/kcompactd on failure. The _LIGHT
350 * version does not attempt reclaim/compaction at all and is by default used
351 * in page fault path, while the non-light is used by khugepaged.
352 */
353 #define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
354 #define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
355 #define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
356 #define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM)
357 #define GFP_NOIO (__GFP_RECLAIM)
358 #define GFP_NOFS (__GFP_RECLAIM | __GFP_IO)
359 #define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
360 #define GFP_DMA __GFP_DMA
361 #define GFP_DMA32 __GFP_DMA32
362 #define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM)
363 #define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE | \
364 __GFP_SKIP_KASAN_POISON)
365 #define GFP_TRANSHUGE_LIGHT ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
366 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
367 #define GFP_TRANSHUGE (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
368
369 /* Convert GFP flags to their corresponding migrate type */
370 #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
371 #define GFP_MOVABLE_SHIFT 3
372
gfp_migratetype(const gfp_t gfp_flags)373 static inline int gfp_migratetype(const gfp_t gfp_flags)
374 {
375 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
376 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
377 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
378
379 if (unlikely(page_group_by_mobility_disabled))
380 return MIGRATE_UNMOVABLE;
381
382 /* Group based on mobility */
383 return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
384 }
385 #undef GFP_MOVABLE_MASK
386 #undef GFP_MOVABLE_SHIFT
387
gfpflags_allow_blocking(const gfp_t gfp_flags)388 static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
389 {
390 return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
391 }
392
393 /**
394 * gfpflags_normal_context - is gfp_flags a normal sleepable context?
395 * @gfp_flags: gfp_flags to test
396 *
397 * Test whether @gfp_flags indicates that the allocation is from the
398 * %current context and allowed to sleep.
399 *
400 * An allocation being allowed to block doesn't mean it owns the %current
401 * context. When direct reclaim path tries to allocate memory, the
402 * allocation context is nested inside whatever %current was doing at the
403 * time of the original allocation. The nested allocation may be allowed
404 * to block but modifying anything %current owns can corrupt the outer
405 * context's expectations.
406 *
407 * %true result from this function indicates that the allocation context
408 * can sleep and use anything that's associated with %current.
409 */
gfpflags_normal_context(const gfp_t gfp_flags)410 static inline bool gfpflags_normal_context(const gfp_t gfp_flags)
411 {
412 return (gfp_flags & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC)) ==
413 __GFP_DIRECT_RECLAIM;
414 }
415
416 #ifdef CONFIG_HIGHMEM
417 #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
418 #else
419 #define OPT_ZONE_HIGHMEM ZONE_NORMAL
420 #endif
421
422 #ifdef CONFIG_ZONE_DMA
423 #define OPT_ZONE_DMA ZONE_DMA
424 #else
425 #define OPT_ZONE_DMA ZONE_NORMAL
426 #endif
427
428 #ifdef CONFIG_ZONE_DMA32
429 #define OPT_ZONE_DMA32 ZONE_DMA32
430 #else
431 #define OPT_ZONE_DMA32 ZONE_NORMAL
432 #endif
433
434 /*
435 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
436 * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
437 * bits long and there are 16 of them to cover all possible combinations of
438 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
439 *
440 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
441 * But GFP_MOVABLE is not only a zone specifier but also an allocation
442 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
443 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
444 *
445 * bit result
446 * =================
447 * 0x0 => NORMAL
448 * 0x1 => DMA or NORMAL
449 * 0x2 => HIGHMEM or NORMAL
450 * 0x3 => BAD (DMA+HIGHMEM)
451 * 0x4 => DMA32 or NORMAL
452 * 0x5 => BAD (DMA+DMA32)
453 * 0x6 => BAD (HIGHMEM+DMA32)
454 * 0x7 => BAD (HIGHMEM+DMA32+DMA)
455 * 0x8 => NORMAL (MOVABLE+0)
456 * 0x9 => DMA or NORMAL (MOVABLE+DMA)
457 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
458 * 0xb => BAD (MOVABLE+HIGHMEM+DMA)
459 * 0xc => DMA32 or NORMAL (MOVABLE+DMA32)
460 * 0xd => BAD (MOVABLE+DMA32+DMA)
461 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
462 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
463 *
464 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
465 */
466
467 #if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
468 /* ZONE_DEVICE is not a valid GFP zone specifier */
469 #define GFP_ZONES_SHIFT 2
470 #else
471 #define GFP_ZONES_SHIFT ZONES_SHIFT
472 #endif
473
474 #if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
475 #error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
476 #endif
477
478 #define GFP_ZONE_TABLE ( \
479 (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \
480 | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \
481 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \
482 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \
483 | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \
484 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \
485 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
486 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
487 )
488
489 /*
490 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
491 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
492 * entry starting with bit 0. Bit is set if the combination is not
493 * allowed.
494 */
495 #define GFP_ZONE_BAD ( \
496 1 << (___GFP_DMA | ___GFP_HIGHMEM) \
497 | 1 << (___GFP_DMA | ___GFP_DMA32) \
498 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
499 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
500 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
501 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
502 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
503 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
504 )
505
506 enum zone_type gfp_zone(gfp_t flags);
507
508 /*
509 * There is only one page-allocator function, and two main namespaces to
510 * it. The alloc_page*() variants return 'struct page *' and as such
511 * can allocate highmem pages, the *get*page*() variants return
512 * virtual kernel addresses to the allocated page(s).
513 */
514
gfp_zonelist(gfp_t flags)515 static inline int gfp_zonelist(gfp_t flags)
516 {
517 #ifdef CONFIG_NUMA
518 if (unlikely(flags & __GFP_THISNODE))
519 return ZONELIST_NOFALLBACK;
520 #endif
521 return ZONELIST_FALLBACK;
522 }
523
524 /*
525 * We get the zone list from the current node and the gfp_mask.
526 * This zone list contains a maximum of MAX_NUMNODES*MAX_NR_ZONES zones.
527 * There are two zonelists per node, one for all zones with memory and
528 * one containing just zones from the node the zonelist belongs to.
529 *
530 * For the case of non-NUMA systems the NODE_DATA() gets optimized to
531 * &contig_page_data at compile-time.
532 */
node_zonelist(int nid,gfp_t flags)533 static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
534 {
535 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
536 }
537
538 #ifndef HAVE_ARCH_FREE_PAGE
arch_free_page(struct page * page,int order)539 static inline void arch_free_page(struct page *page, int order) { }
540 #endif
541 #ifndef HAVE_ARCH_ALLOC_PAGE
arch_alloc_page(struct page * page,int order)542 static inline void arch_alloc_page(struct page *page, int order) { }
543 #endif
544 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
arch_make_page_accessible(struct page * page)545 static inline int arch_make_page_accessible(struct page *page)
546 {
547 return 0;
548 }
549 #endif
550
551 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
552 nodemask_t *nodemask);
553
554 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
555 nodemask_t *nodemask, int nr_pages,
556 struct list_head *page_list,
557 struct page **page_array);
558
559 /* Bulk allocate order-0 pages */
560 static inline unsigned long
alloc_pages_bulk_list(gfp_t gfp,unsigned long nr_pages,struct list_head * list)561 alloc_pages_bulk_list(gfp_t gfp, unsigned long nr_pages, struct list_head *list)
562 {
563 return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, list, NULL);
564 }
565
566 static inline unsigned long
alloc_pages_bulk_array(gfp_t gfp,unsigned long nr_pages,struct page ** page_array)567 alloc_pages_bulk_array(gfp_t gfp, unsigned long nr_pages, struct page **page_array)
568 {
569 return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, NULL, page_array);
570 }
571
572 static inline unsigned long
alloc_pages_bulk_array_node(gfp_t gfp,int nid,unsigned long nr_pages,struct page ** page_array)573 alloc_pages_bulk_array_node(gfp_t gfp, int nid, unsigned long nr_pages, struct page **page_array)
574 {
575 if (nid == NUMA_NO_NODE)
576 nid = numa_mem_id();
577
578 return __alloc_pages_bulk(gfp, nid, NULL, nr_pages, NULL, page_array);
579 }
580
581 /*
582 * Allocate pages, preferring the node given as nid. The node must be valid and
583 * online. For more general interface, see alloc_pages_node().
584 */
585 static inline struct page *
__alloc_pages_node(int nid,gfp_t gfp_mask,unsigned int order)586 __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
587 {
588 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
589 VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid));
590
591 return __alloc_pages(gfp_mask, order, nid, NULL);
592 }
593
594 /*
595 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
596 * prefer the current CPU's closest node. Otherwise node must be valid and
597 * online.
598 */
alloc_pages_node(int nid,gfp_t gfp_mask,unsigned int order)599 static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
600 unsigned int order)
601 {
602 if (nid == NUMA_NO_NODE)
603 nid = numa_mem_id();
604
605 return __alloc_pages_node(nid, gfp_mask, order);
606 }
607
608 #ifdef CONFIG_NUMA
609 struct page *alloc_pages(gfp_t gfp, unsigned int order);
610 extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
611 struct vm_area_struct *vma, unsigned long addr,
612 int node, bool hugepage);
613 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
614 alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
615 #else
alloc_pages(gfp_t gfp_mask,unsigned int order)616 static inline struct page *alloc_pages(gfp_t gfp_mask, unsigned int order)
617 {
618 return alloc_pages_node(numa_node_id(), gfp_mask, order);
619 }
620 #define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
621 alloc_pages(gfp_mask, order)
622 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
623 alloc_pages(gfp_mask, order)
624 #endif
625 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
626 #define alloc_page_vma(gfp_mask, vma, addr) \
627 alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
628
629 extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
630 extern unsigned long get_zeroed_page(gfp_t gfp_mask);
631
632 void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
633 void free_pages_exact(void *virt, size_t size);
634 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
635
636 #define __get_free_page(gfp_mask) \
637 __get_free_pages((gfp_mask), 0)
638
639 #define __get_dma_pages(gfp_mask, order) \
640 __get_free_pages((gfp_mask) | GFP_DMA, (order))
641
642 extern void __free_pages(struct page *page, unsigned int order);
643 extern void free_pages(unsigned long addr, unsigned int order);
644
645 struct page_frag_cache;
646 extern void __page_frag_cache_drain(struct page *page, unsigned int count);
647 extern void *page_frag_alloc_align(struct page_frag_cache *nc,
648 unsigned int fragsz, gfp_t gfp_mask,
649 unsigned int align_mask);
650
page_frag_alloc(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask)651 static inline void *page_frag_alloc(struct page_frag_cache *nc,
652 unsigned int fragsz, gfp_t gfp_mask)
653 {
654 return page_frag_alloc_align(nc, fragsz, gfp_mask, ~0u);
655 }
656
657 extern void page_frag_free(void *addr);
658
659 #define __free_page(page) __free_pages((page), 0)
660 #define free_page(addr) free_pages((addr), 0)
661
662 void page_alloc_init(void);
663 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
664 void drain_all_pages(struct zone *zone);
665 void drain_local_pages(struct zone *zone);
666
667 void page_alloc_init_late(void);
668
669 /*
670 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
671 * GFP flags are used before interrupts are enabled. Once interrupts are
672 * enabled, it is set to __GFP_BITS_MASK while the system is running. During
673 * hibernation, it is used by PM to avoid I/O during memory allocation while
674 * devices are suspended.
675 */
676 extern gfp_t gfp_allowed_mask;
677
678 /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
679 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
680
681 extern void pm_restrict_gfp_mask(void);
682 extern void pm_restore_gfp_mask(void);
683
684 extern gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma);
685
686 #ifdef CONFIG_PM_SLEEP
687 extern bool pm_suspended_storage(void);
688 #else
pm_suspended_storage(void)689 static inline bool pm_suspended_storage(void)
690 {
691 return false;
692 }
693 #endif /* CONFIG_PM_SLEEP */
694
695 #ifdef CONFIG_CONTIG_ALLOC
696 /* The below functions must be run on a range from a single zone. */
697 extern int alloc_contig_range(unsigned long start, unsigned long end,
698 unsigned migratetype, gfp_t gfp_mask);
699 extern struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
700 int nid, nodemask_t *nodemask);
701 #endif
702 void free_contig_range(unsigned long pfn, unsigned long nr_pages);
703
704 #ifdef CONFIG_CMA
705 /* CMA stuff */
706 extern void init_cma_reserved_pageblock(struct page *page);
707 #endif
708
709 #endif /* __LINUX_GFP_H */
710