• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include "protocol.h"
26 #include "mib.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/mptcp.h>
30 
31 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
32 struct mptcp6_sock {
33 	struct mptcp_sock msk;
34 	struct ipv6_pinfo np;
35 };
36 #endif
37 
38 struct mptcp_skb_cb {
39 	u64 map_seq;
40 	u64 end_seq;
41 	u32 offset;
42 	u8  has_rxtstamp:1;
43 };
44 
45 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
46 
47 enum {
48 	MPTCP_CMSG_TS = BIT(0),
49 };
50 
51 static struct percpu_counter mptcp_sockets_allocated;
52 
53 static void __mptcp_destroy_sock(struct sock *sk);
54 static void mptcp_check_send_data_fin(struct sock *sk);
55 
56 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
57 static struct net_device mptcp_napi_dev;
58 
59 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
60  * completed yet or has failed, return the subflow socket.
61  * Otherwise return NULL.
62  */
__mptcp_nmpc_socket(const struct mptcp_sock * msk)63 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
64 {
65 	if (!msk->subflow || READ_ONCE(msk->can_ack))
66 		return NULL;
67 
68 	return msk->subflow;
69 }
70 
71 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)72 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
73 {
74 	return READ_ONCE(msk->wnd_end);
75 }
76 
mptcp_is_tcpsk(struct sock * sk)77 static bool mptcp_is_tcpsk(struct sock *sk)
78 {
79 	struct socket *sock = sk->sk_socket;
80 
81 	if (unlikely(sk->sk_prot == &tcp_prot)) {
82 		/* we are being invoked after mptcp_accept() has
83 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
84 		 * not an mptcp one.
85 		 *
86 		 * Hand the socket over to tcp so all further socket ops
87 		 * bypass mptcp.
88 		 */
89 		sock->ops = &inet_stream_ops;
90 		return true;
91 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
92 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
93 		sock->ops = &inet6_stream_ops;
94 		return true;
95 #endif
96 	}
97 
98 	return false;
99 }
100 
__mptcp_socket_create(struct mptcp_sock * msk)101 static int __mptcp_socket_create(struct mptcp_sock *msk)
102 {
103 	struct mptcp_subflow_context *subflow;
104 	struct sock *sk = (struct sock *)msk;
105 	struct socket *ssock;
106 	int err;
107 
108 	err = mptcp_subflow_create_socket(sk, &ssock);
109 	if (err)
110 		return err;
111 
112 	msk->first = ssock->sk;
113 	msk->subflow = ssock;
114 	subflow = mptcp_subflow_ctx(ssock->sk);
115 	list_add(&subflow->node, &msk->conn_list);
116 	sock_hold(ssock->sk);
117 	subflow->request_mptcp = 1;
118 	mptcp_sock_graft(msk->first, sk->sk_socket);
119 
120 	return 0;
121 }
122 
mptcp_drop(struct sock * sk,struct sk_buff * skb)123 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
124 {
125 	sk_drops_add(sk, skb);
126 	__kfree_skb(skb);
127 }
128 
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)129 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
130 			       struct sk_buff *from)
131 {
132 	bool fragstolen;
133 	int delta;
134 
135 	if (MPTCP_SKB_CB(from)->offset ||
136 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
137 		return false;
138 
139 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
140 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
141 		 to->len, MPTCP_SKB_CB(from)->end_seq);
142 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
143 	kfree_skb_partial(from, fragstolen);
144 	atomic_add(delta, &sk->sk_rmem_alloc);
145 	sk_mem_charge(sk, delta);
146 	return true;
147 }
148 
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)149 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
150 				   struct sk_buff *from)
151 {
152 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
153 		return false;
154 
155 	return mptcp_try_coalesce((struct sock *)msk, to, from);
156 }
157 
158 /* "inspired" by tcp_data_queue_ofo(), main differences:
159  * - use mptcp seqs
160  * - don't cope with sacks
161  */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)162 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
163 {
164 	struct sock *sk = (struct sock *)msk;
165 	struct rb_node **p, *parent;
166 	u64 seq, end_seq, max_seq;
167 	struct sk_buff *skb1;
168 
169 	seq = MPTCP_SKB_CB(skb)->map_seq;
170 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
171 	max_seq = READ_ONCE(msk->rcv_wnd_sent);
172 
173 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
174 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
175 	if (after64(end_seq, max_seq)) {
176 		/* out of window */
177 		mptcp_drop(sk, skb);
178 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
179 			 (unsigned long long)end_seq - (unsigned long)max_seq,
180 			 (unsigned long long)msk->rcv_wnd_sent);
181 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
182 		return;
183 	}
184 
185 	p = &msk->out_of_order_queue.rb_node;
186 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
187 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
188 		rb_link_node(&skb->rbnode, NULL, p);
189 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
190 		msk->ooo_last_skb = skb;
191 		goto end;
192 	}
193 
194 	/* with 2 subflows, adding at end of ooo queue is quite likely
195 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
196 	 */
197 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
198 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
199 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
200 		return;
201 	}
202 
203 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
204 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
205 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
206 		parent = &msk->ooo_last_skb->rbnode;
207 		p = &parent->rb_right;
208 		goto insert;
209 	}
210 
211 	/* Find place to insert this segment. Handle overlaps on the way. */
212 	parent = NULL;
213 	while (*p) {
214 		parent = *p;
215 		skb1 = rb_to_skb(parent);
216 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
217 			p = &parent->rb_left;
218 			continue;
219 		}
220 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
221 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
222 				/* All the bits are present. Drop. */
223 				mptcp_drop(sk, skb);
224 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
225 				return;
226 			}
227 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
228 				/* partial overlap:
229 				 *     |     skb      |
230 				 *  |     skb1    |
231 				 * continue traversing
232 				 */
233 			} else {
234 				/* skb's seq == skb1's seq and skb covers skb1.
235 				 * Replace skb1 with skb.
236 				 */
237 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
238 						&msk->out_of_order_queue);
239 				mptcp_drop(sk, skb1);
240 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
241 				goto merge_right;
242 			}
243 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
244 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
245 			return;
246 		}
247 		p = &parent->rb_right;
248 	}
249 
250 insert:
251 	/* Insert segment into RB tree. */
252 	rb_link_node(&skb->rbnode, parent, p);
253 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
254 
255 merge_right:
256 	/* Remove other segments covered by skb. */
257 	while ((skb1 = skb_rb_next(skb)) != NULL) {
258 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
259 			break;
260 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
261 		mptcp_drop(sk, skb1);
262 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
263 	}
264 	/* If there is no skb after us, we are the last_skb ! */
265 	if (!skb1)
266 		msk->ooo_last_skb = skb;
267 
268 end:
269 	skb_condense(skb);
270 	skb_set_owner_r(skb, sk);
271 }
272 
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)273 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
274 			     struct sk_buff *skb, unsigned int offset,
275 			     size_t copy_len)
276 {
277 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
278 	struct sock *sk = (struct sock *)msk;
279 	struct sk_buff *tail;
280 	bool has_rxtstamp;
281 
282 	__skb_unlink(skb, &ssk->sk_receive_queue);
283 
284 	skb_ext_reset(skb);
285 	skb_orphan(skb);
286 
287 	/* try to fetch required memory from subflow */
288 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
289 		int amount = sk_mem_pages(skb->truesize) << SK_MEM_QUANTUM_SHIFT;
290 
291 		if (ssk->sk_forward_alloc < amount)
292 			goto drop;
293 
294 		ssk->sk_forward_alloc -= amount;
295 		sk->sk_forward_alloc += amount;
296 	}
297 
298 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
299 
300 	/* the skb map_seq accounts for the skb offset:
301 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
302 	 * value
303 	 */
304 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
305 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
306 	MPTCP_SKB_CB(skb)->offset = offset;
307 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
308 
309 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
310 		/* in sequence */
311 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
312 		tail = skb_peek_tail(&sk->sk_receive_queue);
313 		if (tail && mptcp_try_coalesce(sk, tail, skb))
314 			return true;
315 
316 		skb_set_owner_r(skb, sk);
317 		__skb_queue_tail(&sk->sk_receive_queue, skb);
318 		return true;
319 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
320 		mptcp_data_queue_ofo(msk, skb);
321 		return false;
322 	}
323 
324 	/* old data, keep it simple and drop the whole pkt, sender
325 	 * will retransmit as needed, if needed.
326 	 */
327 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
328 drop:
329 	mptcp_drop(sk, skb);
330 	return false;
331 }
332 
mptcp_stop_timer(struct sock * sk)333 static void mptcp_stop_timer(struct sock *sk)
334 {
335 	struct inet_connection_sock *icsk = inet_csk(sk);
336 
337 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
338 	mptcp_sk(sk)->timer_ival = 0;
339 }
340 
mptcp_close_wake_up(struct sock * sk)341 static void mptcp_close_wake_up(struct sock *sk)
342 {
343 	if (sock_flag(sk, SOCK_DEAD))
344 		return;
345 
346 	sk->sk_state_change(sk);
347 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
348 	    sk->sk_state == TCP_CLOSE)
349 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
350 	else
351 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
352 }
353 
mptcp_pending_data_fin_ack(struct sock * sk)354 static bool mptcp_pending_data_fin_ack(struct sock *sk)
355 {
356 	struct mptcp_sock *msk = mptcp_sk(sk);
357 
358 	return ((1 << sk->sk_state) &
359 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
360 	       msk->write_seq == READ_ONCE(msk->snd_una);
361 }
362 
mptcp_check_data_fin_ack(struct sock * sk)363 static void mptcp_check_data_fin_ack(struct sock *sk)
364 {
365 	struct mptcp_sock *msk = mptcp_sk(sk);
366 
367 	/* Look for an acknowledged DATA_FIN */
368 	if (mptcp_pending_data_fin_ack(sk)) {
369 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
370 
371 		switch (sk->sk_state) {
372 		case TCP_FIN_WAIT1:
373 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
374 			break;
375 		case TCP_CLOSING:
376 		case TCP_LAST_ACK:
377 			inet_sk_state_store(sk, TCP_CLOSE);
378 			break;
379 		}
380 
381 		mptcp_close_wake_up(sk);
382 	}
383 }
384 
mptcp_pending_data_fin(struct sock * sk,u64 * seq)385 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
386 {
387 	struct mptcp_sock *msk = mptcp_sk(sk);
388 
389 	if (READ_ONCE(msk->rcv_data_fin) &&
390 	    ((1 << sk->sk_state) &
391 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
392 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
393 
394 		if (msk->ack_seq == rcv_data_fin_seq) {
395 			if (seq)
396 				*seq = rcv_data_fin_seq;
397 
398 			return true;
399 		}
400 	}
401 
402 	return false;
403 }
404 
mptcp_set_datafin_timeout(const struct sock * sk)405 static void mptcp_set_datafin_timeout(const struct sock *sk)
406 {
407 	struct inet_connection_sock *icsk = inet_csk(sk);
408 	u32 retransmits;
409 
410 	retransmits = min_t(u32, icsk->icsk_retransmits,
411 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
412 
413 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
414 }
415 
__mptcp_set_timeout(struct sock * sk,long tout)416 static void __mptcp_set_timeout(struct sock *sk, long tout)
417 {
418 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
419 }
420 
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)421 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
422 {
423 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
424 
425 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
426 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
427 }
428 
mptcp_set_timeout(struct sock * sk)429 static void mptcp_set_timeout(struct sock *sk)
430 {
431 	struct mptcp_subflow_context *subflow;
432 	long tout = 0;
433 
434 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
435 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
436 	__mptcp_set_timeout(sk, tout);
437 }
438 
tcp_can_send_ack(const struct sock * ssk)439 static bool tcp_can_send_ack(const struct sock *ssk)
440 {
441 	return !((1 << inet_sk_state_load(ssk)) &
442 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
443 }
444 
mptcp_subflow_send_ack(struct sock * ssk)445 void mptcp_subflow_send_ack(struct sock *ssk)
446 {
447 	bool slow;
448 
449 	slow = lock_sock_fast(ssk);
450 	if (tcp_can_send_ack(ssk))
451 		tcp_send_ack(ssk);
452 	unlock_sock_fast(ssk, slow);
453 }
454 
mptcp_send_ack(struct mptcp_sock * msk)455 static void mptcp_send_ack(struct mptcp_sock *msk)
456 {
457 	struct mptcp_subflow_context *subflow;
458 
459 	mptcp_for_each_subflow(msk, subflow)
460 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
461 }
462 
mptcp_subflow_cleanup_rbuf(struct sock * ssk)463 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
464 {
465 	bool slow;
466 
467 	slow = lock_sock_fast(ssk);
468 	if (tcp_can_send_ack(ssk))
469 		tcp_cleanup_rbuf(ssk, 1);
470 	unlock_sock_fast(ssk, slow);
471 }
472 
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)473 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
474 {
475 	const struct inet_connection_sock *icsk = inet_csk(ssk);
476 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
477 	const struct tcp_sock *tp = tcp_sk(ssk);
478 
479 	return (ack_pending & ICSK_ACK_SCHED) &&
480 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
481 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
482 		 (rx_empty && ack_pending &
483 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
484 }
485 
mptcp_cleanup_rbuf(struct mptcp_sock * msk)486 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
487 {
488 	int old_space = READ_ONCE(msk->old_wspace);
489 	struct mptcp_subflow_context *subflow;
490 	struct sock *sk = (struct sock *)msk;
491 	int space =  __mptcp_space(sk);
492 	bool cleanup, rx_empty;
493 
494 	cleanup = (space > 0) && (space >= (old_space << 1));
495 	rx_empty = !__mptcp_rmem(sk);
496 
497 	mptcp_for_each_subflow(msk, subflow) {
498 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
499 
500 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
501 			mptcp_subflow_cleanup_rbuf(ssk);
502 	}
503 }
504 
mptcp_check_data_fin(struct sock * sk)505 static bool mptcp_check_data_fin(struct sock *sk)
506 {
507 	struct mptcp_sock *msk = mptcp_sk(sk);
508 	u64 rcv_data_fin_seq;
509 	bool ret = false;
510 
511 	/* Need to ack a DATA_FIN received from a peer while this side
512 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
513 	 * msk->rcv_data_fin was set when parsing the incoming options
514 	 * at the subflow level and the msk lock was not held, so this
515 	 * is the first opportunity to act on the DATA_FIN and change
516 	 * the msk state.
517 	 *
518 	 * If we are caught up to the sequence number of the incoming
519 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
520 	 * not caught up, do nothing and let the recv code send DATA_ACK
521 	 * when catching up.
522 	 */
523 
524 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
525 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
526 		WRITE_ONCE(msk->rcv_data_fin, 0);
527 
528 		sk->sk_shutdown |= RCV_SHUTDOWN;
529 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
530 
531 		switch (sk->sk_state) {
532 		case TCP_ESTABLISHED:
533 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
534 			break;
535 		case TCP_FIN_WAIT1:
536 			inet_sk_state_store(sk, TCP_CLOSING);
537 			break;
538 		case TCP_FIN_WAIT2:
539 			inet_sk_state_store(sk, TCP_CLOSE);
540 			break;
541 		default:
542 			/* Other states not expected */
543 			WARN_ON_ONCE(1);
544 			break;
545 		}
546 
547 		ret = true;
548 		if (!__mptcp_check_fallback(msk))
549 			mptcp_send_ack(msk);
550 		mptcp_close_wake_up(sk);
551 	}
552 	return ret;
553 }
554 
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)555 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
556 					   struct sock *ssk,
557 					   unsigned int *bytes)
558 {
559 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
560 	struct sock *sk = (struct sock *)msk;
561 	unsigned int moved = 0;
562 	bool more_data_avail;
563 	struct tcp_sock *tp;
564 	bool done = false;
565 	int sk_rbuf;
566 
567 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
568 
569 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
570 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
571 
572 		if (unlikely(ssk_rbuf > sk_rbuf)) {
573 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
574 			sk_rbuf = ssk_rbuf;
575 		}
576 	}
577 
578 	pr_debug("msk=%p ssk=%p", msk, ssk);
579 	tp = tcp_sk(ssk);
580 	do {
581 		u32 map_remaining, offset;
582 		u32 seq = tp->copied_seq;
583 		struct sk_buff *skb;
584 		bool fin;
585 
586 		/* try to move as much data as available */
587 		map_remaining = subflow->map_data_len -
588 				mptcp_subflow_get_map_offset(subflow);
589 
590 		skb = skb_peek(&ssk->sk_receive_queue);
591 		if (!skb) {
592 			/* if no data is found, a racing workqueue/recvmsg
593 			 * already processed the new data, stop here or we
594 			 * can enter an infinite loop
595 			 */
596 			if (!moved)
597 				done = true;
598 			break;
599 		}
600 
601 		if (__mptcp_check_fallback(msk)) {
602 			/* if we are running under the workqueue, TCP could have
603 			 * collapsed skbs between dummy map creation and now
604 			 * be sure to adjust the size
605 			 */
606 			map_remaining = skb->len;
607 			subflow->map_data_len = skb->len;
608 		}
609 
610 		offset = seq - TCP_SKB_CB(skb)->seq;
611 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
612 		if (fin) {
613 			done = true;
614 			seq++;
615 		}
616 
617 		if (offset < skb->len) {
618 			size_t len = skb->len - offset;
619 
620 			if (tp->urg_data)
621 				done = true;
622 
623 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
624 				moved += len;
625 			seq += len;
626 
627 			if (WARN_ON_ONCE(map_remaining < len))
628 				break;
629 		} else {
630 			WARN_ON_ONCE(!fin);
631 			sk_eat_skb(ssk, skb);
632 			done = true;
633 		}
634 
635 		WRITE_ONCE(tp->copied_seq, seq);
636 		more_data_avail = mptcp_subflow_data_available(ssk);
637 
638 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
639 			done = true;
640 			break;
641 		}
642 	} while (more_data_avail);
643 
644 	*bytes += moved;
645 	return done;
646 }
647 
__mptcp_ofo_queue(struct mptcp_sock * msk)648 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
649 {
650 	struct sock *sk = (struct sock *)msk;
651 	struct sk_buff *skb, *tail;
652 	bool moved = false;
653 	struct rb_node *p;
654 	u64 end_seq;
655 
656 	p = rb_first(&msk->out_of_order_queue);
657 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
658 	while (p) {
659 		skb = rb_to_skb(p);
660 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
661 			break;
662 
663 		p = rb_next(p);
664 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
665 
666 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
667 				      msk->ack_seq))) {
668 			mptcp_drop(sk, skb);
669 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
670 			continue;
671 		}
672 
673 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
674 		tail = skb_peek_tail(&sk->sk_receive_queue);
675 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
676 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
677 
678 			/* skip overlapping data, if any */
679 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
680 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
681 				 delta);
682 			MPTCP_SKB_CB(skb)->offset += delta;
683 			__skb_queue_tail(&sk->sk_receive_queue, skb);
684 		}
685 		msk->ack_seq = end_seq;
686 		moved = true;
687 	}
688 	return moved;
689 }
690 
691 /* In most cases we will be able to lock the mptcp socket.  If its already
692  * owned, we need to defer to the work queue to avoid ABBA deadlock.
693  */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)694 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
695 {
696 	struct sock *sk = (struct sock *)msk;
697 	unsigned int moved = 0;
698 
699 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
700 	__mptcp_ofo_queue(msk);
701 	if (unlikely(ssk->sk_err)) {
702 		if (!sock_owned_by_user(sk))
703 			__mptcp_error_report(sk);
704 		else
705 			set_bit(MPTCP_ERROR_REPORT,  &msk->flags);
706 	}
707 
708 	/* If the moves have caught up with the DATA_FIN sequence number
709 	 * it's time to ack the DATA_FIN and change socket state, but
710 	 * this is not a good place to change state. Let the workqueue
711 	 * do it.
712 	 */
713 	if (mptcp_pending_data_fin(sk, NULL))
714 		mptcp_schedule_work(sk);
715 	return moved > 0;
716 }
717 
mptcp_data_ready(struct sock * sk,struct sock * ssk)718 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
719 {
720 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
721 	struct mptcp_sock *msk = mptcp_sk(sk);
722 	int sk_rbuf, ssk_rbuf;
723 
724 	/* The peer can send data while we are shutting down this
725 	 * subflow at msk destruction time, but we must avoid enqueuing
726 	 * more data to the msk receive queue
727 	 */
728 	if (unlikely(subflow->disposable))
729 		return;
730 
731 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
732 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
733 	if (unlikely(ssk_rbuf > sk_rbuf))
734 		sk_rbuf = ssk_rbuf;
735 
736 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
737 	if (__mptcp_rmem(sk) > sk_rbuf) {
738 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
739 		return;
740 	}
741 
742 	/* Wake-up the reader only for in-sequence data */
743 	mptcp_data_lock(sk);
744 	if (move_skbs_to_msk(msk, ssk))
745 		sk->sk_data_ready(sk);
746 
747 	mptcp_data_unlock(sk);
748 }
749 
mptcp_do_flush_join_list(struct mptcp_sock * msk)750 static bool mptcp_do_flush_join_list(struct mptcp_sock *msk)
751 {
752 	struct mptcp_subflow_context *subflow;
753 	bool ret = false;
754 
755 	if (likely(list_empty(&msk->join_list)))
756 		return false;
757 
758 	spin_lock_bh(&msk->join_list_lock);
759 	list_for_each_entry(subflow, &msk->join_list, node) {
760 		u32 sseq = READ_ONCE(subflow->setsockopt_seq);
761 
762 		mptcp_propagate_sndbuf((struct sock *)msk, mptcp_subflow_tcp_sock(subflow));
763 		if (READ_ONCE(msk->setsockopt_seq) != sseq)
764 			ret = true;
765 	}
766 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
767 	spin_unlock_bh(&msk->join_list_lock);
768 
769 	return ret;
770 }
771 
__mptcp_flush_join_list(struct mptcp_sock * msk)772 void __mptcp_flush_join_list(struct mptcp_sock *msk)
773 {
774 	if (likely(!mptcp_do_flush_join_list(msk)))
775 		return;
776 
777 	if (!test_and_set_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags))
778 		mptcp_schedule_work((struct sock *)msk);
779 }
780 
mptcp_flush_join_list(struct mptcp_sock * msk)781 static void mptcp_flush_join_list(struct mptcp_sock *msk)
782 {
783 	bool sync_needed = test_and_clear_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags);
784 
785 	might_sleep();
786 
787 	if (!mptcp_do_flush_join_list(msk) && !sync_needed)
788 		return;
789 
790 	mptcp_sockopt_sync_all(msk);
791 }
792 
mptcp_timer_pending(struct sock * sk)793 static bool mptcp_timer_pending(struct sock *sk)
794 {
795 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
796 }
797 
mptcp_reset_timer(struct sock * sk)798 static void mptcp_reset_timer(struct sock *sk)
799 {
800 	struct inet_connection_sock *icsk = inet_csk(sk);
801 	unsigned long tout;
802 
803 	/* prevent rescheduling on close */
804 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
805 		return;
806 
807 	tout = mptcp_sk(sk)->timer_ival;
808 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
809 }
810 
mptcp_schedule_work(struct sock * sk)811 bool mptcp_schedule_work(struct sock *sk)
812 {
813 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
814 	    schedule_work(&mptcp_sk(sk)->work)) {
815 		/* each subflow already holds a reference to the sk, and the
816 		 * workqueue is invoked by a subflow, so sk can't go away here.
817 		 */
818 		sock_hold(sk);
819 		return true;
820 	}
821 	return false;
822 }
823 
mptcp_subflow_eof(struct sock * sk)824 void mptcp_subflow_eof(struct sock *sk)
825 {
826 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
827 		mptcp_schedule_work(sk);
828 }
829 
mptcp_check_for_eof(struct mptcp_sock * msk)830 static void mptcp_check_for_eof(struct mptcp_sock *msk)
831 {
832 	struct mptcp_subflow_context *subflow;
833 	struct sock *sk = (struct sock *)msk;
834 	int receivers = 0;
835 
836 	mptcp_for_each_subflow(msk, subflow)
837 		receivers += !subflow->rx_eof;
838 	if (receivers)
839 		return;
840 
841 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
842 		/* hopefully temporary hack: propagate shutdown status
843 		 * to msk, when all subflows agree on it
844 		 */
845 		sk->sk_shutdown |= RCV_SHUTDOWN;
846 
847 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
848 		sk->sk_data_ready(sk);
849 	}
850 
851 	switch (sk->sk_state) {
852 	case TCP_ESTABLISHED:
853 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
854 		break;
855 	case TCP_FIN_WAIT1:
856 		inet_sk_state_store(sk, TCP_CLOSING);
857 		break;
858 	case TCP_FIN_WAIT2:
859 		inet_sk_state_store(sk, TCP_CLOSE);
860 		break;
861 	default:
862 		return;
863 	}
864 	mptcp_close_wake_up(sk);
865 }
866 
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)867 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
868 {
869 	struct mptcp_subflow_context *subflow;
870 	struct sock *sk = (struct sock *)msk;
871 
872 	sock_owned_by_me(sk);
873 
874 	mptcp_for_each_subflow(msk, subflow) {
875 		if (READ_ONCE(subflow->data_avail))
876 			return mptcp_subflow_tcp_sock(subflow);
877 	}
878 
879 	return NULL;
880 }
881 
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)882 static bool mptcp_skb_can_collapse_to(u64 write_seq,
883 				      const struct sk_buff *skb,
884 				      const struct mptcp_ext *mpext)
885 {
886 	if (!tcp_skb_can_collapse_to(skb))
887 		return false;
888 
889 	/* can collapse only if MPTCP level sequence is in order and this
890 	 * mapping has not been xmitted yet
891 	 */
892 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
893 	       !mpext->frozen;
894 }
895 
896 /* we can append data to the given data frag if:
897  * - there is space available in the backing page_frag
898  * - the data frag tail matches the current page_frag free offset
899  * - the data frag end sequence number matches the current write seq
900  */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)901 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
902 				       const struct page_frag *pfrag,
903 				       const struct mptcp_data_frag *df)
904 {
905 	return df && pfrag->page == df->page &&
906 		pfrag->size - pfrag->offset > 0 &&
907 		pfrag->offset == (df->offset + df->data_len) &&
908 		df->data_seq + df->data_len == msk->write_seq;
909 }
910 
mptcp_wmem_with_overhead(int size)911 static int mptcp_wmem_with_overhead(int size)
912 {
913 	return size + ((sizeof(struct mptcp_data_frag) * size) >> PAGE_SHIFT);
914 }
915 
__mptcp_wmem_reserve(struct sock * sk,int size)916 static void __mptcp_wmem_reserve(struct sock *sk, int size)
917 {
918 	int amount = mptcp_wmem_with_overhead(size);
919 	struct mptcp_sock *msk = mptcp_sk(sk);
920 
921 	WARN_ON_ONCE(msk->wmem_reserved);
922 	if (WARN_ON_ONCE(amount < 0))
923 		amount = 0;
924 
925 	if (amount <= sk->sk_forward_alloc)
926 		goto reserve;
927 
928 	/* under memory pressure try to reserve at most a single page
929 	 * otherwise try to reserve the full estimate and fallback
930 	 * to a single page before entering the error path
931 	 */
932 	if ((tcp_under_memory_pressure(sk) && amount > PAGE_SIZE) ||
933 	    !sk_wmem_schedule(sk, amount)) {
934 		if (amount <= PAGE_SIZE)
935 			goto nomem;
936 
937 		amount = PAGE_SIZE;
938 		if (!sk_wmem_schedule(sk, amount))
939 			goto nomem;
940 	}
941 
942 reserve:
943 	msk->wmem_reserved = amount;
944 	sk->sk_forward_alloc -= amount;
945 	return;
946 
947 nomem:
948 	/* we will wait for memory on next allocation */
949 	msk->wmem_reserved = -1;
950 }
951 
__mptcp_update_wmem(struct sock * sk)952 static void __mptcp_update_wmem(struct sock *sk)
953 {
954 	struct mptcp_sock *msk = mptcp_sk(sk);
955 
956 #ifdef CONFIG_LOCKDEP
957 	WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock));
958 #endif
959 
960 	if (!msk->wmem_reserved)
961 		return;
962 
963 	if (msk->wmem_reserved < 0)
964 		msk->wmem_reserved = 0;
965 	if (msk->wmem_reserved > 0) {
966 		sk->sk_forward_alloc += msk->wmem_reserved;
967 		msk->wmem_reserved = 0;
968 	}
969 }
970 
mptcp_wmem_alloc(struct sock * sk,int size)971 static bool mptcp_wmem_alloc(struct sock *sk, int size)
972 {
973 	struct mptcp_sock *msk = mptcp_sk(sk);
974 
975 	/* check for pre-existing error condition */
976 	if (msk->wmem_reserved < 0)
977 		return false;
978 
979 	if (msk->wmem_reserved >= size)
980 		goto account;
981 
982 	mptcp_data_lock(sk);
983 	if (!sk_wmem_schedule(sk, size)) {
984 		mptcp_data_unlock(sk);
985 		return false;
986 	}
987 
988 	sk->sk_forward_alloc -= size;
989 	msk->wmem_reserved += size;
990 	mptcp_data_unlock(sk);
991 
992 account:
993 	msk->wmem_reserved -= size;
994 	return true;
995 }
996 
mptcp_wmem_uncharge(struct sock * sk,int size)997 static void mptcp_wmem_uncharge(struct sock *sk, int size)
998 {
999 	struct mptcp_sock *msk = mptcp_sk(sk);
1000 
1001 	if (msk->wmem_reserved < 0)
1002 		msk->wmem_reserved = 0;
1003 	msk->wmem_reserved += size;
1004 }
1005 
__mptcp_mem_reclaim_partial(struct sock * sk)1006 static void __mptcp_mem_reclaim_partial(struct sock *sk)
1007 {
1008 	lockdep_assert_held_once(&sk->sk_lock.slock);
1009 	__mptcp_update_wmem(sk);
1010 	sk_mem_reclaim_partial(sk);
1011 }
1012 
mptcp_mem_reclaim_partial(struct sock * sk)1013 static void mptcp_mem_reclaim_partial(struct sock *sk)
1014 {
1015 	struct mptcp_sock *msk = mptcp_sk(sk);
1016 
1017 	/* if we are experiencing a transint allocation error,
1018 	 * the forward allocation memory has been already
1019 	 * released
1020 	 */
1021 	if (msk->wmem_reserved < 0)
1022 		return;
1023 
1024 	mptcp_data_lock(sk);
1025 	sk->sk_forward_alloc += msk->wmem_reserved;
1026 	sk_mem_reclaim_partial(sk);
1027 	msk->wmem_reserved = sk->sk_forward_alloc;
1028 	sk->sk_forward_alloc = 0;
1029 	mptcp_data_unlock(sk);
1030 }
1031 
dfrag_uncharge(struct sock * sk,int len)1032 static void dfrag_uncharge(struct sock *sk, int len)
1033 {
1034 	sk_mem_uncharge(sk, len);
1035 	sk_wmem_queued_add(sk, -len);
1036 }
1037 
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)1038 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1039 {
1040 	int len = dfrag->data_len + dfrag->overhead;
1041 
1042 	list_del(&dfrag->list);
1043 	dfrag_uncharge(sk, len);
1044 	put_page(dfrag->page);
1045 }
1046 
__mptcp_clean_una(struct sock * sk)1047 static void __mptcp_clean_una(struct sock *sk)
1048 {
1049 	struct mptcp_sock *msk = mptcp_sk(sk);
1050 	struct mptcp_data_frag *dtmp, *dfrag;
1051 	bool cleaned = false;
1052 	u64 snd_una;
1053 
1054 	/* on fallback we just need to ignore snd_una, as this is really
1055 	 * plain TCP
1056 	 */
1057 	if (__mptcp_check_fallback(msk))
1058 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1059 
1060 	snd_una = msk->snd_una;
1061 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1062 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1063 			break;
1064 
1065 		if (unlikely(dfrag == msk->first_pending)) {
1066 			/* in recovery mode can see ack after the current snd head */
1067 			if (WARN_ON_ONCE(!msk->recovery))
1068 				break;
1069 
1070 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1071 		}
1072 
1073 		dfrag_clear(sk, dfrag);
1074 		cleaned = true;
1075 	}
1076 
1077 	dfrag = mptcp_rtx_head(sk);
1078 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1079 		u64 delta = snd_una - dfrag->data_seq;
1080 
1081 		/* prevent wrap around in recovery mode */
1082 		if (unlikely(delta > dfrag->already_sent)) {
1083 			if (WARN_ON_ONCE(!msk->recovery))
1084 				goto out;
1085 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1086 				goto out;
1087 			dfrag->already_sent += delta - dfrag->already_sent;
1088 		}
1089 
1090 		dfrag->data_seq += delta;
1091 		dfrag->offset += delta;
1092 		dfrag->data_len -= delta;
1093 		dfrag->already_sent -= delta;
1094 
1095 		dfrag_uncharge(sk, delta);
1096 		cleaned = true;
1097 	}
1098 
1099 	/* all retransmitted data acked, recovery completed */
1100 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1101 		msk->recovery = false;
1102 
1103 out:
1104 	if (cleaned && tcp_under_memory_pressure(sk))
1105 		__mptcp_mem_reclaim_partial(sk);
1106 
1107 	if (snd_una == READ_ONCE(msk->snd_nxt) && !msk->recovery) {
1108 		if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1109 			mptcp_stop_timer(sk);
1110 	} else {
1111 		mptcp_reset_timer(sk);
1112 	}
1113 }
1114 
__mptcp_clean_una_wakeup(struct sock * sk)1115 static void __mptcp_clean_una_wakeup(struct sock *sk)
1116 {
1117 #ifdef CONFIG_LOCKDEP
1118 	WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock));
1119 #endif
1120 	__mptcp_clean_una(sk);
1121 	mptcp_write_space(sk);
1122 }
1123 
mptcp_clean_una_wakeup(struct sock * sk)1124 static void mptcp_clean_una_wakeup(struct sock *sk)
1125 {
1126 	mptcp_data_lock(sk);
1127 	__mptcp_clean_una_wakeup(sk);
1128 	mptcp_data_unlock(sk);
1129 }
1130 
mptcp_enter_memory_pressure(struct sock * sk)1131 static void mptcp_enter_memory_pressure(struct sock *sk)
1132 {
1133 	struct mptcp_subflow_context *subflow;
1134 	struct mptcp_sock *msk = mptcp_sk(sk);
1135 	bool first = true;
1136 
1137 	sk_stream_moderate_sndbuf(sk);
1138 	mptcp_for_each_subflow(msk, subflow) {
1139 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1140 
1141 		if (first)
1142 			tcp_enter_memory_pressure(ssk);
1143 		sk_stream_moderate_sndbuf(ssk);
1144 		first = false;
1145 	}
1146 }
1147 
1148 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1149  * data
1150  */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1151 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1152 {
1153 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1154 					pfrag, sk->sk_allocation)))
1155 		return true;
1156 
1157 	mptcp_enter_memory_pressure(sk);
1158 	return false;
1159 }
1160 
1161 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1162 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1163 		      int orig_offset)
1164 {
1165 	int offset = ALIGN(orig_offset, sizeof(long));
1166 	struct mptcp_data_frag *dfrag;
1167 
1168 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1169 	dfrag->data_len = 0;
1170 	dfrag->data_seq = msk->write_seq;
1171 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1172 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1173 	dfrag->already_sent = 0;
1174 	dfrag->page = pfrag->page;
1175 
1176 	return dfrag;
1177 }
1178 
1179 struct mptcp_sendmsg_info {
1180 	int mss_now;
1181 	int size_goal;
1182 	u16 limit;
1183 	u16 sent;
1184 	unsigned int flags;
1185 	bool data_lock_held;
1186 };
1187 
mptcp_check_allowed_size(struct mptcp_sock * msk,u64 data_seq,int avail_size)1188 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq,
1189 				    int avail_size)
1190 {
1191 	u64 window_end = mptcp_wnd_end(msk);
1192 
1193 	if (__mptcp_check_fallback(msk))
1194 		return avail_size;
1195 
1196 	if (!before64(data_seq + avail_size, window_end)) {
1197 		u64 allowed_size = window_end - data_seq;
1198 
1199 		return min_t(unsigned int, allowed_size, avail_size);
1200 	}
1201 
1202 	return avail_size;
1203 }
1204 
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1205 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1206 {
1207 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1208 
1209 	if (!mpext)
1210 		return false;
1211 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1212 	return true;
1213 }
1214 
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1215 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1216 {
1217 	struct sk_buff *skb;
1218 
1219 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1220 	if (likely(skb)) {
1221 		if (likely(__mptcp_add_ext(skb, gfp))) {
1222 			skb_reserve(skb, MAX_TCP_HEADER);
1223 			skb->reserved_tailroom = skb->end - skb->tail;
1224 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1225 			return skb;
1226 		}
1227 		__kfree_skb(skb);
1228 	} else {
1229 		mptcp_enter_memory_pressure(sk);
1230 	}
1231 	return NULL;
1232 }
1233 
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1234 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1235 {
1236 	struct sk_buff *skb;
1237 
1238 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1239 	if (!skb)
1240 		return NULL;
1241 
1242 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1243 		tcp_skb_entail(ssk, skb);
1244 		return skb;
1245 	}
1246 	tcp_skb_tsorted_anchor_cleanup(skb);
1247 	kfree_skb(skb);
1248 	return NULL;
1249 }
1250 
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1251 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1252 {
1253 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1254 
1255 	if (unlikely(tcp_under_memory_pressure(sk))) {
1256 		if (data_lock_held)
1257 			__mptcp_mem_reclaim_partial(sk);
1258 		else
1259 			mptcp_mem_reclaim_partial(sk);
1260 	}
1261 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1262 }
1263 
1264 /* note: this always recompute the csum on the whole skb, even
1265  * if we just appended a single frag. More status info needed
1266  */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1267 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1268 {
1269 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1270 	__wsum csum = ~csum_unfold(mpext->csum);
1271 	int offset = skb->len - added;
1272 
1273 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1274 }
1275 
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1276 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1277 			      struct mptcp_data_frag *dfrag,
1278 			      struct mptcp_sendmsg_info *info)
1279 {
1280 	u64 data_seq = dfrag->data_seq + info->sent;
1281 	int offset = dfrag->offset + info->sent;
1282 	struct mptcp_sock *msk = mptcp_sk(sk);
1283 	bool zero_window_probe = false;
1284 	struct mptcp_ext *mpext = NULL;
1285 	bool can_coalesce = false;
1286 	bool reuse_skb = true;
1287 	struct sk_buff *skb;
1288 	size_t copy;
1289 	int i;
1290 
1291 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1292 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1293 
1294 	if (WARN_ON_ONCE(info->sent > info->limit ||
1295 			 info->limit > dfrag->data_len))
1296 		return 0;
1297 
1298 	/* compute send limit */
1299 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1300 	copy = info->size_goal;
1301 
1302 	skb = tcp_write_queue_tail(ssk);
1303 	if (skb && copy > skb->len) {
1304 		/* Limit the write to the size available in the
1305 		 * current skb, if any, so that we create at most a new skb.
1306 		 * Explicitly tells TCP internals to avoid collapsing on later
1307 		 * queue management operation, to avoid breaking the ext <->
1308 		 * SSN association set here
1309 		 */
1310 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1311 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1312 			TCP_SKB_CB(skb)->eor = 1;
1313 			goto alloc_skb;
1314 		}
1315 
1316 		i = skb_shinfo(skb)->nr_frags;
1317 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1318 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1319 			tcp_mark_push(tcp_sk(ssk), skb);
1320 			goto alloc_skb;
1321 		}
1322 
1323 		copy -= skb->len;
1324 	} else {
1325 alloc_skb:
1326 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1327 		if (!skb)
1328 			return -ENOMEM;
1329 
1330 		i = skb_shinfo(skb)->nr_frags;
1331 		reuse_skb = false;
1332 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1333 	}
1334 
1335 	/* Zero window and all data acked? Probe. */
1336 	copy = mptcp_check_allowed_size(msk, data_seq, copy);
1337 	if (copy == 0) {
1338 		u64 snd_una = READ_ONCE(msk->snd_una);
1339 
1340 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1341 			tcp_remove_empty_skb(ssk);
1342 			return 0;
1343 		}
1344 
1345 		zero_window_probe = true;
1346 		data_seq = snd_una - 1;
1347 		copy = 1;
1348 	}
1349 
1350 	copy = min_t(size_t, copy, info->limit - info->sent);
1351 	if (!sk_wmem_schedule(ssk, copy)) {
1352 		tcp_remove_empty_skb(ssk);
1353 		return -ENOMEM;
1354 	}
1355 
1356 	if (can_coalesce) {
1357 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1358 	} else {
1359 		get_page(dfrag->page);
1360 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1361 	}
1362 
1363 	skb->len += copy;
1364 	skb->data_len += copy;
1365 	skb->truesize += copy;
1366 	sk_wmem_queued_add(ssk, copy);
1367 	sk_mem_charge(ssk, copy);
1368 	skb->ip_summed = CHECKSUM_PARTIAL;
1369 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1370 	TCP_SKB_CB(skb)->end_seq += copy;
1371 	tcp_skb_pcount_set(skb, 0);
1372 
1373 	/* on skb reuse we just need to update the DSS len */
1374 	if (reuse_skb) {
1375 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1376 		mpext->data_len += copy;
1377 		goto out;
1378 	}
1379 
1380 	memset(mpext, 0, sizeof(*mpext));
1381 	mpext->data_seq = data_seq;
1382 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1383 	mpext->data_len = copy;
1384 	mpext->use_map = 1;
1385 	mpext->dsn64 = 1;
1386 
1387 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1388 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1389 		 mpext->dsn64);
1390 
1391 	if (zero_window_probe) {
1392 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1393 		mpext->frozen = 1;
1394 		if (READ_ONCE(msk->csum_enabled))
1395 			mptcp_update_data_checksum(skb, copy);
1396 		tcp_push_pending_frames(ssk);
1397 		return 0;
1398 	}
1399 out:
1400 	if (READ_ONCE(msk->csum_enabled))
1401 		mptcp_update_data_checksum(skb, copy);
1402 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1403 	return copy;
1404 }
1405 
1406 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1407 					 sizeof(struct tcphdr) - \
1408 					 MAX_TCP_OPTION_SPACE - \
1409 					 sizeof(struct ipv6hdr) - \
1410 					 sizeof(struct frag_hdr))
1411 
1412 struct subflow_send_info {
1413 	struct sock *ssk;
1414 	u64 ratio;
1415 };
1416 
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1417 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1418 {
1419 	if (!subflow->stale)
1420 		return;
1421 
1422 	subflow->stale = 0;
1423 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1424 }
1425 
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1426 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1427 {
1428 	if (unlikely(subflow->stale)) {
1429 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1430 
1431 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1432 			return false;
1433 
1434 		mptcp_subflow_set_active(subflow);
1435 	}
1436 	return __mptcp_subflow_active(subflow);
1437 }
1438 
1439 /* implement the mptcp packet scheduler;
1440  * returns the subflow that will transmit the next DSS
1441  * additionally updates the rtx timeout
1442  */
mptcp_subflow_get_send(struct mptcp_sock * msk)1443 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1444 {
1445 	struct subflow_send_info send_info[2];
1446 	struct mptcp_subflow_context *subflow;
1447 	struct sock *sk = (struct sock *)msk;
1448 	int i, nr_active = 0;
1449 	struct sock *ssk;
1450 	long tout = 0;
1451 	u64 ratio;
1452 	u32 pace;
1453 
1454 	sock_owned_by_me(sk);
1455 
1456 	if (__mptcp_check_fallback(msk)) {
1457 		if (!msk->first)
1458 			return NULL;
1459 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1460 	}
1461 
1462 	/* re-use last subflow, if the burst allow that */
1463 	if (msk->last_snd && msk->snd_burst > 0 &&
1464 	    sk_stream_memory_free(msk->last_snd) &&
1465 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1466 		mptcp_set_timeout(sk);
1467 		return msk->last_snd;
1468 	}
1469 
1470 	/* pick the subflow with the lower wmem/wspace ratio */
1471 	for (i = 0; i < 2; ++i) {
1472 		send_info[i].ssk = NULL;
1473 		send_info[i].ratio = -1;
1474 	}
1475 	mptcp_for_each_subflow(msk, subflow) {
1476 		trace_mptcp_subflow_get_send(subflow);
1477 		ssk =  mptcp_subflow_tcp_sock(subflow);
1478 		if (!mptcp_subflow_active(subflow))
1479 			continue;
1480 
1481 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1482 		nr_active += !subflow->backup;
1483 		if (!sk_stream_memory_free(subflow->tcp_sock) || !tcp_sk(ssk)->snd_wnd)
1484 			continue;
1485 
1486 		pace = READ_ONCE(ssk->sk_pacing_rate);
1487 		if (!pace)
1488 			continue;
1489 
1490 		ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32,
1491 				pace);
1492 		if (ratio < send_info[subflow->backup].ratio) {
1493 			send_info[subflow->backup].ssk = ssk;
1494 			send_info[subflow->backup].ratio = ratio;
1495 		}
1496 	}
1497 	__mptcp_set_timeout(sk, tout);
1498 
1499 	/* pick the best backup if no other subflow is active */
1500 	if (!nr_active)
1501 		send_info[0].ssk = send_info[1].ssk;
1502 
1503 	if (send_info[0].ssk) {
1504 		msk->last_snd = send_info[0].ssk;
1505 		msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE,
1506 				       tcp_sk(msk->last_snd)->snd_wnd);
1507 		return msk->last_snd;
1508 	}
1509 
1510 	return NULL;
1511 }
1512 
mptcp_push_release(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1513 static void mptcp_push_release(struct sock *sk, struct sock *ssk,
1514 			       struct mptcp_sendmsg_info *info)
1515 {
1516 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1517 	release_sock(ssk);
1518 }
1519 
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1520 static void mptcp_update_post_push(struct mptcp_sock *msk,
1521 				   struct mptcp_data_frag *dfrag,
1522 				   u32 sent)
1523 {
1524 	u64 snd_nxt_new = dfrag->data_seq;
1525 
1526 	dfrag->already_sent += sent;
1527 
1528 	msk->snd_burst -= sent;
1529 	msk->tx_pending_data -= sent;
1530 
1531 	snd_nxt_new += dfrag->already_sent;
1532 
1533 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1534 	 * is recovering after a failover. In that event, this re-sends
1535 	 * old segments.
1536 	 *
1537 	 * Thus compute snd_nxt_new candidate based on
1538 	 * the dfrag->data_seq that was sent and the data
1539 	 * that has been handed to the subflow for transmission
1540 	 * and skip update in case it was old dfrag.
1541 	 */
1542 	if (likely(after64(snd_nxt_new, msk->snd_nxt)))
1543 		msk->snd_nxt = snd_nxt_new;
1544 }
1545 
__mptcp_push_pending(struct sock * sk,unsigned int flags)1546 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1547 {
1548 	struct sock *prev_ssk = NULL, *ssk = NULL;
1549 	struct mptcp_sock *msk = mptcp_sk(sk);
1550 	struct mptcp_sendmsg_info info = {
1551 				.flags = flags,
1552 	};
1553 	struct mptcp_data_frag *dfrag;
1554 	int len, copied = 0;
1555 
1556 	while ((dfrag = mptcp_send_head(sk))) {
1557 		info.sent = dfrag->already_sent;
1558 		info.limit = dfrag->data_len;
1559 		len = dfrag->data_len - dfrag->already_sent;
1560 		while (len > 0) {
1561 			int ret = 0;
1562 
1563 			prev_ssk = ssk;
1564 			__mptcp_flush_join_list(msk);
1565 			ssk = mptcp_subflow_get_send(msk);
1566 
1567 			/* First check. If the ssk has changed since
1568 			 * the last round, release prev_ssk
1569 			 */
1570 			if (ssk != prev_ssk && prev_ssk)
1571 				mptcp_push_release(sk, prev_ssk, &info);
1572 			if (!ssk)
1573 				goto out;
1574 
1575 			/* Need to lock the new subflow only if different
1576 			 * from the previous one, otherwise we are still
1577 			 * helding the relevant lock
1578 			 */
1579 			if (ssk != prev_ssk)
1580 				lock_sock(ssk);
1581 
1582 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1583 			if (ret <= 0) {
1584 				mptcp_push_release(sk, ssk, &info);
1585 				goto out;
1586 			}
1587 
1588 			info.sent += ret;
1589 			copied += ret;
1590 			len -= ret;
1591 
1592 			mptcp_update_post_push(msk, dfrag, ret);
1593 		}
1594 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1595 	}
1596 
1597 	/* at this point we held the socket lock for the last subflow we used */
1598 	if (ssk)
1599 		mptcp_push_release(sk, ssk, &info);
1600 
1601 out:
1602 	/* ensure the rtx timer is running */
1603 	if (!mptcp_timer_pending(sk))
1604 		mptcp_reset_timer(sk);
1605 	if (copied)
1606 		mptcp_check_send_data_fin(sk);
1607 }
1608 
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk)1609 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1610 {
1611 	struct mptcp_sock *msk = mptcp_sk(sk);
1612 	struct mptcp_sendmsg_info info = {
1613 		.data_lock_held = true,
1614 	};
1615 	struct mptcp_data_frag *dfrag;
1616 	struct sock *xmit_ssk;
1617 	int len, copied = 0;
1618 	bool first = true;
1619 
1620 	info.flags = 0;
1621 	while ((dfrag = mptcp_send_head(sk))) {
1622 		info.sent = dfrag->already_sent;
1623 		info.limit = dfrag->data_len;
1624 		len = dfrag->data_len - dfrag->already_sent;
1625 		while (len > 0) {
1626 			int ret = 0;
1627 
1628 			/* the caller already invoked the packet scheduler,
1629 			 * check for a different subflow usage only after
1630 			 * spooling the first chunk of data
1631 			 */
1632 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1633 			if (!xmit_ssk)
1634 				goto out;
1635 			if (xmit_ssk != ssk) {
1636 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
1637 						       MPTCP_DELEGATE_SEND);
1638 				goto out;
1639 			}
1640 
1641 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1642 			if (ret <= 0)
1643 				goto out;
1644 
1645 			info.sent += ret;
1646 			copied += ret;
1647 			len -= ret;
1648 			first = false;
1649 
1650 			mptcp_update_post_push(msk, dfrag, ret);
1651 		}
1652 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1653 	}
1654 
1655 out:
1656 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1657 	 * not going to flush it via release_sock()
1658 	 */
1659 	__mptcp_update_wmem(sk);
1660 	if (copied) {
1661 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1662 			 info.size_goal);
1663 		if (!mptcp_timer_pending(sk))
1664 			mptcp_reset_timer(sk);
1665 
1666 		if (msk->snd_data_fin_enable &&
1667 		    msk->snd_nxt + 1 == msk->write_seq)
1668 			mptcp_schedule_work(sk);
1669 	}
1670 }
1671 
mptcp_set_nospace(struct sock * sk)1672 static void mptcp_set_nospace(struct sock *sk)
1673 {
1674 	/* enable autotune */
1675 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1676 
1677 	/* will be cleared on avail space */
1678 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1679 }
1680 
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1681 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1682 {
1683 	struct mptcp_sock *msk = mptcp_sk(sk);
1684 	struct page_frag *pfrag;
1685 	size_t copied = 0;
1686 	int ret = 0;
1687 	long timeo;
1688 
1689 	/* we don't support FASTOPEN yet */
1690 	if (msg->msg_flags & MSG_FASTOPEN)
1691 		return -EOPNOTSUPP;
1692 
1693 	/* silently ignore everything else */
1694 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1695 
1696 	mptcp_lock_sock(sk, __mptcp_wmem_reserve(sk, min_t(size_t, 1 << 20, len)));
1697 
1698 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1699 
1700 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1701 		ret = sk_stream_wait_connect(sk, &timeo);
1702 		if (ret)
1703 			goto out;
1704 	}
1705 
1706 	pfrag = sk_page_frag(sk);
1707 
1708 	while (msg_data_left(msg)) {
1709 		int total_ts, frag_truesize = 0;
1710 		struct mptcp_data_frag *dfrag;
1711 		bool dfrag_collapsed;
1712 		size_t psize, offset;
1713 
1714 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1715 			ret = -EPIPE;
1716 			goto out;
1717 		}
1718 
1719 		/* reuse tail pfrag, if possible, or carve a new one from the
1720 		 * page allocator
1721 		 */
1722 		dfrag = mptcp_pending_tail(sk);
1723 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1724 		if (!dfrag_collapsed) {
1725 			if (!sk_stream_memory_free(sk))
1726 				goto wait_for_memory;
1727 
1728 			if (!mptcp_page_frag_refill(sk, pfrag))
1729 				goto wait_for_memory;
1730 
1731 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1732 			frag_truesize = dfrag->overhead;
1733 		}
1734 
1735 		/* we do not bound vs wspace, to allow a single packet.
1736 		 * memory accounting will prevent execessive memory usage
1737 		 * anyway
1738 		 */
1739 		offset = dfrag->offset + dfrag->data_len;
1740 		psize = pfrag->size - offset;
1741 		psize = min_t(size_t, psize, msg_data_left(msg));
1742 		total_ts = psize + frag_truesize;
1743 
1744 		if (!mptcp_wmem_alloc(sk, total_ts))
1745 			goto wait_for_memory;
1746 
1747 		if (copy_page_from_iter(dfrag->page, offset, psize,
1748 					&msg->msg_iter) != psize) {
1749 			mptcp_wmem_uncharge(sk, psize + frag_truesize);
1750 			ret = -EFAULT;
1751 			goto out;
1752 		}
1753 
1754 		/* data successfully copied into the write queue */
1755 		copied += psize;
1756 		dfrag->data_len += psize;
1757 		frag_truesize += psize;
1758 		pfrag->offset += frag_truesize;
1759 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1760 		msk->tx_pending_data += psize;
1761 
1762 		/* charge data on mptcp pending queue to the msk socket
1763 		 * Note: we charge such data both to sk and ssk
1764 		 */
1765 		sk_wmem_queued_add(sk, frag_truesize);
1766 		if (!dfrag_collapsed) {
1767 			get_page(dfrag->page);
1768 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1769 			if (!msk->first_pending)
1770 				WRITE_ONCE(msk->first_pending, dfrag);
1771 		}
1772 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1773 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1774 			 !dfrag_collapsed);
1775 
1776 		continue;
1777 
1778 wait_for_memory:
1779 		mptcp_set_nospace(sk);
1780 		__mptcp_push_pending(sk, msg->msg_flags);
1781 		ret = sk_stream_wait_memory(sk, &timeo);
1782 		if (ret)
1783 			goto out;
1784 	}
1785 
1786 	if (copied)
1787 		__mptcp_push_pending(sk, msg->msg_flags);
1788 
1789 out:
1790 	release_sock(sk);
1791 	return copied ? : ret;
1792 }
1793 
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1794 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1795 				struct msghdr *msg,
1796 				size_t len, int flags,
1797 				struct scm_timestamping_internal *tss,
1798 				int *cmsg_flags)
1799 {
1800 	struct sk_buff *skb, *tmp;
1801 	int copied = 0;
1802 
1803 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1804 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1805 		u32 data_len = skb->len - offset;
1806 		u32 count = min_t(size_t, len - copied, data_len);
1807 		int err;
1808 
1809 		if (!(flags & MSG_TRUNC)) {
1810 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1811 			if (unlikely(err < 0)) {
1812 				if (!copied)
1813 					return err;
1814 				break;
1815 			}
1816 		}
1817 
1818 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1819 			tcp_update_recv_tstamps(skb, tss);
1820 			*cmsg_flags |= MPTCP_CMSG_TS;
1821 		}
1822 
1823 		copied += count;
1824 
1825 		if (count < data_len) {
1826 			if (!(flags & MSG_PEEK))
1827 				MPTCP_SKB_CB(skb)->offset += count;
1828 			break;
1829 		}
1830 
1831 		if (!(flags & MSG_PEEK)) {
1832 			/* we will bulk release the skb memory later */
1833 			skb->destructor = NULL;
1834 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1835 			__skb_unlink(skb, &msk->receive_queue);
1836 			__kfree_skb(skb);
1837 		}
1838 
1839 		if (copied >= len)
1840 			break;
1841 	}
1842 
1843 	return copied;
1844 }
1845 
1846 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1847  *
1848  * Only difference: Use highest rtt estimate of the subflows in use.
1849  */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1850 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1851 {
1852 	struct mptcp_subflow_context *subflow;
1853 	struct sock *sk = (struct sock *)msk;
1854 	u32 time, advmss = 1;
1855 	u64 rtt_us, mstamp;
1856 
1857 	sock_owned_by_me(sk);
1858 
1859 	if (copied <= 0)
1860 		return;
1861 
1862 	msk->rcvq_space.copied += copied;
1863 
1864 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1865 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1866 
1867 	rtt_us = msk->rcvq_space.rtt_us;
1868 	if (rtt_us && time < (rtt_us >> 3))
1869 		return;
1870 
1871 	rtt_us = 0;
1872 	mptcp_for_each_subflow(msk, subflow) {
1873 		const struct tcp_sock *tp;
1874 		u64 sf_rtt_us;
1875 		u32 sf_advmss;
1876 
1877 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1878 
1879 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1880 		sf_advmss = READ_ONCE(tp->advmss);
1881 
1882 		rtt_us = max(sf_rtt_us, rtt_us);
1883 		advmss = max(sf_advmss, advmss);
1884 	}
1885 
1886 	msk->rcvq_space.rtt_us = rtt_us;
1887 	if (time < (rtt_us >> 3) || rtt_us == 0)
1888 		return;
1889 
1890 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1891 		goto new_measure;
1892 
1893 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1894 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1895 		int rcvmem, rcvbuf;
1896 		u64 rcvwin, grow;
1897 
1898 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1899 
1900 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1901 
1902 		do_div(grow, msk->rcvq_space.space);
1903 		rcvwin += (grow << 1);
1904 
1905 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1906 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1907 			rcvmem += 128;
1908 
1909 		do_div(rcvwin, advmss);
1910 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1911 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1912 
1913 		if (rcvbuf > sk->sk_rcvbuf) {
1914 			u32 window_clamp;
1915 
1916 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1917 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1918 
1919 			/* Make subflows follow along.  If we do not do this, we
1920 			 * get drops at subflow level if skbs can't be moved to
1921 			 * the mptcp rx queue fast enough (announced rcv_win can
1922 			 * exceed ssk->sk_rcvbuf).
1923 			 */
1924 			mptcp_for_each_subflow(msk, subflow) {
1925 				struct sock *ssk;
1926 				bool slow;
1927 
1928 				ssk = mptcp_subflow_tcp_sock(subflow);
1929 				slow = lock_sock_fast(ssk);
1930 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1931 				tcp_sk(ssk)->window_clamp = window_clamp;
1932 				tcp_cleanup_rbuf(ssk, 1);
1933 				unlock_sock_fast(ssk, slow);
1934 			}
1935 		}
1936 	}
1937 
1938 	msk->rcvq_space.space = msk->rcvq_space.copied;
1939 new_measure:
1940 	msk->rcvq_space.copied = 0;
1941 	msk->rcvq_space.time = mstamp;
1942 }
1943 
__mptcp_update_rmem(struct sock * sk)1944 static void __mptcp_update_rmem(struct sock *sk)
1945 {
1946 	struct mptcp_sock *msk = mptcp_sk(sk);
1947 
1948 	if (!msk->rmem_released)
1949 		return;
1950 
1951 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1952 	sk_mem_uncharge(sk, msk->rmem_released);
1953 	WRITE_ONCE(msk->rmem_released, 0);
1954 }
1955 
__mptcp_splice_receive_queue(struct sock * sk)1956 static void __mptcp_splice_receive_queue(struct sock *sk)
1957 {
1958 	struct mptcp_sock *msk = mptcp_sk(sk);
1959 
1960 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1961 }
1962 
__mptcp_move_skbs(struct mptcp_sock * msk)1963 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1964 {
1965 	struct sock *sk = (struct sock *)msk;
1966 	unsigned int moved = 0;
1967 	bool ret, done;
1968 
1969 	mptcp_flush_join_list(msk);
1970 	do {
1971 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1972 		bool slowpath;
1973 
1974 		/* we can have data pending in the subflows only if the msk
1975 		 * receive buffer was full at subflow_data_ready() time,
1976 		 * that is an unlikely slow path.
1977 		 */
1978 		if (likely(!ssk))
1979 			break;
1980 
1981 		slowpath = lock_sock_fast(ssk);
1982 		mptcp_data_lock(sk);
1983 		__mptcp_update_rmem(sk);
1984 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1985 		mptcp_data_unlock(sk);
1986 
1987 		if (unlikely(ssk->sk_err))
1988 			__mptcp_error_report(sk);
1989 		unlock_sock_fast(ssk, slowpath);
1990 	} while (!done);
1991 
1992 	/* acquire the data lock only if some input data is pending */
1993 	ret = moved > 0;
1994 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
1995 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
1996 		mptcp_data_lock(sk);
1997 		__mptcp_update_rmem(sk);
1998 		ret |= __mptcp_ofo_queue(msk);
1999 		__mptcp_splice_receive_queue(sk);
2000 		mptcp_data_unlock(sk);
2001 	}
2002 	if (ret)
2003 		mptcp_check_data_fin((struct sock *)msk);
2004 	return !skb_queue_empty(&msk->receive_queue);
2005 }
2006 
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2007 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2008 			 int nonblock, int flags, int *addr_len)
2009 {
2010 	struct mptcp_sock *msk = mptcp_sk(sk);
2011 	struct scm_timestamping_internal tss;
2012 	int copied = 0, cmsg_flags = 0;
2013 	int target;
2014 	long timeo;
2015 
2016 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2017 	if (unlikely(flags & MSG_ERRQUEUE))
2018 		return inet_recv_error(sk, msg, len, addr_len);
2019 
2020 	mptcp_lock_sock(sk, __mptcp_splice_receive_queue(sk));
2021 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2022 		copied = -ENOTCONN;
2023 		goto out_err;
2024 	}
2025 
2026 	timeo = sock_rcvtimeo(sk, nonblock);
2027 
2028 	len = min_t(size_t, len, INT_MAX);
2029 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2030 
2031 	while (copied < len) {
2032 		int bytes_read;
2033 
2034 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2035 		if (unlikely(bytes_read < 0)) {
2036 			if (!copied)
2037 				copied = bytes_read;
2038 			goto out_err;
2039 		}
2040 
2041 		copied += bytes_read;
2042 
2043 		/* be sure to advertise window change */
2044 		mptcp_cleanup_rbuf(msk);
2045 
2046 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2047 			continue;
2048 
2049 		/* only the master socket status is relevant here. The exit
2050 		 * conditions mirror closely tcp_recvmsg()
2051 		 */
2052 		if (copied >= target)
2053 			break;
2054 
2055 		if (copied) {
2056 			if (sk->sk_err ||
2057 			    sk->sk_state == TCP_CLOSE ||
2058 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2059 			    !timeo ||
2060 			    signal_pending(current))
2061 				break;
2062 		} else {
2063 			if (sk->sk_err) {
2064 				copied = sock_error(sk);
2065 				break;
2066 			}
2067 
2068 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2069 				mptcp_check_for_eof(msk);
2070 
2071 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2072 				/* race breaker: the shutdown could be after the
2073 				 * previous receive queue check
2074 				 */
2075 				if (__mptcp_move_skbs(msk))
2076 					continue;
2077 				break;
2078 			}
2079 
2080 			if (sk->sk_state == TCP_CLOSE) {
2081 				copied = -ENOTCONN;
2082 				break;
2083 			}
2084 
2085 			if (!timeo) {
2086 				copied = -EAGAIN;
2087 				break;
2088 			}
2089 
2090 			if (signal_pending(current)) {
2091 				copied = sock_intr_errno(timeo);
2092 				break;
2093 			}
2094 		}
2095 
2096 		pr_debug("block timeout %ld", timeo);
2097 		sk_wait_data(sk, &timeo, NULL);
2098 	}
2099 
2100 out_err:
2101 	if (cmsg_flags && copied >= 0) {
2102 		if (cmsg_flags & MPTCP_CMSG_TS)
2103 			tcp_recv_timestamp(msg, sk, &tss);
2104 	}
2105 
2106 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2107 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2108 		 skb_queue_empty(&msk->receive_queue), copied);
2109 	if (!(flags & MSG_PEEK))
2110 		mptcp_rcv_space_adjust(msk, copied);
2111 
2112 	release_sock(sk);
2113 	return copied;
2114 }
2115 
mptcp_retransmit_timer(struct timer_list * t)2116 static void mptcp_retransmit_timer(struct timer_list *t)
2117 {
2118 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2119 						       icsk_retransmit_timer);
2120 	struct sock *sk = &icsk->icsk_inet.sk;
2121 	struct mptcp_sock *msk = mptcp_sk(sk);
2122 
2123 	bh_lock_sock(sk);
2124 	if (!sock_owned_by_user(sk)) {
2125 		/* we need a process context to retransmit */
2126 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2127 			mptcp_schedule_work(sk);
2128 	} else {
2129 		/* delegate our work to tcp_release_cb() */
2130 		set_bit(MPTCP_RETRANSMIT, &msk->flags);
2131 	}
2132 	bh_unlock_sock(sk);
2133 	sock_put(sk);
2134 }
2135 
mptcp_timeout_timer(struct timer_list * t)2136 static void mptcp_timeout_timer(struct timer_list *t)
2137 {
2138 	struct sock *sk = from_timer(sk, t, sk_timer);
2139 
2140 	mptcp_schedule_work(sk);
2141 	sock_put(sk);
2142 }
2143 
2144 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2145  * level.
2146  *
2147  * A backup subflow is returned only if that is the only kind available.
2148  */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2149 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2150 {
2151 	struct sock *backup = NULL, *pick = NULL;
2152 	struct mptcp_subflow_context *subflow;
2153 	int min_stale_count = INT_MAX;
2154 
2155 	sock_owned_by_me((const struct sock *)msk);
2156 
2157 	if (__mptcp_check_fallback(msk))
2158 		return NULL;
2159 
2160 	mptcp_for_each_subflow(msk, subflow) {
2161 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2162 
2163 		if (!__mptcp_subflow_active(subflow))
2164 			continue;
2165 
2166 		/* still data outstanding at TCP level? skip this */
2167 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2168 			mptcp_pm_subflow_chk_stale(msk, ssk);
2169 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2170 			continue;
2171 		}
2172 
2173 		if (subflow->backup) {
2174 			if (!backup)
2175 				backup = ssk;
2176 			continue;
2177 		}
2178 
2179 		if (!pick)
2180 			pick = ssk;
2181 	}
2182 
2183 	if (pick)
2184 		return pick;
2185 
2186 	/* use backup only if there are no progresses anywhere */
2187 	return min_stale_count > 1 ? backup : NULL;
2188 }
2189 
mptcp_dispose_initial_subflow(struct mptcp_sock * msk)2190 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2191 {
2192 	if (msk->subflow) {
2193 		iput(SOCK_INODE(msk->subflow));
2194 		msk->subflow = NULL;
2195 	}
2196 }
2197 
__mptcp_retransmit_pending_data(struct sock * sk)2198 bool __mptcp_retransmit_pending_data(struct sock *sk)
2199 {
2200 	struct mptcp_data_frag *cur, *rtx_head;
2201 	struct mptcp_sock *msk = mptcp_sk(sk);
2202 
2203 	if (__mptcp_check_fallback(mptcp_sk(sk)))
2204 		return false;
2205 
2206 	/* the closing socket has some data untransmitted and/or unacked:
2207 	 * some data in the mptcp rtx queue has not really xmitted yet.
2208 	 * keep it simple and re-inject the whole mptcp level rtx queue
2209 	 */
2210 	mptcp_data_lock(sk);
2211 	__mptcp_clean_una_wakeup(sk);
2212 	rtx_head = mptcp_rtx_head(sk);
2213 	if (!rtx_head) {
2214 		mptcp_data_unlock(sk);
2215 		return false;
2216 	}
2217 
2218 	msk->recovery_snd_nxt = msk->snd_nxt;
2219 	msk->recovery = true;
2220 	mptcp_data_unlock(sk);
2221 
2222 	msk->first_pending = rtx_head;
2223 	msk->tx_pending_data += msk->snd_nxt - rtx_head->data_seq;
2224 	msk->snd_burst = 0;
2225 
2226 	/* be sure to clear the "sent status" on all re-injected fragments */
2227 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2228 		if (!cur->already_sent)
2229 			break;
2230 		cur->already_sent = 0;
2231 	}
2232 
2233 	return true;
2234 }
2235 
2236 /* subflow sockets can be either outgoing (connect) or incoming
2237  * (accept).
2238  *
2239  * Outgoing subflows use in-kernel sockets.
2240  * Incoming subflows do not have their own 'struct socket' allocated,
2241  * so we need to use tcp_close() after detaching them from the mptcp
2242  * parent socket.
2243  */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2244 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2245 			      struct mptcp_subflow_context *subflow)
2246 {
2247 	struct mptcp_sock *msk = mptcp_sk(sk);
2248 	bool need_push;
2249 
2250 	list_del(&subflow->node);
2251 
2252 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2253 
2254 	/* if we are invoked by the msk cleanup code, the subflow is
2255 	 * already orphaned
2256 	 */
2257 	if (ssk->sk_socket)
2258 		sock_orphan(ssk);
2259 
2260 	need_push = __mptcp_retransmit_pending_data(sk);
2261 	subflow->disposable = 1;
2262 
2263 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2264 	 * the ssk has been already destroyed, we just need to release the
2265 	 * reference owned by msk;
2266 	 */
2267 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2268 		kfree_rcu(subflow, rcu);
2269 	} else {
2270 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2271 		__tcp_close(ssk, 0);
2272 
2273 		/* close acquired an extra ref */
2274 		__sock_put(ssk);
2275 	}
2276 	release_sock(ssk);
2277 
2278 	sock_put(ssk);
2279 
2280 	if (ssk == msk->last_snd)
2281 		msk->last_snd = NULL;
2282 
2283 	if (ssk == msk->first)
2284 		msk->first = NULL;
2285 
2286 	if (msk->subflow && ssk == msk->subflow->sk)
2287 		mptcp_dispose_initial_subflow(msk);
2288 
2289 	if (need_push)
2290 		__mptcp_push_pending(sk, 0);
2291 }
2292 
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2293 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2294 		     struct mptcp_subflow_context *subflow)
2295 {
2296 	if (sk->sk_state == TCP_ESTABLISHED)
2297 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2298 	__mptcp_close_ssk(sk, ssk, subflow);
2299 }
2300 
mptcp_sync_mss(struct sock * sk,u32 pmtu)2301 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2302 {
2303 	return 0;
2304 }
2305 
__mptcp_close_subflow(struct mptcp_sock * msk)2306 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2307 {
2308 	struct mptcp_subflow_context *subflow, *tmp;
2309 
2310 	might_sleep();
2311 
2312 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2313 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2314 
2315 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2316 			continue;
2317 
2318 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2319 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2320 			continue;
2321 
2322 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2323 	}
2324 }
2325 
mptcp_check_close_timeout(const struct sock * sk)2326 static bool mptcp_check_close_timeout(const struct sock *sk)
2327 {
2328 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2329 	struct mptcp_subflow_context *subflow;
2330 
2331 	if (delta >= TCP_TIMEWAIT_LEN)
2332 		return true;
2333 
2334 	/* if all subflows are in closed status don't bother with additional
2335 	 * timeout
2336 	 */
2337 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2338 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2339 		    TCP_CLOSE)
2340 			return false;
2341 	}
2342 	return true;
2343 }
2344 
mptcp_check_fastclose(struct mptcp_sock * msk)2345 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2346 {
2347 	struct mptcp_subflow_context *subflow, *tmp;
2348 	struct sock *sk = &msk->sk.icsk_inet.sk;
2349 
2350 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2351 		return;
2352 
2353 	mptcp_token_destroy(msk);
2354 
2355 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2356 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2357 		bool slow;
2358 
2359 		slow = lock_sock_fast(tcp_sk);
2360 		if (tcp_sk->sk_state != TCP_CLOSE) {
2361 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2362 			tcp_set_state(tcp_sk, TCP_CLOSE);
2363 		}
2364 		unlock_sock_fast(tcp_sk, slow);
2365 	}
2366 
2367 	inet_sk_state_store(sk, TCP_CLOSE);
2368 	sk->sk_shutdown = SHUTDOWN_MASK;
2369 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2370 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2371 
2372 	mptcp_close_wake_up(sk);
2373 }
2374 
__mptcp_retrans(struct sock * sk)2375 static void __mptcp_retrans(struct sock *sk)
2376 {
2377 	struct mptcp_sock *msk = mptcp_sk(sk);
2378 	struct mptcp_sendmsg_info info = {};
2379 	struct mptcp_data_frag *dfrag;
2380 	size_t copied = 0;
2381 	struct sock *ssk;
2382 	int ret;
2383 
2384 	mptcp_clean_una_wakeup(sk);
2385 	dfrag = mptcp_rtx_head(sk);
2386 	if (!dfrag) {
2387 		if (mptcp_data_fin_enabled(msk)) {
2388 			struct inet_connection_sock *icsk = inet_csk(sk);
2389 
2390 			icsk->icsk_retransmits++;
2391 			mptcp_set_datafin_timeout(sk);
2392 			mptcp_send_ack(msk);
2393 
2394 			goto reset_timer;
2395 		}
2396 
2397 		return;
2398 	}
2399 
2400 	ssk = mptcp_subflow_get_retrans(msk);
2401 	if (!ssk)
2402 		goto reset_timer;
2403 
2404 	lock_sock(ssk);
2405 
2406 	/* limit retransmission to the bytes already sent on some subflows */
2407 	info.sent = 0;
2408 	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2409 	while (info.sent < info.limit) {
2410 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2411 		if (ret <= 0)
2412 			break;
2413 
2414 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2415 		copied += ret;
2416 		info.sent += ret;
2417 	}
2418 	if (copied) {
2419 		dfrag->already_sent = max(dfrag->already_sent, info.sent);
2420 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2421 			 info.size_goal);
2422 	}
2423 
2424 	release_sock(ssk);
2425 
2426 reset_timer:
2427 	if (!mptcp_timer_pending(sk))
2428 		mptcp_reset_timer(sk);
2429 }
2430 
mptcp_worker(struct work_struct * work)2431 static void mptcp_worker(struct work_struct *work)
2432 {
2433 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2434 	struct sock *sk = &msk->sk.icsk_inet.sk;
2435 	int state;
2436 
2437 	lock_sock(sk);
2438 	state = sk->sk_state;
2439 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2440 		goto unlock;
2441 
2442 	mptcp_flush_join_list(msk);
2443 
2444 	mptcp_check_fastclose(msk);
2445 
2446 	if (msk->pm.status)
2447 		mptcp_pm_nl_work(msk);
2448 
2449 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2450 		mptcp_check_for_eof(msk);
2451 
2452 	mptcp_check_send_data_fin(sk);
2453 	mptcp_check_data_fin_ack(sk);
2454 	mptcp_check_data_fin(sk);
2455 
2456 	/* There is no point in keeping around an orphaned sk timedout or
2457 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2458 	 * even if it is orphaned and in FIN_WAIT2 state
2459 	 */
2460 	if (sock_flag(sk, SOCK_DEAD) &&
2461 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2462 		inet_sk_state_store(sk, TCP_CLOSE);
2463 		__mptcp_destroy_sock(sk);
2464 		goto unlock;
2465 	}
2466 
2467 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2468 		__mptcp_close_subflow(msk);
2469 
2470 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2471 		__mptcp_retrans(sk);
2472 
2473 unlock:
2474 	release_sock(sk);
2475 	sock_put(sk);
2476 }
2477 
__mptcp_init_sock(struct sock * sk)2478 static int __mptcp_init_sock(struct sock *sk)
2479 {
2480 	struct mptcp_sock *msk = mptcp_sk(sk);
2481 
2482 	spin_lock_init(&msk->join_list_lock);
2483 
2484 	INIT_LIST_HEAD(&msk->conn_list);
2485 	INIT_LIST_HEAD(&msk->join_list);
2486 	INIT_LIST_HEAD(&msk->rtx_queue);
2487 	INIT_WORK(&msk->work, mptcp_worker);
2488 	__skb_queue_head_init(&msk->receive_queue);
2489 	msk->out_of_order_queue = RB_ROOT;
2490 	msk->first_pending = NULL;
2491 	msk->wmem_reserved = 0;
2492 	WRITE_ONCE(msk->rmem_released, 0);
2493 	msk->tx_pending_data = 0;
2494 	msk->timer_ival = TCP_RTO_MIN;
2495 
2496 	msk->first = NULL;
2497 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2498 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2499 	msk->recovery = false;
2500 
2501 	mptcp_pm_data_init(msk);
2502 
2503 	/* re-use the csk retrans timer for MPTCP-level retrans */
2504 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2505 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2506 
2507 	return 0;
2508 }
2509 
mptcp_init_sock(struct sock * sk)2510 static int mptcp_init_sock(struct sock *sk)
2511 {
2512 	struct inet_connection_sock *icsk = inet_csk(sk);
2513 	struct net *net = sock_net(sk);
2514 	int ret;
2515 
2516 	ret = __mptcp_init_sock(sk);
2517 	if (ret)
2518 		return ret;
2519 
2520 	if (!mptcp_is_enabled(net))
2521 		return -ENOPROTOOPT;
2522 
2523 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2524 		return -ENOMEM;
2525 
2526 	ret = __mptcp_socket_create(mptcp_sk(sk));
2527 	if (ret)
2528 		return ret;
2529 
2530 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2531 	 * propagate the correct value
2532 	 */
2533 	tcp_assign_congestion_control(sk);
2534 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2535 
2536 	/* no need to keep a reference to the ops, the name will suffice */
2537 	tcp_cleanup_congestion_control(sk);
2538 	icsk->icsk_ca_ops = NULL;
2539 
2540 	sk_sockets_allocated_inc(sk);
2541 	sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
2542 	sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
2543 
2544 	return 0;
2545 }
2546 
__mptcp_clear_xmit(struct sock * sk)2547 static void __mptcp_clear_xmit(struct sock *sk)
2548 {
2549 	struct mptcp_sock *msk = mptcp_sk(sk);
2550 	struct mptcp_data_frag *dtmp, *dfrag;
2551 
2552 	WRITE_ONCE(msk->first_pending, NULL);
2553 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2554 		dfrag_clear(sk, dfrag);
2555 }
2556 
mptcp_cancel_work(struct sock * sk)2557 static void mptcp_cancel_work(struct sock *sk)
2558 {
2559 	struct mptcp_sock *msk = mptcp_sk(sk);
2560 
2561 	if (cancel_work_sync(&msk->work))
2562 		__sock_put(sk);
2563 }
2564 
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2565 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2566 {
2567 	lock_sock(ssk);
2568 
2569 	switch (ssk->sk_state) {
2570 	case TCP_LISTEN:
2571 		if (!(how & RCV_SHUTDOWN))
2572 			break;
2573 		fallthrough;
2574 	case TCP_SYN_SENT:
2575 		tcp_disconnect(ssk, O_NONBLOCK);
2576 		break;
2577 	default:
2578 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2579 			pr_debug("Fallback");
2580 			ssk->sk_shutdown |= how;
2581 			tcp_shutdown(ssk, how);
2582 
2583 			/* simulate the data_fin ack reception to let the state
2584 			 * machine move forward
2585 			 */
2586 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2587 			mptcp_schedule_work(sk);
2588 		} else {
2589 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2590 			tcp_send_ack(ssk);
2591 			if (!mptcp_timer_pending(sk))
2592 				mptcp_reset_timer(sk);
2593 		}
2594 		break;
2595 	}
2596 
2597 	release_sock(ssk);
2598 }
2599 
2600 static const unsigned char new_state[16] = {
2601 	/* current state:     new state:      action:	*/
2602 	[0 /* (Invalid) */] = TCP_CLOSE,
2603 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2604 	[TCP_SYN_SENT]      = TCP_CLOSE,
2605 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2606 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2607 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2608 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2609 	[TCP_CLOSE]         = TCP_CLOSE,
2610 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2611 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2612 	[TCP_LISTEN]        = TCP_CLOSE,
2613 	[TCP_CLOSING]       = TCP_CLOSING,
2614 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2615 };
2616 
mptcp_close_state(struct sock * sk)2617 static int mptcp_close_state(struct sock *sk)
2618 {
2619 	int next = (int)new_state[sk->sk_state];
2620 	int ns = next & TCP_STATE_MASK;
2621 
2622 	inet_sk_state_store(sk, ns);
2623 
2624 	return next & TCP_ACTION_FIN;
2625 }
2626 
mptcp_check_send_data_fin(struct sock * sk)2627 static void mptcp_check_send_data_fin(struct sock *sk)
2628 {
2629 	struct mptcp_subflow_context *subflow;
2630 	struct mptcp_sock *msk = mptcp_sk(sk);
2631 
2632 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2633 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2634 		 msk->snd_nxt, msk->write_seq);
2635 
2636 	/* we still need to enqueue subflows or not really shutting down,
2637 	 * skip this
2638 	 */
2639 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2640 	    mptcp_send_head(sk))
2641 		return;
2642 
2643 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2644 
2645 	mptcp_flush_join_list(msk);
2646 	mptcp_for_each_subflow(msk, subflow) {
2647 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2648 
2649 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2650 	}
2651 }
2652 
__mptcp_wr_shutdown(struct sock * sk)2653 static void __mptcp_wr_shutdown(struct sock *sk)
2654 {
2655 	struct mptcp_sock *msk = mptcp_sk(sk);
2656 
2657 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2658 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2659 		 !!mptcp_send_head(sk));
2660 
2661 	/* will be ignored by fallback sockets */
2662 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2663 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2664 
2665 	mptcp_check_send_data_fin(sk);
2666 }
2667 
__mptcp_destroy_sock(struct sock * sk)2668 static void __mptcp_destroy_sock(struct sock *sk)
2669 {
2670 	struct mptcp_subflow_context *subflow, *tmp;
2671 	struct mptcp_sock *msk = mptcp_sk(sk);
2672 	LIST_HEAD(conn_list);
2673 
2674 	pr_debug("msk=%p", msk);
2675 
2676 	might_sleep();
2677 
2678 	/* be sure to always acquire the join list lock, to sync vs
2679 	 * mptcp_finish_join().
2680 	 */
2681 	spin_lock_bh(&msk->join_list_lock);
2682 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
2683 	spin_unlock_bh(&msk->join_list_lock);
2684 	list_splice_init(&msk->conn_list, &conn_list);
2685 
2686 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
2687 	sk_stop_timer(sk, &sk->sk_timer);
2688 	msk->pm.status = 0;
2689 
2690 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2691 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2692 		__mptcp_close_ssk(sk, ssk, subflow);
2693 	}
2694 
2695 	sk->sk_prot->destroy(sk);
2696 
2697 	WARN_ON_ONCE(msk->wmem_reserved);
2698 	WARN_ON_ONCE(msk->rmem_released);
2699 	sk_stream_kill_queues(sk);
2700 	xfrm_sk_free_policy(sk);
2701 
2702 	sk_refcnt_debug_release(sk);
2703 	mptcp_dispose_initial_subflow(msk);
2704 	sock_put(sk);
2705 }
2706 
mptcp_close(struct sock * sk,long timeout)2707 static void mptcp_close(struct sock *sk, long timeout)
2708 {
2709 	struct mptcp_subflow_context *subflow;
2710 	bool do_cancel_work = false;
2711 	int subflows_alive = 0;
2712 
2713 	lock_sock(sk);
2714 	sk->sk_shutdown = SHUTDOWN_MASK;
2715 
2716 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2717 		inet_sk_state_store(sk, TCP_CLOSE);
2718 		goto cleanup;
2719 	}
2720 
2721 	if (mptcp_close_state(sk))
2722 		__mptcp_wr_shutdown(sk);
2723 
2724 	sk_stream_wait_close(sk, timeout);
2725 
2726 cleanup:
2727 	/* orphan all the subflows */
2728 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2729 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2730 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2731 		bool slow = lock_sock_fast_nested(ssk);
2732 
2733 		subflows_alive += ssk->sk_state != TCP_CLOSE;
2734 
2735 		sock_orphan(ssk);
2736 		unlock_sock_fast(ssk, slow);
2737 	}
2738 	sock_orphan(sk);
2739 
2740 	/* all the subflows are closed, only timeout can change the msk
2741 	 * state, let's not keep resources busy for no reasons
2742 	 */
2743 	if (subflows_alive == 0)
2744 		inet_sk_state_store(sk, TCP_CLOSE);
2745 
2746 	sock_hold(sk);
2747 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2748 	if (sk->sk_state == TCP_CLOSE) {
2749 		__mptcp_destroy_sock(sk);
2750 		do_cancel_work = true;
2751 	} else {
2752 		sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN);
2753 	}
2754 	release_sock(sk);
2755 	if (do_cancel_work)
2756 		mptcp_cancel_work(sk);
2757 
2758 	if (mptcp_sk(sk)->token)
2759 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2760 
2761 	sock_put(sk);
2762 }
2763 
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)2764 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2765 {
2766 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2767 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2768 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2769 
2770 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2771 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2772 
2773 	if (msk6 && ssk6) {
2774 		msk6->saddr = ssk6->saddr;
2775 		msk6->flow_label = ssk6->flow_label;
2776 	}
2777 #endif
2778 
2779 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2780 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2781 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2782 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2783 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2784 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2785 }
2786 
mptcp_disconnect(struct sock * sk,int flags)2787 static int mptcp_disconnect(struct sock *sk, int flags)
2788 {
2789 	struct mptcp_subflow_context *subflow;
2790 	struct mptcp_sock *msk = mptcp_sk(sk);
2791 
2792 	mptcp_do_flush_join_list(msk);
2793 
2794 	mptcp_for_each_subflow(msk, subflow) {
2795 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2796 
2797 		lock_sock(ssk);
2798 		tcp_disconnect(ssk, flags);
2799 		release_sock(ssk);
2800 	}
2801 	return 0;
2802 }
2803 
2804 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)2805 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2806 {
2807 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2808 
2809 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2810 }
2811 #endif
2812 
mptcp_sk_clone(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct request_sock * req)2813 struct sock *mptcp_sk_clone(const struct sock *sk,
2814 			    const struct mptcp_options_received *mp_opt,
2815 			    struct request_sock *req)
2816 {
2817 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2818 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2819 	struct mptcp_sock *msk;
2820 	u64 ack_seq;
2821 
2822 	if (!nsk)
2823 		return NULL;
2824 
2825 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2826 	if (nsk->sk_family == AF_INET6)
2827 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2828 #endif
2829 
2830 	__mptcp_init_sock(nsk);
2831 
2832 	msk = mptcp_sk(nsk);
2833 	msk->local_key = subflow_req->local_key;
2834 	msk->token = subflow_req->token;
2835 	msk->subflow = NULL;
2836 	WRITE_ONCE(msk->fully_established, false);
2837 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
2838 		WRITE_ONCE(msk->csum_enabled, true);
2839 
2840 	msk->write_seq = subflow_req->idsn + 1;
2841 	msk->snd_nxt = msk->write_seq;
2842 	msk->snd_una = msk->write_seq;
2843 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2844 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
2845 
2846 	if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
2847 		msk->can_ack = true;
2848 		msk->remote_key = mp_opt->sndr_key;
2849 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2850 		ack_seq++;
2851 		WRITE_ONCE(msk->ack_seq, ack_seq);
2852 		WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2853 	}
2854 
2855 	sock_reset_flag(nsk, SOCK_RCU_FREE);
2856 	/* will be fully established after successful MPC subflow creation */
2857 	inet_sk_state_store(nsk, TCP_SYN_RECV);
2858 
2859 	security_inet_csk_clone(nsk, req);
2860 	bh_unlock_sock(nsk);
2861 
2862 	/* keep a single reference */
2863 	__sock_put(nsk);
2864 	return nsk;
2865 }
2866 
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)2867 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2868 {
2869 	const struct tcp_sock *tp = tcp_sk(ssk);
2870 
2871 	msk->rcvq_space.copied = 0;
2872 	msk->rcvq_space.rtt_us = 0;
2873 
2874 	msk->rcvq_space.time = tp->tcp_mstamp;
2875 
2876 	/* initial rcv_space offering made to peer */
2877 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2878 				      TCP_INIT_CWND * tp->advmss);
2879 	if (msk->rcvq_space.space == 0)
2880 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2881 
2882 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
2883 }
2884 
mptcp_accept(struct sock * sk,int flags,int * err,bool kern)2885 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
2886 				 bool kern)
2887 {
2888 	struct mptcp_sock *msk = mptcp_sk(sk);
2889 	struct socket *listener;
2890 	struct sock *newsk;
2891 
2892 	listener = __mptcp_nmpc_socket(msk);
2893 	if (WARN_ON_ONCE(!listener)) {
2894 		*err = -EINVAL;
2895 		return NULL;
2896 	}
2897 
2898 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
2899 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
2900 	if (!newsk)
2901 		return NULL;
2902 
2903 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
2904 	if (sk_is_mptcp(newsk)) {
2905 		struct mptcp_subflow_context *subflow;
2906 		struct sock *new_mptcp_sock;
2907 
2908 		subflow = mptcp_subflow_ctx(newsk);
2909 		new_mptcp_sock = subflow->conn;
2910 
2911 		/* is_mptcp should be false if subflow->conn is missing, see
2912 		 * subflow_syn_recv_sock()
2913 		 */
2914 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
2915 			tcp_sk(newsk)->is_mptcp = 0;
2916 			goto out;
2917 		}
2918 
2919 		/* acquire the 2nd reference for the owning socket */
2920 		sock_hold(new_mptcp_sock);
2921 		newsk = new_mptcp_sock;
2922 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
2923 	} else {
2924 		MPTCP_INC_STATS(sock_net(sk),
2925 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
2926 	}
2927 
2928 out:
2929 	newsk->sk_kern_sock = kern;
2930 	return newsk;
2931 }
2932 
mptcp_destroy_common(struct mptcp_sock * msk)2933 void mptcp_destroy_common(struct mptcp_sock *msk)
2934 {
2935 	struct sock *sk = (struct sock *)msk;
2936 
2937 	__mptcp_clear_xmit(sk);
2938 
2939 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
2940 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
2941 
2942 	skb_rbtree_purge(&msk->out_of_order_queue);
2943 	mptcp_token_destroy(msk);
2944 	mptcp_pm_free_anno_list(msk);
2945 }
2946 
mptcp_destroy(struct sock * sk)2947 static void mptcp_destroy(struct sock *sk)
2948 {
2949 	struct mptcp_sock *msk = mptcp_sk(sk);
2950 
2951 	mptcp_destroy_common(msk);
2952 	sk_sockets_allocated_dec(sk);
2953 }
2954 
__mptcp_data_acked(struct sock * sk)2955 void __mptcp_data_acked(struct sock *sk)
2956 {
2957 	if (!sock_owned_by_user(sk))
2958 		__mptcp_clean_una(sk);
2959 	else
2960 		set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags);
2961 
2962 	if (mptcp_pending_data_fin_ack(sk))
2963 		mptcp_schedule_work(sk);
2964 }
2965 
__mptcp_check_push(struct sock * sk,struct sock * ssk)2966 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
2967 {
2968 	if (!mptcp_send_head(sk))
2969 		return;
2970 
2971 	if (!sock_owned_by_user(sk)) {
2972 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
2973 
2974 		if (xmit_ssk == ssk)
2975 			__mptcp_subflow_push_pending(sk, ssk);
2976 		else if (xmit_ssk)
2977 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND);
2978 	} else {
2979 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
2980 	}
2981 }
2982 
2983 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)2984 static void mptcp_release_cb(struct sock *sk)
2985 {
2986 	for (;;) {
2987 		unsigned long flags = 0;
2988 
2989 		if (test_and_clear_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags))
2990 			flags |= BIT(MPTCP_PUSH_PENDING);
2991 		if (test_and_clear_bit(MPTCP_RETRANSMIT, &mptcp_sk(sk)->flags))
2992 			flags |= BIT(MPTCP_RETRANSMIT);
2993 		if (!flags)
2994 			break;
2995 
2996 		/* the following actions acquire the subflow socket lock
2997 		 *
2998 		 * 1) can't be invoked in atomic scope
2999 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3000 		 *    datapath acquires the msk socket spinlock while helding
3001 		 *    the subflow socket lock
3002 		 */
3003 
3004 		spin_unlock_bh(&sk->sk_lock.slock);
3005 		if (flags & BIT(MPTCP_PUSH_PENDING))
3006 			__mptcp_push_pending(sk, 0);
3007 		if (flags & BIT(MPTCP_RETRANSMIT))
3008 			__mptcp_retrans(sk);
3009 
3010 		cond_resched();
3011 		spin_lock_bh(&sk->sk_lock.slock);
3012 	}
3013 
3014 	/* be sure to set the current sk state before tacking actions
3015 	 * depending on sk_state
3016 	 */
3017 	if (test_and_clear_bit(MPTCP_CONNECTED, &mptcp_sk(sk)->flags))
3018 		__mptcp_set_connected(sk);
3019 	if (test_and_clear_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags))
3020 		__mptcp_clean_una_wakeup(sk);
3021 	if (test_and_clear_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->flags))
3022 		__mptcp_error_report(sk);
3023 
3024 	/* push_pending may touch wmem_reserved, ensure we do the cleanup
3025 	 * later
3026 	 */
3027 	__mptcp_update_wmem(sk);
3028 	__mptcp_update_rmem(sk);
3029 }
3030 
3031 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3032  * TCP can't schedule delack timer before the subflow is fully established.
3033  * MPTCP uses the delack timer to do 3rd ack retransmissions
3034  */
schedule_3rdack_retransmission(struct sock * ssk)3035 static void schedule_3rdack_retransmission(struct sock *ssk)
3036 {
3037 	struct inet_connection_sock *icsk = inet_csk(ssk);
3038 	struct tcp_sock *tp = tcp_sk(ssk);
3039 	unsigned long timeout;
3040 
3041 	if (mptcp_subflow_ctx(ssk)->fully_established)
3042 		return;
3043 
3044 	/* reschedule with a timeout above RTT, as we must look only for drop */
3045 	if (tp->srtt_us)
3046 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3047 	else
3048 		timeout = TCP_TIMEOUT_INIT;
3049 	timeout += jiffies;
3050 
3051 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3052 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3053 	icsk->icsk_ack.timeout = timeout;
3054 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3055 }
3056 
mptcp_subflow_process_delegated(struct sock * ssk)3057 void mptcp_subflow_process_delegated(struct sock *ssk)
3058 {
3059 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3060 	struct sock *sk = subflow->conn;
3061 
3062 	if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
3063 		mptcp_data_lock(sk);
3064 		if (!sock_owned_by_user(sk))
3065 			__mptcp_subflow_push_pending(sk, ssk);
3066 		else
3067 			set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
3068 		mptcp_data_unlock(sk);
3069 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
3070 	}
3071 	if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
3072 		schedule_3rdack_retransmission(ssk);
3073 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
3074 	}
3075 }
3076 
mptcp_hash(struct sock * sk)3077 static int mptcp_hash(struct sock *sk)
3078 {
3079 	/* should never be called,
3080 	 * we hash the TCP subflows not the master socket
3081 	 */
3082 	WARN_ON_ONCE(1);
3083 	return 0;
3084 }
3085 
mptcp_unhash(struct sock * sk)3086 static void mptcp_unhash(struct sock *sk)
3087 {
3088 	/* called from sk_common_release(), but nothing to do here */
3089 }
3090 
mptcp_get_port(struct sock * sk,unsigned short snum)3091 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3092 {
3093 	struct mptcp_sock *msk = mptcp_sk(sk);
3094 	struct socket *ssock;
3095 
3096 	ssock = __mptcp_nmpc_socket(msk);
3097 	pr_debug("msk=%p, subflow=%p", msk, ssock);
3098 	if (WARN_ON_ONCE(!ssock))
3099 		return -EINVAL;
3100 
3101 	return inet_csk_get_port(ssock->sk, snum);
3102 }
3103 
mptcp_finish_connect(struct sock * ssk)3104 void mptcp_finish_connect(struct sock *ssk)
3105 {
3106 	struct mptcp_subflow_context *subflow;
3107 	struct mptcp_sock *msk;
3108 	struct sock *sk;
3109 	u64 ack_seq;
3110 
3111 	subflow = mptcp_subflow_ctx(ssk);
3112 	sk = subflow->conn;
3113 	msk = mptcp_sk(sk);
3114 
3115 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3116 
3117 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3118 	ack_seq++;
3119 	subflow->map_seq = ack_seq;
3120 	subflow->map_subflow_seq = 1;
3121 
3122 	/* the socket is not connected yet, no msk/subflow ops can access/race
3123 	 * accessing the field below
3124 	 */
3125 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
3126 	WRITE_ONCE(msk->local_key, subflow->local_key);
3127 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3128 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3129 	WRITE_ONCE(msk->ack_seq, ack_seq);
3130 	WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
3131 	WRITE_ONCE(msk->can_ack, 1);
3132 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3133 
3134 	mptcp_pm_new_connection(msk, ssk, 0);
3135 
3136 	mptcp_rcv_space_init(msk, ssk);
3137 }
3138 
mptcp_sock_graft(struct sock * sk,struct socket * parent)3139 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3140 {
3141 	write_lock_bh(&sk->sk_callback_lock);
3142 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3143 	sk_set_socket(sk, parent);
3144 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3145 	write_unlock_bh(&sk->sk_callback_lock);
3146 }
3147 
mptcp_finish_join(struct sock * ssk)3148 bool mptcp_finish_join(struct sock *ssk)
3149 {
3150 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3151 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3152 	struct sock *parent = (void *)msk;
3153 	struct socket *parent_sock;
3154 	bool ret;
3155 
3156 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3157 
3158 	/* mptcp socket already closing? */
3159 	if (!mptcp_is_fully_established(parent)) {
3160 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3161 		return false;
3162 	}
3163 
3164 	if (!msk->pm.server_side)
3165 		goto out;
3166 
3167 	if (!mptcp_pm_allow_new_subflow(msk)) {
3168 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3169 		return false;
3170 	}
3171 
3172 	/* active connections are already on conn_list, and we can't acquire
3173 	 * msk lock here.
3174 	 * use the join list lock as synchronization point and double-check
3175 	 * msk status to avoid racing with __mptcp_destroy_sock()
3176 	 */
3177 	spin_lock_bh(&msk->join_list_lock);
3178 	ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
3179 	if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) {
3180 		list_add_tail(&subflow->node, &msk->join_list);
3181 		sock_hold(ssk);
3182 	}
3183 	spin_unlock_bh(&msk->join_list_lock);
3184 	if (!ret) {
3185 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3186 		return false;
3187 	}
3188 
3189 	/* attach to msk socket only after we are sure he will deal with us
3190 	 * at close time
3191 	 */
3192 	parent_sock = READ_ONCE(parent->sk_socket);
3193 	if (parent_sock && !ssk->sk_socket)
3194 		mptcp_sock_graft(ssk, parent_sock);
3195 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3196 out:
3197 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3198 	return true;
3199 }
3200 
mptcp_shutdown(struct sock * sk,int how)3201 static void mptcp_shutdown(struct sock *sk, int how)
3202 {
3203 	pr_debug("sk=%p, how=%d", sk, how);
3204 
3205 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3206 		__mptcp_wr_shutdown(sk);
3207 }
3208 
3209 static struct proto mptcp_prot = {
3210 	.name		= "MPTCP",
3211 	.owner		= THIS_MODULE,
3212 	.init		= mptcp_init_sock,
3213 	.disconnect	= mptcp_disconnect,
3214 	.close		= mptcp_close,
3215 	.accept		= mptcp_accept,
3216 	.setsockopt	= mptcp_setsockopt,
3217 	.getsockopt	= mptcp_getsockopt,
3218 	.shutdown	= mptcp_shutdown,
3219 	.destroy	= mptcp_destroy,
3220 	.sendmsg	= mptcp_sendmsg,
3221 	.recvmsg	= mptcp_recvmsg,
3222 	.release_cb	= mptcp_release_cb,
3223 	.hash		= mptcp_hash,
3224 	.unhash		= mptcp_unhash,
3225 	.get_port	= mptcp_get_port,
3226 	.sockets_allocated	= &mptcp_sockets_allocated,
3227 	.memory_allocated	= &tcp_memory_allocated,
3228 	.memory_pressure	= &tcp_memory_pressure,
3229 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3230 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3231 	.sysctl_mem	= sysctl_tcp_mem,
3232 	.obj_size	= sizeof(struct mptcp_sock),
3233 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3234 	.no_autobind	= true,
3235 };
3236 
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3237 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3238 {
3239 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3240 	struct socket *ssock;
3241 	int err;
3242 
3243 	lock_sock(sock->sk);
3244 	ssock = __mptcp_nmpc_socket(msk);
3245 	if (!ssock) {
3246 		err = -EINVAL;
3247 		goto unlock;
3248 	}
3249 
3250 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3251 	if (!err)
3252 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3253 
3254 unlock:
3255 	release_sock(sock->sk);
3256 	return err;
3257 }
3258 
mptcp_subflow_early_fallback(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)3259 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3260 					 struct mptcp_subflow_context *subflow)
3261 {
3262 	subflow->request_mptcp = 0;
3263 	__mptcp_do_fallback(msk);
3264 }
3265 
mptcp_stream_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)3266 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3267 				int addr_len, int flags)
3268 {
3269 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3270 	struct mptcp_subflow_context *subflow;
3271 	struct socket *ssock;
3272 	int err;
3273 
3274 	lock_sock(sock->sk);
3275 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3276 		/* pending connection or invalid state, let existing subflow
3277 		 * cope with that
3278 		 */
3279 		ssock = msk->subflow;
3280 		goto do_connect;
3281 	}
3282 
3283 	ssock = __mptcp_nmpc_socket(msk);
3284 	if (!ssock) {
3285 		err = -EINVAL;
3286 		goto unlock;
3287 	}
3288 
3289 	mptcp_token_destroy(msk);
3290 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3291 	subflow = mptcp_subflow_ctx(ssock->sk);
3292 #ifdef CONFIG_TCP_MD5SIG
3293 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3294 	 * TCP option space.
3295 	 */
3296 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3297 		mptcp_subflow_early_fallback(msk, subflow);
3298 #endif
3299 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3300 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3301 		mptcp_subflow_early_fallback(msk, subflow);
3302 	}
3303 	if (likely(!__mptcp_check_fallback(msk)))
3304 		MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3305 
3306 do_connect:
3307 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3308 	sock->state = ssock->state;
3309 
3310 	/* on successful connect, the msk state will be moved to established by
3311 	 * subflow_finish_connect()
3312 	 */
3313 	if (!err || err == -EINPROGRESS)
3314 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3315 	else
3316 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3317 
3318 unlock:
3319 	release_sock(sock->sk);
3320 	return err;
3321 }
3322 
mptcp_listen(struct socket * sock,int backlog)3323 static int mptcp_listen(struct socket *sock, int backlog)
3324 {
3325 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3326 	struct socket *ssock;
3327 	int err;
3328 
3329 	pr_debug("msk=%p", msk);
3330 
3331 	lock_sock(sock->sk);
3332 	ssock = __mptcp_nmpc_socket(msk);
3333 	if (!ssock) {
3334 		err = -EINVAL;
3335 		goto unlock;
3336 	}
3337 
3338 	mptcp_token_destroy(msk);
3339 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3340 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3341 
3342 	err = ssock->ops->listen(ssock, backlog);
3343 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3344 	if (!err)
3345 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3346 
3347 unlock:
3348 	release_sock(sock->sk);
3349 	return err;
3350 }
3351 
mptcp_stream_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)3352 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3353 			       int flags, bool kern)
3354 {
3355 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3356 	struct socket *ssock;
3357 	int err;
3358 
3359 	pr_debug("msk=%p", msk);
3360 
3361 	lock_sock(sock->sk);
3362 	if (sock->sk->sk_state != TCP_LISTEN)
3363 		goto unlock_fail;
3364 
3365 	ssock = __mptcp_nmpc_socket(msk);
3366 	if (!ssock)
3367 		goto unlock_fail;
3368 
3369 	clear_bit(MPTCP_DATA_READY, &msk->flags);
3370 	sock_hold(ssock->sk);
3371 	release_sock(sock->sk);
3372 
3373 	err = ssock->ops->accept(sock, newsock, flags, kern);
3374 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3375 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3376 		struct mptcp_subflow_context *subflow;
3377 		struct sock *newsk = newsock->sk;
3378 
3379 		lock_sock(newsk);
3380 
3381 		/* PM/worker can now acquire the first subflow socket
3382 		 * lock without racing with listener queue cleanup,
3383 		 * we can notify it, if needed.
3384 		 *
3385 		 * Even if remote has reset the initial subflow by now
3386 		 * the refcnt is still at least one.
3387 		 */
3388 		subflow = mptcp_subflow_ctx(msk->first);
3389 		list_add(&subflow->node, &msk->conn_list);
3390 		sock_hold(msk->first);
3391 		if (mptcp_is_fully_established(newsk))
3392 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3393 
3394 		mptcp_copy_inaddrs(newsk, msk->first);
3395 		mptcp_rcv_space_init(msk, msk->first);
3396 		mptcp_propagate_sndbuf(newsk, msk->first);
3397 
3398 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3399 		 * This is needed so NOSPACE flag can be set from tcp stack.
3400 		 */
3401 		mptcp_flush_join_list(msk);
3402 		mptcp_for_each_subflow(msk, subflow) {
3403 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3404 
3405 			if (!ssk->sk_socket)
3406 				mptcp_sock_graft(ssk, newsock);
3407 		}
3408 		release_sock(newsk);
3409 	}
3410 
3411 	if (inet_csk_listen_poll(ssock->sk))
3412 		set_bit(MPTCP_DATA_READY, &msk->flags);
3413 	sock_put(ssock->sk);
3414 	return err;
3415 
3416 unlock_fail:
3417 	release_sock(sock->sk);
3418 	return -EINVAL;
3419 }
3420 
mptcp_check_readable(struct mptcp_sock * msk)3421 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3422 {
3423 	/* Concurrent splices from sk_receive_queue into receive_queue will
3424 	 * always show at least one non-empty queue when checked in this order.
3425 	 */
3426 	if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
3427 	    skb_queue_empty_lockless(&msk->receive_queue))
3428 		return 0;
3429 
3430 	return EPOLLIN | EPOLLRDNORM;
3431 }
3432 
mptcp_check_writeable(struct mptcp_sock * msk)3433 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3434 {
3435 	struct sock *sk = (struct sock *)msk;
3436 
3437 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3438 		return EPOLLOUT | EPOLLWRNORM;
3439 
3440 	if (sk_stream_is_writeable(sk))
3441 		return EPOLLOUT | EPOLLWRNORM;
3442 
3443 	mptcp_set_nospace(sk);
3444 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3445 	if (sk_stream_is_writeable(sk))
3446 		return EPOLLOUT | EPOLLWRNORM;
3447 
3448 	return 0;
3449 }
3450 
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3451 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3452 			   struct poll_table_struct *wait)
3453 {
3454 	struct sock *sk = sock->sk;
3455 	struct mptcp_sock *msk;
3456 	__poll_t mask = 0;
3457 	int state;
3458 
3459 	msk = mptcp_sk(sk);
3460 	sock_poll_wait(file, sock, wait);
3461 
3462 	state = inet_sk_state_load(sk);
3463 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3464 	if (state == TCP_LISTEN)
3465 		return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM : 0;
3466 
3467 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3468 		mask |= mptcp_check_readable(msk);
3469 		mask |= mptcp_check_writeable(msk);
3470 	}
3471 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3472 		mask |= EPOLLHUP;
3473 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3474 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3475 
3476 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3477 	smp_rmb();
3478 	if (sk->sk_err)
3479 		mask |= EPOLLERR;
3480 
3481 	return mask;
3482 }
3483 
3484 static const struct proto_ops mptcp_stream_ops = {
3485 	.family		   = PF_INET,
3486 	.owner		   = THIS_MODULE,
3487 	.release	   = inet_release,
3488 	.bind		   = mptcp_bind,
3489 	.connect	   = mptcp_stream_connect,
3490 	.socketpair	   = sock_no_socketpair,
3491 	.accept		   = mptcp_stream_accept,
3492 	.getname	   = inet_getname,
3493 	.poll		   = mptcp_poll,
3494 	.ioctl		   = inet_ioctl,
3495 	.gettstamp	   = sock_gettstamp,
3496 	.listen		   = mptcp_listen,
3497 	.shutdown	   = inet_shutdown,
3498 	.setsockopt	   = sock_common_setsockopt,
3499 	.getsockopt	   = sock_common_getsockopt,
3500 	.sendmsg	   = inet_sendmsg,
3501 	.recvmsg	   = inet_recvmsg,
3502 	.mmap		   = sock_no_mmap,
3503 	.sendpage	   = inet_sendpage,
3504 };
3505 
3506 static struct inet_protosw mptcp_protosw = {
3507 	.type		= SOCK_STREAM,
3508 	.protocol	= IPPROTO_MPTCP,
3509 	.prot		= &mptcp_prot,
3510 	.ops		= &mptcp_stream_ops,
3511 	.flags		= INET_PROTOSW_ICSK,
3512 };
3513 
mptcp_napi_poll(struct napi_struct * napi,int budget)3514 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3515 {
3516 	struct mptcp_delegated_action *delegated;
3517 	struct mptcp_subflow_context *subflow;
3518 	int work_done = 0;
3519 
3520 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3521 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3522 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3523 
3524 		bh_lock_sock_nested(ssk);
3525 		if (!sock_owned_by_user(ssk) &&
3526 		    mptcp_subflow_has_delegated_action(subflow))
3527 			mptcp_subflow_process_delegated(ssk);
3528 		/* ... elsewhere tcp_release_cb_override already processed
3529 		 * the action or will do at next release_sock().
3530 		 * In both case must dequeue the subflow here - on the same
3531 		 * CPU that scheduled it.
3532 		 */
3533 		bh_unlock_sock(ssk);
3534 		sock_put(ssk);
3535 
3536 		if (++work_done == budget)
3537 			return budget;
3538 	}
3539 
3540 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3541 	 * will not try accessing the NULL napi->dev ptr
3542 	 */
3543 	napi_complete_done(napi, 0);
3544 	return work_done;
3545 }
3546 
mptcp_proto_init(void)3547 void __init mptcp_proto_init(void)
3548 {
3549 	struct mptcp_delegated_action *delegated;
3550 	int cpu;
3551 
3552 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3553 
3554 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3555 		panic("Failed to allocate MPTCP pcpu counter\n");
3556 
3557 	init_dummy_netdev(&mptcp_napi_dev);
3558 	for_each_possible_cpu(cpu) {
3559 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3560 		INIT_LIST_HEAD(&delegated->head);
3561 		netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll,
3562 				  NAPI_POLL_WEIGHT);
3563 		napi_enable(&delegated->napi);
3564 	}
3565 
3566 	mptcp_subflow_init();
3567 	mptcp_pm_init();
3568 	mptcp_token_init();
3569 
3570 	if (proto_register(&mptcp_prot, 1) != 0)
3571 		panic("Failed to register MPTCP proto.\n");
3572 
3573 	inet_register_protosw(&mptcp_protosw);
3574 
3575 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3576 }
3577 
3578 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3579 static const struct proto_ops mptcp_v6_stream_ops = {
3580 	.family		   = PF_INET6,
3581 	.owner		   = THIS_MODULE,
3582 	.release	   = inet6_release,
3583 	.bind		   = mptcp_bind,
3584 	.connect	   = mptcp_stream_connect,
3585 	.socketpair	   = sock_no_socketpair,
3586 	.accept		   = mptcp_stream_accept,
3587 	.getname	   = inet6_getname,
3588 	.poll		   = mptcp_poll,
3589 	.ioctl		   = inet6_ioctl,
3590 	.gettstamp	   = sock_gettstamp,
3591 	.listen		   = mptcp_listen,
3592 	.shutdown	   = inet_shutdown,
3593 	.setsockopt	   = sock_common_setsockopt,
3594 	.getsockopt	   = sock_common_getsockopt,
3595 	.sendmsg	   = inet6_sendmsg,
3596 	.recvmsg	   = inet6_recvmsg,
3597 	.mmap		   = sock_no_mmap,
3598 	.sendpage	   = inet_sendpage,
3599 #ifdef CONFIG_COMPAT
3600 	.compat_ioctl	   = inet6_compat_ioctl,
3601 #endif
3602 };
3603 
3604 static struct proto mptcp_v6_prot;
3605 
3606 static struct inet_protosw mptcp_v6_protosw = {
3607 	.type		= SOCK_STREAM,
3608 	.protocol	= IPPROTO_MPTCP,
3609 	.prot		= &mptcp_v6_prot,
3610 	.ops		= &mptcp_v6_stream_ops,
3611 	.flags		= INET_PROTOSW_ICSK,
3612 };
3613 
mptcp_proto_v6_init(void)3614 int __init mptcp_proto_v6_init(void)
3615 {
3616 	int err;
3617 
3618 	mptcp_v6_prot = mptcp_prot;
3619 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3620 	mptcp_v6_prot.slab = NULL;
3621 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3622 
3623 	err = proto_register(&mptcp_v6_prot, 1);
3624 	if (err)
3625 		return err;
3626 
3627 	err = inet6_register_protosw(&mptcp_v6_protosw);
3628 	if (err)
3629 		proto_unregister(&mptcp_v6_prot);
3630 
3631 	return err;
3632 }
3633 #endif
3634