• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kmod.h>
18 #include <linux/perf_event.h>
19 #include <linux/resource.h>
20 #include <linux/kernel.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 #include <linux/syscall_user_dispatch.h>
46 
47 #include <linux/compat.h>
48 #include <linux/syscalls.h>
49 #include <linux/kprobes.h>
50 #include <linux/user_namespace.h>
51 #include <linux/time_namespace.h>
52 #include <linux/binfmts.h>
53 
54 #include <linux/sched.h>
55 #include <linux/sched/autogroup.h>
56 #include <linux/sched/loadavg.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/mm.h>
59 #include <linux/sched/coredump.h>
60 #include <linux/sched/task.h>
61 #include <linux/sched/cputime.h>
62 #include <linux/rcupdate.h>
63 #include <linux/uidgid.h>
64 #include <linux/cred.h>
65 
66 #include <linux/nospec.h>
67 
68 #include <linux/kmsg_dump.h>
69 /* Move somewhere else to avoid recompiling? */
70 #include <generated/utsrelease.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/io.h>
74 #include <asm/unistd.h>
75 
76 #include "uid16.h"
77 
78 #include <trace/hooks/sys.h>
79 
80 #ifndef SET_UNALIGN_CTL
81 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
82 #endif
83 #ifndef GET_UNALIGN_CTL
84 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
85 #endif
86 #ifndef SET_FPEMU_CTL
87 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
88 #endif
89 #ifndef GET_FPEMU_CTL
90 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
91 #endif
92 #ifndef SET_FPEXC_CTL
93 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
94 #endif
95 #ifndef GET_FPEXC_CTL
96 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
97 #endif
98 #ifndef GET_ENDIAN
99 # define GET_ENDIAN(a, b)	(-EINVAL)
100 #endif
101 #ifndef SET_ENDIAN
102 # define SET_ENDIAN(a, b)	(-EINVAL)
103 #endif
104 #ifndef GET_TSC_CTL
105 # define GET_TSC_CTL(a)		(-EINVAL)
106 #endif
107 #ifndef SET_TSC_CTL
108 # define SET_TSC_CTL(a)		(-EINVAL)
109 #endif
110 #ifndef GET_FP_MODE
111 # define GET_FP_MODE(a)		(-EINVAL)
112 #endif
113 #ifndef SET_FP_MODE
114 # define SET_FP_MODE(a,b)	(-EINVAL)
115 #endif
116 #ifndef SVE_SET_VL
117 # define SVE_SET_VL(a)		(-EINVAL)
118 #endif
119 #ifndef SVE_GET_VL
120 # define SVE_GET_VL()		(-EINVAL)
121 #endif
122 #ifndef PAC_RESET_KEYS
123 # define PAC_RESET_KEYS(a, b)	(-EINVAL)
124 #endif
125 #ifndef PAC_SET_ENABLED_KEYS
126 # define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
127 #endif
128 #ifndef PAC_GET_ENABLED_KEYS
129 # define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
130 #endif
131 #ifndef SET_TAGGED_ADDR_CTRL
132 # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
133 #endif
134 #ifndef GET_TAGGED_ADDR_CTRL
135 # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
136 #endif
137 
138 /*
139  * this is where the system-wide overflow UID and GID are defined, for
140  * architectures that now have 32-bit UID/GID but didn't in the past
141  */
142 
143 int overflowuid = DEFAULT_OVERFLOWUID;
144 int overflowgid = DEFAULT_OVERFLOWGID;
145 
146 EXPORT_SYMBOL(overflowuid);
147 EXPORT_SYMBOL(overflowgid);
148 
149 /*
150  * the same as above, but for filesystems which can only store a 16-bit
151  * UID and GID. as such, this is needed on all architectures
152  */
153 
154 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
155 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
156 
157 EXPORT_SYMBOL(fs_overflowuid);
158 EXPORT_SYMBOL(fs_overflowgid);
159 
160 /*
161  * Returns true if current's euid is same as p's uid or euid,
162  * or has CAP_SYS_NICE to p's user_ns.
163  *
164  * Called with rcu_read_lock, creds are safe
165  */
set_one_prio_perm(struct task_struct * p)166 static bool set_one_prio_perm(struct task_struct *p)
167 {
168 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
169 
170 	if (uid_eq(pcred->uid,  cred->euid) ||
171 	    uid_eq(pcred->euid, cred->euid))
172 		return true;
173 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
174 		return true;
175 	return false;
176 }
177 
178 /*
179  * set the priority of a task
180  * - the caller must hold the RCU read lock
181  */
set_one_prio(struct task_struct * p,int niceval,int error)182 static int set_one_prio(struct task_struct *p, int niceval, int error)
183 {
184 	int no_nice;
185 
186 	if (!set_one_prio_perm(p)) {
187 		error = -EPERM;
188 		goto out;
189 	}
190 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
191 		error = -EACCES;
192 		goto out;
193 	}
194 	no_nice = security_task_setnice(p, niceval);
195 	if (no_nice) {
196 		error = no_nice;
197 		goto out;
198 	}
199 	if (error == -ESRCH)
200 		error = 0;
201 	set_user_nice(p, niceval);
202 out:
203 	return error;
204 }
205 
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)206 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
207 {
208 	struct task_struct *g, *p;
209 	struct user_struct *user;
210 	const struct cred *cred = current_cred();
211 	int error = -EINVAL;
212 	struct pid *pgrp;
213 	kuid_t uid;
214 
215 	if (which > PRIO_USER || which < PRIO_PROCESS)
216 		goto out;
217 
218 	/* normalize: avoid signed division (rounding problems) */
219 	error = -ESRCH;
220 	if (niceval < MIN_NICE)
221 		niceval = MIN_NICE;
222 	if (niceval > MAX_NICE)
223 		niceval = MAX_NICE;
224 
225 	rcu_read_lock();
226 	read_lock(&tasklist_lock);
227 	switch (which) {
228 	case PRIO_PROCESS:
229 		if (who)
230 			p = find_task_by_vpid(who);
231 		else
232 			p = current;
233 		if (p)
234 			error = set_one_prio(p, niceval, error);
235 		break;
236 	case PRIO_PGRP:
237 		if (who)
238 			pgrp = find_vpid(who);
239 		else
240 			pgrp = task_pgrp(current);
241 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
242 			error = set_one_prio(p, niceval, error);
243 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
244 		break;
245 	case PRIO_USER:
246 		uid = make_kuid(cred->user_ns, who);
247 		user = cred->user;
248 		if (!who)
249 			uid = cred->uid;
250 		else if (!uid_eq(uid, cred->uid)) {
251 			user = find_user(uid);
252 			if (!user)
253 				goto out_unlock;	/* No processes for this user */
254 		}
255 		do_each_thread(g, p) {
256 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
257 				error = set_one_prio(p, niceval, error);
258 		} while_each_thread(g, p);
259 		if (!uid_eq(uid, cred->uid))
260 			free_uid(user);		/* For find_user() */
261 		break;
262 	}
263 out_unlock:
264 	read_unlock(&tasklist_lock);
265 	rcu_read_unlock();
266 out:
267 	return error;
268 }
269 
270 /*
271  * Ugh. To avoid negative return values, "getpriority()" will
272  * not return the normal nice-value, but a negated value that
273  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
274  * to stay compatible.
275  */
SYSCALL_DEFINE2(getpriority,int,which,int,who)276 SYSCALL_DEFINE2(getpriority, int, which, int, who)
277 {
278 	struct task_struct *g, *p;
279 	struct user_struct *user;
280 	const struct cred *cred = current_cred();
281 	long niceval, retval = -ESRCH;
282 	struct pid *pgrp;
283 	kuid_t uid;
284 
285 	if (which > PRIO_USER || which < PRIO_PROCESS)
286 		return -EINVAL;
287 
288 	rcu_read_lock();
289 	read_lock(&tasklist_lock);
290 	switch (which) {
291 	case PRIO_PROCESS:
292 		if (who)
293 			p = find_task_by_vpid(who);
294 		else
295 			p = current;
296 		if (p) {
297 			niceval = nice_to_rlimit(task_nice(p));
298 			if (niceval > retval)
299 				retval = niceval;
300 		}
301 		break;
302 	case PRIO_PGRP:
303 		if (who)
304 			pgrp = find_vpid(who);
305 		else
306 			pgrp = task_pgrp(current);
307 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
308 			niceval = nice_to_rlimit(task_nice(p));
309 			if (niceval > retval)
310 				retval = niceval;
311 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
312 		break;
313 	case PRIO_USER:
314 		uid = make_kuid(cred->user_ns, who);
315 		user = cred->user;
316 		if (!who)
317 			uid = cred->uid;
318 		else if (!uid_eq(uid, cred->uid)) {
319 			user = find_user(uid);
320 			if (!user)
321 				goto out_unlock;	/* No processes for this user */
322 		}
323 		do_each_thread(g, p) {
324 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
325 				niceval = nice_to_rlimit(task_nice(p));
326 				if (niceval > retval)
327 					retval = niceval;
328 			}
329 		} while_each_thread(g, p);
330 		if (!uid_eq(uid, cred->uid))
331 			free_uid(user);		/* for find_user() */
332 		break;
333 	}
334 out_unlock:
335 	read_unlock(&tasklist_lock);
336 	rcu_read_unlock();
337 
338 	return retval;
339 }
340 
341 /*
342  * Unprivileged users may change the real gid to the effective gid
343  * or vice versa.  (BSD-style)
344  *
345  * If you set the real gid at all, or set the effective gid to a value not
346  * equal to the real gid, then the saved gid is set to the new effective gid.
347  *
348  * This makes it possible for a setgid program to completely drop its
349  * privileges, which is often a useful assertion to make when you are doing
350  * a security audit over a program.
351  *
352  * The general idea is that a program which uses just setregid() will be
353  * 100% compatible with BSD.  A program which uses just setgid() will be
354  * 100% compatible with POSIX with saved IDs.
355  *
356  * SMP: There are not races, the GIDs are checked only by filesystem
357  *      operations (as far as semantic preservation is concerned).
358  */
359 #ifdef CONFIG_MULTIUSER
__sys_setregid(gid_t rgid,gid_t egid)360 long __sys_setregid(gid_t rgid, gid_t egid)
361 {
362 	struct user_namespace *ns = current_user_ns();
363 	const struct cred *old;
364 	struct cred *new;
365 	int retval;
366 	kgid_t krgid, kegid;
367 
368 	krgid = make_kgid(ns, rgid);
369 	kegid = make_kgid(ns, egid);
370 
371 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
372 		return -EINVAL;
373 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
374 		return -EINVAL;
375 
376 	new = prepare_creds();
377 	if (!new)
378 		return -ENOMEM;
379 	old = current_cred();
380 
381 	retval = -EPERM;
382 	if (rgid != (gid_t) -1) {
383 		if (gid_eq(old->gid, krgid) ||
384 		    gid_eq(old->egid, krgid) ||
385 		    ns_capable_setid(old->user_ns, CAP_SETGID))
386 			new->gid = krgid;
387 		else
388 			goto error;
389 	}
390 	if (egid != (gid_t) -1) {
391 		if (gid_eq(old->gid, kegid) ||
392 		    gid_eq(old->egid, kegid) ||
393 		    gid_eq(old->sgid, kegid) ||
394 		    ns_capable_setid(old->user_ns, CAP_SETGID))
395 			new->egid = kegid;
396 		else
397 			goto error;
398 	}
399 
400 	if (rgid != (gid_t) -1 ||
401 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
402 		new->sgid = new->egid;
403 	new->fsgid = new->egid;
404 
405 	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
406 	if (retval < 0)
407 		goto error;
408 
409 	return commit_creds(new);
410 
411 error:
412 	abort_creds(new);
413 	return retval;
414 }
415 
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)416 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
417 {
418 	return __sys_setregid(rgid, egid);
419 }
420 
421 /*
422  * setgid() is implemented like SysV w/ SAVED_IDS
423  *
424  * SMP: Same implicit races as above.
425  */
__sys_setgid(gid_t gid)426 long __sys_setgid(gid_t gid)
427 {
428 	struct user_namespace *ns = current_user_ns();
429 	const struct cred *old;
430 	struct cred *new;
431 	int retval;
432 	kgid_t kgid;
433 
434 	kgid = make_kgid(ns, gid);
435 	if (!gid_valid(kgid))
436 		return -EINVAL;
437 
438 	new = prepare_creds();
439 	if (!new)
440 		return -ENOMEM;
441 	old = current_cred();
442 
443 	retval = -EPERM;
444 	if (ns_capable_setid(old->user_ns, CAP_SETGID))
445 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
446 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
447 		new->egid = new->fsgid = kgid;
448 	else
449 		goto error;
450 
451 	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
452 	if (retval < 0)
453 		goto error;
454 
455 	return commit_creds(new);
456 
457 error:
458 	abort_creds(new);
459 	return retval;
460 }
461 
SYSCALL_DEFINE1(setgid,gid_t,gid)462 SYSCALL_DEFINE1(setgid, gid_t, gid)
463 {
464 	return __sys_setgid(gid);
465 }
466 
467 /*
468  * change the user struct in a credentials set to match the new UID
469  */
set_user(struct cred * new)470 static int set_user(struct cred *new)
471 {
472 	struct user_struct *new_user;
473 
474 	new_user = alloc_uid(new->uid);
475 	if (!new_user)
476 		return -EAGAIN;
477 
478 	free_uid(new->user);
479 	new->user = new_user;
480 	return 0;
481 }
482 
flag_nproc_exceeded(struct cred * new)483 static void flag_nproc_exceeded(struct cred *new)
484 {
485 	if (new->ucounts == current_ucounts())
486 		return;
487 
488 	/*
489 	 * We don't fail in case of NPROC limit excess here because too many
490 	 * poorly written programs don't check set*uid() return code, assuming
491 	 * it never fails if called by root.  We may still enforce NPROC limit
492 	 * for programs doing set*uid()+execve() by harmlessly deferring the
493 	 * failure to the execve() stage.
494 	 */
495 	if (is_ucounts_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
496 			new->user != INIT_USER)
497 		current->flags |= PF_NPROC_EXCEEDED;
498 	else
499 		current->flags &= ~PF_NPROC_EXCEEDED;
500 }
501 
502 /*
503  * Unprivileged users may change the real uid to the effective uid
504  * or vice versa.  (BSD-style)
505  *
506  * If you set the real uid at all, or set the effective uid to a value not
507  * equal to the real uid, then the saved uid is set to the new effective uid.
508  *
509  * This makes it possible for a setuid program to completely drop its
510  * privileges, which is often a useful assertion to make when you are doing
511  * a security audit over a program.
512  *
513  * The general idea is that a program which uses just setreuid() will be
514  * 100% compatible with BSD.  A program which uses just setuid() will be
515  * 100% compatible with POSIX with saved IDs.
516  */
__sys_setreuid(uid_t ruid,uid_t euid)517 long __sys_setreuid(uid_t ruid, uid_t euid)
518 {
519 	struct user_namespace *ns = current_user_ns();
520 	const struct cred *old;
521 	struct cred *new;
522 	int retval;
523 	kuid_t kruid, keuid;
524 
525 	kruid = make_kuid(ns, ruid);
526 	keuid = make_kuid(ns, euid);
527 
528 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
529 		return -EINVAL;
530 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
531 		return -EINVAL;
532 
533 	new = prepare_creds();
534 	if (!new)
535 		return -ENOMEM;
536 	old = current_cred();
537 
538 	retval = -EPERM;
539 	if (ruid != (uid_t) -1) {
540 		new->uid = kruid;
541 		if (!uid_eq(old->uid, kruid) &&
542 		    !uid_eq(old->euid, kruid) &&
543 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
544 			goto error;
545 	}
546 
547 	if (euid != (uid_t) -1) {
548 		new->euid = keuid;
549 		if (!uid_eq(old->uid, keuid) &&
550 		    !uid_eq(old->euid, keuid) &&
551 		    !uid_eq(old->suid, keuid) &&
552 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
553 			goto error;
554 	}
555 
556 	if (!uid_eq(new->uid, old->uid)) {
557 		retval = set_user(new);
558 		if (retval < 0)
559 			goto error;
560 	}
561 	if (ruid != (uid_t) -1 ||
562 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
563 		new->suid = new->euid;
564 	new->fsuid = new->euid;
565 
566 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
567 	if (retval < 0)
568 		goto error;
569 
570 	retval = set_cred_ucounts(new);
571 	if (retval < 0)
572 		goto error;
573 
574 	flag_nproc_exceeded(new);
575 	return commit_creds(new);
576 
577 error:
578 	abort_creds(new);
579 	return retval;
580 }
581 
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)582 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
583 {
584 	return __sys_setreuid(ruid, euid);
585 }
586 
587 /*
588  * setuid() is implemented like SysV with SAVED_IDS
589  *
590  * Note that SAVED_ID's is deficient in that a setuid root program
591  * like sendmail, for example, cannot set its uid to be a normal
592  * user and then switch back, because if you're root, setuid() sets
593  * the saved uid too.  If you don't like this, blame the bright people
594  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
595  * will allow a root program to temporarily drop privileges and be able to
596  * regain them by swapping the real and effective uid.
597  */
__sys_setuid(uid_t uid)598 long __sys_setuid(uid_t uid)
599 {
600 	struct user_namespace *ns = current_user_ns();
601 	const struct cred *old;
602 	struct cred *new;
603 	int retval;
604 	kuid_t kuid;
605 
606 	kuid = make_kuid(ns, uid);
607 	if (!uid_valid(kuid))
608 		return -EINVAL;
609 
610 	new = prepare_creds();
611 	if (!new)
612 		return -ENOMEM;
613 	old = current_cred();
614 
615 	retval = -EPERM;
616 	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
617 		new->suid = new->uid = kuid;
618 		if (!uid_eq(kuid, old->uid)) {
619 			retval = set_user(new);
620 			if (retval < 0)
621 				goto error;
622 		}
623 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
624 		goto error;
625 	}
626 
627 	new->fsuid = new->euid = kuid;
628 
629 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
630 	if (retval < 0)
631 		goto error;
632 
633 	retval = set_cred_ucounts(new);
634 	if (retval < 0)
635 		goto error;
636 
637 	flag_nproc_exceeded(new);
638 	return commit_creds(new);
639 
640 error:
641 	abort_creds(new);
642 	return retval;
643 }
644 
SYSCALL_DEFINE1(setuid,uid_t,uid)645 SYSCALL_DEFINE1(setuid, uid_t, uid)
646 {
647 	return __sys_setuid(uid);
648 }
649 
650 
651 /*
652  * This function implements a generic ability to update ruid, euid,
653  * and suid.  This allows you to implement the 4.4 compatible seteuid().
654  */
__sys_setresuid(uid_t ruid,uid_t euid,uid_t suid)655 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
656 {
657 	struct user_namespace *ns = current_user_ns();
658 	const struct cred *old;
659 	struct cred *new;
660 	int retval;
661 	kuid_t kruid, keuid, ksuid;
662 	bool ruid_new, euid_new, suid_new;
663 
664 	kruid = make_kuid(ns, ruid);
665 	keuid = make_kuid(ns, euid);
666 	ksuid = make_kuid(ns, suid);
667 
668 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
669 		return -EINVAL;
670 
671 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
672 		return -EINVAL;
673 
674 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
675 		return -EINVAL;
676 
677 	old = current_cred();
678 
679 	/* check for no-op */
680 	if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
681 	    (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
682 				    uid_eq(keuid, old->fsuid))) &&
683 	    (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
684 		return 0;
685 
686 	ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
687 		   !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
688 	euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
689 		   !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
690 	suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
691 		   !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
692 	if ((ruid_new || euid_new || suid_new) &&
693 	    !ns_capable_setid(old->user_ns, CAP_SETUID))
694 		return -EPERM;
695 
696 	new = prepare_creds();
697 	if (!new)
698 		return -ENOMEM;
699 
700 	if (ruid != (uid_t) -1) {
701 		new->uid = kruid;
702 		if (!uid_eq(kruid, old->uid)) {
703 			retval = set_user(new);
704 			if (retval < 0)
705 				goto error;
706 		}
707 	}
708 	if (euid != (uid_t) -1)
709 		new->euid = keuid;
710 	if (suid != (uid_t) -1)
711 		new->suid = ksuid;
712 	new->fsuid = new->euid;
713 
714 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
715 	if (retval < 0)
716 		goto error;
717 
718 	retval = set_cred_ucounts(new);
719 	if (retval < 0)
720 		goto error;
721 
722 	flag_nproc_exceeded(new);
723 	return commit_creds(new);
724 
725 error:
726 	abort_creds(new);
727 	return retval;
728 }
729 
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)730 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
731 {
732 	return __sys_setresuid(ruid, euid, suid);
733 }
734 
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruidp,uid_t __user *,euidp,uid_t __user *,suidp)735 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
736 {
737 	const struct cred *cred = current_cred();
738 	int retval;
739 	uid_t ruid, euid, suid;
740 
741 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
742 	euid = from_kuid_munged(cred->user_ns, cred->euid);
743 	suid = from_kuid_munged(cred->user_ns, cred->suid);
744 
745 	retval = put_user(ruid, ruidp);
746 	if (!retval) {
747 		retval = put_user(euid, euidp);
748 		if (!retval)
749 			return put_user(suid, suidp);
750 	}
751 	return retval;
752 }
753 
754 /*
755  * Same as above, but for rgid, egid, sgid.
756  */
__sys_setresgid(gid_t rgid,gid_t egid,gid_t sgid)757 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
758 {
759 	struct user_namespace *ns = current_user_ns();
760 	const struct cred *old;
761 	struct cred *new;
762 	int retval;
763 	kgid_t krgid, kegid, ksgid;
764 	bool rgid_new, egid_new, sgid_new;
765 
766 	krgid = make_kgid(ns, rgid);
767 	kegid = make_kgid(ns, egid);
768 	ksgid = make_kgid(ns, sgid);
769 
770 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
771 		return -EINVAL;
772 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
773 		return -EINVAL;
774 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
775 		return -EINVAL;
776 
777 	old = current_cred();
778 
779 	/* check for no-op */
780 	if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
781 	    (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
782 				    gid_eq(kegid, old->fsgid))) &&
783 	    (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
784 		return 0;
785 
786 	rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
787 		   !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
788 	egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
789 		   !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
790 	sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
791 		   !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
792 	if ((rgid_new || egid_new || sgid_new) &&
793 	    !ns_capable_setid(old->user_ns, CAP_SETGID))
794 		return -EPERM;
795 
796 	new = prepare_creds();
797 	if (!new)
798 		return -ENOMEM;
799 
800 	if (rgid != (gid_t) -1)
801 		new->gid = krgid;
802 	if (egid != (gid_t) -1)
803 		new->egid = kegid;
804 	if (sgid != (gid_t) -1)
805 		new->sgid = ksgid;
806 	new->fsgid = new->egid;
807 
808 	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
809 	if (retval < 0)
810 		goto error;
811 
812 	return commit_creds(new);
813 
814 error:
815 	abort_creds(new);
816 	return retval;
817 }
818 
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)819 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
820 {
821 	return __sys_setresgid(rgid, egid, sgid);
822 }
823 
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgidp,gid_t __user *,egidp,gid_t __user *,sgidp)824 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
825 {
826 	const struct cred *cred = current_cred();
827 	int retval;
828 	gid_t rgid, egid, sgid;
829 
830 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
831 	egid = from_kgid_munged(cred->user_ns, cred->egid);
832 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
833 
834 	retval = put_user(rgid, rgidp);
835 	if (!retval) {
836 		retval = put_user(egid, egidp);
837 		if (!retval)
838 			retval = put_user(sgid, sgidp);
839 	}
840 
841 	return retval;
842 }
843 
844 
845 /*
846  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
847  * is used for "access()" and for the NFS daemon (letting nfsd stay at
848  * whatever uid it wants to). It normally shadows "euid", except when
849  * explicitly set by setfsuid() or for access..
850  */
__sys_setfsuid(uid_t uid)851 long __sys_setfsuid(uid_t uid)
852 {
853 	const struct cred *old;
854 	struct cred *new;
855 	uid_t old_fsuid;
856 	kuid_t kuid;
857 
858 	old = current_cred();
859 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
860 
861 	kuid = make_kuid(old->user_ns, uid);
862 	if (!uid_valid(kuid))
863 		return old_fsuid;
864 
865 	new = prepare_creds();
866 	if (!new)
867 		return old_fsuid;
868 
869 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
870 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
871 	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
872 		if (!uid_eq(kuid, old->fsuid)) {
873 			new->fsuid = kuid;
874 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
875 				goto change_okay;
876 		}
877 	}
878 
879 	abort_creds(new);
880 	return old_fsuid;
881 
882 change_okay:
883 	commit_creds(new);
884 	return old_fsuid;
885 }
886 
SYSCALL_DEFINE1(setfsuid,uid_t,uid)887 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
888 {
889 	return __sys_setfsuid(uid);
890 }
891 
892 /*
893  * Samma på svenska..
894  */
__sys_setfsgid(gid_t gid)895 long __sys_setfsgid(gid_t gid)
896 {
897 	const struct cred *old;
898 	struct cred *new;
899 	gid_t old_fsgid;
900 	kgid_t kgid;
901 
902 	old = current_cred();
903 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
904 
905 	kgid = make_kgid(old->user_ns, gid);
906 	if (!gid_valid(kgid))
907 		return old_fsgid;
908 
909 	new = prepare_creds();
910 	if (!new)
911 		return old_fsgid;
912 
913 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
914 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
915 	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
916 		if (!gid_eq(kgid, old->fsgid)) {
917 			new->fsgid = kgid;
918 			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
919 				goto change_okay;
920 		}
921 	}
922 
923 	abort_creds(new);
924 	return old_fsgid;
925 
926 change_okay:
927 	commit_creds(new);
928 	return old_fsgid;
929 }
930 
SYSCALL_DEFINE1(setfsgid,gid_t,gid)931 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
932 {
933 	return __sys_setfsgid(gid);
934 }
935 #endif /* CONFIG_MULTIUSER */
936 
937 /**
938  * sys_getpid - return the thread group id of the current process
939  *
940  * Note, despite the name, this returns the tgid not the pid.  The tgid and
941  * the pid are identical unless CLONE_THREAD was specified on clone() in
942  * which case the tgid is the same in all threads of the same group.
943  *
944  * This is SMP safe as current->tgid does not change.
945  */
SYSCALL_DEFINE0(getpid)946 SYSCALL_DEFINE0(getpid)
947 {
948 	return task_tgid_vnr(current);
949 }
950 
951 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)952 SYSCALL_DEFINE0(gettid)
953 {
954 	return task_pid_vnr(current);
955 }
956 
957 /*
958  * Accessing ->real_parent is not SMP-safe, it could
959  * change from under us. However, we can use a stale
960  * value of ->real_parent under rcu_read_lock(), see
961  * release_task()->call_rcu(delayed_put_task_struct).
962  */
SYSCALL_DEFINE0(getppid)963 SYSCALL_DEFINE0(getppid)
964 {
965 	int pid;
966 
967 	rcu_read_lock();
968 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
969 	rcu_read_unlock();
970 
971 	return pid;
972 }
973 
SYSCALL_DEFINE0(getuid)974 SYSCALL_DEFINE0(getuid)
975 {
976 	/* Only we change this so SMP safe */
977 	return from_kuid_munged(current_user_ns(), current_uid());
978 }
979 
SYSCALL_DEFINE0(geteuid)980 SYSCALL_DEFINE0(geteuid)
981 {
982 	/* Only we change this so SMP safe */
983 	return from_kuid_munged(current_user_ns(), current_euid());
984 }
985 
SYSCALL_DEFINE0(getgid)986 SYSCALL_DEFINE0(getgid)
987 {
988 	/* Only we change this so SMP safe */
989 	return from_kgid_munged(current_user_ns(), current_gid());
990 }
991 
SYSCALL_DEFINE0(getegid)992 SYSCALL_DEFINE0(getegid)
993 {
994 	/* Only we change this so SMP safe */
995 	return from_kgid_munged(current_user_ns(), current_egid());
996 }
997 
do_sys_times(struct tms * tms)998 static void do_sys_times(struct tms *tms)
999 {
1000 	u64 tgutime, tgstime, cutime, cstime;
1001 
1002 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1003 	cutime = current->signal->cutime;
1004 	cstime = current->signal->cstime;
1005 	tms->tms_utime = nsec_to_clock_t(tgutime);
1006 	tms->tms_stime = nsec_to_clock_t(tgstime);
1007 	tms->tms_cutime = nsec_to_clock_t(cutime);
1008 	tms->tms_cstime = nsec_to_clock_t(cstime);
1009 }
1010 
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)1011 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1012 {
1013 	if (tbuf) {
1014 		struct tms tmp;
1015 
1016 		do_sys_times(&tmp);
1017 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1018 			return -EFAULT;
1019 	}
1020 	force_successful_syscall_return();
1021 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1022 }
1023 
1024 #ifdef CONFIG_COMPAT
clock_t_to_compat_clock_t(clock_t x)1025 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1026 {
1027 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1028 }
1029 
COMPAT_SYSCALL_DEFINE1(times,struct compat_tms __user *,tbuf)1030 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1031 {
1032 	if (tbuf) {
1033 		struct tms tms;
1034 		struct compat_tms tmp;
1035 
1036 		do_sys_times(&tms);
1037 		/* Convert our struct tms to the compat version. */
1038 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1039 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1040 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1041 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1042 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1043 			return -EFAULT;
1044 	}
1045 	force_successful_syscall_return();
1046 	return compat_jiffies_to_clock_t(jiffies);
1047 }
1048 #endif
1049 
1050 /*
1051  * This needs some heavy checking ...
1052  * I just haven't the stomach for it. I also don't fully
1053  * understand sessions/pgrp etc. Let somebody who does explain it.
1054  *
1055  * OK, I think I have the protection semantics right.... this is really
1056  * only important on a multi-user system anyway, to make sure one user
1057  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1058  *
1059  * !PF_FORKNOEXEC check to conform completely to POSIX.
1060  */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)1061 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1062 {
1063 	struct task_struct *p;
1064 	struct task_struct *group_leader = current->group_leader;
1065 	struct pid *pgrp;
1066 	int err;
1067 
1068 	if (!pid)
1069 		pid = task_pid_vnr(group_leader);
1070 	if (!pgid)
1071 		pgid = pid;
1072 	if (pgid < 0)
1073 		return -EINVAL;
1074 	rcu_read_lock();
1075 
1076 	/* From this point forward we keep holding onto the tasklist lock
1077 	 * so that our parent does not change from under us. -DaveM
1078 	 */
1079 	write_lock_irq(&tasklist_lock);
1080 
1081 	err = -ESRCH;
1082 	p = find_task_by_vpid(pid);
1083 	if (!p)
1084 		goto out;
1085 
1086 	err = -EINVAL;
1087 	if (!thread_group_leader(p))
1088 		goto out;
1089 
1090 	if (same_thread_group(p->real_parent, group_leader)) {
1091 		err = -EPERM;
1092 		if (task_session(p) != task_session(group_leader))
1093 			goto out;
1094 		err = -EACCES;
1095 		if (!(p->flags & PF_FORKNOEXEC))
1096 			goto out;
1097 	} else {
1098 		err = -ESRCH;
1099 		if (p != group_leader)
1100 			goto out;
1101 	}
1102 
1103 	err = -EPERM;
1104 	if (p->signal->leader)
1105 		goto out;
1106 
1107 	pgrp = task_pid(p);
1108 	if (pgid != pid) {
1109 		struct task_struct *g;
1110 
1111 		pgrp = find_vpid(pgid);
1112 		g = pid_task(pgrp, PIDTYPE_PGID);
1113 		if (!g || task_session(g) != task_session(group_leader))
1114 			goto out;
1115 	}
1116 
1117 	err = security_task_setpgid(p, pgid);
1118 	if (err)
1119 		goto out;
1120 
1121 	if (task_pgrp(p) != pgrp)
1122 		change_pid(p, PIDTYPE_PGID, pgrp);
1123 
1124 	err = 0;
1125 out:
1126 	/* All paths lead to here, thus we are safe. -DaveM */
1127 	write_unlock_irq(&tasklist_lock);
1128 	rcu_read_unlock();
1129 	return err;
1130 }
1131 
do_getpgid(pid_t pid)1132 static int do_getpgid(pid_t pid)
1133 {
1134 	struct task_struct *p;
1135 	struct pid *grp;
1136 	int retval;
1137 
1138 	rcu_read_lock();
1139 	if (!pid)
1140 		grp = task_pgrp(current);
1141 	else {
1142 		retval = -ESRCH;
1143 		p = find_task_by_vpid(pid);
1144 		if (!p)
1145 			goto out;
1146 		grp = task_pgrp(p);
1147 		if (!grp)
1148 			goto out;
1149 
1150 		retval = security_task_getpgid(p);
1151 		if (retval)
1152 			goto out;
1153 	}
1154 	retval = pid_vnr(grp);
1155 out:
1156 	rcu_read_unlock();
1157 	return retval;
1158 }
1159 
SYSCALL_DEFINE1(getpgid,pid_t,pid)1160 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1161 {
1162 	return do_getpgid(pid);
1163 }
1164 
1165 #ifdef __ARCH_WANT_SYS_GETPGRP
1166 
SYSCALL_DEFINE0(getpgrp)1167 SYSCALL_DEFINE0(getpgrp)
1168 {
1169 	return do_getpgid(0);
1170 }
1171 
1172 #endif
1173 
SYSCALL_DEFINE1(getsid,pid_t,pid)1174 SYSCALL_DEFINE1(getsid, pid_t, pid)
1175 {
1176 	struct task_struct *p;
1177 	struct pid *sid;
1178 	int retval;
1179 
1180 	rcu_read_lock();
1181 	if (!pid)
1182 		sid = task_session(current);
1183 	else {
1184 		retval = -ESRCH;
1185 		p = find_task_by_vpid(pid);
1186 		if (!p)
1187 			goto out;
1188 		sid = task_session(p);
1189 		if (!sid)
1190 			goto out;
1191 
1192 		retval = security_task_getsid(p);
1193 		if (retval)
1194 			goto out;
1195 	}
1196 	retval = pid_vnr(sid);
1197 out:
1198 	rcu_read_unlock();
1199 	return retval;
1200 }
1201 
set_special_pids(struct pid * pid)1202 static void set_special_pids(struct pid *pid)
1203 {
1204 	struct task_struct *curr = current->group_leader;
1205 
1206 	if (task_session(curr) != pid)
1207 		change_pid(curr, PIDTYPE_SID, pid);
1208 
1209 	if (task_pgrp(curr) != pid)
1210 		change_pid(curr, PIDTYPE_PGID, pid);
1211 }
1212 
ksys_setsid(void)1213 int ksys_setsid(void)
1214 {
1215 	struct task_struct *group_leader = current->group_leader;
1216 	struct pid *sid = task_pid(group_leader);
1217 	pid_t session = pid_vnr(sid);
1218 	int err = -EPERM;
1219 
1220 	write_lock_irq(&tasklist_lock);
1221 	/* Fail if I am already a session leader */
1222 	if (group_leader->signal->leader)
1223 		goto out;
1224 
1225 	/* Fail if a process group id already exists that equals the
1226 	 * proposed session id.
1227 	 */
1228 	if (pid_task(sid, PIDTYPE_PGID))
1229 		goto out;
1230 
1231 	group_leader->signal->leader = 1;
1232 	set_special_pids(sid);
1233 
1234 	proc_clear_tty(group_leader);
1235 
1236 	err = session;
1237 out:
1238 	write_unlock_irq(&tasklist_lock);
1239 	if (err > 0) {
1240 		proc_sid_connector(group_leader);
1241 		sched_autogroup_create_attach(group_leader);
1242 	}
1243 	return err;
1244 }
1245 
SYSCALL_DEFINE0(setsid)1246 SYSCALL_DEFINE0(setsid)
1247 {
1248 	return ksys_setsid();
1249 }
1250 
1251 DECLARE_RWSEM(uts_sem);
1252 
1253 #ifdef COMPAT_UTS_MACHINE
1254 #define override_architecture(name) \
1255 	(personality(current->personality) == PER_LINUX32 && \
1256 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1257 		      sizeof(COMPAT_UTS_MACHINE)))
1258 #else
1259 #define override_architecture(name)	0
1260 #endif
1261 
1262 /*
1263  * Work around broken programs that cannot handle "Linux 3.0".
1264  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1265  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1266  * 2.6.60.
1267  */
override_release(char __user * release,size_t len)1268 static int override_release(char __user *release, size_t len)
1269 {
1270 	int ret = 0;
1271 
1272 	if (current->personality & UNAME26) {
1273 		const char *rest = UTS_RELEASE;
1274 		char buf[65] = { 0 };
1275 		int ndots = 0;
1276 		unsigned v;
1277 		size_t copy;
1278 
1279 		while (*rest) {
1280 			if (*rest == '.' && ++ndots >= 3)
1281 				break;
1282 			if (!isdigit(*rest) && *rest != '.')
1283 				break;
1284 			rest++;
1285 		}
1286 		v = LINUX_VERSION_PATCHLEVEL + 60;
1287 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1288 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1289 		ret = copy_to_user(release, buf, copy + 1);
1290 	}
1291 	return ret;
1292 }
1293 
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1294 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1295 {
1296 	struct new_utsname tmp;
1297 
1298 	down_read(&uts_sem);
1299 	memcpy(&tmp, utsname(), sizeof(tmp));
1300 	up_read(&uts_sem);
1301 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1302 		return -EFAULT;
1303 
1304 	if (override_release(name->release, sizeof(name->release)))
1305 		return -EFAULT;
1306 	if (override_architecture(name))
1307 		return -EFAULT;
1308 	return 0;
1309 }
1310 
1311 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1312 /*
1313  * Old cruft
1314  */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1315 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1316 {
1317 	struct old_utsname tmp;
1318 
1319 	if (!name)
1320 		return -EFAULT;
1321 
1322 	down_read(&uts_sem);
1323 	memcpy(&tmp, utsname(), sizeof(tmp));
1324 	up_read(&uts_sem);
1325 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1326 		return -EFAULT;
1327 
1328 	if (override_release(name->release, sizeof(name->release)))
1329 		return -EFAULT;
1330 	if (override_architecture(name))
1331 		return -EFAULT;
1332 	return 0;
1333 }
1334 
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1335 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1336 {
1337 	struct oldold_utsname tmp;
1338 
1339 	if (!name)
1340 		return -EFAULT;
1341 
1342 	memset(&tmp, 0, sizeof(tmp));
1343 
1344 	down_read(&uts_sem);
1345 	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1346 	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1347 	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1348 	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1349 	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1350 	up_read(&uts_sem);
1351 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1352 		return -EFAULT;
1353 
1354 	if (override_architecture(name))
1355 		return -EFAULT;
1356 	if (override_release(name->release, sizeof(name->release)))
1357 		return -EFAULT;
1358 	return 0;
1359 }
1360 #endif
1361 
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1362 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1363 {
1364 	int errno;
1365 	char tmp[__NEW_UTS_LEN];
1366 
1367 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1368 		return -EPERM;
1369 
1370 	if (len < 0 || len > __NEW_UTS_LEN)
1371 		return -EINVAL;
1372 	errno = -EFAULT;
1373 	if (!copy_from_user(tmp, name, len)) {
1374 		struct new_utsname *u;
1375 
1376 		down_write(&uts_sem);
1377 		u = utsname();
1378 		memcpy(u->nodename, tmp, len);
1379 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1380 		errno = 0;
1381 		uts_proc_notify(UTS_PROC_HOSTNAME);
1382 		up_write(&uts_sem);
1383 	}
1384 	return errno;
1385 }
1386 
1387 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1388 
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1389 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1390 {
1391 	int i;
1392 	struct new_utsname *u;
1393 	char tmp[__NEW_UTS_LEN + 1];
1394 
1395 	if (len < 0)
1396 		return -EINVAL;
1397 	down_read(&uts_sem);
1398 	u = utsname();
1399 	i = 1 + strlen(u->nodename);
1400 	if (i > len)
1401 		i = len;
1402 	memcpy(tmp, u->nodename, i);
1403 	up_read(&uts_sem);
1404 	if (copy_to_user(name, tmp, i))
1405 		return -EFAULT;
1406 	return 0;
1407 }
1408 
1409 #endif
1410 
1411 /*
1412  * Only setdomainname; getdomainname can be implemented by calling
1413  * uname()
1414  */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1415 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1416 {
1417 	int errno;
1418 	char tmp[__NEW_UTS_LEN];
1419 
1420 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1421 		return -EPERM;
1422 	if (len < 0 || len > __NEW_UTS_LEN)
1423 		return -EINVAL;
1424 
1425 	errno = -EFAULT;
1426 	if (!copy_from_user(tmp, name, len)) {
1427 		struct new_utsname *u;
1428 
1429 		down_write(&uts_sem);
1430 		u = utsname();
1431 		memcpy(u->domainname, tmp, len);
1432 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1433 		errno = 0;
1434 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1435 		up_write(&uts_sem);
1436 	}
1437 	return errno;
1438 }
1439 
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1440 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1441 {
1442 	struct rlimit value;
1443 	int ret;
1444 
1445 	ret = do_prlimit(current, resource, NULL, &value);
1446 	if (!ret)
1447 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1448 
1449 	return ret;
1450 }
1451 
1452 #ifdef CONFIG_COMPAT
1453 
COMPAT_SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1454 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1455 		       struct compat_rlimit __user *, rlim)
1456 {
1457 	struct rlimit r;
1458 	struct compat_rlimit r32;
1459 
1460 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1461 		return -EFAULT;
1462 
1463 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1464 		r.rlim_cur = RLIM_INFINITY;
1465 	else
1466 		r.rlim_cur = r32.rlim_cur;
1467 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1468 		r.rlim_max = RLIM_INFINITY;
1469 	else
1470 		r.rlim_max = r32.rlim_max;
1471 	return do_prlimit(current, resource, &r, NULL);
1472 }
1473 
COMPAT_SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1474 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1475 		       struct compat_rlimit __user *, rlim)
1476 {
1477 	struct rlimit r;
1478 	int ret;
1479 
1480 	ret = do_prlimit(current, resource, NULL, &r);
1481 	if (!ret) {
1482 		struct compat_rlimit r32;
1483 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1484 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1485 		else
1486 			r32.rlim_cur = r.rlim_cur;
1487 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1488 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1489 		else
1490 			r32.rlim_max = r.rlim_max;
1491 
1492 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1493 			return -EFAULT;
1494 	}
1495 	return ret;
1496 }
1497 
1498 #endif
1499 
1500 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1501 
1502 /*
1503  *	Back compatibility for getrlimit. Needed for some apps.
1504  */
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1505 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1506 		struct rlimit __user *, rlim)
1507 {
1508 	struct rlimit x;
1509 	if (resource >= RLIM_NLIMITS)
1510 		return -EINVAL;
1511 
1512 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1513 	task_lock(current->group_leader);
1514 	x = current->signal->rlim[resource];
1515 	task_unlock(current->group_leader);
1516 	if (x.rlim_cur > 0x7FFFFFFF)
1517 		x.rlim_cur = 0x7FFFFFFF;
1518 	if (x.rlim_max > 0x7FFFFFFF)
1519 		x.rlim_max = 0x7FFFFFFF;
1520 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1521 }
1522 
1523 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1524 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1525 		       struct compat_rlimit __user *, rlim)
1526 {
1527 	struct rlimit r;
1528 
1529 	if (resource >= RLIM_NLIMITS)
1530 		return -EINVAL;
1531 
1532 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1533 	task_lock(current->group_leader);
1534 	r = current->signal->rlim[resource];
1535 	task_unlock(current->group_leader);
1536 	if (r.rlim_cur > 0x7FFFFFFF)
1537 		r.rlim_cur = 0x7FFFFFFF;
1538 	if (r.rlim_max > 0x7FFFFFFF)
1539 		r.rlim_max = 0x7FFFFFFF;
1540 
1541 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1542 	    put_user(r.rlim_max, &rlim->rlim_max))
1543 		return -EFAULT;
1544 	return 0;
1545 }
1546 #endif
1547 
1548 #endif
1549 
rlim64_is_infinity(__u64 rlim64)1550 static inline bool rlim64_is_infinity(__u64 rlim64)
1551 {
1552 #if BITS_PER_LONG < 64
1553 	return rlim64 >= ULONG_MAX;
1554 #else
1555 	return rlim64 == RLIM64_INFINITY;
1556 #endif
1557 }
1558 
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1559 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1560 {
1561 	if (rlim->rlim_cur == RLIM_INFINITY)
1562 		rlim64->rlim_cur = RLIM64_INFINITY;
1563 	else
1564 		rlim64->rlim_cur = rlim->rlim_cur;
1565 	if (rlim->rlim_max == RLIM_INFINITY)
1566 		rlim64->rlim_max = RLIM64_INFINITY;
1567 	else
1568 		rlim64->rlim_max = rlim->rlim_max;
1569 }
1570 
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1571 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1572 {
1573 	if (rlim64_is_infinity(rlim64->rlim_cur))
1574 		rlim->rlim_cur = RLIM_INFINITY;
1575 	else
1576 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1577 	if (rlim64_is_infinity(rlim64->rlim_max))
1578 		rlim->rlim_max = RLIM_INFINITY;
1579 	else
1580 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1581 }
1582 
1583 /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1584 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1585 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1586 {
1587 	struct rlimit *rlim;
1588 	int retval = 0;
1589 
1590 	if (resource >= RLIM_NLIMITS)
1591 		return -EINVAL;
1592 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1593 
1594 	if (new_rlim) {
1595 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1596 			return -EINVAL;
1597 		if (resource == RLIMIT_NOFILE &&
1598 				new_rlim->rlim_max > sysctl_nr_open)
1599 			return -EPERM;
1600 	}
1601 
1602 	/* protect tsk->signal and tsk->sighand from disappearing */
1603 	read_lock(&tasklist_lock);
1604 	if (!tsk->sighand) {
1605 		retval = -ESRCH;
1606 		goto out;
1607 	}
1608 
1609 	rlim = tsk->signal->rlim + resource;
1610 	task_lock(tsk->group_leader);
1611 	if (new_rlim) {
1612 		/* Keep the capable check against init_user_ns until
1613 		   cgroups can contain all limits */
1614 		if (new_rlim->rlim_max > rlim->rlim_max &&
1615 				!capable(CAP_SYS_RESOURCE))
1616 			retval = -EPERM;
1617 		if (!retval)
1618 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1619 	}
1620 	if (!retval) {
1621 		if (old_rlim)
1622 			*old_rlim = *rlim;
1623 		if (new_rlim)
1624 			*rlim = *new_rlim;
1625 	}
1626 	task_unlock(tsk->group_leader);
1627 
1628 	/*
1629 	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1630 	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1631 	 * ignores the rlimit.
1632 	 */
1633 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1634 	     new_rlim->rlim_cur != RLIM_INFINITY &&
1635 	     IS_ENABLED(CONFIG_POSIX_TIMERS))
1636 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1637 out:
1638 	read_unlock(&tasklist_lock);
1639 	return retval;
1640 }
1641 
1642 /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task,unsigned int flags)1643 static int check_prlimit_permission(struct task_struct *task,
1644 				    unsigned int flags)
1645 {
1646 	const struct cred *cred = current_cred(), *tcred;
1647 	bool id_match;
1648 
1649 	if (current == task)
1650 		return 0;
1651 
1652 	tcred = __task_cred(task);
1653 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1654 		    uid_eq(cred->uid, tcred->suid) &&
1655 		    uid_eq(cred->uid, tcred->uid)  &&
1656 		    gid_eq(cred->gid, tcred->egid) &&
1657 		    gid_eq(cred->gid, tcred->sgid) &&
1658 		    gid_eq(cred->gid, tcred->gid));
1659 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1660 		return -EPERM;
1661 
1662 	return security_task_prlimit(cred, tcred, flags);
1663 }
1664 
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1665 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1666 		const struct rlimit64 __user *, new_rlim,
1667 		struct rlimit64 __user *, old_rlim)
1668 {
1669 	struct rlimit64 old64, new64;
1670 	struct rlimit old, new;
1671 	struct task_struct *tsk;
1672 	unsigned int checkflags = 0;
1673 	int ret;
1674 
1675 	if (old_rlim)
1676 		checkflags |= LSM_PRLIMIT_READ;
1677 
1678 	if (new_rlim) {
1679 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1680 			return -EFAULT;
1681 		rlim64_to_rlim(&new64, &new);
1682 		checkflags |= LSM_PRLIMIT_WRITE;
1683 	}
1684 
1685 	rcu_read_lock();
1686 	tsk = pid ? find_task_by_vpid(pid) : current;
1687 	if (!tsk) {
1688 		rcu_read_unlock();
1689 		return -ESRCH;
1690 	}
1691 	ret = check_prlimit_permission(tsk, checkflags);
1692 	if (ret) {
1693 		rcu_read_unlock();
1694 		return ret;
1695 	}
1696 	get_task_struct(tsk);
1697 	rcu_read_unlock();
1698 
1699 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1700 			old_rlim ? &old : NULL);
1701 
1702 	if (!ret && old_rlim) {
1703 		rlim_to_rlim64(&old, &old64);
1704 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1705 			ret = -EFAULT;
1706 	}
1707 
1708 	put_task_struct(tsk);
1709 	return ret;
1710 }
1711 
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1712 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1713 {
1714 	struct rlimit new_rlim;
1715 
1716 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1717 		return -EFAULT;
1718 	return do_prlimit(current, resource, &new_rlim, NULL);
1719 }
1720 
1721 /*
1722  * It would make sense to put struct rusage in the task_struct,
1723  * except that would make the task_struct be *really big*.  After
1724  * task_struct gets moved into malloc'ed memory, it would
1725  * make sense to do this.  It will make moving the rest of the information
1726  * a lot simpler!  (Which we're not doing right now because we're not
1727  * measuring them yet).
1728  *
1729  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1730  * races with threads incrementing their own counters.  But since word
1731  * reads are atomic, we either get new values or old values and we don't
1732  * care which for the sums.  We always take the siglock to protect reading
1733  * the c* fields from p->signal from races with exit.c updating those
1734  * fields when reaping, so a sample either gets all the additions of a
1735  * given child after it's reaped, or none so this sample is before reaping.
1736  *
1737  * Locking:
1738  * We need to take the siglock for CHILDEREN, SELF and BOTH
1739  * for  the cases current multithreaded, non-current single threaded
1740  * non-current multithreaded.  Thread traversal is now safe with
1741  * the siglock held.
1742  * Strictly speaking, we donot need to take the siglock if we are current and
1743  * single threaded,  as no one else can take our signal_struct away, no one
1744  * else can  reap the  children to update signal->c* counters, and no one else
1745  * can race with the signal-> fields. If we do not take any lock, the
1746  * signal-> fields could be read out of order while another thread was just
1747  * exiting. So we should  place a read memory barrier when we avoid the lock.
1748  * On the writer side,  write memory barrier is implied in  __exit_signal
1749  * as __exit_signal releases  the siglock spinlock after updating the signal->
1750  * fields. But we don't do this yet to keep things simple.
1751  *
1752  */
1753 
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1754 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1755 {
1756 	r->ru_nvcsw += t->nvcsw;
1757 	r->ru_nivcsw += t->nivcsw;
1758 	r->ru_minflt += t->min_flt;
1759 	r->ru_majflt += t->maj_flt;
1760 	r->ru_inblock += task_io_get_inblock(t);
1761 	r->ru_oublock += task_io_get_oublock(t);
1762 }
1763 
getrusage(struct task_struct * p,int who,struct rusage * r)1764 void getrusage(struct task_struct *p, int who, struct rusage *r)
1765 {
1766 	struct task_struct *t;
1767 	unsigned long flags;
1768 	u64 tgutime, tgstime, utime, stime;
1769 	unsigned long maxrss = 0;
1770 
1771 	memset((char *)r, 0, sizeof (*r));
1772 	utime = stime = 0;
1773 
1774 	if (who == RUSAGE_THREAD) {
1775 		task_cputime_adjusted(current, &utime, &stime);
1776 		accumulate_thread_rusage(p, r);
1777 		maxrss = p->signal->maxrss;
1778 		goto out;
1779 	}
1780 
1781 	if (!lock_task_sighand(p, &flags))
1782 		return;
1783 
1784 	switch (who) {
1785 	case RUSAGE_BOTH:
1786 	case RUSAGE_CHILDREN:
1787 		utime = p->signal->cutime;
1788 		stime = p->signal->cstime;
1789 		r->ru_nvcsw = p->signal->cnvcsw;
1790 		r->ru_nivcsw = p->signal->cnivcsw;
1791 		r->ru_minflt = p->signal->cmin_flt;
1792 		r->ru_majflt = p->signal->cmaj_flt;
1793 		r->ru_inblock = p->signal->cinblock;
1794 		r->ru_oublock = p->signal->coublock;
1795 		maxrss = p->signal->cmaxrss;
1796 
1797 		if (who == RUSAGE_CHILDREN)
1798 			break;
1799 		fallthrough;
1800 
1801 	case RUSAGE_SELF:
1802 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1803 		utime += tgutime;
1804 		stime += tgstime;
1805 		r->ru_nvcsw += p->signal->nvcsw;
1806 		r->ru_nivcsw += p->signal->nivcsw;
1807 		r->ru_minflt += p->signal->min_flt;
1808 		r->ru_majflt += p->signal->maj_flt;
1809 		r->ru_inblock += p->signal->inblock;
1810 		r->ru_oublock += p->signal->oublock;
1811 		if (maxrss < p->signal->maxrss)
1812 			maxrss = p->signal->maxrss;
1813 		t = p;
1814 		do {
1815 			accumulate_thread_rusage(t, r);
1816 		} while_each_thread(p, t);
1817 		break;
1818 
1819 	default:
1820 		BUG();
1821 	}
1822 	unlock_task_sighand(p, &flags);
1823 
1824 out:
1825 	r->ru_utime = ns_to_kernel_old_timeval(utime);
1826 	r->ru_stime = ns_to_kernel_old_timeval(stime);
1827 
1828 	if (who != RUSAGE_CHILDREN) {
1829 		struct mm_struct *mm = get_task_mm(p);
1830 
1831 		if (mm) {
1832 			setmax_mm_hiwater_rss(&maxrss, mm);
1833 			mmput(mm);
1834 		}
1835 	}
1836 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1837 }
1838 
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1839 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1840 {
1841 	struct rusage r;
1842 
1843 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1844 	    who != RUSAGE_THREAD)
1845 		return -EINVAL;
1846 
1847 	getrusage(current, who, &r);
1848 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1849 }
1850 
1851 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(getrusage,int,who,struct compat_rusage __user *,ru)1852 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1853 {
1854 	struct rusage r;
1855 
1856 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1857 	    who != RUSAGE_THREAD)
1858 		return -EINVAL;
1859 
1860 	getrusage(current, who, &r);
1861 	return put_compat_rusage(&r, ru);
1862 }
1863 #endif
1864 
SYSCALL_DEFINE1(umask,int,mask)1865 SYSCALL_DEFINE1(umask, int, mask)
1866 {
1867 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1868 	return mask;
1869 }
1870 
prctl_set_mm_exe_file(struct mm_struct * mm,unsigned int fd)1871 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1872 {
1873 	struct fd exe;
1874 	struct inode *inode;
1875 	int err;
1876 
1877 	exe = fdget(fd);
1878 	if (!exe.file)
1879 		return -EBADF;
1880 
1881 	inode = file_inode(exe.file);
1882 
1883 	/*
1884 	 * Because the original mm->exe_file points to executable file, make
1885 	 * sure that this one is executable as well, to avoid breaking an
1886 	 * overall picture.
1887 	 */
1888 	err = -EACCES;
1889 	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1890 		goto exit;
1891 
1892 	err = file_permission(exe.file, MAY_EXEC);
1893 	if (err)
1894 		goto exit;
1895 
1896 	err = replace_mm_exe_file(mm, exe.file);
1897 exit:
1898 	fdput(exe);
1899 	return err;
1900 }
1901 
1902 /*
1903  * Check arithmetic relations of passed addresses.
1904  *
1905  * WARNING: we don't require any capability here so be very careful
1906  * in what is allowed for modification from userspace.
1907  */
validate_prctl_map_addr(struct prctl_mm_map * prctl_map)1908 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1909 {
1910 	unsigned long mmap_max_addr = TASK_SIZE;
1911 	int error = -EINVAL, i;
1912 
1913 	static const unsigned char offsets[] = {
1914 		offsetof(struct prctl_mm_map, start_code),
1915 		offsetof(struct prctl_mm_map, end_code),
1916 		offsetof(struct prctl_mm_map, start_data),
1917 		offsetof(struct prctl_mm_map, end_data),
1918 		offsetof(struct prctl_mm_map, start_brk),
1919 		offsetof(struct prctl_mm_map, brk),
1920 		offsetof(struct prctl_mm_map, start_stack),
1921 		offsetof(struct prctl_mm_map, arg_start),
1922 		offsetof(struct prctl_mm_map, arg_end),
1923 		offsetof(struct prctl_mm_map, env_start),
1924 		offsetof(struct prctl_mm_map, env_end),
1925 	};
1926 
1927 	/*
1928 	 * Make sure the members are not somewhere outside
1929 	 * of allowed address space.
1930 	 */
1931 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1932 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1933 
1934 		if ((unsigned long)val >= mmap_max_addr ||
1935 		    (unsigned long)val < mmap_min_addr)
1936 			goto out;
1937 	}
1938 
1939 	/*
1940 	 * Make sure the pairs are ordered.
1941 	 */
1942 #define __prctl_check_order(__m1, __op, __m2)				\
1943 	((unsigned long)prctl_map->__m1 __op				\
1944 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1945 	error  = __prctl_check_order(start_code, <, end_code);
1946 	error |= __prctl_check_order(start_data,<=, end_data);
1947 	error |= __prctl_check_order(start_brk, <=, brk);
1948 	error |= __prctl_check_order(arg_start, <=, arg_end);
1949 	error |= __prctl_check_order(env_start, <=, env_end);
1950 	if (error)
1951 		goto out;
1952 #undef __prctl_check_order
1953 
1954 	error = -EINVAL;
1955 
1956 	/*
1957 	 * Neither we should allow to override limits if they set.
1958 	 */
1959 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1960 			      prctl_map->start_brk, prctl_map->end_data,
1961 			      prctl_map->start_data))
1962 			goto out;
1963 
1964 	error = 0;
1965 out:
1966 	return error;
1967 }
1968 
1969 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm_map(int opt,const void __user * addr,unsigned long data_size)1970 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1971 {
1972 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1973 	unsigned long user_auxv[AT_VECTOR_SIZE];
1974 	struct mm_struct *mm = current->mm;
1975 	int error;
1976 
1977 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1978 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1979 
1980 	if (opt == PR_SET_MM_MAP_SIZE)
1981 		return put_user((unsigned int)sizeof(prctl_map),
1982 				(unsigned int __user *)addr);
1983 
1984 	if (data_size != sizeof(prctl_map))
1985 		return -EINVAL;
1986 
1987 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1988 		return -EFAULT;
1989 
1990 	error = validate_prctl_map_addr(&prctl_map);
1991 	if (error)
1992 		return error;
1993 
1994 	if (prctl_map.auxv_size) {
1995 		/*
1996 		 * Someone is trying to cheat the auxv vector.
1997 		 */
1998 		if (!prctl_map.auxv ||
1999 				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2000 			return -EINVAL;
2001 
2002 		memset(user_auxv, 0, sizeof(user_auxv));
2003 		if (copy_from_user(user_auxv,
2004 				   (const void __user *)prctl_map.auxv,
2005 				   prctl_map.auxv_size))
2006 			return -EFAULT;
2007 
2008 		/* Last entry must be AT_NULL as specification requires */
2009 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2010 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2011 	}
2012 
2013 	if (prctl_map.exe_fd != (u32)-1) {
2014 		/*
2015 		 * Check if the current user is checkpoint/restore capable.
2016 		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2017 		 * or CAP_CHECKPOINT_RESTORE.
2018 		 * Note that a user with access to ptrace can masquerade an
2019 		 * arbitrary program as any executable, even setuid ones.
2020 		 * This may have implications in the tomoyo subsystem.
2021 		 */
2022 		if (!checkpoint_restore_ns_capable(current_user_ns()))
2023 			return -EPERM;
2024 
2025 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2026 		if (error)
2027 			return error;
2028 	}
2029 
2030 	/*
2031 	 * arg_lock protects concurrent updates but we still need mmap_lock for
2032 	 * read to exclude races with sys_brk.
2033 	 */
2034 	mmap_read_lock(mm);
2035 
2036 	/*
2037 	 * We don't validate if these members are pointing to
2038 	 * real present VMAs because application may have correspond
2039 	 * VMAs already unmapped and kernel uses these members for statistics
2040 	 * output in procfs mostly, except
2041 	 *
2042 	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2043 	 *    for VMAs when updating these members so anything wrong written
2044 	 *    here cause kernel to swear at userspace program but won't lead
2045 	 *    to any problem in kernel itself
2046 	 */
2047 
2048 	spin_lock(&mm->arg_lock);
2049 	mm->start_code	= prctl_map.start_code;
2050 	mm->end_code	= prctl_map.end_code;
2051 	mm->start_data	= prctl_map.start_data;
2052 	mm->end_data	= prctl_map.end_data;
2053 	mm->start_brk	= prctl_map.start_brk;
2054 	mm->brk		= prctl_map.brk;
2055 	mm->start_stack	= prctl_map.start_stack;
2056 	mm->arg_start	= prctl_map.arg_start;
2057 	mm->arg_end	= prctl_map.arg_end;
2058 	mm->env_start	= prctl_map.env_start;
2059 	mm->env_end	= prctl_map.env_end;
2060 	spin_unlock(&mm->arg_lock);
2061 
2062 	/*
2063 	 * Note this update of @saved_auxv is lockless thus
2064 	 * if someone reads this member in procfs while we're
2065 	 * updating -- it may get partly updated results. It's
2066 	 * known and acceptable trade off: we leave it as is to
2067 	 * not introduce additional locks here making the kernel
2068 	 * more complex.
2069 	 */
2070 	if (prctl_map.auxv_size)
2071 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2072 
2073 	mmap_read_unlock(mm);
2074 	return 0;
2075 }
2076 #endif /* CONFIG_CHECKPOINT_RESTORE */
2077 
prctl_set_auxv(struct mm_struct * mm,unsigned long addr,unsigned long len)2078 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2079 			  unsigned long len)
2080 {
2081 	/*
2082 	 * This doesn't move the auxiliary vector itself since it's pinned to
2083 	 * mm_struct, but it permits filling the vector with new values.  It's
2084 	 * up to the caller to provide sane values here, otherwise userspace
2085 	 * tools which use this vector might be unhappy.
2086 	 */
2087 	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2088 
2089 	if (len > sizeof(user_auxv))
2090 		return -EINVAL;
2091 
2092 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2093 		return -EFAULT;
2094 
2095 	/* Make sure the last entry is always AT_NULL */
2096 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2097 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2098 
2099 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2100 
2101 	task_lock(current);
2102 	memcpy(mm->saved_auxv, user_auxv, len);
2103 	task_unlock(current);
2104 
2105 	return 0;
2106 }
2107 
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)2108 static int prctl_set_mm(int opt, unsigned long addr,
2109 			unsigned long arg4, unsigned long arg5)
2110 {
2111 	struct mm_struct *mm = current->mm;
2112 	struct prctl_mm_map prctl_map = {
2113 		.auxv = NULL,
2114 		.auxv_size = 0,
2115 		.exe_fd = -1,
2116 	};
2117 	struct vm_area_struct *vma;
2118 	int error;
2119 
2120 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2121 			      opt != PR_SET_MM_MAP &&
2122 			      opt != PR_SET_MM_MAP_SIZE)))
2123 		return -EINVAL;
2124 
2125 #ifdef CONFIG_CHECKPOINT_RESTORE
2126 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2127 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2128 #endif
2129 
2130 	if (!capable(CAP_SYS_RESOURCE))
2131 		return -EPERM;
2132 
2133 	if (opt == PR_SET_MM_EXE_FILE)
2134 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2135 
2136 	if (opt == PR_SET_MM_AUXV)
2137 		return prctl_set_auxv(mm, addr, arg4);
2138 
2139 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2140 		return -EINVAL;
2141 
2142 	error = -EINVAL;
2143 
2144 	/*
2145 	 * arg_lock protects concurrent updates of arg boundaries, we need
2146 	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2147 	 * validation.
2148 	 */
2149 	mmap_read_lock(mm);
2150 	vma = find_vma(mm, addr);
2151 
2152 	spin_lock(&mm->arg_lock);
2153 	prctl_map.start_code	= mm->start_code;
2154 	prctl_map.end_code	= mm->end_code;
2155 	prctl_map.start_data	= mm->start_data;
2156 	prctl_map.end_data	= mm->end_data;
2157 	prctl_map.start_brk	= mm->start_brk;
2158 	prctl_map.brk		= mm->brk;
2159 	prctl_map.start_stack	= mm->start_stack;
2160 	prctl_map.arg_start	= mm->arg_start;
2161 	prctl_map.arg_end	= mm->arg_end;
2162 	prctl_map.env_start	= mm->env_start;
2163 	prctl_map.env_end	= mm->env_end;
2164 
2165 	switch (opt) {
2166 	case PR_SET_MM_START_CODE:
2167 		prctl_map.start_code = addr;
2168 		break;
2169 	case PR_SET_MM_END_CODE:
2170 		prctl_map.end_code = addr;
2171 		break;
2172 	case PR_SET_MM_START_DATA:
2173 		prctl_map.start_data = addr;
2174 		break;
2175 	case PR_SET_MM_END_DATA:
2176 		prctl_map.end_data = addr;
2177 		break;
2178 	case PR_SET_MM_START_STACK:
2179 		prctl_map.start_stack = addr;
2180 		break;
2181 	case PR_SET_MM_START_BRK:
2182 		prctl_map.start_brk = addr;
2183 		break;
2184 	case PR_SET_MM_BRK:
2185 		prctl_map.brk = addr;
2186 		break;
2187 	case PR_SET_MM_ARG_START:
2188 		prctl_map.arg_start = addr;
2189 		break;
2190 	case PR_SET_MM_ARG_END:
2191 		prctl_map.arg_end = addr;
2192 		break;
2193 	case PR_SET_MM_ENV_START:
2194 		prctl_map.env_start = addr;
2195 		break;
2196 	case PR_SET_MM_ENV_END:
2197 		prctl_map.env_end = addr;
2198 		break;
2199 	default:
2200 		goto out;
2201 	}
2202 
2203 	error = validate_prctl_map_addr(&prctl_map);
2204 	if (error)
2205 		goto out;
2206 
2207 	switch (opt) {
2208 	/*
2209 	 * If command line arguments and environment
2210 	 * are placed somewhere else on stack, we can
2211 	 * set them up here, ARG_START/END to setup
2212 	 * command line arguments and ENV_START/END
2213 	 * for environment.
2214 	 */
2215 	case PR_SET_MM_START_STACK:
2216 	case PR_SET_MM_ARG_START:
2217 	case PR_SET_MM_ARG_END:
2218 	case PR_SET_MM_ENV_START:
2219 	case PR_SET_MM_ENV_END:
2220 		if (!vma) {
2221 			error = -EFAULT;
2222 			goto out;
2223 		}
2224 	}
2225 
2226 	mm->start_code	= prctl_map.start_code;
2227 	mm->end_code	= prctl_map.end_code;
2228 	mm->start_data	= prctl_map.start_data;
2229 	mm->end_data	= prctl_map.end_data;
2230 	mm->start_brk	= prctl_map.start_brk;
2231 	mm->brk		= prctl_map.brk;
2232 	mm->start_stack	= prctl_map.start_stack;
2233 	mm->arg_start	= prctl_map.arg_start;
2234 	mm->arg_end	= prctl_map.arg_end;
2235 	mm->env_start	= prctl_map.env_start;
2236 	mm->env_end	= prctl_map.env_end;
2237 
2238 	error = 0;
2239 out:
2240 	spin_unlock(&mm->arg_lock);
2241 	mmap_read_unlock(mm);
2242 	return error;
2243 }
2244 
2245 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2246 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2247 {
2248 	return put_user(me->clear_child_tid, tid_addr);
2249 }
2250 #else
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2251 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2252 {
2253 	return -EINVAL;
2254 }
2255 #endif
2256 
propagate_has_child_subreaper(struct task_struct * p,void * data)2257 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2258 {
2259 	/*
2260 	 * If task has has_child_subreaper - all its descendants
2261 	 * already have these flag too and new descendants will
2262 	 * inherit it on fork, skip them.
2263 	 *
2264 	 * If we've found child_reaper - skip descendants in
2265 	 * it's subtree as they will never get out pidns.
2266 	 */
2267 	if (p->signal->has_child_subreaper ||
2268 	    is_child_reaper(task_pid(p)))
2269 		return 0;
2270 
2271 	p->signal->has_child_subreaper = 1;
2272 	return 1;
2273 }
2274 
arch_prctl_spec_ctrl_get(struct task_struct * t,unsigned long which)2275 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2276 {
2277 	return -EINVAL;
2278 }
2279 
arch_prctl_spec_ctrl_set(struct task_struct * t,unsigned long which,unsigned long ctrl)2280 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2281 				    unsigned long ctrl)
2282 {
2283 	return -EINVAL;
2284 }
2285 
2286 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2287 
2288 #ifdef CONFIG_ANON_VMA_NAME
2289 
2290 #define ANON_VMA_NAME_MAX_LEN		256
2291 #define ANON_VMA_NAME_INVALID_CHARS	"\\`$[]"
2292 
is_valid_name_char(char ch)2293 static inline bool is_valid_name_char(char ch)
2294 {
2295 	/* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2296 	return ch > 0x1f && ch < 0x7f &&
2297 		!strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2298 }
2299 
prctl_set_vma(unsigned long opt,unsigned long addr,unsigned long size,unsigned long arg)2300 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2301 			 unsigned long size, unsigned long arg)
2302 {
2303 	struct mm_struct *mm = current->mm;
2304 	const char __user *uname;
2305 	struct anon_vma_name *anon_name = NULL;
2306 	int error;
2307 
2308 	switch (opt) {
2309 	case PR_SET_VMA_ANON_NAME:
2310 		uname = (const char __user *)arg;
2311 		if (uname) {
2312 			char *name, *pch;
2313 
2314 			name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2315 			if (IS_ERR(name))
2316 				return PTR_ERR(name);
2317 
2318 			for (pch = name; *pch != '\0'; pch++) {
2319 				if (!is_valid_name_char(*pch)) {
2320 					kfree(name);
2321 					return -EINVAL;
2322 				}
2323 			}
2324 			/* anon_vma has its own copy */
2325 			anon_name = anon_vma_name_alloc(name);
2326 			kfree(name);
2327 			if (!anon_name)
2328 				return -ENOMEM;
2329 
2330 		}
2331 
2332 		mmap_write_lock(mm);
2333 		error = madvise_set_anon_name(mm, addr, size, anon_name);
2334 		mmap_write_unlock(mm);
2335 		anon_vma_name_put(anon_name);
2336 		break;
2337 	default:
2338 		error = -EINVAL;
2339 	}
2340 
2341 	return error;
2342 }
2343 
2344 #else /* CONFIG_ANON_VMA_NAME */
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long size,unsigned long arg)2345 static int prctl_set_vma(unsigned long opt, unsigned long start,
2346 			 unsigned long size, unsigned long arg)
2347 {
2348 	return -EINVAL;
2349 }
2350 #endif /* CONFIG_ANON_VMA_NAME */
2351 
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)2352 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2353 		unsigned long, arg4, unsigned long, arg5)
2354 {
2355 	struct task_struct *me = current;
2356 	unsigned char comm[sizeof(me->comm)];
2357 	long error;
2358 
2359 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2360 	if (error != -ENOSYS)
2361 		return error;
2362 
2363 	error = 0;
2364 	switch (option) {
2365 	case PR_SET_PDEATHSIG:
2366 		if (!valid_signal(arg2)) {
2367 			error = -EINVAL;
2368 			break;
2369 		}
2370 		me->pdeath_signal = arg2;
2371 		break;
2372 	case PR_GET_PDEATHSIG:
2373 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2374 		break;
2375 	case PR_GET_DUMPABLE:
2376 		error = get_dumpable(me->mm);
2377 		break;
2378 	case PR_SET_DUMPABLE:
2379 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2380 			error = -EINVAL;
2381 			break;
2382 		}
2383 		set_dumpable(me->mm, arg2);
2384 		break;
2385 
2386 	case PR_SET_UNALIGN:
2387 		error = SET_UNALIGN_CTL(me, arg2);
2388 		break;
2389 	case PR_GET_UNALIGN:
2390 		error = GET_UNALIGN_CTL(me, arg2);
2391 		break;
2392 	case PR_SET_FPEMU:
2393 		error = SET_FPEMU_CTL(me, arg2);
2394 		break;
2395 	case PR_GET_FPEMU:
2396 		error = GET_FPEMU_CTL(me, arg2);
2397 		break;
2398 	case PR_SET_FPEXC:
2399 		error = SET_FPEXC_CTL(me, arg2);
2400 		break;
2401 	case PR_GET_FPEXC:
2402 		error = GET_FPEXC_CTL(me, arg2);
2403 		break;
2404 	case PR_GET_TIMING:
2405 		error = PR_TIMING_STATISTICAL;
2406 		break;
2407 	case PR_SET_TIMING:
2408 		if (arg2 != PR_TIMING_STATISTICAL)
2409 			error = -EINVAL;
2410 		break;
2411 	case PR_SET_NAME:
2412 		comm[sizeof(me->comm) - 1] = 0;
2413 		if (strncpy_from_user(comm, (char __user *)arg2,
2414 				      sizeof(me->comm) - 1) < 0)
2415 			return -EFAULT;
2416 		set_task_comm(me, comm);
2417 		proc_comm_connector(me);
2418 		break;
2419 	case PR_GET_NAME:
2420 		get_task_comm(comm, me);
2421 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2422 			return -EFAULT;
2423 		break;
2424 	case PR_GET_ENDIAN:
2425 		error = GET_ENDIAN(me, arg2);
2426 		break;
2427 	case PR_SET_ENDIAN:
2428 		error = SET_ENDIAN(me, arg2);
2429 		break;
2430 	case PR_GET_SECCOMP:
2431 		error = prctl_get_seccomp();
2432 		break;
2433 	case PR_SET_SECCOMP:
2434 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2435 		break;
2436 	case PR_GET_TSC:
2437 		error = GET_TSC_CTL(arg2);
2438 		break;
2439 	case PR_SET_TSC:
2440 		error = SET_TSC_CTL(arg2);
2441 		break;
2442 	case PR_TASK_PERF_EVENTS_DISABLE:
2443 		error = perf_event_task_disable();
2444 		break;
2445 	case PR_TASK_PERF_EVENTS_ENABLE:
2446 		error = perf_event_task_enable();
2447 		break;
2448 	case PR_GET_TIMERSLACK:
2449 		if (current->timer_slack_ns > ULONG_MAX)
2450 			error = ULONG_MAX;
2451 		else
2452 			error = current->timer_slack_ns;
2453 		break;
2454 	case PR_SET_TIMERSLACK:
2455 		if (arg2 <= 0)
2456 			current->timer_slack_ns =
2457 					current->default_timer_slack_ns;
2458 		else
2459 			current->timer_slack_ns = arg2;
2460 		break;
2461 	case PR_MCE_KILL:
2462 		if (arg4 | arg5)
2463 			return -EINVAL;
2464 		switch (arg2) {
2465 		case PR_MCE_KILL_CLEAR:
2466 			if (arg3 != 0)
2467 				return -EINVAL;
2468 			current->flags &= ~PF_MCE_PROCESS;
2469 			break;
2470 		case PR_MCE_KILL_SET:
2471 			current->flags |= PF_MCE_PROCESS;
2472 			if (arg3 == PR_MCE_KILL_EARLY)
2473 				current->flags |= PF_MCE_EARLY;
2474 			else if (arg3 == PR_MCE_KILL_LATE)
2475 				current->flags &= ~PF_MCE_EARLY;
2476 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2477 				current->flags &=
2478 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2479 			else
2480 				return -EINVAL;
2481 			break;
2482 		default:
2483 			return -EINVAL;
2484 		}
2485 		break;
2486 	case PR_MCE_KILL_GET:
2487 		if (arg2 | arg3 | arg4 | arg5)
2488 			return -EINVAL;
2489 		if (current->flags & PF_MCE_PROCESS)
2490 			error = (current->flags & PF_MCE_EARLY) ?
2491 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2492 		else
2493 			error = PR_MCE_KILL_DEFAULT;
2494 		break;
2495 	case PR_SET_MM:
2496 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2497 		break;
2498 	case PR_GET_TID_ADDRESS:
2499 		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2500 		break;
2501 	case PR_SET_CHILD_SUBREAPER:
2502 		me->signal->is_child_subreaper = !!arg2;
2503 		if (!arg2)
2504 			break;
2505 
2506 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2507 		break;
2508 	case PR_GET_CHILD_SUBREAPER:
2509 		error = put_user(me->signal->is_child_subreaper,
2510 				 (int __user *)arg2);
2511 		break;
2512 	case PR_SET_NO_NEW_PRIVS:
2513 		if (arg2 != 1 || arg3 || arg4 || arg5)
2514 			return -EINVAL;
2515 
2516 		task_set_no_new_privs(current);
2517 		break;
2518 	case PR_GET_NO_NEW_PRIVS:
2519 		if (arg2 || arg3 || arg4 || arg5)
2520 			return -EINVAL;
2521 		return task_no_new_privs(current) ? 1 : 0;
2522 	case PR_GET_THP_DISABLE:
2523 		if (arg2 || arg3 || arg4 || arg5)
2524 			return -EINVAL;
2525 		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2526 		break;
2527 	case PR_SET_THP_DISABLE:
2528 		if (arg3 || arg4 || arg5)
2529 			return -EINVAL;
2530 		if (mmap_write_lock_killable(me->mm))
2531 			return -EINTR;
2532 		if (arg2)
2533 			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2534 		else
2535 			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2536 		mmap_write_unlock(me->mm);
2537 		break;
2538 	case PR_MPX_ENABLE_MANAGEMENT:
2539 	case PR_MPX_DISABLE_MANAGEMENT:
2540 		/* No longer implemented: */
2541 		return -EINVAL;
2542 	case PR_SET_FP_MODE:
2543 		error = SET_FP_MODE(me, arg2);
2544 		break;
2545 	case PR_GET_FP_MODE:
2546 		error = GET_FP_MODE(me);
2547 		break;
2548 	case PR_SVE_SET_VL:
2549 		error = SVE_SET_VL(arg2);
2550 		break;
2551 	case PR_SVE_GET_VL:
2552 		error = SVE_GET_VL();
2553 		break;
2554 	case PR_GET_SPECULATION_CTRL:
2555 		if (arg3 || arg4 || arg5)
2556 			return -EINVAL;
2557 		error = arch_prctl_spec_ctrl_get(me, arg2);
2558 		break;
2559 	case PR_SET_SPECULATION_CTRL:
2560 		if (arg4 || arg5)
2561 			return -EINVAL;
2562 		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2563 		break;
2564 	case PR_PAC_RESET_KEYS:
2565 		if (arg3 || arg4 || arg5)
2566 			return -EINVAL;
2567 		error = PAC_RESET_KEYS(me, arg2);
2568 		break;
2569 	case PR_PAC_SET_ENABLED_KEYS:
2570 		if (arg4 || arg5)
2571 			return -EINVAL;
2572 		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2573 		break;
2574 	case PR_PAC_GET_ENABLED_KEYS:
2575 		if (arg2 || arg3 || arg4 || arg5)
2576 			return -EINVAL;
2577 		error = PAC_GET_ENABLED_KEYS(me);
2578 		break;
2579 	case PR_SET_TAGGED_ADDR_CTRL:
2580 		if (arg3 || arg4 || arg5)
2581 			return -EINVAL;
2582 		error = SET_TAGGED_ADDR_CTRL(arg2);
2583 		break;
2584 	case PR_GET_TAGGED_ADDR_CTRL:
2585 		if (arg2 || arg3 || arg4 || arg5)
2586 			return -EINVAL;
2587 		error = GET_TAGGED_ADDR_CTRL();
2588 		break;
2589 	case PR_SET_IO_FLUSHER:
2590 		if (!capable(CAP_SYS_RESOURCE))
2591 			return -EPERM;
2592 
2593 		if (arg3 || arg4 || arg5)
2594 			return -EINVAL;
2595 
2596 		if (arg2 == 1)
2597 			current->flags |= PR_IO_FLUSHER;
2598 		else if (!arg2)
2599 			current->flags &= ~PR_IO_FLUSHER;
2600 		else
2601 			return -EINVAL;
2602 		break;
2603 	case PR_GET_IO_FLUSHER:
2604 		if (!capable(CAP_SYS_RESOURCE))
2605 			return -EPERM;
2606 
2607 		if (arg2 || arg3 || arg4 || arg5)
2608 			return -EINVAL;
2609 
2610 		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2611 		break;
2612 	case PR_SET_SYSCALL_USER_DISPATCH:
2613 		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2614 						  (char __user *) arg5);
2615 		break;
2616 #ifdef CONFIG_SCHED_CORE
2617 	case PR_SCHED_CORE:
2618 		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2619 		break;
2620 #endif
2621 	case PR_SET_VMA:
2622 		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2623 		break;
2624 	default:
2625 		error = -EINVAL;
2626 		break;
2627 	}
2628 	trace_android_vh_syscall_prctl_finished(option, me);
2629 	return error;
2630 }
2631 
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2632 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2633 		struct getcpu_cache __user *, unused)
2634 {
2635 	int err = 0;
2636 	int cpu = raw_smp_processor_id();
2637 
2638 	if (cpup)
2639 		err |= put_user(cpu, cpup);
2640 	if (nodep)
2641 		err |= put_user(cpu_to_node(cpu), nodep);
2642 	return err ? -EFAULT : 0;
2643 }
2644 
2645 /**
2646  * do_sysinfo - fill in sysinfo struct
2647  * @info: pointer to buffer to fill
2648  */
do_sysinfo(struct sysinfo * info)2649 static int do_sysinfo(struct sysinfo *info)
2650 {
2651 	unsigned long mem_total, sav_total;
2652 	unsigned int mem_unit, bitcount;
2653 	struct timespec64 tp;
2654 
2655 	memset(info, 0, sizeof(struct sysinfo));
2656 
2657 	ktime_get_boottime_ts64(&tp);
2658 	timens_add_boottime(&tp);
2659 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2660 
2661 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2662 
2663 	info->procs = nr_threads;
2664 
2665 	si_meminfo(info);
2666 	si_swapinfo(info);
2667 
2668 	/*
2669 	 * If the sum of all the available memory (i.e. ram + swap)
2670 	 * is less than can be stored in a 32 bit unsigned long then
2671 	 * we can be binary compatible with 2.2.x kernels.  If not,
2672 	 * well, in that case 2.2.x was broken anyways...
2673 	 *
2674 	 *  -Erik Andersen <andersee@debian.org>
2675 	 */
2676 
2677 	mem_total = info->totalram + info->totalswap;
2678 	if (mem_total < info->totalram || mem_total < info->totalswap)
2679 		goto out;
2680 	bitcount = 0;
2681 	mem_unit = info->mem_unit;
2682 	while (mem_unit > 1) {
2683 		bitcount++;
2684 		mem_unit >>= 1;
2685 		sav_total = mem_total;
2686 		mem_total <<= 1;
2687 		if (mem_total < sav_total)
2688 			goto out;
2689 	}
2690 
2691 	/*
2692 	 * If mem_total did not overflow, multiply all memory values by
2693 	 * info->mem_unit and set it to 1.  This leaves things compatible
2694 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2695 	 * kernels...
2696 	 */
2697 
2698 	info->mem_unit = 1;
2699 	info->totalram <<= bitcount;
2700 	info->freeram <<= bitcount;
2701 	info->sharedram <<= bitcount;
2702 	info->bufferram <<= bitcount;
2703 	info->totalswap <<= bitcount;
2704 	info->freeswap <<= bitcount;
2705 	info->totalhigh <<= bitcount;
2706 	info->freehigh <<= bitcount;
2707 
2708 out:
2709 	return 0;
2710 }
2711 
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)2712 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2713 {
2714 	struct sysinfo val;
2715 
2716 	do_sysinfo(&val);
2717 
2718 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2719 		return -EFAULT;
2720 
2721 	return 0;
2722 }
2723 
2724 #ifdef CONFIG_COMPAT
2725 struct compat_sysinfo {
2726 	s32 uptime;
2727 	u32 loads[3];
2728 	u32 totalram;
2729 	u32 freeram;
2730 	u32 sharedram;
2731 	u32 bufferram;
2732 	u32 totalswap;
2733 	u32 freeswap;
2734 	u16 procs;
2735 	u16 pad;
2736 	u32 totalhigh;
2737 	u32 freehigh;
2738 	u32 mem_unit;
2739 	char _f[20-2*sizeof(u32)-sizeof(int)];
2740 };
2741 
COMPAT_SYSCALL_DEFINE1(sysinfo,struct compat_sysinfo __user *,info)2742 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2743 {
2744 	struct sysinfo s;
2745 	struct compat_sysinfo s_32;
2746 
2747 	do_sysinfo(&s);
2748 
2749 	/* Check to see if any memory value is too large for 32-bit and scale
2750 	 *  down if needed
2751 	 */
2752 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2753 		int bitcount = 0;
2754 
2755 		while (s.mem_unit < PAGE_SIZE) {
2756 			s.mem_unit <<= 1;
2757 			bitcount++;
2758 		}
2759 
2760 		s.totalram >>= bitcount;
2761 		s.freeram >>= bitcount;
2762 		s.sharedram >>= bitcount;
2763 		s.bufferram >>= bitcount;
2764 		s.totalswap >>= bitcount;
2765 		s.freeswap >>= bitcount;
2766 		s.totalhigh >>= bitcount;
2767 		s.freehigh >>= bitcount;
2768 	}
2769 
2770 	memset(&s_32, 0, sizeof(s_32));
2771 	s_32.uptime = s.uptime;
2772 	s_32.loads[0] = s.loads[0];
2773 	s_32.loads[1] = s.loads[1];
2774 	s_32.loads[2] = s.loads[2];
2775 	s_32.totalram = s.totalram;
2776 	s_32.freeram = s.freeram;
2777 	s_32.sharedram = s.sharedram;
2778 	s_32.bufferram = s.bufferram;
2779 	s_32.totalswap = s.totalswap;
2780 	s_32.freeswap = s.freeswap;
2781 	s_32.procs = s.procs;
2782 	s_32.totalhigh = s.totalhigh;
2783 	s_32.freehigh = s.freehigh;
2784 	s_32.mem_unit = s.mem_unit;
2785 	if (copy_to_user(info, &s_32, sizeof(s_32)))
2786 		return -EFAULT;
2787 	return 0;
2788 }
2789 #endif /* CONFIG_COMPAT */
2790