1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002 Andi Kleen, SuSE Labs.
4 * Thanks to Ben LaHaise for precious feedback.
5 */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18 #include <linux/libnvdimm.h>
19 #include <linux/vmstat.h>
20 #include <linux/kernel.h>
21
22 #include <asm/e820/api.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <linux/uaccess.h>
28 #include <asm/pgalloc.h>
29 #include <asm/proto.h>
30 #include <asm/memtype.h>
31 #include <asm/set_memory.h>
32
33 #include "../mm_internal.h"
34
35 /*
36 * The current flushing context - we pass it instead of 5 arguments:
37 */
38 struct cpa_data {
39 unsigned long *vaddr;
40 pgd_t *pgd;
41 pgprot_t mask_set;
42 pgprot_t mask_clr;
43 unsigned long numpages;
44 unsigned long curpage;
45 unsigned long pfn;
46 unsigned int flags;
47 unsigned int force_split : 1,
48 force_static_prot : 1,
49 force_flush_all : 1;
50 struct page **pages;
51 };
52
53 enum cpa_warn {
54 CPA_CONFLICT,
55 CPA_PROTECT,
56 CPA_DETECT,
57 };
58
59 static const int cpa_warn_level = CPA_PROTECT;
60
61 /*
62 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
63 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
64 * entries change the page attribute in parallel to some other cpu
65 * splitting a large page entry along with changing the attribute.
66 */
67 static DEFINE_SPINLOCK(cpa_lock);
68
69 #define CPA_FLUSHTLB 1
70 #define CPA_ARRAY 2
71 #define CPA_PAGES_ARRAY 4
72 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
73
cachemode2pgprot(enum page_cache_mode pcm)74 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
75 {
76 return __pgprot(cachemode2protval(pcm));
77 }
78
79 #ifdef CONFIG_PROC_FS
80 static unsigned long direct_pages_count[PG_LEVEL_NUM];
81
update_page_count(int level,unsigned long pages)82 void update_page_count(int level, unsigned long pages)
83 {
84 /* Protect against CPA */
85 spin_lock(&pgd_lock);
86 direct_pages_count[level] += pages;
87 spin_unlock(&pgd_lock);
88 }
89
split_page_count(int level)90 static void split_page_count(int level)
91 {
92 if (direct_pages_count[level] == 0)
93 return;
94
95 direct_pages_count[level]--;
96 if (system_state == SYSTEM_RUNNING) {
97 if (level == PG_LEVEL_2M)
98 count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
99 else if (level == PG_LEVEL_1G)
100 count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
101 }
102 direct_pages_count[level - 1] += PTRS_PER_PTE;
103 }
104
arch_report_meminfo(struct seq_file * m)105 void arch_report_meminfo(struct seq_file *m)
106 {
107 seq_printf(m, "DirectMap4k: %8lu kB\n",
108 direct_pages_count[PG_LEVEL_4K] << 2);
109 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
110 seq_printf(m, "DirectMap2M: %8lu kB\n",
111 direct_pages_count[PG_LEVEL_2M] << 11);
112 #else
113 seq_printf(m, "DirectMap4M: %8lu kB\n",
114 direct_pages_count[PG_LEVEL_2M] << 12);
115 #endif
116 if (direct_gbpages)
117 seq_printf(m, "DirectMap1G: %8lu kB\n",
118 direct_pages_count[PG_LEVEL_1G] << 20);
119 }
120 #else
split_page_count(int level)121 static inline void split_page_count(int level) { }
122 #endif
123
124 #ifdef CONFIG_X86_CPA_STATISTICS
125
126 static unsigned long cpa_1g_checked;
127 static unsigned long cpa_1g_sameprot;
128 static unsigned long cpa_1g_preserved;
129 static unsigned long cpa_2m_checked;
130 static unsigned long cpa_2m_sameprot;
131 static unsigned long cpa_2m_preserved;
132 static unsigned long cpa_4k_install;
133
cpa_inc_1g_checked(void)134 static inline void cpa_inc_1g_checked(void)
135 {
136 cpa_1g_checked++;
137 }
138
cpa_inc_2m_checked(void)139 static inline void cpa_inc_2m_checked(void)
140 {
141 cpa_2m_checked++;
142 }
143
cpa_inc_4k_install(void)144 static inline void cpa_inc_4k_install(void)
145 {
146 data_race(cpa_4k_install++);
147 }
148
cpa_inc_lp_sameprot(int level)149 static inline void cpa_inc_lp_sameprot(int level)
150 {
151 if (level == PG_LEVEL_1G)
152 cpa_1g_sameprot++;
153 else
154 cpa_2m_sameprot++;
155 }
156
cpa_inc_lp_preserved(int level)157 static inline void cpa_inc_lp_preserved(int level)
158 {
159 if (level == PG_LEVEL_1G)
160 cpa_1g_preserved++;
161 else
162 cpa_2m_preserved++;
163 }
164
cpastats_show(struct seq_file * m,void * p)165 static int cpastats_show(struct seq_file *m, void *p)
166 {
167 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked);
168 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot);
169 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved);
170 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked);
171 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot);
172 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved);
173 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
174 return 0;
175 }
176
cpastats_open(struct inode * inode,struct file * file)177 static int cpastats_open(struct inode *inode, struct file *file)
178 {
179 return single_open(file, cpastats_show, NULL);
180 }
181
182 static const struct file_operations cpastats_fops = {
183 .open = cpastats_open,
184 .read = seq_read,
185 .llseek = seq_lseek,
186 .release = single_release,
187 };
188
cpa_stats_init(void)189 static int __init cpa_stats_init(void)
190 {
191 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
192 &cpastats_fops);
193 return 0;
194 }
195 late_initcall(cpa_stats_init);
196 #else
cpa_inc_1g_checked(void)197 static inline void cpa_inc_1g_checked(void) { }
cpa_inc_2m_checked(void)198 static inline void cpa_inc_2m_checked(void) { }
cpa_inc_4k_install(void)199 static inline void cpa_inc_4k_install(void) { }
cpa_inc_lp_sameprot(int level)200 static inline void cpa_inc_lp_sameprot(int level) { }
cpa_inc_lp_preserved(int level)201 static inline void cpa_inc_lp_preserved(int level) { }
202 #endif
203
204
205 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)206 within(unsigned long addr, unsigned long start, unsigned long end)
207 {
208 return addr >= start && addr < end;
209 }
210
211 static inline int
within_inclusive(unsigned long addr,unsigned long start,unsigned long end)212 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
213 {
214 return addr >= start && addr <= end;
215 }
216
217 #ifdef CONFIG_X86_64
218
highmap_start_pfn(void)219 static inline unsigned long highmap_start_pfn(void)
220 {
221 return __pa_symbol(_text) >> PAGE_SHIFT;
222 }
223
highmap_end_pfn(void)224 static inline unsigned long highmap_end_pfn(void)
225 {
226 /* Do not reference physical address outside the kernel. */
227 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
228 }
229
__cpa_pfn_in_highmap(unsigned long pfn)230 static bool __cpa_pfn_in_highmap(unsigned long pfn)
231 {
232 /*
233 * Kernel text has an alias mapping at a high address, known
234 * here as "highmap".
235 */
236 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
237 }
238
239 #else
240
__cpa_pfn_in_highmap(unsigned long pfn)241 static bool __cpa_pfn_in_highmap(unsigned long pfn)
242 {
243 /* There is no highmap on 32-bit */
244 return false;
245 }
246
247 #endif
248
249 /*
250 * See set_mce_nospec().
251 *
252 * Machine check recovery code needs to change cache mode of poisoned pages to
253 * UC to avoid speculative access logging another error. But passing the
254 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
255 * speculative access. So we cheat and flip the top bit of the address. This
256 * works fine for the code that updates the page tables. But at the end of the
257 * process we need to flush the TLB and cache and the non-canonical address
258 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
259 *
260 * But in the common case we already have a canonical address. This code
261 * will fix the top bit if needed and is a no-op otherwise.
262 */
fix_addr(unsigned long addr)263 static inline unsigned long fix_addr(unsigned long addr)
264 {
265 #ifdef CONFIG_X86_64
266 return (long)(addr << 1) >> 1;
267 #else
268 return addr;
269 #endif
270 }
271
__cpa_addr(struct cpa_data * cpa,unsigned long idx)272 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
273 {
274 if (cpa->flags & CPA_PAGES_ARRAY) {
275 struct page *page = cpa->pages[idx];
276
277 if (unlikely(PageHighMem(page)))
278 return 0;
279
280 return (unsigned long)page_address(page);
281 }
282
283 if (cpa->flags & CPA_ARRAY)
284 return cpa->vaddr[idx];
285
286 return *cpa->vaddr + idx * PAGE_SIZE;
287 }
288
289 /*
290 * Flushing functions
291 */
292
clflush_cache_range_opt(void * vaddr,unsigned int size)293 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
294 {
295 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
296 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
297 void *vend = vaddr + size;
298
299 if (p >= vend)
300 return;
301
302 for (; p < vend; p += clflush_size)
303 clflushopt(p);
304 }
305
306 /**
307 * clflush_cache_range - flush a cache range with clflush
308 * @vaddr: virtual start address
309 * @size: number of bytes to flush
310 *
311 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
312 * SFENCE to avoid ordering issues.
313 */
clflush_cache_range(void * vaddr,unsigned int size)314 void clflush_cache_range(void *vaddr, unsigned int size)
315 {
316 mb();
317 clflush_cache_range_opt(vaddr, size);
318 mb();
319 }
320 EXPORT_SYMBOL_GPL(clflush_cache_range);
321
322 #ifdef CONFIG_ARCH_HAS_PMEM_API
arch_invalidate_pmem(void * addr,size_t size)323 void arch_invalidate_pmem(void *addr, size_t size)
324 {
325 clflush_cache_range(addr, size);
326 }
327 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
328 #endif
329
__cpa_flush_all(void * arg)330 static void __cpa_flush_all(void *arg)
331 {
332 unsigned long cache = (unsigned long)arg;
333
334 /*
335 * Flush all to work around Errata in early athlons regarding
336 * large page flushing.
337 */
338 __flush_tlb_all();
339
340 if (cache && boot_cpu_data.x86 >= 4)
341 wbinvd();
342 }
343
cpa_flush_all(unsigned long cache)344 static void cpa_flush_all(unsigned long cache)
345 {
346 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
347
348 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
349 }
350
__cpa_flush_tlb(void * data)351 static void __cpa_flush_tlb(void *data)
352 {
353 struct cpa_data *cpa = data;
354 unsigned int i;
355
356 for (i = 0; i < cpa->numpages; i++)
357 flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
358 }
359
cpa_flush(struct cpa_data * data,int cache)360 static void cpa_flush(struct cpa_data *data, int cache)
361 {
362 struct cpa_data *cpa = data;
363 unsigned int i;
364
365 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
366
367 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
368 cpa_flush_all(cache);
369 return;
370 }
371
372 if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
373 flush_tlb_all();
374 else
375 on_each_cpu(__cpa_flush_tlb, cpa, 1);
376
377 if (!cache)
378 return;
379
380 mb();
381 for (i = 0; i < cpa->numpages; i++) {
382 unsigned long addr = __cpa_addr(cpa, i);
383 unsigned int level;
384
385 pte_t *pte = lookup_address(addr, &level);
386
387 /*
388 * Only flush present addresses:
389 */
390 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
391 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
392 }
393 mb();
394 }
395
overlaps(unsigned long r1_start,unsigned long r1_end,unsigned long r2_start,unsigned long r2_end)396 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
397 unsigned long r2_start, unsigned long r2_end)
398 {
399 return (r1_start <= r2_end && r1_end >= r2_start) ||
400 (r2_start <= r1_end && r2_end >= r1_start);
401 }
402
403 #ifdef CONFIG_PCI_BIOS
404 /*
405 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
406 * based config access (CONFIG_PCI_GOBIOS) support.
407 */
408 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN)
409 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1)
410
protect_pci_bios(unsigned long spfn,unsigned long epfn)411 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
412 {
413 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
414 return _PAGE_NX;
415 return 0;
416 }
417 #else
protect_pci_bios(unsigned long spfn,unsigned long epfn)418 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
419 {
420 return 0;
421 }
422 #endif
423
424 /*
425 * The .rodata section needs to be read-only. Using the pfn catches all
426 * aliases. This also includes __ro_after_init, so do not enforce until
427 * kernel_set_to_readonly is true.
428 */
protect_rodata(unsigned long spfn,unsigned long epfn)429 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
430 {
431 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
432
433 /*
434 * Note: __end_rodata is at page aligned and not inclusive, so
435 * subtract 1 to get the last enforced PFN in the rodata area.
436 */
437 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
438
439 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
440 return _PAGE_RW;
441 return 0;
442 }
443
444 /*
445 * Protect kernel text against becoming non executable by forbidding
446 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext)
447 * out of which the kernel actually executes. Do not protect the low
448 * mapping.
449 *
450 * This does not cover __inittext since that is gone after boot.
451 */
protect_kernel_text(unsigned long start,unsigned long end)452 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
453 {
454 unsigned long t_end = (unsigned long)_etext - 1;
455 unsigned long t_start = (unsigned long)_text;
456
457 if (overlaps(start, end, t_start, t_end))
458 return _PAGE_NX;
459 return 0;
460 }
461
462 #if defined(CONFIG_X86_64)
463 /*
464 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
465 * kernel text mappings for the large page aligned text, rodata sections
466 * will be always read-only. For the kernel identity mappings covering the
467 * holes caused by this alignment can be anything that user asks.
468 *
469 * This will preserve the large page mappings for kernel text/data at no
470 * extra cost.
471 */
protect_kernel_text_ro(unsigned long start,unsigned long end)472 static pgprotval_t protect_kernel_text_ro(unsigned long start,
473 unsigned long end)
474 {
475 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
476 unsigned long t_start = (unsigned long)_text;
477 unsigned int level;
478
479 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
480 return 0;
481 /*
482 * Don't enforce the !RW mapping for the kernel text mapping, if
483 * the current mapping is already using small page mapping. No
484 * need to work hard to preserve large page mappings in this case.
485 *
486 * This also fixes the Linux Xen paravirt guest boot failure caused
487 * by unexpected read-only mappings for kernel identity
488 * mappings. In this paravirt guest case, the kernel text mapping
489 * and the kernel identity mapping share the same page-table pages,
490 * so the protections for kernel text and identity mappings have to
491 * be the same.
492 */
493 if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
494 return _PAGE_RW;
495 return 0;
496 }
497 #else
protect_kernel_text_ro(unsigned long start,unsigned long end)498 static pgprotval_t protect_kernel_text_ro(unsigned long start,
499 unsigned long end)
500 {
501 return 0;
502 }
503 #endif
504
conflicts(pgprot_t prot,pgprotval_t val)505 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
506 {
507 return (pgprot_val(prot) & ~val) != pgprot_val(prot);
508 }
509
check_conflict(int warnlvl,pgprot_t prot,pgprotval_t val,unsigned long start,unsigned long end,unsigned long pfn,const char * txt)510 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
511 unsigned long start, unsigned long end,
512 unsigned long pfn, const char *txt)
513 {
514 static const char *lvltxt[] = {
515 [CPA_CONFLICT] = "conflict",
516 [CPA_PROTECT] = "protect",
517 [CPA_DETECT] = "detect",
518 };
519
520 if (warnlvl > cpa_warn_level || !conflicts(prot, val))
521 return;
522
523 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
524 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
525 (unsigned long long)val);
526 }
527
528 /*
529 * Certain areas of memory on x86 require very specific protection flags,
530 * for example the BIOS area or kernel text. Callers don't always get this
531 * right (again, ioremap() on BIOS memory is not uncommon) so this function
532 * checks and fixes these known static required protection bits.
533 */
static_protections(pgprot_t prot,unsigned long start,unsigned long pfn,unsigned long npg,unsigned long lpsize,int warnlvl)534 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
535 unsigned long pfn, unsigned long npg,
536 unsigned long lpsize, int warnlvl)
537 {
538 pgprotval_t forbidden, res;
539 unsigned long end;
540
541 /*
542 * There is no point in checking RW/NX conflicts when the requested
543 * mapping is setting the page !PRESENT.
544 */
545 if (!(pgprot_val(prot) & _PAGE_PRESENT))
546 return prot;
547
548 /* Operate on the virtual address */
549 end = start + npg * PAGE_SIZE - 1;
550
551 res = protect_kernel_text(start, end);
552 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
553 forbidden = res;
554
555 /*
556 * Special case to preserve a large page. If the change spawns the
557 * full large page mapping then there is no point to split it
558 * up. Happens with ftrace and is going to be removed once ftrace
559 * switched to text_poke().
560 */
561 if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
562 res = protect_kernel_text_ro(start, end);
563 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
564 forbidden |= res;
565 }
566
567 /* Check the PFN directly */
568 res = protect_pci_bios(pfn, pfn + npg - 1);
569 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
570 forbidden |= res;
571
572 res = protect_rodata(pfn, pfn + npg - 1);
573 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
574 forbidden |= res;
575
576 return __pgprot(pgprot_val(prot) & ~forbidden);
577 }
578
579 /*
580 * Lookup the page table entry for a virtual address in a specific pgd.
581 * Return a pointer to the entry and the level of the mapping.
582 */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)583 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
584 unsigned int *level)
585 {
586 p4d_t *p4d;
587 pud_t *pud;
588 pmd_t *pmd;
589
590 *level = PG_LEVEL_NONE;
591
592 if (pgd_none(*pgd))
593 return NULL;
594
595 p4d = p4d_offset(pgd, address);
596 if (p4d_none(*p4d))
597 return NULL;
598
599 *level = PG_LEVEL_512G;
600 if (p4d_large(*p4d) || !p4d_present(*p4d))
601 return (pte_t *)p4d;
602
603 pud = pud_offset(p4d, address);
604 if (pud_none(*pud))
605 return NULL;
606
607 *level = PG_LEVEL_1G;
608 if (pud_large(*pud) || !pud_present(*pud))
609 return (pte_t *)pud;
610
611 pmd = pmd_offset(pud, address);
612 if (pmd_none(*pmd))
613 return NULL;
614
615 *level = PG_LEVEL_2M;
616 if (pmd_large(*pmd) || !pmd_present(*pmd))
617 return (pte_t *)pmd;
618
619 *level = PG_LEVEL_4K;
620
621 return pte_offset_kernel(pmd, address);
622 }
623
624 /*
625 * Lookup the page table entry for a virtual address. Return a pointer
626 * to the entry and the level of the mapping.
627 *
628 * Note: We return pud and pmd either when the entry is marked large
629 * or when the present bit is not set. Otherwise we would return a
630 * pointer to a nonexisting mapping.
631 */
lookup_address(unsigned long address,unsigned int * level)632 pte_t *lookup_address(unsigned long address, unsigned int *level)
633 {
634 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
635 }
636 EXPORT_SYMBOL_GPL(lookup_address);
637
638 /*
639 * Lookup the page table entry for a virtual address in a given mm. Return a
640 * pointer to the entry and the level of the mapping.
641 */
lookup_address_in_mm(struct mm_struct * mm,unsigned long address,unsigned int * level)642 pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address,
643 unsigned int *level)
644 {
645 return lookup_address_in_pgd(pgd_offset(mm, address), address, level);
646 }
647 EXPORT_SYMBOL_GPL(lookup_address_in_mm);
648
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)649 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
650 unsigned int *level)
651 {
652 if (cpa->pgd)
653 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
654 address, level);
655
656 return lookup_address(address, level);
657 }
658
659 /*
660 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
661 * or NULL if not present.
662 */
lookup_pmd_address(unsigned long address)663 pmd_t *lookup_pmd_address(unsigned long address)
664 {
665 pgd_t *pgd;
666 p4d_t *p4d;
667 pud_t *pud;
668
669 pgd = pgd_offset_k(address);
670 if (pgd_none(*pgd))
671 return NULL;
672
673 p4d = p4d_offset(pgd, address);
674 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
675 return NULL;
676
677 pud = pud_offset(p4d, address);
678 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
679 return NULL;
680
681 return pmd_offset(pud, address);
682 }
683
684 /*
685 * This is necessary because __pa() does not work on some
686 * kinds of memory, like vmalloc() or the alloc_remap()
687 * areas on 32-bit NUMA systems. The percpu areas can
688 * end up in this kind of memory, for instance.
689 *
690 * This could be optimized, but it is only intended to be
691 * used at initialization time, and keeping it
692 * unoptimized should increase the testing coverage for
693 * the more obscure platforms.
694 */
slow_virt_to_phys(void * __virt_addr)695 phys_addr_t slow_virt_to_phys(void *__virt_addr)
696 {
697 unsigned long virt_addr = (unsigned long)__virt_addr;
698 phys_addr_t phys_addr;
699 unsigned long offset;
700 enum pg_level level;
701 pte_t *pte;
702
703 pte = lookup_address(virt_addr, &level);
704 BUG_ON(!pte);
705
706 /*
707 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
708 * before being left-shifted PAGE_SHIFT bits -- this trick is to
709 * make 32-PAE kernel work correctly.
710 */
711 switch (level) {
712 case PG_LEVEL_1G:
713 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
714 offset = virt_addr & ~PUD_PAGE_MASK;
715 break;
716 case PG_LEVEL_2M:
717 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
718 offset = virt_addr & ~PMD_PAGE_MASK;
719 break;
720 default:
721 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
722 offset = virt_addr & ~PAGE_MASK;
723 }
724
725 return (phys_addr_t)(phys_addr | offset);
726 }
727 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
728
729 /*
730 * Set the new pmd in all the pgds we know about:
731 */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)732 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
733 {
734 /* change init_mm */
735 set_pte_atomic(kpte, pte);
736 #ifdef CONFIG_X86_32
737 if (!SHARED_KERNEL_PMD) {
738 struct page *page;
739
740 list_for_each_entry(page, &pgd_list, lru) {
741 pgd_t *pgd;
742 p4d_t *p4d;
743 pud_t *pud;
744 pmd_t *pmd;
745
746 pgd = (pgd_t *)page_address(page) + pgd_index(address);
747 p4d = p4d_offset(pgd, address);
748 pud = pud_offset(p4d, address);
749 pmd = pmd_offset(pud, address);
750 set_pte_atomic((pte_t *)pmd, pte);
751 }
752 }
753 #endif
754 }
755
pgprot_clear_protnone_bits(pgprot_t prot)756 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
757 {
758 /*
759 * _PAGE_GLOBAL means "global page" for present PTEs.
760 * But, it is also used to indicate _PAGE_PROTNONE
761 * for non-present PTEs.
762 *
763 * This ensures that a _PAGE_GLOBAL PTE going from
764 * present to non-present is not confused as
765 * _PAGE_PROTNONE.
766 */
767 if (!(pgprot_val(prot) & _PAGE_PRESENT))
768 pgprot_val(prot) &= ~_PAGE_GLOBAL;
769
770 return prot;
771 }
772
__should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)773 static int __should_split_large_page(pte_t *kpte, unsigned long address,
774 struct cpa_data *cpa)
775 {
776 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
777 pgprot_t old_prot, new_prot, req_prot, chk_prot;
778 pte_t new_pte, *tmp;
779 enum pg_level level;
780
781 /*
782 * Check for races, another CPU might have split this page
783 * up already:
784 */
785 tmp = _lookup_address_cpa(cpa, address, &level);
786 if (tmp != kpte)
787 return 1;
788
789 switch (level) {
790 case PG_LEVEL_2M:
791 old_prot = pmd_pgprot(*(pmd_t *)kpte);
792 old_pfn = pmd_pfn(*(pmd_t *)kpte);
793 cpa_inc_2m_checked();
794 break;
795 case PG_LEVEL_1G:
796 old_prot = pud_pgprot(*(pud_t *)kpte);
797 old_pfn = pud_pfn(*(pud_t *)kpte);
798 cpa_inc_1g_checked();
799 break;
800 default:
801 return -EINVAL;
802 }
803
804 psize = page_level_size(level);
805 pmask = page_level_mask(level);
806
807 /*
808 * Calculate the number of pages, which fit into this large
809 * page starting at address:
810 */
811 lpaddr = (address + psize) & pmask;
812 numpages = (lpaddr - address) >> PAGE_SHIFT;
813 if (numpages < cpa->numpages)
814 cpa->numpages = numpages;
815
816 /*
817 * We are safe now. Check whether the new pgprot is the same:
818 * Convert protection attributes to 4k-format, as cpa->mask* are set
819 * up accordingly.
820 */
821
822 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
823 req_prot = pgprot_large_2_4k(old_prot);
824
825 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
826 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
827
828 /*
829 * req_prot is in format of 4k pages. It must be converted to large
830 * page format: the caching mode includes the PAT bit located at
831 * different bit positions in the two formats.
832 */
833 req_prot = pgprot_4k_2_large(req_prot);
834 req_prot = pgprot_clear_protnone_bits(req_prot);
835 if (pgprot_val(req_prot) & _PAGE_PRESENT)
836 pgprot_val(req_prot) |= _PAGE_PSE;
837
838 /*
839 * old_pfn points to the large page base pfn. So we need to add the
840 * offset of the virtual address:
841 */
842 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
843 cpa->pfn = pfn;
844
845 /*
846 * Calculate the large page base address and the number of 4K pages
847 * in the large page
848 */
849 lpaddr = address & pmask;
850 numpages = psize >> PAGE_SHIFT;
851
852 /*
853 * Sanity check that the existing mapping is correct versus the static
854 * protections. static_protections() guards against !PRESENT, so no
855 * extra conditional required here.
856 */
857 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
858 psize, CPA_CONFLICT);
859
860 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
861 /*
862 * Split the large page and tell the split code to
863 * enforce static protections.
864 */
865 cpa->force_static_prot = 1;
866 return 1;
867 }
868
869 /*
870 * Optimization: If the requested pgprot is the same as the current
871 * pgprot, then the large page can be preserved and no updates are
872 * required independent of alignment and length of the requested
873 * range. The above already established that the current pgprot is
874 * correct, which in consequence makes the requested pgprot correct
875 * as well if it is the same. The static protection scan below will
876 * not come to a different conclusion.
877 */
878 if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
879 cpa_inc_lp_sameprot(level);
880 return 0;
881 }
882
883 /*
884 * If the requested range does not cover the full page, split it up
885 */
886 if (address != lpaddr || cpa->numpages != numpages)
887 return 1;
888
889 /*
890 * Check whether the requested pgprot is conflicting with a static
891 * protection requirement in the large page.
892 */
893 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
894 psize, CPA_DETECT);
895
896 /*
897 * If there is a conflict, split the large page.
898 *
899 * There used to be a 4k wise evaluation trying really hard to
900 * preserve the large pages, but experimentation has shown, that this
901 * does not help at all. There might be corner cases which would
902 * preserve one large page occasionally, but it's really not worth the
903 * extra code and cycles for the common case.
904 */
905 if (pgprot_val(req_prot) != pgprot_val(new_prot))
906 return 1;
907
908 /* All checks passed. Update the large page mapping. */
909 new_pte = pfn_pte(old_pfn, new_prot);
910 __set_pmd_pte(kpte, address, new_pte);
911 cpa->flags |= CPA_FLUSHTLB;
912 cpa_inc_lp_preserved(level);
913 return 0;
914 }
915
should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)916 static int should_split_large_page(pte_t *kpte, unsigned long address,
917 struct cpa_data *cpa)
918 {
919 int do_split;
920
921 if (cpa->force_split)
922 return 1;
923
924 spin_lock(&pgd_lock);
925 do_split = __should_split_large_page(kpte, address, cpa);
926 spin_unlock(&pgd_lock);
927
928 return do_split;
929 }
930
split_set_pte(struct cpa_data * cpa,pte_t * pte,unsigned long pfn,pgprot_t ref_prot,unsigned long address,unsigned long size)931 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
932 pgprot_t ref_prot, unsigned long address,
933 unsigned long size)
934 {
935 unsigned int npg = PFN_DOWN(size);
936 pgprot_t prot;
937
938 /*
939 * If should_split_large_page() discovered an inconsistent mapping,
940 * remove the invalid protection in the split mapping.
941 */
942 if (!cpa->force_static_prot)
943 goto set;
944
945 /* Hand in lpsize = 0 to enforce the protection mechanism */
946 prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
947
948 if (pgprot_val(prot) == pgprot_val(ref_prot))
949 goto set;
950
951 /*
952 * If this is splitting a PMD, fix it up. PUD splits cannot be
953 * fixed trivially as that would require to rescan the newly
954 * installed PMD mappings after returning from split_large_page()
955 * so an eventual further split can allocate the necessary PTE
956 * pages. Warn for now and revisit it in case this actually
957 * happens.
958 */
959 if (size == PAGE_SIZE)
960 ref_prot = prot;
961 else
962 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
963 set:
964 set_pte(pte, pfn_pte(pfn, ref_prot));
965 }
966
967 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)968 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
969 struct page *base)
970 {
971 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
972 pte_t *pbase = (pte_t *)page_address(base);
973 unsigned int i, level;
974 pgprot_t ref_prot;
975 pte_t *tmp;
976
977 spin_lock(&pgd_lock);
978 /*
979 * Check for races, another CPU might have split this page
980 * up for us already:
981 */
982 tmp = _lookup_address_cpa(cpa, address, &level);
983 if (tmp != kpte) {
984 spin_unlock(&pgd_lock);
985 return 1;
986 }
987
988 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
989
990 switch (level) {
991 case PG_LEVEL_2M:
992 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
993 /*
994 * Clear PSE (aka _PAGE_PAT) and move
995 * PAT bit to correct position.
996 */
997 ref_prot = pgprot_large_2_4k(ref_prot);
998 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
999 lpaddr = address & PMD_MASK;
1000 lpinc = PAGE_SIZE;
1001 break;
1002
1003 case PG_LEVEL_1G:
1004 ref_prot = pud_pgprot(*(pud_t *)kpte);
1005 ref_pfn = pud_pfn(*(pud_t *)kpte);
1006 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
1007 lpaddr = address & PUD_MASK;
1008 lpinc = PMD_SIZE;
1009 /*
1010 * Clear the PSE flags if the PRESENT flag is not set
1011 * otherwise pmd_present/pmd_huge will return true
1012 * even on a non present pmd.
1013 */
1014 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1015 pgprot_val(ref_prot) &= ~_PAGE_PSE;
1016 break;
1017
1018 default:
1019 spin_unlock(&pgd_lock);
1020 return 1;
1021 }
1022
1023 ref_prot = pgprot_clear_protnone_bits(ref_prot);
1024
1025 /*
1026 * Get the target pfn from the original entry:
1027 */
1028 pfn = ref_pfn;
1029 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1030 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1031
1032 if (virt_addr_valid(address)) {
1033 unsigned long pfn = PFN_DOWN(__pa(address));
1034
1035 if (pfn_range_is_mapped(pfn, pfn + 1))
1036 split_page_count(level);
1037 }
1038
1039 /*
1040 * Install the new, split up pagetable.
1041 *
1042 * We use the standard kernel pagetable protections for the new
1043 * pagetable protections, the actual ptes set above control the
1044 * primary protection behavior:
1045 */
1046 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1047
1048 /*
1049 * Do a global flush tlb after splitting the large page
1050 * and before we do the actual change page attribute in the PTE.
1051 *
1052 * Without this, we violate the TLB application note, that says:
1053 * "The TLBs may contain both ordinary and large-page
1054 * translations for a 4-KByte range of linear addresses. This
1055 * may occur if software modifies the paging structures so that
1056 * the page size used for the address range changes. If the two
1057 * translations differ with respect to page frame or attributes
1058 * (e.g., permissions), processor behavior is undefined and may
1059 * be implementation-specific."
1060 *
1061 * We do this global tlb flush inside the cpa_lock, so that we
1062 * don't allow any other cpu, with stale tlb entries change the
1063 * page attribute in parallel, that also falls into the
1064 * just split large page entry.
1065 */
1066 flush_tlb_all();
1067 spin_unlock(&pgd_lock);
1068
1069 return 0;
1070 }
1071
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)1072 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1073 unsigned long address)
1074 {
1075 struct page *base;
1076
1077 if (!debug_pagealloc_enabled())
1078 spin_unlock(&cpa_lock);
1079 base = alloc_pages(GFP_KERNEL, 0);
1080 if (!debug_pagealloc_enabled())
1081 spin_lock(&cpa_lock);
1082 if (!base)
1083 return -ENOMEM;
1084
1085 if (__split_large_page(cpa, kpte, address, base))
1086 __free_page(base);
1087
1088 return 0;
1089 }
1090
try_to_free_pte_page(pte_t * pte)1091 static bool try_to_free_pte_page(pte_t *pte)
1092 {
1093 int i;
1094
1095 for (i = 0; i < PTRS_PER_PTE; i++)
1096 if (!pte_none(pte[i]))
1097 return false;
1098
1099 free_page((unsigned long)pte);
1100 return true;
1101 }
1102
try_to_free_pmd_page(pmd_t * pmd)1103 static bool try_to_free_pmd_page(pmd_t *pmd)
1104 {
1105 int i;
1106
1107 for (i = 0; i < PTRS_PER_PMD; i++)
1108 if (!pmd_none(pmd[i]))
1109 return false;
1110
1111 free_page((unsigned long)pmd);
1112 return true;
1113 }
1114
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)1115 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1116 {
1117 pte_t *pte = pte_offset_kernel(pmd, start);
1118
1119 while (start < end) {
1120 set_pte(pte, __pte(0));
1121
1122 start += PAGE_SIZE;
1123 pte++;
1124 }
1125
1126 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1127 pmd_clear(pmd);
1128 return true;
1129 }
1130 return false;
1131 }
1132
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)1133 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1134 unsigned long start, unsigned long end)
1135 {
1136 if (unmap_pte_range(pmd, start, end))
1137 if (try_to_free_pmd_page(pud_pgtable(*pud)))
1138 pud_clear(pud);
1139 }
1140
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)1141 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1142 {
1143 pmd_t *pmd = pmd_offset(pud, start);
1144
1145 /*
1146 * Not on a 2MB page boundary?
1147 */
1148 if (start & (PMD_SIZE - 1)) {
1149 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1150 unsigned long pre_end = min_t(unsigned long, end, next_page);
1151
1152 __unmap_pmd_range(pud, pmd, start, pre_end);
1153
1154 start = pre_end;
1155 pmd++;
1156 }
1157
1158 /*
1159 * Try to unmap in 2M chunks.
1160 */
1161 while (end - start >= PMD_SIZE) {
1162 if (pmd_large(*pmd))
1163 pmd_clear(pmd);
1164 else
1165 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1166
1167 start += PMD_SIZE;
1168 pmd++;
1169 }
1170
1171 /*
1172 * 4K leftovers?
1173 */
1174 if (start < end)
1175 return __unmap_pmd_range(pud, pmd, start, end);
1176
1177 /*
1178 * Try again to free the PMD page if haven't succeeded above.
1179 */
1180 if (!pud_none(*pud))
1181 if (try_to_free_pmd_page(pud_pgtable(*pud)))
1182 pud_clear(pud);
1183 }
1184
unmap_pud_range(p4d_t * p4d,unsigned long start,unsigned long end)1185 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1186 {
1187 pud_t *pud = pud_offset(p4d, start);
1188
1189 /*
1190 * Not on a GB page boundary?
1191 */
1192 if (start & (PUD_SIZE - 1)) {
1193 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1194 unsigned long pre_end = min_t(unsigned long, end, next_page);
1195
1196 unmap_pmd_range(pud, start, pre_end);
1197
1198 start = pre_end;
1199 pud++;
1200 }
1201
1202 /*
1203 * Try to unmap in 1G chunks?
1204 */
1205 while (end - start >= PUD_SIZE) {
1206
1207 if (pud_large(*pud))
1208 pud_clear(pud);
1209 else
1210 unmap_pmd_range(pud, start, start + PUD_SIZE);
1211
1212 start += PUD_SIZE;
1213 pud++;
1214 }
1215
1216 /*
1217 * 2M leftovers?
1218 */
1219 if (start < end)
1220 unmap_pmd_range(pud, start, end);
1221
1222 /*
1223 * No need to try to free the PUD page because we'll free it in
1224 * populate_pgd's error path
1225 */
1226 }
1227
alloc_pte_page(pmd_t * pmd)1228 static int alloc_pte_page(pmd_t *pmd)
1229 {
1230 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1231 if (!pte)
1232 return -1;
1233
1234 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1235 return 0;
1236 }
1237
alloc_pmd_page(pud_t * pud)1238 static int alloc_pmd_page(pud_t *pud)
1239 {
1240 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1241 if (!pmd)
1242 return -1;
1243
1244 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1245 return 0;
1246 }
1247
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)1248 static void populate_pte(struct cpa_data *cpa,
1249 unsigned long start, unsigned long end,
1250 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1251 {
1252 pte_t *pte;
1253
1254 pte = pte_offset_kernel(pmd, start);
1255
1256 pgprot = pgprot_clear_protnone_bits(pgprot);
1257
1258 while (num_pages-- && start < end) {
1259 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1260
1261 start += PAGE_SIZE;
1262 cpa->pfn++;
1263 pte++;
1264 }
1265 }
1266
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)1267 static long populate_pmd(struct cpa_data *cpa,
1268 unsigned long start, unsigned long end,
1269 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1270 {
1271 long cur_pages = 0;
1272 pmd_t *pmd;
1273 pgprot_t pmd_pgprot;
1274
1275 /*
1276 * Not on a 2M boundary?
1277 */
1278 if (start & (PMD_SIZE - 1)) {
1279 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1280 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1281
1282 pre_end = min_t(unsigned long, pre_end, next_page);
1283 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1284 cur_pages = min_t(unsigned int, num_pages, cur_pages);
1285
1286 /*
1287 * Need a PTE page?
1288 */
1289 pmd = pmd_offset(pud, start);
1290 if (pmd_none(*pmd))
1291 if (alloc_pte_page(pmd))
1292 return -1;
1293
1294 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1295
1296 start = pre_end;
1297 }
1298
1299 /*
1300 * We mapped them all?
1301 */
1302 if (num_pages == cur_pages)
1303 return cur_pages;
1304
1305 pmd_pgprot = pgprot_4k_2_large(pgprot);
1306
1307 while (end - start >= PMD_SIZE) {
1308
1309 /*
1310 * We cannot use a 1G page so allocate a PMD page if needed.
1311 */
1312 if (pud_none(*pud))
1313 if (alloc_pmd_page(pud))
1314 return -1;
1315
1316 pmd = pmd_offset(pud, start);
1317
1318 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1319 canon_pgprot(pmd_pgprot))));
1320
1321 start += PMD_SIZE;
1322 cpa->pfn += PMD_SIZE >> PAGE_SHIFT;
1323 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1324 }
1325
1326 /*
1327 * Map trailing 4K pages.
1328 */
1329 if (start < end) {
1330 pmd = pmd_offset(pud, start);
1331 if (pmd_none(*pmd))
1332 if (alloc_pte_page(pmd))
1333 return -1;
1334
1335 populate_pte(cpa, start, end, num_pages - cur_pages,
1336 pmd, pgprot);
1337 }
1338 return num_pages;
1339 }
1340
populate_pud(struct cpa_data * cpa,unsigned long start,p4d_t * p4d,pgprot_t pgprot)1341 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1342 pgprot_t pgprot)
1343 {
1344 pud_t *pud;
1345 unsigned long end;
1346 long cur_pages = 0;
1347 pgprot_t pud_pgprot;
1348
1349 end = start + (cpa->numpages << PAGE_SHIFT);
1350
1351 /*
1352 * Not on a Gb page boundary? => map everything up to it with
1353 * smaller pages.
1354 */
1355 if (start & (PUD_SIZE - 1)) {
1356 unsigned long pre_end;
1357 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1358
1359 pre_end = min_t(unsigned long, end, next_page);
1360 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1361 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1362
1363 pud = pud_offset(p4d, start);
1364
1365 /*
1366 * Need a PMD page?
1367 */
1368 if (pud_none(*pud))
1369 if (alloc_pmd_page(pud))
1370 return -1;
1371
1372 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1373 pud, pgprot);
1374 if (cur_pages < 0)
1375 return cur_pages;
1376
1377 start = pre_end;
1378 }
1379
1380 /* We mapped them all? */
1381 if (cpa->numpages == cur_pages)
1382 return cur_pages;
1383
1384 pud = pud_offset(p4d, start);
1385 pud_pgprot = pgprot_4k_2_large(pgprot);
1386
1387 /*
1388 * Map everything starting from the Gb boundary, possibly with 1G pages
1389 */
1390 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1391 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1392 canon_pgprot(pud_pgprot))));
1393
1394 start += PUD_SIZE;
1395 cpa->pfn += PUD_SIZE >> PAGE_SHIFT;
1396 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1397 pud++;
1398 }
1399
1400 /* Map trailing leftover */
1401 if (start < end) {
1402 long tmp;
1403
1404 pud = pud_offset(p4d, start);
1405 if (pud_none(*pud))
1406 if (alloc_pmd_page(pud))
1407 return -1;
1408
1409 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1410 pud, pgprot);
1411 if (tmp < 0)
1412 return cur_pages;
1413
1414 cur_pages += tmp;
1415 }
1416 return cur_pages;
1417 }
1418
1419 /*
1420 * Restrictions for kernel page table do not necessarily apply when mapping in
1421 * an alternate PGD.
1422 */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1423 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1424 {
1425 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1426 pud_t *pud = NULL; /* shut up gcc */
1427 p4d_t *p4d;
1428 pgd_t *pgd_entry;
1429 long ret;
1430
1431 pgd_entry = cpa->pgd + pgd_index(addr);
1432
1433 if (pgd_none(*pgd_entry)) {
1434 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1435 if (!p4d)
1436 return -1;
1437
1438 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1439 }
1440
1441 /*
1442 * Allocate a PUD page and hand it down for mapping.
1443 */
1444 p4d = p4d_offset(pgd_entry, addr);
1445 if (p4d_none(*p4d)) {
1446 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1447 if (!pud)
1448 return -1;
1449
1450 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1451 }
1452
1453 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1454 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1455
1456 ret = populate_pud(cpa, addr, p4d, pgprot);
1457 if (ret < 0) {
1458 /*
1459 * Leave the PUD page in place in case some other CPU or thread
1460 * already found it, but remove any useless entries we just
1461 * added to it.
1462 */
1463 unmap_pud_range(p4d, addr,
1464 addr + (cpa->numpages << PAGE_SHIFT));
1465 return ret;
1466 }
1467
1468 cpa->numpages = ret;
1469 return 0;
1470 }
1471
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1472 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1473 int primary)
1474 {
1475 if (cpa->pgd) {
1476 /*
1477 * Right now, we only execute this code path when mapping
1478 * the EFI virtual memory map regions, no other users
1479 * provide a ->pgd value. This may change in the future.
1480 */
1481 return populate_pgd(cpa, vaddr);
1482 }
1483
1484 /*
1485 * Ignore all non primary paths.
1486 */
1487 if (!primary) {
1488 cpa->numpages = 1;
1489 return 0;
1490 }
1491
1492 /*
1493 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1494 * to have holes.
1495 * Also set numpages to '1' indicating that we processed cpa req for
1496 * one virtual address page and its pfn. TBD: numpages can be set based
1497 * on the initial value and the level returned by lookup_address().
1498 */
1499 if (within(vaddr, PAGE_OFFSET,
1500 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1501 cpa->numpages = 1;
1502 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1503 return 0;
1504
1505 } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1506 /* Faults in the highmap are OK, so do not warn: */
1507 return -EFAULT;
1508 } else {
1509 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1510 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1511 *cpa->vaddr);
1512
1513 return -EFAULT;
1514 }
1515 }
1516
__change_page_attr(struct cpa_data * cpa,int primary)1517 static int __change_page_attr(struct cpa_data *cpa, int primary)
1518 {
1519 unsigned long address;
1520 int do_split, err;
1521 unsigned int level;
1522 pte_t *kpte, old_pte;
1523
1524 address = __cpa_addr(cpa, cpa->curpage);
1525 repeat:
1526 kpte = _lookup_address_cpa(cpa, address, &level);
1527 if (!kpte)
1528 return __cpa_process_fault(cpa, address, primary);
1529
1530 old_pte = *kpte;
1531 if (pte_none(old_pte))
1532 return __cpa_process_fault(cpa, address, primary);
1533
1534 if (level == PG_LEVEL_4K) {
1535 pte_t new_pte;
1536 pgprot_t new_prot = pte_pgprot(old_pte);
1537 unsigned long pfn = pte_pfn(old_pte);
1538
1539 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1540 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1541
1542 cpa_inc_4k_install();
1543 /* Hand in lpsize = 0 to enforce the protection mechanism */
1544 new_prot = static_protections(new_prot, address, pfn, 1, 0,
1545 CPA_PROTECT);
1546
1547 new_prot = pgprot_clear_protnone_bits(new_prot);
1548
1549 /*
1550 * We need to keep the pfn from the existing PTE,
1551 * after all we're only going to change it's attributes
1552 * not the memory it points to
1553 */
1554 new_pte = pfn_pte(pfn, new_prot);
1555 cpa->pfn = pfn;
1556 /*
1557 * Do we really change anything ?
1558 */
1559 if (pte_val(old_pte) != pte_val(new_pte)) {
1560 set_pte_atomic(kpte, new_pte);
1561 cpa->flags |= CPA_FLUSHTLB;
1562 }
1563 cpa->numpages = 1;
1564 return 0;
1565 }
1566
1567 /*
1568 * Check, whether we can keep the large page intact
1569 * and just change the pte:
1570 */
1571 do_split = should_split_large_page(kpte, address, cpa);
1572 /*
1573 * When the range fits into the existing large page,
1574 * return. cp->numpages and cpa->tlbflush have been updated in
1575 * try_large_page:
1576 */
1577 if (do_split <= 0)
1578 return do_split;
1579
1580 /*
1581 * We have to split the large page:
1582 */
1583 err = split_large_page(cpa, kpte, address);
1584 if (!err)
1585 goto repeat;
1586
1587 return err;
1588 }
1589
1590 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1591
cpa_process_alias(struct cpa_data * cpa)1592 static int cpa_process_alias(struct cpa_data *cpa)
1593 {
1594 struct cpa_data alias_cpa;
1595 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1596 unsigned long vaddr;
1597 int ret;
1598
1599 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1600 return 0;
1601
1602 /*
1603 * No need to redo, when the primary call touched the direct
1604 * mapping already:
1605 */
1606 vaddr = __cpa_addr(cpa, cpa->curpage);
1607 if (!(within(vaddr, PAGE_OFFSET,
1608 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1609
1610 alias_cpa = *cpa;
1611 alias_cpa.vaddr = &laddr;
1612 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1613 alias_cpa.curpage = 0;
1614
1615 cpa->force_flush_all = 1;
1616
1617 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1618 if (ret)
1619 return ret;
1620 }
1621
1622 #ifdef CONFIG_X86_64
1623 /*
1624 * If the primary call didn't touch the high mapping already
1625 * and the physical address is inside the kernel map, we need
1626 * to touch the high mapped kernel as well:
1627 */
1628 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1629 __cpa_pfn_in_highmap(cpa->pfn)) {
1630 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1631 __START_KERNEL_map - phys_base;
1632 alias_cpa = *cpa;
1633 alias_cpa.vaddr = &temp_cpa_vaddr;
1634 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1635 alias_cpa.curpage = 0;
1636
1637 cpa->force_flush_all = 1;
1638 /*
1639 * The high mapping range is imprecise, so ignore the
1640 * return value.
1641 */
1642 __change_page_attr_set_clr(&alias_cpa, 0);
1643 }
1644 #endif
1645
1646 return 0;
1647 }
1648
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)1649 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1650 {
1651 unsigned long numpages = cpa->numpages;
1652 unsigned long rempages = numpages;
1653 int ret = 0;
1654
1655 while (rempages) {
1656 /*
1657 * Store the remaining nr of pages for the large page
1658 * preservation check.
1659 */
1660 cpa->numpages = rempages;
1661 /* for array changes, we can't use large page */
1662 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1663 cpa->numpages = 1;
1664
1665 if (!debug_pagealloc_enabled())
1666 spin_lock(&cpa_lock);
1667 ret = __change_page_attr(cpa, checkalias);
1668 if (!debug_pagealloc_enabled())
1669 spin_unlock(&cpa_lock);
1670 if (ret)
1671 goto out;
1672
1673 if (checkalias) {
1674 ret = cpa_process_alias(cpa);
1675 if (ret)
1676 goto out;
1677 }
1678
1679 /*
1680 * Adjust the number of pages with the result of the
1681 * CPA operation. Either a large page has been
1682 * preserved or a single page update happened.
1683 */
1684 BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1685 rempages -= cpa->numpages;
1686 cpa->curpage += cpa->numpages;
1687 }
1688
1689 out:
1690 /* Restore the original numpages */
1691 cpa->numpages = numpages;
1692 return ret;
1693 }
1694
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1695 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1696 pgprot_t mask_set, pgprot_t mask_clr,
1697 int force_split, int in_flag,
1698 struct page **pages)
1699 {
1700 struct cpa_data cpa;
1701 int ret, cache, checkalias;
1702
1703 memset(&cpa, 0, sizeof(cpa));
1704
1705 /*
1706 * Check, if we are requested to set a not supported
1707 * feature. Clearing non-supported features is OK.
1708 */
1709 mask_set = canon_pgprot(mask_set);
1710
1711 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1712 return 0;
1713
1714 /* Ensure we are PAGE_SIZE aligned */
1715 if (in_flag & CPA_ARRAY) {
1716 int i;
1717 for (i = 0; i < numpages; i++) {
1718 if (addr[i] & ~PAGE_MASK) {
1719 addr[i] &= PAGE_MASK;
1720 WARN_ON_ONCE(1);
1721 }
1722 }
1723 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1724 /*
1725 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1726 * No need to check in that case
1727 */
1728 if (*addr & ~PAGE_MASK) {
1729 *addr &= PAGE_MASK;
1730 /*
1731 * People should not be passing in unaligned addresses:
1732 */
1733 WARN_ON_ONCE(1);
1734 }
1735 }
1736
1737 /* Must avoid aliasing mappings in the highmem code */
1738 kmap_flush_unused();
1739
1740 vm_unmap_aliases();
1741
1742 cpa.vaddr = addr;
1743 cpa.pages = pages;
1744 cpa.numpages = numpages;
1745 cpa.mask_set = mask_set;
1746 cpa.mask_clr = mask_clr;
1747 cpa.flags = 0;
1748 cpa.curpage = 0;
1749 cpa.force_split = force_split;
1750
1751 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1752 cpa.flags |= in_flag;
1753
1754 /* No alias checking for _NX bit modifications */
1755 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1756 /* Has caller explicitly disabled alias checking? */
1757 if (in_flag & CPA_NO_CHECK_ALIAS)
1758 checkalias = 0;
1759
1760 ret = __change_page_attr_set_clr(&cpa, checkalias);
1761
1762 /*
1763 * Check whether we really changed something:
1764 */
1765 if (!(cpa.flags & CPA_FLUSHTLB))
1766 goto out;
1767
1768 /*
1769 * No need to flush, when we did not set any of the caching
1770 * attributes:
1771 */
1772 cache = !!pgprot2cachemode(mask_set);
1773
1774 /*
1775 * On error; flush everything to be sure.
1776 */
1777 if (ret) {
1778 cpa_flush_all(cache);
1779 goto out;
1780 }
1781
1782 cpa_flush(&cpa, cache);
1783 out:
1784 return ret;
1785 }
1786
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1787 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1788 pgprot_t mask, int array)
1789 {
1790 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1791 (array ? CPA_ARRAY : 0), NULL);
1792 }
1793
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1794 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1795 pgprot_t mask, int array)
1796 {
1797 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1798 (array ? CPA_ARRAY : 0), NULL);
1799 }
1800
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1801 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1802 pgprot_t mask)
1803 {
1804 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1805 CPA_PAGES_ARRAY, pages);
1806 }
1807
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1808 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1809 pgprot_t mask)
1810 {
1811 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1812 CPA_PAGES_ARRAY, pages);
1813 }
1814
1815 /*
1816 * _set_memory_prot is an internal helper for callers that have been passed
1817 * a pgprot_t value from upper layers and a reservation has already been taken.
1818 * If you want to set the pgprot to a specific page protocol, use the
1819 * set_memory_xx() functions.
1820 */
__set_memory_prot(unsigned long addr,int numpages,pgprot_t prot)1821 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1822 {
1823 return change_page_attr_set_clr(&addr, numpages, prot,
1824 __pgprot(~pgprot_val(prot)), 0, 0,
1825 NULL);
1826 }
1827
_set_memory_uc(unsigned long addr,int numpages)1828 int _set_memory_uc(unsigned long addr, int numpages)
1829 {
1830 /*
1831 * for now UC MINUS. see comments in ioremap()
1832 * If you really need strong UC use ioremap_uc(), but note
1833 * that you cannot override IO areas with set_memory_*() as
1834 * these helpers cannot work with IO memory.
1835 */
1836 return change_page_attr_set(&addr, numpages,
1837 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1838 0);
1839 }
1840
set_memory_uc(unsigned long addr,int numpages)1841 int set_memory_uc(unsigned long addr, int numpages)
1842 {
1843 int ret;
1844
1845 /*
1846 * for now UC MINUS. see comments in ioremap()
1847 */
1848 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1849 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1850 if (ret)
1851 goto out_err;
1852
1853 ret = _set_memory_uc(addr, numpages);
1854 if (ret)
1855 goto out_free;
1856
1857 return 0;
1858
1859 out_free:
1860 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1861 out_err:
1862 return ret;
1863 }
1864 EXPORT_SYMBOL(set_memory_uc);
1865
_set_memory_wc(unsigned long addr,int numpages)1866 int _set_memory_wc(unsigned long addr, int numpages)
1867 {
1868 int ret;
1869
1870 ret = change_page_attr_set(&addr, numpages,
1871 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1872 0);
1873 if (!ret) {
1874 ret = change_page_attr_set_clr(&addr, numpages,
1875 cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1876 __pgprot(_PAGE_CACHE_MASK),
1877 0, 0, NULL);
1878 }
1879 return ret;
1880 }
1881
set_memory_wc(unsigned long addr,int numpages)1882 int set_memory_wc(unsigned long addr, int numpages)
1883 {
1884 int ret;
1885
1886 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1887 _PAGE_CACHE_MODE_WC, NULL);
1888 if (ret)
1889 return ret;
1890
1891 ret = _set_memory_wc(addr, numpages);
1892 if (ret)
1893 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1894
1895 return ret;
1896 }
1897 EXPORT_SYMBOL(set_memory_wc);
1898
_set_memory_wt(unsigned long addr,int numpages)1899 int _set_memory_wt(unsigned long addr, int numpages)
1900 {
1901 return change_page_attr_set(&addr, numpages,
1902 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1903 }
1904
_set_memory_wb(unsigned long addr,int numpages)1905 int _set_memory_wb(unsigned long addr, int numpages)
1906 {
1907 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1908 return change_page_attr_clear(&addr, numpages,
1909 __pgprot(_PAGE_CACHE_MASK), 0);
1910 }
1911
set_memory_wb(unsigned long addr,int numpages)1912 int set_memory_wb(unsigned long addr, int numpages)
1913 {
1914 int ret;
1915
1916 ret = _set_memory_wb(addr, numpages);
1917 if (ret)
1918 return ret;
1919
1920 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1921 return 0;
1922 }
1923 EXPORT_SYMBOL(set_memory_wb);
1924
set_memory_x(unsigned long addr,int numpages)1925 int set_memory_x(unsigned long addr, int numpages)
1926 {
1927 if (!(__supported_pte_mask & _PAGE_NX))
1928 return 0;
1929
1930 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1931 }
1932
set_memory_nx(unsigned long addr,int numpages)1933 int set_memory_nx(unsigned long addr, int numpages)
1934 {
1935 if (!(__supported_pte_mask & _PAGE_NX))
1936 return 0;
1937
1938 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1939 }
1940
set_memory_ro(unsigned long addr,int numpages)1941 int set_memory_ro(unsigned long addr, int numpages)
1942 {
1943 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1944 }
1945
set_memory_rw(unsigned long addr,int numpages)1946 int set_memory_rw(unsigned long addr, int numpages)
1947 {
1948 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1949 }
1950
set_memory_np(unsigned long addr,int numpages)1951 int set_memory_np(unsigned long addr, int numpages)
1952 {
1953 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1954 }
1955
set_memory_np_noalias(unsigned long addr,int numpages)1956 int set_memory_np_noalias(unsigned long addr, int numpages)
1957 {
1958 int cpa_flags = CPA_NO_CHECK_ALIAS;
1959
1960 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1961 __pgprot(_PAGE_PRESENT), 0,
1962 cpa_flags, NULL);
1963 }
1964
set_memory_4k(unsigned long addr,int numpages)1965 int set_memory_4k(unsigned long addr, int numpages)
1966 {
1967 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1968 __pgprot(0), 1, 0, NULL);
1969 }
1970
set_memory_nonglobal(unsigned long addr,int numpages)1971 int set_memory_nonglobal(unsigned long addr, int numpages)
1972 {
1973 return change_page_attr_clear(&addr, numpages,
1974 __pgprot(_PAGE_GLOBAL), 0);
1975 }
1976
set_memory_global(unsigned long addr,int numpages)1977 int set_memory_global(unsigned long addr, int numpages)
1978 {
1979 return change_page_attr_set(&addr, numpages,
1980 __pgprot(_PAGE_GLOBAL), 0);
1981 }
1982
__set_memory_enc_dec(unsigned long addr,int numpages,bool enc)1983 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1984 {
1985 struct cpa_data cpa;
1986 int ret;
1987
1988 /* Nothing to do if memory encryption is not active */
1989 if (!mem_encrypt_active())
1990 return 0;
1991
1992 /* Should not be working on unaligned addresses */
1993 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1994 addr &= PAGE_MASK;
1995
1996 memset(&cpa, 0, sizeof(cpa));
1997 cpa.vaddr = &addr;
1998 cpa.numpages = numpages;
1999 cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
2000 cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
2001 cpa.pgd = init_mm.pgd;
2002
2003 /* Must avoid aliasing mappings in the highmem code */
2004 kmap_flush_unused();
2005 vm_unmap_aliases();
2006
2007 /*
2008 * Before changing the encryption attribute, we need to flush caches.
2009 */
2010 cpa_flush(&cpa, !this_cpu_has(X86_FEATURE_SME_COHERENT));
2011
2012 ret = __change_page_attr_set_clr(&cpa, 1);
2013
2014 /*
2015 * After changing the encryption attribute, we need to flush TLBs again
2016 * in case any speculative TLB caching occurred (but no need to flush
2017 * caches again). We could just use cpa_flush_all(), but in case TLB
2018 * flushing gets optimized in the cpa_flush() path use the same logic
2019 * as above.
2020 */
2021 cpa_flush(&cpa, 0);
2022
2023 return ret;
2024 }
2025
set_memory_encrypted(unsigned long addr,int numpages)2026 int set_memory_encrypted(unsigned long addr, int numpages)
2027 {
2028 return __set_memory_enc_dec(addr, numpages, true);
2029 }
2030 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2031
set_memory_decrypted(unsigned long addr,int numpages)2032 int set_memory_decrypted(unsigned long addr, int numpages)
2033 {
2034 return __set_memory_enc_dec(addr, numpages, false);
2035 }
2036 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2037
set_pages_uc(struct page * page,int numpages)2038 int set_pages_uc(struct page *page, int numpages)
2039 {
2040 unsigned long addr = (unsigned long)page_address(page);
2041
2042 return set_memory_uc(addr, numpages);
2043 }
2044 EXPORT_SYMBOL(set_pages_uc);
2045
_set_pages_array(struct page ** pages,int numpages,enum page_cache_mode new_type)2046 static int _set_pages_array(struct page **pages, int numpages,
2047 enum page_cache_mode new_type)
2048 {
2049 unsigned long start;
2050 unsigned long end;
2051 enum page_cache_mode set_type;
2052 int i;
2053 int free_idx;
2054 int ret;
2055
2056 for (i = 0; i < numpages; i++) {
2057 if (PageHighMem(pages[i]))
2058 continue;
2059 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2060 end = start + PAGE_SIZE;
2061 if (memtype_reserve(start, end, new_type, NULL))
2062 goto err_out;
2063 }
2064
2065 /* If WC, set to UC- first and then WC */
2066 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2067 _PAGE_CACHE_MODE_UC_MINUS : new_type;
2068
2069 ret = cpa_set_pages_array(pages, numpages,
2070 cachemode2pgprot(set_type));
2071 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2072 ret = change_page_attr_set_clr(NULL, numpages,
2073 cachemode2pgprot(
2074 _PAGE_CACHE_MODE_WC),
2075 __pgprot(_PAGE_CACHE_MASK),
2076 0, CPA_PAGES_ARRAY, pages);
2077 if (ret)
2078 goto err_out;
2079 return 0; /* Success */
2080 err_out:
2081 free_idx = i;
2082 for (i = 0; i < free_idx; i++) {
2083 if (PageHighMem(pages[i]))
2084 continue;
2085 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2086 end = start + PAGE_SIZE;
2087 memtype_free(start, end);
2088 }
2089 return -EINVAL;
2090 }
2091
set_pages_array_uc(struct page ** pages,int numpages)2092 int set_pages_array_uc(struct page **pages, int numpages)
2093 {
2094 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2095 }
2096 EXPORT_SYMBOL(set_pages_array_uc);
2097
set_pages_array_wc(struct page ** pages,int numpages)2098 int set_pages_array_wc(struct page **pages, int numpages)
2099 {
2100 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2101 }
2102 EXPORT_SYMBOL(set_pages_array_wc);
2103
set_pages_array_wt(struct page ** pages,int numpages)2104 int set_pages_array_wt(struct page **pages, int numpages)
2105 {
2106 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2107 }
2108 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2109
set_pages_wb(struct page * page,int numpages)2110 int set_pages_wb(struct page *page, int numpages)
2111 {
2112 unsigned long addr = (unsigned long)page_address(page);
2113
2114 return set_memory_wb(addr, numpages);
2115 }
2116 EXPORT_SYMBOL(set_pages_wb);
2117
set_pages_array_wb(struct page ** pages,int numpages)2118 int set_pages_array_wb(struct page **pages, int numpages)
2119 {
2120 int retval;
2121 unsigned long start;
2122 unsigned long end;
2123 int i;
2124
2125 /* WB cache mode is hard wired to all cache attribute bits being 0 */
2126 retval = cpa_clear_pages_array(pages, numpages,
2127 __pgprot(_PAGE_CACHE_MASK));
2128 if (retval)
2129 return retval;
2130
2131 for (i = 0; i < numpages; i++) {
2132 if (PageHighMem(pages[i]))
2133 continue;
2134 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2135 end = start + PAGE_SIZE;
2136 memtype_free(start, end);
2137 }
2138
2139 return 0;
2140 }
2141 EXPORT_SYMBOL(set_pages_array_wb);
2142
set_pages_ro(struct page * page,int numpages)2143 int set_pages_ro(struct page *page, int numpages)
2144 {
2145 unsigned long addr = (unsigned long)page_address(page);
2146
2147 return set_memory_ro(addr, numpages);
2148 }
2149
set_pages_rw(struct page * page,int numpages)2150 int set_pages_rw(struct page *page, int numpages)
2151 {
2152 unsigned long addr = (unsigned long)page_address(page);
2153
2154 return set_memory_rw(addr, numpages);
2155 }
2156
__set_pages_p(struct page * page,int numpages)2157 static int __set_pages_p(struct page *page, int numpages)
2158 {
2159 unsigned long tempaddr = (unsigned long) page_address(page);
2160 struct cpa_data cpa = { .vaddr = &tempaddr,
2161 .pgd = NULL,
2162 .numpages = numpages,
2163 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2164 .mask_clr = __pgprot(0),
2165 .flags = 0};
2166
2167 /*
2168 * No alias checking needed for setting present flag. otherwise,
2169 * we may need to break large pages for 64-bit kernel text
2170 * mappings (this adds to complexity if we want to do this from
2171 * atomic context especially). Let's keep it simple!
2172 */
2173 return __change_page_attr_set_clr(&cpa, 0);
2174 }
2175
__set_pages_np(struct page * page,int numpages)2176 static int __set_pages_np(struct page *page, int numpages)
2177 {
2178 unsigned long tempaddr = (unsigned long) page_address(page);
2179 struct cpa_data cpa = { .vaddr = &tempaddr,
2180 .pgd = NULL,
2181 .numpages = numpages,
2182 .mask_set = __pgprot(0),
2183 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2184 .flags = 0};
2185
2186 /*
2187 * No alias checking needed for setting not present flag. otherwise,
2188 * we may need to break large pages for 64-bit kernel text
2189 * mappings (this adds to complexity if we want to do this from
2190 * atomic context especially). Let's keep it simple!
2191 */
2192 return __change_page_attr_set_clr(&cpa, 0);
2193 }
2194
set_direct_map_invalid_noflush(struct page * page)2195 int set_direct_map_invalid_noflush(struct page *page)
2196 {
2197 return __set_pages_np(page, 1);
2198 }
2199
set_direct_map_default_noflush(struct page * page)2200 int set_direct_map_default_noflush(struct page *page)
2201 {
2202 return __set_pages_p(page, 1);
2203 }
2204
2205 #ifdef CONFIG_DEBUG_PAGEALLOC
__kernel_map_pages(struct page * page,int numpages,int enable)2206 void __kernel_map_pages(struct page *page, int numpages, int enable)
2207 {
2208 if (PageHighMem(page))
2209 return;
2210 if (!enable) {
2211 debug_check_no_locks_freed(page_address(page),
2212 numpages * PAGE_SIZE);
2213 }
2214
2215 /*
2216 * The return value is ignored as the calls cannot fail.
2217 * Large pages for identity mappings are not used at boot time
2218 * and hence no memory allocations during large page split.
2219 */
2220 if (enable)
2221 __set_pages_p(page, numpages);
2222 else
2223 __set_pages_np(page, numpages);
2224
2225 /*
2226 * We should perform an IPI and flush all tlbs,
2227 * but that can deadlock->flush only current cpu.
2228 * Preemption needs to be disabled around __flush_tlb_all() due to
2229 * CR3 reload in __native_flush_tlb().
2230 */
2231 preempt_disable();
2232 __flush_tlb_all();
2233 preempt_enable();
2234
2235 arch_flush_lazy_mmu_mode();
2236 }
2237 #endif /* CONFIG_DEBUG_PAGEALLOC */
2238
kernel_page_present(struct page * page)2239 bool kernel_page_present(struct page *page)
2240 {
2241 unsigned int level;
2242 pte_t *pte;
2243
2244 if (PageHighMem(page))
2245 return false;
2246
2247 pte = lookup_address((unsigned long)page_address(page), &level);
2248 return (pte_val(*pte) & _PAGE_PRESENT);
2249 }
2250
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)2251 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2252 unsigned numpages, unsigned long page_flags)
2253 {
2254 int retval = -EINVAL;
2255
2256 struct cpa_data cpa = {
2257 .vaddr = &address,
2258 .pfn = pfn,
2259 .pgd = pgd,
2260 .numpages = numpages,
2261 .mask_set = __pgprot(0),
2262 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2263 .flags = 0,
2264 };
2265
2266 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2267
2268 if (!(__supported_pte_mask & _PAGE_NX))
2269 goto out;
2270
2271 if (!(page_flags & _PAGE_ENC))
2272 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2273
2274 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2275
2276 retval = __change_page_attr_set_clr(&cpa, 0);
2277 __flush_tlb_all();
2278
2279 out:
2280 return retval;
2281 }
2282
2283 /*
2284 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2285 * function shouldn't be used in an SMP environment. Presently, it's used only
2286 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2287 */
kernel_unmap_pages_in_pgd(pgd_t * pgd,unsigned long address,unsigned long numpages)2288 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2289 unsigned long numpages)
2290 {
2291 int retval;
2292
2293 /*
2294 * The typical sequence for unmapping is to find a pte through
2295 * lookup_address_in_pgd() (ideally, it should never return NULL because
2296 * the address is already mapped) and change it's protections. As pfn is
2297 * the *target* of a mapping, it's not useful while unmapping.
2298 */
2299 struct cpa_data cpa = {
2300 .vaddr = &address,
2301 .pfn = 0,
2302 .pgd = pgd,
2303 .numpages = numpages,
2304 .mask_set = __pgprot(0),
2305 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2306 .flags = 0,
2307 };
2308
2309 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2310
2311 retval = __change_page_attr_set_clr(&cpa, 0);
2312 __flush_tlb_all();
2313
2314 return retval;
2315 }
2316
2317 /*
2318 * The testcases use internal knowledge of the implementation that shouldn't
2319 * be exposed to the rest of the kernel. Include these directly here.
2320 */
2321 #ifdef CONFIG_CPA_DEBUG
2322 #include "cpa-test.c"
2323 #endif
2324