1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) ST-Ericsson AB 2012
4 *
5 * Main and Back-up battery management driver.
6 *
7 * Note: Backup battery management is required in case of Li-Ion battery and not
8 * for capacitive battery. HREF boards have capacitive battery and hence backup
9 * battery management is not used and the supported code is available in this
10 * driver.
11 *
12 * Author:
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
16 */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/component.h>
21 #include <linux/device.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/power_supply.h>
25 #include <linux/kobject.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/time.h>
29 #include <linux/time64.h>
30 #include <linux/of.h>
31 #include <linux/completion.h>
32 #include <linux/mfd/core.h>
33 #include <linux/mfd/abx500.h>
34 #include <linux/mfd/abx500/ab8500.h>
35 #include <linux/iio/consumer.h>
36 #include <linux/kernel.h>
37 #include <linux/fixp-arith.h>
38
39 #include "ab8500-bm.h"
40
41 #define MILLI_TO_MICRO 1000
42 #define FG_LSB_IN_MA 1627
43 #define QLSB_NANO_AMP_HOURS_X10 1071
44 #define INS_CURR_TIMEOUT (3 * HZ)
45
46 #define SEC_TO_SAMPLE(S) (S * 4)
47
48 #define NBR_AVG_SAMPLES 20
49
50 #define LOW_BAT_CHECK_INTERVAL (HZ / 16) /* 62.5 ms */
51
52 #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
53 #define BATT_OK_MIN 2360 /* mV */
54 #define BATT_OK_INCREMENT 50 /* mV */
55 #define BATT_OK_MAX_NR_INCREMENTS 0xE
56
57 /* FG constants */
58 #define BATT_OVV 0x01
59
60 /**
61 * struct ab8500_fg_interrupts - ab8500 fg interrupts
62 * @name: name of the interrupt
63 * @isr function pointer to the isr
64 */
65 struct ab8500_fg_interrupts {
66 char *name;
67 irqreturn_t (*isr)(int irq, void *data);
68 };
69
70 enum ab8500_fg_discharge_state {
71 AB8500_FG_DISCHARGE_INIT,
72 AB8500_FG_DISCHARGE_INITMEASURING,
73 AB8500_FG_DISCHARGE_INIT_RECOVERY,
74 AB8500_FG_DISCHARGE_RECOVERY,
75 AB8500_FG_DISCHARGE_READOUT_INIT,
76 AB8500_FG_DISCHARGE_READOUT,
77 AB8500_FG_DISCHARGE_WAKEUP,
78 };
79
80 static char *discharge_state[] = {
81 "DISCHARGE_INIT",
82 "DISCHARGE_INITMEASURING",
83 "DISCHARGE_INIT_RECOVERY",
84 "DISCHARGE_RECOVERY",
85 "DISCHARGE_READOUT_INIT",
86 "DISCHARGE_READOUT",
87 "DISCHARGE_WAKEUP",
88 };
89
90 enum ab8500_fg_charge_state {
91 AB8500_FG_CHARGE_INIT,
92 AB8500_FG_CHARGE_READOUT,
93 };
94
95 static char *charge_state[] = {
96 "CHARGE_INIT",
97 "CHARGE_READOUT",
98 };
99
100 enum ab8500_fg_calibration_state {
101 AB8500_FG_CALIB_INIT,
102 AB8500_FG_CALIB_WAIT,
103 AB8500_FG_CALIB_END,
104 };
105
106 struct ab8500_fg_avg_cap {
107 int avg;
108 int samples[NBR_AVG_SAMPLES];
109 time64_t time_stamps[NBR_AVG_SAMPLES];
110 int pos;
111 int nbr_samples;
112 int sum;
113 };
114
115 struct ab8500_fg_cap_scaling {
116 bool enable;
117 int cap_to_scale[2];
118 int disable_cap_level;
119 int scaled_cap;
120 };
121
122 struct ab8500_fg_battery_capacity {
123 int max_mah_design;
124 int max_mah;
125 int mah;
126 int permille;
127 int level;
128 int prev_mah;
129 int prev_percent;
130 int prev_level;
131 int user_mah;
132 struct ab8500_fg_cap_scaling cap_scale;
133 };
134
135 struct ab8500_fg_flags {
136 bool fg_enabled;
137 bool conv_done;
138 bool charging;
139 bool fully_charged;
140 bool force_full;
141 bool low_bat_delay;
142 bool low_bat;
143 bool bat_ovv;
144 bool batt_unknown;
145 bool calibrate;
146 bool user_cap;
147 bool batt_id_received;
148 };
149
150 struct inst_curr_result_list {
151 struct list_head list;
152 int *result;
153 };
154
155 /**
156 * struct ab8500_fg - ab8500 FG device information
157 * @dev: Pointer to the structure device
158 * @node: a list of AB8500 FGs, hence prepared for reentrance
159 * @irq holds the CCEOC interrupt number
160 * @vbat: Battery voltage in mV
161 * @vbat_nom: Nominal battery voltage in mV
162 * @inst_curr: Instantenous battery current in mA
163 * @avg_curr: Average battery current in mA
164 * @bat_temp battery temperature
165 * @fg_samples: Number of samples used in the FG accumulation
166 * @accu_charge: Accumulated charge from the last conversion
167 * @recovery_cnt: Counter for recovery mode
168 * @high_curr_cnt: Counter for high current mode
169 * @init_cnt: Counter for init mode
170 * @low_bat_cnt Counter for number of consecutive low battery measures
171 * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled
172 * @recovery_needed: Indicate if recovery is needed
173 * @high_curr_mode: Indicate if we're in high current mode
174 * @init_capacity: Indicate if initial capacity measuring should be done
175 * @turn_off_fg: True if fg was off before current measurement
176 * @calib_state State during offset calibration
177 * @discharge_state: Current discharge state
178 * @charge_state: Current charge state
179 * @ab8500_fg_started Completion struct used for the instant current start
180 * @ab8500_fg_complete Completion struct used for the instant current reading
181 * @flags: Structure for information about events triggered
182 * @bat_cap: Structure for battery capacity specific parameters
183 * @avg_cap: Average capacity filter
184 * @parent: Pointer to the struct ab8500
185 * @main_bat_v: ADC channel for the main battery voltage
186 * @bm: Platform specific battery management information
187 * @fg_psy: Structure that holds the FG specific battery properties
188 * @fg_wq: Work queue for running the FG algorithm
189 * @fg_periodic_work: Work to run the FG algorithm periodically
190 * @fg_low_bat_work: Work to check low bat condition
191 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
192 * @fg_work: Work to run the FG algorithm instantly
193 * @fg_acc_cur_work: Work to read the FG accumulator
194 * @fg_check_hw_failure_work: Work for checking HW state
195 * @cc_lock: Mutex for locking the CC
196 * @fg_kobject: Structure of type kobject
197 */
198 struct ab8500_fg {
199 struct device *dev;
200 struct list_head node;
201 int irq;
202 int vbat;
203 int vbat_nom;
204 int inst_curr;
205 int avg_curr;
206 int bat_temp;
207 int fg_samples;
208 int accu_charge;
209 int recovery_cnt;
210 int high_curr_cnt;
211 int init_cnt;
212 int low_bat_cnt;
213 int nbr_cceoc_irq_cnt;
214 bool recovery_needed;
215 bool high_curr_mode;
216 bool init_capacity;
217 bool turn_off_fg;
218 enum ab8500_fg_calibration_state calib_state;
219 enum ab8500_fg_discharge_state discharge_state;
220 enum ab8500_fg_charge_state charge_state;
221 struct completion ab8500_fg_started;
222 struct completion ab8500_fg_complete;
223 struct ab8500_fg_flags flags;
224 struct ab8500_fg_battery_capacity bat_cap;
225 struct ab8500_fg_avg_cap avg_cap;
226 struct ab8500 *parent;
227 struct iio_channel *main_bat_v;
228 struct ab8500_bm_data *bm;
229 struct power_supply *fg_psy;
230 struct workqueue_struct *fg_wq;
231 struct delayed_work fg_periodic_work;
232 struct delayed_work fg_low_bat_work;
233 struct delayed_work fg_reinit_work;
234 struct work_struct fg_work;
235 struct work_struct fg_acc_cur_work;
236 struct delayed_work fg_check_hw_failure_work;
237 struct mutex cc_lock;
238 struct kobject fg_kobject;
239 };
240 static LIST_HEAD(ab8500_fg_list);
241
242 /**
243 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
244 * (i.e. the first fuel gauge in the instance list)
245 */
ab8500_fg_get(void)246 struct ab8500_fg *ab8500_fg_get(void)
247 {
248 return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg,
249 node);
250 }
251
252 /* Main battery properties */
253 static enum power_supply_property ab8500_fg_props[] = {
254 POWER_SUPPLY_PROP_VOLTAGE_NOW,
255 POWER_SUPPLY_PROP_CURRENT_NOW,
256 POWER_SUPPLY_PROP_CURRENT_AVG,
257 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
258 POWER_SUPPLY_PROP_ENERGY_FULL,
259 POWER_SUPPLY_PROP_ENERGY_NOW,
260 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
261 POWER_SUPPLY_PROP_CHARGE_FULL,
262 POWER_SUPPLY_PROP_CHARGE_NOW,
263 POWER_SUPPLY_PROP_CAPACITY,
264 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
265 };
266
267 /*
268 * This array maps the raw hex value to lowbat voltage used by the AB8500
269 * Values taken from the UM0836
270 */
271 static int ab8500_fg_lowbat_voltage_map[] = {
272 2300 ,
273 2325 ,
274 2350 ,
275 2375 ,
276 2400 ,
277 2425 ,
278 2450 ,
279 2475 ,
280 2500 ,
281 2525 ,
282 2550 ,
283 2575 ,
284 2600 ,
285 2625 ,
286 2650 ,
287 2675 ,
288 2700 ,
289 2725 ,
290 2750 ,
291 2775 ,
292 2800 ,
293 2825 ,
294 2850 ,
295 2875 ,
296 2900 ,
297 2925 ,
298 2950 ,
299 2975 ,
300 3000 ,
301 3025 ,
302 3050 ,
303 3075 ,
304 3100 ,
305 3125 ,
306 3150 ,
307 3175 ,
308 3200 ,
309 3225 ,
310 3250 ,
311 3275 ,
312 3300 ,
313 3325 ,
314 3350 ,
315 3375 ,
316 3400 ,
317 3425 ,
318 3450 ,
319 3475 ,
320 3500 ,
321 3525 ,
322 3550 ,
323 3575 ,
324 3600 ,
325 3625 ,
326 3650 ,
327 3675 ,
328 3700 ,
329 3725 ,
330 3750 ,
331 3775 ,
332 3800 ,
333 3825 ,
334 3850 ,
335 3850 ,
336 };
337
ab8500_volt_to_regval(int voltage)338 static u8 ab8500_volt_to_regval(int voltage)
339 {
340 int i;
341
342 if (voltage < ab8500_fg_lowbat_voltage_map[0])
343 return 0;
344
345 for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
346 if (voltage < ab8500_fg_lowbat_voltage_map[i])
347 return (u8) i - 1;
348 }
349
350 /* If not captured above, return index of last element */
351 return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
352 }
353
354 /**
355 * ab8500_fg_is_low_curr() - Low or high current mode
356 * @di: pointer to the ab8500_fg structure
357 * @curr: the current to base or our decision on
358 *
359 * Low current mode if the current consumption is below a certain threshold
360 */
ab8500_fg_is_low_curr(struct ab8500_fg * di,int curr)361 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
362 {
363 /*
364 * We want to know if we're in low current mode
365 */
366 if (curr > -di->bm->fg_params->high_curr_threshold)
367 return true;
368 else
369 return false;
370 }
371
372 /**
373 * ab8500_fg_add_cap_sample() - Add capacity to average filter
374 * @di: pointer to the ab8500_fg structure
375 * @sample: the capacity in mAh to add to the filter
376 *
377 * A capacity is added to the filter and a new mean capacity is calculated and
378 * returned
379 */
ab8500_fg_add_cap_sample(struct ab8500_fg * di,int sample)380 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
381 {
382 time64_t now = ktime_get_boottime_seconds();
383 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
384
385 do {
386 avg->sum += sample - avg->samples[avg->pos];
387 avg->samples[avg->pos] = sample;
388 avg->time_stamps[avg->pos] = now;
389 avg->pos++;
390
391 if (avg->pos == NBR_AVG_SAMPLES)
392 avg->pos = 0;
393
394 if (avg->nbr_samples < NBR_AVG_SAMPLES)
395 avg->nbr_samples++;
396
397 /*
398 * Check the time stamp for each sample. If too old,
399 * replace with latest sample
400 */
401 } while (now - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
402
403 avg->avg = avg->sum / avg->nbr_samples;
404
405 return avg->avg;
406 }
407
408 /**
409 * ab8500_fg_clear_cap_samples() - Clear average filter
410 * @di: pointer to the ab8500_fg structure
411 *
412 * The capacity filter is is reset to zero.
413 */
ab8500_fg_clear_cap_samples(struct ab8500_fg * di)414 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
415 {
416 int i;
417 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
418
419 avg->pos = 0;
420 avg->nbr_samples = 0;
421 avg->sum = 0;
422 avg->avg = 0;
423
424 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
425 avg->samples[i] = 0;
426 avg->time_stamps[i] = 0;
427 }
428 }
429
430 /**
431 * ab8500_fg_fill_cap_sample() - Fill average filter
432 * @di: pointer to the ab8500_fg structure
433 * @sample: the capacity in mAh to fill the filter with
434 *
435 * The capacity filter is filled with a capacity in mAh
436 */
ab8500_fg_fill_cap_sample(struct ab8500_fg * di,int sample)437 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
438 {
439 int i;
440 time64_t now;
441 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
442
443 now = ktime_get_boottime_seconds();
444
445 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
446 avg->samples[i] = sample;
447 avg->time_stamps[i] = now;
448 }
449
450 avg->pos = 0;
451 avg->nbr_samples = NBR_AVG_SAMPLES;
452 avg->sum = sample * NBR_AVG_SAMPLES;
453 avg->avg = sample;
454 }
455
456 /**
457 * ab8500_fg_coulomb_counter() - enable coulomb counter
458 * @di: pointer to the ab8500_fg structure
459 * @enable: enable/disable
460 *
461 * Enable/Disable coulomb counter.
462 * On failure returns negative value.
463 */
ab8500_fg_coulomb_counter(struct ab8500_fg * di,bool enable)464 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
465 {
466 int ret = 0;
467 mutex_lock(&di->cc_lock);
468 if (enable) {
469 /* To be able to reprogram the number of samples, we have to
470 * first stop the CC and then enable it again */
471 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
472 AB8500_RTC_CC_CONF_REG, 0x00);
473 if (ret)
474 goto cc_err;
475
476 /* Program the samples */
477 ret = abx500_set_register_interruptible(di->dev,
478 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
479 di->fg_samples);
480 if (ret)
481 goto cc_err;
482
483 /* Start the CC */
484 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
485 AB8500_RTC_CC_CONF_REG,
486 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
487 if (ret)
488 goto cc_err;
489
490 di->flags.fg_enabled = true;
491 } else {
492 /* Clear any pending read requests */
493 ret = abx500_mask_and_set_register_interruptible(di->dev,
494 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
495 (RESET_ACCU | READ_REQ), 0);
496 if (ret)
497 goto cc_err;
498
499 ret = abx500_set_register_interruptible(di->dev,
500 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
501 if (ret)
502 goto cc_err;
503
504 /* Stop the CC */
505 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
506 AB8500_RTC_CC_CONF_REG, 0);
507 if (ret)
508 goto cc_err;
509
510 di->flags.fg_enabled = false;
511
512 }
513 dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
514 enable, di->fg_samples);
515
516 mutex_unlock(&di->cc_lock);
517
518 return ret;
519 cc_err:
520 dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
521 mutex_unlock(&di->cc_lock);
522 return ret;
523 }
524
525 /**
526 * ab8500_fg_inst_curr_start() - start battery instantaneous current
527 * @di: pointer to the ab8500_fg structure
528 *
529 * Returns 0 or error code
530 * Note: This is part "one" and has to be called before
531 * ab8500_fg_inst_curr_finalize()
532 */
ab8500_fg_inst_curr_start(struct ab8500_fg * di)533 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
534 {
535 u8 reg_val;
536 int ret;
537
538 mutex_lock(&di->cc_lock);
539
540 di->nbr_cceoc_irq_cnt = 0;
541 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
542 AB8500_RTC_CC_CONF_REG, ®_val);
543 if (ret < 0)
544 goto fail;
545
546 if (!(reg_val & CC_PWR_UP_ENA)) {
547 dev_dbg(di->dev, "%s Enable FG\n", __func__);
548 di->turn_off_fg = true;
549
550 /* Program the samples */
551 ret = abx500_set_register_interruptible(di->dev,
552 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
553 SEC_TO_SAMPLE(10));
554 if (ret)
555 goto fail;
556
557 /* Start the CC */
558 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
559 AB8500_RTC_CC_CONF_REG,
560 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
561 if (ret)
562 goto fail;
563 } else {
564 di->turn_off_fg = false;
565 }
566
567 /* Return and WFI */
568 reinit_completion(&di->ab8500_fg_started);
569 reinit_completion(&di->ab8500_fg_complete);
570 enable_irq(di->irq);
571
572 /* Note: cc_lock is still locked */
573 return 0;
574 fail:
575 mutex_unlock(&di->cc_lock);
576 return ret;
577 }
578
579 /**
580 * ab8500_fg_inst_curr_started() - check if fg conversion has started
581 * @di: pointer to the ab8500_fg structure
582 *
583 * Returns 1 if conversion started, 0 if still waiting
584 */
ab8500_fg_inst_curr_started(struct ab8500_fg * di)585 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
586 {
587 return completion_done(&di->ab8500_fg_started);
588 }
589
590 /**
591 * ab8500_fg_inst_curr_done() - check if fg conversion is done
592 * @di: pointer to the ab8500_fg structure
593 *
594 * Returns 1 if conversion done, 0 if still waiting
595 */
ab8500_fg_inst_curr_done(struct ab8500_fg * di)596 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
597 {
598 return completion_done(&di->ab8500_fg_complete);
599 }
600
601 /**
602 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
603 * @di: pointer to the ab8500_fg structure
604 * @res: battery instantenous current(on success)
605 *
606 * Returns 0 or an error code
607 * Note: This is part "two" and has to be called at earliest 250 ms
608 * after ab8500_fg_inst_curr_start()
609 */
ab8500_fg_inst_curr_finalize(struct ab8500_fg * di,int * res)610 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
611 {
612 u8 low, high;
613 int val;
614 int ret;
615 unsigned long timeout;
616
617 if (!completion_done(&di->ab8500_fg_complete)) {
618 timeout = wait_for_completion_timeout(
619 &di->ab8500_fg_complete,
620 INS_CURR_TIMEOUT);
621 dev_dbg(di->dev, "Finalize time: %d ms\n",
622 jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
623 if (!timeout) {
624 ret = -ETIME;
625 disable_irq(di->irq);
626 di->nbr_cceoc_irq_cnt = 0;
627 dev_err(di->dev, "completion timed out [%d]\n",
628 __LINE__);
629 goto fail;
630 }
631 }
632
633 disable_irq(di->irq);
634 di->nbr_cceoc_irq_cnt = 0;
635
636 ret = abx500_mask_and_set_register_interruptible(di->dev,
637 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
638 READ_REQ, READ_REQ);
639
640 /* 100uS between read request and read is needed */
641 usleep_range(100, 100);
642
643 /* Read CC Sample conversion value Low and high */
644 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
645 AB8500_GASG_CC_SMPL_CNVL_REG, &low);
646 if (ret < 0)
647 goto fail;
648
649 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
650 AB8500_GASG_CC_SMPL_CNVH_REG, &high);
651 if (ret < 0)
652 goto fail;
653
654 /*
655 * negative value for Discharging
656 * convert 2's complement into decimal
657 */
658 if (high & 0x10)
659 val = (low | (high << 8) | 0xFFFFE000);
660 else
661 val = (low | (high << 8));
662
663 /*
664 * Convert to unit value in mA
665 * Full scale input voltage is
666 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
667 * Given a 250ms conversion cycle time the LSB corresponds
668 * to 107.1 nAh. Convert to current by dividing by the conversion
669 * time in hours (250ms = 1 / (3600 * 4)h)
670 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
671 */
672 val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
673 (1000 * di->bm->fg_res);
674
675 if (di->turn_off_fg) {
676 dev_dbg(di->dev, "%s Disable FG\n", __func__);
677
678 /* Clear any pending read requests */
679 ret = abx500_set_register_interruptible(di->dev,
680 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
681 if (ret)
682 goto fail;
683
684 /* Stop the CC */
685 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
686 AB8500_RTC_CC_CONF_REG, 0);
687 if (ret)
688 goto fail;
689 }
690 mutex_unlock(&di->cc_lock);
691 (*res) = val;
692
693 return 0;
694 fail:
695 mutex_unlock(&di->cc_lock);
696 return ret;
697 }
698
699 /**
700 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
701 * @di: pointer to the ab8500_fg structure
702 * @res: battery instantenous current(on success)
703 *
704 * Returns 0 else error code
705 */
ab8500_fg_inst_curr_blocking(struct ab8500_fg * di)706 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
707 {
708 int ret;
709 unsigned long timeout;
710 int res = 0;
711
712 ret = ab8500_fg_inst_curr_start(di);
713 if (ret) {
714 dev_err(di->dev, "Failed to initialize fg_inst\n");
715 return 0;
716 }
717
718 /* Wait for CC to actually start */
719 if (!completion_done(&di->ab8500_fg_started)) {
720 timeout = wait_for_completion_timeout(
721 &di->ab8500_fg_started,
722 INS_CURR_TIMEOUT);
723 dev_dbg(di->dev, "Start time: %d ms\n",
724 jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
725 if (!timeout) {
726 ret = -ETIME;
727 dev_err(di->dev, "completion timed out [%d]\n",
728 __LINE__);
729 goto fail;
730 }
731 }
732
733 ret = ab8500_fg_inst_curr_finalize(di, &res);
734 if (ret) {
735 dev_err(di->dev, "Failed to finalize fg_inst\n");
736 return 0;
737 }
738
739 dev_dbg(di->dev, "%s instant current: %d", __func__, res);
740 return res;
741 fail:
742 disable_irq(di->irq);
743 mutex_unlock(&di->cc_lock);
744 return ret;
745 }
746
747 /**
748 * ab8500_fg_acc_cur_work() - average battery current
749 * @work: pointer to the work_struct structure
750 *
751 * Updated the average battery current obtained from the
752 * coulomb counter.
753 */
ab8500_fg_acc_cur_work(struct work_struct * work)754 static void ab8500_fg_acc_cur_work(struct work_struct *work)
755 {
756 int val;
757 int ret;
758 u8 low, med, high;
759
760 struct ab8500_fg *di = container_of(work,
761 struct ab8500_fg, fg_acc_cur_work);
762
763 mutex_lock(&di->cc_lock);
764 ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
765 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
766 if (ret)
767 goto exit;
768
769 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
770 AB8500_GASG_CC_NCOV_ACCU_LOW, &low);
771 if (ret < 0)
772 goto exit;
773
774 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
775 AB8500_GASG_CC_NCOV_ACCU_MED, &med);
776 if (ret < 0)
777 goto exit;
778
779 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
780 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
781 if (ret < 0)
782 goto exit;
783
784 /* Check for sign bit in case of negative value, 2's complement */
785 if (high & 0x10)
786 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
787 else
788 val = (low | (med << 8) | (high << 16));
789
790 /*
791 * Convert to uAh
792 * Given a 250ms conversion cycle time the LSB corresponds
793 * to 112.9 nAh.
794 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
795 */
796 di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
797 (100 * di->bm->fg_res);
798
799 /*
800 * Convert to unit value in mA
801 * by dividing by the conversion
802 * time in hours (= samples / (3600 * 4)h)
803 * and multiply with 1000
804 */
805 di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
806 (1000 * di->bm->fg_res * (di->fg_samples / 4));
807
808 di->flags.conv_done = true;
809
810 mutex_unlock(&di->cc_lock);
811
812 queue_work(di->fg_wq, &di->fg_work);
813
814 dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
815 di->bm->fg_res, di->fg_samples, val, di->accu_charge);
816 return;
817 exit:
818 dev_err(di->dev,
819 "Failed to read or write gas gauge registers\n");
820 mutex_unlock(&di->cc_lock);
821 queue_work(di->fg_wq, &di->fg_work);
822 }
823
824 /**
825 * ab8500_fg_bat_voltage() - get battery voltage
826 * @di: pointer to the ab8500_fg structure
827 *
828 * Returns battery voltage(on success) else error code
829 */
ab8500_fg_bat_voltage(struct ab8500_fg * di)830 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
831 {
832 int vbat, ret;
833 static int prev;
834
835 ret = iio_read_channel_processed(di->main_bat_v, &vbat);
836 if (ret < 0) {
837 dev_err(di->dev,
838 "%s ADC conversion failed, using previous value\n",
839 __func__);
840 return prev;
841 }
842
843 prev = vbat;
844 return vbat;
845 }
846
847 /**
848 * ab8500_fg_volt_to_capacity() - Voltage based capacity
849 * @di: pointer to the ab8500_fg structure
850 * @voltage: The voltage to convert to a capacity
851 *
852 * Returns battery capacity in per mille based on voltage
853 */
ab8500_fg_volt_to_capacity(struct ab8500_fg * di,int voltage)854 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
855 {
856 int i, tbl_size;
857 const struct ab8500_v_to_cap *tbl;
858 int cap = 0;
859
860 tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl;
861 tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
862
863 for (i = 0; i < tbl_size; ++i) {
864 if (voltage > tbl[i].voltage)
865 break;
866 }
867
868 if ((i > 0) && (i < tbl_size)) {
869 cap = fixp_linear_interpolate(
870 tbl[i].voltage,
871 tbl[i].capacity * 10,
872 tbl[i-1].voltage,
873 tbl[i-1].capacity * 10,
874 voltage);
875 } else if (i == 0) {
876 cap = 1000;
877 } else {
878 cap = 0;
879 }
880
881 dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
882 __func__, voltage, cap);
883
884 return cap;
885 }
886
887 /**
888 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
889 * @di: pointer to the ab8500_fg structure
890 *
891 * Returns battery capacity based on battery voltage that is not compensated
892 * for the voltage drop due to the load
893 */
ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg * di)894 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
895 {
896 di->vbat = ab8500_fg_bat_voltage(di);
897 return ab8500_fg_volt_to_capacity(di, di->vbat);
898 }
899
900 /**
901 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
902 * @di: pointer to the ab8500_fg structure
903 *
904 * Returns battery inner resistance added with the fuel gauge resistor value
905 * to get the total resistance in the whole link from gnd to bat+ node.
906 */
ab8500_fg_battery_resistance(struct ab8500_fg * di)907 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
908 {
909 int i, tbl_size;
910 const struct batres_vs_temp *tbl;
911 int resist = 0;
912
913 tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
914 tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
915
916 for (i = 0; i < tbl_size; ++i) {
917 if (di->bat_temp / 10 > tbl[i].temp)
918 break;
919 }
920
921 if ((i > 0) && (i < tbl_size)) {
922 resist = fixp_linear_interpolate(
923 tbl[i].temp,
924 tbl[i].resist,
925 tbl[i-1].temp,
926 tbl[i-1].resist,
927 di->bat_temp / 10);
928 } else if (i == 0) {
929 resist = tbl[0].resist;
930 } else {
931 resist = tbl[tbl_size - 1].resist;
932 }
933
934 dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
935 " fg resistance %d, total: %d (mOhm)\n",
936 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
937 (di->bm->fg_res / 10) + resist);
938
939 /* fg_res variable is in 0.1mOhm */
940 resist += di->bm->fg_res / 10;
941
942 return resist;
943 }
944
945 /**
946 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
947 * @di: pointer to the ab8500_fg structure
948 *
949 * Returns battery capacity based on battery voltage that is load compensated
950 * for the voltage drop
951 */
ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg * di)952 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
953 {
954 int vbat_comp, res;
955 int i = 0;
956 int vbat = 0;
957
958 ab8500_fg_inst_curr_start(di);
959
960 do {
961 vbat += ab8500_fg_bat_voltage(di);
962 i++;
963 usleep_range(5000, 6000);
964 } while (!ab8500_fg_inst_curr_done(di));
965
966 ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
967
968 di->vbat = vbat / i;
969 res = ab8500_fg_battery_resistance(di);
970
971 /* Use Ohms law to get the load compensated voltage */
972 vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
973
974 dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
975 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
976 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
977
978 return ab8500_fg_volt_to_capacity(di, vbat_comp);
979 }
980
981 /**
982 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
983 * @di: pointer to the ab8500_fg structure
984 * @cap_mah: capacity in mAh
985 *
986 * Converts capacity in mAh to capacity in permille
987 */
ab8500_fg_convert_mah_to_permille(struct ab8500_fg * di,int cap_mah)988 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
989 {
990 return (cap_mah * 1000) / di->bat_cap.max_mah_design;
991 }
992
993 /**
994 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
995 * @di: pointer to the ab8500_fg structure
996 * @cap_pm: capacity in permille
997 *
998 * Converts capacity in permille to capacity in mAh
999 */
ab8500_fg_convert_permille_to_mah(struct ab8500_fg * di,int cap_pm)1000 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1001 {
1002 return cap_pm * di->bat_cap.max_mah_design / 1000;
1003 }
1004
1005 /**
1006 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1007 * @di: pointer to the ab8500_fg structure
1008 * @cap_mah: capacity in mAh
1009 *
1010 * Converts capacity in mAh to capacity in uWh
1011 */
ab8500_fg_convert_mah_to_uwh(struct ab8500_fg * di,int cap_mah)1012 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1013 {
1014 u64 div_res;
1015 u32 div_rem;
1016
1017 div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1018 div_rem = do_div(div_res, 1000);
1019
1020 /* Make sure to round upwards if necessary */
1021 if (div_rem >= 1000 / 2)
1022 div_res++;
1023
1024 return (int) div_res;
1025 }
1026
1027 /**
1028 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1029 * @di: pointer to the ab8500_fg structure
1030 *
1031 * Return the capacity in mAh based on previous calculated capcity and the FG
1032 * accumulator register value. The filter is filled with this capacity
1033 */
ab8500_fg_calc_cap_charging(struct ab8500_fg * di)1034 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1035 {
1036 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1037 __func__,
1038 di->bat_cap.mah,
1039 di->accu_charge);
1040
1041 /* Capacity should not be less than 0 */
1042 if (di->bat_cap.mah + di->accu_charge > 0)
1043 di->bat_cap.mah += di->accu_charge;
1044 else
1045 di->bat_cap.mah = 0;
1046 /*
1047 * We force capacity to 100% once when the algorithm
1048 * reports that it's full.
1049 */
1050 if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1051 di->flags.force_full) {
1052 di->bat_cap.mah = di->bat_cap.max_mah_design;
1053 }
1054
1055 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1056 di->bat_cap.permille =
1057 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1058
1059 /* We need to update battery voltage and inst current when charging */
1060 di->vbat = ab8500_fg_bat_voltage(di);
1061 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1062
1063 return di->bat_cap.mah;
1064 }
1065
1066 /**
1067 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1068 * @di: pointer to the ab8500_fg structure
1069 * @comp: if voltage should be load compensated before capacity calc
1070 *
1071 * Return the capacity in mAh based on the battery voltage. The voltage can
1072 * either be load compensated or not. This value is added to the filter and a
1073 * new mean value is calculated and returned.
1074 */
ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg * di,bool comp)1075 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1076 {
1077 int permille, mah;
1078
1079 if (comp)
1080 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1081 else
1082 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1083
1084 mah = ab8500_fg_convert_permille_to_mah(di, permille);
1085
1086 di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1087 di->bat_cap.permille =
1088 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1089
1090 return di->bat_cap.mah;
1091 }
1092
1093 /**
1094 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1095 * @di: pointer to the ab8500_fg structure
1096 *
1097 * Return the capacity in mAh based on previous calculated capcity and the FG
1098 * accumulator register value. This value is added to the filter and a
1099 * new mean value is calculated and returned.
1100 */
ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg * di)1101 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1102 {
1103 int permille_volt, permille;
1104
1105 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1106 __func__,
1107 di->bat_cap.mah,
1108 di->accu_charge);
1109
1110 /* Capacity should not be less than 0 */
1111 if (di->bat_cap.mah + di->accu_charge > 0)
1112 di->bat_cap.mah += di->accu_charge;
1113 else
1114 di->bat_cap.mah = 0;
1115
1116 if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1117 di->bat_cap.mah = di->bat_cap.max_mah_design;
1118
1119 /*
1120 * Check against voltage based capacity. It can not be lower
1121 * than what the uncompensated voltage says
1122 */
1123 permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1124 permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1125
1126 if (permille < permille_volt) {
1127 di->bat_cap.permille = permille_volt;
1128 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1129 di->bat_cap.permille);
1130
1131 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1132 __func__,
1133 permille,
1134 permille_volt);
1135
1136 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1137 } else {
1138 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1139 di->bat_cap.permille =
1140 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1141 }
1142
1143 return di->bat_cap.mah;
1144 }
1145
1146 /**
1147 * ab8500_fg_capacity_level() - Get the battery capacity level
1148 * @di: pointer to the ab8500_fg structure
1149 *
1150 * Get the battery capacity level based on the capacity in percent
1151 */
ab8500_fg_capacity_level(struct ab8500_fg * di)1152 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1153 {
1154 int ret, percent;
1155
1156 percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1157
1158 if (percent <= di->bm->cap_levels->critical ||
1159 di->flags.low_bat)
1160 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1161 else if (percent <= di->bm->cap_levels->low)
1162 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1163 else if (percent <= di->bm->cap_levels->normal)
1164 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1165 else if (percent <= di->bm->cap_levels->high)
1166 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1167 else
1168 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1169
1170 return ret;
1171 }
1172
1173 /**
1174 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1175 * @di: pointer to the ab8500_fg structure
1176 *
1177 * Calculates the capacity to be shown to upper layers. Scales the capacity
1178 * to have 100% as a reference from the actual capacity upon removal of charger
1179 * when charging is in maintenance mode.
1180 */
ab8500_fg_calculate_scaled_capacity(struct ab8500_fg * di)1181 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1182 {
1183 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1184 int capacity = di->bat_cap.prev_percent;
1185
1186 if (!cs->enable)
1187 return capacity;
1188
1189 /*
1190 * As long as we are in fully charge mode scale the capacity
1191 * to show 100%.
1192 */
1193 if (di->flags.fully_charged) {
1194 cs->cap_to_scale[0] = 100;
1195 cs->cap_to_scale[1] =
1196 max(capacity, di->bm->fg_params->maint_thres);
1197 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1198 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1199 }
1200
1201 /* Calculates the scaled capacity. */
1202 if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1203 && (cs->cap_to_scale[1] > 0))
1204 capacity = min(100,
1205 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1206 cs->cap_to_scale[0],
1207 cs->cap_to_scale[1]));
1208
1209 if (di->flags.charging) {
1210 if (capacity < cs->disable_cap_level) {
1211 cs->disable_cap_level = capacity;
1212 dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1213 cs->disable_cap_level);
1214 } else if (!di->flags.fully_charged) {
1215 if (di->bat_cap.prev_percent >=
1216 cs->disable_cap_level) {
1217 dev_dbg(di->dev, "Disabling scaled capacity\n");
1218 cs->enable = false;
1219 capacity = di->bat_cap.prev_percent;
1220 } else {
1221 dev_dbg(di->dev,
1222 "Waiting in cap to level %d%%\n",
1223 cs->disable_cap_level);
1224 capacity = cs->disable_cap_level;
1225 }
1226 }
1227 }
1228
1229 return capacity;
1230 }
1231
1232 /**
1233 * ab8500_fg_update_cap_scalers() - Capacity scaling
1234 * @di: pointer to the ab8500_fg structure
1235 *
1236 * To be called when state change from charge<->discharge to update
1237 * the capacity scalers.
1238 */
ab8500_fg_update_cap_scalers(struct ab8500_fg * di)1239 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1240 {
1241 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1242
1243 if (!cs->enable)
1244 return;
1245 if (di->flags.charging) {
1246 di->bat_cap.cap_scale.disable_cap_level =
1247 di->bat_cap.cap_scale.scaled_cap;
1248 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1249 di->bat_cap.cap_scale.disable_cap_level);
1250 } else {
1251 if (cs->scaled_cap != 100) {
1252 cs->cap_to_scale[0] = cs->scaled_cap;
1253 cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1254 } else {
1255 cs->cap_to_scale[0] = 100;
1256 cs->cap_to_scale[1] =
1257 max(di->bat_cap.prev_percent,
1258 di->bm->fg_params->maint_thres);
1259 }
1260
1261 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1262 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1263 }
1264 }
1265
1266 /**
1267 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1268 * @di: pointer to the ab8500_fg structure
1269 * @init: capacity is allowed to go up in init mode
1270 *
1271 * Check if capacity or capacity limit has changed and notify the system
1272 * about it using the power_supply framework
1273 */
ab8500_fg_check_capacity_limits(struct ab8500_fg * di,bool init)1274 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1275 {
1276 bool changed = false;
1277 int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1278
1279 di->bat_cap.level = ab8500_fg_capacity_level(di);
1280
1281 if (di->bat_cap.level != di->bat_cap.prev_level) {
1282 /*
1283 * We do not allow reported capacity level to go up
1284 * unless we're charging or if we're in init
1285 */
1286 if (!(!di->flags.charging && di->bat_cap.level >
1287 di->bat_cap.prev_level) || init) {
1288 dev_dbg(di->dev, "level changed from %d to %d\n",
1289 di->bat_cap.prev_level,
1290 di->bat_cap.level);
1291 di->bat_cap.prev_level = di->bat_cap.level;
1292 changed = true;
1293 } else {
1294 dev_dbg(di->dev, "level not allowed to go up "
1295 "since no charger is connected: %d to %d\n",
1296 di->bat_cap.prev_level,
1297 di->bat_cap.level);
1298 }
1299 }
1300
1301 /*
1302 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1303 * shutdown
1304 */
1305 if (di->flags.low_bat) {
1306 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1307 di->bat_cap.prev_percent = 0;
1308 di->bat_cap.permille = 0;
1309 percent = 0;
1310 di->bat_cap.prev_mah = 0;
1311 di->bat_cap.mah = 0;
1312 changed = true;
1313 } else if (di->flags.fully_charged) {
1314 /*
1315 * We report 100% if algorithm reported fully charged
1316 * and show 100% during maintenance charging (scaling).
1317 */
1318 if (di->flags.force_full) {
1319 di->bat_cap.prev_percent = percent;
1320 di->bat_cap.prev_mah = di->bat_cap.mah;
1321
1322 changed = true;
1323
1324 if (!di->bat_cap.cap_scale.enable &&
1325 di->bm->capacity_scaling) {
1326 di->bat_cap.cap_scale.enable = true;
1327 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1328 di->bat_cap.cap_scale.cap_to_scale[1] =
1329 di->bat_cap.prev_percent;
1330 di->bat_cap.cap_scale.disable_cap_level = 100;
1331 }
1332 } else if (di->bat_cap.prev_percent != percent) {
1333 dev_dbg(di->dev,
1334 "battery reported full "
1335 "but capacity dropping: %d\n",
1336 percent);
1337 di->bat_cap.prev_percent = percent;
1338 di->bat_cap.prev_mah = di->bat_cap.mah;
1339
1340 changed = true;
1341 }
1342 } else if (di->bat_cap.prev_percent != percent) {
1343 if (percent == 0) {
1344 /*
1345 * We will not report 0% unless we've got
1346 * the LOW_BAT IRQ, no matter what the FG
1347 * algorithm says.
1348 */
1349 di->bat_cap.prev_percent = 1;
1350 percent = 1;
1351
1352 changed = true;
1353 } else if (!(!di->flags.charging &&
1354 percent > di->bat_cap.prev_percent) || init) {
1355 /*
1356 * We do not allow reported capacity to go up
1357 * unless we're charging or if we're in init
1358 */
1359 dev_dbg(di->dev,
1360 "capacity changed from %d to %d (%d)\n",
1361 di->bat_cap.prev_percent,
1362 percent,
1363 di->bat_cap.permille);
1364 di->bat_cap.prev_percent = percent;
1365 di->bat_cap.prev_mah = di->bat_cap.mah;
1366
1367 changed = true;
1368 } else {
1369 dev_dbg(di->dev, "capacity not allowed to go up since "
1370 "no charger is connected: %d to %d (%d)\n",
1371 di->bat_cap.prev_percent,
1372 percent,
1373 di->bat_cap.permille);
1374 }
1375 }
1376
1377 if (changed) {
1378 if (di->bm->capacity_scaling) {
1379 di->bat_cap.cap_scale.scaled_cap =
1380 ab8500_fg_calculate_scaled_capacity(di);
1381
1382 dev_info(di->dev, "capacity=%d (%d)\n",
1383 di->bat_cap.prev_percent,
1384 di->bat_cap.cap_scale.scaled_cap);
1385 }
1386 power_supply_changed(di->fg_psy);
1387 if (di->flags.fully_charged && di->flags.force_full) {
1388 dev_dbg(di->dev, "Battery full, notifying.\n");
1389 di->flags.force_full = false;
1390 sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1391 }
1392 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1393 }
1394 }
1395
ab8500_fg_charge_state_to(struct ab8500_fg * di,enum ab8500_fg_charge_state new_state)1396 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1397 enum ab8500_fg_charge_state new_state)
1398 {
1399 dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1400 di->charge_state,
1401 charge_state[di->charge_state],
1402 new_state,
1403 charge_state[new_state]);
1404
1405 di->charge_state = new_state;
1406 }
1407
ab8500_fg_discharge_state_to(struct ab8500_fg * di,enum ab8500_fg_discharge_state new_state)1408 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1409 enum ab8500_fg_discharge_state new_state)
1410 {
1411 dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n",
1412 di->discharge_state,
1413 discharge_state[di->discharge_state],
1414 new_state,
1415 discharge_state[new_state]);
1416
1417 di->discharge_state = new_state;
1418 }
1419
1420 /**
1421 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1422 * @di: pointer to the ab8500_fg structure
1423 *
1424 * Battery capacity calculation state machine for when we're charging
1425 */
ab8500_fg_algorithm_charging(struct ab8500_fg * di)1426 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1427 {
1428 /*
1429 * If we change to discharge mode
1430 * we should start with recovery
1431 */
1432 if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1433 ab8500_fg_discharge_state_to(di,
1434 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1435
1436 switch (di->charge_state) {
1437 case AB8500_FG_CHARGE_INIT:
1438 di->fg_samples = SEC_TO_SAMPLE(
1439 di->bm->fg_params->accu_charging);
1440
1441 ab8500_fg_coulomb_counter(di, true);
1442 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1443
1444 break;
1445
1446 case AB8500_FG_CHARGE_READOUT:
1447 /*
1448 * Read the FG and calculate the new capacity
1449 */
1450 mutex_lock(&di->cc_lock);
1451 if (!di->flags.conv_done && !di->flags.force_full) {
1452 /* Wasn't the CC IRQ that got us here */
1453 mutex_unlock(&di->cc_lock);
1454 dev_dbg(di->dev, "%s CC conv not done\n",
1455 __func__);
1456
1457 break;
1458 }
1459 di->flags.conv_done = false;
1460 mutex_unlock(&di->cc_lock);
1461
1462 ab8500_fg_calc_cap_charging(di);
1463
1464 break;
1465
1466 default:
1467 break;
1468 }
1469
1470 /* Check capacity limits */
1471 ab8500_fg_check_capacity_limits(di, false);
1472 }
1473
force_capacity(struct ab8500_fg * di)1474 static void force_capacity(struct ab8500_fg *di)
1475 {
1476 int cap;
1477
1478 ab8500_fg_clear_cap_samples(di);
1479 cap = di->bat_cap.user_mah;
1480 if (cap > di->bat_cap.max_mah_design) {
1481 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1482 " %d\n", cap, di->bat_cap.max_mah_design);
1483 cap = di->bat_cap.max_mah_design;
1484 }
1485 ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1486 di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1487 di->bat_cap.mah = cap;
1488 ab8500_fg_check_capacity_limits(di, true);
1489 }
1490
check_sysfs_capacity(struct ab8500_fg * di)1491 static bool check_sysfs_capacity(struct ab8500_fg *di)
1492 {
1493 int cap, lower, upper;
1494 int cap_permille;
1495
1496 cap = di->bat_cap.user_mah;
1497
1498 cap_permille = ab8500_fg_convert_mah_to_permille(di,
1499 di->bat_cap.user_mah);
1500
1501 lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1502 upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1503
1504 if (lower < 0)
1505 lower = 0;
1506 /* 1000 is permille, -> 100 percent */
1507 if (upper > 1000)
1508 upper = 1000;
1509
1510 dev_dbg(di->dev, "Capacity limits:"
1511 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1512 lower, cap_permille, upper, cap, di->bat_cap.mah);
1513
1514 /* If within limits, use the saved capacity and exit estimation...*/
1515 if (cap_permille > lower && cap_permille < upper) {
1516 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1517 force_capacity(di);
1518 return true;
1519 }
1520 dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1521 return false;
1522 }
1523
1524 /**
1525 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1526 * @di: pointer to the ab8500_fg structure
1527 *
1528 * Battery capacity calculation state machine for when we're discharging
1529 */
ab8500_fg_algorithm_discharging(struct ab8500_fg * di)1530 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1531 {
1532 int sleep_time;
1533
1534 /* If we change to charge mode we should start with init */
1535 if (di->charge_state != AB8500_FG_CHARGE_INIT)
1536 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1537
1538 switch (di->discharge_state) {
1539 case AB8500_FG_DISCHARGE_INIT:
1540 /* We use the FG IRQ to work on */
1541 di->init_cnt = 0;
1542 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1543 ab8500_fg_coulomb_counter(di, true);
1544 ab8500_fg_discharge_state_to(di,
1545 AB8500_FG_DISCHARGE_INITMEASURING);
1546
1547 fallthrough;
1548 case AB8500_FG_DISCHARGE_INITMEASURING:
1549 /*
1550 * Discard a number of samples during startup.
1551 * After that, use compensated voltage for a few
1552 * samples to get an initial capacity.
1553 * Then go to READOUT
1554 */
1555 sleep_time = di->bm->fg_params->init_timer;
1556
1557 /* Discard the first [x] seconds */
1558 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1559 ab8500_fg_calc_cap_discharge_voltage(di, true);
1560
1561 ab8500_fg_check_capacity_limits(di, true);
1562 }
1563
1564 di->init_cnt += sleep_time;
1565 if (di->init_cnt > di->bm->fg_params->init_total_time)
1566 ab8500_fg_discharge_state_to(di,
1567 AB8500_FG_DISCHARGE_READOUT_INIT);
1568
1569 break;
1570
1571 case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1572 di->recovery_cnt = 0;
1573 di->recovery_needed = true;
1574 ab8500_fg_discharge_state_to(di,
1575 AB8500_FG_DISCHARGE_RECOVERY);
1576
1577 fallthrough;
1578
1579 case AB8500_FG_DISCHARGE_RECOVERY:
1580 sleep_time = di->bm->fg_params->recovery_sleep_timer;
1581
1582 /*
1583 * We should check the power consumption
1584 * If low, go to READOUT (after x min) or
1585 * RECOVERY_SLEEP if time left.
1586 * If high, go to READOUT
1587 */
1588 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1589
1590 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1591 if (di->recovery_cnt >
1592 di->bm->fg_params->recovery_total_time) {
1593 di->fg_samples = SEC_TO_SAMPLE(
1594 di->bm->fg_params->accu_high_curr);
1595 ab8500_fg_coulomb_counter(di, true);
1596 ab8500_fg_discharge_state_to(di,
1597 AB8500_FG_DISCHARGE_READOUT);
1598 di->recovery_needed = false;
1599 } else {
1600 queue_delayed_work(di->fg_wq,
1601 &di->fg_periodic_work,
1602 sleep_time * HZ);
1603 }
1604 di->recovery_cnt += sleep_time;
1605 } else {
1606 di->fg_samples = SEC_TO_SAMPLE(
1607 di->bm->fg_params->accu_high_curr);
1608 ab8500_fg_coulomb_counter(di, true);
1609 ab8500_fg_discharge_state_to(di,
1610 AB8500_FG_DISCHARGE_READOUT);
1611 }
1612 break;
1613
1614 case AB8500_FG_DISCHARGE_READOUT_INIT:
1615 di->fg_samples = SEC_TO_SAMPLE(
1616 di->bm->fg_params->accu_high_curr);
1617 ab8500_fg_coulomb_counter(di, true);
1618 ab8500_fg_discharge_state_to(di,
1619 AB8500_FG_DISCHARGE_READOUT);
1620 break;
1621
1622 case AB8500_FG_DISCHARGE_READOUT:
1623 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1624
1625 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1626 /* Detect mode change */
1627 if (di->high_curr_mode) {
1628 di->high_curr_mode = false;
1629 di->high_curr_cnt = 0;
1630 }
1631
1632 if (di->recovery_needed) {
1633 ab8500_fg_discharge_state_to(di,
1634 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1635
1636 queue_delayed_work(di->fg_wq,
1637 &di->fg_periodic_work, 0);
1638
1639 break;
1640 }
1641
1642 ab8500_fg_calc_cap_discharge_voltage(di, true);
1643 } else {
1644 mutex_lock(&di->cc_lock);
1645 if (!di->flags.conv_done) {
1646 /* Wasn't the CC IRQ that got us here */
1647 mutex_unlock(&di->cc_lock);
1648 dev_dbg(di->dev, "%s CC conv not done\n",
1649 __func__);
1650
1651 break;
1652 }
1653 di->flags.conv_done = false;
1654 mutex_unlock(&di->cc_lock);
1655
1656 /* Detect mode change */
1657 if (!di->high_curr_mode) {
1658 di->high_curr_mode = true;
1659 di->high_curr_cnt = 0;
1660 }
1661
1662 di->high_curr_cnt +=
1663 di->bm->fg_params->accu_high_curr;
1664 if (di->high_curr_cnt >
1665 di->bm->fg_params->high_curr_time)
1666 di->recovery_needed = true;
1667
1668 ab8500_fg_calc_cap_discharge_fg(di);
1669 }
1670
1671 ab8500_fg_check_capacity_limits(di, false);
1672
1673 break;
1674
1675 case AB8500_FG_DISCHARGE_WAKEUP:
1676 ab8500_fg_calc_cap_discharge_voltage(di, true);
1677
1678 di->fg_samples = SEC_TO_SAMPLE(
1679 di->bm->fg_params->accu_high_curr);
1680 ab8500_fg_coulomb_counter(di, true);
1681 ab8500_fg_discharge_state_to(di,
1682 AB8500_FG_DISCHARGE_READOUT);
1683
1684 ab8500_fg_check_capacity_limits(di, false);
1685
1686 break;
1687
1688 default:
1689 break;
1690 }
1691 }
1692
1693 /**
1694 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1695 * @di: pointer to the ab8500_fg structure
1696 *
1697 */
ab8500_fg_algorithm_calibrate(struct ab8500_fg * di)1698 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1699 {
1700 int ret;
1701
1702 switch (di->calib_state) {
1703 case AB8500_FG_CALIB_INIT:
1704 dev_dbg(di->dev, "Calibration ongoing...\n");
1705
1706 ret = abx500_mask_and_set_register_interruptible(di->dev,
1707 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1708 CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1709 if (ret < 0)
1710 goto err;
1711
1712 ret = abx500_mask_and_set_register_interruptible(di->dev,
1713 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1714 CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1715 if (ret < 0)
1716 goto err;
1717 di->calib_state = AB8500_FG_CALIB_WAIT;
1718 break;
1719 case AB8500_FG_CALIB_END:
1720 ret = abx500_mask_and_set_register_interruptible(di->dev,
1721 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1722 CC_MUXOFFSET, CC_MUXOFFSET);
1723 if (ret < 0)
1724 goto err;
1725 di->flags.calibrate = false;
1726 dev_dbg(di->dev, "Calibration done...\n");
1727 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1728 break;
1729 case AB8500_FG_CALIB_WAIT:
1730 dev_dbg(di->dev, "Calibration WFI\n");
1731 break;
1732 default:
1733 break;
1734 }
1735 return;
1736 err:
1737 /* Something went wrong, don't calibrate then */
1738 dev_err(di->dev, "failed to calibrate the CC\n");
1739 di->flags.calibrate = false;
1740 di->calib_state = AB8500_FG_CALIB_INIT;
1741 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1742 }
1743
1744 /**
1745 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1746 * @di: pointer to the ab8500_fg structure
1747 *
1748 * Entry point for the battery capacity calculation state machine
1749 */
ab8500_fg_algorithm(struct ab8500_fg * di)1750 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1751 {
1752 if (di->flags.calibrate)
1753 ab8500_fg_algorithm_calibrate(di);
1754 else {
1755 if (di->flags.charging)
1756 ab8500_fg_algorithm_charging(di);
1757 else
1758 ab8500_fg_algorithm_discharging(di);
1759 }
1760
1761 dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1762 "%d %d %d %d %d %d %d\n",
1763 di->bat_cap.max_mah_design,
1764 di->bat_cap.max_mah,
1765 di->bat_cap.mah,
1766 di->bat_cap.permille,
1767 di->bat_cap.level,
1768 di->bat_cap.prev_mah,
1769 di->bat_cap.prev_percent,
1770 di->bat_cap.prev_level,
1771 di->vbat,
1772 di->inst_curr,
1773 di->avg_curr,
1774 di->accu_charge,
1775 di->flags.charging,
1776 di->charge_state,
1777 di->discharge_state,
1778 di->high_curr_mode,
1779 di->recovery_needed);
1780 }
1781
1782 /**
1783 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1784 * @work: pointer to the work_struct structure
1785 *
1786 * Work queue function for periodic work
1787 */
ab8500_fg_periodic_work(struct work_struct * work)1788 static void ab8500_fg_periodic_work(struct work_struct *work)
1789 {
1790 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1791 fg_periodic_work.work);
1792
1793 if (di->init_capacity) {
1794 /* Get an initial capacity calculation */
1795 ab8500_fg_calc_cap_discharge_voltage(di, true);
1796 ab8500_fg_check_capacity_limits(di, true);
1797 di->init_capacity = false;
1798
1799 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1800 } else if (di->flags.user_cap) {
1801 if (check_sysfs_capacity(di)) {
1802 ab8500_fg_check_capacity_limits(di, true);
1803 if (di->flags.charging)
1804 ab8500_fg_charge_state_to(di,
1805 AB8500_FG_CHARGE_INIT);
1806 else
1807 ab8500_fg_discharge_state_to(di,
1808 AB8500_FG_DISCHARGE_READOUT_INIT);
1809 }
1810 di->flags.user_cap = false;
1811 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1812 } else
1813 ab8500_fg_algorithm(di);
1814
1815 }
1816
1817 /**
1818 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1819 * @work: pointer to the work_struct structure
1820 *
1821 * Work queue function for checking the OVV_BAT condition
1822 */
ab8500_fg_check_hw_failure_work(struct work_struct * work)1823 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1824 {
1825 int ret;
1826 u8 reg_value;
1827
1828 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1829 fg_check_hw_failure_work.work);
1830
1831 /*
1832 * If we have had a battery over-voltage situation,
1833 * check ovv-bit to see if it should be reset.
1834 */
1835 ret = abx500_get_register_interruptible(di->dev,
1836 AB8500_CHARGER, AB8500_CH_STAT_REG,
1837 ®_value);
1838 if (ret < 0) {
1839 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1840 return;
1841 }
1842 if ((reg_value & BATT_OVV) == BATT_OVV) {
1843 if (!di->flags.bat_ovv) {
1844 dev_dbg(di->dev, "Battery OVV\n");
1845 di->flags.bat_ovv = true;
1846 power_supply_changed(di->fg_psy);
1847 }
1848 /* Not yet recovered from ovv, reschedule this test */
1849 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1850 HZ);
1851 } else {
1852 dev_dbg(di->dev, "Battery recovered from OVV\n");
1853 di->flags.bat_ovv = false;
1854 power_supply_changed(di->fg_psy);
1855 }
1856 }
1857
1858 /**
1859 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1860 * @work: pointer to the work_struct structure
1861 *
1862 * Work queue function for checking the LOW_BAT condition
1863 */
ab8500_fg_low_bat_work(struct work_struct * work)1864 static void ab8500_fg_low_bat_work(struct work_struct *work)
1865 {
1866 int vbat;
1867
1868 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1869 fg_low_bat_work.work);
1870
1871 vbat = ab8500_fg_bat_voltage(di);
1872
1873 /* Check if LOW_BAT still fulfilled */
1874 if (vbat < di->bm->fg_params->lowbat_threshold) {
1875 /* Is it time to shut down? */
1876 if (di->low_bat_cnt < 1) {
1877 di->flags.low_bat = true;
1878 dev_warn(di->dev, "Shut down pending...\n");
1879 } else {
1880 /*
1881 * Else we need to re-schedule this check to be able to detect
1882 * if the voltage increases again during charging or
1883 * due to decreasing load.
1884 */
1885 di->low_bat_cnt--;
1886 dev_warn(di->dev, "Battery voltage still LOW\n");
1887 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1888 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1889 }
1890 } else {
1891 di->flags.low_bat_delay = false;
1892 di->low_bat_cnt = 10;
1893 dev_warn(di->dev, "Battery voltage OK again\n");
1894 }
1895
1896 /* This is needed to dispatch LOW_BAT */
1897 ab8500_fg_check_capacity_limits(di, false);
1898 }
1899
1900 /**
1901 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1902 * to the target voltage.
1903 * @di: pointer to the ab8500_fg structure
1904 * @target: target voltage
1905 *
1906 * Returns bit pattern closest to the target voltage
1907 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1908 */
1909
ab8500_fg_battok_calc(struct ab8500_fg * di,int target)1910 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1911 {
1912 if (target > BATT_OK_MIN +
1913 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1914 return BATT_OK_MAX_NR_INCREMENTS;
1915 if (target < BATT_OK_MIN)
1916 return 0;
1917 return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1918 }
1919
1920 /**
1921 * ab8500_fg_battok_init_hw_register - init battok levels
1922 * @di: pointer to the ab8500_fg structure
1923 *
1924 */
1925
ab8500_fg_battok_init_hw_register(struct ab8500_fg * di)1926 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1927 {
1928 int selected;
1929 int sel0;
1930 int sel1;
1931 int cbp_sel0;
1932 int cbp_sel1;
1933 int ret;
1934 int new_val;
1935
1936 sel0 = di->bm->fg_params->battok_falling_th_sel0;
1937 sel1 = di->bm->fg_params->battok_raising_th_sel1;
1938
1939 cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1940 cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1941
1942 selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1943
1944 if (selected != sel0)
1945 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1946 sel0, selected, cbp_sel0);
1947
1948 selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1949
1950 if (selected != sel1)
1951 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1952 sel1, selected, cbp_sel1);
1953
1954 new_val = cbp_sel0 | (cbp_sel1 << 4);
1955
1956 dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1957 ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1958 AB8500_BATT_OK_REG, new_val);
1959 return ret;
1960 }
1961
1962 /**
1963 * ab8500_fg_instant_work() - Run the FG state machine instantly
1964 * @work: pointer to the work_struct structure
1965 *
1966 * Work queue function for instant work
1967 */
ab8500_fg_instant_work(struct work_struct * work)1968 static void ab8500_fg_instant_work(struct work_struct *work)
1969 {
1970 struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1971
1972 ab8500_fg_algorithm(di);
1973 }
1974
1975 /**
1976 * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1977 * @irq: interrupt number
1978 * @_di: pointer to the ab8500_fg structure
1979 *
1980 * Returns IRQ status(IRQ_HANDLED)
1981 */
ab8500_fg_cc_data_end_handler(int irq,void * _di)1982 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1983 {
1984 struct ab8500_fg *di = _di;
1985 if (!di->nbr_cceoc_irq_cnt) {
1986 di->nbr_cceoc_irq_cnt++;
1987 complete(&di->ab8500_fg_started);
1988 } else {
1989 di->nbr_cceoc_irq_cnt = 0;
1990 complete(&di->ab8500_fg_complete);
1991 }
1992 return IRQ_HANDLED;
1993 }
1994
1995 /**
1996 * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
1997 * @irq: interrupt number
1998 * @_di: pointer to the ab8500_fg structure
1999 *
2000 * Returns IRQ status(IRQ_HANDLED)
2001 */
ab8500_fg_cc_int_calib_handler(int irq,void * _di)2002 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2003 {
2004 struct ab8500_fg *di = _di;
2005 di->calib_state = AB8500_FG_CALIB_END;
2006 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2007 return IRQ_HANDLED;
2008 }
2009
2010 /**
2011 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2012 * @irq: interrupt number
2013 * @_di: pointer to the ab8500_fg structure
2014 *
2015 * Returns IRQ status(IRQ_HANDLED)
2016 */
ab8500_fg_cc_convend_handler(int irq,void * _di)2017 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2018 {
2019 struct ab8500_fg *di = _di;
2020
2021 queue_work(di->fg_wq, &di->fg_acc_cur_work);
2022
2023 return IRQ_HANDLED;
2024 }
2025
2026 /**
2027 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2028 * @irq: interrupt number
2029 * @_di: pointer to the ab8500_fg structure
2030 *
2031 * Returns IRQ status(IRQ_HANDLED)
2032 */
ab8500_fg_batt_ovv_handler(int irq,void * _di)2033 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2034 {
2035 struct ab8500_fg *di = _di;
2036
2037 dev_dbg(di->dev, "Battery OVV\n");
2038
2039 /* Schedule a new HW failure check */
2040 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2041
2042 return IRQ_HANDLED;
2043 }
2044
2045 /**
2046 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2047 * @irq: interrupt number
2048 * @_di: pointer to the ab8500_fg structure
2049 *
2050 * Returns IRQ status(IRQ_HANDLED)
2051 */
ab8500_fg_lowbatf_handler(int irq,void * _di)2052 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2053 {
2054 struct ab8500_fg *di = _di;
2055
2056 /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2057 if (!di->flags.low_bat_delay) {
2058 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2059 di->flags.low_bat_delay = true;
2060 /*
2061 * Start a timer to check LOW_BAT again after some time
2062 * This is done to avoid shutdown on single voltage dips
2063 */
2064 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2065 round_jiffies(LOW_BAT_CHECK_INTERVAL));
2066 }
2067 return IRQ_HANDLED;
2068 }
2069
2070 /**
2071 * ab8500_fg_get_property() - get the fg properties
2072 * @psy: pointer to the power_supply structure
2073 * @psp: pointer to the power_supply_property structure
2074 * @val: pointer to the power_supply_propval union
2075 *
2076 * This function gets called when an application tries to get the
2077 * fg properties by reading the sysfs files.
2078 * voltage_now: battery voltage
2079 * current_now: battery instant current
2080 * current_avg: battery average current
2081 * charge_full_design: capacity where battery is considered full
2082 * charge_now: battery capacity in nAh
2083 * capacity: capacity in percent
2084 * capacity_level: capacity level
2085 *
2086 * Returns error code in case of failure else 0 on success
2087 */
ab8500_fg_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)2088 static int ab8500_fg_get_property(struct power_supply *psy,
2089 enum power_supply_property psp,
2090 union power_supply_propval *val)
2091 {
2092 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2093
2094 /*
2095 * If battery is identified as unknown and charging of unknown
2096 * batteries is disabled, we always report 100% capacity and
2097 * capacity level UNKNOWN, since we can't calculate
2098 * remaining capacity
2099 */
2100
2101 switch (psp) {
2102 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2103 if (di->flags.bat_ovv)
2104 val->intval = BATT_OVV_VALUE * 1000;
2105 else
2106 val->intval = di->vbat * 1000;
2107 break;
2108 case POWER_SUPPLY_PROP_CURRENT_NOW:
2109 val->intval = di->inst_curr * 1000;
2110 break;
2111 case POWER_SUPPLY_PROP_CURRENT_AVG:
2112 val->intval = di->avg_curr * 1000;
2113 break;
2114 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2115 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2116 di->bat_cap.max_mah_design);
2117 break;
2118 case POWER_SUPPLY_PROP_ENERGY_FULL:
2119 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2120 di->bat_cap.max_mah);
2121 break;
2122 case POWER_SUPPLY_PROP_ENERGY_NOW:
2123 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2124 di->flags.batt_id_received)
2125 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2126 di->bat_cap.max_mah);
2127 else
2128 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2129 di->bat_cap.prev_mah);
2130 break;
2131 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2132 val->intval = di->bat_cap.max_mah_design;
2133 break;
2134 case POWER_SUPPLY_PROP_CHARGE_FULL:
2135 val->intval = di->bat_cap.max_mah;
2136 break;
2137 case POWER_SUPPLY_PROP_CHARGE_NOW:
2138 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2139 di->flags.batt_id_received)
2140 val->intval = di->bat_cap.max_mah;
2141 else
2142 val->intval = di->bat_cap.prev_mah;
2143 break;
2144 case POWER_SUPPLY_PROP_CAPACITY:
2145 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2146 di->flags.batt_id_received)
2147 val->intval = 100;
2148 else
2149 val->intval = di->bat_cap.prev_percent;
2150 break;
2151 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2152 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2153 di->flags.batt_id_received)
2154 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2155 else
2156 val->intval = di->bat_cap.prev_level;
2157 break;
2158 default:
2159 return -EINVAL;
2160 }
2161 return 0;
2162 }
2163
ab8500_fg_get_ext_psy_data(struct device * dev,void * data)2164 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2165 {
2166 struct power_supply *psy;
2167 struct power_supply *ext = dev_get_drvdata(dev);
2168 const char **supplicants = (const char **)ext->supplied_to;
2169 struct ab8500_fg *di;
2170 union power_supply_propval ret;
2171 int j;
2172
2173 psy = (struct power_supply *)data;
2174 di = power_supply_get_drvdata(psy);
2175
2176 /*
2177 * For all psy where the name of your driver
2178 * appears in any supplied_to
2179 */
2180 j = match_string(supplicants, ext->num_supplicants, psy->desc->name);
2181 if (j < 0)
2182 return 0;
2183
2184 /* Go through all properties for the psy */
2185 for (j = 0; j < ext->desc->num_properties; j++) {
2186 enum power_supply_property prop;
2187 prop = ext->desc->properties[j];
2188
2189 if (power_supply_get_property(ext, prop, &ret))
2190 continue;
2191
2192 switch (prop) {
2193 case POWER_SUPPLY_PROP_STATUS:
2194 switch (ext->desc->type) {
2195 case POWER_SUPPLY_TYPE_BATTERY:
2196 switch (ret.intval) {
2197 case POWER_SUPPLY_STATUS_UNKNOWN:
2198 case POWER_SUPPLY_STATUS_DISCHARGING:
2199 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2200 if (!di->flags.charging)
2201 break;
2202 di->flags.charging = false;
2203 di->flags.fully_charged = false;
2204 if (di->bm->capacity_scaling)
2205 ab8500_fg_update_cap_scalers(di);
2206 queue_work(di->fg_wq, &di->fg_work);
2207 break;
2208 case POWER_SUPPLY_STATUS_FULL:
2209 if (di->flags.fully_charged)
2210 break;
2211 di->flags.fully_charged = true;
2212 di->flags.force_full = true;
2213 /* Save current capacity as maximum */
2214 di->bat_cap.max_mah = di->bat_cap.mah;
2215 queue_work(di->fg_wq, &di->fg_work);
2216 break;
2217 case POWER_SUPPLY_STATUS_CHARGING:
2218 if (di->flags.charging &&
2219 !di->flags.fully_charged)
2220 break;
2221 di->flags.charging = true;
2222 di->flags.fully_charged = false;
2223 if (di->bm->capacity_scaling)
2224 ab8500_fg_update_cap_scalers(di);
2225 queue_work(di->fg_wq, &di->fg_work);
2226 break;
2227 }
2228 break;
2229 default:
2230 break;
2231 }
2232 break;
2233 case POWER_SUPPLY_PROP_TECHNOLOGY:
2234 switch (ext->desc->type) {
2235 case POWER_SUPPLY_TYPE_BATTERY:
2236 if (!di->flags.batt_id_received &&
2237 di->bm->batt_id != BATTERY_UNKNOWN) {
2238 const struct ab8500_battery_type *b;
2239
2240 b = &(di->bm->bat_type[di->bm->batt_id]);
2241
2242 di->flags.batt_id_received = true;
2243
2244 di->bat_cap.max_mah_design =
2245 MILLI_TO_MICRO *
2246 b->charge_full_design;
2247
2248 di->bat_cap.max_mah =
2249 di->bat_cap.max_mah_design;
2250
2251 di->vbat_nom = b->nominal_voltage;
2252 }
2253
2254 if (ret.intval)
2255 di->flags.batt_unknown = false;
2256 else
2257 di->flags.batt_unknown = true;
2258 break;
2259 default:
2260 break;
2261 }
2262 break;
2263 case POWER_SUPPLY_PROP_TEMP:
2264 switch (ext->desc->type) {
2265 case POWER_SUPPLY_TYPE_BATTERY:
2266 if (di->flags.batt_id_received)
2267 di->bat_temp = ret.intval;
2268 break;
2269 default:
2270 break;
2271 }
2272 break;
2273 default:
2274 break;
2275 }
2276 }
2277 return 0;
2278 }
2279
2280 /**
2281 * ab8500_fg_init_hw_registers() - Set up FG related registers
2282 * @di: pointer to the ab8500_fg structure
2283 *
2284 * Set up battery OVV, low battery voltage registers
2285 */
ab8500_fg_init_hw_registers(struct ab8500_fg * di)2286 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2287 {
2288 int ret;
2289
2290 /* Set VBAT OVV threshold */
2291 ret = abx500_mask_and_set_register_interruptible(di->dev,
2292 AB8500_CHARGER,
2293 AB8500_BATT_OVV,
2294 BATT_OVV_TH_4P75,
2295 BATT_OVV_TH_4P75);
2296 if (ret) {
2297 dev_err(di->dev, "failed to set BATT_OVV\n");
2298 goto out;
2299 }
2300
2301 /* Enable VBAT OVV detection */
2302 ret = abx500_mask_and_set_register_interruptible(di->dev,
2303 AB8500_CHARGER,
2304 AB8500_BATT_OVV,
2305 BATT_OVV_ENA,
2306 BATT_OVV_ENA);
2307 if (ret) {
2308 dev_err(di->dev, "failed to enable BATT_OVV\n");
2309 goto out;
2310 }
2311
2312 /* Low Battery Voltage */
2313 ret = abx500_set_register_interruptible(di->dev,
2314 AB8500_SYS_CTRL2_BLOCK,
2315 AB8500_LOW_BAT_REG,
2316 ab8500_volt_to_regval(
2317 di->bm->fg_params->lowbat_threshold) << 1 |
2318 LOW_BAT_ENABLE);
2319 if (ret) {
2320 dev_err(di->dev, "%s write failed\n", __func__);
2321 goto out;
2322 }
2323
2324 /* Battery OK threshold */
2325 ret = ab8500_fg_battok_init_hw_register(di);
2326 if (ret) {
2327 dev_err(di->dev, "BattOk init write failed.\n");
2328 goto out;
2329 }
2330
2331 if (is_ab8505(di->parent)) {
2332 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2333 AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2334
2335 if (ret) {
2336 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2337 goto out;
2338 }
2339
2340 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2341 AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2342
2343 if (ret) {
2344 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2345 goto out;
2346 }
2347
2348 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2349 AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2350
2351 if (ret) {
2352 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2353 goto out;
2354 }
2355
2356 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2357 AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2358
2359 if (ret) {
2360 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2361 goto out;
2362 }
2363
2364 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2365 AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2366
2367 if (ret) {
2368 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2369 goto out;
2370 }
2371 }
2372 out:
2373 return ret;
2374 }
2375
2376 /**
2377 * ab8500_fg_external_power_changed() - callback for power supply changes
2378 * @psy: pointer to the structure power_supply
2379 *
2380 * This function is the entry point of the pointer external_power_changed
2381 * of the structure power_supply.
2382 * This function gets executed when there is a change in any external power
2383 * supply that this driver needs to be notified of.
2384 */
ab8500_fg_external_power_changed(struct power_supply * psy)2385 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2386 {
2387 class_for_each_device(power_supply_class, NULL, psy,
2388 ab8500_fg_get_ext_psy_data);
2389 }
2390
2391 /**
2392 * ab8500_fg_reinit_work() - work to reset the FG algorithm
2393 * @work: pointer to the work_struct structure
2394 *
2395 * Used to reset the current battery capacity to be able to
2396 * retrigger a new voltage base capacity calculation. For
2397 * test and verification purpose.
2398 */
ab8500_fg_reinit_work(struct work_struct * work)2399 static void ab8500_fg_reinit_work(struct work_struct *work)
2400 {
2401 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2402 fg_reinit_work.work);
2403
2404 if (!di->flags.calibrate) {
2405 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2406 ab8500_fg_clear_cap_samples(di);
2407 ab8500_fg_calc_cap_discharge_voltage(di, true);
2408 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2409 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2410 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2411
2412 } else {
2413 dev_err(di->dev, "Residual offset calibration ongoing "
2414 "retrying..\n");
2415 /* Wait one second until next try*/
2416 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2417 round_jiffies(1));
2418 }
2419 }
2420
2421 /* Exposure to the sysfs interface */
2422
2423 struct ab8500_fg_sysfs_entry {
2424 struct attribute attr;
2425 ssize_t (*show)(struct ab8500_fg *, char *);
2426 ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2427 };
2428
charge_full_show(struct ab8500_fg * di,char * buf)2429 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2430 {
2431 return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2432 }
2433
charge_full_store(struct ab8500_fg * di,const char * buf,size_t count)2434 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2435 size_t count)
2436 {
2437 unsigned long charge_full;
2438 int ret;
2439
2440 ret = kstrtoul(buf, 10, &charge_full);
2441 if (ret)
2442 return ret;
2443
2444 di->bat_cap.max_mah = (int) charge_full;
2445 return count;
2446 }
2447
charge_now_show(struct ab8500_fg * di,char * buf)2448 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2449 {
2450 return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2451 }
2452
charge_now_store(struct ab8500_fg * di,const char * buf,size_t count)2453 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2454 size_t count)
2455 {
2456 unsigned long charge_now;
2457 int ret;
2458
2459 ret = kstrtoul(buf, 10, &charge_now);
2460 if (ret)
2461 return ret;
2462
2463 di->bat_cap.user_mah = (int) charge_now;
2464 di->flags.user_cap = true;
2465 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2466 return count;
2467 }
2468
2469 static struct ab8500_fg_sysfs_entry charge_full_attr =
2470 __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2471
2472 static struct ab8500_fg_sysfs_entry charge_now_attr =
2473 __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2474
2475 static ssize_t
ab8500_fg_show(struct kobject * kobj,struct attribute * attr,char * buf)2476 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2477 {
2478 struct ab8500_fg_sysfs_entry *entry;
2479 struct ab8500_fg *di;
2480
2481 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2482 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2483
2484 if (!entry->show)
2485 return -EIO;
2486
2487 return entry->show(di, buf);
2488 }
2489 static ssize_t
ab8500_fg_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2490 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2491 size_t count)
2492 {
2493 struct ab8500_fg_sysfs_entry *entry;
2494 struct ab8500_fg *di;
2495
2496 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2497 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2498
2499 if (!entry->store)
2500 return -EIO;
2501
2502 return entry->store(di, buf, count);
2503 }
2504
2505 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2506 .show = ab8500_fg_show,
2507 .store = ab8500_fg_store,
2508 };
2509
2510 static struct attribute *ab8500_fg_attrs[] = {
2511 &charge_full_attr.attr,
2512 &charge_now_attr.attr,
2513 NULL,
2514 };
2515
2516 static struct kobj_type ab8500_fg_ktype = {
2517 .sysfs_ops = &ab8500_fg_sysfs_ops,
2518 .default_attrs = ab8500_fg_attrs,
2519 };
2520
2521 /**
2522 * ab8500_fg_sysfs_exit() - de-init of sysfs entry
2523 * @di: pointer to the struct ab8500_chargalg
2524 *
2525 * This function removes the entry in sysfs.
2526 */
ab8500_fg_sysfs_exit(struct ab8500_fg * di)2527 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2528 {
2529 kobject_del(&di->fg_kobject);
2530 }
2531
2532 /**
2533 * ab8500_fg_sysfs_init() - init of sysfs entry
2534 * @di: pointer to the struct ab8500_chargalg
2535 *
2536 * This function adds an entry in sysfs.
2537 * Returns error code in case of failure else 0(on success)
2538 */
ab8500_fg_sysfs_init(struct ab8500_fg * di)2539 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2540 {
2541 int ret = 0;
2542
2543 ret = kobject_init_and_add(&di->fg_kobject,
2544 &ab8500_fg_ktype,
2545 NULL, "battery");
2546 if (ret < 0) {
2547 kobject_put(&di->fg_kobject);
2548 dev_err(di->dev, "failed to create sysfs entry\n");
2549 }
2550
2551 return ret;
2552 }
2553
ab8505_powercut_flagtime_read(struct device * dev,struct device_attribute * attr,char * buf)2554 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2555 struct device_attribute *attr,
2556 char *buf)
2557 {
2558 int ret;
2559 u8 reg_value;
2560 struct power_supply *psy = dev_get_drvdata(dev);
2561 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2562
2563 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2564 AB8505_RTC_PCUT_FLAG_TIME_REG, ®_value);
2565
2566 if (ret < 0) {
2567 dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2568 goto fail;
2569 }
2570
2571 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2572
2573 fail:
2574 return ret;
2575 }
2576
ab8505_powercut_flagtime_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2577 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2578 struct device_attribute *attr,
2579 const char *buf, size_t count)
2580 {
2581 int ret;
2582 int reg_value;
2583 struct power_supply *psy = dev_get_drvdata(dev);
2584 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2585
2586 if (kstrtoint(buf, 10, ®_value))
2587 goto fail;
2588
2589 if (reg_value > 0x7F) {
2590 dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2591 goto fail;
2592 }
2593
2594 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2595 AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2596
2597 if (ret < 0)
2598 dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2599
2600 fail:
2601 return count;
2602 }
2603
ab8505_powercut_maxtime_read(struct device * dev,struct device_attribute * attr,char * buf)2604 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2605 struct device_attribute *attr,
2606 char *buf)
2607 {
2608 int ret;
2609 u8 reg_value;
2610 struct power_supply *psy = dev_get_drvdata(dev);
2611 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2612
2613 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2614 AB8505_RTC_PCUT_MAX_TIME_REG, ®_value);
2615
2616 if (ret < 0) {
2617 dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2618 goto fail;
2619 }
2620
2621 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2622
2623 fail:
2624 return ret;
2625
2626 }
2627
ab8505_powercut_maxtime_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2628 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2629 struct device_attribute *attr,
2630 const char *buf, size_t count)
2631 {
2632 int ret;
2633 int reg_value;
2634 struct power_supply *psy = dev_get_drvdata(dev);
2635 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2636
2637 if (kstrtoint(buf, 10, ®_value))
2638 goto fail;
2639
2640 if (reg_value > 0x7F) {
2641 dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2642 goto fail;
2643 }
2644
2645 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2646 AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2647
2648 if (ret < 0)
2649 dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2650
2651 fail:
2652 return count;
2653 }
2654
ab8505_powercut_restart_read(struct device * dev,struct device_attribute * attr,char * buf)2655 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2656 struct device_attribute *attr,
2657 char *buf)
2658 {
2659 int ret;
2660 u8 reg_value;
2661 struct power_supply *psy = dev_get_drvdata(dev);
2662 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2663
2664 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2665 AB8505_RTC_PCUT_RESTART_REG, ®_value);
2666
2667 if (ret < 0) {
2668 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2669 goto fail;
2670 }
2671
2672 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2673
2674 fail:
2675 return ret;
2676 }
2677
ab8505_powercut_restart_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2678 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2679 struct device_attribute *attr,
2680 const char *buf, size_t count)
2681 {
2682 int ret;
2683 int reg_value;
2684 struct power_supply *psy = dev_get_drvdata(dev);
2685 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2686
2687 if (kstrtoint(buf, 10, ®_value))
2688 goto fail;
2689
2690 if (reg_value > 0xF) {
2691 dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2692 goto fail;
2693 }
2694
2695 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2696 AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2697
2698 if (ret < 0)
2699 dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2700
2701 fail:
2702 return count;
2703
2704 }
2705
ab8505_powercut_timer_read(struct device * dev,struct device_attribute * attr,char * buf)2706 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2707 struct device_attribute *attr,
2708 char *buf)
2709 {
2710 int ret;
2711 u8 reg_value;
2712 struct power_supply *psy = dev_get_drvdata(dev);
2713 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2714
2715 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2716 AB8505_RTC_PCUT_TIME_REG, ®_value);
2717
2718 if (ret < 0) {
2719 dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2720 goto fail;
2721 }
2722
2723 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2724
2725 fail:
2726 return ret;
2727 }
2728
ab8505_powercut_restart_counter_read(struct device * dev,struct device_attribute * attr,char * buf)2729 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2730 struct device_attribute *attr,
2731 char *buf)
2732 {
2733 int ret;
2734 u8 reg_value;
2735 struct power_supply *psy = dev_get_drvdata(dev);
2736 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2737
2738 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2739 AB8505_RTC_PCUT_RESTART_REG, ®_value);
2740
2741 if (ret < 0) {
2742 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2743 goto fail;
2744 }
2745
2746 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2747
2748 fail:
2749 return ret;
2750 }
2751
ab8505_powercut_read(struct device * dev,struct device_attribute * attr,char * buf)2752 static ssize_t ab8505_powercut_read(struct device *dev,
2753 struct device_attribute *attr,
2754 char *buf)
2755 {
2756 int ret;
2757 u8 reg_value;
2758 struct power_supply *psy = dev_get_drvdata(dev);
2759 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2760
2761 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2762 AB8505_RTC_PCUT_CTL_STATUS_REG, ®_value);
2763
2764 if (ret < 0)
2765 goto fail;
2766
2767 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2768
2769 fail:
2770 return ret;
2771 }
2772
ab8505_powercut_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2773 static ssize_t ab8505_powercut_write(struct device *dev,
2774 struct device_attribute *attr,
2775 const char *buf, size_t count)
2776 {
2777 int ret;
2778 int reg_value;
2779 struct power_supply *psy = dev_get_drvdata(dev);
2780 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2781
2782 if (kstrtoint(buf, 10, ®_value))
2783 goto fail;
2784
2785 if (reg_value > 0x1) {
2786 dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2787 goto fail;
2788 }
2789
2790 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2791 AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2792
2793 if (ret < 0)
2794 dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2795
2796 fail:
2797 return count;
2798 }
2799
ab8505_powercut_flag_read(struct device * dev,struct device_attribute * attr,char * buf)2800 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2801 struct device_attribute *attr,
2802 char *buf)
2803 {
2804
2805 int ret;
2806 u8 reg_value;
2807 struct power_supply *psy = dev_get_drvdata(dev);
2808 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2809
2810 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2811 AB8505_RTC_PCUT_CTL_STATUS_REG, ®_value);
2812
2813 if (ret < 0) {
2814 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2815 goto fail;
2816 }
2817
2818 return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2819
2820 fail:
2821 return ret;
2822 }
2823
ab8505_powercut_debounce_read(struct device * dev,struct device_attribute * attr,char * buf)2824 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2825 struct device_attribute *attr,
2826 char *buf)
2827 {
2828 int ret;
2829 u8 reg_value;
2830 struct power_supply *psy = dev_get_drvdata(dev);
2831 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2832
2833 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2834 AB8505_RTC_PCUT_DEBOUNCE_REG, ®_value);
2835
2836 if (ret < 0) {
2837 dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2838 goto fail;
2839 }
2840
2841 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2842
2843 fail:
2844 return ret;
2845 }
2846
ab8505_powercut_debounce_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2847 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2848 struct device_attribute *attr,
2849 const char *buf, size_t count)
2850 {
2851 int ret;
2852 int reg_value;
2853 struct power_supply *psy = dev_get_drvdata(dev);
2854 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2855
2856 if (kstrtoint(buf, 10, ®_value))
2857 goto fail;
2858
2859 if (reg_value > 0x7) {
2860 dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2861 goto fail;
2862 }
2863
2864 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2865 AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2866
2867 if (ret < 0)
2868 dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2869
2870 fail:
2871 return count;
2872 }
2873
ab8505_powercut_enable_status_read(struct device * dev,struct device_attribute * attr,char * buf)2874 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2875 struct device_attribute *attr,
2876 char *buf)
2877 {
2878 int ret;
2879 u8 reg_value;
2880 struct power_supply *psy = dev_get_drvdata(dev);
2881 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2882
2883 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2884 AB8505_RTC_PCUT_CTL_STATUS_REG, ®_value);
2885
2886 if (ret < 0) {
2887 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2888 goto fail;
2889 }
2890
2891 return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2892
2893 fail:
2894 return ret;
2895 }
2896
2897 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2898 __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2899 ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2900 __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2901 ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2902 __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2903 ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2904 __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2905 __ATTR(powercut_restart_counter, S_IRUGO,
2906 ab8505_powercut_restart_counter_read, NULL),
2907 __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2908 ab8505_powercut_read, ab8505_powercut_write),
2909 __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2910 __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2911 ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2912 __ATTR(powercut_enable_status, S_IRUGO,
2913 ab8505_powercut_enable_status_read, NULL),
2914 };
2915
ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg * di)2916 static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2917 {
2918 unsigned int i;
2919
2920 if (is_ab8505(di->parent)) {
2921 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2922 if (device_create_file(&di->fg_psy->dev,
2923 &ab8505_fg_sysfs_psy_attrs[i]))
2924 goto sysfs_psy_create_attrs_failed_ab8505;
2925 }
2926 return 0;
2927 sysfs_psy_create_attrs_failed_ab8505:
2928 dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2929 while (i--)
2930 device_remove_file(&di->fg_psy->dev,
2931 &ab8505_fg_sysfs_psy_attrs[i]);
2932
2933 return -EIO;
2934 }
2935
ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg * di)2936 static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2937 {
2938 unsigned int i;
2939
2940 if (is_ab8505(di->parent)) {
2941 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2942 (void)device_remove_file(&di->fg_psy->dev,
2943 &ab8505_fg_sysfs_psy_attrs[i]);
2944 }
2945 }
2946
2947 /* Exposure to the sysfs interface <<END>> */
2948
ab8500_fg_resume(struct device * dev)2949 static int __maybe_unused ab8500_fg_resume(struct device *dev)
2950 {
2951 struct ab8500_fg *di = dev_get_drvdata(dev);
2952
2953 /*
2954 * Change state if we're not charging. If we're charging we will wake
2955 * up on the FG IRQ
2956 */
2957 if (!di->flags.charging) {
2958 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2959 queue_work(di->fg_wq, &di->fg_work);
2960 }
2961
2962 return 0;
2963 }
2964
ab8500_fg_suspend(struct device * dev)2965 static int __maybe_unused ab8500_fg_suspend(struct device *dev)
2966 {
2967 struct ab8500_fg *di = dev_get_drvdata(dev);
2968
2969 flush_delayed_work(&di->fg_periodic_work);
2970 flush_work(&di->fg_work);
2971 flush_work(&di->fg_acc_cur_work);
2972 flush_delayed_work(&di->fg_reinit_work);
2973 flush_delayed_work(&di->fg_low_bat_work);
2974 flush_delayed_work(&di->fg_check_hw_failure_work);
2975
2976 /*
2977 * If the FG is enabled we will disable it before going to suspend
2978 * only if we're not charging
2979 */
2980 if (di->flags.fg_enabled && !di->flags.charging)
2981 ab8500_fg_coulomb_counter(di, false);
2982
2983 return 0;
2984 }
2985
2986 /* ab8500 fg driver interrupts and their respective isr */
2987 static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2988 {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2989 {"BATT_OVV", ab8500_fg_batt_ovv_handler},
2990 {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2991 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2992 {"CCEOC", ab8500_fg_cc_data_end_handler},
2993 };
2994
2995 static char *supply_interface[] = {
2996 "ab8500_chargalg",
2997 "ab8500_usb",
2998 };
2999
3000 static const struct power_supply_desc ab8500_fg_desc = {
3001 .name = "ab8500_fg",
3002 .type = POWER_SUPPLY_TYPE_BATTERY,
3003 .properties = ab8500_fg_props,
3004 .num_properties = ARRAY_SIZE(ab8500_fg_props),
3005 .get_property = ab8500_fg_get_property,
3006 .external_power_changed = ab8500_fg_external_power_changed,
3007 };
3008
ab8500_fg_bind(struct device * dev,struct device * master,void * data)3009 static int ab8500_fg_bind(struct device *dev, struct device *master,
3010 void *data)
3011 {
3012 struct ab8500_fg *di = dev_get_drvdata(dev);
3013
3014 /* Create a work queue for running the FG algorithm */
3015 di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM);
3016 if (di->fg_wq == NULL) {
3017 dev_err(dev, "failed to create work queue\n");
3018 return -ENOMEM;
3019 }
3020
3021 /* Start the coulomb counter */
3022 ab8500_fg_coulomb_counter(di, true);
3023 /* Run the FG algorithm */
3024 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3025
3026 return 0;
3027 }
3028
ab8500_fg_unbind(struct device * dev,struct device * master,void * data)3029 static void ab8500_fg_unbind(struct device *dev, struct device *master,
3030 void *data)
3031 {
3032 struct ab8500_fg *di = dev_get_drvdata(dev);
3033 int ret;
3034
3035 /* Disable coulomb counter */
3036 ret = ab8500_fg_coulomb_counter(di, false);
3037 if (ret)
3038 dev_err(dev, "failed to disable coulomb counter\n");
3039
3040 destroy_workqueue(di->fg_wq);
3041 flush_scheduled_work();
3042 }
3043
3044 static const struct component_ops ab8500_fg_component_ops = {
3045 .bind = ab8500_fg_bind,
3046 .unbind = ab8500_fg_unbind,
3047 };
3048
ab8500_fg_probe(struct platform_device * pdev)3049 static int ab8500_fg_probe(struct platform_device *pdev)
3050 {
3051 struct device *dev = &pdev->dev;
3052 struct power_supply_config psy_cfg = {};
3053 struct ab8500_fg *di;
3054 int i, irq;
3055 int ret = 0;
3056
3057 di = devm_kzalloc(dev, sizeof(*di), GFP_KERNEL);
3058 if (!di)
3059 return -ENOMEM;
3060
3061 di->bm = &ab8500_bm_data;
3062
3063 mutex_init(&di->cc_lock);
3064
3065 /* get parent data */
3066 di->dev = dev;
3067 di->parent = dev_get_drvdata(pdev->dev.parent);
3068
3069 di->main_bat_v = devm_iio_channel_get(dev, "main_bat_v");
3070 if (IS_ERR(di->main_bat_v)) {
3071 ret = dev_err_probe(dev, PTR_ERR(di->main_bat_v),
3072 "failed to get main battery ADC channel\n");
3073 return ret;
3074 }
3075
3076 psy_cfg.supplied_to = supply_interface;
3077 psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3078 psy_cfg.drv_data = di;
3079
3080 di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3081 di->bm->bat_type[di->bm->batt_id].charge_full_design;
3082
3083 di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3084
3085 di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3086
3087 di->init_capacity = true;
3088
3089 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3090 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3091
3092 /* Init work for running the fg algorithm instantly */
3093 INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3094
3095 /* Init work for getting the battery accumulated current */
3096 INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3097
3098 /* Init work for reinitialising the fg algorithm */
3099 INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3100 ab8500_fg_reinit_work);
3101
3102 /* Work delayed Queue to run the state machine */
3103 INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3104 ab8500_fg_periodic_work);
3105
3106 /* Work to check low battery condition */
3107 INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3108 ab8500_fg_low_bat_work);
3109
3110 /* Init work for HW failure check */
3111 INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3112 ab8500_fg_check_hw_failure_work);
3113
3114 /* Reset battery low voltage flag */
3115 di->flags.low_bat = false;
3116
3117 /* Initialize low battery counter */
3118 di->low_bat_cnt = 10;
3119
3120 /* Initialize OVV, and other registers */
3121 ret = ab8500_fg_init_hw_registers(di);
3122 if (ret) {
3123 dev_err(dev, "failed to initialize registers\n");
3124 return ret;
3125 }
3126
3127 /* Consider battery unknown until we're informed otherwise */
3128 di->flags.batt_unknown = true;
3129 di->flags.batt_id_received = false;
3130
3131 /* Register FG power supply class */
3132 di->fg_psy = devm_power_supply_register(dev, &ab8500_fg_desc, &psy_cfg);
3133 if (IS_ERR(di->fg_psy)) {
3134 dev_err(dev, "failed to register FG psy\n");
3135 return PTR_ERR(di->fg_psy);
3136 }
3137
3138 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3139
3140 /*
3141 * Initialize completion used to notify completion and start
3142 * of inst current
3143 */
3144 init_completion(&di->ab8500_fg_started);
3145 init_completion(&di->ab8500_fg_complete);
3146
3147 /* Register primary interrupt handlers */
3148 for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
3149 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3150 if (irq < 0)
3151 return irq;
3152
3153 ret = devm_request_threaded_irq(dev, irq, NULL,
3154 ab8500_fg_irq[i].isr,
3155 IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3156 ab8500_fg_irq[i].name, di);
3157
3158 if (ret != 0) {
3159 dev_err(dev, "failed to request %s IRQ %d: %d\n",
3160 ab8500_fg_irq[i].name, irq, ret);
3161 return ret;
3162 }
3163 dev_dbg(dev, "Requested %s IRQ %d: %d\n",
3164 ab8500_fg_irq[i].name, irq, ret);
3165 }
3166
3167 di->irq = platform_get_irq_byname(pdev, "CCEOC");
3168 disable_irq(di->irq);
3169 di->nbr_cceoc_irq_cnt = 0;
3170
3171 platform_set_drvdata(pdev, di);
3172
3173 ret = ab8500_fg_sysfs_init(di);
3174 if (ret) {
3175 dev_err(dev, "failed to create sysfs entry\n");
3176 return ret;
3177 }
3178
3179 ret = ab8500_fg_sysfs_psy_create_attrs(di);
3180 if (ret) {
3181 dev_err(dev, "failed to create FG psy\n");
3182 ab8500_fg_sysfs_exit(di);
3183 return ret;
3184 }
3185
3186 /* Calibrate the fg first time */
3187 di->flags.calibrate = true;
3188 di->calib_state = AB8500_FG_CALIB_INIT;
3189
3190 /* Use room temp as default value until we get an update from driver. */
3191 di->bat_temp = 210;
3192
3193 list_add_tail(&di->node, &ab8500_fg_list);
3194
3195 return component_add(dev, &ab8500_fg_component_ops);
3196 }
3197
ab8500_fg_remove(struct platform_device * pdev)3198 static int ab8500_fg_remove(struct platform_device *pdev)
3199 {
3200 int ret = 0;
3201 struct ab8500_fg *di = platform_get_drvdata(pdev);
3202
3203 component_del(&pdev->dev, &ab8500_fg_component_ops);
3204 list_del(&di->node);
3205 ab8500_fg_sysfs_exit(di);
3206 ab8500_fg_sysfs_psy_remove_attrs(di);
3207
3208 return ret;
3209 }
3210
3211 static SIMPLE_DEV_PM_OPS(ab8500_fg_pm_ops, ab8500_fg_suspend, ab8500_fg_resume);
3212
3213 static const struct of_device_id ab8500_fg_match[] = {
3214 { .compatible = "stericsson,ab8500-fg", },
3215 { },
3216 };
3217 MODULE_DEVICE_TABLE(of, ab8500_fg_match);
3218
3219 struct platform_driver ab8500_fg_driver = {
3220 .probe = ab8500_fg_probe,
3221 .remove = ab8500_fg_remove,
3222 .driver = {
3223 .name = "ab8500-fg",
3224 .of_match_table = ab8500_fg_match,
3225 .pm = &ab8500_fg_pm_ops,
3226 },
3227 };
3228 MODULE_LICENSE("GPL v2");
3229 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3230 MODULE_ALIAS("platform:ab8500-fg");
3231 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
3232