1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/ethtool.h>
56 #include <linux/mm.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 #include <linux/ptp_clock_kernel.h>
108
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113
114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
116 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
117
118 static int sock_close(struct inode *inode, struct file *file);
119 static __poll_t sock_poll(struct file *file,
120 struct poll_table_struct *wait);
121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
122 #ifdef CONFIG_COMPAT
123 static long compat_sock_ioctl(struct file *file,
124 unsigned int cmd, unsigned long arg);
125 #endif
126 static int sock_fasync(int fd, struct file *filp, int on);
127 static ssize_t sock_sendpage(struct file *file, struct page *page,
128 int offset, size_t size, loff_t *ppos, int more);
129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
130 struct pipe_inode_info *pipe, size_t len,
131 unsigned int flags);
132
133 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)134 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
135 {
136 struct socket *sock = f->private_data;
137
138 if (sock->ops->show_fdinfo)
139 sock->ops->show_fdinfo(m, sock);
140 }
141 #else
142 #define sock_show_fdinfo NULL
143 #endif
144
145 /*
146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
147 * in the operation structures but are done directly via the socketcall() multiplexor.
148 */
149
150 static const struct file_operations socket_file_ops = {
151 .owner = THIS_MODULE,
152 .llseek = no_llseek,
153 .read_iter = sock_read_iter,
154 .write_iter = sock_write_iter,
155 .poll = sock_poll,
156 .unlocked_ioctl = sock_ioctl,
157 #ifdef CONFIG_COMPAT
158 .compat_ioctl = compat_sock_ioctl,
159 #endif
160 .mmap = sock_mmap,
161 .release = sock_close,
162 .fasync = sock_fasync,
163 .sendpage = sock_sendpage,
164 .splice_write = generic_splice_sendpage,
165 .splice_read = sock_splice_read,
166 .show_fdinfo = sock_show_fdinfo,
167 };
168
169 static const char * const pf_family_names[] = {
170 [PF_UNSPEC] = "PF_UNSPEC",
171 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
172 [PF_INET] = "PF_INET",
173 [PF_AX25] = "PF_AX25",
174 [PF_IPX] = "PF_IPX",
175 [PF_APPLETALK] = "PF_APPLETALK",
176 [PF_NETROM] = "PF_NETROM",
177 [PF_BRIDGE] = "PF_BRIDGE",
178 [PF_ATMPVC] = "PF_ATMPVC",
179 [PF_X25] = "PF_X25",
180 [PF_INET6] = "PF_INET6",
181 [PF_ROSE] = "PF_ROSE",
182 [PF_DECnet] = "PF_DECnet",
183 [PF_NETBEUI] = "PF_NETBEUI",
184 [PF_SECURITY] = "PF_SECURITY",
185 [PF_KEY] = "PF_KEY",
186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
187 [PF_PACKET] = "PF_PACKET",
188 [PF_ASH] = "PF_ASH",
189 [PF_ECONET] = "PF_ECONET",
190 [PF_ATMSVC] = "PF_ATMSVC",
191 [PF_RDS] = "PF_RDS",
192 [PF_SNA] = "PF_SNA",
193 [PF_IRDA] = "PF_IRDA",
194 [PF_PPPOX] = "PF_PPPOX",
195 [PF_WANPIPE] = "PF_WANPIPE",
196 [PF_LLC] = "PF_LLC",
197 [PF_IB] = "PF_IB",
198 [PF_MPLS] = "PF_MPLS",
199 [PF_CAN] = "PF_CAN",
200 [PF_TIPC] = "PF_TIPC",
201 [PF_BLUETOOTH] = "PF_BLUETOOTH",
202 [PF_IUCV] = "PF_IUCV",
203 [PF_RXRPC] = "PF_RXRPC",
204 [PF_ISDN] = "PF_ISDN",
205 [PF_PHONET] = "PF_PHONET",
206 [PF_IEEE802154] = "PF_IEEE802154",
207 [PF_CAIF] = "PF_CAIF",
208 [PF_ALG] = "PF_ALG",
209 [PF_NFC] = "PF_NFC",
210 [PF_VSOCK] = "PF_VSOCK",
211 [PF_KCM] = "PF_KCM",
212 [PF_QIPCRTR] = "PF_QIPCRTR",
213 [PF_SMC] = "PF_SMC",
214 [PF_XDP] = "PF_XDP",
215 [PF_MCTP] = "PF_MCTP",
216 };
217
218 /*
219 * The protocol list. Each protocol is registered in here.
220 */
221
222 static DEFINE_SPINLOCK(net_family_lock);
223 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
224
225 /*
226 * Support routines.
227 * Move socket addresses back and forth across the kernel/user
228 * divide and look after the messy bits.
229 */
230
231 /**
232 * move_addr_to_kernel - copy a socket address into kernel space
233 * @uaddr: Address in user space
234 * @kaddr: Address in kernel space
235 * @ulen: Length in user space
236 *
237 * The address is copied into kernel space. If the provided address is
238 * too long an error code of -EINVAL is returned. If the copy gives
239 * invalid addresses -EFAULT is returned. On a success 0 is returned.
240 */
241
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)242 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
243 {
244 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
245 return -EINVAL;
246 if (ulen == 0)
247 return 0;
248 if (copy_from_user(kaddr, uaddr, ulen))
249 return -EFAULT;
250 return audit_sockaddr(ulen, kaddr);
251 }
252
253 /**
254 * move_addr_to_user - copy an address to user space
255 * @kaddr: kernel space address
256 * @klen: length of address in kernel
257 * @uaddr: user space address
258 * @ulen: pointer to user length field
259 *
260 * The value pointed to by ulen on entry is the buffer length available.
261 * This is overwritten with the buffer space used. -EINVAL is returned
262 * if an overlong buffer is specified or a negative buffer size. -EFAULT
263 * is returned if either the buffer or the length field are not
264 * accessible.
265 * After copying the data up to the limit the user specifies, the true
266 * length of the data is written over the length limit the user
267 * specified. Zero is returned for a success.
268 */
269
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)270 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
271 void __user *uaddr, int __user *ulen)
272 {
273 int err;
274 int len;
275
276 BUG_ON(klen > sizeof(struct sockaddr_storage));
277 err = get_user(len, ulen);
278 if (err)
279 return err;
280 if (len > klen)
281 len = klen;
282 if (len < 0)
283 return -EINVAL;
284 if (len) {
285 if (audit_sockaddr(klen, kaddr))
286 return -ENOMEM;
287 if (copy_to_user(uaddr, kaddr, len))
288 return -EFAULT;
289 }
290 /*
291 * "fromlen shall refer to the value before truncation.."
292 * 1003.1g
293 */
294 return __put_user(klen, ulen);
295 }
296
297 static struct kmem_cache *sock_inode_cachep __ro_after_init;
298
sock_alloc_inode(struct super_block * sb)299 static struct inode *sock_alloc_inode(struct super_block *sb)
300 {
301 struct socket_alloc *ei;
302
303 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
304 if (!ei)
305 return NULL;
306 init_waitqueue_head(&ei->socket.wq.wait);
307 ei->socket.wq.fasync_list = NULL;
308 ei->socket.wq.flags = 0;
309
310 ei->socket.state = SS_UNCONNECTED;
311 ei->socket.flags = 0;
312 ei->socket.ops = NULL;
313 ei->socket.sk = NULL;
314 ei->socket.file = NULL;
315
316 return &ei->vfs_inode;
317 }
318
sock_free_inode(struct inode * inode)319 static void sock_free_inode(struct inode *inode)
320 {
321 struct socket_alloc *ei;
322
323 ei = container_of(inode, struct socket_alloc, vfs_inode);
324 kmem_cache_free(sock_inode_cachep, ei);
325 }
326
init_once(void * foo)327 static void init_once(void *foo)
328 {
329 struct socket_alloc *ei = (struct socket_alloc *)foo;
330
331 inode_init_once(&ei->vfs_inode);
332 }
333
init_inodecache(void)334 static void init_inodecache(void)
335 {
336 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
337 sizeof(struct socket_alloc),
338 0,
339 (SLAB_HWCACHE_ALIGN |
340 SLAB_RECLAIM_ACCOUNT |
341 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
342 init_once);
343 BUG_ON(sock_inode_cachep == NULL);
344 }
345
346 static const struct super_operations sockfs_ops = {
347 .alloc_inode = sock_alloc_inode,
348 .free_inode = sock_free_inode,
349 .statfs = simple_statfs,
350 };
351
352 /*
353 * sockfs_dname() is called from d_path().
354 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)355 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
356 {
357 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
358 d_inode(dentry)->i_ino);
359 }
360
361 static const struct dentry_operations sockfs_dentry_operations = {
362 .d_dname = sockfs_dname,
363 };
364
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)365 static int sockfs_xattr_get(const struct xattr_handler *handler,
366 struct dentry *dentry, struct inode *inode,
367 const char *suffix, void *value, size_t size)
368 {
369 if (value) {
370 if (dentry->d_name.len + 1 > size)
371 return -ERANGE;
372 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
373 }
374 return dentry->d_name.len + 1;
375 }
376
377 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
378 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
379 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
380
381 static const struct xattr_handler sockfs_xattr_handler = {
382 .name = XATTR_NAME_SOCKPROTONAME,
383 .get = sockfs_xattr_get,
384 };
385
sockfs_security_xattr_set(const struct xattr_handler * handler,struct user_namespace * mnt_userns,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)386 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
387 struct user_namespace *mnt_userns,
388 struct dentry *dentry, struct inode *inode,
389 const char *suffix, const void *value,
390 size_t size, int flags)
391 {
392 /* Handled by LSM. */
393 return -EAGAIN;
394 }
395
396 static const struct xattr_handler sockfs_security_xattr_handler = {
397 .prefix = XATTR_SECURITY_PREFIX,
398 .set = sockfs_security_xattr_set,
399 };
400
401 static const struct xattr_handler *sockfs_xattr_handlers[] = {
402 &sockfs_xattr_handler,
403 &sockfs_security_xattr_handler,
404 NULL
405 };
406
sockfs_init_fs_context(struct fs_context * fc)407 static int sockfs_init_fs_context(struct fs_context *fc)
408 {
409 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
410 if (!ctx)
411 return -ENOMEM;
412 ctx->ops = &sockfs_ops;
413 ctx->dops = &sockfs_dentry_operations;
414 ctx->xattr = sockfs_xattr_handlers;
415 return 0;
416 }
417
418 static struct vfsmount *sock_mnt __read_mostly;
419
420 static struct file_system_type sock_fs_type = {
421 .name = "sockfs",
422 .init_fs_context = sockfs_init_fs_context,
423 .kill_sb = kill_anon_super,
424 };
425
426 /*
427 * Obtains the first available file descriptor and sets it up for use.
428 *
429 * These functions create file structures and maps them to fd space
430 * of the current process. On success it returns file descriptor
431 * and file struct implicitly stored in sock->file.
432 * Note that another thread may close file descriptor before we return
433 * from this function. We use the fact that now we do not refer
434 * to socket after mapping. If one day we will need it, this
435 * function will increment ref. count on file by 1.
436 *
437 * In any case returned fd MAY BE not valid!
438 * This race condition is unavoidable
439 * with shared fd spaces, we cannot solve it inside kernel,
440 * but we take care of internal coherence yet.
441 */
442
443 /**
444 * sock_alloc_file - Bind a &socket to a &file
445 * @sock: socket
446 * @flags: file status flags
447 * @dname: protocol name
448 *
449 * Returns the &file bound with @sock, implicitly storing it
450 * in sock->file. If dname is %NULL, sets to "".
451 * On failure the return is a ERR pointer (see linux/err.h).
452 * This function uses GFP_KERNEL internally.
453 */
454
sock_alloc_file(struct socket * sock,int flags,const char * dname)455 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
456 {
457 struct file *file;
458
459 if (!dname)
460 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
461
462 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
463 O_RDWR | (flags & O_NONBLOCK),
464 &socket_file_ops);
465 if (IS_ERR(file)) {
466 sock_release(sock);
467 return file;
468 }
469
470 sock->file = file;
471 file->private_data = sock;
472 stream_open(SOCK_INODE(sock), file);
473 return file;
474 }
475 EXPORT_SYMBOL(sock_alloc_file);
476
sock_map_fd(struct socket * sock,int flags)477 static int sock_map_fd(struct socket *sock, int flags)
478 {
479 struct file *newfile;
480 int fd = get_unused_fd_flags(flags);
481 if (unlikely(fd < 0)) {
482 sock_release(sock);
483 return fd;
484 }
485
486 newfile = sock_alloc_file(sock, flags, NULL);
487 if (!IS_ERR(newfile)) {
488 fd_install(fd, newfile);
489 return fd;
490 }
491
492 put_unused_fd(fd);
493 return PTR_ERR(newfile);
494 }
495
496 /**
497 * sock_from_file - Return the &socket bounded to @file.
498 * @file: file
499 *
500 * On failure returns %NULL.
501 */
502
sock_from_file(struct file * file)503 struct socket *sock_from_file(struct file *file)
504 {
505 if (file->f_op == &socket_file_ops)
506 return file->private_data; /* set in sock_map_fd */
507
508 return NULL;
509 }
510 EXPORT_SYMBOL(sock_from_file);
511
512 /**
513 * sockfd_lookup - Go from a file number to its socket slot
514 * @fd: file handle
515 * @err: pointer to an error code return
516 *
517 * The file handle passed in is locked and the socket it is bound
518 * to is returned. If an error occurs the err pointer is overwritten
519 * with a negative errno code and NULL is returned. The function checks
520 * for both invalid handles and passing a handle which is not a socket.
521 *
522 * On a success the socket object pointer is returned.
523 */
524
sockfd_lookup(int fd,int * err)525 struct socket *sockfd_lookup(int fd, int *err)
526 {
527 struct file *file;
528 struct socket *sock;
529
530 file = fget(fd);
531 if (!file) {
532 *err = -EBADF;
533 return NULL;
534 }
535
536 sock = sock_from_file(file);
537 if (!sock) {
538 *err = -ENOTSOCK;
539 fput(file);
540 }
541 return sock;
542 }
543 EXPORT_SYMBOL(sockfd_lookup);
544
sockfd_lookup_light(int fd,int * err,int * fput_needed)545 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
546 {
547 struct fd f = fdget(fd);
548 struct socket *sock;
549
550 *err = -EBADF;
551 if (f.file) {
552 sock = sock_from_file(f.file);
553 if (likely(sock)) {
554 *fput_needed = f.flags & FDPUT_FPUT;
555 return sock;
556 }
557 *err = -ENOTSOCK;
558 fdput(f);
559 }
560 return NULL;
561 }
562
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)563 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
564 size_t size)
565 {
566 ssize_t len;
567 ssize_t used = 0;
568
569 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
570 if (len < 0)
571 return len;
572 used += len;
573 if (buffer) {
574 if (size < used)
575 return -ERANGE;
576 buffer += len;
577 }
578
579 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
580 used += len;
581 if (buffer) {
582 if (size < used)
583 return -ERANGE;
584 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
585 buffer += len;
586 }
587
588 return used;
589 }
590
sockfs_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * iattr)591 static int sockfs_setattr(struct user_namespace *mnt_userns,
592 struct dentry *dentry, struct iattr *iattr)
593 {
594 int err = simple_setattr(&init_user_ns, dentry, iattr);
595
596 if (!err && (iattr->ia_valid & ATTR_UID)) {
597 struct socket *sock = SOCKET_I(d_inode(dentry));
598
599 if (sock->sk)
600 sock->sk->sk_uid = iattr->ia_uid;
601 else
602 err = -ENOENT;
603 }
604
605 return err;
606 }
607
608 static const struct inode_operations sockfs_inode_ops = {
609 .listxattr = sockfs_listxattr,
610 .setattr = sockfs_setattr,
611 };
612
613 /**
614 * sock_alloc - allocate a socket
615 *
616 * Allocate a new inode and socket object. The two are bound together
617 * and initialised. The socket is then returned. If we are out of inodes
618 * NULL is returned. This functions uses GFP_KERNEL internally.
619 */
620
sock_alloc(void)621 struct socket *sock_alloc(void)
622 {
623 struct inode *inode;
624 struct socket *sock;
625
626 inode = new_inode_pseudo(sock_mnt->mnt_sb);
627 if (!inode)
628 return NULL;
629
630 sock = SOCKET_I(inode);
631
632 inode->i_ino = get_next_ino();
633 inode->i_mode = S_IFSOCK | S_IRWXUGO;
634 inode->i_uid = current_fsuid();
635 inode->i_gid = current_fsgid();
636 inode->i_op = &sockfs_inode_ops;
637
638 return sock;
639 }
640 EXPORT_SYMBOL(sock_alloc);
641
__sock_release(struct socket * sock,struct inode * inode)642 static void __sock_release(struct socket *sock, struct inode *inode)
643 {
644 if (sock->ops) {
645 struct module *owner = sock->ops->owner;
646
647 if (inode)
648 inode_lock(inode);
649 sock->ops->release(sock);
650 sock->sk = NULL;
651 if (inode)
652 inode_unlock(inode);
653 sock->ops = NULL;
654 module_put(owner);
655 }
656
657 if (sock->wq.fasync_list)
658 pr_err("%s: fasync list not empty!\n", __func__);
659
660 if (!sock->file) {
661 iput(SOCK_INODE(sock));
662 return;
663 }
664 sock->file = NULL;
665 }
666
667 /**
668 * sock_release - close a socket
669 * @sock: socket to close
670 *
671 * The socket is released from the protocol stack if it has a release
672 * callback, and the inode is then released if the socket is bound to
673 * an inode not a file.
674 */
sock_release(struct socket * sock)675 void sock_release(struct socket *sock)
676 {
677 __sock_release(sock, NULL);
678 }
679 EXPORT_SYMBOL(sock_release);
680
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)681 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
682 {
683 u8 flags = *tx_flags;
684
685 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
686 flags |= SKBTX_HW_TSTAMP;
687
688 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
689 flags |= SKBTX_SW_TSTAMP;
690
691 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
692 flags |= SKBTX_SCHED_TSTAMP;
693
694 *tx_flags = flags;
695 }
696 EXPORT_SYMBOL(__sock_tx_timestamp);
697
698 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
699 size_t));
700 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
701 size_t));
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)702 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
703 {
704 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
705 inet_sendmsg, sock, msg,
706 msg_data_left(msg));
707 BUG_ON(ret == -EIOCBQUEUED);
708 return ret;
709 }
710
__sock_sendmsg(struct socket * sock,struct msghdr * msg)711 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
712 {
713 int err = security_socket_sendmsg(sock, msg,
714 msg_data_left(msg));
715
716 return err ?: sock_sendmsg_nosec(sock, msg);
717 }
718
719 /**
720 * sock_sendmsg - send a message through @sock
721 * @sock: socket
722 * @msg: message to send
723 *
724 * Sends @msg through @sock, passing through LSM.
725 * Returns the number of bytes sent, or an error code.
726 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)727 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
728 {
729 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
730 struct sockaddr_storage address;
731 int save_len = msg->msg_namelen;
732 int ret;
733
734 if (msg->msg_name) {
735 memcpy(&address, msg->msg_name, msg->msg_namelen);
736 msg->msg_name = &address;
737 }
738
739 ret = __sock_sendmsg(sock, msg);
740 msg->msg_name = save_addr;
741 msg->msg_namelen = save_len;
742
743 return ret;
744 }
745 EXPORT_SYMBOL(sock_sendmsg);
746
747 /**
748 * kernel_sendmsg - send a message through @sock (kernel-space)
749 * @sock: socket
750 * @msg: message header
751 * @vec: kernel vec
752 * @num: vec array length
753 * @size: total message data size
754 *
755 * Builds the message data with @vec and sends it through @sock.
756 * Returns the number of bytes sent, or an error code.
757 */
758
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)759 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
760 struct kvec *vec, size_t num, size_t size)
761 {
762 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
763 return sock_sendmsg(sock, msg);
764 }
765 EXPORT_SYMBOL(kernel_sendmsg);
766
767 /**
768 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
769 * @sk: sock
770 * @msg: message header
771 * @vec: output s/g array
772 * @num: output s/g array length
773 * @size: total message data size
774 *
775 * Builds the message data with @vec and sends it through @sock.
776 * Returns the number of bytes sent, or an error code.
777 * Caller must hold @sk.
778 */
779
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)780 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
781 struct kvec *vec, size_t num, size_t size)
782 {
783 struct socket *sock = sk->sk_socket;
784
785 if (!sock->ops->sendmsg_locked)
786 return sock_no_sendmsg_locked(sk, msg, size);
787
788 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
789
790 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
791 }
792 EXPORT_SYMBOL(kernel_sendmsg_locked);
793
skb_is_err_queue(const struct sk_buff * skb)794 static bool skb_is_err_queue(const struct sk_buff *skb)
795 {
796 /* pkt_type of skbs enqueued on the error queue are set to
797 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
798 * in recvmsg, since skbs received on a local socket will never
799 * have a pkt_type of PACKET_OUTGOING.
800 */
801 return skb->pkt_type == PACKET_OUTGOING;
802 }
803
804 /* On transmit, software and hardware timestamps are returned independently.
805 * As the two skb clones share the hardware timestamp, which may be updated
806 * before the software timestamp is received, a hardware TX timestamp may be
807 * returned only if there is no software TX timestamp. Ignore false software
808 * timestamps, which may be made in the __sock_recv_timestamp() call when the
809 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
810 * hardware timestamp.
811 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)812 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
813 {
814 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
815 }
816
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb)817 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
818 {
819 struct scm_ts_pktinfo ts_pktinfo;
820 struct net_device *orig_dev;
821
822 if (!skb_mac_header_was_set(skb))
823 return;
824
825 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
826
827 rcu_read_lock();
828 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
829 if (orig_dev)
830 ts_pktinfo.if_index = orig_dev->ifindex;
831 rcu_read_unlock();
832
833 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
834 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
835 sizeof(ts_pktinfo), &ts_pktinfo);
836 }
837
838 /*
839 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
840 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)841 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
842 struct sk_buff *skb)
843 {
844 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
845 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
846 struct scm_timestamping_internal tss;
847
848 int empty = 1, false_tstamp = 0;
849 struct skb_shared_hwtstamps *shhwtstamps =
850 skb_hwtstamps(skb);
851 ktime_t hwtstamp;
852
853 /* Race occurred between timestamp enabling and packet
854 receiving. Fill in the current time for now. */
855 if (need_software_tstamp && skb->tstamp == 0) {
856 __net_timestamp(skb);
857 false_tstamp = 1;
858 }
859
860 if (need_software_tstamp) {
861 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
862 if (new_tstamp) {
863 struct __kernel_sock_timeval tv;
864
865 skb_get_new_timestamp(skb, &tv);
866 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
867 sizeof(tv), &tv);
868 } else {
869 struct __kernel_old_timeval tv;
870
871 skb_get_timestamp(skb, &tv);
872 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
873 sizeof(tv), &tv);
874 }
875 } else {
876 if (new_tstamp) {
877 struct __kernel_timespec ts;
878
879 skb_get_new_timestampns(skb, &ts);
880 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
881 sizeof(ts), &ts);
882 } else {
883 struct __kernel_old_timespec ts;
884
885 skb_get_timestampns(skb, &ts);
886 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
887 sizeof(ts), &ts);
888 }
889 }
890 }
891
892 memset(&tss, 0, sizeof(tss));
893 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
894 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
895 empty = 0;
896 if (shhwtstamps &&
897 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
898 !skb_is_swtx_tstamp(skb, false_tstamp)) {
899 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
900 hwtstamp = ptp_convert_timestamp(shhwtstamps,
901 sk->sk_bind_phc);
902 else
903 hwtstamp = shhwtstamps->hwtstamp;
904
905 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
906 empty = 0;
907
908 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
909 !skb_is_err_queue(skb))
910 put_ts_pktinfo(msg, skb);
911 }
912 }
913 if (!empty) {
914 if (sock_flag(sk, SOCK_TSTAMP_NEW))
915 put_cmsg_scm_timestamping64(msg, &tss);
916 else
917 put_cmsg_scm_timestamping(msg, &tss);
918
919 if (skb_is_err_queue(skb) && skb->len &&
920 SKB_EXT_ERR(skb)->opt_stats)
921 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
922 skb->len, skb->data);
923 }
924 }
925 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
926
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)927 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
928 struct sk_buff *skb)
929 {
930 int ack;
931
932 if (!sock_flag(sk, SOCK_WIFI_STATUS))
933 return;
934 if (!skb->wifi_acked_valid)
935 return;
936
937 ack = skb->wifi_acked;
938
939 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
940 }
941 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
942
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)943 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
944 struct sk_buff *skb)
945 {
946 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
947 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
948 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
949 }
950
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)951 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
952 struct sk_buff *skb)
953 {
954 sock_recv_timestamp(msg, sk, skb);
955 sock_recv_drops(msg, sk, skb);
956 }
957 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
958
959 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
960 size_t, int));
961 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
962 size_t, int));
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)963 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
964 int flags)
965 {
966 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
967 inet_recvmsg, sock, msg, msg_data_left(msg),
968 flags);
969 }
970
971 /**
972 * sock_recvmsg - receive a message from @sock
973 * @sock: socket
974 * @msg: message to receive
975 * @flags: message flags
976 *
977 * Receives @msg from @sock, passing through LSM. Returns the total number
978 * of bytes received, or an error.
979 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)980 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
981 {
982 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
983
984 return err ?: sock_recvmsg_nosec(sock, msg, flags);
985 }
986 EXPORT_SYMBOL(sock_recvmsg);
987
988 /**
989 * kernel_recvmsg - Receive a message from a socket (kernel space)
990 * @sock: The socket to receive the message from
991 * @msg: Received message
992 * @vec: Input s/g array for message data
993 * @num: Size of input s/g array
994 * @size: Number of bytes to read
995 * @flags: Message flags (MSG_DONTWAIT, etc...)
996 *
997 * On return the msg structure contains the scatter/gather array passed in the
998 * vec argument. The array is modified so that it consists of the unfilled
999 * portion of the original array.
1000 *
1001 * The returned value is the total number of bytes received, or an error.
1002 */
1003
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1004 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1005 struct kvec *vec, size_t num, size_t size, int flags)
1006 {
1007 msg->msg_control_is_user = false;
1008 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
1009 return sock_recvmsg(sock, msg, flags);
1010 }
1011 EXPORT_SYMBOL(kernel_recvmsg);
1012
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)1013 static ssize_t sock_sendpage(struct file *file, struct page *page,
1014 int offset, size_t size, loff_t *ppos, int more)
1015 {
1016 struct socket *sock;
1017 int flags;
1018
1019 sock = file->private_data;
1020
1021 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1022 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1023 flags |= more;
1024
1025 return kernel_sendpage(sock, page, offset, size, flags);
1026 }
1027
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1028 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1029 struct pipe_inode_info *pipe, size_t len,
1030 unsigned int flags)
1031 {
1032 struct socket *sock = file->private_data;
1033
1034 if (unlikely(!sock->ops->splice_read))
1035 return generic_file_splice_read(file, ppos, pipe, len, flags);
1036
1037 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1038 }
1039
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1040 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1041 {
1042 struct file *file = iocb->ki_filp;
1043 struct socket *sock = file->private_data;
1044 struct msghdr msg = {.msg_iter = *to,
1045 .msg_iocb = iocb};
1046 ssize_t res;
1047
1048 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1049 msg.msg_flags = MSG_DONTWAIT;
1050
1051 if (iocb->ki_pos != 0)
1052 return -ESPIPE;
1053
1054 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1055 return 0;
1056
1057 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1058 *to = msg.msg_iter;
1059 return res;
1060 }
1061
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1062 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1063 {
1064 struct file *file = iocb->ki_filp;
1065 struct socket *sock = file->private_data;
1066 struct msghdr msg = {.msg_iter = *from,
1067 .msg_iocb = iocb};
1068 ssize_t res;
1069
1070 if (iocb->ki_pos != 0)
1071 return -ESPIPE;
1072
1073 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1074 msg.msg_flags = MSG_DONTWAIT;
1075
1076 if (sock->type == SOCK_SEQPACKET)
1077 msg.msg_flags |= MSG_EOR;
1078
1079 res = __sock_sendmsg(sock, &msg);
1080 *from = msg.msg_iter;
1081 return res;
1082 }
1083
1084 /*
1085 * Atomic setting of ioctl hooks to avoid race
1086 * with module unload.
1087 */
1088
1089 static DEFINE_MUTEX(br_ioctl_mutex);
1090 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1091 unsigned int cmd, struct ifreq *ifr,
1092 void __user *uarg);
1093
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1094 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1095 unsigned int cmd, struct ifreq *ifr,
1096 void __user *uarg))
1097 {
1098 mutex_lock(&br_ioctl_mutex);
1099 br_ioctl_hook = hook;
1100 mutex_unlock(&br_ioctl_mutex);
1101 }
1102 EXPORT_SYMBOL(brioctl_set);
1103
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1104 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1105 struct ifreq *ifr, void __user *uarg)
1106 {
1107 int err = -ENOPKG;
1108
1109 if (!br_ioctl_hook)
1110 request_module("bridge");
1111
1112 mutex_lock(&br_ioctl_mutex);
1113 if (br_ioctl_hook)
1114 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1115 mutex_unlock(&br_ioctl_mutex);
1116
1117 return err;
1118 }
1119
1120 static DEFINE_MUTEX(vlan_ioctl_mutex);
1121 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1122
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1123 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1124 {
1125 mutex_lock(&vlan_ioctl_mutex);
1126 vlan_ioctl_hook = hook;
1127 mutex_unlock(&vlan_ioctl_mutex);
1128 }
1129 EXPORT_SYMBOL(vlan_ioctl_set);
1130
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1131 static long sock_do_ioctl(struct net *net, struct socket *sock,
1132 unsigned int cmd, unsigned long arg)
1133 {
1134 struct ifreq ifr;
1135 bool need_copyout;
1136 int err;
1137 void __user *argp = (void __user *)arg;
1138 void __user *data;
1139
1140 err = sock->ops->ioctl(sock, cmd, arg);
1141
1142 /*
1143 * If this ioctl is unknown try to hand it down
1144 * to the NIC driver.
1145 */
1146 if (err != -ENOIOCTLCMD)
1147 return err;
1148
1149 if (!is_socket_ioctl_cmd(cmd))
1150 return -ENOTTY;
1151
1152 if (get_user_ifreq(&ifr, &data, argp))
1153 return -EFAULT;
1154 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1155 if (!err && need_copyout)
1156 if (put_user_ifreq(&ifr, argp))
1157 return -EFAULT;
1158
1159 return err;
1160 }
1161
1162 /*
1163 * With an ioctl, arg may well be a user mode pointer, but we don't know
1164 * what to do with it - that's up to the protocol still.
1165 */
1166
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1167 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1168 {
1169 struct socket *sock;
1170 struct sock *sk;
1171 void __user *argp = (void __user *)arg;
1172 int pid, err;
1173 struct net *net;
1174
1175 sock = file->private_data;
1176 sk = sock->sk;
1177 net = sock_net(sk);
1178 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1179 struct ifreq ifr;
1180 void __user *data;
1181 bool need_copyout;
1182 if (get_user_ifreq(&ifr, &data, argp))
1183 return -EFAULT;
1184 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1185 if (!err && need_copyout)
1186 if (put_user_ifreq(&ifr, argp))
1187 return -EFAULT;
1188 } else
1189 #ifdef CONFIG_WEXT_CORE
1190 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1191 err = wext_handle_ioctl(net, cmd, argp);
1192 } else
1193 #endif
1194 switch (cmd) {
1195 case FIOSETOWN:
1196 case SIOCSPGRP:
1197 err = -EFAULT;
1198 if (get_user(pid, (int __user *)argp))
1199 break;
1200 err = f_setown(sock->file, pid, 1);
1201 break;
1202 case FIOGETOWN:
1203 case SIOCGPGRP:
1204 err = put_user(f_getown(sock->file),
1205 (int __user *)argp);
1206 break;
1207 case SIOCGIFBR:
1208 case SIOCSIFBR:
1209 case SIOCBRADDBR:
1210 case SIOCBRDELBR:
1211 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1212 break;
1213 case SIOCGIFVLAN:
1214 case SIOCSIFVLAN:
1215 err = -ENOPKG;
1216 if (!vlan_ioctl_hook)
1217 request_module("8021q");
1218
1219 mutex_lock(&vlan_ioctl_mutex);
1220 if (vlan_ioctl_hook)
1221 err = vlan_ioctl_hook(net, argp);
1222 mutex_unlock(&vlan_ioctl_mutex);
1223 break;
1224 case SIOCGSKNS:
1225 err = -EPERM;
1226 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1227 break;
1228
1229 err = open_related_ns(&net->ns, get_net_ns);
1230 break;
1231 case SIOCGSTAMP_OLD:
1232 case SIOCGSTAMPNS_OLD:
1233 if (!sock->ops->gettstamp) {
1234 err = -ENOIOCTLCMD;
1235 break;
1236 }
1237 err = sock->ops->gettstamp(sock, argp,
1238 cmd == SIOCGSTAMP_OLD,
1239 !IS_ENABLED(CONFIG_64BIT));
1240 break;
1241 case SIOCGSTAMP_NEW:
1242 case SIOCGSTAMPNS_NEW:
1243 if (!sock->ops->gettstamp) {
1244 err = -ENOIOCTLCMD;
1245 break;
1246 }
1247 err = sock->ops->gettstamp(sock, argp,
1248 cmd == SIOCGSTAMP_NEW,
1249 false);
1250 break;
1251
1252 case SIOCGIFCONF:
1253 err = dev_ifconf(net, argp);
1254 break;
1255
1256 default:
1257 err = sock_do_ioctl(net, sock, cmd, arg);
1258 break;
1259 }
1260 return err;
1261 }
1262
1263 /**
1264 * sock_create_lite - creates a socket
1265 * @family: protocol family (AF_INET, ...)
1266 * @type: communication type (SOCK_STREAM, ...)
1267 * @protocol: protocol (0, ...)
1268 * @res: new socket
1269 *
1270 * Creates a new socket and assigns it to @res, passing through LSM.
1271 * The new socket initialization is not complete, see kernel_accept().
1272 * Returns 0 or an error. On failure @res is set to %NULL.
1273 * This function internally uses GFP_KERNEL.
1274 */
1275
sock_create_lite(int family,int type,int protocol,struct socket ** res)1276 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1277 {
1278 int err;
1279 struct socket *sock = NULL;
1280
1281 err = security_socket_create(family, type, protocol, 1);
1282 if (err)
1283 goto out;
1284
1285 sock = sock_alloc();
1286 if (!sock) {
1287 err = -ENOMEM;
1288 goto out;
1289 }
1290
1291 sock->type = type;
1292 err = security_socket_post_create(sock, family, type, protocol, 1);
1293 if (err)
1294 goto out_release;
1295
1296 out:
1297 *res = sock;
1298 return err;
1299 out_release:
1300 sock_release(sock);
1301 sock = NULL;
1302 goto out;
1303 }
1304 EXPORT_SYMBOL(sock_create_lite);
1305
1306 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1307 static __poll_t sock_poll(struct file *file, poll_table *wait)
1308 {
1309 struct socket *sock = file->private_data;
1310 __poll_t events = poll_requested_events(wait), flag = 0;
1311
1312 if (!sock->ops->poll)
1313 return 0;
1314
1315 if (sk_can_busy_loop(sock->sk)) {
1316 /* poll once if requested by the syscall */
1317 if (events & POLL_BUSY_LOOP)
1318 sk_busy_loop(sock->sk, 1);
1319
1320 /* if this socket can poll_ll, tell the system call */
1321 flag = POLL_BUSY_LOOP;
1322 }
1323
1324 return sock->ops->poll(file, sock, wait) | flag;
1325 }
1326
sock_mmap(struct file * file,struct vm_area_struct * vma)1327 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1328 {
1329 struct socket *sock = file->private_data;
1330
1331 return sock->ops->mmap(file, sock, vma);
1332 }
1333
sock_close(struct inode * inode,struct file * filp)1334 static int sock_close(struct inode *inode, struct file *filp)
1335 {
1336 __sock_release(SOCKET_I(inode), inode);
1337 return 0;
1338 }
1339
1340 /*
1341 * Update the socket async list
1342 *
1343 * Fasync_list locking strategy.
1344 *
1345 * 1. fasync_list is modified only under process context socket lock
1346 * i.e. under semaphore.
1347 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1348 * or under socket lock
1349 */
1350
sock_fasync(int fd,struct file * filp,int on)1351 static int sock_fasync(int fd, struct file *filp, int on)
1352 {
1353 struct socket *sock = filp->private_data;
1354 struct sock *sk = sock->sk;
1355 struct socket_wq *wq = &sock->wq;
1356
1357 if (sk == NULL)
1358 return -EINVAL;
1359
1360 lock_sock(sk);
1361 fasync_helper(fd, filp, on, &wq->fasync_list);
1362
1363 if (!wq->fasync_list)
1364 sock_reset_flag(sk, SOCK_FASYNC);
1365 else
1366 sock_set_flag(sk, SOCK_FASYNC);
1367
1368 release_sock(sk);
1369 return 0;
1370 }
1371
1372 /* This function may be called only under rcu_lock */
1373
sock_wake_async(struct socket_wq * wq,int how,int band)1374 int sock_wake_async(struct socket_wq *wq, int how, int band)
1375 {
1376 if (!wq || !wq->fasync_list)
1377 return -1;
1378
1379 switch (how) {
1380 case SOCK_WAKE_WAITD:
1381 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1382 break;
1383 goto call_kill;
1384 case SOCK_WAKE_SPACE:
1385 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1386 break;
1387 fallthrough;
1388 case SOCK_WAKE_IO:
1389 call_kill:
1390 kill_fasync(&wq->fasync_list, SIGIO, band);
1391 break;
1392 case SOCK_WAKE_URG:
1393 kill_fasync(&wq->fasync_list, SIGURG, band);
1394 }
1395
1396 return 0;
1397 }
1398 EXPORT_SYMBOL(sock_wake_async);
1399
1400 /**
1401 * __sock_create - creates a socket
1402 * @net: net namespace
1403 * @family: protocol family (AF_INET, ...)
1404 * @type: communication type (SOCK_STREAM, ...)
1405 * @protocol: protocol (0, ...)
1406 * @res: new socket
1407 * @kern: boolean for kernel space sockets
1408 *
1409 * Creates a new socket and assigns it to @res, passing through LSM.
1410 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1411 * be set to true if the socket resides in kernel space.
1412 * This function internally uses GFP_KERNEL.
1413 */
1414
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1415 int __sock_create(struct net *net, int family, int type, int protocol,
1416 struct socket **res, int kern)
1417 {
1418 int err;
1419 struct socket *sock;
1420 const struct net_proto_family *pf;
1421
1422 /*
1423 * Check protocol is in range
1424 */
1425 if (family < 0 || family >= NPROTO)
1426 return -EAFNOSUPPORT;
1427 if (type < 0 || type >= SOCK_MAX)
1428 return -EINVAL;
1429
1430 /* Compatibility.
1431
1432 This uglymoron is moved from INET layer to here to avoid
1433 deadlock in module load.
1434 */
1435 if (family == PF_INET && type == SOCK_PACKET) {
1436 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1437 current->comm);
1438 family = PF_PACKET;
1439 }
1440
1441 err = security_socket_create(family, type, protocol, kern);
1442 if (err)
1443 return err;
1444
1445 /*
1446 * Allocate the socket and allow the family to set things up. if
1447 * the protocol is 0, the family is instructed to select an appropriate
1448 * default.
1449 */
1450 sock = sock_alloc();
1451 if (!sock) {
1452 net_warn_ratelimited("socket: no more sockets\n");
1453 return -ENFILE; /* Not exactly a match, but its the
1454 closest posix thing */
1455 }
1456
1457 sock->type = type;
1458
1459 #ifdef CONFIG_MODULES
1460 /* Attempt to load a protocol module if the find failed.
1461 *
1462 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1463 * requested real, full-featured networking support upon configuration.
1464 * Otherwise module support will break!
1465 */
1466 if (rcu_access_pointer(net_families[family]) == NULL)
1467 request_module("net-pf-%d", family);
1468 #endif
1469
1470 rcu_read_lock();
1471 pf = rcu_dereference(net_families[family]);
1472 err = -EAFNOSUPPORT;
1473 if (!pf)
1474 goto out_release;
1475
1476 /*
1477 * We will call the ->create function, that possibly is in a loadable
1478 * module, so we have to bump that loadable module refcnt first.
1479 */
1480 if (!try_module_get(pf->owner))
1481 goto out_release;
1482
1483 /* Now protected by module ref count */
1484 rcu_read_unlock();
1485
1486 err = pf->create(net, sock, protocol, kern);
1487 if (err < 0)
1488 goto out_module_put;
1489
1490 /*
1491 * Now to bump the refcnt of the [loadable] module that owns this
1492 * socket at sock_release time we decrement its refcnt.
1493 */
1494 if (!try_module_get(sock->ops->owner))
1495 goto out_module_busy;
1496
1497 /*
1498 * Now that we're done with the ->create function, the [loadable]
1499 * module can have its refcnt decremented
1500 */
1501 module_put(pf->owner);
1502 err = security_socket_post_create(sock, family, type, protocol, kern);
1503 if (err)
1504 goto out_sock_release;
1505 *res = sock;
1506
1507 return 0;
1508
1509 out_module_busy:
1510 err = -EAFNOSUPPORT;
1511 out_module_put:
1512 sock->ops = NULL;
1513 module_put(pf->owner);
1514 out_sock_release:
1515 sock_release(sock);
1516 return err;
1517
1518 out_release:
1519 rcu_read_unlock();
1520 goto out_sock_release;
1521 }
1522 EXPORT_SYMBOL(__sock_create);
1523
1524 /**
1525 * sock_create - creates a socket
1526 * @family: protocol family (AF_INET, ...)
1527 * @type: communication type (SOCK_STREAM, ...)
1528 * @protocol: protocol (0, ...)
1529 * @res: new socket
1530 *
1531 * A wrapper around __sock_create().
1532 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1533 */
1534
sock_create(int family,int type,int protocol,struct socket ** res)1535 int sock_create(int family, int type, int protocol, struct socket **res)
1536 {
1537 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1538 }
1539 EXPORT_SYMBOL(sock_create);
1540
1541 /**
1542 * sock_create_kern - creates a socket (kernel space)
1543 * @net: net namespace
1544 * @family: protocol family (AF_INET, ...)
1545 * @type: communication type (SOCK_STREAM, ...)
1546 * @protocol: protocol (0, ...)
1547 * @res: new socket
1548 *
1549 * A wrapper around __sock_create().
1550 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1551 */
1552
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1553 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1554 {
1555 return __sock_create(net, family, type, protocol, res, 1);
1556 }
1557 EXPORT_SYMBOL(sock_create_kern);
1558
__sys_socket(int family,int type,int protocol)1559 int __sys_socket(int family, int type, int protocol)
1560 {
1561 int retval;
1562 struct socket *sock;
1563 int flags;
1564
1565 /* Check the SOCK_* constants for consistency. */
1566 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1567 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1568 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1569 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1570
1571 flags = type & ~SOCK_TYPE_MASK;
1572 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1573 return -EINVAL;
1574 type &= SOCK_TYPE_MASK;
1575
1576 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1577 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1578
1579 retval = sock_create(family, type, protocol, &sock);
1580 if (retval < 0)
1581 return retval;
1582
1583 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1584 }
1585
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1586 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1587 {
1588 return __sys_socket(family, type, protocol);
1589 }
1590
1591 /*
1592 * Create a pair of connected sockets.
1593 */
1594
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1595 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1596 {
1597 struct socket *sock1, *sock2;
1598 int fd1, fd2, err;
1599 struct file *newfile1, *newfile2;
1600 int flags;
1601
1602 flags = type & ~SOCK_TYPE_MASK;
1603 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1604 return -EINVAL;
1605 type &= SOCK_TYPE_MASK;
1606
1607 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1608 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1609
1610 /*
1611 * reserve descriptors and make sure we won't fail
1612 * to return them to userland.
1613 */
1614 fd1 = get_unused_fd_flags(flags);
1615 if (unlikely(fd1 < 0))
1616 return fd1;
1617
1618 fd2 = get_unused_fd_flags(flags);
1619 if (unlikely(fd2 < 0)) {
1620 put_unused_fd(fd1);
1621 return fd2;
1622 }
1623
1624 err = put_user(fd1, &usockvec[0]);
1625 if (err)
1626 goto out;
1627
1628 err = put_user(fd2, &usockvec[1]);
1629 if (err)
1630 goto out;
1631
1632 /*
1633 * Obtain the first socket and check if the underlying protocol
1634 * supports the socketpair call.
1635 */
1636
1637 err = sock_create(family, type, protocol, &sock1);
1638 if (unlikely(err < 0))
1639 goto out;
1640
1641 err = sock_create(family, type, protocol, &sock2);
1642 if (unlikely(err < 0)) {
1643 sock_release(sock1);
1644 goto out;
1645 }
1646
1647 err = security_socket_socketpair(sock1, sock2);
1648 if (unlikely(err)) {
1649 sock_release(sock2);
1650 sock_release(sock1);
1651 goto out;
1652 }
1653
1654 err = sock1->ops->socketpair(sock1, sock2);
1655 if (unlikely(err < 0)) {
1656 sock_release(sock2);
1657 sock_release(sock1);
1658 goto out;
1659 }
1660
1661 newfile1 = sock_alloc_file(sock1, flags, NULL);
1662 if (IS_ERR(newfile1)) {
1663 err = PTR_ERR(newfile1);
1664 sock_release(sock2);
1665 goto out;
1666 }
1667
1668 newfile2 = sock_alloc_file(sock2, flags, NULL);
1669 if (IS_ERR(newfile2)) {
1670 err = PTR_ERR(newfile2);
1671 fput(newfile1);
1672 goto out;
1673 }
1674
1675 audit_fd_pair(fd1, fd2);
1676
1677 fd_install(fd1, newfile1);
1678 fd_install(fd2, newfile2);
1679 return 0;
1680
1681 out:
1682 put_unused_fd(fd2);
1683 put_unused_fd(fd1);
1684 return err;
1685 }
1686
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1687 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1688 int __user *, usockvec)
1689 {
1690 return __sys_socketpair(family, type, protocol, usockvec);
1691 }
1692
1693 /*
1694 * Bind a name to a socket. Nothing much to do here since it's
1695 * the protocol's responsibility to handle the local address.
1696 *
1697 * We move the socket address to kernel space before we call
1698 * the protocol layer (having also checked the address is ok).
1699 */
1700
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1701 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1702 {
1703 struct socket *sock;
1704 struct sockaddr_storage address;
1705 int err, fput_needed;
1706
1707 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708 if (sock) {
1709 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1710 if (!err) {
1711 err = security_socket_bind(sock,
1712 (struct sockaddr *)&address,
1713 addrlen);
1714 if (!err)
1715 err = sock->ops->bind(sock,
1716 (struct sockaddr *)
1717 &address, addrlen);
1718 }
1719 fput_light(sock->file, fput_needed);
1720 }
1721 return err;
1722 }
1723
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1724 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1725 {
1726 return __sys_bind(fd, umyaddr, addrlen);
1727 }
1728
1729 /*
1730 * Perform a listen. Basically, we allow the protocol to do anything
1731 * necessary for a listen, and if that works, we mark the socket as
1732 * ready for listening.
1733 */
1734
__sys_listen(int fd,int backlog)1735 int __sys_listen(int fd, int backlog)
1736 {
1737 struct socket *sock;
1738 int err, fput_needed;
1739 int somaxconn;
1740
1741 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1742 if (sock) {
1743 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1744 if ((unsigned int)backlog > somaxconn)
1745 backlog = somaxconn;
1746
1747 err = security_socket_listen(sock, backlog);
1748 if (!err)
1749 err = sock->ops->listen(sock, backlog);
1750
1751 fput_light(sock->file, fput_needed);
1752 }
1753 return err;
1754 }
1755
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1756 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1757 {
1758 return __sys_listen(fd, backlog);
1759 }
1760
do_accept(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1761 struct file *do_accept(struct file *file, unsigned file_flags,
1762 struct sockaddr __user *upeer_sockaddr,
1763 int __user *upeer_addrlen, int flags)
1764 {
1765 struct socket *sock, *newsock;
1766 struct file *newfile;
1767 int err, len;
1768 struct sockaddr_storage address;
1769
1770 sock = sock_from_file(file);
1771 if (!sock)
1772 return ERR_PTR(-ENOTSOCK);
1773
1774 newsock = sock_alloc();
1775 if (!newsock)
1776 return ERR_PTR(-ENFILE);
1777
1778 newsock->type = sock->type;
1779 newsock->ops = sock->ops;
1780
1781 /*
1782 * We don't need try_module_get here, as the listening socket (sock)
1783 * has the protocol module (sock->ops->owner) held.
1784 */
1785 __module_get(newsock->ops->owner);
1786
1787 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1788 if (IS_ERR(newfile))
1789 return newfile;
1790
1791 err = security_socket_accept(sock, newsock);
1792 if (err)
1793 goto out_fd;
1794
1795 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1796 false);
1797 if (err < 0)
1798 goto out_fd;
1799
1800 if (upeer_sockaddr) {
1801 len = newsock->ops->getname(newsock,
1802 (struct sockaddr *)&address, 2);
1803 if (len < 0) {
1804 err = -ECONNABORTED;
1805 goto out_fd;
1806 }
1807 err = move_addr_to_user(&address,
1808 len, upeer_sockaddr, upeer_addrlen);
1809 if (err < 0)
1810 goto out_fd;
1811 }
1812
1813 /* File flags are not inherited via accept() unlike another OSes. */
1814 return newfile;
1815 out_fd:
1816 fput(newfile);
1817 return ERR_PTR(err);
1818 }
1819
__sys_accept4_file(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags,unsigned long nofile)1820 int __sys_accept4_file(struct file *file, unsigned file_flags,
1821 struct sockaddr __user *upeer_sockaddr,
1822 int __user *upeer_addrlen, int flags,
1823 unsigned long nofile)
1824 {
1825 struct file *newfile;
1826 int newfd;
1827
1828 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1829 return -EINVAL;
1830
1831 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1832 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1833
1834 newfd = __get_unused_fd_flags(flags, nofile);
1835 if (unlikely(newfd < 0))
1836 return newfd;
1837
1838 newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1839 flags);
1840 if (IS_ERR(newfile)) {
1841 put_unused_fd(newfd);
1842 return PTR_ERR(newfile);
1843 }
1844 fd_install(newfd, newfile);
1845 return newfd;
1846 }
1847
1848 /*
1849 * For accept, we attempt to create a new socket, set up the link
1850 * with the client, wake up the client, then return the new
1851 * connected fd. We collect the address of the connector in kernel
1852 * space and move it to user at the very end. This is unclean because
1853 * we open the socket then return an error.
1854 *
1855 * 1003.1g adds the ability to recvmsg() to query connection pending
1856 * status to recvmsg. We need to add that support in a way thats
1857 * clean when we restructure accept also.
1858 */
1859
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1860 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1861 int __user *upeer_addrlen, int flags)
1862 {
1863 int ret = -EBADF;
1864 struct fd f;
1865
1866 f = fdget(fd);
1867 if (f.file) {
1868 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1869 upeer_addrlen, flags,
1870 rlimit(RLIMIT_NOFILE));
1871 fdput(f);
1872 }
1873
1874 return ret;
1875 }
1876
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1877 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1878 int __user *, upeer_addrlen, int, flags)
1879 {
1880 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1881 }
1882
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1883 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1884 int __user *, upeer_addrlen)
1885 {
1886 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1887 }
1888
1889 /*
1890 * Attempt to connect to a socket with the server address. The address
1891 * is in user space so we verify it is OK and move it to kernel space.
1892 *
1893 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1894 * break bindings
1895 *
1896 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1897 * other SEQPACKET protocols that take time to connect() as it doesn't
1898 * include the -EINPROGRESS status for such sockets.
1899 */
1900
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)1901 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1902 int addrlen, int file_flags)
1903 {
1904 struct socket *sock;
1905 int err;
1906
1907 sock = sock_from_file(file);
1908 if (!sock) {
1909 err = -ENOTSOCK;
1910 goto out;
1911 }
1912
1913 err =
1914 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1915 if (err)
1916 goto out;
1917
1918 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1919 sock->file->f_flags | file_flags);
1920 out:
1921 return err;
1922 }
1923
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)1924 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1925 {
1926 int ret = -EBADF;
1927 struct fd f;
1928
1929 f = fdget(fd);
1930 if (f.file) {
1931 struct sockaddr_storage address;
1932
1933 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1934 if (!ret)
1935 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1936 fdput(f);
1937 }
1938
1939 return ret;
1940 }
1941
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1942 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1943 int, addrlen)
1944 {
1945 return __sys_connect(fd, uservaddr, addrlen);
1946 }
1947
1948 /*
1949 * Get the local address ('name') of a socket object. Move the obtained
1950 * name to user space.
1951 */
1952
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1953 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1954 int __user *usockaddr_len)
1955 {
1956 struct socket *sock;
1957 struct sockaddr_storage address;
1958 int err, fput_needed;
1959
1960 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1961 if (!sock)
1962 goto out;
1963
1964 err = security_socket_getsockname(sock);
1965 if (err)
1966 goto out_put;
1967
1968 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1969 if (err < 0)
1970 goto out_put;
1971 /* "err" is actually length in this case */
1972 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1973
1974 out_put:
1975 fput_light(sock->file, fput_needed);
1976 out:
1977 return err;
1978 }
1979
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1980 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1981 int __user *, usockaddr_len)
1982 {
1983 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1984 }
1985
1986 /*
1987 * Get the remote address ('name') of a socket object. Move the obtained
1988 * name to user space.
1989 */
1990
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1991 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1992 int __user *usockaddr_len)
1993 {
1994 struct socket *sock;
1995 struct sockaddr_storage address;
1996 int err, fput_needed;
1997
1998 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1999 if (sock != NULL) {
2000 err = security_socket_getpeername(sock);
2001 if (err) {
2002 fput_light(sock->file, fput_needed);
2003 return err;
2004 }
2005
2006 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2007 if (err >= 0)
2008 /* "err" is actually length in this case */
2009 err = move_addr_to_user(&address, err, usockaddr,
2010 usockaddr_len);
2011 fput_light(sock->file, fput_needed);
2012 }
2013 return err;
2014 }
2015
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2016 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2017 int __user *, usockaddr_len)
2018 {
2019 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2020 }
2021
2022 /*
2023 * Send a datagram to a given address. We move the address into kernel
2024 * space and check the user space data area is readable before invoking
2025 * the protocol.
2026 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2027 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2028 struct sockaddr __user *addr, int addr_len)
2029 {
2030 struct socket *sock;
2031 struct sockaddr_storage address;
2032 int err;
2033 struct msghdr msg;
2034 struct iovec iov;
2035 int fput_needed;
2036
2037 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2038 if (unlikely(err))
2039 return err;
2040 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2041 if (!sock)
2042 goto out;
2043
2044 msg.msg_name = NULL;
2045 msg.msg_control = NULL;
2046 msg.msg_controllen = 0;
2047 msg.msg_namelen = 0;
2048 if (addr) {
2049 err = move_addr_to_kernel(addr, addr_len, &address);
2050 if (err < 0)
2051 goto out_put;
2052 msg.msg_name = (struct sockaddr *)&address;
2053 msg.msg_namelen = addr_len;
2054 }
2055 if (sock->file->f_flags & O_NONBLOCK)
2056 flags |= MSG_DONTWAIT;
2057 msg.msg_flags = flags;
2058 err = __sock_sendmsg(sock, &msg);
2059
2060 out_put:
2061 fput_light(sock->file, fput_needed);
2062 out:
2063 return err;
2064 }
2065
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2066 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2067 unsigned int, flags, struct sockaddr __user *, addr,
2068 int, addr_len)
2069 {
2070 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2071 }
2072
2073 /*
2074 * Send a datagram down a socket.
2075 */
2076
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2077 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2078 unsigned int, flags)
2079 {
2080 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2081 }
2082
2083 /*
2084 * Receive a frame from the socket and optionally record the address of the
2085 * sender. We verify the buffers are writable and if needed move the
2086 * sender address from kernel to user space.
2087 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2088 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2089 struct sockaddr __user *addr, int __user *addr_len)
2090 {
2091 struct socket *sock;
2092 struct iovec iov;
2093 struct msghdr msg;
2094 struct sockaddr_storage address;
2095 int err, err2;
2096 int fput_needed;
2097
2098 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2099 if (unlikely(err))
2100 return err;
2101 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2102 if (!sock)
2103 goto out;
2104
2105 msg.msg_control = NULL;
2106 msg.msg_controllen = 0;
2107 /* Save some cycles and don't copy the address if not needed */
2108 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2109 /* We assume all kernel code knows the size of sockaddr_storage */
2110 msg.msg_namelen = 0;
2111 msg.msg_iocb = NULL;
2112 msg.msg_flags = 0;
2113 if (sock->file->f_flags & O_NONBLOCK)
2114 flags |= MSG_DONTWAIT;
2115 err = sock_recvmsg(sock, &msg, flags);
2116
2117 if (err >= 0 && addr != NULL) {
2118 err2 = move_addr_to_user(&address,
2119 msg.msg_namelen, addr, addr_len);
2120 if (err2 < 0)
2121 err = err2;
2122 }
2123
2124 fput_light(sock->file, fput_needed);
2125 out:
2126 return err;
2127 }
2128
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2129 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2130 unsigned int, flags, struct sockaddr __user *, addr,
2131 int __user *, addr_len)
2132 {
2133 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2134 }
2135
2136 /*
2137 * Receive a datagram from a socket.
2138 */
2139
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2140 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2141 unsigned int, flags)
2142 {
2143 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2144 }
2145
sock_use_custom_sol_socket(const struct socket * sock)2146 static bool sock_use_custom_sol_socket(const struct socket *sock)
2147 {
2148 const struct sock *sk = sock->sk;
2149
2150 /* Use sock->ops->setsockopt() for MPTCP */
2151 return IS_ENABLED(CONFIG_MPTCP) &&
2152 sk->sk_protocol == IPPROTO_MPTCP &&
2153 sk->sk_type == SOCK_STREAM &&
2154 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2155 }
2156
2157 /*
2158 * Set a socket option. Because we don't know the option lengths we have
2159 * to pass the user mode parameter for the protocols to sort out.
2160 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2161 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2162 int optlen)
2163 {
2164 sockptr_t optval = USER_SOCKPTR(user_optval);
2165 char *kernel_optval = NULL;
2166 int err, fput_needed;
2167 struct socket *sock;
2168
2169 if (optlen < 0)
2170 return -EINVAL;
2171
2172 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2173 if (!sock)
2174 return err;
2175
2176 err = security_socket_setsockopt(sock, level, optname);
2177 if (err)
2178 goto out_put;
2179
2180 if (!in_compat_syscall())
2181 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2182 user_optval, &optlen,
2183 &kernel_optval);
2184 if (err < 0)
2185 goto out_put;
2186 if (err > 0) {
2187 err = 0;
2188 goto out_put;
2189 }
2190
2191 if (kernel_optval)
2192 optval = KERNEL_SOCKPTR(kernel_optval);
2193 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2194 err = sock_setsockopt(sock, level, optname, optval, optlen);
2195 else if (unlikely(!sock->ops->setsockopt))
2196 err = -EOPNOTSUPP;
2197 else
2198 err = sock->ops->setsockopt(sock, level, optname, optval,
2199 optlen);
2200 kfree(kernel_optval);
2201 out_put:
2202 fput_light(sock->file, fput_needed);
2203 return err;
2204 }
2205
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2206 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2207 char __user *, optval, int, optlen)
2208 {
2209 return __sys_setsockopt(fd, level, optname, optval, optlen);
2210 }
2211
2212 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2213 int optname));
2214
2215 /*
2216 * Get a socket option. Because we don't know the option lengths we have
2217 * to pass a user mode parameter for the protocols to sort out.
2218 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2219 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2220 int __user *optlen)
2221 {
2222 int err, fput_needed;
2223 struct socket *sock;
2224 int max_optlen;
2225
2226 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227 if (!sock)
2228 return err;
2229
2230 err = security_socket_getsockopt(sock, level, optname);
2231 if (err)
2232 goto out_put;
2233
2234 if (!in_compat_syscall())
2235 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2236
2237 if (level == SOL_SOCKET)
2238 err = sock_getsockopt(sock, level, optname, optval, optlen);
2239 else if (unlikely(!sock->ops->getsockopt))
2240 err = -EOPNOTSUPP;
2241 else
2242 err = sock->ops->getsockopt(sock, level, optname, optval,
2243 optlen);
2244
2245 if (!in_compat_syscall())
2246 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2247 optval, optlen, max_optlen,
2248 err);
2249 out_put:
2250 fput_light(sock->file, fput_needed);
2251 return err;
2252 }
2253
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2254 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2255 char __user *, optval, int __user *, optlen)
2256 {
2257 return __sys_getsockopt(fd, level, optname, optval, optlen);
2258 }
2259
2260 /*
2261 * Shutdown a socket.
2262 */
2263
__sys_shutdown_sock(struct socket * sock,int how)2264 int __sys_shutdown_sock(struct socket *sock, int how)
2265 {
2266 int err;
2267
2268 err = security_socket_shutdown(sock, how);
2269 if (!err)
2270 err = sock->ops->shutdown(sock, how);
2271
2272 return err;
2273 }
2274
__sys_shutdown(int fd,int how)2275 int __sys_shutdown(int fd, int how)
2276 {
2277 int err, fput_needed;
2278 struct socket *sock;
2279
2280 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2281 if (sock != NULL) {
2282 err = __sys_shutdown_sock(sock, how);
2283 fput_light(sock->file, fput_needed);
2284 }
2285 return err;
2286 }
2287
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2288 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2289 {
2290 return __sys_shutdown(fd, how);
2291 }
2292
2293 /* A couple of helpful macros for getting the address of the 32/64 bit
2294 * fields which are the same type (int / unsigned) on our platforms.
2295 */
2296 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2297 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2298 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2299
2300 struct used_address {
2301 struct sockaddr_storage name;
2302 unsigned int name_len;
2303 };
2304
__copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec __user ** uiov,size_t * nsegs)2305 int __copy_msghdr_from_user(struct msghdr *kmsg,
2306 struct user_msghdr __user *umsg,
2307 struct sockaddr __user **save_addr,
2308 struct iovec __user **uiov, size_t *nsegs)
2309 {
2310 struct user_msghdr msg;
2311 ssize_t err;
2312
2313 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2314 return -EFAULT;
2315
2316 kmsg->msg_control_is_user = true;
2317 kmsg->msg_control_user = msg.msg_control;
2318 kmsg->msg_controllen = msg.msg_controllen;
2319 kmsg->msg_flags = msg.msg_flags;
2320
2321 kmsg->msg_namelen = msg.msg_namelen;
2322 if (!msg.msg_name)
2323 kmsg->msg_namelen = 0;
2324
2325 if (kmsg->msg_namelen < 0)
2326 return -EINVAL;
2327
2328 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2329 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2330
2331 if (save_addr)
2332 *save_addr = msg.msg_name;
2333
2334 if (msg.msg_name && kmsg->msg_namelen) {
2335 if (!save_addr) {
2336 err = move_addr_to_kernel(msg.msg_name,
2337 kmsg->msg_namelen,
2338 kmsg->msg_name);
2339 if (err < 0)
2340 return err;
2341 }
2342 } else {
2343 kmsg->msg_name = NULL;
2344 kmsg->msg_namelen = 0;
2345 }
2346
2347 if (msg.msg_iovlen > UIO_MAXIOV)
2348 return -EMSGSIZE;
2349
2350 kmsg->msg_iocb = NULL;
2351 *uiov = msg.msg_iov;
2352 *nsegs = msg.msg_iovlen;
2353 return 0;
2354 }
2355
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2356 static int copy_msghdr_from_user(struct msghdr *kmsg,
2357 struct user_msghdr __user *umsg,
2358 struct sockaddr __user **save_addr,
2359 struct iovec **iov)
2360 {
2361 struct user_msghdr msg;
2362 ssize_t err;
2363
2364 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2365 &msg.msg_iovlen);
2366 if (err)
2367 return err;
2368
2369 err = import_iovec(save_addr ? READ : WRITE,
2370 msg.msg_iov, msg.msg_iovlen,
2371 UIO_FASTIOV, iov, &kmsg->msg_iter);
2372 return err < 0 ? err : 0;
2373 }
2374
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2375 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2376 unsigned int flags, struct used_address *used_address,
2377 unsigned int allowed_msghdr_flags)
2378 {
2379 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2380 __aligned(sizeof(__kernel_size_t));
2381 /* 20 is size of ipv6_pktinfo */
2382 unsigned char *ctl_buf = ctl;
2383 int ctl_len;
2384 ssize_t err;
2385
2386 err = -ENOBUFS;
2387
2388 if (msg_sys->msg_controllen > INT_MAX)
2389 goto out;
2390 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2391 ctl_len = msg_sys->msg_controllen;
2392 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2393 err =
2394 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2395 sizeof(ctl));
2396 if (err)
2397 goto out;
2398 ctl_buf = msg_sys->msg_control;
2399 ctl_len = msg_sys->msg_controllen;
2400 } else if (ctl_len) {
2401 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2402 CMSG_ALIGN(sizeof(struct cmsghdr)));
2403 if (ctl_len > sizeof(ctl)) {
2404 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2405 if (ctl_buf == NULL)
2406 goto out;
2407 }
2408 err = -EFAULT;
2409 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2410 goto out_freectl;
2411 msg_sys->msg_control = ctl_buf;
2412 msg_sys->msg_control_is_user = false;
2413 }
2414 msg_sys->msg_flags = flags;
2415
2416 if (sock->file->f_flags & O_NONBLOCK)
2417 msg_sys->msg_flags |= MSG_DONTWAIT;
2418 /*
2419 * If this is sendmmsg() and current destination address is same as
2420 * previously succeeded address, omit asking LSM's decision.
2421 * used_address->name_len is initialized to UINT_MAX so that the first
2422 * destination address never matches.
2423 */
2424 if (used_address && msg_sys->msg_name &&
2425 used_address->name_len == msg_sys->msg_namelen &&
2426 !memcmp(&used_address->name, msg_sys->msg_name,
2427 used_address->name_len)) {
2428 err = sock_sendmsg_nosec(sock, msg_sys);
2429 goto out_freectl;
2430 }
2431 err = __sock_sendmsg(sock, msg_sys);
2432 /*
2433 * If this is sendmmsg() and sending to current destination address was
2434 * successful, remember it.
2435 */
2436 if (used_address && err >= 0) {
2437 used_address->name_len = msg_sys->msg_namelen;
2438 if (msg_sys->msg_name)
2439 memcpy(&used_address->name, msg_sys->msg_name,
2440 used_address->name_len);
2441 }
2442
2443 out_freectl:
2444 if (ctl_buf != ctl)
2445 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2446 out:
2447 return err;
2448 }
2449
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2450 int sendmsg_copy_msghdr(struct msghdr *msg,
2451 struct user_msghdr __user *umsg, unsigned flags,
2452 struct iovec **iov)
2453 {
2454 int err;
2455
2456 if (flags & MSG_CMSG_COMPAT) {
2457 struct compat_msghdr __user *msg_compat;
2458
2459 msg_compat = (struct compat_msghdr __user *) umsg;
2460 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2461 } else {
2462 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2463 }
2464 if (err < 0)
2465 return err;
2466
2467 return 0;
2468 }
2469
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2470 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2471 struct msghdr *msg_sys, unsigned int flags,
2472 struct used_address *used_address,
2473 unsigned int allowed_msghdr_flags)
2474 {
2475 struct sockaddr_storage address;
2476 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2477 ssize_t err;
2478
2479 msg_sys->msg_name = &address;
2480
2481 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2482 if (err < 0)
2483 return err;
2484
2485 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2486 allowed_msghdr_flags);
2487 kfree(iov);
2488 return err;
2489 }
2490
2491 /*
2492 * BSD sendmsg interface
2493 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2494 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2495 unsigned int flags)
2496 {
2497 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2498 }
2499
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2500 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2501 bool forbid_cmsg_compat)
2502 {
2503 int fput_needed, err;
2504 struct msghdr msg_sys;
2505 struct socket *sock;
2506
2507 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2508 return -EINVAL;
2509
2510 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2511 if (!sock)
2512 goto out;
2513
2514 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2515
2516 fput_light(sock->file, fput_needed);
2517 out:
2518 return err;
2519 }
2520
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2521 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2522 {
2523 return __sys_sendmsg(fd, msg, flags, true);
2524 }
2525
2526 /*
2527 * Linux sendmmsg interface
2528 */
2529
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2530 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2531 unsigned int flags, bool forbid_cmsg_compat)
2532 {
2533 int fput_needed, err, datagrams;
2534 struct socket *sock;
2535 struct mmsghdr __user *entry;
2536 struct compat_mmsghdr __user *compat_entry;
2537 struct msghdr msg_sys;
2538 struct used_address used_address;
2539 unsigned int oflags = flags;
2540
2541 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2542 return -EINVAL;
2543
2544 if (vlen > UIO_MAXIOV)
2545 vlen = UIO_MAXIOV;
2546
2547 datagrams = 0;
2548
2549 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2550 if (!sock)
2551 return err;
2552
2553 used_address.name_len = UINT_MAX;
2554 entry = mmsg;
2555 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2556 err = 0;
2557 flags |= MSG_BATCH;
2558
2559 while (datagrams < vlen) {
2560 if (datagrams == vlen - 1)
2561 flags = oflags;
2562
2563 if (MSG_CMSG_COMPAT & flags) {
2564 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2565 &msg_sys, flags, &used_address, MSG_EOR);
2566 if (err < 0)
2567 break;
2568 err = __put_user(err, &compat_entry->msg_len);
2569 ++compat_entry;
2570 } else {
2571 err = ___sys_sendmsg(sock,
2572 (struct user_msghdr __user *)entry,
2573 &msg_sys, flags, &used_address, MSG_EOR);
2574 if (err < 0)
2575 break;
2576 err = put_user(err, &entry->msg_len);
2577 ++entry;
2578 }
2579
2580 if (err)
2581 break;
2582 ++datagrams;
2583 if (msg_data_left(&msg_sys))
2584 break;
2585 cond_resched();
2586 }
2587
2588 fput_light(sock->file, fput_needed);
2589
2590 /* We only return an error if no datagrams were able to be sent */
2591 if (datagrams != 0)
2592 return datagrams;
2593
2594 return err;
2595 }
2596
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2597 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2598 unsigned int, vlen, unsigned int, flags)
2599 {
2600 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2601 }
2602
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2603 int recvmsg_copy_msghdr(struct msghdr *msg,
2604 struct user_msghdr __user *umsg, unsigned flags,
2605 struct sockaddr __user **uaddr,
2606 struct iovec **iov)
2607 {
2608 ssize_t err;
2609
2610 if (MSG_CMSG_COMPAT & flags) {
2611 struct compat_msghdr __user *msg_compat;
2612
2613 msg_compat = (struct compat_msghdr __user *) umsg;
2614 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2615 } else {
2616 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2617 }
2618 if (err < 0)
2619 return err;
2620
2621 return 0;
2622 }
2623
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2624 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2625 struct user_msghdr __user *msg,
2626 struct sockaddr __user *uaddr,
2627 unsigned int flags, int nosec)
2628 {
2629 struct compat_msghdr __user *msg_compat =
2630 (struct compat_msghdr __user *) msg;
2631 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2632 struct sockaddr_storage addr;
2633 unsigned long cmsg_ptr;
2634 int len;
2635 ssize_t err;
2636
2637 msg_sys->msg_name = &addr;
2638 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2639 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2640
2641 /* We assume all kernel code knows the size of sockaddr_storage */
2642 msg_sys->msg_namelen = 0;
2643
2644 if (sock->file->f_flags & O_NONBLOCK)
2645 flags |= MSG_DONTWAIT;
2646
2647 if (unlikely(nosec))
2648 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2649 else
2650 err = sock_recvmsg(sock, msg_sys, flags);
2651
2652 if (err < 0)
2653 goto out;
2654 len = err;
2655
2656 if (uaddr != NULL) {
2657 err = move_addr_to_user(&addr,
2658 msg_sys->msg_namelen, uaddr,
2659 uaddr_len);
2660 if (err < 0)
2661 goto out;
2662 }
2663 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2664 COMPAT_FLAGS(msg));
2665 if (err)
2666 goto out;
2667 if (MSG_CMSG_COMPAT & flags)
2668 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2669 &msg_compat->msg_controllen);
2670 else
2671 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2672 &msg->msg_controllen);
2673 if (err)
2674 goto out;
2675 err = len;
2676 out:
2677 return err;
2678 }
2679
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2680 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2681 struct msghdr *msg_sys, unsigned int flags, int nosec)
2682 {
2683 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2684 /* user mode address pointers */
2685 struct sockaddr __user *uaddr;
2686 ssize_t err;
2687
2688 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2689 if (err < 0)
2690 return err;
2691
2692 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2693 kfree(iov);
2694 return err;
2695 }
2696
2697 /*
2698 * BSD recvmsg interface
2699 */
2700
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2701 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2702 struct user_msghdr __user *umsg,
2703 struct sockaddr __user *uaddr, unsigned int flags)
2704 {
2705 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2706 }
2707
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2708 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2709 bool forbid_cmsg_compat)
2710 {
2711 int fput_needed, err;
2712 struct msghdr msg_sys;
2713 struct socket *sock;
2714
2715 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2716 return -EINVAL;
2717
2718 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2719 if (!sock)
2720 goto out;
2721
2722 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2723
2724 fput_light(sock->file, fput_needed);
2725 out:
2726 return err;
2727 }
2728
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2729 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2730 unsigned int, flags)
2731 {
2732 return __sys_recvmsg(fd, msg, flags, true);
2733 }
2734
2735 /*
2736 * Linux recvmmsg interface
2737 */
2738
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2739 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2740 unsigned int vlen, unsigned int flags,
2741 struct timespec64 *timeout)
2742 {
2743 int fput_needed, err, datagrams;
2744 struct socket *sock;
2745 struct mmsghdr __user *entry;
2746 struct compat_mmsghdr __user *compat_entry;
2747 struct msghdr msg_sys;
2748 struct timespec64 end_time;
2749 struct timespec64 timeout64;
2750
2751 if (timeout &&
2752 poll_select_set_timeout(&end_time, timeout->tv_sec,
2753 timeout->tv_nsec))
2754 return -EINVAL;
2755
2756 datagrams = 0;
2757
2758 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2759 if (!sock)
2760 return err;
2761
2762 if (likely(!(flags & MSG_ERRQUEUE))) {
2763 err = sock_error(sock->sk);
2764 if (err) {
2765 datagrams = err;
2766 goto out_put;
2767 }
2768 }
2769
2770 entry = mmsg;
2771 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2772
2773 while (datagrams < vlen) {
2774 /*
2775 * No need to ask LSM for more than the first datagram.
2776 */
2777 if (MSG_CMSG_COMPAT & flags) {
2778 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2779 &msg_sys, flags & ~MSG_WAITFORONE,
2780 datagrams);
2781 if (err < 0)
2782 break;
2783 err = __put_user(err, &compat_entry->msg_len);
2784 ++compat_entry;
2785 } else {
2786 err = ___sys_recvmsg(sock,
2787 (struct user_msghdr __user *)entry,
2788 &msg_sys, flags & ~MSG_WAITFORONE,
2789 datagrams);
2790 if (err < 0)
2791 break;
2792 err = put_user(err, &entry->msg_len);
2793 ++entry;
2794 }
2795
2796 if (err)
2797 break;
2798 ++datagrams;
2799
2800 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2801 if (flags & MSG_WAITFORONE)
2802 flags |= MSG_DONTWAIT;
2803
2804 if (timeout) {
2805 ktime_get_ts64(&timeout64);
2806 *timeout = timespec64_sub(end_time, timeout64);
2807 if (timeout->tv_sec < 0) {
2808 timeout->tv_sec = timeout->tv_nsec = 0;
2809 break;
2810 }
2811
2812 /* Timeout, return less than vlen datagrams */
2813 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2814 break;
2815 }
2816
2817 /* Out of band data, return right away */
2818 if (msg_sys.msg_flags & MSG_OOB)
2819 break;
2820 cond_resched();
2821 }
2822
2823 if (err == 0)
2824 goto out_put;
2825
2826 if (datagrams == 0) {
2827 datagrams = err;
2828 goto out_put;
2829 }
2830
2831 /*
2832 * We may return less entries than requested (vlen) if the
2833 * sock is non block and there aren't enough datagrams...
2834 */
2835 if (err != -EAGAIN) {
2836 /*
2837 * ... or if recvmsg returns an error after we
2838 * received some datagrams, where we record the
2839 * error to return on the next call or if the
2840 * app asks about it using getsockopt(SO_ERROR).
2841 */
2842 WRITE_ONCE(sock->sk->sk_err, -err);
2843 }
2844 out_put:
2845 fput_light(sock->file, fput_needed);
2846
2847 return datagrams;
2848 }
2849
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2850 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2851 unsigned int vlen, unsigned int flags,
2852 struct __kernel_timespec __user *timeout,
2853 struct old_timespec32 __user *timeout32)
2854 {
2855 int datagrams;
2856 struct timespec64 timeout_sys;
2857
2858 if (timeout && get_timespec64(&timeout_sys, timeout))
2859 return -EFAULT;
2860
2861 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2862 return -EFAULT;
2863
2864 if (!timeout && !timeout32)
2865 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2866
2867 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2868
2869 if (datagrams <= 0)
2870 return datagrams;
2871
2872 if (timeout && put_timespec64(&timeout_sys, timeout))
2873 datagrams = -EFAULT;
2874
2875 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2876 datagrams = -EFAULT;
2877
2878 return datagrams;
2879 }
2880
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)2881 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2882 unsigned int, vlen, unsigned int, flags,
2883 struct __kernel_timespec __user *, timeout)
2884 {
2885 if (flags & MSG_CMSG_COMPAT)
2886 return -EINVAL;
2887
2888 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2889 }
2890
2891 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)2892 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2893 unsigned int, vlen, unsigned int, flags,
2894 struct old_timespec32 __user *, timeout)
2895 {
2896 if (flags & MSG_CMSG_COMPAT)
2897 return -EINVAL;
2898
2899 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2900 }
2901 #endif
2902
2903 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2904 /* Argument list sizes for sys_socketcall */
2905 #define AL(x) ((x) * sizeof(unsigned long))
2906 static const unsigned char nargs[21] = {
2907 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2908 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2909 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2910 AL(4), AL(5), AL(4)
2911 };
2912
2913 #undef AL
2914
2915 /*
2916 * System call vectors.
2917 *
2918 * Argument checking cleaned up. Saved 20% in size.
2919 * This function doesn't need to set the kernel lock because
2920 * it is set by the callees.
2921 */
2922
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2923 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2924 {
2925 unsigned long a[AUDITSC_ARGS];
2926 unsigned long a0, a1;
2927 int err;
2928 unsigned int len;
2929
2930 if (call < 1 || call > SYS_SENDMMSG)
2931 return -EINVAL;
2932 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2933
2934 len = nargs[call];
2935 if (len > sizeof(a))
2936 return -EINVAL;
2937
2938 /* copy_from_user should be SMP safe. */
2939 if (copy_from_user(a, args, len))
2940 return -EFAULT;
2941
2942 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2943 if (err)
2944 return err;
2945
2946 a0 = a[0];
2947 a1 = a[1];
2948
2949 switch (call) {
2950 case SYS_SOCKET:
2951 err = __sys_socket(a0, a1, a[2]);
2952 break;
2953 case SYS_BIND:
2954 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2955 break;
2956 case SYS_CONNECT:
2957 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2958 break;
2959 case SYS_LISTEN:
2960 err = __sys_listen(a0, a1);
2961 break;
2962 case SYS_ACCEPT:
2963 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2964 (int __user *)a[2], 0);
2965 break;
2966 case SYS_GETSOCKNAME:
2967 err =
2968 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2969 (int __user *)a[2]);
2970 break;
2971 case SYS_GETPEERNAME:
2972 err =
2973 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2974 (int __user *)a[2]);
2975 break;
2976 case SYS_SOCKETPAIR:
2977 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2978 break;
2979 case SYS_SEND:
2980 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2981 NULL, 0);
2982 break;
2983 case SYS_SENDTO:
2984 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2985 (struct sockaddr __user *)a[4], a[5]);
2986 break;
2987 case SYS_RECV:
2988 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2989 NULL, NULL);
2990 break;
2991 case SYS_RECVFROM:
2992 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2993 (struct sockaddr __user *)a[4],
2994 (int __user *)a[5]);
2995 break;
2996 case SYS_SHUTDOWN:
2997 err = __sys_shutdown(a0, a1);
2998 break;
2999 case SYS_SETSOCKOPT:
3000 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3001 a[4]);
3002 break;
3003 case SYS_GETSOCKOPT:
3004 err =
3005 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3006 (int __user *)a[4]);
3007 break;
3008 case SYS_SENDMSG:
3009 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3010 a[2], true);
3011 break;
3012 case SYS_SENDMMSG:
3013 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3014 a[3], true);
3015 break;
3016 case SYS_RECVMSG:
3017 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3018 a[2], true);
3019 break;
3020 case SYS_RECVMMSG:
3021 if (IS_ENABLED(CONFIG_64BIT))
3022 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3023 a[2], a[3],
3024 (struct __kernel_timespec __user *)a[4],
3025 NULL);
3026 else
3027 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3028 a[2], a[3], NULL,
3029 (struct old_timespec32 __user *)a[4]);
3030 break;
3031 case SYS_ACCEPT4:
3032 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3033 (int __user *)a[2], a[3]);
3034 break;
3035 default:
3036 err = -EINVAL;
3037 break;
3038 }
3039 return err;
3040 }
3041
3042 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3043
3044 /**
3045 * sock_register - add a socket protocol handler
3046 * @ops: description of protocol
3047 *
3048 * This function is called by a protocol handler that wants to
3049 * advertise its address family, and have it linked into the
3050 * socket interface. The value ops->family corresponds to the
3051 * socket system call protocol family.
3052 */
sock_register(const struct net_proto_family * ops)3053 int sock_register(const struct net_proto_family *ops)
3054 {
3055 int err;
3056
3057 if (ops->family >= NPROTO) {
3058 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3059 return -ENOBUFS;
3060 }
3061
3062 spin_lock(&net_family_lock);
3063 if (rcu_dereference_protected(net_families[ops->family],
3064 lockdep_is_held(&net_family_lock)))
3065 err = -EEXIST;
3066 else {
3067 rcu_assign_pointer(net_families[ops->family], ops);
3068 err = 0;
3069 }
3070 spin_unlock(&net_family_lock);
3071
3072 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3073 return err;
3074 }
3075 EXPORT_SYMBOL(sock_register);
3076
3077 /**
3078 * sock_unregister - remove a protocol handler
3079 * @family: protocol family to remove
3080 *
3081 * This function is called by a protocol handler that wants to
3082 * remove its address family, and have it unlinked from the
3083 * new socket creation.
3084 *
3085 * If protocol handler is a module, then it can use module reference
3086 * counts to protect against new references. If protocol handler is not
3087 * a module then it needs to provide its own protection in
3088 * the ops->create routine.
3089 */
sock_unregister(int family)3090 void sock_unregister(int family)
3091 {
3092 BUG_ON(family < 0 || family >= NPROTO);
3093
3094 spin_lock(&net_family_lock);
3095 RCU_INIT_POINTER(net_families[family], NULL);
3096 spin_unlock(&net_family_lock);
3097
3098 synchronize_rcu();
3099
3100 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3101 }
3102 EXPORT_SYMBOL(sock_unregister);
3103
sock_is_registered(int family)3104 bool sock_is_registered(int family)
3105 {
3106 return family < NPROTO && rcu_access_pointer(net_families[family]);
3107 }
3108
sock_init(void)3109 static int __init sock_init(void)
3110 {
3111 int err;
3112 /*
3113 * Initialize the network sysctl infrastructure.
3114 */
3115 err = net_sysctl_init();
3116 if (err)
3117 goto out;
3118
3119 /*
3120 * Initialize skbuff SLAB cache
3121 */
3122 skb_init();
3123
3124 /*
3125 * Initialize the protocols module.
3126 */
3127
3128 init_inodecache();
3129
3130 err = register_filesystem(&sock_fs_type);
3131 if (err)
3132 goto out;
3133 sock_mnt = kern_mount(&sock_fs_type);
3134 if (IS_ERR(sock_mnt)) {
3135 err = PTR_ERR(sock_mnt);
3136 goto out_mount;
3137 }
3138
3139 /* The real protocol initialization is performed in later initcalls.
3140 */
3141
3142 #ifdef CONFIG_NETFILTER
3143 err = netfilter_init();
3144 if (err)
3145 goto out;
3146 #endif
3147
3148 ptp_classifier_init();
3149
3150 out:
3151 return err;
3152
3153 out_mount:
3154 unregister_filesystem(&sock_fs_type);
3155 goto out;
3156 }
3157
3158 core_initcall(sock_init); /* early initcall */
3159
3160 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3161 void socket_seq_show(struct seq_file *seq)
3162 {
3163 seq_printf(seq, "sockets: used %d\n",
3164 sock_inuse_get(seq->private));
3165 }
3166 #endif /* CONFIG_PROC_FS */
3167
3168 /* Handle the fact that while struct ifreq has the same *layout* on
3169 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3170 * which are handled elsewhere, it still has different *size* due to
3171 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3172 * resulting in struct ifreq being 32 and 40 bytes respectively).
3173 * As a result, if the struct happens to be at the end of a page and
3174 * the next page isn't readable/writable, we get a fault. To prevent
3175 * that, copy back and forth to the full size.
3176 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3177 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3178 {
3179 if (in_compat_syscall()) {
3180 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3181
3182 memset(ifr, 0, sizeof(*ifr));
3183 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3184 return -EFAULT;
3185
3186 if (ifrdata)
3187 *ifrdata = compat_ptr(ifr32->ifr_data);
3188
3189 return 0;
3190 }
3191
3192 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3193 return -EFAULT;
3194
3195 if (ifrdata)
3196 *ifrdata = ifr->ifr_data;
3197
3198 return 0;
3199 }
3200 EXPORT_SYMBOL(get_user_ifreq);
3201
put_user_ifreq(struct ifreq * ifr,void __user * arg)3202 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3203 {
3204 size_t size = sizeof(*ifr);
3205
3206 if (in_compat_syscall())
3207 size = sizeof(struct compat_ifreq);
3208
3209 if (copy_to_user(arg, ifr, size))
3210 return -EFAULT;
3211
3212 return 0;
3213 }
3214 EXPORT_SYMBOL(put_user_ifreq);
3215
3216 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3217 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3218 {
3219 compat_uptr_t uptr32;
3220 struct ifreq ifr;
3221 void __user *saved;
3222 int err;
3223
3224 if (get_user_ifreq(&ifr, NULL, uifr32))
3225 return -EFAULT;
3226
3227 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3228 return -EFAULT;
3229
3230 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3231 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3232
3233 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3234 if (!err) {
3235 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3236 if (put_user_ifreq(&ifr, uifr32))
3237 err = -EFAULT;
3238 }
3239 return err;
3240 }
3241
3242 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3243 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3244 struct compat_ifreq __user *u_ifreq32)
3245 {
3246 struct ifreq ifreq;
3247 void __user *data;
3248
3249 if (!is_socket_ioctl_cmd(cmd))
3250 return -ENOTTY;
3251 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3252 return -EFAULT;
3253 ifreq.ifr_data = data;
3254
3255 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3256 }
3257
3258 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3259 * for some operations; this forces use of the newer bridge-utils that
3260 * use compatible ioctls
3261 */
old_bridge_ioctl(compat_ulong_t __user * argp)3262 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3263 {
3264 compat_ulong_t tmp;
3265
3266 if (get_user(tmp, argp))
3267 return -EFAULT;
3268 if (tmp == BRCTL_GET_VERSION)
3269 return BRCTL_VERSION + 1;
3270 return -EINVAL;
3271 }
3272
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3273 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3274 unsigned int cmd, unsigned long arg)
3275 {
3276 void __user *argp = compat_ptr(arg);
3277 struct sock *sk = sock->sk;
3278 struct net *net = sock_net(sk);
3279
3280 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3281 return sock_ioctl(file, cmd, (unsigned long)argp);
3282
3283 switch (cmd) {
3284 case SIOCSIFBR:
3285 case SIOCGIFBR:
3286 return old_bridge_ioctl(argp);
3287 case SIOCWANDEV:
3288 return compat_siocwandev(net, argp);
3289 case SIOCGSTAMP_OLD:
3290 case SIOCGSTAMPNS_OLD:
3291 if (!sock->ops->gettstamp)
3292 return -ENOIOCTLCMD;
3293 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3294 !COMPAT_USE_64BIT_TIME);
3295
3296 case SIOCETHTOOL:
3297 case SIOCBONDSLAVEINFOQUERY:
3298 case SIOCBONDINFOQUERY:
3299 case SIOCSHWTSTAMP:
3300 case SIOCGHWTSTAMP:
3301 return compat_ifr_data_ioctl(net, cmd, argp);
3302
3303 case FIOSETOWN:
3304 case SIOCSPGRP:
3305 case FIOGETOWN:
3306 case SIOCGPGRP:
3307 case SIOCBRADDBR:
3308 case SIOCBRDELBR:
3309 case SIOCGIFVLAN:
3310 case SIOCSIFVLAN:
3311 case SIOCGSKNS:
3312 case SIOCGSTAMP_NEW:
3313 case SIOCGSTAMPNS_NEW:
3314 case SIOCGIFCONF:
3315 return sock_ioctl(file, cmd, arg);
3316
3317 case SIOCGIFFLAGS:
3318 case SIOCSIFFLAGS:
3319 case SIOCGIFMAP:
3320 case SIOCSIFMAP:
3321 case SIOCGIFMETRIC:
3322 case SIOCSIFMETRIC:
3323 case SIOCGIFMTU:
3324 case SIOCSIFMTU:
3325 case SIOCGIFMEM:
3326 case SIOCSIFMEM:
3327 case SIOCGIFHWADDR:
3328 case SIOCSIFHWADDR:
3329 case SIOCADDMULTI:
3330 case SIOCDELMULTI:
3331 case SIOCGIFINDEX:
3332 case SIOCGIFADDR:
3333 case SIOCSIFADDR:
3334 case SIOCSIFHWBROADCAST:
3335 case SIOCDIFADDR:
3336 case SIOCGIFBRDADDR:
3337 case SIOCSIFBRDADDR:
3338 case SIOCGIFDSTADDR:
3339 case SIOCSIFDSTADDR:
3340 case SIOCGIFNETMASK:
3341 case SIOCSIFNETMASK:
3342 case SIOCSIFPFLAGS:
3343 case SIOCGIFPFLAGS:
3344 case SIOCGIFTXQLEN:
3345 case SIOCSIFTXQLEN:
3346 case SIOCBRADDIF:
3347 case SIOCBRDELIF:
3348 case SIOCGIFNAME:
3349 case SIOCSIFNAME:
3350 case SIOCGMIIPHY:
3351 case SIOCGMIIREG:
3352 case SIOCSMIIREG:
3353 case SIOCBONDENSLAVE:
3354 case SIOCBONDRELEASE:
3355 case SIOCBONDSETHWADDR:
3356 case SIOCBONDCHANGEACTIVE:
3357 case SIOCSARP:
3358 case SIOCGARP:
3359 case SIOCDARP:
3360 case SIOCOUTQ:
3361 case SIOCOUTQNSD:
3362 case SIOCATMARK:
3363 return sock_do_ioctl(net, sock, cmd, arg);
3364 }
3365
3366 return -ENOIOCTLCMD;
3367 }
3368
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3369 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3370 unsigned long arg)
3371 {
3372 struct socket *sock = file->private_data;
3373 int ret = -ENOIOCTLCMD;
3374 struct sock *sk;
3375 struct net *net;
3376
3377 sk = sock->sk;
3378 net = sock_net(sk);
3379
3380 if (sock->ops->compat_ioctl)
3381 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3382
3383 if (ret == -ENOIOCTLCMD &&
3384 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3385 ret = compat_wext_handle_ioctl(net, cmd, arg);
3386
3387 if (ret == -ENOIOCTLCMD)
3388 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3389
3390 return ret;
3391 }
3392 #endif
3393
3394 /**
3395 * kernel_bind - bind an address to a socket (kernel space)
3396 * @sock: socket
3397 * @addr: address
3398 * @addrlen: length of address
3399 *
3400 * Returns 0 or an error.
3401 */
3402
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3403 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3404 {
3405 struct sockaddr_storage address;
3406
3407 memcpy(&address, addr, addrlen);
3408
3409 return sock->ops->bind(sock, (struct sockaddr *)&address, addrlen);
3410 }
3411 EXPORT_SYMBOL(kernel_bind);
3412
3413 /**
3414 * kernel_listen - move socket to listening state (kernel space)
3415 * @sock: socket
3416 * @backlog: pending connections queue size
3417 *
3418 * Returns 0 or an error.
3419 */
3420
kernel_listen(struct socket * sock,int backlog)3421 int kernel_listen(struct socket *sock, int backlog)
3422 {
3423 return sock->ops->listen(sock, backlog);
3424 }
3425 EXPORT_SYMBOL(kernel_listen);
3426
3427 /**
3428 * kernel_accept - accept a connection (kernel space)
3429 * @sock: listening socket
3430 * @newsock: new connected socket
3431 * @flags: flags
3432 *
3433 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3434 * If it fails, @newsock is guaranteed to be %NULL.
3435 * Returns 0 or an error.
3436 */
3437
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3438 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3439 {
3440 struct sock *sk = sock->sk;
3441 int err;
3442
3443 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3444 newsock);
3445 if (err < 0)
3446 goto done;
3447
3448 err = sock->ops->accept(sock, *newsock, flags, true);
3449 if (err < 0) {
3450 sock_release(*newsock);
3451 *newsock = NULL;
3452 goto done;
3453 }
3454
3455 (*newsock)->ops = sock->ops;
3456 __module_get((*newsock)->ops->owner);
3457
3458 done:
3459 return err;
3460 }
3461 EXPORT_SYMBOL(kernel_accept);
3462
3463 /**
3464 * kernel_connect - connect a socket (kernel space)
3465 * @sock: socket
3466 * @addr: address
3467 * @addrlen: address length
3468 * @flags: flags (O_NONBLOCK, ...)
3469 *
3470 * For datagram sockets, @addr is the address to which datagrams are sent
3471 * by default, and the only address from which datagrams are received.
3472 * For stream sockets, attempts to connect to @addr.
3473 * Returns 0 or an error code.
3474 */
3475
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3476 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3477 int flags)
3478 {
3479 struct sockaddr_storage address;
3480
3481 memcpy(&address, addr, addrlen);
3482
3483 return sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, flags);
3484 }
3485 EXPORT_SYMBOL(kernel_connect);
3486
3487 /**
3488 * kernel_getsockname - get the address which the socket is bound (kernel space)
3489 * @sock: socket
3490 * @addr: address holder
3491 *
3492 * Fills the @addr pointer with the address which the socket is bound.
3493 * Returns 0 or an error code.
3494 */
3495
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3496 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3497 {
3498 return sock->ops->getname(sock, addr, 0);
3499 }
3500 EXPORT_SYMBOL(kernel_getsockname);
3501
3502 /**
3503 * kernel_getpeername - get the address which the socket is connected (kernel space)
3504 * @sock: socket
3505 * @addr: address holder
3506 *
3507 * Fills the @addr pointer with the address which the socket is connected.
3508 * Returns 0 or an error code.
3509 */
3510
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3511 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3512 {
3513 return sock->ops->getname(sock, addr, 1);
3514 }
3515 EXPORT_SYMBOL(kernel_getpeername);
3516
3517 /**
3518 * kernel_sendpage - send a &page through a socket (kernel space)
3519 * @sock: socket
3520 * @page: page
3521 * @offset: page offset
3522 * @size: total size in bytes
3523 * @flags: flags (MSG_DONTWAIT, ...)
3524 *
3525 * Returns the total amount sent in bytes or an error.
3526 */
3527
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3528 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3529 size_t size, int flags)
3530 {
3531 if (sock->ops->sendpage) {
3532 /* Warn in case the improper page to zero-copy send */
3533 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3534 return sock->ops->sendpage(sock, page, offset, size, flags);
3535 }
3536 return sock_no_sendpage(sock, page, offset, size, flags);
3537 }
3538 EXPORT_SYMBOL(kernel_sendpage);
3539
3540 /**
3541 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3542 * @sk: sock
3543 * @page: page
3544 * @offset: page offset
3545 * @size: total size in bytes
3546 * @flags: flags (MSG_DONTWAIT, ...)
3547 *
3548 * Returns the total amount sent in bytes or an error.
3549 * Caller must hold @sk.
3550 */
3551
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3552 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3553 size_t size, int flags)
3554 {
3555 struct socket *sock = sk->sk_socket;
3556
3557 if (sock->ops->sendpage_locked)
3558 return sock->ops->sendpage_locked(sk, page, offset, size,
3559 flags);
3560
3561 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3562 }
3563 EXPORT_SYMBOL(kernel_sendpage_locked);
3564
3565 /**
3566 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3567 * @sock: socket
3568 * @how: connection part
3569 *
3570 * Returns 0 or an error.
3571 */
3572
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3573 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3574 {
3575 return sock->ops->shutdown(sock, how);
3576 }
3577 EXPORT_SYMBOL(kernel_sock_shutdown);
3578
3579 /**
3580 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3581 * @sk: socket
3582 *
3583 * This routine returns the IP overhead imposed by a socket i.e.
3584 * the length of the underlying IP header, depending on whether
3585 * this is an IPv4 or IPv6 socket and the length from IP options turned
3586 * on at the socket. Assumes that the caller has a lock on the socket.
3587 */
3588
kernel_sock_ip_overhead(struct sock * sk)3589 u32 kernel_sock_ip_overhead(struct sock *sk)
3590 {
3591 struct inet_sock *inet;
3592 struct ip_options_rcu *opt;
3593 u32 overhead = 0;
3594 #if IS_ENABLED(CONFIG_IPV6)
3595 struct ipv6_pinfo *np;
3596 struct ipv6_txoptions *optv6 = NULL;
3597 #endif /* IS_ENABLED(CONFIG_IPV6) */
3598
3599 if (!sk)
3600 return overhead;
3601
3602 switch (sk->sk_family) {
3603 case AF_INET:
3604 inet = inet_sk(sk);
3605 overhead += sizeof(struct iphdr);
3606 opt = rcu_dereference_protected(inet->inet_opt,
3607 sock_owned_by_user(sk));
3608 if (opt)
3609 overhead += opt->opt.optlen;
3610 return overhead;
3611 #if IS_ENABLED(CONFIG_IPV6)
3612 case AF_INET6:
3613 np = inet6_sk(sk);
3614 overhead += sizeof(struct ipv6hdr);
3615 if (np)
3616 optv6 = rcu_dereference_protected(np->opt,
3617 sock_owned_by_user(sk));
3618 if (optv6)
3619 overhead += (optv6->opt_flen + optv6->opt_nflen);
3620 return overhead;
3621 #endif /* IS_ENABLED(CONFIG_IPV6) */
3622 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3623 return overhead;
3624 }
3625 }
3626 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3627