• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmstat.c
4  *
5  *  Manages VM statistics
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  zoned VM statistics
9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
10  *		Christoph Lameter <christoph@lameter.com>
11  *  Copyright (C) 2008-2014 Christoph Lameter
12  */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31 
32 #include "internal.h"
33 
34 #ifdef CONFIG_NUMA
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36 
37 /* zero numa counters within a zone */
zero_zone_numa_counters(struct zone * zone)38 static void zero_zone_numa_counters(struct zone *zone)
39 {
40 	int item, cpu;
41 
42 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 		atomic_long_set(&zone->vm_numa_event[item], 0);
44 		for_each_online_cpu(cpu) {
45 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 						= 0;
47 		}
48 	}
49 }
50 
51 /* zero numa counters of all the populated zones */
zero_zones_numa_counters(void)52 static void zero_zones_numa_counters(void)
53 {
54 	struct zone *zone;
55 
56 	for_each_populated_zone(zone)
57 		zero_zone_numa_counters(zone);
58 }
59 
60 /* zero global numa counters */
zero_global_numa_counters(void)61 static void zero_global_numa_counters(void)
62 {
63 	int item;
64 
65 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 		atomic_long_set(&vm_numa_event[item], 0);
67 }
68 
invalid_numa_statistics(void)69 static void invalid_numa_statistics(void)
70 {
71 	zero_zones_numa_counters();
72 	zero_global_numa_counters();
73 }
74 
75 static DEFINE_MUTEX(vm_numa_stat_lock);
76 
sysctl_vm_numa_stat_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 		void *buffer, size_t *length, loff_t *ppos)
79 {
80 	int ret, oldval;
81 
82 	mutex_lock(&vm_numa_stat_lock);
83 	if (write)
84 		oldval = sysctl_vm_numa_stat;
85 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 	if (ret || !write)
87 		goto out;
88 
89 	if (oldval == sysctl_vm_numa_stat)
90 		goto out;
91 	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 		static_branch_enable(&vm_numa_stat_key);
93 		pr_info("enable numa statistics\n");
94 	} else {
95 		static_branch_disable(&vm_numa_stat_key);
96 		invalid_numa_statistics();
97 		pr_info("disable numa statistics, and clear numa counters\n");
98 	}
99 
100 out:
101 	mutex_unlock(&vm_numa_stat_lock);
102 	return ret;
103 }
104 #endif
105 
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109 
sum_vm_events(unsigned long * ret)110 static void sum_vm_events(unsigned long *ret)
111 {
112 	int cpu;
113 	int i;
114 
115 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116 
117 	for_each_online_cpu(cpu) {
118 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119 
120 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 			ret[i] += this->event[i];
122 	}
123 }
124 
125 /*
126  * Accumulate the vm event counters across all CPUs.
127  * The result is unavoidably approximate - it can change
128  * during and after execution of this function.
129 */
all_vm_events(unsigned long * ret)130 void all_vm_events(unsigned long *ret)
131 {
132 	cpus_read_lock();
133 	sum_vm_events(ret);
134 	cpus_read_unlock();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137 
138 /*
139  * Fold the foreign cpu events into our own.
140  *
141  * This is adding to the events on one processor
142  * but keeps the global counts constant.
143  */
vm_events_fold_cpu(int cpu)144 void vm_events_fold_cpu(int cpu)
145 {
146 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 	int i;
148 
149 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 		count_vm_events(i, fold_state->event[i]);
151 		fold_state->event[i] = 0;
152 	}
153 }
154 
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156 
157 /*
158  * Manage combined zone based / global counters
159  *
160  * vm_stat contains the global counters
161  */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
167 
168 #ifdef CONFIG_SMP
169 
calculate_pressure_threshold(struct zone * zone)170 int calculate_pressure_threshold(struct zone *zone)
171 {
172 	int threshold;
173 	int watermark_distance;
174 
175 	/*
176 	 * As vmstats are not up to date, there is drift between the estimated
177 	 * and real values. For high thresholds and a high number of CPUs, it
178 	 * is possible for the min watermark to be breached while the estimated
179 	 * value looks fine. The pressure threshold is a reduced value such
180 	 * that even the maximum amount of drift will not accidentally breach
181 	 * the min watermark
182 	 */
183 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
184 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
185 
186 	/*
187 	 * Maximum threshold is 125
188 	 */
189 	threshold = min(125, threshold);
190 
191 	return threshold;
192 }
193 
calculate_normal_threshold(struct zone * zone)194 int calculate_normal_threshold(struct zone *zone)
195 {
196 	int threshold;
197 	int mem;	/* memory in 128 MB units */
198 
199 	/*
200 	 * The threshold scales with the number of processors and the amount
201 	 * of memory per zone. More memory means that we can defer updates for
202 	 * longer, more processors could lead to more contention.
203  	 * fls() is used to have a cheap way of logarithmic scaling.
204 	 *
205 	 * Some sample thresholds:
206 	 *
207 	 * Threshold	Processors	(fls)	Zonesize	fls(mem)+1
208 	 * ------------------------------------------------------------------
209 	 * 8		1		1	0.9-1 GB	4
210 	 * 16		2		2	0.9-1 GB	4
211 	 * 20 		2		2	1-2 GB		5
212 	 * 24		2		2	2-4 GB		6
213 	 * 28		2		2	4-8 GB		7
214 	 * 32		2		2	8-16 GB		8
215 	 * 4		2		2	<128M		1
216 	 * 30		4		3	2-4 GB		5
217 	 * 48		4		3	8-16 GB		8
218 	 * 32		8		4	1-2 GB		4
219 	 * 32		8		4	0.9-1GB		4
220 	 * 10		16		5	<128M		1
221 	 * 40		16		5	900M		4
222 	 * 70		64		7	2-4 GB		5
223 	 * 84		64		7	4-8 GB		6
224 	 * 108		512		9	4-8 GB		6
225 	 * 125		1024		10	8-16 GB		8
226 	 * 125		1024		10	16-32 GB	9
227 	 */
228 
229 	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
230 
231 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
232 
233 	/*
234 	 * Maximum threshold is 125
235 	 */
236 	threshold = min(125, threshold);
237 
238 	return threshold;
239 }
240 
241 /*
242  * Refresh the thresholds for each zone.
243  */
refresh_zone_stat_thresholds(void)244 void refresh_zone_stat_thresholds(void)
245 {
246 	struct pglist_data *pgdat;
247 	struct zone *zone;
248 	int cpu;
249 	int threshold;
250 
251 	/* Zero current pgdat thresholds */
252 	for_each_online_pgdat(pgdat) {
253 		for_each_online_cpu(cpu) {
254 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
255 		}
256 	}
257 
258 	for_each_populated_zone(zone) {
259 		struct pglist_data *pgdat = zone->zone_pgdat;
260 		unsigned long max_drift, tolerate_drift;
261 
262 		threshold = calculate_normal_threshold(zone);
263 
264 		for_each_online_cpu(cpu) {
265 			int pgdat_threshold;
266 
267 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
268 							= threshold;
269 
270 			/* Base nodestat threshold on the largest populated zone. */
271 			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
272 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
273 				= max(threshold, pgdat_threshold);
274 		}
275 
276 		/*
277 		 * Only set percpu_drift_mark if there is a danger that
278 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
279 		 * the min watermark could be breached by an allocation
280 		 */
281 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
282 		max_drift = num_online_cpus() * threshold;
283 		if (max_drift > tolerate_drift)
284 			zone->percpu_drift_mark = high_wmark_pages(zone) +
285 					max_drift;
286 	}
287 }
288 
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))289 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
290 				int (*calculate_pressure)(struct zone *))
291 {
292 	struct zone *zone;
293 	int cpu;
294 	int threshold;
295 	int i;
296 
297 	for (i = 0; i < pgdat->nr_zones; i++) {
298 		zone = &pgdat->node_zones[i];
299 		if (!zone->percpu_drift_mark)
300 			continue;
301 
302 		threshold = (*calculate_pressure)(zone);
303 		for_each_online_cpu(cpu)
304 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
305 							= threshold;
306 	}
307 }
308 
309 /*
310  * For use when we know that interrupts are disabled,
311  * or when we know that preemption is disabled and that
312  * particular counter cannot be updated from interrupt context.
313  */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)314 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
315 			   long delta)
316 {
317 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
318 	s8 __percpu *p = pcp->vm_stat_diff + item;
319 	long x;
320 	long t;
321 
322 	/*
323 	 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
324 	 * atomicity is provided by IRQs being disabled -- either explicitly
325 	 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
326 	 * CPU migrations and preemption potentially corrupts a counter so
327 	 * disable preemption.
328 	 */
329 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
330 		preempt_disable();
331 
332 	x = delta + __this_cpu_read(*p);
333 
334 	t = __this_cpu_read(pcp->stat_threshold);
335 
336 	if (unlikely(abs(x) > t)) {
337 		zone_page_state_add(x, zone, item);
338 		x = 0;
339 	}
340 	__this_cpu_write(*p, x);
341 
342 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
343 		preempt_enable();
344 }
345 EXPORT_SYMBOL(__mod_zone_page_state);
346 
__mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)347 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
348 				long delta)
349 {
350 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
351 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
352 	long x;
353 	long t;
354 
355 	if (vmstat_item_in_bytes(item)) {
356 		/*
357 		 * Only cgroups use subpage accounting right now; at
358 		 * the global level, these items still change in
359 		 * multiples of whole pages. Store them as pages
360 		 * internally to keep the per-cpu counters compact.
361 		 */
362 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
363 		delta >>= PAGE_SHIFT;
364 	}
365 
366 	/* See __mod_node_page_state */
367 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
368 		preempt_disable();
369 
370 	x = delta + __this_cpu_read(*p);
371 
372 	t = __this_cpu_read(pcp->stat_threshold);
373 
374 	if (unlikely(abs(x) > t)) {
375 		node_page_state_add(x, pgdat, item);
376 		x = 0;
377 	}
378 	__this_cpu_write(*p, x);
379 
380 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
381 		preempt_enable();
382 }
383 EXPORT_SYMBOL(__mod_node_page_state);
384 
385 /*
386  * Optimized increment and decrement functions.
387  *
388  * These are only for a single page and therefore can take a struct page *
389  * argument instead of struct zone *. This allows the inclusion of the code
390  * generated for page_zone(page) into the optimized functions.
391  *
392  * No overflow check is necessary and therefore the differential can be
393  * incremented or decremented in place which may allow the compilers to
394  * generate better code.
395  * The increment or decrement is known and therefore one boundary check can
396  * be omitted.
397  *
398  * NOTE: These functions are very performance sensitive. Change only
399  * with care.
400  *
401  * Some processors have inc/dec instructions that are atomic vs an interrupt.
402  * However, the code must first determine the differential location in a zone
403  * based on the processor number and then inc/dec the counter. There is no
404  * guarantee without disabling preemption that the processor will not change
405  * in between and therefore the atomicity vs. interrupt cannot be exploited
406  * in a useful way here.
407  */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)408 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
409 {
410 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
411 	s8 __percpu *p = pcp->vm_stat_diff + item;
412 	s8 v, t;
413 
414 	/* See __mod_node_page_state */
415 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
416 		preempt_disable();
417 
418 	v = __this_cpu_inc_return(*p);
419 	t = __this_cpu_read(pcp->stat_threshold);
420 	if (unlikely(v > t)) {
421 		s8 overstep = t >> 1;
422 
423 		zone_page_state_add(v + overstep, zone, item);
424 		__this_cpu_write(*p, -overstep);
425 	}
426 
427 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
428 		preempt_enable();
429 }
430 
__inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)431 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
432 {
433 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
434 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
435 	s8 v, t;
436 
437 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
438 
439 	/* See __mod_node_page_state */
440 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
441 		preempt_disable();
442 
443 	v = __this_cpu_inc_return(*p);
444 	t = __this_cpu_read(pcp->stat_threshold);
445 	if (unlikely(v > t)) {
446 		s8 overstep = t >> 1;
447 
448 		node_page_state_add(v + overstep, pgdat, item);
449 		__this_cpu_write(*p, -overstep);
450 	}
451 
452 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
453 		preempt_enable();
454 }
455 
__inc_zone_page_state(struct page * page,enum zone_stat_item item)456 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
457 {
458 	__inc_zone_state(page_zone(page), item);
459 }
460 EXPORT_SYMBOL(__inc_zone_page_state);
461 
__inc_node_page_state(struct page * page,enum node_stat_item item)462 void __inc_node_page_state(struct page *page, enum node_stat_item item)
463 {
464 	__inc_node_state(page_pgdat(page), item);
465 }
466 EXPORT_SYMBOL(__inc_node_page_state);
467 
__dec_zone_state(struct zone * zone,enum zone_stat_item item)468 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
469 {
470 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
471 	s8 __percpu *p = pcp->vm_stat_diff + item;
472 	s8 v, t;
473 
474 	/* See __mod_node_page_state */
475 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
476 		preempt_disable();
477 
478 	v = __this_cpu_dec_return(*p);
479 	t = __this_cpu_read(pcp->stat_threshold);
480 	if (unlikely(v < - t)) {
481 		s8 overstep = t >> 1;
482 
483 		zone_page_state_add(v - overstep, zone, item);
484 		__this_cpu_write(*p, overstep);
485 	}
486 
487 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
488 		preempt_enable();
489 }
490 
__dec_node_state(struct pglist_data * pgdat,enum node_stat_item item)491 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
492 {
493 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
494 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
495 	s8 v, t;
496 
497 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
498 
499 	/* See __mod_node_page_state */
500 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
501 		preempt_disable();
502 
503 	v = __this_cpu_dec_return(*p);
504 	t = __this_cpu_read(pcp->stat_threshold);
505 	if (unlikely(v < - t)) {
506 		s8 overstep = t >> 1;
507 
508 		node_page_state_add(v - overstep, pgdat, item);
509 		__this_cpu_write(*p, overstep);
510 	}
511 
512 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
513 		preempt_enable();
514 }
515 
__dec_zone_page_state(struct page * page,enum zone_stat_item item)516 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
517 {
518 	__dec_zone_state(page_zone(page), item);
519 }
520 EXPORT_SYMBOL(__dec_zone_page_state);
521 
__dec_node_page_state(struct page * page,enum node_stat_item item)522 void __dec_node_page_state(struct page *page, enum node_stat_item item)
523 {
524 	__dec_node_state(page_pgdat(page), item);
525 }
526 EXPORT_SYMBOL(__dec_node_page_state);
527 
528 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
529 /*
530  * If we have cmpxchg_local support then we do not need to incur the overhead
531  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
532  *
533  * mod_state() modifies the zone counter state through atomic per cpu
534  * operations.
535  *
536  * Overstep mode specifies how overstep should handled:
537  *     0       No overstepping
538  *     1       Overstepping half of threshold
539  *     -1      Overstepping minus half of threshold
540 */
mod_zone_state(struct zone * zone,enum zone_stat_item item,long delta,int overstep_mode)541 static inline void mod_zone_state(struct zone *zone,
542        enum zone_stat_item item, long delta, int overstep_mode)
543 {
544 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
545 	s8 __percpu *p = pcp->vm_stat_diff + item;
546 	long o, n, t, z;
547 
548 	do {
549 		z = 0;  /* overflow to zone counters */
550 
551 		/*
552 		 * The fetching of the stat_threshold is racy. We may apply
553 		 * a counter threshold to the wrong the cpu if we get
554 		 * rescheduled while executing here. However, the next
555 		 * counter update will apply the threshold again and
556 		 * therefore bring the counter under the threshold again.
557 		 *
558 		 * Most of the time the thresholds are the same anyways
559 		 * for all cpus in a zone.
560 		 */
561 		t = this_cpu_read(pcp->stat_threshold);
562 
563 		o = this_cpu_read(*p);
564 		n = delta + o;
565 
566 		if (abs(n) > t) {
567 			int os = overstep_mode * (t >> 1) ;
568 
569 			/* Overflow must be added to zone counters */
570 			z = n + os;
571 			n = -os;
572 		}
573 	} while (this_cpu_cmpxchg(*p, o, n) != o);
574 
575 	if (z)
576 		zone_page_state_add(z, zone, item);
577 }
578 
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)579 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
580 			 long delta)
581 {
582 	mod_zone_state(zone, item, delta, 0);
583 }
584 EXPORT_SYMBOL(mod_zone_page_state);
585 
inc_zone_page_state(struct page * page,enum zone_stat_item item)586 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
587 {
588 	mod_zone_state(page_zone(page), item, 1, 1);
589 }
590 EXPORT_SYMBOL(inc_zone_page_state);
591 
dec_zone_page_state(struct page * page,enum zone_stat_item item)592 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
593 {
594 	mod_zone_state(page_zone(page), item, -1, -1);
595 }
596 EXPORT_SYMBOL(dec_zone_page_state);
597 
mod_node_state(struct pglist_data * pgdat,enum node_stat_item item,int delta,int overstep_mode)598 static inline void mod_node_state(struct pglist_data *pgdat,
599        enum node_stat_item item, int delta, int overstep_mode)
600 {
601 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
602 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
603 	long o, n, t, z;
604 
605 	if (vmstat_item_in_bytes(item)) {
606 		/*
607 		 * Only cgroups use subpage accounting right now; at
608 		 * the global level, these items still change in
609 		 * multiples of whole pages. Store them as pages
610 		 * internally to keep the per-cpu counters compact.
611 		 */
612 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
613 		delta >>= PAGE_SHIFT;
614 	}
615 
616 	do {
617 		z = 0;  /* overflow to node counters */
618 
619 		/*
620 		 * The fetching of the stat_threshold is racy. We may apply
621 		 * a counter threshold to the wrong the cpu if we get
622 		 * rescheduled while executing here. However, the next
623 		 * counter update will apply the threshold again and
624 		 * therefore bring the counter under the threshold again.
625 		 *
626 		 * Most of the time the thresholds are the same anyways
627 		 * for all cpus in a node.
628 		 */
629 		t = this_cpu_read(pcp->stat_threshold);
630 
631 		o = this_cpu_read(*p);
632 		n = delta + o;
633 
634 		if (abs(n) > t) {
635 			int os = overstep_mode * (t >> 1) ;
636 
637 			/* Overflow must be added to node counters */
638 			z = n + os;
639 			n = -os;
640 		}
641 	} while (this_cpu_cmpxchg(*p, o, n) != o);
642 
643 	if (z)
644 		node_page_state_add(z, pgdat, item);
645 }
646 
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)647 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
648 					long delta)
649 {
650 	mod_node_state(pgdat, item, delta, 0);
651 }
652 EXPORT_SYMBOL(mod_node_page_state);
653 
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)654 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
655 {
656 	mod_node_state(pgdat, item, 1, 1);
657 }
658 
inc_node_page_state(struct page * page,enum node_stat_item item)659 void inc_node_page_state(struct page *page, enum node_stat_item item)
660 {
661 	mod_node_state(page_pgdat(page), item, 1, 1);
662 }
663 EXPORT_SYMBOL(inc_node_page_state);
664 
dec_node_page_state(struct page * page,enum node_stat_item item)665 void dec_node_page_state(struct page *page, enum node_stat_item item)
666 {
667 	mod_node_state(page_pgdat(page), item, -1, -1);
668 }
669 EXPORT_SYMBOL(dec_node_page_state);
670 #else
671 /*
672  * Use interrupt disable to serialize counter updates
673  */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)674 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
675 			 long delta)
676 {
677 	unsigned long flags;
678 
679 	local_irq_save(flags);
680 	__mod_zone_page_state(zone, item, delta);
681 	local_irq_restore(flags);
682 }
683 EXPORT_SYMBOL(mod_zone_page_state);
684 
inc_zone_page_state(struct page * page,enum zone_stat_item item)685 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
686 {
687 	unsigned long flags;
688 	struct zone *zone;
689 
690 	zone = page_zone(page);
691 	local_irq_save(flags);
692 	__inc_zone_state(zone, item);
693 	local_irq_restore(flags);
694 }
695 EXPORT_SYMBOL(inc_zone_page_state);
696 
dec_zone_page_state(struct page * page,enum zone_stat_item item)697 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
698 {
699 	unsigned long flags;
700 
701 	local_irq_save(flags);
702 	__dec_zone_page_state(page, item);
703 	local_irq_restore(flags);
704 }
705 EXPORT_SYMBOL(dec_zone_page_state);
706 
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)707 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
708 {
709 	unsigned long flags;
710 
711 	local_irq_save(flags);
712 	__inc_node_state(pgdat, item);
713 	local_irq_restore(flags);
714 }
715 EXPORT_SYMBOL(inc_node_state);
716 
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)717 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
718 					long delta)
719 {
720 	unsigned long flags;
721 
722 	local_irq_save(flags);
723 	__mod_node_page_state(pgdat, item, delta);
724 	local_irq_restore(flags);
725 }
726 EXPORT_SYMBOL(mod_node_page_state);
727 
inc_node_page_state(struct page * page,enum node_stat_item item)728 void inc_node_page_state(struct page *page, enum node_stat_item item)
729 {
730 	unsigned long flags;
731 	struct pglist_data *pgdat;
732 
733 	pgdat = page_pgdat(page);
734 	local_irq_save(flags);
735 	__inc_node_state(pgdat, item);
736 	local_irq_restore(flags);
737 }
738 EXPORT_SYMBOL(inc_node_page_state);
739 
dec_node_page_state(struct page * page,enum node_stat_item item)740 void dec_node_page_state(struct page *page, enum node_stat_item item)
741 {
742 	unsigned long flags;
743 
744 	local_irq_save(flags);
745 	__dec_node_page_state(page, item);
746 	local_irq_restore(flags);
747 }
748 EXPORT_SYMBOL(dec_node_page_state);
749 #endif
750 
751 /*
752  * Fold a differential into the global counters.
753  * Returns the number of counters updated.
754  */
fold_diff(int * zone_diff,int * node_diff)755 static int fold_diff(int *zone_diff, int *node_diff)
756 {
757 	int i;
758 	int changes = 0;
759 
760 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
761 		if (zone_diff[i]) {
762 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
763 			changes++;
764 	}
765 
766 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
767 		if (node_diff[i]) {
768 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
769 			changes++;
770 	}
771 	return changes;
772 }
773 
774 #ifdef CONFIG_NUMA
fold_vm_zone_numa_events(struct zone * zone)775 static void fold_vm_zone_numa_events(struct zone *zone)
776 {
777 	unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
778 	int cpu;
779 	enum numa_stat_item item;
780 
781 	for_each_online_cpu(cpu) {
782 		struct per_cpu_zonestat *pzstats;
783 
784 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
785 		for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
786 			zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
787 	}
788 
789 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
790 		zone_numa_event_add(zone_numa_events[item], zone, item);
791 }
792 
fold_vm_numa_events(void)793 void fold_vm_numa_events(void)
794 {
795 	struct zone *zone;
796 
797 	for_each_populated_zone(zone)
798 		fold_vm_zone_numa_events(zone);
799 }
800 #endif
801 
802 /*
803  * Update the zone counters for the current cpu.
804  *
805  * Note that refresh_cpu_vm_stats strives to only access
806  * node local memory. The per cpu pagesets on remote zones are placed
807  * in the memory local to the processor using that pageset. So the
808  * loop over all zones will access a series of cachelines local to
809  * the processor.
810  *
811  * The call to zone_page_state_add updates the cachelines with the
812  * statistics in the remote zone struct as well as the global cachelines
813  * with the global counters. These could cause remote node cache line
814  * bouncing and will have to be only done when necessary.
815  *
816  * The function returns the number of global counters updated.
817  */
refresh_cpu_vm_stats(bool do_pagesets)818 static int refresh_cpu_vm_stats(bool do_pagesets)
819 {
820 	struct pglist_data *pgdat;
821 	struct zone *zone;
822 	int i;
823 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
824 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
825 	int changes = 0;
826 
827 	for_each_populated_zone(zone) {
828 		struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
829 #ifdef CONFIG_NUMA
830 		struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
831 #endif
832 
833 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
834 			int v;
835 
836 			v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
837 			if (v) {
838 
839 				atomic_long_add(v, &zone->vm_stat[i]);
840 				global_zone_diff[i] += v;
841 #ifdef CONFIG_NUMA
842 				/* 3 seconds idle till flush */
843 				__this_cpu_write(pcp->expire, 3);
844 #endif
845 			}
846 		}
847 #ifdef CONFIG_NUMA
848 
849 		if (do_pagesets) {
850 			cond_resched();
851 			/*
852 			 * Deal with draining the remote pageset of this
853 			 * processor
854 			 *
855 			 * Check if there are pages remaining in this pageset
856 			 * if not then there is nothing to expire.
857 			 */
858 			if (!__this_cpu_read(pcp->expire) ||
859 			       !__this_cpu_read(pcp->count))
860 				continue;
861 
862 			/*
863 			 * We never drain zones local to this processor.
864 			 */
865 			if (zone_to_nid(zone) == numa_node_id()) {
866 				__this_cpu_write(pcp->expire, 0);
867 				continue;
868 			}
869 
870 			if (__this_cpu_dec_return(pcp->expire))
871 				continue;
872 
873 			if (__this_cpu_read(pcp->count)) {
874 				drain_zone_pages(zone, this_cpu_ptr(pcp));
875 				changes++;
876 			}
877 		}
878 #endif
879 	}
880 
881 	for_each_online_pgdat(pgdat) {
882 		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
883 
884 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
885 			int v;
886 
887 			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
888 			if (v) {
889 				atomic_long_add(v, &pgdat->vm_stat[i]);
890 				global_node_diff[i] += v;
891 			}
892 		}
893 	}
894 
895 	changes += fold_diff(global_zone_diff, global_node_diff);
896 	return changes;
897 }
898 
899 /*
900  * Fold the data for an offline cpu into the global array.
901  * There cannot be any access by the offline cpu and therefore
902  * synchronization is simplified.
903  */
cpu_vm_stats_fold(int cpu)904 void cpu_vm_stats_fold(int cpu)
905 {
906 	struct pglist_data *pgdat;
907 	struct zone *zone;
908 	int i;
909 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
910 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
911 
912 	for_each_populated_zone(zone) {
913 		struct per_cpu_zonestat *pzstats;
914 
915 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
916 
917 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
918 			if (pzstats->vm_stat_diff[i]) {
919 				int v;
920 
921 				v = pzstats->vm_stat_diff[i];
922 				pzstats->vm_stat_diff[i] = 0;
923 				atomic_long_add(v, &zone->vm_stat[i]);
924 				global_zone_diff[i] += v;
925 			}
926 		}
927 #ifdef CONFIG_NUMA
928 		for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
929 			if (pzstats->vm_numa_event[i]) {
930 				unsigned long v;
931 
932 				v = pzstats->vm_numa_event[i];
933 				pzstats->vm_numa_event[i] = 0;
934 				zone_numa_event_add(v, zone, i);
935 			}
936 		}
937 #endif
938 	}
939 
940 	for_each_online_pgdat(pgdat) {
941 		struct per_cpu_nodestat *p;
942 
943 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
944 
945 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
946 			if (p->vm_node_stat_diff[i]) {
947 				int v;
948 
949 				v = p->vm_node_stat_diff[i];
950 				p->vm_node_stat_diff[i] = 0;
951 				atomic_long_add(v, &pgdat->vm_stat[i]);
952 				global_node_diff[i] += v;
953 			}
954 	}
955 
956 	fold_diff(global_zone_diff, global_node_diff);
957 }
958 
959 /*
960  * this is only called if !populated_zone(zone), which implies no other users of
961  * pset->vm_stat_diff[] exist.
962  */
drain_zonestat(struct zone * zone,struct per_cpu_zonestat * pzstats)963 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
964 {
965 	unsigned long v;
966 	int i;
967 
968 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
969 		if (pzstats->vm_stat_diff[i]) {
970 			v = pzstats->vm_stat_diff[i];
971 			pzstats->vm_stat_diff[i] = 0;
972 			zone_page_state_add(v, zone, i);
973 		}
974 	}
975 
976 #ifdef CONFIG_NUMA
977 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
978 		if (pzstats->vm_numa_event[i]) {
979 			v = pzstats->vm_numa_event[i];
980 			pzstats->vm_numa_event[i] = 0;
981 			zone_numa_event_add(v, zone, i);
982 		}
983 	}
984 #endif
985 }
986 #endif
987 
988 #ifdef CONFIG_NUMA
989 /*
990  * Determine the per node value of a stat item. This function
991  * is called frequently in a NUMA machine, so try to be as
992  * frugal as possible.
993  */
sum_zone_node_page_state(int node,enum zone_stat_item item)994 unsigned long sum_zone_node_page_state(int node,
995 				 enum zone_stat_item item)
996 {
997 	struct zone *zones = NODE_DATA(node)->node_zones;
998 	int i;
999 	unsigned long count = 0;
1000 
1001 	for (i = 0; i < MAX_NR_ZONES; i++)
1002 		count += zone_page_state(zones + i, item);
1003 
1004 	return count;
1005 }
1006 
1007 /* Determine the per node value of a numa stat item. */
sum_zone_numa_event_state(int node,enum numa_stat_item item)1008 unsigned long sum_zone_numa_event_state(int node,
1009 				 enum numa_stat_item item)
1010 {
1011 	struct zone *zones = NODE_DATA(node)->node_zones;
1012 	unsigned long count = 0;
1013 	int i;
1014 
1015 	for (i = 0; i < MAX_NR_ZONES; i++)
1016 		count += zone_numa_event_state(zones + i, item);
1017 
1018 	return count;
1019 }
1020 
1021 /*
1022  * Determine the per node value of a stat item.
1023  */
node_page_state_pages(struct pglist_data * pgdat,enum node_stat_item item)1024 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1025 				    enum node_stat_item item)
1026 {
1027 	long x = atomic_long_read(&pgdat->vm_stat[item]);
1028 #ifdef CONFIG_SMP
1029 	if (x < 0)
1030 		x = 0;
1031 #endif
1032 	return x;
1033 }
1034 
node_page_state(struct pglist_data * pgdat,enum node_stat_item item)1035 unsigned long node_page_state(struct pglist_data *pgdat,
1036 			      enum node_stat_item item)
1037 {
1038 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1039 
1040 	return node_page_state_pages(pgdat, item);
1041 }
1042 #endif
1043 
1044 #ifdef CONFIG_COMPACTION
1045 
1046 struct contig_page_info {
1047 	unsigned long free_pages;
1048 	unsigned long free_blocks_total;
1049 	unsigned long free_blocks_suitable;
1050 };
1051 
1052 /*
1053  * Calculate the number of free pages in a zone, how many contiguous
1054  * pages are free and how many are large enough to satisfy an allocation of
1055  * the target size. Note that this function makes no attempt to estimate
1056  * how many suitable free blocks there *might* be if MOVABLE pages were
1057  * migrated. Calculating that is possible, but expensive and can be
1058  * figured out from userspace
1059  */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)1060 static void fill_contig_page_info(struct zone *zone,
1061 				unsigned int suitable_order,
1062 				struct contig_page_info *info)
1063 {
1064 	unsigned int order;
1065 
1066 	info->free_pages = 0;
1067 	info->free_blocks_total = 0;
1068 	info->free_blocks_suitable = 0;
1069 
1070 	for (order = 0; order < MAX_ORDER; order++) {
1071 		unsigned long blocks;
1072 
1073 		/* Count number of free blocks */
1074 		blocks = zone->free_area[order].nr_free;
1075 		info->free_blocks_total += blocks;
1076 
1077 		/* Count free base pages */
1078 		info->free_pages += blocks << order;
1079 
1080 		/* Count the suitable free blocks */
1081 		if (order >= suitable_order)
1082 			info->free_blocks_suitable += blocks <<
1083 						(order - suitable_order);
1084 	}
1085 }
1086 
1087 /*
1088  * A fragmentation index only makes sense if an allocation of a requested
1089  * size would fail. If that is true, the fragmentation index indicates
1090  * whether external fragmentation or a lack of memory was the problem.
1091  * The value can be used to determine if page reclaim or compaction
1092  * should be used
1093  */
__fragmentation_index(unsigned int order,struct contig_page_info * info)1094 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1095 {
1096 	unsigned long requested = 1UL << order;
1097 
1098 	if (WARN_ON_ONCE(order >= MAX_ORDER))
1099 		return 0;
1100 
1101 	if (!info->free_blocks_total)
1102 		return 0;
1103 
1104 	/* Fragmentation index only makes sense when a request would fail */
1105 	if (info->free_blocks_suitable)
1106 		return -1000;
1107 
1108 	/*
1109 	 * Index is between 0 and 1 so return within 3 decimal places
1110 	 *
1111 	 * 0 => allocation would fail due to lack of memory
1112 	 * 1 => allocation would fail due to fragmentation
1113 	 */
1114 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1115 }
1116 
1117 /*
1118  * Calculates external fragmentation within a zone wrt the given order.
1119  * It is defined as the percentage of pages found in blocks of size
1120  * less than 1 << order. It returns values in range [0, 100].
1121  */
extfrag_for_order(struct zone * zone,unsigned int order)1122 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1123 {
1124 	struct contig_page_info info;
1125 
1126 	fill_contig_page_info(zone, order, &info);
1127 	if (info.free_pages == 0)
1128 		return 0;
1129 
1130 	return div_u64((info.free_pages -
1131 			(info.free_blocks_suitable << order)) * 100,
1132 			info.free_pages);
1133 }
1134 
1135 /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)1136 int fragmentation_index(struct zone *zone, unsigned int order)
1137 {
1138 	struct contig_page_info info;
1139 
1140 	fill_contig_page_info(zone, order, &info);
1141 	return __fragmentation_index(order, &info);
1142 }
1143 #endif
1144 
1145 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1146     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1147 #ifdef CONFIG_ZONE_DMA
1148 #define TEXT_FOR_DMA(xx) xx "_dma",
1149 #else
1150 #define TEXT_FOR_DMA(xx)
1151 #endif
1152 
1153 #ifdef CONFIG_ZONE_DMA32
1154 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1155 #else
1156 #define TEXT_FOR_DMA32(xx)
1157 #endif
1158 
1159 #ifdef CONFIG_HIGHMEM
1160 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1161 #else
1162 #define TEXT_FOR_HIGHMEM(xx)
1163 #endif
1164 
1165 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1166 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
1167 
1168 const char * const vmstat_text[] = {
1169 	/* enum zone_stat_item counters */
1170 	"nr_free_pages",
1171 	"nr_zone_inactive_anon",
1172 	"nr_zone_active_anon",
1173 	"nr_zone_inactive_file",
1174 	"nr_zone_active_file",
1175 	"nr_zone_unevictable",
1176 	"nr_zone_write_pending",
1177 	"nr_mlock",
1178 	"nr_bounce",
1179 	"nr_zspages",
1180 	"nr_free_cma",
1181 
1182 	/* enum numa_stat_item counters */
1183 #ifdef CONFIG_NUMA
1184 	"numa_hit",
1185 	"numa_miss",
1186 	"numa_foreign",
1187 	"numa_interleave",
1188 	"numa_local",
1189 	"numa_other",
1190 #endif
1191 
1192 	/* enum node_stat_item counters */
1193 	"nr_inactive_anon",
1194 	"nr_active_anon",
1195 	"nr_inactive_file",
1196 	"nr_active_file",
1197 	"nr_unevictable",
1198 	"nr_slab_reclaimable",
1199 	"nr_slab_unreclaimable",
1200 	"nr_isolated_anon",
1201 	"nr_isolated_file",
1202 	"workingset_nodes",
1203 	"workingset_refault_anon",
1204 	"workingset_refault_file",
1205 	"workingset_activate_anon",
1206 	"workingset_activate_file",
1207 	"workingset_restore_anon",
1208 	"workingset_restore_file",
1209 	"workingset_nodereclaim",
1210 	"nr_anon_pages",
1211 	"nr_mapped",
1212 	"nr_file_pages",
1213 	"nr_dirty",
1214 	"nr_writeback",
1215 	"nr_writeback_temp",
1216 	"nr_shmem",
1217 	"nr_shmem_hugepages",
1218 	"nr_shmem_pmdmapped",
1219 	"nr_file_hugepages",
1220 	"nr_file_pmdmapped",
1221 	"nr_anon_transparent_hugepages",
1222 	"nr_vmscan_write",
1223 	"nr_vmscan_immediate_reclaim",
1224 	"nr_dirtied",
1225 	"nr_written",
1226 	"nr_kernel_misc_reclaimable",
1227 	"nr_foll_pin_acquired",
1228 	"nr_foll_pin_released",
1229 	"nr_kernel_stack",
1230 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1231 	"nr_shadow_call_stack",
1232 #endif
1233 	"nr_page_table_pages",
1234 #ifdef CONFIG_SWAP
1235 	"nr_swapcached",
1236 #endif
1237 
1238 	/* enum writeback_stat_item counters */
1239 	"nr_dirty_threshold",
1240 	"nr_dirty_background_threshold",
1241 
1242 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1243 	/* enum vm_event_item counters */
1244 	"pgpgin",
1245 	"pgpgout",
1246 	"pswpin",
1247 	"pswpout",
1248 
1249 	TEXTS_FOR_ZONES("pgalloc")
1250 	TEXTS_FOR_ZONES("allocstall")
1251 	TEXTS_FOR_ZONES("pgskip")
1252 
1253 	"pgfree",
1254 	"pgactivate",
1255 	"pgdeactivate",
1256 	"pglazyfree",
1257 
1258 	"pgfault",
1259 	"pgmajfault",
1260 	"pglazyfreed",
1261 
1262 	"pgrefill",
1263 	"pgreuse",
1264 	"pgsteal_kswapd",
1265 	"pgsteal_direct",
1266 	"pgdemote_kswapd",
1267 	"pgdemote_direct",
1268 	"pgscan_kswapd",
1269 	"pgscan_direct",
1270 	"pgscan_direct_throttle",
1271 	"pgscan_anon",
1272 	"pgscan_file",
1273 	"pgsteal_anon",
1274 	"pgsteal_file",
1275 
1276 #ifdef CONFIG_NUMA
1277 	"zone_reclaim_failed",
1278 #endif
1279 	"pginodesteal",
1280 	"slabs_scanned",
1281 	"kswapd_inodesteal",
1282 	"kswapd_low_wmark_hit_quickly",
1283 	"kswapd_high_wmark_hit_quickly",
1284 	"pageoutrun",
1285 
1286 	"pgrotated",
1287 
1288 	"drop_pagecache",
1289 	"drop_slab",
1290 	"oom_kill",
1291 
1292 #ifdef CONFIG_NUMA_BALANCING
1293 	"numa_pte_updates",
1294 	"numa_huge_pte_updates",
1295 	"numa_hint_faults",
1296 	"numa_hint_faults_local",
1297 	"numa_pages_migrated",
1298 #endif
1299 #ifdef CONFIG_MIGRATION
1300 	"pgmigrate_success",
1301 	"pgmigrate_fail",
1302 	"thp_migration_success",
1303 	"thp_migration_fail",
1304 	"thp_migration_split",
1305 #endif
1306 #ifdef CONFIG_COMPACTION
1307 	"compact_migrate_scanned",
1308 	"compact_free_scanned",
1309 	"compact_isolated",
1310 	"compact_stall",
1311 	"compact_fail",
1312 	"compact_success",
1313 	"compact_daemon_wake",
1314 	"compact_daemon_migrate_scanned",
1315 	"compact_daemon_free_scanned",
1316 #endif
1317 
1318 #ifdef CONFIG_HUGETLB_PAGE
1319 	"htlb_buddy_alloc_success",
1320 	"htlb_buddy_alloc_fail",
1321 #endif
1322 #ifdef CONFIG_CMA
1323 	"cma_alloc_success",
1324 	"cma_alloc_fail",
1325 #endif
1326 	"unevictable_pgs_culled",
1327 	"unevictable_pgs_scanned",
1328 	"unevictable_pgs_rescued",
1329 	"unevictable_pgs_mlocked",
1330 	"unevictable_pgs_munlocked",
1331 	"unevictable_pgs_cleared",
1332 	"unevictable_pgs_stranded",
1333 
1334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1335 	"thp_fault_alloc",
1336 	"thp_fault_fallback",
1337 	"thp_fault_fallback_charge",
1338 	"thp_collapse_alloc",
1339 	"thp_collapse_alloc_failed",
1340 	"thp_file_alloc",
1341 	"thp_file_fallback",
1342 	"thp_file_fallback_charge",
1343 	"thp_file_mapped",
1344 	"thp_split_page",
1345 	"thp_split_page_failed",
1346 	"thp_deferred_split_page",
1347 	"thp_split_pmd",
1348 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1349 	"thp_split_pud",
1350 #endif
1351 	"thp_zero_page_alloc",
1352 	"thp_zero_page_alloc_failed",
1353 	"thp_swpout",
1354 	"thp_swpout_fallback",
1355 #endif
1356 #ifdef CONFIG_MEMORY_BALLOON
1357 	"balloon_inflate",
1358 	"balloon_deflate",
1359 #ifdef CONFIG_BALLOON_COMPACTION
1360 	"balloon_migrate",
1361 #endif
1362 #endif /* CONFIG_MEMORY_BALLOON */
1363 #ifdef CONFIG_DEBUG_TLBFLUSH
1364 	"nr_tlb_remote_flush",
1365 	"nr_tlb_remote_flush_received",
1366 	"nr_tlb_local_flush_all",
1367 	"nr_tlb_local_flush_one",
1368 #endif /* CONFIG_DEBUG_TLBFLUSH */
1369 
1370 #ifdef CONFIG_DEBUG_VM_VMACACHE
1371 	"vmacache_find_calls",
1372 	"vmacache_find_hits",
1373 #endif
1374 #ifdef CONFIG_SWAP
1375 	"swap_ra",
1376 	"swap_ra_hit",
1377 #endif
1378 #ifdef CONFIG_X86
1379 	"direct_map_level2_splits",
1380 	"direct_map_level3_splits",
1381 #endif
1382 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
1383 	"spf_attempt",
1384 	"spf_abort",
1385 #endif
1386 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT_STATS
1387 	"SPF_ABORT_ODD",
1388 	"SPF_ABORT_UNMAPPED",
1389 	"SPF_ABORT_NO_SPECULATE",
1390 	"SPF_ABORT_VMA_COPY",
1391 	"SPF_ABORT_ACCESS_ERROR",
1392 	"SPF_ABORT_PUD",
1393 	"SPF_ABORT_PMD",
1394 	"SPF_ABORT_ANON_VMA",
1395 	"SPF_ABORT_PTE_MAP_LOCK_SEQ1",
1396 	"SPF_ABORT_PTE_MAP_LOCK_PMD",
1397 	"SPF_ABORT_PTE_MAP_LOCK_PTL",
1398 	"SPF_ABORT_PTE_MAP_LOCK_SEQ2",
1399 	"SPF_ABORT_USERFAULTFD",
1400 	"SPF_ABORT_FAULT",
1401 	"SPF_ABORT_SWAP",
1402 	"SPF_ATTEMPT_ANON",
1403 	"SPF_ATTEMPT_FILE",
1404 	"SPF_ATTEMPT_NUMA",
1405 	"SPF_ATTEMPT_PTE",
1406 	"SPF_ATTEMPT_WP",
1407 #endif
1408 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1409 };
1410 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1411 
1412 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1413      defined(CONFIG_PROC_FS)
frag_start(struct seq_file * m,loff_t * pos)1414 static void *frag_start(struct seq_file *m, loff_t *pos)
1415 {
1416 	pg_data_t *pgdat;
1417 	loff_t node = *pos;
1418 
1419 	for (pgdat = first_online_pgdat();
1420 	     pgdat && node;
1421 	     pgdat = next_online_pgdat(pgdat))
1422 		--node;
1423 
1424 	return pgdat;
1425 }
1426 
frag_next(struct seq_file * m,void * arg,loff_t * pos)1427 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1428 {
1429 	pg_data_t *pgdat = (pg_data_t *)arg;
1430 
1431 	(*pos)++;
1432 	return next_online_pgdat(pgdat);
1433 }
1434 
frag_stop(struct seq_file * m,void * arg)1435 static void frag_stop(struct seq_file *m, void *arg)
1436 {
1437 }
1438 
1439 /*
1440  * Walk zones in a node and print using a callback.
1441  * If @assert_populated is true, only use callback for zones that are populated.
1442  */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,bool assert_populated,bool nolock,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))1443 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1444 		bool assert_populated, bool nolock,
1445 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1446 {
1447 	struct zone *zone;
1448 	struct zone *node_zones = pgdat->node_zones;
1449 	unsigned long flags;
1450 
1451 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1452 		if (assert_populated && !populated_zone(zone))
1453 			continue;
1454 
1455 		if (!nolock)
1456 			spin_lock_irqsave(&zone->lock, flags);
1457 		print(m, pgdat, zone);
1458 		if (!nolock)
1459 			spin_unlock_irqrestore(&zone->lock, flags);
1460 	}
1461 }
1462 #endif
1463 
1464 #ifdef CONFIG_PROC_FS
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1465 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1466 						struct zone *zone)
1467 {
1468 	int order;
1469 
1470 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1471 	for (order = 0; order < MAX_ORDER; ++order)
1472 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1473 	seq_putc(m, '\n');
1474 }
1475 
1476 /*
1477  * This walks the free areas for each zone.
1478  */
frag_show(struct seq_file * m,void * arg)1479 static int frag_show(struct seq_file *m, void *arg)
1480 {
1481 	pg_data_t *pgdat = (pg_data_t *)arg;
1482 	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1483 	return 0;
1484 }
1485 
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1486 static void pagetypeinfo_showfree_print(struct seq_file *m,
1487 					pg_data_t *pgdat, struct zone *zone)
1488 {
1489 	int order, mtype;
1490 
1491 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1492 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1493 					pgdat->node_id,
1494 					zone->name,
1495 					migratetype_names[mtype]);
1496 		for (order = 0; order < MAX_ORDER; ++order) {
1497 			unsigned long freecount = 0;
1498 			struct free_area *area;
1499 			struct list_head *curr;
1500 			bool overflow = false;
1501 
1502 			area = &(zone->free_area[order]);
1503 
1504 			list_for_each(curr, &area->free_list[mtype]) {
1505 				/*
1506 				 * Cap the free_list iteration because it might
1507 				 * be really large and we are under a spinlock
1508 				 * so a long time spent here could trigger a
1509 				 * hard lockup detector. Anyway this is a
1510 				 * debugging tool so knowing there is a handful
1511 				 * of pages of this order should be more than
1512 				 * sufficient.
1513 				 */
1514 				if (++freecount >= 100000) {
1515 					overflow = true;
1516 					break;
1517 				}
1518 			}
1519 			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1520 			spin_unlock_irq(&zone->lock);
1521 			cond_resched();
1522 			spin_lock_irq(&zone->lock);
1523 		}
1524 		seq_putc(m, '\n');
1525 	}
1526 }
1527 
1528 /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)1529 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1530 {
1531 	int order;
1532 	pg_data_t *pgdat = (pg_data_t *)arg;
1533 
1534 	/* Print header */
1535 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1536 	for (order = 0; order < MAX_ORDER; ++order)
1537 		seq_printf(m, "%6d ", order);
1538 	seq_putc(m, '\n');
1539 
1540 	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1541 }
1542 
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1543 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1544 					pg_data_t *pgdat, struct zone *zone)
1545 {
1546 	int mtype;
1547 	unsigned long pfn;
1548 	unsigned long start_pfn = zone->zone_start_pfn;
1549 	unsigned long end_pfn = zone_end_pfn(zone);
1550 	unsigned long count[MIGRATE_TYPES] = { 0, };
1551 
1552 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1553 		struct page *page;
1554 
1555 		page = pfn_to_online_page(pfn);
1556 		if (!page)
1557 			continue;
1558 
1559 		if (page_zone(page) != zone)
1560 			continue;
1561 
1562 		mtype = get_pageblock_migratetype(page);
1563 
1564 		if (mtype < MIGRATE_TYPES)
1565 			count[mtype]++;
1566 	}
1567 
1568 	/* Print counts */
1569 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1570 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1571 		seq_printf(m, "%12lu ", count[mtype]);
1572 	seq_putc(m, '\n');
1573 }
1574 
1575 /* Print out the number of pageblocks for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1576 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1577 {
1578 	int mtype;
1579 	pg_data_t *pgdat = (pg_data_t *)arg;
1580 
1581 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1582 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1583 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1584 	seq_putc(m, '\n');
1585 	walk_zones_in_node(m, pgdat, true, false,
1586 		pagetypeinfo_showblockcount_print);
1587 }
1588 
1589 /*
1590  * Print out the number of pageblocks for each migratetype that contain pages
1591  * of other types. This gives an indication of how well fallbacks are being
1592  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1593  * to determine what is going on
1594  */
pagetypeinfo_showmixedcount(struct seq_file * m,pg_data_t * pgdat)1595 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1596 {
1597 #ifdef CONFIG_PAGE_OWNER
1598 	int mtype;
1599 
1600 	if (!static_branch_unlikely(&page_owner_inited))
1601 		return;
1602 
1603 	drain_all_pages(NULL);
1604 
1605 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1606 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1607 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1608 	seq_putc(m, '\n');
1609 
1610 	walk_zones_in_node(m, pgdat, true, true,
1611 		pagetypeinfo_showmixedcount_print);
1612 #endif /* CONFIG_PAGE_OWNER */
1613 }
1614 
1615 /*
1616  * This prints out statistics in relation to grouping pages by mobility.
1617  * It is expensive to collect so do not constantly read the file.
1618  */
pagetypeinfo_show(struct seq_file * m,void * arg)1619 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1620 {
1621 	pg_data_t *pgdat = (pg_data_t *)arg;
1622 
1623 	/* check memoryless node */
1624 	if (!node_state(pgdat->node_id, N_MEMORY))
1625 		return 0;
1626 
1627 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1628 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1629 	seq_putc(m, '\n');
1630 	pagetypeinfo_showfree(m, pgdat);
1631 	pagetypeinfo_showblockcount(m, pgdat);
1632 	pagetypeinfo_showmixedcount(m, pgdat);
1633 
1634 	return 0;
1635 }
1636 
1637 static const struct seq_operations fragmentation_op = {
1638 	.start	= frag_start,
1639 	.next	= frag_next,
1640 	.stop	= frag_stop,
1641 	.show	= frag_show,
1642 };
1643 
1644 static const struct seq_operations pagetypeinfo_op = {
1645 	.start	= frag_start,
1646 	.next	= frag_next,
1647 	.stop	= frag_stop,
1648 	.show	= pagetypeinfo_show,
1649 };
1650 
is_zone_first_populated(pg_data_t * pgdat,struct zone * zone)1651 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1652 {
1653 	int zid;
1654 
1655 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1656 		struct zone *compare = &pgdat->node_zones[zid];
1657 
1658 		if (populated_zone(compare))
1659 			return zone == compare;
1660 	}
1661 
1662 	return false;
1663 }
1664 
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1665 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1666 							struct zone *zone)
1667 {
1668 	int i;
1669 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1670 	if (is_zone_first_populated(pgdat, zone)) {
1671 		seq_printf(m, "\n  per-node stats");
1672 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1673 			unsigned long pages = node_page_state_pages(pgdat, i);
1674 
1675 			if (vmstat_item_print_in_thp(i))
1676 				pages /= HPAGE_PMD_NR;
1677 			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1678 				   pages);
1679 		}
1680 	}
1681 	seq_printf(m,
1682 		   "\n  pages free     %lu"
1683 		   "\n        min      %lu"
1684 		   "\n        low      %lu"
1685 		   "\n        high     %lu"
1686 		   "\n        spanned  %lu"
1687 		   "\n        present  %lu"
1688 		   "\n        managed  %lu"
1689 		   "\n        cma      %lu",
1690 		   zone_page_state(zone, NR_FREE_PAGES),
1691 		   min_wmark_pages(zone),
1692 		   low_wmark_pages(zone),
1693 		   high_wmark_pages(zone),
1694 		   zone->spanned_pages,
1695 		   zone->present_pages,
1696 		   zone_managed_pages(zone),
1697 		   zone_cma_pages(zone));
1698 
1699 	seq_printf(m,
1700 		   "\n        protection: (%ld",
1701 		   zone->lowmem_reserve[0]);
1702 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1703 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1704 	seq_putc(m, ')');
1705 
1706 	/* If unpopulated, no other information is useful */
1707 	if (!populated_zone(zone)) {
1708 		seq_putc(m, '\n');
1709 		return;
1710 	}
1711 
1712 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1713 		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1714 			   zone_page_state(zone, i));
1715 
1716 #ifdef CONFIG_NUMA
1717 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1718 		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1719 			   zone_numa_event_state(zone, i));
1720 #endif
1721 
1722 	seq_printf(m, "\n  pagesets");
1723 	for_each_online_cpu(i) {
1724 		struct per_cpu_pages *pcp;
1725 		struct per_cpu_zonestat __maybe_unused *pzstats;
1726 
1727 		pcp = &per_cpu_ptr((struct per_cpu_pages_ext __percpu *)zone->per_cpu_pageset,
1728 				   i)->pcp;
1729 		seq_printf(m,
1730 			   "\n    cpu: %i"
1731 			   "\n              count: %i"
1732 			   "\n              high:  %i"
1733 			   "\n              batch: %i",
1734 			   i,
1735 			   pcp->count,
1736 			   pcp->high,
1737 			   pcp->batch);
1738 #ifdef CONFIG_SMP
1739 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1740 		seq_printf(m, "\n  vm stats threshold: %d",
1741 				pzstats->stat_threshold);
1742 #endif
1743 	}
1744 	seq_printf(m,
1745 		   "\n  node_unreclaimable:  %u"
1746 		   "\n  start_pfn:           %lu",
1747 		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1748 		   zone->zone_start_pfn);
1749 	seq_putc(m, '\n');
1750 }
1751 
1752 /*
1753  * Output information about zones in @pgdat.  All zones are printed regardless
1754  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1755  * set of all zones and userspace would not be aware of such zones if they are
1756  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1757  */
zoneinfo_show(struct seq_file * m,void * arg)1758 static int zoneinfo_show(struct seq_file *m, void *arg)
1759 {
1760 	pg_data_t *pgdat = (pg_data_t *)arg;
1761 	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1762 	return 0;
1763 }
1764 
1765 static const struct seq_operations zoneinfo_op = {
1766 	.start	= frag_start, /* iterate over all zones. The same as in
1767 			       * fragmentation. */
1768 	.next	= frag_next,
1769 	.stop	= frag_stop,
1770 	.show	= zoneinfo_show,
1771 };
1772 
1773 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1774 			 NR_VM_NUMA_EVENT_ITEMS + \
1775 			 NR_VM_NODE_STAT_ITEMS + \
1776 			 NR_VM_WRITEBACK_STAT_ITEMS + \
1777 			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1778 			  NR_VM_EVENT_ITEMS : 0))
1779 
vmstat_start(struct seq_file * m,loff_t * pos)1780 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1781 {
1782 	unsigned long *v;
1783 	int i;
1784 
1785 	if (*pos >= NR_VMSTAT_ITEMS)
1786 		return NULL;
1787 
1788 	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1789 	fold_vm_numa_events();
1790 	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1791 	m->private = v;
1792 	if (!v)
1793 		return ERR_PTR(-ENOMEM);
1794 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1795 		v[i] = global_zone_page_state(i);
1796 	v += NR_VM_ZONE_STAT_ITEMS;
1797 
1798 #ifdef CONFIG_NUMA
1799 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1800 		v[i] = global_numa_event_state(i);
1801 	v += NR_VM_NUMA_EVENT_ITEMS;
1802 #endif
1803 
1804 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1805 		v[i] = global_node_page_state_pages(i);
1806 		if (vmstat_item_print_in_thp(i))
1807 			v[i] /= HPAGE_PMD_NR;
1808 	}
1809 	v += NR_VM_NODE_STAT_ITEMS;
1810 
1811 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1812 			    v + NR_DIRTY_THRESHOLD);
1813 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1814 
1815 #ifdef CONFIG_VM_EVENT_COUNTERS
1816 	all_vm_events(v);
1817 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1818 	v[PGPGOUT] /= 2;
1819 #endif
1820 	return (unsigned long *)m->private + *pos;
1821 }
1822 
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1823 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1824 {
1825 	(*pos)++;
1826 	if (*pos >= NR_VMSTAT_ITEMS)
1827 		return NULL;
1828 	return (unsigned long *)m->private + *pos;
1829 }
1830 
vmstat_show(struct seq_file * m,void * arg)1831 static int vmstat_show(struct seq_file *m, void *arg)
1832 {
1833 	unsigned long *l = arg;
1834 	unsigned long off = l - (unsigned long *)m->private;
1835 
1836 	seq_puts(m, vmstat_text[off]);
1837 	seq_put_decimal_ull(m, " ", *l);
1838 	seq_putc(m, '\n');
1839 
1840 	if (off == NR_VMSTAT_ITEMS - 1) {
1841 		/*
1842 		 * We've come to the end - add any deprecated counters to avoid
1843 		 * breaking userspace which might depend on them being present.
1844 		 */
1845 		seq_puts(m, "nr_unstable 0\n");
1846 	}
1847 	return 0;
1848 }
1849 
vmstat_stop(struct seq_file * m,void * arg)1850 static void vmstat_stop(struct seq_file *m, void *arg)
1851 {
1852 	kfree(m->private);
1853 	m->private = NULL;
1854 }
1855 
1856 static const struct seq_operations vmstat_op = {
1857 	.start	= vmstat_start,
1858 	.next	= vmstat_next,
1859 	.stop	= vmstat_stop,
1860 	.show	= vmstat_show,
1861 };
1862 #endif /* CONFIG_PROC_FS */
1863 
1864 #ifdef CONFIG_SMP
1865 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1866 int sysctl_stat_interval __read_mostly = HZ;
1867 
1868 #ifdef CONFIG_PROC_FS
refresh_vm_stats(struct work_struct * work)1869 static void refresh_vm_stats(struct work_struct *work)
1870 {
1871 	refresh_cpu_vm_stats(true);
1872 }
1873 
vmstat_refresh(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1874 int vmstat_refresh(struct ctl_table *table, int write,
1875 		   void *buffer, size_t *lenp, loff_t *ppos)
1876 {
1877 	long val;
1878 	int err;
1879 	int i;
1880 
1881 	/*
1882 	 * The regular update, every sysctl_stat_interval, may come later
1883 	 * than expected: leaving a significant amount in per_cpu buckets.
1884 	 * This is particularly misleading when checking a quantity of HUGE
1885 	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1886 	 * which can equally be echo'ed to or cat'ted from (by root),
1887 	 * can be used to update the stats just before reading them.
1888 	 *
1889 	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1890 	 * transiently negative values, report an error here if any of
1891 	 * the stats is negative, so we know to go looking for imbalance.
1892 	 */
1893 	err = schedule_on_each_cpu(refresh_vm_stats);
1894 	if (err)
1895 		return err;
1896 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1897 		/*
1898 		 * Skip checking stats known to go negative occasionally.
1899 		 */
1900 		switch (i) {
1901 		case NR_ZONE_WRITE_PENDING:
1902 		case NR_FREE_CMA_PAGES:
1903 			continue;
1904 		}
1905 		val = atomic_long_read(&vm_zone_stat[i]);
1906 		if (val < 0) {
1907 			pr_warn("%s: %s %ld\n",
1908 				__func__, zone_stat_name(i), val);
1909 		}
1910 	}
1911 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1912 		/*
1913 		 * Skip checking stats known to go negative occasionally.
1914 		 */
1915 		switch (i) {
1916 		case NR_WRITEBACK:
1917 			continue;
1918 		}
1919 		val = atomic_long_read(&vm_node_stat[i]);
1920 		if (val < 0) {
1921 			pr_warn("%s: %s %ld\n",
1922 				__func__, node_stat_name(i), val);
1923 		}
1924 	}
1925 	if (write)
1926 		*ppos += *lenp;
1927 	else
1928 		*lenp = 0;
1929 	return 0;
1930 }
1931 #endif /* CONFIG_PROC_FS */
1932 
vmstat_update(struct work_struct * w)1933 static void vmstat_update(struct work_struct *w)
1934 {
1935 	if (refresh_cpu_vm_stats(true)) {
1936 		/*
1937 		 * Counters were updated so we expect more updates
1938 		 * to occur in the future. Keep on running the
1939 		 * update worker thread.
1940 		 */
1941 		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1942 				this_cpu_ptr(&vmstat_work),
1943 				round_jiffies_relative(sysctl_stat_interval));
1944 	}
1945 }
1946 
1947 /*
1948  * Check if the diffs for a certain cpu indicate that
1949  * an update is needed.
1950  */
need_update(int cpu)1951 static bool need_update(int cpu)
1952 {
1953 	pg_data_t *last_pgdat = NULL;
1954 	struct zone *zone;
1955 
1956 	for_each_populated_zone(zone) {
1957 		struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1958 		struct per_cpu_nodestat *n;
1959 
1960 		/*
1961 		 * The fast way of checking if there are any vmstat diffs.
1962 		 */
1963 		if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1964 			return true;
1965 
1966 		if (last_pgdat == zone->zone_pgdat)
1967 			continue;
1968 		last_pgdat = zone->zone_pgdat;
1969 		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1970 		if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1971 			return true;
1972 	}
1973 	return false;
1974 }
1975 
1976 /*
1977  * Switch off vmstat processing and then fold all the remaining differentials
1978  * until the diffs stay at zero. The function is used by NOHZ and can only be
1979  * invoked when tick processing is not active.
1980  */
quiet_vmstat(void)1981 void quiet_vmstat(void)
1982 {
1983 	if (system_state != SYSTEM_RUNNING)
1984 		return;
1985 
1986 	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1987 		return;
1988 
1989 	if (!need_update(smp_processor_id()))
1990 		return;
1991 
1992 	/*
1993 	 * Just refresh counters and do not care about the pending delayed
1994 	 * vmstat_update. It doesn't fire that often to matter and canceling
1995 	 * it would be too expensive from this path.
1996 	 * vmstat_shepherd will take care about that for us.
1997 	 */
1998 	refresh_cpu_vm_stats(false);
1999 }
2000 
2001 /*
2002  * Shepherd worker thread that checks the
2003  * differentials of processors that have their worker
2004  * threads for vm statistics updates disabled because of
2005  * inactivity.
2006  */
2007 static void vmstat_shepherd(struct work_struct *w);
2008 
2009 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2010 
vmstat_shepherd(struct work_struct * w)2011 static void vmstat_shepherd(struct work_struct *w)
2012 {
2013 	int cpu;
2014 
2015 	cpus_read_lock();
2016 	/* Check processors whose vmstat worker threads have been disabled */
2017 	for_each_online_cpu(cpu) {
2018 		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2019 
2020 		if (!delayed_work_pending(dw) && need_update(cpu))
2021 			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2022 
2023 		cond_resched();
2024 	}
2025 	cpus_read_unlock();
2026 
2027 	schedule_delayed_work(&shepherd,
2028 		round_jiffies_relative(sysctl_stat_interval));
2029 }
2030 
start_shepherd_timer(void)2031 static void __init start_shepherd_timer(void)
2032 {
2033 	int cpu;
2034 
2035 	for_each_possible_cpu(cpu)
2036 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2037 			vmstat_update);
2038 
2039 	schedule_delayed_work(&shepherd,
2040 		round_jiffies_relative(sysctl_stat_interval));
2041 }
2042 
init_cpu_node_state(void)2043 static void __init init_cpu_node_state(void)
2044 {
2045 	int node;
2046 
2047 	for_each_online_node(node) {
2048 		if (cpumask_weight(cpumask_of_node(node)) > 0)
2049 			node_set_state(node, N_CPU);
2050 	}
2051 }
2052 
vmstat_cpu_online(unsigned int cpu)2053 static int vmstat_cpu_online(unsigned int cpu)
2054 {
2055 	refresh_zone_stat_thresholds();
2056 	node_set_state(cpu_to_node(cpu), N_CPU);
2057 	return 0;
2058 }
2059 
vmstat_cpu_down_prep(unsigned int cpu)2060 static int vmstat_cpu_down_prep(unsigned int cpu)
2061 {
2062 	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2063 	return 0;
2064 }
2065 
vmstat_cpu_dead(unsigned int cpu)2066 static int vmstat_cpu_dead(unsigned int cpu)
2067 {
2068 	const struct cpumask *node_cpus;
2069 	int node;
2070 
2071 	node = cpu_to_node(cpu);
2072 
2073 	refresh_zone_stat_thresholds();
2074 	node_cpus = cpumask_of_node(node);
2075 	if (cpumask_weight(node_cpus) > 0)
2076 		return 0;
2077 
2078 	node_clear_state(node, N_CPU);
2079 	return 0;
2080 }
2081 
2082 #endif
2083 
2084 struct workqueue_struct *mm_percpu_wq;
2085 
init_mm_internals(void)2086 void __init init_mm_internals(void)
2087 {
2088 	int ret __maybe_unused;
2089 
2090 	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2091 
2092 #ifdef CONFIG_SMP
2093 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2094 					NULL, vmstat_cpu_dead);
2095 	if (ret < 0)
2096 		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2097 
2098 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2099 					vmstat_cpu_online,
2100 					vmstat_cpu_down_prep);
2101 	if (ret < 0)
2102 		pr_err("vmstat: failed to register 'online' hotplug state\n");
2103 
2104 	cpus_read_lock();
2105 	init_cpu_node_state();
2106 	cpus_read_unlock();
2107 
2108 	start_shepherd_timer();
2109 #endif
2110 #ifdef CONFIG_PROC_FS
2111 	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2112 	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2113 	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2114 	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2115 #endif
2116 }
2117 
2118 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2119 
2120 /*
2121  * Return an index indicating how much of the available free memory is
2122  * unusable for an allocation of the requested size.
2123  */
unusable_free_index(unsigned int order,struct contig_page_info * info)2124 static int unusable_free_index(unsigned int order,
2125 				struct contig_page_info *info)
2126 {
2127 	/* No free memory is interpreted as all free memory is unusable */
2128 	if (info->free_pages == 0)
2129 		return 1000;
2130 
2131 	/*
2132 	 * Index should be a value between 0 and 1. Return a value to 3
2133 	 * decimal places.
2134 	 *
2135 	 * 0 => no fragmentation
2136 	 * 1 => high fragmentation
2137 	 */
2138 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2139 
2140 }
2141 
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2142 static void unusable_show_print(struct seq_file *m,
2143 					pg_data_t *pgdat, struct zone *zone)
2144 {
2145 	unsigned int order;
2146 	int index;
2147 	struct contig_page_info info;
2148 
2149 	seq_printf(m, "Node %d, zone %8s ",
2150 				pgdat->node_id,
2151 				zone->name);
2152 	for (order = 0; order < MAX_ORDER; ++order) {
2153 		fill_contig_page_info(zone, order, &info);
2154 		index = unusable_free_index(order, &info);
2155 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2156 	}
2157 
2158 	seq_putc(m, '\n');
2159 }
2160 
2161 /*
2162  * Display unusable free space index
2163  *
2164  * The unusable free space index measures how much of the available free
2165  * memory cannot be used to satisfy an allocation of a given size and is a
2166  * value between 0 and 1. The higher the value, the more of free memory is
2167  * unusable and by implication, the worse the external fragmentation is. This
2168  * can be expressed as a percentage by multiplying by 100.
2169  */
unusable_show(struct seq_file * m,void * arg)2170 static int unusable_show(struct seq_file *m, void *arg)
2171 {
2172 	pg_data_t *pgdat = (pg_data_t *)arg;
2173 
2174 	/* check memoryless node */
2175 	if (!node_state(pgdat->node_id, N_MEMORY))
2176 		return 0;
2177 
2178 	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2179 
2180 	return 0;
2181 }
2182 
2183 static const struct seq_operations unusable_sops = {
2184 	.start	= frag_start,
2185 	.next	= frag_next,
2186 	.stop	= frag_stop,
2187 	.show	= unusable_show,
2188 };
2189 
2190 DEFINE_SEQ_ATTRIBUTE(unusable);
2191 
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2192 static void extfrag_show_print(struct seq_file *m,
2193 					pg_data_t *pgdat, struct zone *zone)
2194 {
2195 	unsigned int order;
2196 	int index;
2197 
2198 	/* Alloc on stack as interrupts are disabled for zone walk */
2199 	struct contig_page_info info;
2200 
2201 	seq_printf(m, "Node %d, zone %8s ",
2202 				pgdat->node_id,
2203 				zone->name);
2204 	for (order = 0; order < MAX_ORDER; ++order) {
2205 		fill_contig_page_info(zone, order, &info);
2206 		index = __fragmentation_index(order, &info);
2207 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2208 	}
2209 
2210 	seq_putc(m, '\n');
2211 }
2212 
2213 /*
2214  * Display fragmentation index for orders that allocations would fail for
2215  */
extfrag_show(struct seq_file * m,void * arg)2216 static int extfrag_show(struct seq_file *m, void *arg)
2217 {
2218 	pg_data_t *pgdat = (pg_data_t *)arg;
2219 
2220 	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2221 
2222 	return 0;
2223 }
2224 
2225 static const struct seq_operations extfrag_sops = {
2226 	.start	= frag_start,
2227 	.next	= frag_next,
2228 	.stop	= frag_stop,
2229 	.show	= extfrag_show,
2230 };
2231 
2232 DEFINE_SEQ_ATTRIBUTE(extfrag);
2233 
extfrag_debug_init(void)2234 static int __init extfrag_debug_init(void)
2235 {
2236 	struct dentry *extfrag_debug_root;
2237 
2238 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2239 
2240 	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2241 			    &unusable_fops);
2242 
2243 	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2244 			    &extfrag_fops);
2245 
2246 	return 0;
2247 }
2248 
2249 module_init(extfrag_debug_init);
2250 #endif
2251