1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #ifndef _ICE_TXRX_H_
5 #define _ICE_TXRX_H_
6
7 #include "ice_type.h"
8
9 #define ICE_DFLT_IRQ_WORK 256
10 #define ICE_RXBUF_3072 3072
11 #define ICE_RXBUF_2048 2048
12 #define ICE_RXBUF_1536 1536
13 #define ICE_MAX_CHAINED_RX_BUFS 5
14 #define ICE_MAX_BUF_TXD 8
15 #define ICE_MIN_TX_LEN 17
16
17 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
18 * In order to align with the read requests we will align the value to
19 * the nearest 4K which represents our maximum read request size.
20 */
21 #define ICE_MAX_READ_REQ_SIZE 4096
22 #define ICE_MAX_DATA_PER_TXD (16 * 1024 - 1)
23 #define ICE_MAX_DATA_PER_TXD_ALIGNED \
24 (~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD)
25
26 #define ICE_RX_BUF_WRITE 16 /* Must be power of 2 */
27 #define ICE_MAX_TXQ_PER_TXQG 128
28
29 /* Attempt to maximize the headroom available for incoming frames. We use a 2K
30 * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame.
31 * This leaves us with 512 bytes of room. From that we need to deduct the
32 * space needed for the shared info and the padding needed to IP align the
33 * frame.
34 *
35 * Note: For cache line sizes 256 or larger this value is going to end
36 * up negative. In these cases we should fall back to the legacy
37 * receive path.
38 */
39 #if (PAGE_SIZE < 8192)
40 #define ICE_2K_TOO_SMALL_WITH_PADDING \
41 ((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \
42 SKB_WITH_OVERHEAD(ICE_RXBUF_2048))
43
44 /**
45 * ice_compute_pad - compute the padding
46 * @rx_buf_len: buffer length
47 *
48 * Figure out the size of half page based on given buffer length and
49 * then subtract the skb_shared_info followed by subtraction of the
50 * actual buffer length; this in turn results in the actual space that
51 * is left for padding usage
52 */
ice_compute_pad(int rx_buf_len)53 static inline int ice_compute_pad(int rx_buf_len)
54 {
55 int half_page_size;
56
57 half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
58 return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len;
59 }
60
61 /**
62 * ice_skb_pad - determine the padding that we can supply
63 *
64 * Figure out the right Rx buffer size and based on that calculate the
65 * padding
66 */
ice_skb_pad(void)67 static inline int ice_skb_pad(void)
68 {
69 int rx_buf_len;
70
71 /* If a 2K buffer cannot handle a standard Ethernet frame then
72 * optimize padding for a 3K buffer instead of a 1.5K buffer.
73 *
74 * For a 3K buffer we need to add enough padding to allow for
75 * tailroom due to NET_IP_ALIGN possibly shifting us out of
76 * cache-line alignment.
77 */
78 if (ICE_2K_TOO_SMALL_WITH_PADDING)
79 rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
80 else
81 rx_buf_len = ICE_RXBUF_1536;
82
83 /* if needed make room for NET_IP_ALIGN */
84 rx_buf_len -= NET_IP_ALIGN;
85
86 return ice_compute_pad(rx_buf_len);
87 }
88
89 #define ICE_SKB_PAD ice_skb_pad()
90 #else
91 #define ICE_2K_TOO_SMALL_WITH_PADDING false
92 #define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
93 #endif
94
95 /* We are assuming that the cache line is always 64 Bytes here for ice.
96 * In order to make sure that is a correct assumption there is a check in probe
97 * to print a warning if the read from GLPCI_CNF2 tells us that the cache line
98 * size is 128 bytes. We do it this way because we do not want to read the
99 * GLPCI_CNF2 register or a variable containing the value on every pass through
100 * the Tx path.
101 */
102 #define ICE_CACHE_LINE_BYTES 64
103 #define ICE_DESCS_PER_CACHE_LINE (ICE_CACHE_LINE_BYTES / \
104 sizeof(struct ice_tx_desc))
105 #define ICE_DESCS_FOR_CTX_DESC 1
106 #define ICE_DESCS_FOR_SKB_DATA_PTR 1
107 /* Tx descriptors needed, worst case */
108 #define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \
109 ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR)
110 #define ICE_DESC_UNUSED(R) \
111 (u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \
112 (R)->next_to_clean - (R)->next_to_use - 1)
113
114 #define ICE_TX_FLAGS_TSO BIT(0)
115 #define ICE_TX_FLAGS_HW_VLAN BIT(1)
116 #define ICE_TX_FLAGS_SW_VLAN BIT(2)
117 /* ICE_TX_FLAGS_DUMMY_PKT is used to mark dummy packets that should be
118 * freed instead of returned like skb packets.
119 */
120 #define ICE_TX_FLAGS_DUMMY_PKT BIT(3)
121 #define ICE_TX_FLAGS_TSYN BIT(4)
122 #define ICE_TX_FLAGS_IPV4 BIT(5)
123 #define ICE_TX_FLAGS_IPV6 BIT(6)
124 #define ICE_TX_FLAGS_TUNNEL BIT(7)
125 #define ICE_TX_FLAGS_VLAN_M 0xffff0000
126 #define ICE_TX_FLAGS_VLAN_PR_M 0xe0000000
127 #define ICE_TX_FLAGS_VLAN_PR_S 29
128 #define ICE_TX_FLAGS_VLAN_S 16
129
130 #define ICE_XDP_PASS 0
131 #define ICE_XDP_CONSUMED BIT(0)
132 #define ICE_XDP_TX BIT(1)
133 #define ICE_XDP_REDIR BIT(2)
134
135 #define ICE_RX_DMA_ATTR \
136 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
137
138 #define ICE_ETH_PKT_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
139
140 #define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS)
141
142 struct ice_tx_buf {
143 struct ice_tx_desc *next_to_watch;
144 union {
145 struct sk_buff *skb;
146 void *raw_buf; /* used for XDP */
147 };
148 unsigned int bytecount;
149 unsigned short gso_segs;
150 u32 tx_flags;
151 DEFINE_DMA_UNMAP_LEN(len);
152 DEFINE_DMA_UNMAP_ADDR(dma);
153 };
154
155 struct ice_tx_offload_params {
156 u64 cd_qw1;
157 struct ice_ring *tx_ring;
158 u32 td_cmd;
159 u32 td_offset;
160 u32 td_l2tag1;
161 u32 cd_tunnel_params;
162 u16 cd_l2tag2;
163 u8 header_len;
164 };
165
166 struct ice_rx_buf {
167 dma_addr_t dma;
168 struct page *page;
169 unsigned int page_offset;
170 u16 pagecnt_bias;
171 };
172
173 struct ice_q_stats {
174 u64 pkts;
175 u64 bytes;
176 };
177
178 struct ice_txq_stats {
179 u64 restart_q;
180 u64 tx_busy;
181 u64 tx_linearize;
182 int prev_pkt; /* negative if no pending Tx descriptors */
183 };
184
185 struct ice_rxq_stats {
186 u64 non_eop_descs;
187 u64 alloc_page_failed;
188 u64 alloc_buf_failed;
189 };
190
191 enum ice_ring_state_t {
192 ICE_TX_XPS_INIT_DONE,
193 ICE_TX_NBITS,
194 };
195
196 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
197 * registers and QINT registers or more generally anywhere in the manual
198 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
199 * register but instead is a special value meaning "don't update" ITR0/1/2.
200 */
201 enum ice_dyn_idx_t {
202 ICE_IDX_ITR0 = 0,
203 ICE_IDX_ITR1 = 1,
204 ICE_IDX_ITR2 = 2,
205 ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
206 };
207
208 /* Header split modes defined by DTYPE field of Rx RLAN context */
209 enum ice_rx_dtype {
210 ICE_RX_DTYPE_NO_SPLIT = 0,
211 ICE_RX_DTYPE_HEADER_SPLIT = 1,
212 ICE_RX_DTYPE_SPLIT_ALWAYS = 2,
213 };
214
215 /* indices into GLINT_ITR registers */
216 #define ICE_RX_ITR ICE_IDX_ITR0
217 #define ICE_TX_ITR ICE_IDX_ITR1
218 #define ICE_ITR_8K 124
219 #define ICE_ITR_20K 50
220 #define ICE_ITR_MAX 8160 /* 0x1FE0 */
221 #define ICE_DFLT_TX_ITR ICE_ITR_20K
222 #define ICE_DFLT_RX_ITR ICE_ITR_20K
223 enum ice_dynamic_itr {
224 ITR_STATIC = 0,
225 ITR_DYNAMIC = 1
226 };
227
228 #define ITR_IS_DYNAMIC(rc) ((rc)->itr_mode == ITR_DYNAMIC)
229 #define ICE_ITR_GRAN_S 1 /* ITR granularity is always 2us */
230 #define ICE_ITR_GRAN_US BIT(ICE_ITR_GRAN_S)
231 #define ICE_ITR_MASK 0x1FFE /* ITR register value alignment mask */
232 #define ITR_REG_ALIGN(setting) ((setting) & ICE_ITR_MASK)
233
234 #define ICE_DFLT_INTRL 0
235 #define ICE_MAX_INTRL 236
236
237 #define ICE_IN_WB_ON_ITR_MODE 255
238 /* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows
239 * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also,
240 * set the write-back latency to the usecs passed in.
241 */
242 #define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx) \
243 ((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \
244 GLINT_DYN_CTL_INTERVAL_M) | \
245 (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \
246 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \
247 GLINT_DYN_CTL_WB_ON_ITR_M)
248
249 /* Legacy or Advanced Mode Queue */
250 #define ICE_TX_ADVANCED 0
251 #define ICE_TX_LEGACY 1
252
253 /* descriptor ring, associated with a VSI */
254 struct ice_ring {
255 /* CL1 - 1st cacheline starts here */
256 struct ice_ring *next; /* pointer to next ring in q_vector */
257 void *desc; /* Descriptor ring memory */
258 struct device *dev; /* Used for DMA mapping */
259 struct net_device *netdev; /* netdev ring maps to */
260 struct ice_vsi *vsi; /* Backreference to associated VSI */
261 struct ice_q_vector *q_vector; /* Backreference to associated vector */
262 u8 __iomem *tail;
263 union {
264 struct ice_tx_buf *tx_buf;
265 struct ice_rx_buf *rx_buf;
266 struct xdp_buff **xdp_buf;
267 };
268 /* CL2 - 2nd cacheline starts here */
269 u16 q_index; /* Queue number of ring */
270 u16 q_handle; /* Queue handle per TC */
271
272 u8 ring_active:1; /* is ring online or not */
273
274 u16 count; /* Number of descriptors */
275 u16 reg_idx; /* HW register index of the ring */
276
277 /* used in interrupt processing */
278 u16 next_to_use;
279 u16 next_to_clean;
280 u16 next_to_alloc;
281
282 /* stats structs */
283 struct ice_q_stats stats;
284 struct u64_stats_sync syncp;
285 union {
286 struct ice_txq_stats tx_stats;
287 struct ice_rxq_stats rx_stats;
288 };
289
290 struct rcu_head rcu; /* to avoid race on free */
291 DECLARE_BITMAP(xps_state, ICE_TX_NBITS); /* XPS Config State */
292 struct bpf_prog *xdp_prog;
293 struct xsk_buff_pool *xsk_pool;
294 u16 rx_offset;
295 /* CL3 - 3rd cacheline starts here */
296 struct xdp_rxq_info xdp_rxq;
297 struct sk_buff *skb;
298 /* CLX - the below items are only accessed infrequently and should be
299 * in their own cache line if possible
300 */
301 #define ICE_TX_FLAGS_RING_XDP BIT(0)
302 #define ICE_RX_FLAGS_RING_BUILD_SKB BIT(1)
303 u8 flags;
304 dma_addr_t dma; /* physical address of ring */
305 unsigned int size; /* length of descriptor ring in bytes */
306 u32 txq_teid; /* Added Tx queue TEID */
307 u16 rx_buf_len;
308 u8 dcb_tc; /* Traffic class of ring */
309 struct ice_ptp_tx *tx_tstamps;
310 u64 cached_phctime;
311 u8 ptp_rx:1;
312 u8 ptp_tx:1;
313 } ____cacheline_internodealigned_in_smp;
314
ice_ring_uses_build_skb(struct ice_ring * ring)315 static inline bool ice_ring_uses_build_skb(struct ice_ring *ring)
316 {
317 return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB);
318 }
319
ice_set_ring_build_skb_ena(struct ice_ring * ring)320 static inline void ice_set_ring_build_skb_ena(struct ice_ring *ring)
321 {
322 ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB;
323 }
324
ice_clear_ring_build_skb_ena(struct ice_ring * ring)325 static inline void ice_clear_ring_build_skb_ena(struct ice_ring *ring)
326 {
327 ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB;
328 }
329
ice_ring_is_xdp(struct ice_ring * ring)330 static inline bool ice_ring_is_xdp(struct ice_ring *ring)
331 {
332 return !!(ring->flags & ICE_TX_FLAGS_RING_XDP);
333 }
334
335 enum ice_container_type {
336 ICE_RX_CONTAINER,
337 ICE_TX_CONTAINER,
338 };
339
340 struct ice_ring_container {
341 /* head of linked-list of rings */
342 struct ice_ring *ring;
343 struct dim dim; /* data for net_dim algorithm */
344 u16 itr_idx; /* index in the interrupt vector */
345 /* this matches the maximum number of ITR bits, but in usec
346 * values, so it is shifted left one bit (bit zero is ignored)
347 */
348 union {
349 struct {
350 u16 itr_setting:13;
351 u16 itr_reserved:2;
352 u16 itr_mode:1;
353 };
354 u16 itr_settings;
355 };
356 enum ice_container_type type;
357 };
358
359 struct ice_coalesce_stored {
360 u16 itr_tx;
361 u16 itr_rx;
362 u8 intrl;
363 u8 tx_valid;
364 u8 rx_valid;
365 };
366
367 /* iterator for handling rings in ring container */
368 #define ice_for_each_ring(pos, head) \
369 for (pos = (head).ring; pos; pos = pos->next)
370
ice_rx_pg_order(struct ice_ring * ring)371 static inline unsigned int ice_rx_pg_order(struct ice_ring *ring)
372 {
373 #if (PAGE_SIZE < 8192)
374 if (ring->rx_buf_len > (PAGE_SIZE / 2))
375 return 1;
376 #endif
377 return 0;
378 }
379
380 #define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring))
381
382 union ice_32b_rx_flex_desc;
383
384 bool ice_alloc_rx_bufs(struct ice_ring *rxr, u16 cleaned_count);
385 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev);
386 void ice_clean_tx_ring(struct ice_ring *tx_ring);
387 void ice_clean_rx_ring(struct ice_ring *rx_ring);
388 int ice_setup_tx_ring(struct ice_ring *tx_ring);
389 int ice_setup_rx_ring(struct ice_ring *rx_ring);
390 void ice_free_tx_ring(struct ice_ring *tx_ring);
391 void ice_free_rx_ring(struct ice_ring *rx_ring);
392 int ice_napi_poll(struct napi_struct *napi, int budget);
393 int
394 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
395 u8 *raw_packet);
396 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget);
397 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring);
398 #endif /* _ICE_TXRX_H_ */
399