1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12 #define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/lockdep.h>
20 #include <linux/pci.h>
21 #include <linux/interrupt.h>
22 #include <linux/kmod.h>
23 #include <linux/delay.h>
24 #include <linux/workqueue.h>
25 #include <linux/nmi.h>
26 #include <linux/acpi.h>
27 #include <linux/efi.h>
28 #include <linux/ioport.h>
29 #include <linux/list.h>
30 #include <linux/jiffies.h>
31 #include <linux/semaphore.h>
32 #include <linux/security.h>
33
34 #include <asm/io.h>
35 #include <linux/uaccess.h>
36 #include <linux/io-64-nonatomic-lo-hi.h>
37
38 #include "acpica/accommon.h"
39 #include "acpica/acnamesp.h"
40 #include "internal.h"
41
42 /* Definitions for ACPI_DEBUG_PRINT() */
43 #define _COMPONENT ACPI_OS_SERVICES
44 ACPI_MODULE_NAME("osl");
45
46 struct acpi_os_dpc {
47 acpi_osd_exec_callback function;
48 void *context;
49 struct work_struct work;
50 };
51
52 #ifdef ENABLE_DEBUGGER
53 #include <linux/kdb.h>
54
55 /* stuff for debugger support */
56 int acpi_in_debugger;
57 EXPORT_SYMBOL(acpi_in_debugger);
58 #endif /*ENABLE_DEBUGGER */
59
60 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
61 u32 pm1b_ctrl);
62 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
63 u32 val_b);
64
65 static acpi_osd_handler acpi_irq_handler;
66 static void *acpi_irq_context;
67 static struct workqueue_struct *kacpid_wq;
68 static struct workqueue_struct *kacpi_notify_wq;
69 static struct workqueue_struct *kacpi_hotplug_wq;
70 static bool acpi_os_initialized;
71 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
72 bool acpi_permanent_mmap = false;
73
74 /*
75 * This list of permanent mappings is for memory that may be accessed from
76 * interrupt context, where we can't do the ioremap().
77 */
78 struct acpi_ioremap {
79 struct list_head list;
80 void __iomem *virt;
81 acpi_physical_address phys;
82 acpi_size size;
83 union {
84 unsigned long refcount;
85 struct rcu_work rwork;
86 } track;
87 };
88
89 static LIST_HEAD(acpi_ioremaps);
90 static DEFINE_MUTEX(acpi_ioremap_lock);
91 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
92
acpi_request_region(struct acpi_generic_address * gas,unsigned int length,char * desc)93 static void __init acpi_request_region (struct acpi_generic_address *gas,
94 unsigned int length, char *desc)
95 {
96 u64 addr;
97
98 /* Handle possible alignment issues */
99 memcpy(&addr, &gas->address, sizeof(addr));
100 if (!addr || !length)
101 return;
102
103 /* Resources are never freed */
104 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
105 request_region(addr, length, desc);
106 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
107 request_mem_region(addr, length, desc);
108 }
109
acpi_reserve_resources(void)110 static int __init acpi_reserve_resources(void)
111 {
112 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
113 "ACPI PM1a_EVT_BLK");
114
115 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
116 "ACPI PM1b_EVT_BLK");
117
118 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
119 "ACPI PM1a_CNT_BLK");
120
121 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
122 "ACPI PM1b_CNT_BLK");
123
124 if (acpi_gbl_FADT.pm_timer_length == 4)
125 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
126
127 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
128 "ACPI PM2_CNT_BLK");
129
130 /* Length of GPE blocks must be a non-negative multiple of 2 */
131
132 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
133 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
134 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
135
136 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
137 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
138 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
139
140 return 0;
141 }
142 fs_initcall_sync(acpi_reserve_resources);
143
acpi_os_printf(const char * fmt,...)144 void acpi_os_printf(const char *fmt, ...)
145 {
146 va_list args;
147 va_start(args, fmt);
148 acpi_os_vprintf(fmt, args);
149 va_end(args);
150 }
151 EXPORT_SYMBOL(acpi_os_printf);
152
acpi_os_vprintf(const char * fmt,va_list args)153 void acpi_os_vprintf(const char *fmt, va_list args)
154 {
155 static char buffer[512];
156
157 vsprintf(buffer, fmt, args);
158
159 #ifdef ENABLE_DEBUGGER
160 if (acpi_in_debugger) {
161 kdb_printf("%s", buffer);
162 } else {
163 if (printk_get_level(buffer))
164 printk("%s", buffer);
165 else
166 printk(KERN_CONT "%s", buffer);
167 }
168 #else
169 if (acpi_debugger_write_log(buffer) < 0) {
170 if (printk_get_level(buffer))
171 printk("%s", buffer);
172 else
173 printk(KERN_CONT "%s", buffer);
174 }
175 #endif
176 }
177
178 #ifdef CONFIG_KEXEC
179 static unsigned long acpi_rsdp;
setup_acpi_rsdp(char * arg)180 static int __init setup_acpi_rsdp(char *arg)
181 {
182 return kstrtoul(arg, 16, &acpi_rsdp);
183 }
184 early_param("acpi_rsdp", setup_acpi_rsdp);
185 #endif
186
acpi_os_get_root_pointer(void)187 acpi_physical_address __init acpi_os_get_root_pointer(void)
188 {
189 acpi_physical_address pa;
190
191 #ifdef CONFIG_KEXEC
192 /*
193 * We may have been provided with an RSDP on the command line,
194 * but if a malicious user has done so they may be pointing us
195 * at modified ACPI tables that could alter kernel behaviour -
196 * so, we check the lockdown status before making use of
197 * it. If we trust it then also stash it in an architecture
198 * specific location (if appropriate) so it can be carried
199 * over further kexec()s.
200 */
201 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
202 acpi_arch_set_root_pointer(acpi_rsdp);
203 return acpi_rsdp;
204 }
205 #endif
206 pa = acpi_arch_get_root_pointer();
207 if (pa)
208 return pa;
209
210 if (efi_enabled(EFI_CONFIG_TABLES)) {
211 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
212 return efi.acpi20;
213 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
214 return efi.acpi;
215 pr_err("System description tables not found\n");
216 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
217 acpi_find_root_pointer(&pa);
218 }
219
220 return pa;
221 }
222
223 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
224 static struct acpi_ioremap *
acpi_map_lookup(acpi_physical_address phys,acpi_size size)225 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
226 {
227 struct acpi_ioremap *map;
228
229 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
230 if (map->phys <= phys &&
231 phys + size <= map->phys + map->size)
232 return map;
233
234 return NULL;
235 }
236
237 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
238 static void __iomem *
acpi_map_vaddr_lookup(acpi_physical_address phys,unsigned int size)239 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
240 {
241 struct acpi_ioremap *map;
242
243 map = acpi_map_lookup(phys, size);
244 if (map)
245 return map->virt + (phys - map->phys);
246
247 return NULL;
248 }
249
acpi_os_get_iomem(acpi_physical_address phys,unsigned int size)250 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
251 {
252 struct acpi_ioremap *map;
253 void __iomem *virt = NULL;
254
255 mutex_lock(&acpi_ioremap_lock);
256 map = acpi_map_lookup(phys, size);
257 if (map) {
258 virt = map->virt + (phys - map->phys);
259 map->track.refcount++;
260 }
261 mutex_unlock(&acpi_ioremap_lock);
262 return virt;
263 }
264 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
265
266 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
267 static struct acpi_ioremap *
acpi_map_lookup_virt(void __iomem * virt,acpi_size size)268 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
269 {
270 struct acpi_ioremap *map;
271
272 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
273 if (map->virt <= virt &&
274 virt + size <= map->virt + map->size)
275 return map;
276
277 return NULL;
278 }
279
280 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
281 /* ioremap will take care of cache attributes */
282 #define should_use_kmap(pfn) 0
283 #else
284 #define should_use_kmap(pfn) page_is_ram(pfn)
285 #endif
286
acpi_map(acpi_physical_address pg_off,unsigned long pg_sz)287 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
288 {
289 unsigned long pfn;
290
291 pfn = pg_off >> PAGE_SHIFT;
292 if (should_use_kmap(pfn)) {
293 if (pg_sz > PAGE_SIZE)
294 return NULL;
295 return (void __iomem __force *)kmap(pfn_to_page(pfn));
296 } else
297 return acpi_os_ioremap(pg_off, pg_sz);
298 }
299
acpi_unmap(acpi_physical_address pg_off,void __iomem * vaddr)300 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
301 {
302 unsigned long pfn;
303
304 pfn = pg_off >> PAGE_SHIFT;
305 if (should_use_kmap(pfn))
306 kunmap(pfn_to_page(pfn));
307 else
308 iounmap(vaddr);
309 }
310
311 /**
312 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
313 * @phys: Start of the physical address range to map.
314 * @size: Size of the physical address range to map.
315 *
316 * Look up the given physical address range in the list of existing ACPI memory
317 * mappings. If found, get a reference to it and return a pointer to it (its
318 * virtual address). If not found, map it, add it to that list and return a
319 * pointer to it.
320 *
321 * During early init (when acpi_permanent_mmap has not been set yet) this
322 * routine simply calls __acpi_map_table() to get the job done.
323 */
324 void __iomem __ref
acpi_os_map_iomem(acpi_physical_address phys,acpi_size size)325 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
326 {
327 struct acpi_ioremap *map;
328 void __iomem *virt;
329 acpi_physical_address pg_off;
330 acpi_size pg_sz;
331
332 if (phys > ULONG_MAX) {
333 pr_err("Cannot map memory that high: 0x%llx\n", phys);
334 return NULL;
335 }
336
337 if (!acpi_permanent_mmap)
338 return __acpi_map_table((unsigned long)phys, size);
339
340 mutex_lock(&acpi_ioremap_lock);
341 /* Check if there's a suitable mapping already. */
342 map = acpi_map_lookup(phys, size);
343 if (map) {
344 map->track.refcount++;
345 goto out;
346 }
347
348 map = kzalloc(sizeof(*map), GFP_KERNEL);
349 if (!map) {
350 mutex_unlock(&acpi_ioremap_lock);
351 return NULL;
352 }
353
354 pg_off = round_down(phys, PAGE_SIZE);
355 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
356 virt = acpi_map(phys, size);
357 if (!virt) {
358 mutex_unlock(&acpi_ioremap_lock);
359 kfree(map);
360 return NULL;
361 }
362
363 INIT_LIST_HEAD(&map->list);
364 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
365 map->phys = pg_off;
366 map->size = pg_sz;
367 map->track.refcount = 1;
368
369 list_add_tail_rcu(&map->list, &acpi_ioremaps);
370
371 out:
372 mutex_unlock(&acpi_ioremap_lock);
373 return map->virt + (phys - map->phys);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
376
acpi_os_map_memory(acpi_physical_address phys,acpi_size size)377 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
378 {
379 return (void *)acpi_os_map_iomem(phys, size);
380 }
381 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
382
acpi_os_map_remove(struct work_struct * work)383 static void acpi_os_map_remove(struct work_struct *work)
384 {
385 struct acpi_ioremap *map = container_of(to_rcu_work(work),
386 struct acpi_ioremap,
387 track.rwork);
388
389 acpi_unmap(map->phys, map->virt);
390 kfree(map);
391 }
392
393 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
acpi_os_drop_map_ref(struct acpi_ioremap * map)394 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
395 {
396 if (--map->track.refcount)
397 return;
398
399 list_del_rcu(&map->list);
400
401 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
402 queue_rcu_work(system_wq, &map->track.rwork);
403 }
404
405 /**
406 * acpi_os_unmap_iomem - Drop a memory mapping reference.
407 * @virt: Start of the address range to drop a reference to.
408 * @size: Size of the address range to drop a reference to.
409 *
410 * Look up the given virtual address range in the list of existing ACPI memory
411 * mappings, drop a reference to it and if there are no more active references
412 * to it, queue it up for later removal.
413 *
414 * During early init (when acpi_permanent_mmap has not been set yet) this
415 * routine simply calls __acpi_unmap_table() to get the job done. Since
416 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
417 * here.
418 */
acpi_os_unmap_iomem(void __iomem * virt,acpi_size size)419 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
420 {
421 struct acpi_ioremap *map;
422
423 if (!acpi_permanent_mmap) {
424 __acpi_unmap_table(virt, size);
425 return;
426 }
427
428 mutex_lock(&acpi_ioremap_lock);
429
430 map = acpi_map_lookup_virt(virt, size);
431 if (!map) {
432 mutex_unlock(&acpi_ioremap_lock);
433 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
434 return;
435 }
436 acpi_os_drop_map_ref(map);
437
438 mutex_unlock(&acpi_ioremap_lock);
439 }
440 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
441
442 /**
443 * acpi_os_unmap_memory - Drop a memory mapping reference.
444 * @virt: Start of the address range to drop a reference to.
445 * @size: Size of the address range to drop a reference to.
446 */
acpi_os_unmap_memory(void * virt,acpi_size size)447 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
448 {
449 acpi_os_unmap_iomem((void __iomem *)virt, size);
450 }
451 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
452
acpi_os_map_generic_address(struct acpi_generic_address * gas)453 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
454 {
455 u64 addr;
456
457 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
458 return NULL;
459
460 /* Handle possible alignment issues */
461 memcpy(&addr, &gas->address, sizeof(addr));
462 if (!addr || !gas->bit_width)
463 return NULL;
464
465 return acpi_os_map_iomem(addr, gas->bit_width / 8);
466 }
467 EXPORT_SYMBOL(acpi_os_map_generic_address);
468
acpi_os_unmap_generic_address(struct acpi_generic_address * gas)469 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
470 {
471 u64 addr;
472 struct acpi_ioremap *map;
473
474 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
475 return;
476
477 /* Handle possible alignment issues */
478 memcpy(&addr, &gas->address, sizeof(addr));
479 if (!addr || !gas->bit_width)
480 return;
481
482 mutex_lock(&acpi_ioremap_lock);
483
484 map = acpi_map_lookup(addr, gas->bit_width / 8);
485 if (!map) {
486 mutex_unlock(&acpi_ioremap_lock);
487 return;
488 }
489 acpi_os_drop_map_ref(map);
490
491 mutex_unlock(&acpi_ioremap_lock);
492 }
493 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
494
495 #ifdef ACPI_FUTURE_USAGE
496 acpi_status
acpi_os_get_physical_address(void * virt,acpi_physical_address * phys)497 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
498 {
499 if (!phys || !virt)
500 return AE_BAD_PARAMETER;
501
502 *phys = virt_to_phys(virt);
503
504 return AE_OK;
505 }
506 #endif
507
508 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
509 static bool acpi_rev_override;
510
acpi_rev_override_setup(char * str)511 int __init acpi_rev_override_setup(char *str)
512 {
513 acpi_rev_override = true;
514 return 1;
515 }
516 __setup("acpi_rev_override", acpi_rev_override_setup);
517 #else
518 #define acpi_rev_override false
519 #endif
520
521 #define ACPI_MAX_OVERRIDE_LEN 100
522
523 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
524
525 acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names * init_val,acpi_string * new_val)526 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
527 acpi_string *new_val)
528 {
529 if (!init_val || !new_val)
530 return AE_BAD_PARAMETER;
531
532 *new_val = NULL;
533 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
534 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
535 *new_val = acpi_os_name;
536 }
537
538 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
539 pr_info("Overriding _REV return value to 5\n");
540 *new_val = (char *)5;
541 }
542
543 return AE_OK;
544 }
545
acpi_irq(int irq,void * dev_id)546 static irqreturn_t acpi_irq(int irq, void *dev_id)
547 {
548 u32 handled;
549
550 handled = (*acpi_irq_handler) (acpi_irq_context);
551
552 if (handled) {
553 acpi_irq_handled++;
554 return IRQ_HANDLED;
555 } else {
556 acpi_irq_not_handled++;
557 return IRQ_NONE;
558 }
559 }
560
561 acpi_status
acpi_os_install_interrupt_handler(u32 gsi,acpi_osd_handler handler,void * context)562 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
563 void *context)
564 {
565 unsigned int irq;
566
567 acpi_irq_stats_init();
568
569 /*
570 * ACPI interrupts different from the SCI in our copy of the FADT are
571 * not supported.
572 */
573 if (gsi != acpi_gbl_FADT.sci_interrupt)
574 return AE_BAD_PARAMETER;
575
576 if (acpi_irq_handler)
577 return AE_ALREADY_ACQUIRED;
578
579 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
580 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
581 return AE_OK;
582 }
583
584 acpi_irq_handler = handler;
585 acpi_irq_context = context;
586 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
587 pr_err("SCI (IRQ%d) allocation failed\n", irq);
588 acpi_irq_handler = NULL;
589 return AE_NOT_ACQUIRED;
590 }
591 acpi_sci_irq = irq;
592
593 return AE_OK;
594 }
595
acpi_os_remove_interrupt_handler(u32 gsi,acpi_osd_handler handler)596 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
597 {
598 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
599 return AE_BAD_PARAMETER;
600
601 free_irq(acpi_sci_irq, acpi_irq);
602 acpi_irq_handler = NULL;
603 acpi_sci_irq = INVALID_ACPI_IRQ;
604
605 return AE_OK;
606 }
607
608 /*
609 * Running in interpreter thread context, safe to sleep
610 */
611
acpi_os_sleep(u64 ms)612 void acpi_os_sleep(u64 ms)
613 {
614 msleep(ms);
615 }
616
acpi_os_stall(u32 us)617 void acpi_os_stall(u32 us)
618 {
619 while (us) {
620 u32 delay = 1000;
621
622 if (delay > us)
623 delay = us;
624 udelay(delay);
625 touch_nmi_watchdog();
626 us -= delay;
627 }
628 }
629
630 /*
631 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
632 * monotonically increasing timer with 100ns granularity. Do not use
633 * ktime_get() to implement this function because this function may get
634 * called after timekeeping has been suspended. Note: calling this function
635 * after timekeeping has been suspended may lead to unexpected results
636 * because when timekeeping is suspended the jiffies counter is not
637 * incremented. See also timekeeping_suspend().
638 */
acpi_os_get_timer(void)639 u64 acpi_os_get_timer(void)
640 {
641 return (get_jiffies_64() - INITIAL_JIFFIES) *
642 (ACPI_100NSEC_PER_SEC / HZ);
643 }
644
acpi_os_read_port(acpi_io_address port,u32 * value,u32 width)645 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
646 {
647 u32 dummy;
648
649 if (!value)
650 value = &dummy;
651
652 *value = 0;
653 if (width <= 8) {
654 *(u8 *) value = inb(port);
655 } else if (width <= 16) {
656 *(u16 *) value = inw(port);
657 } else if (width <= 32) {
658 *(u32 *) value = inl(port);
659 } else {
660 BUG();
661 }
662
663 return AE_OK;
664 }
665
666 EXPORT_SYMBOL(acpi_os_read_port);
667
acpi_os_write_port(acpi_io_address port,u32 value,u32 width)668 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
669 {
670 if (width <= 8) {
671 outb(value, port);
672 } else if (width <= 16) {
673 outw(value, port);
674 } else if (width <= 32) {
675 outl(value, port);
676 } else {
677 BUG();
678 }
679
680 return AE_OK;
681 }
682
683 EXPORT_SYMBOL(acpi_os_write_port);
684
acpi_os_read_iomem(void __iomem * virt_addr,u64 * value,u32 width)685 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
686 {
687
688 switch (width) {
689 case 8:
690 *(u8 *) value = readb(virt_addr);
691 break;
692 case 16:
693 *(u16 *) value = readw(virt_addr);
694 break;
695 case 32:
696 *(u32 *) value = readl(virt_addr);
697 break;
698 case 64:
699 *(u64 *) value = readq(virt_addr);
700 break;
701 default:
702 return -EINVAL;
703 }
704
705 return 0;
706 }
707
708 acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr,u64 * value,u32 width)709 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
710 {
711 void __iomem *virt_addr;
712 unsigned int size = width / 8;
713 bool unmap = false;
714 u64 dummy;
715 int error;
716
717 rcu_read_lock();
718 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
719 if (!virt_addr) {
720 rcu_read_unlock();
721 virt_addr = acpi_os_ioremap(phys_addr, size);
722 if (!virt_addr)
723 return AE_BAD_ADDRESS;
724 unmap = true;
725 }
726
727 if (!value)
728 value = &dummy;
729
730 error = acpi_os_read_iomem(virt_addr, value, width);
731 BUG_ON(error);
732
733 if (unmap)
734 iounmap(virt_addr);
735 else
736 rcu_read_unlock();
737
738 return AE_OK;
739 }
740
741 acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr,u64 value,u32 width)742 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
743 {
744 void __iomem *virt_addr;
745 unsigned int size = width / 8;
746 bool unmap = false;
747
748 rcu_read_lock();
749 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
750 if (!virt_addr) {
751 rcu_read_unlock();
752 virt_addr = acpi_os_ioremap(phys_addr, size);
753 if (!virt_addr)
754 return AE_BAD_ADDRESS;
755 unmap = true;
756 }
757
758 switch (width) {
759 case 8:
760 writeb(value, virt_addr);
761 break;
762 case 16:
763 writew(value, virt_addr);
764 break;
765 case 32:
766 writel(value, virt_addr);
767 break;
768 case 64:
769 writeq(value, virt_addr);
770 break;
771 default:
772 BUG();
773 }
774
775 if (unmap)
776 iounmap(virt_addr);
777 else
778 rcu_read_unlock();
779
780 return AE_OK;
781 }
782
783 #ifdef CONFIG_PCI
784 acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 * value,u32 width)785 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
786 u64 *value, u32 width)
787 {
788 int result, size;
789 u32 value32;
790
791 if (!value)
792 return AE_BAD_PARAMETER;
793
794 switch (width) {
795 case 8:
796 size = 1;
797 break;
798 case 16:
799 size = 2;
800 break;
801 case 32:
802 size = 4;
803 break;
804 default:
805 return AE_ERROR;
806 }
807
808 result = raw_pci_read(pci_id->segment, pci_id->bus,
809 PCI_DEVFN(pci_id->device, pci_id->function),
810 reg, size, &value32);
811 *value = value32;
812
813 return (result ? AE_ERROR : AE_OK);
814 }
815
816 acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 value,u32 width)817 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
818 u64 value, u32 width)
819 {
820 int result, size;
821
822 switch (width) {
823 case 8:
824 size = 1;
825 break;
826 case 16:
827 size = 2;
828 break;
829 case 32:
830 size = 4;
831 break;
832 default:
833 return AE_ERROR;
834 }
835
836 result = raw_pci_write(pci_id->segment, pci_id->bus,
837 PCI_DEVFN(pci_id->device, pci_id->function),
838 reg, size, value);
839
840 return (result ? AE_ERROR : AE_OK);
841 }
842 #endif
843
acpi_os_execute_deferred(struct work_struct * work)844 static void acpi_os_execute_deferred(struct work_struct *work)
845 {
846 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
847
848 dpc->function(dpc->context);
849 kfree(dpc);
850 }
851
852 #ifdef CONFIG_ACPI_DEBUGGER
853 static struct acpi_debugger acpi_debugger;
854 static bool acpi_debugger_initialized;
855
acpi_register_debugger(struct module * owner,const struct acpi_debugger_ops * ops)856 int acpi_register_debugger(struct module *owner,
857 const struct acpi_debugger_ops *ops)
858 {
859 int ret = 0;
860
861 mutex_lock(&acpi_debugger.lock);
862 if (acpi_debugger.ops) {
863 ret = -EBUSY;
864 goto err_lock;
865 }
866
867 acpi_debugger.owner = owner;
868 acpi_debugger.ops = ops;
869
870 err_lock:
871 mutex_unlock(&acpi_debugger.lock);
872 return ret;
873 }
874 EXPORT_SYMBOL(acpi_register_debugger);
875
acpi_unregister_debugger(const struct acpi_debugger_ops * ops)876 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
877 {
878 mutex_lock(&acpi_debugger.lock);
879 if (ops == acpi_debugger.ops) {
880 acpi_debugger.ops = NULL;
881 acpi_debugger.owner = NULL;
882 }
883 mutex_unlock(&acpi_debugger.lock);
884 }
885 EXPORT_SYMBOL(acpi_unregister_debugger);
886
acpi_debugger_create_thread(acpi_osd_exec_callback function,void * context)887 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
888 {
889 int ret;
890 int (*func)(acpi_osd_exec_callback, void *);
891 struct module *owner;
892
893 if (!acpi_debugger_initialized)
894 return -ENODEV;
895 mutex_lock(&acpi_debugger.lock);
896 if (!acpi_debugger.ops) {
897 ret = -ENODEV;
898 goto err_lock;
899 }
900 if (!try_module_get(acpi_debugger.owner)) {
901 ret = -ENODEV;
902 goto err_lock;
903 }
904 func = acpi_debugger.ops->create_thread;
905 owner = acpi_debugger.owner;
906 mutex_unlock(&acpi_debugger.lock);
907
908 ret = func(function, context);
909
910 mutex_lock(&acpi_debugger.lock);
911 module_put(owner);
912 err_lock:
913 mutex_unlock(&acpi_debugger.lock);
914 return ret;
915 }
916
acpi_debugger_write_log(const char * msg)917 ssize_t acpi_debugger_write_log(const char *msg)
918 {
919 ssize_t ret;
920 ssize_t (*func)(const char *);
921 struct module *owner;
922
923 if (!acpi_debugger_initialized)
924 return -ENODEV;
925 mutex_lock(&acpi_debugger.lock);
926 if (!acpi_debugger.ops) {
927 ret = -ENODEV;
928 goto err_lock;
929 }
930 if (!try_module_get(acpi_debugger.owner)) {
931 ret = -ENODEV;
932 goto err_lock;
933 }
934 func = acpi_debugger.ops->write_log;
935 owner = acpi_debugger.owner;
936 mutex_unlock(&acpi_debugger.lock);
937
938 ret = func(msg);
939
940 mutex_lock(&acpi_debugger.lock);
941 module_put(owner);
942 err_lock:
943 mutex_unlock(&acpi_debugger.lock);
944 return ret;
945 }
946
acpi_debugger_read_cmd(char * buffer,size_t buffer_length)947 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
948 {
949 ssize_t ret;
950 ssize_t (*func)(char *, size_t);
951 struct module *owner;
952
953 if (!acpi_debugger_initialized)
954 return -ENODEV;
955 mutex_lock(&acpi_debugger.lock);
956 if (!acpi_debugger.ops) {
957 ret = -ENODEV;
958 goto err_lock;
959 }
960 if (!try_module_get(acpi_debugger.owner)) {
961 ret = -ENODEV;
962 goto err_lock;
963 }
964 func = acpi_debugger.ops->read_cmd;
965 owner = acpi_debugger.owner;
966 mutex_unlock(&acpi_debugger.lock);
967
968 ret = func(buffer, buffer_length);
969
970 mutex_lock(&acpi_debugger.lock);
971 module_put(owner);
972 err_lock:
973 mutex_unlock(&acpi_debugger.lock);
974 return ret;
975 }
976
acpi_debugger_wait_command_ready(void)977 int acpi_debugger_wait_command_ready(void)
978 {
979 int ret;
980 int (*func)(bool, char *, size_t);
981 struct module *owner;
982
983 if (!acpi_debugger_initialized)
984 return -ENODEV;
985 mutex_lock(&acpi_debugger.lock);
986 if (!acpi_debugger.ops) {
987 ret = -ENODEV;
988 goto err_lock;
989 }
990 if (!try_module_get(acpi_debugger.owner)) {
991 ret = -ENODEV;
992 goto err_lock;
993 }
994 func = acpi_debugger.ops->wait_command_ready;
995 owner = acpi_debugger.owner;
996 mutex_unlock(&acpi_debugger.lock);
997
998 ret = func(acpi_gbl_method_executing,
999 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1000
1001 mutex_lock(&acpi_debugger.lock);
1002 module_put(owner);
1003 err_lock:
1004 mutex_unlock(&acpi_debugger.lock);
1005 return ret;
1006 }
1007
acpi_debugger_notify_command_complete(void)1008 int acpi_debugger_notify_command_complete(void)
1009 {
1010 int ret;
1011 int (*func)(void);
1012 struct module *owner;
1013
1014 if (!acpi_debugger_initialized)
1015 return -ENODEV;
1016 mutex_lock(&acpi_debugger.lock);
1017 if (!acpi_debugger.ops) {
1018 ret = -ENODEV;
1019 goto err_lock;
1020 }
1021 if (!try_module_get(acpi_debugger.owner)) {
1022 ret = -ENODEV;
1023 goto err_lock;
1024 }
1025 func = acpi_debugger.ops->notify_command_complete;
1026 owner = acpi_debugger.owner;
1027 mutex_unlock(&acpi_debugger.lock);
1028
1029 ret = func();
1030
1031 mutex_lock(&acpi_debugger.lock);
1032 module_put(owner);
1033 err_lock:
1034 mutex_unlock(&acpi_debugger.lock);
1035 return ret;
1036 }
1037
acpi_debugger_init(void)1038 int __init acpi_debugger_init(void)
1039 {
1040 mutex_init(&acpi_debugger.lock);
1041 acpi_debugger_initialized = true;
1042 return 0;
1043 }
1044 #endif
1045
1046 /*******************************************************************************
1047 *
1048 * FUNCTION: acpi_os_execute
1049 *
1050 * PARAMETERS: Type - Type of the callback
1051 * Function - Function to be executed
1052 * Context - Function parameters
1053 *
1054 * RETURN: Status
1055 *
1056 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1057 * immediately executes function on a separate thread.
1058 *
1059 ******************************************************************************/
1060
acpi_os_execute(acpi_execute_type type,acpi_osd_exec_callback function,void * context)1061 acpi_status acpi_os_execute(acpi_execute_type type,
1062 acpi_osd_exec_callback function, void *context)
1063 {
1064 acpi_status status = AE_OK;
1065 struct acpi_os_dpc *dpc;
1066 struct workqueue_struct *queue;
1067 int ret;
1068 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1069 "Scheduling function [%p(%p)] for deferred execution.\n",
1070 function, context));
1071
1072 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1073 ret = acpi_debugger_create_thread(function, context);
1074 if (ret) {
1075 pr_err("Kernel thread creation failed\n");
1076 status = AE_ERROR;
1077 }
1078 goto out_thread;
1079 }
1080
1081 /*
1082 * Allocate/initialize DPC structure. Note that this memory will be
1083 * freed by the callee. The kernel handles the work_struct list in a
1084 * way that allows us to also free its memory inside the callee.
1085 * Because we may want to schedule several tasks with different
1086 * parameters we can't use the approach some kernel code uses of
1087 * having a static work_struct.
1088 */
1089
1090 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1091 if (!dpc)
1092 return AE_NO_MEMORY;
1093
1094 dpc->function = function;
1095 dpc->context = context;
1096
1097 /*
1098 * To prevent lockdep from complaining unnecessarily, make sure that
1099 * there is a different static lockdep key for each workqueue by using
1100 * INIT_WORK() for each of them separately.
1101 */
1102 if (type == OSL_NOTIFY_HANDLER) {
1103 queue = kacpi_notify_wq;
1104 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1105 } else if (type == OSL_GPE_HANDLER) {
1106 queue = kacpid_wq;
1107 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1108 } else {
1109 pr_err("Unsupported os_execute type %d.\n", type);
1110 status = AE_ERROR;
1111 }
1112
1113 if (ACPI_FAILURE(status))
1114 goto err_workqueue;
1115
1116 /*
1117 * On some machines, a software-initiated SMI causes corruption unless
1118 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1119 * typically it's done in GPE-related methods that are run via
1120 * workqueues, so we can avoid the known corruption cases by always
1121 * queueing on CPU 0.
1122 */
1123 ret = queue_work_on(0, queue, &dpc->work);
1124 if (!ret) {
1125 pr_err("Unable to queue work\n");
1126 status = AE_ERROR;
1127 }
1128 err_workqueue:
1129 if (ACPI_FAILURE(status))
1130 kfree(dpc);
1131 out_thread:
1132 return status;
1133 }
1134 EXPORT_SYMBOL(acpi_os_execute);
1135
acpi_os_wait_events_complete(void)1136 void acpi_os_wait_events_complete(void)
1137 {
1138 /*
1139 * Make sure the GPE handler or the fixed event handler is not used
1140 * on another CPU after removal.
1141 */
1142 if (acpi_sci_irq_valid())
1143 synchronize_hardirq(acpi_sci_irq);
1144 flush_workqueue(kacpid_wq);
1145 flush_workqueue(kacpi_notify_wq);
1146 }
1147 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1148
1149 struct acpi_hp_work {
1150 struct work_struct work;
1151 struct acpi_device *adev;
1152 u32 src;
1153 };
1154
acpi_hotplug_work_fn(struct work_struct * work)1155 static void acpi_hotplug_work_fn(struct work_struct *work)
1156 {
1157 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1158
1159 acpi_os_wait_events_complete();
1160 acpi_device_hotplug(hpw->adev, hpw->src);
1161 kfree(hpw);
1162 }
1163
acpi_hotplug_schedule(struct acpi_device * adev,u32 src)1164 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1165 {
1166 struct acpi_hp_work *hpw;
1167
1168 acpi_handle_debug(adev->handle,
1169 "Scheduling hotplug event %u for deferred handling\n",
1170 src);
1171
1172 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1173 if (!hpw)
1174 return AE_NO_MEMORY;
1175
1176 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1177 hpw->adev = adev;
1178 hpw->src = src;
1179 /*
1180 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1181 * the hotplug code may call driver .remove() functions, which may
1182 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1183 * these workqueues.
1184 */
1185 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1186 kfree(hpw);
1187 return AE_ERROR;
1188 }
1189 return AE_OK;
1190 }
1191
acpi_queue_hotplug_work(struct work_struct * work)1192 bool acpi_queue_hotplug_work(struct work_struct *work)
1193 {
1194 return queue_work(kacpi_hotplug_wq, work);
1195 }
1196
1197 acpi_status
acpi_os_create_semaphore(u32 max_units,u32 initial_units,acpi_handle * handle)1198 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1199 {
1200 struct semaphore *sem = NULL;
1201
1202 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1203 if (!sem)
1204 return AE_NO_MEMORY;
1205
1206 sema_init(sem, initial_units);
1207
1208 *handle = (acpi_handle *) sem;
1209
1210 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1211 *handle, initial_units));
1212
1213 return AE_OK;
1214 }
1215
1216 /*
1217 * TODO: A better way to delete semaphores? Linux doesn't have a
1218 * 'delete_semaphore()' function -- may result in an invalid
1219 * pointer dereference for non-synchronized consumers. Should
1220 * we at least check for blocked threads and signal/cancel them?
1221 */
1222
acpi_os_delete_semaphore(acpi_handle handle)1223 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1224 {
1225 struct semaphore *sem = (struct semaphore *)handle;
1226
1227 if (!sem)
1228 return AE_BAD_PARAMETER;
1229
1230 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1231
1232 BUG_ON(!list_empty(&sem->wait_list));
1233 kfree(sem);
1234 sem = NULL;
1235
1236 return AE_OK;
1237 }
1238
1239 /*
1240 * TODO: Support for units > 1?
1241 */
acpi_os_wait_semaphore(acpi_handle handle,u32 units,u16 timeout)1242 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1243 {
1244 acpi_status status = AE_OK;
1245 struct semaphore *sem = (struct semaphore *)handle;
1246 long jiffies;
1247 int ret = 0;
1248
1249 if (!acpi_os_initialized)
1250 return AE_OK;
1251
1252 if (!sem || (units < 1))
1253 return AE_BAD_PARAMETER;
1254
1255 if (units > 1)
1256 return AE_SUPPORT;
1257
1258 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1259 handle, units, timeout));
1260
1261 if (timeout == ACPI_WAIT_FOREVER)
1262 jiffies = MAX_SCHEDULE_TIMEOUT;
1263 else
1264 jiffies = msecs_to_jiffies(timeout);
1265
1266 ret = down_timeout(sem, jiffies);
1267 if (ret)
1268 status = AE_TIME;
1269
1270 if (ACPI_FAILURE(status)) {
1271 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1272 "Failed to acquire semaphore[%p|%d|%d], %s",
1273 handle, units, timeout,
1274 acpi_format_exception(status)));
1275 } else {
1276 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277 "Acquired semaphore[%p|%d|%d]", handle,
1278 units, timeout));
1279 }
1280
1281 return status;
1282 }
1283
1284 /*
1285 * TODO: Support for units > 1?
1286 */
acpi_os_signal_semaphore(acpi_handle handle,u32 units)1287 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1288 {
1289 struct semaphore *sem = (struct semaphore *)handle;
1290
1291 if (!acpi_os_initialized)
1292 return AE_OK;
1293
1294 if (!sem || (units < 1))
1295 return AE_BAD_PARAMETER;
1296
1297 if (units > 1)
1298 return AE_SUPPORT;
1299
1300 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1301 units));
1302
1303 up(sem);
1304
1305 return AE_OK;
1306 }
1307
acpi_os_get_line(char * buffer,u32 buffer_length,u32 * bytes_read)1308 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1309 {
1310 #ifdef ENABLE_DEBUGGER
1311 if (acpi_in_debugger) {
1312 u32 chars;
1313
1314 kdb_read(buffer, buffer_length);
1315
1316 /* remove the CR kdb includes */
1317 chars = strlen(buffer) - 1;
1318 buffer[chars] = '\0';
1319 }
1320 #else
1321 int ret;
1322
1323 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1324 if (ret < 0)
1325 return AE_ERROR;
1326 if (bytes_read)
1327 *bytes_read = ret;
1328 #endif
1329
1330 return AE_OK;
1331 }
1332 EXPORT_SYMBOL(acpi_os_get_line);
1333
acpi_os_wait_command_ready(void)1334 acpi_status acpi_os_wait_command_ready(void)
1335 {
1336 int ret;
1337
1338 ret = acpi_debugger_wait_command_ready();
1339 if (ret < 0)
1340 return AE_ERROR;
1341 return AE_OK;
1342 }
1343
acpi_os_notify_command_complete(void)1344 acpi_status acpi_os_notify_command_complete(void)
1345 {
1346 int ret;
1347
1348 ret = acpi_debugger_notify_command_complete();
1349 if (ret < 0)
1350 return AE_ERROR;
1351 return AE_OK;
1352 }
1353
acpi_os_signal(u32 function,void * info)1354 acpi_status acpi_os_signal(u32 function, void *info)
1355 {
1356 switch (function) {
1357 case ACPI_SIGNAL_FATAL:
1358 pr_err("Fatal opcode executed\n");
1359 break;
1360 case ACPI_SIGNAL_BREAKPOINT:
1361 /*
1362 * AML Breakpoint
1363 * ACPI spec. says to treat it as a NOP unless
1364 * you are debugging. So if/when we integrate
1365 * AML debugger into the kernel debugger its
1366 * hook will go here. But until then it is
1367 * not useful to print anything on breakpoints.
1368 */
1369 break;
1370 default:
1371 break;
1372 }
1373
1374 return AE_OK;
1375 }
1376
acpi_os_name_setup(char * str)1377 static int __init acpi_os_name_setup(char *str)
1378 {
1379 char *p = acpi_os_name;
1380 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1381
1382 if (!str || !*str)
1383 return 0;
1384
1385 for (; count-- && *str; str++) {
1386 if (isalnum(*str) || *str == ' ' || *str == ':')
1387 *p++ = *str;
1388 else if (*str == '\'' || *str == '"')
1389 continue;
1390 else
1391 break;
1392 }
1393 *p = 0;
1394
1395 return 1;
1396
1397 }
1398
1399 __setup("acpi_os_name=", acpi_os_name_setup);
1400
1401 /*
1402 * Disable the auto-serialization of named objects creation methods.
1403 *
1404 * This feature is enabled by default. It marks the AML control methods
1405 * that contain the opcodes to create named objects as "Serialized".
1406 */
acpi_no_auto_serialize_setup(char * str)1407 static int __init acpi_no_auto_serialize_setup(char *str)
1408 {
1409 acpi_gbl_auto_serialize_methods = FALSE;
1410 pr_info("Auto-serialization disabled\n");
1411
1412 return 1;
1413 }
1414
1415 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1416
1417 /* Check of resource interference between native drivers and ACPI
1418 * OperationRegions (SystemIO and System Memory only).
1419 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1420 * in arbitrary AML code and can interfere with legacy drivers.
1421 * acpi_enforce_resources= can be set to:
1422 *
1423 * - strict (default) (2)
1424 * -> further driver trying to access the resources will not load
1425 * - lax (1)
1426 * -> further driver trying to access the resources will load, but you
1427 * get a system message that something might go wrong...
1428 *
1429 * - no (0)
1430 * -> ACPI Operation Region resources will not be registered
1431 *
1432 */
1433 #define ENFORCE_RESOURCES_STRICT 2
1434 #define ENFORCE_RESOURCES_LAX 1
1435 #define ENFORCE_RESOURCES_NO 0
1436
1437 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1438
acpi_enforce_resources_setup(char * str)1439 static int __init acpi_enforce_resources_setup(char *str)
1440 {
1441 if (str == NULL || *str == '\0')
1442 return 0;
1443
1444 if (!strcmp("strict", str))
1445 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446 else if (!strcmp("lax", str))
1447 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1448 else if (!strcmp("no", str))
1449 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1450
1451 return 1;
1452 }
1453
1454 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1455
1456 /* Check for resource conflicts between ACPI OperationRegions and native
1457 * drivers */
acpi_check_resource_conflict(const struct resource * res)1458 int acpi_check_resource_conflict(const struct resource *res)
1459 {
1460 acpi_adr_space_type space_id;
1461
1462 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1463 return 0;
1464
1465 if (res->flags & IORESOURCE_IO)
1466 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1467 else if (res->flags & IORESOURCE_MEM)
1468 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1469 else
1470 return 0;
1471
1472 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1473 return 0;
1474
1475 pr_info("Resource conflict; ACPI support missing from driver?\n");
1476
1477 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1478 return -EBUSY;
1479
1480 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1481 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1482
1483 return 0;
1484 }
1485 EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
acpi_check_region(resource_size_t start,resource_size_t n,const char * name)1487 int acpi_check_region(resource_size_t start, resource_size_t n,
1488 const char *name)
1489 {
1490 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1491
1492 return acpi_check_resource_conflict(&res);
1493 }
1494 EXPORT_SYMBOL(acpi_check_region);
1495
acpi_deactivate_mem_region(acpi_handle handle,u32 level,void * _res,void ** return_value)1496 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1497 void *_res, void **return_value)
1498 {
1499 struct acpi_mem_space_context **mem_ctx;
1500 union acpi_operand_object *handler_obj;
1501 union acpi_operand_object *region_obj2;
1502 union acpi_operand_object *region_obj;
1503 struct resource *res = _res;
1504 acpi_status status;
1505
1506 region_obj = acpi_ns_get_attached_object(handle);
1507 if (!region_obj)
1508 return AE_OK;
1509
1510 handler_obj = region_obj->region.handler;
1511 if (!handler_obj)
1512 return AE_OK;
1513
1514 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1515 return AE_OK;
1516
1517 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1518 return AE_OK;
1519
1520 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1521 if (!region_obj2)
1522 return AE_OK;
1523
1524 mem_ctx = (void *)®ion_obj2->extra.region_context;
1525
1526 if (!(mem_ctx[0]->address >= res->start &&
1527 mem_ctx[0]->address < res->end))
1528 return AE_OK;
1529
1530 status = handler_obj->address_space.setup(region_obj,
1531 ACPI_REGION_DEACTIVATE,
1532 NULL, (void **)mem_ctx);
1533 if (ACPI_SUCCESS(status))
1534 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1535
1536 return status;
1537 }
1538
1539 /**
1540 * acpi_release_memory - Release any mappings done to a memory region
1541 * @handle: Handle to namespace node
1542 * @res: Memory resource
1543 * @level: A level that terminates the search
1544 *
1545 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1546 * overlap with @res and that have already been activated (mapped).
1547 *
1548 * This is a helper that allows drivers to place special requirements on memory
1549 * region that may overlap with operation regions, primarily allowing them to
1550 * safely map the region as non-cached memory.
1551 *
1552 * The unmapped Operation Regions will be automatically remapped next time they
1553 * are called, so the drivers do not need to do anything else.
1554 */
acpi_release_memory(acpi_handle handle,struct resource * res,u32 level)1555 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1556 u32 level)
1557 {
1558 acpi_status status;
1559
1560 if (!(res->flags & IORESOURCE_MEM))
1561 return AE_TYPE;
1562
1563 status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1564 acpi_deactivate_mem_region, NULL,
1565 res, NULL);
1566 if (ACPI_FAILURE(status))
1567 return status;
1568
1569 /*
1570 * Wait for all of the mappings queued up for removal by
1571 * acpi_deactivate_mem_region() to actually go away.
1572 */
1573 synchronize_rcu();
1574 rcu_barrier();
1575 flush_scheduled_work();
1576
1577 return AE_OK;
1578 }
1579 EXPORT_SYMBOL_GPL(acpi_release_memory);
1580
1581 /*
1582 * Let drivers know whether the resource checks are effective
1583 */
acpi_resources_are_enforced(void)1584 int acpi_resources_are_enforced(void)
1585 {
1586 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1587 }
1588 EXPORT_SYMBOL(acpi_resources_are_enforced);
1589
1590 /*
1591 * Deallocate the memory for a spinlock.
1592 */
acpi_os_delete_lock(acpi_spinlock handle)1593 void acpi_os_delete_lock(acpi_spinlock handle)
1594 {
1595 ACPI_FREE(handle);
1596 }
1597
1598 /*
1599 * Acquire a spinlock.
1600 *
1601 * handle is a pointer to the spinlock_t.
1602 */
1603
acpi_os_acquire_lock(acpi_spinlock lockp)1604 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1605 __acquires(lockp)
1606 {
1607 acpi_cpu_flags flags;
1608 spin_lock_irqsave(lockp, flags);
1609 return flags;
1610 }
1611
1612 /*
1613 * Release a spinlock. See above.
1614 */
1615
acpi_os_release_lock(acpi_spinlock lockp,acpi_cpu_flags flags)1616 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1617 __releases(lockp)
1618 {
1619 spin_unlock_irqrestore(lockp, flags);
1620 }
1621
1622 #ifndef ACPI_USE_LOCAL_CACHE
1623
1624 /*******************************************************************************
1625 *
1626 * FUNCTION: acpi_os_create_cache
1627 *
1628 * PARAMETERS: name - Ascii name for the cache
1629 * size - Size of each cached object
1630 * depth - Maximum depth of the cache (in objects) <ignored>
1631 * cache - Where the new cache object is returned
1632 *
1633 * RETURN: status
1634 *
1635 * DESCRIPTION: Create a cache object
1636 *
1637 ******************************************************************************/
1638
1639 acpi_status
acpi_os_create_cache(char * name,u16 size,u16 depth,acpi_cache_t ** cache)1640 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1641 {
1642 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1643 if (*cache == NULL)
1644 return AE_ERROR;
1645 else
1646 return AE_OK;
1647 }
1648
1649 /*******************************************************************************
1650 *
1651 * FUNCTION: acpi_os_purge_cache
1652 *
1653 * PARAMETERS: Cache - Handle to cache object
1654 *
1655 * RETURN: Status
1656 *
1657 * DESCRIPTION: Free all objects within the requested cache.
1658 *
1659 ******************************************************************************/
1660
acpi_os_purge_cache(acpi_cache_t * cache)1661 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1662 {
1663 kmem_cache_shrink(cache);
1664 return (AE_OK);
1665 }
1666
1667 /*******************************************************************************
1668 *
1669 * FUNCTION: acpi_os_delete_cache
1670 *
1671 * PARAMETERS: Cache - Handle to cache object
1672 *
1673 * RETURN: Status
1674 *
1675 * DESCRIPTION: Free all objects within the requested cache and delete the
1676 * cache object.
1677 *
1678 ******************************************************************************/
1679
acpi_os_delete_cache(acpi_cache_t * cache)1680 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1681 {
1682 kmem_cache_destroy(cache);
1683 return (AE_OK);
1684 }
1685
1686 /*******************************************************************************
1687 *
1688 * FUNCTION: acpi_os_release_object
1689 *
1690 * PARAMETERS: Cache - Handle to cache object
1691 * Object - The object to be released
1692 *
1693 * RETURN: None
1694 *
1695 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1696 * the object is deleted.
1697 *
1698 ******************************************************************************/
1699
acpi_os_release_object(acpi_cache_t * cache,void * object)1700 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1701 {
1702 kmem_cache_free(cache, object);
1703 return (AE_OK);
1704 }
1705 #endif
1706
acpi_no_static_ssdt_setup(char * s)1707 static int __init acpi_no_static_ssdt_setup(char *s)
1708 {
1709 acpi_gbl_disable_ssdt_table_install = TRUE;
1710 pr_info("Static SSDT installation disabled\n");
1711
1712 return 0;
1713 }
1714
1715 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1716
acpi_disable_return_repair(char * s)1717 static int __init acpi_disable_return_repair(char *s)
1718 {
1719 pr_notice("Predefined validation mechanism disabled\n");
1720 acpi_gbl_disable_auto_repair = TRUE;
1721
1722 return 1;
1723 }
1724
1725 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1726
acpi_os_initialize(void)1727 acpi_status __init acpi_os_initialize(void)
1728 {
1729 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1730 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1731
1732 acpi_gbl_xgpe0_block_logical_address =
1733 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1734 acpi_gbl_xgpe1_block_logical_address =
1735 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1736
1737 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1738 /*
1739 * Use acpi_os_map_generic_address to pre-map the reset
1740 * register if it's in system memory.
1741 */
1742 void *rv;
1743
1744 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1745 pr_debug("%s: Reset register mapping %s\n", __func__,
1746 rv ? "successful" : "failed");
1747 }
1748 acpi_os_initialized = true;
1749
1750 return AE_OK;
1751 }
1752
acpi_os_initialize1(void)1753 acpi_status __init acpi_os_initialize1(void)
1754 {
1755 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1756 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1757 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1758 BUG_ON(!kacpid_wq);
1759 BUG_ON(!kacpi_notify_wq);
1760 BUG_ON(!kacpi_hotplug_wq);
1761 acpi_osi_init();
1762 return AE_OK;
1763 }
1764
acpi_os_terminate(void)1765 acpi_status acpi_os_terminate(void)
1766 {
1767 if (acpi_irq_handler) {
1768 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1769 acpi_irq_handler);
1770 }
1771
1772 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1773 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1774 acpi_gbl_xgpe0_block_logical_address = 0UL;
1775 acpi_gbl_xgpe1_block_logical_address = 0UL;
1776
1777 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1778 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1779
1780 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1781 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1782
1783 destroy_workqueue(kacpid_wq);
1784 destroy_workqueue(kacpi_notify_wq);
1785 destroy_workqueue(kacpi_hotplug_wq);
1786
1787 return AE_OK;
1788 }
1789
acpi_os_prepare_sleep(u8 sleep_state,u32 pm1a_control,u32 pm1b_control)1790 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1791 u32 pm1b_control)
1792 {
1793 int rc = 0;
1794 if (__acpi_os_prepare_sleep)
1795 rc = __acpi_os_prepare_sleep(sleep_state,
1796 pm1a_control, pm1b_control);
1797 if (rc < 0)
1798 return AE_ERROR;
1799 else if (rc > 0)
1800 return AE_CTRL_TERMINATE;
1801
1802 return AE_OK;
1803 }
1804
acpi_os_set_prepare_sleep(int (* func)(u8 sleep_state,u32 pm1a_ctrl,u32 pm1b_ctrl))1805 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1806 u32 pm1a_ctrl, u32 pm1b_ctrl))
1807 {
1808 __acpi_os_prepare_sleep = func;
1809 }
1810
1811 #if (ACPI_REDUCED_HARDWARE)
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1812 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1813 u32 val_b)
1814 {
1815 int rc = 0;
1816 if (__acpi_os_prepare_extended_sleep)
1817 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1818 val_a, val_b);
1819 if (rc < 0)
1820 return AE_ERROR;
1821 else if (rc > 0)
1822 return AE_CTRL_TERMINATE;
1823
1824 return AE_OK;
1825 }
1826 #else
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1827 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1828 u32 val_b)
1829 {
1830 return AE_OK;
1831 }
1832 #endif
1833
acpi_os_set_prepare_extended_sleep(int (* func)(u8 sleep_state,u32 val_a,u32 val_b))1834 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1835 u32 val_a, u32 val_b))
1836 {
1837 __acpi_os_prepare_extended_sleep = func;
1838 }
1839
acpi_os_enter_sleep(u8 sleep_state,u32 reg_a_value,u32 reg_b_value)1840 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1841 u32 reg_a_value, u32 reg_b_value)
1842 {
1843 acpi_status status;
1844
1845 if (acpi_gbl_reduced_hardware)
1846 status = acpi_os_prepare_extended_sleep(sleep_state,
1847 reg_a_value,
1848 reg_b_value);
1849 else
1850 status = acpi_os_prepare_sleep(sleep_state,
1851 reg_a_value, reg_b_value);
1852 return status;
1853 }
1854