1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO ((unsigned int)(~0))
13 #define NULL_SECNO ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
24
25 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
28
sanity_check_seg_type(struct f2fs_sb_info * sbi,unsigned short seg_type)29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30 unsigned short seg_type)
31 {
32 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34
35 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38
39 #define IS_CURSEG(sbi, seg) \
40 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
41 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
42 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
43 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
44 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
45 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \
46 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \
47 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48
49 #define IS_CURSEC(sbi, secno) \
50 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
51 (sbi)->segs_per_sec) || \
52 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
53 (sbi)->segs_per_sec) || \
54 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
55 (sbi)->segs_per_sec) || \
56 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
57 (sbi)->segs_per_sec) || \
58 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
59 (sbi)->segs_per_sec) || \
60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
61 (sbi)->segs_per_sec) || \
62 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \
63 (sbi)->segs_per_sec) || \
64 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \
65 (sbi)->segs_per_sec))
66
67 #define MAIN_BLKADDR(sbi) \
68 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
69 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi) \
71 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
72 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73
74 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi) ((sbi)->total_sections)
76
77 #define TOTAL_SEGS(sbi) \
78 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
79 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
81
82 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
84 (sbi)->log_blocks_per_seg))
85
86 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
87 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
88
89 #define NEXT_FREE_BLKADDR(sbi, curseg) \
90 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
94 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
96 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
97
98 #define GET_SEGNO(sbi, blk_addr) \
99 ((!__is_valid_data_blkaddr(blk_addr)) ? \
100 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
101 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define BLKS_PER_SEC(sbi) \
103 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104 #define CAP_BLKS_PER_SEC(sbi) \
105 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg - \
106 (sbi)->unusable_blocks_per_sec)
107 #define CAP_SEGS_PER_SEC(sbi) \
108 ((sbi)->segs_per_sec - ((sbi)->unusable_blocks_per_sec >>\
109 (sbi)->log_blocks_per_seg))
110 #define GET_SEC_FROM_SEG(sbi, segno) \
111 (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
112 #define GET_SEG_FROM_SEC(sbi, secno) \
113 ((secno) * (sbi)->segs_per_sec)
114 #define GET_ZONE_FROM_SEC(sbi, secno) \
115 (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
116 #define GET_ZONE_FROM_SEG(sbi, segno) \
117 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
118
119 #define GET_SUM_BLOCK(sbi, segno) \
120 ((sbi)->sm_info->ssa_blkaddr + (segno))
121
122 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
123 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
124
125 #define SIT_ENTRY_OFFSET(sit_i, segno) \
126 ((segno) % (sit_i)->sents_per_block)
127 #define SIT_BLOCK_OFFSET(segno) \
128 ((segno) / SIT_ENTRY_PER_BLOCK)
129 #define START_SEGNO(segno) \
130 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
131 #define SIT_BLK_CNT(sbi) \
132 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
133 #define f2fs_bitmap_size(nr) \
134 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
135
136 #define SECTOR_FROM_BLOCK(blk_addr) \
137 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
138 #define SECTOR_TO_BLOCK(sectors) \
139 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
140
141 /*
142 * indicate a block allocation direction: RIGHT and LEFT.
143 * RIGHT means allocating new sections towards the end of volume.
144 * LEFT means the opposite direction.
145 */
146 enum {
147 ALLOC_RIGHT = 0,
148 ALLOC_LEFT
149 };
150
151 /*
152 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
153 * LFS writes data sequentially with cleaning operations.
154 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
155 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
156 * fragmented segment which has similar aging degree.
157 */
158 enum {
159 LFS = 0,
160 SSR,
161 AT_SSR,
162 };
163
164 /*
165 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
166 * GC_CB is based on cost-benefit algorithm.
167 * GC_GREEDY is based on greedy algorithm.
168 * GC_AT is based on age-threshold algorithm.
169 */
170 enum {
171 GC_CB = 0,
172 GC_GREEDY,
173 GC_AT,
174 ALLOC_NEXT,
175 FLUSH_DEVICE,
176 MAX_GC_POLICY,
177 };
178
179 /*
180 * BG_GC means the background cleaning job.
181 * FG_GC means the on-demand cleaning job.
182 */
183 enum {
184 BG_GC = 0,
185 FG_GC,
186 };
187
188 /* for a function parameter to select a victim segment */
189 struct victim_sel_policy {
190 int alloc_mode; /* LFS or SSR */
191 int gc_mode; /* GC_CB or GC_GREEDY */
192 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
193 unsigned int max_search; /*
194 * maximum # of segments/sections
195 * to search
196 */
197 unsigned int offset; /* last scanned bitmap offset */
198 unsigned int ofs_unit; /* bitmap search unit */
199 unsigned int min_cost; /* minimum cost */
200 unsigned long long oldest_age; /* oldest age of segments having the same min cost */
201 unsigned int min_segno; /* segment # having min. cost */
202 unsigned long long age; /* mtime of GCed section*/
203 unsigned long long age_threshold;/* age threshold */
204 };
205
206 struct seg_entry {
207 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
208 unsigned int valid_blocks:10; /* # of valid blocks */
209 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
210 unsigned int padding:6; /* padding */
211 unsigned char *cur_valid_map; /* validity bitmap of blocks */
212 #ifdef CONFIG_F2FS_CHECK_FS
213 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
214 #endif
215 /*
216 * # of valid blocks and the validity bitmap stored in the last
217 * checkpoint pack. This information is used by the SSR mode.
218 */
219 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
220 unsigned char *discard_map;
221 unsigned long long mtime; /* modification time of the segment */
222 };
223
224 struct sec_entry {
225 unsigned int valid_blocks; /* # of valid blocks in a section */
226 };
227
228 struct segment_allocation {
229 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
230 };
231
232 #define MAX_SKIP_GC_COUNT 16
233
234 struct revoke_entry {
235 struct list_head list;
236 block_t old_addr; /* for revoking when fail to commit */
237 pgoff_t index;
238 };
239
240 struct sit_info {
241 const struct segment_allocation *s_ops;
242
243 block_t sit_base_addr; /* start block address of SIT area */
244 block_t sit_blocks; /* # of blocks used by SIT area */
245 block_t written_valid_blocks; /* # of valid blocks in main area */
246 char *bitmap; /* all bitmaps pointer */
247 char *sit_bitmap; /* SIT bitmap pointer */
248 #ifdef CONFIG_F2FS_CHECK_FS
249 char *sit_bitmap_mir; /* SIT bitmap mirror */
250
251 /* bitmap of segments to be ignored by GC in case of errors */
252 unsigned long *invalid_segmap;
253 #endif
254 unsigned int bitmap_size; /* SIT bitmap size */
255
256 unsigned long *tmp_map; /* bitmap for temporal use */
257 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
258 unsigned int dirty_sentries; /* # of dirty sentries */
259 unsigned int sents_per_block; /* # of SIT entries per block */
260 struct rw_semaphore sentry_lock; /* to protect SIT cache */
261 struct seg_entry *sentries; /* SIT segment-level cache */
262 struct sec_entry *sec_entries; /* SIT section-level cache */
263
264 /* for cost-benefit algorithm in cleaning procedure */
265 unsigned long long elapsed_time; /* elapsed time after mount */
266 unsigned long long mounted_time; /* mount time */
267 unsigned long long min_mtime; /* min. modification time */
268 unsigned long long max_mtime; /* max. modification time */
269 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
270 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
271
272 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
273 };
274
275 struct free_segmap_info {
276 unsigned int start_segno; /* start segment number logically */
277 unsigned int free_segments; /* # of free segments */
278 unsigned int free_sections; /* # of free sections */
279 spinlock_t segmap_lock; /* free segmap lock */
280 unsigned long *free_segmap; /* free segment bitmap */
281 unsigned long *free_secmap; /* free section bitmap */
282 };
283
284 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
285 enum dirty_type {
286 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
287 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
288 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
289 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
290 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
291 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
292 DIRTY, /* to count # of dirty segments */
293 PRE, /* to count # of entirely obsolete segments */
294 NR_DIRTY_TYPE
295 };
296
297 struct dirty_seglist_info {
298 const struct victim_selection *v_ops; /* victim selction operation */
299 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
300 unsigned long *dirty_secmap;
301 struct mutex seglist_lock; /* lock for segment bitmaps */
302 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
303 unsigned long *victim_secmap; /* background GC victims */
304 unsigned long *pinned_secmap; /* pinned victims from foreground GC */
305 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */
306 bool enable_pin_section; /* enable pinning section */
307 };
308
309 /* victim selection function for cleaning and SSR */
310 struct victim_selection {
311 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
312 int, int, char, unsigned long long);
313 };
314
315 /* for active log information */
316 struct curseg_info {
317 struct mutex curseg_mutex; /* lock for consistency */
318 struct f2fs_summary_block *sum_blk; /* cached summary block */
319 struct rw_semaphore journal_rwsem; /* protect journal area */
320 struct f2fs_journal *journal; /* cached journal info */
321 unsigned char alloc_type; /* current allocation type */
322 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
323 unsigned int segno; /* current segment number */
324 unsigned short next_blkoff; /* next block offset to write */
325 unsigned int zone; /* current zone number */
326 unsigned int next_segno; /* preallocated segment */
327 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */
328 bool inited; /* indicate inmem log is inited */
329 };
330
331 struct sit_entry_set {
332 struct list_head set_list; /* link with all sit sets */
333 unsigned int start_segno; /* start segno of sits in set */
334 unsigned int entry_cnt; /* the # of sit entries in set */
335 };
336
337 /*
338 * inline functions
339 */
CURSEG_I(struct f2fs_sb_info * sbi,int type)340 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
341 {
342 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
343 }
344
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)345 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
346 unsigned int segno)
347 {
348 struct sit_info *sit_i = SIT_I(sbi);
349 return &sit_i->sentries[segno];
350 }
351
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)352 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
353 unsigned int segno)
354 {
355 struct sit_info *sit_i = SIT_I(sbi);
356 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
357 }
358
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)359 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
360 unsigned int segno, bool use_section)
361 {
362 /*
363 * In order to get # of valid blocks in a section instantly from many
364 * segments, f2fs manages two counting structures separately.
365 */
366 if (use_section && __is_large_section(sbi))
367 return get_sec_entry(sbi, segno)->valid_blocks;
368 else
369 return get_seg_entry(sbi, segno)->valid_blocks;
370 }
371
get_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)372 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
373 unsigned int segno, bool use_section)
374 {
375 if (use_section && __is_large_section(sbi)) {
376 unsigned int start_segno = START_SEGNO(segno);
377 unsigned int blocks = 0;
378 int i;
379
380 for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
381 struct seg_entry *se = get_seg_entry(sbi, start_segno);
382
383 blocks += se->ckpt_valid_blocks;
384 }
385 return blocks;
386 }
387 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
388 }
389
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)390 static inline void seg_info_from_raw_sit(struct seg_entry *se,
391 struct f2fs_sit_entry *rs)
392 {
393 se->valid_blocks = GET_SIT_VBLOCKS(rs);
394 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
395 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
396 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
397 #ifdef CONFIG_F2FS_CHECK_FS
398 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
399 #endif
400 se->type = GET_SIT_TYPE(rs);
401 se->mtime = le64_to_cpu(rs->mtime);
402 }
403
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)404 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
405 struct f2fs_sit_entry *rs)
406 {
407 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
408 se->valid_blocks;
409 rs->vblocks = cpu_to_le16(raw_vblocks);
410 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
411 rs->mtime = cpu_to_le64(se->mtime);
412 }
413
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)414 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
415 struct page *page, unsigned int start)
416 {
417 struct f2fs_sit_block *raw_sit;
418 struct seg_entry *se;
419 struct f2fs_sit_entry *rs;
420 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
421 (unsigned long)MAIN_SEGS(sbi));
422 int i;
423
424 raw_sit = (struct f2fs_sit_block *)page_address(page);
425 memset(raw_sit, 0, PAGE_SIZE);
426 for (i = 0; i < end - start; i++) {
427 rs = &raw_sit->entries[i];
428 se = get_seg_entry(sbi, start + i);
429 __seg_info_to_raw_sit(se, rs);
430 }
431 }
432
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)433 static inline void seg_info_to_raw_sit(struct seg_entry *se,
434 struct f2fs_sit_entry *rs)
435 {
436 __seg_info_to_raw_sit(se, rs);
437
438 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
439 se->ckpt_valid_blocks = se->valid_blocks;
440 }
441
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)442 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
443 unsigned int max, unsigned int segno)
444 {
445 unsigned int ret;
446 spin_lock(&free_i->segmap_lock);
447 ret = find_next_bit(free_i->free_segmap, max, segno);
448 spin_unlock(&free_i->segmap_lock);
449 return ret;
450 }
451
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)452 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
453 {
454 struct free_segmap_info *free_i = FREE_I(sbi);
455 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
456 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
457 unsigned int next;
458 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
459
460 spin_lock(&free_i->segmap_lock);
461 clear_bit(segno, free_i->free_segmap);
462 free_i->free_segments++;
463
464 next = find_next_bit(free_i->free_segmap,
465 start_segno + sbi->segs_per_sec, start_segno);
466 if (next >= start_segno + usable_segs) {
467 clear_bit(secno, free_i->free_secmap);
468 free_i->free_sections++;
469 }
470 spin_unlock(&free_i->segmap_lock);
471 }
472
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)473 static inline void __set_inuse(struct f2fs_sb_info *sbi,
474 unsigned int segno)
475 {
476 struct free_segmap_info *free_i = FREE_I(sbi);
477 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
478
479 set_bit(segno, free_i->free_segmap);
480 free_i->free_segments--;
481 if (!test_and_set_bit(secno, free_i->free_secmap))
482 free_i->free_sections--;
483 }
484
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno,bool inmem)485 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
486 unsigned int segno, bool inmem)
487 {
488 struct free_segmap_info *free_i = FREE_I(sbi);
489 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
490 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
491 unsigned int next;
492 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
493
494 spin_lock(&free_i->segmap_lock);
495 if (test_and_clear_bit(segno, free_i->free_segmap)) {
496 free_i->free_segments++;
497
498 if (!inmem && IS_CURSEC(sbi, secno))
499 goto skip_free;
500 next = find_next_bit(free_i->free_segmap,
501 start_segno + sbi->segs_per_sec, start_segno);
502 if (next >= start_segno + usable_segs) {
503 if (test_and_clear_bit(secno, free_i->free_secmap))
504 free_i->free_sections++;
505 }
506 }
507 skip_free:
508 spin_unlock(&free_i->segmap_lock);
509 }
510
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)511 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
512 unsigned int segno)
513 {
514 struct free_segmap_info *free_i = FREE_I(sbi);
515 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
516
517 spin_lock(&free_i->segmap_lock);
518 if (!test_and_set_bit(segno, free_i->free_segmap)) {
519 free_i->free_segments--;
520 if (!test_and_set_bit(secno, free_i->free_secmap))
521 free_i->free_sections--;
522 }
523 spin_unlock(&free_i->segmap_lock);
524 }
525
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)526 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
527 void *dst_addr)
528 {
529 struct sit_info *sit_i = SIT_I(sbi);
530
531 #ifdef CONFIG_F2FS_CHECK_FS
532 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
533 sit_i->bitmap_size))
534 f2fs_bug_on(sbi, 1);
535 #endif
536 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
537 }
538
written_block_count(struct f2fs_sb_info * sbi)539 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
540 {
541 return SIT_I(sbi)->written_valid_blocks;
542 }
543
free_segments(struct f2fs_sb_info * sbi)544 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
545 {
546 return FREE_I(sbi)->free_segments;
547 }
548
reserved_segments(struct f2fs_sb_info * sbi)549 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
550 {
551 return SM_I(sbi)->reserved_segments +
552 SM_I(sbi)->additional_reserved_segments;
553 }
554
free_sections(struct f2fs_sb_info * sbi)555 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
556 {
557 return FREE_I(sbi)->free_sections;
558 }
559
prefree_segments(struct f2fs_sb_info * sbi)560 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
561 {
562 return DIRTY_I(sbi)->nr_dirty[PRE];
563 }
564
dirty_segments(struct f2fs_sb_info * sbi)565 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
566 {
567 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
568 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
569 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
570 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
571 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
572 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
573 }
574
overprovision_segments(struct f2fs_sb_info * sbi)575 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
576 {
577 return SM_I(sbi)->ovp_segments;
578 }
579
reserved_sections(struct f2fs_sb_info * sbi)580 static inline int reserved_sections(struct f2fs_sb_info *sbi)
581 {
582 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
583 }
584
has_curseg_enough_space(struct f2fs_sb_info * sbi,unsigned int node_blocks,unsigned int dent_blocks)585 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
586 unsigned int node_blocks, unsigned int dent_blocks)
587 {
588
589 unsigned int segno, left_blocks;
590 int i;
591
592 /* check current node segment */
593 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
594 segno = CURSEG_I(sbi, i)->segno;
595 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
596 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
597
598 if (node_blocks > left_blocks)
599 return false;
600 }
601
602 /* check current data segment */
603 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
604 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
605 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
606 if (dent_blocks > left_blocks)
607 return false;
608 return true;
609 }
610
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)611 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
612 int freed, int needed)
613 {
614 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
615 get_pages(sbi, F2FS_DIRTY_DENTS) +
616 get_pages(sbi, F2FS_DIRTY_IMETA);
617 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
618 unsigned int node_secs = total_node_blocks / BLKS_PER_SEC(sbi);
619 unsigned int dent_secs = total_dent_blocks / BLKS_PER_SEC(sbi);
620 unsigned int node_blocks = total_node_blocks % BLKS_PER_SEC(sbi);
621 unsigned int dent_blocks = total_dent_blocks % BLKS_PER_SEC(sbi);
622 unsigned int free, need_lower, need_upper;
623
624 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
625 return false;
626
627 free = free_sections(sbi) + freed;
628 need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
629 need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
630
631 if (free > need_upper)
632 return false;
633 else if (free <= need_lower)
634 return true;
635 return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
636 }
637
f2fs_is_checkpoint_ready(struct f2fs_sb_info * sbi)638 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
639 {
640 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
641 return true;
642 if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
643 return true;
644 return false;
645 }
646
excess_prefree_segs(struct f2fs_sb_info * sbi)647 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
648 {
649 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
650 }
651
utilization(struct f2fs_sb_info * sbi)652 static inline int utilization(struct f2fs_sb_info *sbi)
653 {
654 return div_u64((u64)valid_user_blocks(sbi) * 100,
655 sbi->user_block_count);
656 }
657
658 /*
659 * Sometimes f2fs may be better to drop out-of-place update policy.
660 * And, users can control the policy through sysfs entries.
661 * There are five policies with triggering conditions as follows.
662 * F2FS_IPU_FORCE - all the time,
663 * F2FS_IPU_SSR - if SSR mode is activated,
664 * F2FS_IPU_UTIL - if FS utilization is over threashold,
665 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
666 * threashold,
667 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
668 * storages. IPU will be triggered only if the # of dirty
669 * pages over min_fsync_blocks. (=default option)
670 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
671 * F2FS_IPU_NOCACHE - disable IPU bio cache.
672 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
673 * FI_OPU_WRITE flag.
674 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
675 */
676 #define DEF_MIN_IPU_UTIL 70
677 #define DEF_MIN_FSYNC_BLOCKS 8
678 #define DEF_MIN_HOT_BLOCKS 16
679
680 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
681
682 enum {
683 F2FS_IPU_FORCE,
684 F2FS_IPU_SSR,
685 F2FS_IPU_UTIL,
686 F2FS_IPU_SSR_UTIL,
687 F2FS_IPU_FSYNC,
688 F2FS_IPU_ASYNC,
689 F2FS_IPU_NOCACHE,
690 F2FS_IPU_HONOR_OPU_WRITE,
691 };
692
curseg_segno(struct f2fs_sb_info * sbi,int type)693 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
694 int type)
695 {
696 struct curseg_info *curseg = CURSEG_I(sbi, type);
697 return curseg->segno;
698 }
699
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)700 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
701 int type)
702 {
703 struct curseg_info *curseg = CURSEG_I(sbi, type);
704 return curseg->alloc_type;
705 }
706
curseg_blkoff(struct f2fs_sb_info * sbi,int type)707 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
708 {
709 struct curseg_info *curseg = CURSEG_I(sbi, type);
710 return curseg->next_blkoff;
711 }
712
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)713 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
714 {
715 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
716 }
717
verify_fio_blkaddr(struct f2fs_io_info * fio)718 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
719 {
720 struct f2fs_sb_info *sbi = fio->sbi;
721
722 if (__is_valid_data_blkaddr(fio->old_blkaddr))
723 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
724 META_GENERIC : DATA_GENERIC);
725 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
726 META_GENERIC : DATA_GENERIC_ENHANCE);
727 }
728
729 /*
730 * Summary block is always treated as an invalid block
731 */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)732 static inline int check_block_count(struct f2fs_sb_info *sbi,
733 int segno, struct f2fs_sit_entry *raw_sit)
734 {
735 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
736 int valid_blocks = 0;
737 int cur_pos = 0, next_pos;
738 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
739
740 /* check bitmap with valid block count */
741 do {
742 if (is_valid) {
743 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
744 usable_blks_per_seg,
745 cur_pos);
746 valid_blocks += next_pos - cur_pos;
747 } else
748 next_pos = find_next_bit_le(&raw_sit->valid_map,
749 usable_blks_per_seg,
750 cur_pos);
751 cur_pos = next_pos;
752 is_valid = !is_valid;
753 } while (cur_pos < usable_blks_per_seg);
754
755 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
756 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
757 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
758 set_sbi_flag(sbi, SBI_NEED_FSCK);
759 return -EFSCORRUPTED;
760 }
761
762 if (usable_blks_per_seg < sbi->blocks_per_seg)
763 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
764 sbi->blocks_per_seg,
765 usable_blks_per_seg) != sbi->blocks_per_seg);
766
767 /* check segment usage, and check boundary of a given segment number */
768 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
769 || segno > TOTAL_SEGS(sbi) - 1)) {
770 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
771 GET_SIT_VBLOCKS(raw_sit), segno);
772 set_sbi_flag(sbi, SBI_NEED_FSCK);
773 return -EFSCORRUPTED;
774 }
775 return 0;
776 }
777
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)778 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
779 unsigned int start)
780 {
781 struct sit_info *sit_i = SIT_I(sbi);
782 unsigned int offset = SIT_BLOCK_OFFSET(start);
783 block_t blk_addr = sit_i->sit_base_addr + offset;
784
785 check_seg_range(sbi, start);
786
787 #ifdef CONFIG_F2FS_CHECK_FS
788 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
789 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
790 f2fs_bug_on(sbi, 1);
791 #endif
792
793 /* calculate sit block address */
794 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
795 blk_addr += sit_i->sit_blocks;
796
797 return blk_addr;
798 }
799
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)800 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
801 pgoff_t block_addr)
802 {
803 struct sit_info *sit_i = SIT_I(sbi);
804 block_addr -= sit_i->sit_base_addr;
805 if (block_addr < sit_i->sit_blocks)
806 block_addr += sit_i->sit_blocks;
807 else
808 block_addr -= sit_i->sit_blocks;
809
810 return block_addr + sit_i->sit_base_addr;
811 }
812
set_to_next_sit(struct sit_info * sit_i,unsigned int start)813 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
814 {
815 unsigned int block_off = SIT_BLOCK_OFFSET(start);
816
817 f2fs_change_bit(block_off, sit_i->sit_bitmap);
818 #ifdef CONFIG_F2FS_CHECK_FS
819 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
820 #endif
821 }
822
get_mtime(struct f2fs_sb_info * sbi,bool base_time)823 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
824 bool base_time)
825 {
826 struct sit_info *sit_i = SIT_I(sbi);
827 time64_t diff, now = ktime_get_boottime_seconds();
828
829 if (now >= sit_i->mounted_time)
830 return sit_i->elapsed_time + now - sit_i->mounted_time;
831
832 /* system time is set to the past */
833 if (!base_time) {
834 diff = sit_i->mounted_time - now;
835 if (sit_i->elapsed_time >= diff)
836 return sit_i->elapsed_time - diff;
837 return 0;
838 }
839 return sit_i->elapsed_time;
840 }
841
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)842 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
843 unsigned int ofs_in_node, unsigned char version)
844 {
845 sum->nid = cpu_to_le32(nid);
846 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
847 sum->version = version;
848 }
849
start_sum_block(struct f2fs_sb_info * sbi)850 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
851 {
852 return __start_cp_addr(sbi) +
853 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
854 }
855
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)856 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
857 {
858 return __start_cp_addr(sbi) +
859 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
860 - (base + 1) + type;
861 }
862
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)863 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
864 {
865 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
866 return true;
867 return false;
868 }
869
870 /*
871 * It is very important to gather dirty pages and write at once, so that we can
872 * submit a big bio without interfering other data writes.
873 * By default, 512 pages for directory data,
874 * 512 pages (2MB) * 8 for nodes, and
875 * 256 pages * 8 for meta are set.
876 */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)877 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
878 {
879 if (sbi->sb->s_bdi->wb.dirty_exceeded)
880 return 0;
881
882 if (type == DATA)
883 return sbi->blocks_per_seg;
884 else if (type == NODE)
885 return 8 * sbi->blocks_per_seg;
886 else if (type == META)
887 return 8 * BIO_MAX_VECS;
888 else
889 return 0;
890 }
891
892 /*
893 * When writing pages, it'd better align nr_to_write for segment size.
894 */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)895 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
896 struct writeback_control *wbc)
897 {
898 long nr_to_write, desired;
899
900 if (wbc->sync_mode != WB_SYNC_NONE)
901 return 0;
902
903 nr_to_write = wbc->nr_to_write;
904 desired = BIO_MAX_VECS;
905 if (type == NODE)
906 desired <<= 1;
907
908 wbc->nr_to_write = desired;
909 return desired - nr_to_write;
910 }
911
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)912 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
913 {
914 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
915 bool wakeup = false;
916 int i;
917
918 if (force)
919 goto wake_up;
920
921 mutex_lock(&dcc->cmd_lock);
922 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
923 if (i + 1 < dcc->discard_granularity)
924 break;
925 if (!list_empty(&dcc->pend_list[i])) {
926 wakeup = true;
927 break;
928 }
929 }
930 mutex_unlock(&dcc->cmd_lock);
931 if (!wakeup || !is_idle(sbi, DISCARD_TIME))
932 return;
933 wake_up:
934 dcc->discard_wake = 1;
935 wake_up_interruptible_all(&dcc->discard_wait_queue);
936 }
937