• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
21 #include <asm/bug.h>
22 #include <asm/page.h>
23 #include <asm/uv.h>
24 
25 extern pgd_t swapper_pg_dir[];
26 extern void paging_init(void);
27 extern unsigned long s390_invalid_asce;
28 
29 enum {
30 	PG_DIRECT_MAP_4K = 0,
31 	PG_DIRECT_MAP_1M,
32 	PG_DIRECT_MAP_2G,
33 	PG_DIRECT_MAP_MAX
34 };
35 
36 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
37 
update_page_count(int level,long count)38 static inline void update_page_count(int level, long count)
39 {
40 	if (IS_ENABLED(CONFIG_PROC_FS))
41 		atomic_long_add(count, &direct_pages_count[level]);
42 }
43 
44 struct seq_file;
45 void arch_report_meminfo(struct seq_file *m);
46 
47 /*
48  * The S390 doesn't have any external MMU info: the kernel page
49  * tables contain all the necessary information.
50  */
51 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53 
54 /*
55  * ZERO_PAGE is a global shared page that is always zero; used
56  * for zero-mapped memory areas etc..
57  */
58 
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61 
62 #define ZERO_PAGE(vaddr) \
63 	(virt_to_page((void *)(empty_zero_page + \
64 	 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66 
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68 
69 #define pte_ERROR(e) \
70 	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79 
80 /*
81  * The vmalloc and module area will always be on the topmost area of the
82  * kernel mapping. 512GB are reserved for vmalloc by default.
83  * At the top of the vmalloc area a 2GB area is reserved where modules
84  * will reside. That makes sure that inter module branches always
85  * happen without trampolines and in addition the placement within a
86  * 2GB frame is branch prediction unit friendly.
87  */
88 extern unsigned long __bootdata_preserved(VMALLOC_START);
89 extern unsigned long __bootdata_preserved(VMALLOC_END);
90 #define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
91 extern struct page *__bootdata_preserved(vmemmap);
92 extern unsigned long __bootdata_preserved(vmemmap_size);
93 
94 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
95 
96 extern unsigned long __bootdata_preserved(MODULES_VADDR);
97 extern unsigned long __bootdata_preserved(MODULES_END);
98 #define MODULES_VADDR	MODULES_VADDR
99 #define MODULES_END	MODULES_END
100 #define MODULES_LEN	(1UL << 31)
101 
is_module_addr(void * addr)102 static inline int is_module_addr(void *addr)
103 {
104 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
105 	if (addr < (void *)MODULES_VADDR)
106 		return 0;
107 	if (addr > (void *)MODULES_END)
108 		return 0;
109 	return 1;
110 }
111 
112 /*
113  * A 64 bit pagetable entry of S390 has following format:
114  * |			 PFRA			      |0IPC|  OS  |
115  * 0000000000111111111122222222223333333333444444444455555555556666
116  * 0123456789012345678901234567890123456789012345678901234567890123
117  *
118  * I Page-Invalid Bit:    Page is not available for address-translation
119  * P Page-Protection Bit: Store access not possible for page
120  * C Change-bit override: HW is not required to set change bit
121  *
122  * A 64 bit segmenttable entry of S390 has following format:
123  * |        P-table origin                              |      TT
124  * 0000000000111111111122222222223333333333444444444455555555556666
125  * 0123456789012345678901234567890123456789012345678901234567890123
126  *
127  * I Segment-Invalid Bit:    Segment is not available for address-translation
128  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
129  * P Page-Protection Bit: Store access not possible for page
130  * TT Type 00
131  *
132  * A 64 bit region table entry of S390 has following format:
133  * |        S-table origin                             |   TF  TTTL
134  * 0000000000111111111122222222223333333333444444444455555555556666
135  * 0123456789012345678901234567890123456789012345678901234567890123
136  *
137  * I Segment-Invalid Bit:    Segment is not available for address-translation
138  * TT Type 01
139  * TF
140  * TL Table length
141  *
142  * The 64 bit regiontable origin of S390 has following format:
143  * |      region table origon                          |       DTTL
144  * 0000000000111111111122222222223333333333444444444455555555556666
145  * 0123456789012345678901234567890123456789012345678901234567890123
146  *
147  * X Space-Switch event:
148  * G Segment-Invalid Bit:
149  * P Private-Space Bit:
150  * S Storage-Alteration:
151  * R Real space
152  * TL Table-Length:
153  *
154  * A storage key has the following format:
155  * | ACC |F|R|C|0|
156  *  0   3 4 5 6 7
157  * ACC: access key
158  * F  : fetch protection bit
159  * R  : referenced bit
160  * C  : changed bit
161  */
162 
163 /* Hardware bits in the page table entry */
164 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
165 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
166 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
167 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
168 
169 /* Software bits in the page table entry */
170 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
171 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
172 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
173 #define _PAGE_READ	0x010		/* SW pte read bit */
174 #define _PAGE_WRITE	0x020		/* SW pte write bit */
175 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
176 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
177 
178 #ifdef CONFIG_MEM_SOFT_DIRTY
179 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
180 #else
181 #define _PAGE_SOFT_DIRTY 0x000
182 #endif
183 
184 /* Set of bits not changed in pte_modify */
185 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
186 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
187 
188 /*
189  * handle_pte_fault uses pte_present and pte_none to find out the pte type
190  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
191  * distinguish present from not-present ptes. It is changed only with the page
192  * table lock held.
193  *
194  * The following table gives the different possible bit combinations for
195  * the pte hardware and software bits in the last 12 bits of a pte
196  * (. unassigned bit, x don't care, t swap type):
197  *
198  *				842100000000
199  *				000084210000
200  *				000000008421
201  *				.IR.uswrdy.p
202  * empty			.10.00000000
203  * swap				.11..ttttt.0
204  * prot-none, clean, old	.11.xx0000.1
205  * prot-none, clean, young	.11.xx0001.1
206  * prot-none, dirty, old	.11.xx0010.1
207  * prot-none, dirty, young	.11.xx0011.1
208  * read-only, clean, old	.11.xx0100.1
209  * read-only, clean, young	.01.xx0101.1
210  * read-only, dirty, old	.11.xx0110.1
211  * read-only, dirty, young	.01.xx0111.1
212  * read-write, clean, old	.11.xx1100.1
213  * read-write, clean, young	.01.xx1101.1
214  * read-write, dirty, old	.10.xx1110.1
215  * read-write, dirty, young	.00.xx1111.1
216  * HW-bits: R read-only, I invalid
217  * SW-bits: p present, y young, d dirty, r read, w write, s special,
218  *	    u unused, l large
219  *
220  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
221  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
222  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
223  */
224 
225 /* Bits in the segment/region table address-space-control-element */
226 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
227 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
228 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
229 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
230 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
231 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
232 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
233 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
234 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
235 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
236 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
237 
238 /* Bits in the region table entry */
239 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
240 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
241 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
242 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
243 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
244 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
245 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
246 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
247 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
248 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
249 
250 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
251 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
252 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
253 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
254 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
255 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
256 
257 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
258 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
259 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
260 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
261 #define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
262 #define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
263 
264 #ifdef CONFIG_MEM_SOFT_DIRTY
265 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
266 #else
267 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
268 #endif
269 
270 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
271 
272 /* Bits in the segment table entry */
273 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
275 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
276 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
277 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
278 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
279 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
280 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
281 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
282 
283 #define _SEGMENT_ENTRY		(0)
284 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
285 
286 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
287 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
288 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
289 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
290 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
291 
292 #ifdef CONFIG_MEM_SOFT_DIRTY
293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
294 #else
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
296 #endif
297 
298 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
299 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
300 
301 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
302 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
303 
304 #define _REGION1_SHIFT	53
305 #define _REGION2_SHIFT	42
306 #define _REGION3_SHIFT	31
307 #define _SEGMENT_SHIFT	20
308 
309 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
310 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
311 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
312 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
313 #define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
314 
315 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
316 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
317 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
318 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
319 
320 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
321 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
322 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
323 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
324 
325 #define PMD_SHIFT	_SEGMENT_SHIFT
326 #define PUD_SHIFT	_REGION3_SHIFT
327 #define P4D_SHIFT	_REGION2_SHIFT
328 #define PGDIR_SHIFT	_REGION1_SHIFT
329 
330 #define PMD_SIZE	_SEGMENT_SIZE
331 #define PUD_SIZE	_REGION3_SIZE
332 #define P4D_SIZE	_REGION2_SIZE
333 #define PGDIR_SIZE	_REGION1_SIZE
334 
335 #define PMD_MASK	_SEGMENT_MASK
336 #define PUD_MASK	_REGION3_MASK
337 #define P4D_MASK	_REGION2_MASK
338 #define PGDIR_MASK	_REGION1_MASK
339 
340 #define PTRS_PER_PTE	_PAGE_ENTRIES
341 #define PTRS_PER_PMD	_CRST_ENTRIES
342 #define PTRS_PER_PUD	_CRST_ENTRIES
343 #define PTRS_PER_P4D	_CRST_ENTRIES
344 #define PTRS_PER_PGD	_CRST_ENTRIES
345 
346 /*
347  * Segment table and region3 table entry encoding
348  * (R = read-only, I = invalid, y = young bit):
349  *				dy..R...I...wr
350  * prot-none, clean, old	00..1...1...00
351  * prot-none, clean, young	01..1...1...00
352  * prot-none, dirty, old	10..1...1...00
353  * prot-none, dirty, young	11..1...1...00
354  * read-only, clean, old	00..1...1...01
355  * read-only, clean, young	01..1...0...01
356  * read-only, dirty, old	10..1...1...01
357  * read-only, dirty, young	11..1...0...01
358  * read-write, clean, old	00..1...1...11
359  * read-write, clean, young	01..1...0...11
360  * read-write, dirty, old	10..0...1...11
361  * read-write, dirty, young	11..0...0...11
362  * The segment table origin is used to distinguish empty (origin==0) from
363  * read-write, old segment table entries (origin!=0)
364  * HW-bits: R read-only, I invalid
365  * SW-bits: y young, d dirty, r read, w write
366  */
367 
368 /* Page status table bits for virtualization */
369 #define PGSTE_ACC_BITS	0xf000000000000000UL
370 #define PGSTE_FP_BIT	0x0800000000000000UL
371 #define PGSTE_PCL_BIT	0x0080000000000000UL
372 #define PGSTE_HR_BIT	0x0040000000000000UL
373 #define PGSTE_HC_BIT	0x0020000000000000UL
374 #define PGSTE_GR_BIT	0x0004000000000000UL
375 #define PGSTE_GC_BIT	0x0002000000000000UL
376 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
377 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
378 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
379 
380 /* Guest Page State used for virtualization */
381 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
382 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
383 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
384 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
385 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
386 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
387 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
388 
389 /*
390  * A user page table pointer has the space-switch-event bit, the
391  * private-space-control bit and the storage-alteration-event-control
392  * bit set. A kernel page table pointer doesn't need them.
393  */
394 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
395 				 _ASCE_ALT_EVENT)
396 
397 /*
398  * Page protection definitions.
399  */
400 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
401 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
402 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 				 _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
406 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 				 _PAGE_INVALID | _PAGE_PROTECT)
409 
410 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
411 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
412 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
415 				 _PAGE_PROTECT | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
417 				  _PAGE_YOUNG |	_PAGE_DIRTY)
418 
419 /*
420  * On s390 the page table entry has an invalid bit and a read-only bit.
421  * Read permission implies execute permission and write permission
422  * implies read permission.
423  */
424          /*xwr*/
425 #define __P000	PAGE_NONE
426 #define __P001	PAGE_RO
427 #define __P010	PAGE_RO
428 #define __P011	PAGE_RO
429 #define __P100	PAGE_RX
430 #define __P101	PAGE_RX
431 #define __P110	PAGE_RX
432 #define __P111	PAGE_RX
433 
434 #define __S000	PAGE_NONE
435 #define __S001	PAGE_RO
436 #define __S010	PAGE_RW
437 #define __S011	PAGE_RW
438 #define __S100	PAGE_RX
439 #define __S101	PAGE_RX
440 #define __S110	PAGE_RWX
441 #define __S111	PAGE_RWX
442 
443 /*
444  * Segment entry (large page) protection definitions.
445  */
446 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
447 				 _SEGMENT_ENTRY_PROTECT)
448 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
449 				 _SEGMENT_ENTRY_READ | \
450 				 _SEGMENT_ENTRY_NOEXEC)
451 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
452 				 _SEGMENT_ENTRY_READ)
453 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
454 				 _SEGMENT_ENTRY_WRITE | \
455 				 _SEGMENT_ENTRY_NOEXEC)
456 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
457 				 _SEGMENT_ENTRY_WRITE)
458 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
459 				 _SEGMENT_ENTRY_LARGE |	\
460 				 _SEGMENT_ENTRY_READ |	\
461 				 _SEGMENT_ENTRY_WRITE | \
462 				 _SEGMENT_ENTRY_YOUNG | \
463 				 _SEGMENT_ENTRY_DIRTY | \
464 				 _SEGMENT_ENTRY_NOEXEC)
465 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
466 				 _SEGMENT_ENTRY_LARGE |	\
467 				 _SEGMENT_ENTRY_READ |	\
468 				 _SEGMENT_ENTRY_YOUNG |	\
469 				 _SEGMENT_ENTRY_PROTECT | \
470 				 _SEGMENT_ENTRY_NOEXEC)
471 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
472 				 _SEGMENT_ENTRY_LARGE |	\
473 				 _SEGMENT_ENTRY_READ |	\
474 				 _SEGMENT_ENTRY_WRITE | \
475 				 _SEGMENT_ENTRY_YOUNG |	\
476 				 _SEGMENT_ENTRY_DIRTY)
477 
478 /*
479  * Region3 entry (large page) protection definitions.
480  */
481 
482 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
483 				 _REGION3_ENTRY_LARGE |	 \
484 				 _REGION3_ENTRY_READ |	 \
485 				 _REGION3_ENTRY_WRITE |	 \
486 				 _REGION3_ENTRY_YOUNG |	 \
487 				 _REGION3_ENTRY_DIRTY | \
488 				 _REGION_ENTRY_NOEXEC)
489 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
490 				   _REGION3_ENTRY_LARGE |  \
491 				   _REGION3_ENTRY_READ |   \
492 				   _REGION3_ENTRY_YOUNG |  \
493 				   _REGION_ENTRY_PROTECT | \
494 				   _REGION_ENTRY_NOEXEC)
495 
mm_p4d_folded(struct mm_struct * mm)496 static inline bool mm_p4d_folded(struct mm_struct *mm)
497 {
498 	return mm->context.asce_limit <= _REGION1_SIZE;
499 }
500 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
501 
mm_pud_folded(struct mm_struct * mm)502 static inline bool mm_pud_folded(struct mm_struct *mm)
503 {
504 	return mm->context.asce_limit <= _REGION2_SIZE;
505 }
506 #define mm_pud_folded(mm) mm_pud_folded(mm)
507 
mm_pmd_folded(struct mm_struct * mm)508 static inline bool mm_pmd_folded(struct mm_struct *mm)
509 {
510 	return mm->context.asce_limit <= _REGION3_SIZE;
511 }
512 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
513 
mm_has_pgste(struct mm_struct * mm)514 static inline int mm_has_pgste(struct mm_struct *mm)
515 {
516 #ifdef CONFIG_PGSTE
517 	if (unlikely(mm->context.has_pgste))
518 		return 1;
519 #endif
520 	return 0;
521 }
522 
mm_is_protected(struct mm_struct * mm)523 static inline int mm_is_protected(struct mm_struct *mm)
524 {
525 #ifdef CONFIG_PGSTE
526 	if (unlikely(atomic_read(&mm->context.is_protected)))
527 		return 1;
528 #endif
529 	return 0;
530 }
531 
mm_alloc_pgste(struct mm_struct * mm)532 static inline int mm_alloc_pgste(struct mm_struct *mm)
533 {
534 #ifdef CONFIG_PGSTE
535 	if (unlikely(mm->context.alloc_pgste))
536 		return 1;
537 #endif
538 	return 0;
539 }
540 
541 /*
542  * In the case that a guest uses storage keys
543  * faults should no longer be backed by zero pages
544  */
545 #define mm_forbids_zeropage mm_has_pgste
mm_uses_skeys(struct mm_struct * mm)546 static inline int mm_uses_skeys(struct mm_struct *mm)
547 {
548 #ifdef CONFIG_PGSTE
549 	if (mm->context.uses_skeys)
550 		return 1;
551 #endif
552 	return 0;
553 }
554 
csp(unsigned int * ptr,unsigned int old,unsigned int new)555 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
556 {
557 	union register_pair r1 = { .even = old, .odd = new, };
558 	unsigned long address = (unsigned long)ptr | 1;
559 
560 	asm volatile(
561 		"	csp	%[r1],%[address]"
562 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
563 		: [address] "d" (address)
564 		: "cc");
565 }
566 
cspg(unsigned long * ptr,unsigned long old,unsigned long new)567 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
568 {
569 	union register_pair r1 = { .even = old, .odd = new, };
570 	unsigned long address = (unsigned long)ptr | 1;
571 
572 	asm volatile(
573 		"	.insn	rre,0xb98a0000,%[r1],%[address]"
574 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
575 		: [address] "d" (address)
576 		: "cc");
577 }
578 
579 #define CRDTE_DTT_PAGE		0x00UL
580 #define CRDTE_DTT_SEGMENT	0x10UL
581 #define CRDTE_DTT_REGION3	0x14UL
582 #define CRDTE_DTT_REGION2	0x18UL
583 #define CRDTE_DTT_REGION1	0x1cUL
584 
crdte(unsigned long old,unsigned long new,unsigned long table,unsigned long dtt,unsigned long address,unsigned long asce)585 static inline void crdte(unsigned long old, unsigned long new,
586 			 unsigned long table, unsigned long dtt,
587 			 unsigned long address, unsigned long asce)
588 {
589 	union register_pair r1 = { .even = old, .odd = new, };
590 	union register_pair r2 = { .even = table | dtt, .odd = address, };
591 
592 	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
593 		     : [r1] "+&d" (r1.pair)
594 		     : [r2] "d" (r2.pair), [asce] "a" (asce)
595 		     : "memory", "cc");
596 }
597 
598 /*
599  * pgd/p4d/pud/pmd/pte query functions
600  */
pgd_folded(pgd_t pgd)601 static inline int pgd_folded(pgd_t pgd)
602 {
603 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
604 }
605 
pgd_present(pgd_t pgd)606 static inline int pgd_present(pgd_t pgd)
607 {
608 	if (pgd_folded(pgd))
609 		return 1;
610 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
611 }
612 
pgd_none(pgd_t pgd)613 static inline int pgd_none(pgd_t pgd)
614 {
615 	if (pgd_folded(pgd))
616 		return 0;
617 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
618 }
619 
pgd_bad(pgd_t pgd)620 static inline int pgd_bad(pgd_t pgd)
621 {
622 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
623 		return 0;
624 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
625 }
626 
pgd_pfn(pgd_t pgd)627 static inline unsigned long pgd_pfn(pgd_t pgd)
628 {
629 	unsigned long origin_mask;
630 
631 	origin_mask = _REGION_ENTRY_ORIGIN;
632 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
633 }
634 
p4d_folded(p4d_t p4d)635 static inline int p4d_folded(p4d_t p4d)
636 {
637 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
638 }
639 
p4d_present(p4d_t p4d)640 static inline int p4d_present(p4d_t p4d)
641 {
642 	if (p4d_folded(p4d))
643 		return 1;
644 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
645 }
646 
p4d_none(p4d_t p4d)647 static inline int p4d_none(p4d_t p4d)
648 {
649 	if (p4d_folded(p4d))
650 		return 0;
651 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
652 }
653 
p4d_pfn(p4d_t p4d)654 static inline unsigned long p4d_pfn(p4d_t p4d)
655 {
656 	unsigned long origin_mask;
657 
658 	origin_mask = _REGION_ENTRY_ORIGIN;
659 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
660 }
661 
pud_folded(pud_t pud)662 static inline int pud_folded(pud_t pud)
663 {
664 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
665 }
666 
pud_present(pud_t pud)667 static inline int pud_present(pud_t pud)
668 {
669 	if (pud_folded(pud))
670 		return 1;
671 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
672 }
673 
pud_none(pud_t pud)674 static inline int pud_none(pud_t pud)
675 {
676 	if (pud_folded(pud))
677 		return 0;
678 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
679 }
680 
681 #define pud_leaf	pud_large
pud_large(pud_t pud)682 static inline int pud_large(pud_t pud)
683 {
684 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
685 		return 0;
686 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
687 }
688 
689 #define pmd_leaf	pmd_large
pmd_large(pmd_t pmd)690 static inline int pmd_large(pmd_t pmd)
691 {
692 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
693 }
694 
pmd_bad(pmd_t pmd)695 static inline int pmd_bad(pmd_t pmd)
696 {
697 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
698 		return 1;
699 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
700 }
701 
pud_bad(pud_t pud)702 static inline int pud_bad(pud_t pud)
703 {
704 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
705 
706 	if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
707 		return 1;
708 	if (type < _REGION_ENTRY_TYPE_R3)
709 		return 0;
710 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
711 }
712 
p4d_bad(p4d_t p4d)713 static inline int p4d_bad(p4d_t p4d)
714 {
715 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
716 
717 	if (type > _REGION_ENTRY_TYPE_R2)
718 		return 1;
719 	if (type < _REGION_ENTRY_TYPE_R2)
720 		return 0;
721 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
722 }
723 
pmd_present(pmd_t pmd)724 static inline int pmd_present(pmd_t pmd)
725 {
726 	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
727 }
728 
pmd_none(pmd_t pmd)729 static inline int pmd_none(pmd_t pmd)
730 {
731 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
732 }
733 
734 #define pmd_write pmd_write
pmd_write(pmd_t pmd)735 static inline int pmd_write(pmd_t pmd)
736 {
737 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
738 }
739 
740 #define pud_write pud_write
pud_write(pud_t pud)741 static inline int pud_write(pud_t pud)
742 {
743 	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
744 }
745 
pmd_dirty(pmd_t pmd)746 static inline int pmd_dirty(pmd_t pmd)
747 {
748 	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
749 }
750 
pmd_young(pmd_t pmd)751 static inline int pmd_young(pmd_t pmd)
752 {
753 	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
754 }
755 
pte_present(pte_t pte)756 static inline int pte_present(pte_t pte)
757 {
758 	/* Bit pattern: (pte & 0x001) == 0x001 */
759 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
760 }
761 
pte_none(pte_t pte)762 static inline int pte_none(pte_t pte)
763 {
764 	/* Bit pattern: pte == 0x400 */
765 	return pte_val(pte) == _PAGE_INVALID;
766 }
767 
pte_swap(pte_t pte)768 static inline int pte_swap(pte_t pte)
769 {
770 	/* Bit pattern: (pte & 0x201) == 0x200 */
771 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
772 		== _PAGE_PROTECT;
773 }
774 
pte_special(pte_t pte)775 static inline int pte_special(pte_t pte)
776 {
777 	return (pte_val(pte) & _PAGE_SPECIAL);
778 }
779 
780 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)781 static inline int pte_same(pte_t a, pte_t b)
782 {
783 	return pte_val(a) == pte_val(b);
784 }
785 
786 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)787 static inline int pte_protnone(pte_t pte)
788 {
789 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
790 }
791 
pmd_protnone(pmd_t pmd)792 static inline int pmd_protnone(pmd_t pmd)
793 {
794 	/* pmd_large(pmd) implies pmd_present(pmd) */
795 	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
796 }
797 #endif
798 
pte_soft_dirty(pte_t pte)799 static inline int pte_soft_dirty(pte_t pte)
800 {
801 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
802 }
803 #define pte_swp_soft_dirty pte_soft_dirty
804 
pte_mksoft_dirty(pte_t pte)805 static inline pte_t pte_mksoft_dirty(pte_t pte)
806 {
807 	pte_val(pte) |= _PAGE_SOFT_DIRTY;
808 	return pte;
809 }
810 #define pte_swp_mksoft_dirty pte_mksoft_dirty
811 
pte_clear_soft_dirty(pte_t pte)812 static inline pte_t pte_clear_soft_dirty(pte_t pte)
813 {
814 	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
815 	return pte;
816 }
817 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
818 
pmd_soft_dirty(pmd_t pmd)819 static inline int pmd_soft_dirty(pmd_t pmd)
820 {
821 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
822 }
823 
pmd_mksoft_dirty(pmd_t pmd)824 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
825 {
826 	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
827 	return pmd;
828 }
829 
pmd_clear_soft_dirty(pmd_t pmd)830 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
831 {
832 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
833 	return pmd;
834 }
835 
836 /*
837  * query functions pte_write/pte_dirty/pte_young only work if
838  * pte_present() is true. Undefined behaviour if not..
839  */
pte_write(pte_t pte)840 static inline int pte_write(pte_t pte)
841 {
842 	return (pte_val(pte) & _PAGE_WRITE) != 0;
843 }
844 
pte_dirty(pte_t pte)845 static inline int pte_dirty(pte_t pte)
846 {
847 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
848 }
849 
pte_young(pte_t pte)850 static inline int pte_young(pte_t pte)
851 {
852 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
853 }
854 
855 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)856 static inline int pte_unused(pte_t pte)
857 {
858 	return pte_val(pte) & _PAGE_UNUSED;
859 }
860 
861 /*
862  * Extract the pgprot value from the given pte while at the same time making it
863  * usable for kernel address space mappings where fault driven dirty and
864  * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
865  * must not be set.
866  */
pte_pgprot(pte_t pte)867 static inline pgprot_t pte_pgprot(pte_t pte)
868 {
869 	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
870 
871 	if (pte_write(pte))
872 		pte_flags |= pgprot_val(PAGE_KERNEL);
873 	else
874 		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
875 	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
876 
877 	return __pgprot(pte_flags);
878 }
879 
880 /*
881  * pgd/pmd/pte modification functions
882  */
883 
pgd_clear(pgd_t * pgd)884 static inline void pgd_clear(pgd_t *pgd)
885 {
886 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
887 		pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
888 }
889 
p4d_clear(p4d_t * p4d)890 static inline void p4d_clear(p4d_t *p4d)
891 {
892 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
893 		p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
894 }
895 
pud_clear(pud_t * pud)896 static inline void pud_clear(pud_t *pud)
897 {
898 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
899 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
900 }
901 
pmd_clear(pmd_t * pmdp)902 static inline void pmd_clear(pmd_t *pmdp)
903 {
904 	pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
905 }
906 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)907 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
908 {
909 	pte_val(*ptep) = _PAGE_INVALID;
910 }
911 
912 /*
913  * The following pte modification functions only work if
914  * pte_present() is true. Undefined behaviour if not..
915  */
pte_modify(pte_t pte,pgprot_t newprot)916 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
917 {
918 	pte_val(pte) &= _PAGE_CHG_MASK;
919 	pte_val(pte) |= pgprot_val(newprot);
920 	/*
921 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
922 	 * has the invalid bit set, clear it again for readable, young pages
923 	 */
924 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
925 		pte_val(pte) &= ~_PAGE_INVALID;
926 	/*
927 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
928 	 * protection bit set, clear it again for writable, dirty pages
929 	 */
930 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
931 		pte_val(pte) &= ~_PAGE_PROTECT;
932 	return pte;
933 }
934 
pte_wrprotect(pte_t pte)935 static inline pte_t pte_wrprotect(pte_t pte)
936 {
937 	pte_val(pte) &= ~_PAGE_WRITE;
938 	pte_val(pte) |= _PAGE_PROTECT;
939 	return pte;
940 }
941 
pte_mkwrite(pte_t pte)942 static inline pte_t pte_mkwrite(pte_t pte)
943 {
944 	pte_val(pte) |= _PAGE_WRITE;
945 	if (pte_val(pte) & _PAGE_DIRTY)
946 		pte_val(pte) &= ~_PAGE_PROTECT;
947 	return pte;
948 }
949 
pte_mkclean(pte_t pte)950 static inline pte_t pte_mkclean(pte_t pte)
951 {
952 	pte_val(pte) &= ~_PAGE_DIRTY;
953 	pte_val(pte) |= _PAGE_PROTECT;
954 	return pte;
955 }
956 
pte_mkdirty(pte_t pte)957 static inline pte_t pte_mkdirty(pte_t pte)
958 {
959 	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
960 	if (pte_val(pte) & _PAGE_WRITE)
961 		pte_val(pte) &= ~_PAGE_PROTECT;
962 	return pte;
963 }
964 
pte_mkold(pte_t pte)965 static inline pte_t pte_mkold(pte_t pte)
966 {
967 	pte_val(pte) &= ~_PAGE_YOUNG;
968 	pte_val(pte) |= _PAGE_INVALID;
969 	return pte;
970 }
971 
pte_mkyoung(pte_t pte)972 static inline pte_t pte_mkyoung(pte_t pte)
973 {
974 	pte_val(pte) |= _PAGE_YOUNG;
975 	if (pte_val(pte) & _PAGE_READ)
976 		pte_val(pte) &= ~_PAGE_INVALID;
977 	return pte;
978 }
979 
pte_mkspecial(pte_t pte)980 static inline pte_t pte_mkspecial(pte_t pte)
981 {
982 	pte_val(pte) |= _PAGE_SPECIAL;
983 	return pte;
984 }
985 
986 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)987 static inline pte_t pte_mkhuge(pte_t pte)
988 {
989 	pte_val(pte) |= _PAGE_LARGE;
990 	return pte;
991 }
992 #endif
993 
994 #define IPTE_GLOBAL	0
995 #define	IPTE_LOCAL	1
996 
997 #define IPTE_NODAT	0x400
998 #define IPTE_GUEST_ASCE	0x800
999 
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1000 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1001 					unsigned long opt, unsigned long asce,
1002 					int local)
1003 {
1004 	unsigned long pto = (unsigned long) ptep;
1005 
1006 	if (__builtin_constant_p(opt) && opt == 0) {
1007 		/* Invalidation + TLB flush for the pte */
1008 		asm volatile(
1009 			"	.insn	rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1010 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1011 			  [m4] "i" (local));
1012 		return;
1013 	}
1014 
1015 	/* Invalidate ptes with options + TLB flush of the ptes */
1016 	opt = opt | (asce & _ASCE_ORIGIN);
1017 	asm volatile(
1018 		"	.insn	rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1019 		: [r2] "+a" (address), [r3] "+a" (opt)
1020 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1021 }
1022 
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)1023 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1024 					      pte_t *ptep, int local)
1025 {
1026 	unsigned long pto = (unsigned long) ptep;
1027 
1028 	/* Invalidate a range of ptes + TLB flush of the ptes */
1029 	do {
1030 		asm volatile(
1031 			"       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1032 			: [r2] "+a" (address), [r3] "+a" (nr)
1033 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1034 	} while (nr != 255);
1035 }
1036 
1037 /*
1038  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1039  * both clear the TLB for the unmapped pte. The reason is that
1040  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1041  * to modify an active pte. The sequence is
1042  *   1) ptep_get_and_clear
1043  *   2) set_pte_at
1044  *   3) flush_tlb_range
1045  * On s390 the tlb needs to get flushed with the modification of the pte
1046  * if the pte is active. The only way how this can be implemented is to
1047  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1048  * is a nop.
1049  */
1050 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1051 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1052 
1053 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1054 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1055 					    unsigned long addr, pte_t *ptep)
1056 {
1057 	pte_t pte = *ptep;
1058 
1059 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1060 	return pte_young(pte);
1061 }
1062 
1063 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1064 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1065 					 unsigned long address, pte_t *ptep)
1066 {
1067 	return ptep_test_and_clear_young(vma, address, ptep);
1068 }
1069 
1070 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1071 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1072 				       unsigned long addr, pte_t *ptep)
1073 {
1074 	pte_t res;
1075 
1076 	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1077 	if (mm_is_protected(mm) && pte_present(res))
1078 		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1079 	return res;
1080 }
1081 
1082 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1083 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1084 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1085 			     pte_t *, pte_t, pte_t);
1086 
1087 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1088 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1089 				     unsigned long addr, pte_t *ptep)
1090 {
1091 	pte_t res;
1092 
1093 	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1094 	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1095 		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1096 	return res;
1097 }
1098 
1099 /*
1100  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1101  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1102  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1103  * cannot be accessed while the batched unmap is running. In this case
1104  * full==1 and a simple pte_clear is enough. See tlb.h.
1105  */
1106 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1107 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1108 					    unsigned long addr,
1109 					    pte_t *ptep, int full)
1110 {
1111 	pte_t res;
1112 
1113 	if (full) {
1114 		res = *ptep;
1115 		*ptep = __pte(_PAGE_INVALID);
1116 	} else {
1117 		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1118 	}
1119 	if (mm_is_protected(mm) && pte_present(res))
1120 		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1121 	return res;
1122 }
1123 
1124 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1125 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1126 				      unsigned long addr, pte_t *ptep)
1127 {
1128 	pte_t pte = *ptep;
1129 
1130 	if (pte_write(pte))
1131 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1132 }
1133 
1134 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1135 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1136 					unsigned long addr, pte_t *ptep,
1137 					pte_t entry, int dirty)
1138 {
1139 	if (pte_same(*ptep, entry))
1140 		return 0;
1141 	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1142 	return 1;
1143 }
1144 
1145 /*
1146  * Additional functions to handle KVM guest page tables
1147  */
1148 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1149 		     pte_t *ptep, pte_t entry);
1150 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1151 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1152 		 pte_t *ptep, unsigned long bits);
1153 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1154 		    pte_t *ptep, int prot, unsigned long bit);
1155 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1156 		     pte_t *ptep , int reset);
1157 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1158 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1159 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1160 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1161 
1162 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1163 			    pte_t *ptep);
1164 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1165 			  unsigned char key, bool nq);
1166 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1167 			       unsigned char key, unsigned char *oldkey,
1168 			       bool nq, bool mr, bool mc);
1169 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1170 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1171 			  unsigned char *key);
1172 
1173 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1174 				unsigned long bits, unsigned long value);
1175 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1176 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1177 			unsigned long *oldpte, unsigned long *oldpgste);
1178 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1179 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1180 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1181 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1182 
1183 #define pgprot_writecombine	pgprot_writecombine
1184 pgprot_t pgprot_writecombine(pgprot_t prot);
1185 
1186 #define pgprot_writethrough	pgprot_writethrough
1187 pgprot_t pgprot_writethrough(pgprot_t prot);
1188 
1189 /*
1190  * Certain architectures need to do special things when PTEs
1191  * within a page table are directly modified.  Thus, the following
1192  * hook is made available.
1193  */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1194 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1195 			      pte_t *ptep, pte_t entry)
1196 {
1197 	if (pte_present(entry))
1198 		pte_val(entry) &= ~_PAGE_UNUSED;
1199 	if (mm_has_pgste(mm))
1200 		ptep_set_pte_at(mm, addr, ptep, entry);
1201 	else
1202 		*ptep = entry;
1203 }
1204 
1205 /*
1206  * Conversion functions: convert a page and protection to a page entry,
1207  * and a page entry and page directory to the page they refer to.
1208  */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1209 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1210 {
1211 	pte_t __pte;
1212 
1213 	pte_val(__pte) = physpage | pgprot_val(pgprot);
1214 	if (!MACHINE_HAS_NX)
1215 		pte_val(__pte) &= ~_PAGE_NOEXEC;
1216 	return pte_mkyoung(__pte);
1217 }
1218 
mk_pte(struct page * page,pgprot_t pgprot)1219 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1220 {
1221 	unsigned long physpage = page_to_phys(page);
1222 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1223 
1224 	if (pte_write(__pte) && PageDirty(page))
1225 		__pte = pte_mkdirty(__pte);
1226 	return __pte;
1227 }
1228 
1229 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1230 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1231 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1232 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1233 
1234 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1235 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1236 
pmd_deref(pmd_t pmd)1237 static inline unsigned long pmd_deref(pmd_t pmd)
1238 {
1239 	unsigned long origin_mask;
1240 
1241 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1242 	if (pmd_large(pmd))
1243 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1244 	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1245 }
1246 
pmd_pfn(pmd_t pmd)1247 static inline unsigned long pmd_pfn(pmd_t pmd)
1248 {
1249 	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1250 }
1251 
pud_deref(pud_t pud)1252 static inline unsigned long pud_deref(pud_t pud)
1253 {
1254 	unsigned long origin_mask;
1255 
1256 	origin_mask = _REGION_ENTRY_ORIGIN;
1257 	if (pud_large(pud))
1258 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1259 	return (unsigned long)__va(pud_val(pud) & origin_mask);
1260 }
1261 
pud_pfn(pud_t pud)1262 static inline unsigned long pud_pfn(pud_t pud)
1263 {
1264 	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1265 }
1266 
1267 /*
1268  * The pgd_offset function *always* adds the index for the top-level
1269  * region/segment table. This is done to get a sequence like the
1270  * following to work:
1271  *	pgdp = pgd_offset(current->mm, addr);
1272  *	pgd = READ_ONCE(*pgdp);
1273  *	p4dp = p4d_offset(&pgd, addr);
1274  *	...
1275  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1276  * only add an index if they dereferenced the pointer.
1277  */
pgd_offset_raw(pgd_t * pgd,unsigned long address)1278 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1279 {
1280 	unsigned long rste;
1281 	unsigned int shift;
1282 
1283 	/* Get the first entry of the top level table */
1284 	rste = pgd_val(*pgd);
1285 	/* Pick up the shift from the table type of the first entry */
1286 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1287 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1288 }
1289 
1290 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1291 
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long address)1292 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1293 {
1294 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1295 		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1296 	return (p4d_t *) pgdp;
1297 }
1298 #define p4d_offset_lockless p4d_offset_lockless
1299 
p4d_offset(pgd_t * pgdp,unsigned long address)1300 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1301 {
1302 	return p4d_offset_lockless(pgdp, *pgdp, address);
1303 }
1304 
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long address)1305 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1306 {
1307 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1308 		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1309 	return (pud_t *) p4dp;
1310 }
1311 #define pud_offset_lockless pud_offset_lockless
1312 
pud_offset(p4d_t * p4dp,unsigned long address)1313 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1314 {
1315 	return pud_offset_lockless(p4dp, *p4dp, address);
1316 }
1317 #define pud_offset pud_offset
1318 
pmd_offset_lockless(pud_t * pudp,pud_t pud,unsigned long address)1319 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1320 {
1321 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1322 		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1323 	return (pmd_t *) pudp;
1324 }
1325 #define pmd_offset_lockless pmd_offset_lockless
1326 
pmd_offset(pud_t * pudp,unsigned long address)1327 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1328 {
1329 	return pmd_offset_lockless(pudp, *pudp, address);
1330 }
1331 #define pmd_offset pmd_offset
1332 
pmd_page_vaddr(pmd_t pmd)1333 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1334 {
1335 	return (unsigned long) pmd_deref(pmd);
1336 }
1337 
gup_fast_permitted(unsigned long start,unsigned long end)1338 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1339 {
1340 	return end <= current->mm->context.asce_limit;
1341 }
1342 #define gup_fast_permitted gup_fast_permitted
1343 
1344 #define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1345 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1346 #define pte_page(x) pfn_to_page(pte_pfn(x))
1347 
1348 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1349 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1350 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1351 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1352 
pmd_wrprotect(pmd_t pmd)1353 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1354 {
1355 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1356 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1357 	return pmd;
1358 }
1359 
pmd_mkwrite(pmd_t pmd)1360 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1361 {
1362 	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1363 	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1364 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1365 	return pmd;
1366 }
1367 
pmd_mkclean(pmd_t pmd)1368 static inline pmd_t pmd_mkclean(pmd_t pmd)
1369 {
1370 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1371 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1372 	return pmd;
1373 }
1374 
pmd_mkdirty(pmd_t pmd)1375 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1376 {
1377 	pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1378 	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1379 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1380 	return pmd;
1381 }
1382 
pud_wrprotect(pud_t pud)1383 static inline pud_t pud_wrprotect(pud_t pud)
1384 {
1385 	pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1386 	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1387 	return pud;
1388 }
1389 
pud_mkwrite(pud_t pud)1390 static inline pud_t pud_mkwrite(pud_t pud)
1391 {
1392 	pud_val(pud) |= _REGION3_ENTRY_WRITE;
1393 	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1394 		pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1395 	return pud;
1396 }
1397 
pud_mkclean(pud_t pud)1398 static inline pud_t pud_mkclean(pud_t pud)
1399 {
1400 	pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1401 	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1402 	return pud;
1403 }
1404 
pud_mkdirty(pud_t pud)1405 static inline pud_t pud_mkdirty(pud_t pud)
1406 {
1407 	pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1408 	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1409 		pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1410 	return pud;
1411 }
1412 
1413 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1414 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1415 {
1416 	/*
1417 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1418 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1419 	 */
1420 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1421 		return pgprot_val(SEGMENT_NONE);
1422 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1423 		return pgprot_val(SEGMENT_RO);
1424 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1425 		return pgprot_val(SEGMENT_RX);
1426 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1427 		return pgprot_val(SEGMENT_RW);
1428 	return pgprot_val(SEGMENT_RWX);
1429 }
1430 
pmd_mkyoung(pmd_t pmd)1431 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1432 {
1433 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1434 	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1435 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1436 	return pmd;
1437 }
1438 
pmd_mkold(pmd_t pmd)1439 static inline pmd_t pmd_mkold(pmd_t pmd)
1440 {
1441 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1442 	pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1443 	return pmd;
1444 }
1445 
pmd_modify(pmd_t pmd,pgprot_t newprot)1446 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1447 {
1448 	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1449 		_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1450 		_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1451 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1452 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1453 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1454 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1455 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1456 	return pmd;
1457 }
1458 
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1459 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1460 {
1461 	pmd_t __pmd;
1462 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1463 	return __pmd;
1464 }
1465 
1466 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1467 
__pmdp_csp(pmd_t * pmdp)1468 static inline void __pmdp_csp(pmd_t *pmdp)
1469 {
1470 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1471 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1472 }
1473 
1474 #define IDTE_GLOBAL	0
1475 #define IDTE_LOCAL	1
1476 
1477 #define IDTE_PTOA	0x0800
1478 #define IDTE_NODAT	0x1000
1479 #define IDTE_GUEST_ASCE	0x2000
1480 
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1481 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1482 					unsigned long opt, unsigned long asce,
1483 					int local)
1484 {
1485 	unsigned long sto;
1486 
1487 	sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1488 	if (__builtin_constant_p(opt) && opt == 0) {
1489 		/* flush without guest asce */
1490 		asm volatile(
1491 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1492 			: "+m" (*pmdp)
1493 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1494 			  [m4] "i" (local)
1495 			: "cc" );
1496 	} else {
1497 		/* flush with guest asce */
1498 		asm volatile(
1499 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1500 			: "+m" (*pmdp)
1501 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1502 			  [r3] "a" (asce), [m4] "i" (local)
1503 			: "cc" );
1504 	}
1505 }
1506 
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1507 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1508 					unsigned long opt, unsigned long asce,
1509 					int local)
1510 {
1511 	unsigned long r3o;
1512 
1513 	r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1514 	r3o |= _ASCE_TYPE_REGION3;
1515 	if (__builtin_constant_p(opt) && opt == 0) {
1516 		/* flush without guest asce */
1517 		asm volatile(
1518 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1519 			: "+m" (*pudp)
1520 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1521 			  [m4] "i" (local)
1522 			: "cc");
1523 	} else {
1524 		/* flush with guest asce */
1525 		asm volatile(
1526 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1527 			: "+m" (*pudp)
1528 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1529 			  [r3] "a" (asce), [m4] "i" (local)
1530 			: "cc" );
1531 	}
1532 }
1533 
1534 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1535 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1536 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1537 
1538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1539 
1540 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1541 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1542 				pgtable_t pgtable);
1543 
1544 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1545 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1546 
1547 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1548 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1549 					unsigned long addr, pmd_t *pmdp,
1550 					pmd_t entry, int dirty)
1551 {
1552 	VM_BUG_ON(addr & ~HPAGE_MASK);
1553 
1554 	entry = pmd_mkyoung(entry);
1555 	if (dirty)
1556 		entry = pmd_mkdirty(entry);
1557 	if (pmd_val(*pmdp) == pmd_val(entry))
1558 		return 0;
1559 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1560 	return 1;
1561 }
1562 
1563 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1564 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1565 					    unsigned long addr, pmd_t *pmdp)
1566 {
1567 	pmd_t pmd = *pmdp;
1568 
1569 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1570 	return pmd_young(pmd);
1571 }
1572 
1573 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1574 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1575 					 unsigned long addr, pmd_t *pmdp)
1576 {
1577 	VM_BUG_ON(addr & ~HPAGE_MASK);
1578 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1579 }
1580 
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1581 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1582 			      pmd_t *pmdp, pmd_t entry)
1583 {
1584 	if (!MACHINE_HAS_NX)
1585 		pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1586 	*pmdp = entry;
1587 }
1588 
pmd_mkhuge(pmd_t pmd)1589 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1590 {
1591 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1592 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1593 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1594 	return pmd;
1595 }
1596 
1597 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1598 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1599 					    unsigned long addr, pmd_t *pmdp)
1600 {
1601 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1602 }
1603 
1604 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)1605 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1606 						 unsigned long addr,
1607 						 pmd_t *pmdp, int full)
1608 {
1609 	if (full) {
1610 		pmd_t pmd = *pmdp;
1611 		*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1612 		return pmd;
1613 	}
1614 	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1615 }
1616 
1617 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1618 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1619 					  unsigned long addr, pmd_t *pmdp)
1620 {
1621 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1622 }
1623 
1624 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1625 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1626 				   unsigned long addr, pmd_t *pmdp)
1627 {
1628 	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1629 
1630 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1631 }
1632 
1633 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1634 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1635 				      unsigned long addr, pmd_t *pmdp)
1636 {
1637 	pmd_t pmd = *pmdp;
1638 
1639 	if (pmd_write(pmd))
1640 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1641 }
1642 
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1643 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1644 					unsigned long address,
1645 					pmd_t *pmdp)
1646 {
1647 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1648 }
1649 #define pmdp_collapse_flush pmdp_collapse_flush
1650 
1651 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1652 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1653 
pmd_trans_huge(pmd_t pmd)1654 static inline int pmd_trans_huge(pmd_t pmd)
1655 {
1656 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1657 }
1658 
1659 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1660 static inline int has_transparent_hugepage(void)
1661 {
1662 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1663 }
1664 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1665 
1666 /*
1667  * 64 bit swap entry format:
1668  * A page-table entry has some bits we have to treat in a special way.
1669  * Bits 52 and bit 55 have to be zero, otherwise a specification
1670  * exception will occur instead of a page translation exception. The
1671  * specification exception has the bad habit not to store necessary
1672  * information in the lowcore.
1673  * Bits 54 and 63 are used to indicate the page type.
1674  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1675  * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1676  * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1677  * for the offset.
1678  * |			  offset			|01100|type |00|
1679  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1680  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1681  */
1682 
1683 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1684 #define __SWP_OFFSET_SHIFT	12
1685 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1686 #define __SWP_TYPE_SHIFT	2
1687 
mk_swap_pte(unsigned long type,unsigned long offset)1688 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1689 {
1690 	pte_t pte;
1691 
1692 	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1693 	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1694 	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1695 	return pte;
1696 }
1697 
__swp_type(swp_entry_t entry)1698 static inline unsigned long __swp_type(swp_entry_t entry)
1699 {
1700 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1701 }
1702 
__swp_offset(swp_entry_t entry)1703 static inline unsigned long __swp_offset(swp_entry_t entry)
1704 {
1705 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1706 }
1707 
__swp_entry(unsigned long type,unsigned long offset)1708 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1709 {
1710 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1711 }
1712 
1713 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1714 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1715 
1716 #define kern_addr_valid(addr)   (1)
1717 
1718 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1719 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1720 extern int s390_enable_sie(void);
1721 extern int s390_enable_skey(void);
1722 extern void s390_reset_cmma(struct mm_struct *mm);
1723 
1724 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1725 #define HAVE_ARCH_UNMAPPED_AREA
1726 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1727 
1728 #define pmd_pgtable(pmd) \
1729 	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1730 
1731 #endif /* _S390_PAGE_H */
1732