• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6  *
7  * This driver produces cryptographically secure pseudorandom data. It is divided
8  * into roughly six sections, each with a section header:
9  *
10  *   - Initialization and readiness waiting.
11  *   - Fast key erasure RNG, the "crng".
12  *   - Entropy accumulation and extraction routines.
13  *   - Entropy collection routines.
14  *   - Userspace reader/writer interfaces.
15  *   - Sysctl interface.
16  *
17  * The high level overview is that there is one input pool, into which
18  * various pieces of data are hashed. Prior to initialization, some of that
19  * data is then "credited" as having a certain number of bits of entropy.
20  * When enough bits of entropy are available, the hash is finalized and
21  * handed as a key to a stream cipher that expands it indefinitely for
22  * various consumers. This key is periodically refreshed as the various
23  * entropy collectors, described below, add data to the input pool.
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/utsname.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/major.h>
32 #include <linux/string.h>
33 #include <linux/fcntl.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/poll.h>
37 #include <linux/init.h>
38 #include <linux/fs.h>
39 #include <linux/genhd.h>
40 #include <linux/interrupt.h>
41 #include <linux/mm.h>
42 #include <linux/nodemask.h>
43 #include <linux/spinlock.h>
44 #include <linux/kthread.h>
45 #include <linux/percpu.h>
46 #include <linux/ptrace.h>
47 #include <linux/workqueue.h>
48 #include <linux/irq.h>
49 #include <linux/ratelimit.h>
50 #include <linux/syscalls.h>
51 #include <linux/completion.h>
52 #include <linux/uuid.h>
53 #include <linux/uaccess.h>
54 #include <linux/siphash.h>
55 #include <linux/uio.h>
56 #include <crypto/chacha.h>
57 #include <crypto/blake2s.h>
58 #include <asm/processor.h>
59 #include <asm/irq.h>
60 #include <asm/irq_regs.h>
61 #include <asm/io.h>
62 
63 // GKI: Keep this header to retain the original CRC that previously used the
64 // random.h tracepoints.
65 #include <linux/writeback.h>
66 
67 /*********************************************************************
68  *
69  * Initialization and readiness waiting.
70  *
71  * Much of the RNG infrastructure is devoted to various dependencies
72  * being able to wait until the RNG has collected enough entropy and
73  * is ready for safe consumption.
74  *
75  *********************************************************************/
76 
77 /*
78  * crng_init is protected by base_crng->lock, and only increases
79  * its value (from empty->early->ready).
80  */
81 static enum {
82 	CRNG_EMPTY = 0, /* Little to no entropy collected */
83 	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
84 	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
85 } crng_init __read_mostly = CRNG_EMPTY;
86 #define crng_ready() (likely(crng_init >= CRNG_READY))
87 /* Various types of waiters for crng_init->CRNG_READY transition. */
88 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
89 static struct fasync_struct *fasync;
90 static DEFINE_SPINLOCK(random_ready_chain_lock);
91 static RAW_NOTIFIER_HEAD(random_ready_chain);
92 
93 /* Control how we warn userspace. */
94 static struct ratelimit_state urandom_warning =
95 	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
96 static int ratelimit_disable __read_mostly =
97 	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
98 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
99 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
100 
101 /*
102  * Returns whether or not the input pool has been seeded and thus guaranteed
103  * to supply cryptographically secure random numbers. This applies to: the
104  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
105  * ,u64,int,long} family of functions.
106  *
107  * Returns: true if the input pool has been seeded.
108  *          false if the input pool has not been seeded.
109  */
rng_is_initialized(void)110 bool rng_is_initialized(void)
111 {
112 	return crng_ready();
113 }
114 EXPORT_SYMBOL(rng_is_initialized);
115 
116 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
117 static void try_to_generate_entropy(void);
118 
119 /*
120  * Wait for the input pool to be seeded and thus guaranteed to supply
121  * cryptographically secure random numbers. This applies to: the /dev/urandom
122  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
123  * family of functions. Using any of these functions without first calling
124  * this function forfeits the guarantee of security.
125  *
126  * Returns: 0 if the input pool has been seeded.
127  *          -ERESTARTSYS if the function was interrupted by a signal.
128  */
wait_for_random_bytes(void)129 int wait_for_random_bytes(void)
130 {
131 	while (!crng_ready()) {
132 		int ret;
133 
134 		try_to_generate_entropy();
135 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
136 		if (ret)
137 			return ret > 0 ? 0 : ret;
138 	}
139 	return 0;
140 }
141 EXPORT_SYMBOL(wait_for_random_bytes);
142 
143 /*
144  * Add a callback function that will be invoked when the input
145  * pool is initialised.
146  *
147  * returns: 0 if callback is successfully added
148  *	    -EALREADY if pool is already initialised (callback not called)
149  */
register_random_ready_notifier(struct notifier_block * nb)150 int __cold register_random_ready_notifier(struct notifier_block *nb)
151 {
152 	unsigned long flags;
153 	int ret = -EALREADY;
154 
155 	if (crng_ready())
156 		return ret;
157 
158 	spin_lock_irqsave(&random_ready_chain_lock, flags);
159 	if (!crng_ready())
160 		ret = raw_notifier_chain_register(&random_ready_chain, nb);
161 	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
162 	return ret;
163 }
164 
165 /*
166  * Delete a previously registered readiness callback function.
167  */
unregister_random_ready_notifier(struct notifier_block * nb)168 int __cold unregister_random_ready_notifier(struct notifier_block *nb)
169 {
170 	unsigned long flags;
171 	int ret;
172 
173 	spin_lock_irqsave(&random_ready_chain_lock, flags);
174 	ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
175 	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
176 	return ret;
177 }
178 
179 static void process_oldschool_random_ready_list(void);
process_random_ready_list(void)180 static void __cold process_random_ready_list(void)
181 {
182 	unsigned long flags;
183 
184 	spin_lock_irqsave(&random_ready_chain_lock, flags);
185 	raw_notifier_call_chain(&random_ready_chain, 0, NULL);
186 	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
187 
188 	process_oldschool_random_ready_list();
189 }
190 
191 #define warn_unseeded_randomness() \
192 	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
193 		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
194 				__func__, (void *)_RET_IP_, crng_init)
195 
196 
197 /*********************************************************************
198  *
199  * Fast key erasure RNG, the "crng".
200  *
201  * These functions expand entropy from the entropy extractor into
202  * long streams for external consumption using the "fast key erasure"
203  * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
204  *
205  * There are a few exported interfaces for use by other drivers:
206  *
207  *	void get_random_bytes(void *buf, size_t len)
208  *	u32 get_random_u32()
209  *	u64 get_random_u64()
210  *	unsigned int get_random_int()
211  *	unsigned long get_random_long()
212  *
213  * These interfaces will return the requested number of random bytes
214  * into the given buffer or as a return value. This is equivalent to
215  * a read from /dev/urandom. The u32, u64, int, and long family of
216  * functions may be higher performance for one-off random integers,
217  * because they do a bit of buffering and do not invoke reseeding
218  * until the buffer is emptied.
219  *
220  *********************************************************************/
221 
222 enum {
223 	CRNG_RESEED_START_INTERVAL = HZ,
224 	CRNG_RESEED_INTERVAL = 60 * HZ
225 };
226 
227 static struct {
228 	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
229 	unsigned long birth;
230 	unsigned long generation;
231 	spinlock_t lock;
232 } base_crng = {
233 	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
234 };
235 
236 struct crng {
237 	u8 key[CHACHA_KEY_SIZE];
238 	unsigned long generation;
239 	local_lock_t lock;
240 };
241 
242 static DEFINE_PER_CPU(struct crng, crngs) = {
243 	.generation = ULONG_MAX,
244 	.lock = INIT_LOCAL_LOCK(crngs.lock),
245 };
246 
247 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
248 static void extract_entropy(void *buf, size_t len);
249 
250 /* This extracts a new crng key from the input pool. */
crng_reseed(void)251 static void crng_reseed(void)
252 {
253 	unsigned long flags;
254 	unsigned long next_gen;
255 	u8 key[CHACHA_KEY_SIZE];
256 
257 	extract_entropy(key, sizeof(key));
258 
259 	/*
260 	 * We copy the new key into the base_crng, overwriting the old one,
261 	 * and update the generation counter. We avoid hitting ULONG_MAX,
262 	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
263 	 * forces new CPUs that come online to always initialize.
264 	 */
265 	spin_lock_irqsave(&base_crng.lock, flags);
266 	memcpy(base_crng.key, key, sizeof(base_crng.key));
267 	next_gen = base_crng.generation + 1;
268 	if (next_gen == ULONG_MAX)
269 		++next_gen;
270 	WRITE_ONCE(base_crng.generation, next_gen);
271 	WRITE_ONCE(base_crng.birth, jiffies);
272 	if (!crng_ready())
273 		crng_init = CRNG_READY;
274 	spin_unlock_irqrestore(&base_crng.lock, flags);
275 	memzero_explicit(key, sizeof(key));
276 }
277 
278 /*
279  * This generates a ChaCha block using the provided key, and then
280  * immediately overwites that key with half the block. It returns
281  * the resultant ChaCha state to the user, along with the second
282  * half of the block containing 32 bytes of random data that may
283  * be used; random_data_len may not be greater than 32.
284  *
285  * The returned ChaCha state contains within it a copy of the old
286  * key value, at index 4, so the state should always be zeroed out
287  * immediately after using in order to maintain forward secrecy.
288  * If the state cannot be erased in a timely manner, then it is
289  * safer to set the random_data parameter to &chacha_state[4] so
290  * that this function overwrites it before returning.
291  */
crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],u32 chacha_state[CHACHA_STATE_WORDS],u8 * random_data,size_t random_data_len)292 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
293 				  u32 chacha_state[CHACHA_STATE_WORDS],
294 				  u8 *random_data, size_t random_data_len)
295 {
296 	u8 first_block[CHACHA_BLOCK_SIZE];
297 
298 	BUG_ON(random_data_len > 32);
299 
300 	chacha_init_consts(chacha_state);
301 	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
302 	memset(&chacha_state[12], 0, sizeof(u32) * 4);
303 	chacha20_block(chacha_state, first_block);
304 
305 	memcpy(key, first_block, CHACHA_KEY_SIZE);
306 	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
307 	memzero_explicit(first_block, sizeof(first_block));
308 }
309 
310 /*
311  * Return whether the crng seed is considered to be sufficiently old
312  * that a reseeding is needed. This happens if the last reseeding
313  * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
314  * proportional to the uptime.
315  */
crng_has_old_seed(void)316 static bool crng_has_old_seed(void)
317 {
318 	static bool early_boot = true;
319 	unsigned long interval = CRNG_RESEED_INTERVAL;
320 
321 	if (unlikely(READ_ONCE(early_boot))) {
322 		time64_t uptime = ktime_get_seconds();
323 		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
324 			WRITE_ONCE(early_boot, false);
325 		else
326 			interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
327 					 (unsigned int)uptime / 2 * HZ);
328 	}
329 	return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval);
330 }
331 
332 /*
333  * This function returns a ChaCha state that you may use for generating
334  * random data. It also returns up to 32 bytes on its own of random data
335  * that may be used; random_data_len may not be greater than 32.
336  */
crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],u8 * random_data,size_t random_data_len)337 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
338 			    u8 *random_data, size_t random_data_len)
339 {
340 	unsigned long flags;
341 	struct crng *crng;
342 
343 	BUG_ON(random_data_len > 32);
344 
345 	/*
346 	 * For the fast path, we check whether we're ready, unlocked first, and
347 	 * then re-check once locked later. In the case where we're really not
348 	 * ready, we do fast key erasure with the base_crng directly, extracting
349 	 * when crng_init is CRNG_EMPTY.
350 	 */
351 	if (!crng_ready()) {
352 		bool ready;
353 
354 		spin_lock_irqsave(&base_crng.lock, flags);
355 		ready = crng_ready();
356 		if (!ready) {
357 			if (crng_init == CRNG_EMPTY)
358 				extract_entropy(base_crng.key, sizeof(base_crng.key));
359 			crng_fast_key_erasure(base_crng.key, chacha_state,
360 					      random_data, random_data_len);
361 		}
362 		spin_unlock_irqrestore(&base_crng.lock, flags);
363 		if (!ready)
364 			return;
365 	}
366 
367 	/*
368 	 * If the base_crng is old enough, we reseed, which in turn bumps the
369 	 * generation counter that we check below.
370 	 */
371 	if (unlikely(crng_has_old_seed()))
372 		crng_reseed();
373 
374 	local_lock_irqsave(&crngs.lock, flags);
375 	crng = raw_cpu_ptr(&crngs);
376 
377 	/*
378 	 * If our per-cpu crng is older than the base_crng, then it means
379 	 * somebody reseeded the base_crng. In that case, we do fast key
380 	 * erasure on the base_crng, and use its output as the new key
381 	 * for our per-cpu crng. This brings us up to date with base_crng.
382 	 */
383 	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
384 		spin_lock(&base_crng.lock);
385 		crng_fast_key_erasure(base_crng.key, chacha_state,
386 				      crng->key, sizeof(crng->key));
387 		crng->generation = base_crng.generation;
388 		spin_unlock(&base_crng.lock);
389 	}
390 
391 	/*
392 	 * Finally, when we've made it this far, our per-cpu crng has an up
393 	 * to date key, and we can do fast key erasure with it to produce
394 	 * some random data and a ChaCha state for the caller. All other
395 	 * branches of this function are "unlikely", so most of the time we
396 	 * should wind up here immediately.
397 	 */
398 	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
399 	local_unlock_irqrestore(&crngs.lock, flags);
400 }
401 
_get_random_bytes(void * buf,size_t len)402 static void _get_random_bytes(void *buf, size_t len)
403 {
404 	u32 chacha_state[CHACHA_STATE_WORDS];
405 	u8 tmp[CHACHA_BLOCK_SIZE];
406 	size_t first_block_len;
407 
408 	if (!len)
409 		return;
410 
411 	first_block_len = min_t(size_t, 32, len);
412 	crng_make_state(chacha_state, buf, first_block_len);
413 	len -= first_block_len;
414 	buf += first_block_len;
415 
416 	while (len) {
417 		if (len < CHACHA_BLOCK_SIZE) {
418 			chacha20_block(chacha_state, tmp);
419 			memcpy(buf, tmp, len);
420 			memzero_explicit(tmp, sizeof(tmp));
421 			break;
422 		}
423 
424 		chacha20_block(chacha_state, buf);
425 		if (unlikely(chacha_state[12] == 0))
426 			++chacha_state[13];
427 		len -= CHACHA_BLOCK_SIZE;
428 		buf += CHACHA_BLOCK_SIZE;
429 	}
430 
431 	memzero_explicit(chacha_state, sizeof(chacha_state));
432 }
433 
434 /*
435  * This function is the exported kernel interface.  It returns some
436  * number of good random numbers, suitable for key generation, seeding
437  * TCP sequence numbers, etc.  It does not rely on the hardware random
438  * number generator.  For random bytes direct from the hardware RNG
439  * (when available), use get_random_bytes_arch(). In order to ensure
440  * that the randomness provided by this function is okay, the function
441  * wait_for_random_bytes() should be called and return 0 at least once
442  * at any point prior.
443  */
get_random_bytes(void * buf,int len)444 void get_random_bytes(void *buf, int len)
445 {
446 	warn_unseeded_randomness();
447 	_get_random_bytes(buf, len);
448 }
449 EXPORT_SYMBOL(get_random_bytes);
450 
get_random_bytes_user(struct iov_iter * iter)451 static ssize_t get_random_bytes_user(struct iov_iter *iter)
452 {
453 	u32 chacha_state[CHACHA_STATE_WORDS];
454 	u8 block[CHACHA_BLOCK_SIZE];
455 	size_t ret = 0, copied;
456 
457 	if (unlikely(!iov_iter_count(iter)))
458 		return 0;
459 
460 	/*
461 	 * Immediately overwrite the ChaCha key at index 4 with random
462 	 * bytes, in case userspace causes copy_to_iter() below to sleep
463 	 * forever, so that we still retain forward secrecy in that case.
464 	 */
465 	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
466 	/*
467 	 * However, if we're doing a read of len <= 32, we don't need to
468 	 * use chacha_state after, so we can simply return those bytes to
469 	 * the user directly.
470 	 */
471 	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
472 		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
473 		goto out_zero_chacha;
474 	}
475 
476 	for (;;) {
477 		chacha20_block(chacha_state, block);
478 		if (unlikely(chacha_state[12] == 0))
479 			++chacha_state[13];
480 
481 		copied = copy_to_iter(block, sizeof(block), iter);
482 		ret += copied;
483 		if (!iov_iter_count(iter) || copied != sizeof(block))
484 			break;
485 
486 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
487 		if (ret % PAGE_SIZE == 0) {
488 			if (signal_pending(current))
489 				break;
490 			cond_resched();
491 		}
492 	}
493 
494 	memzero_explicit(block, sizeof(block));
495 out_zero_chacha:
496 	memzero_explicit(chacha_state, sizeof(chacha_state));
497 	return ret ? ret : -EFAULT;
498 }
499 
500 /*
501  * Batched entropy returns random integers. The quality of the random
502  * number is good as /dev/urandom. In order to ensure that the randomness
503  * provided by this function is okay, the function wait_for_random_bytes()
504  * should be called and return 0 at least once at any point prior.
505  */
506 
507 #define DEFINE_BATCHED_ENTROPY(type)						\
508 struct batch_ ##type {								\
509 	/*									\
510 	 * We make this 1.5x a ChaCha block, so that we get the			\
511 	 * remaining 32 bytes from fast key erasure, plus one full		\
512 	 * block from the detached ChaCha state. We can increase		\
513 	 * the size of this later if needed so long as we keep the		\
514 	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
515 	 */									\
516 	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
517 	local_lock_t lock;							\
518 	unsigned long generation;						\
519 	unsigned int position;							\
520 };										\
521 										\
522 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
523 	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
524 	.position = UINT_MAX							\
525 };										\
526 										\
527 type get_random_ ##type(void)							\
528 {										\
529 	type ret;								\
530 	unsigned long flags;							\
531 	struct batch_ ##type *batch;						\
532 	unsigned long next_gen;							\
533 										\
534 	warn_unseeded_randomness();						\
535 										\
536 	if  (!crng_ready()) {							\
537 		_get_random_bytes(&ret, sizeof(ret));				\
538 		return ret;							\
539 	}									\
540 										\
541 	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
542 	batch = raw_cpu_ptr(&batched_entropy_##type);				\
543 										\
544 	next_gen = READ_ONCE(base_crng.generation);				\
545 	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
546 	    next_gen != batch->generation) {					\
547 		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
548 		batch->position = 0;						\
549 		batch->generation = next_gen;					\
550 	}									\
551 										\
552 	ret = batch->entropy[batch->position];					\
553 	batch->entropy[batch->position] = 0;					\
554 	++batch->position;							\
555 	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
556 	return ret;								\
557 }										\
558 EXPORT_SYMBOL(get_random_ ##type);
559 
560 DEFINE_BATCHED_ENTROPY(u64)
DEFINE_BATCHED_ENTROPY(u32)561 DEFINE_BATCHED_ENTROPY(u32)
562 
563 #ifdef CONFIG_SMP
564 /*
565  * This function is called when the CPU is coming up, with entry
566  * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
567  */
568 int __cold random_prepare_cpu(unsigned int cpu)
569 {
570 	/*
571 	 * When the cpu comes back online, immediately invalidate both
572 	 * the per-cpu crng and all batches, so that we serve fresh
573 	 * randomness.
574 	 */
575 	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
576 	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
577 	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
578 	return 0;
579 }
580 #endif
581 
582 /*
583  * This function will use the architecture-specific hardware random
584  * number generator if it is available. It is not recommended for
585  * use. Use get_random_bytes() instead. It returns the number of
586  * bytes filled in.
587  */
get_random_bytes_arch(void * buf,size_t len)588 size_t __must_check get_random_bytes_arch(void *buf, size_t len)
589 {
590 	size_t left = len;
591 	u8 *p = buf;
592 
593 	while (left) {
594 		unsigned long v;
595 		size_t block_len = min_t(size_t, left, sizeof(unsigned long));
596 
597 		if (!arch_get_random_long(&v))
598 			break;
599 
600 		memcpy(p, &v, block_len);
601 		p += block_len;
602 		left -= block_len;
603 	}
604 
605 	return len - left;
606 }
607 EXPORT_SYMBOL(get_random_bytes_arch);
608 
609 
610 /**********************************************************************
611  *
612  * Entropy accumulation and extraction routines.
613  *
614  * Callers may add entropy via:
615  *
616  *     static void mix_pool_bytes(const void *buf, size_t len)
617  *
618  * After which, if added entropy should be credited:
619  *
620  *     static void credit_init_bits(size_t bits)
621  *
622  * Finally, extract entropy via:
623  *
624  *     static void extract_entropy(void *buf, size_t len)
625  *
626  **********************************************************************/
627 
628 enum {
629 	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
630 	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
631 	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
632 };
633 
634 static struct {
635 	struct blake2s_state hash;
636 	spinlock_t lock;
637 	unsigned int init_bits;
638 } input_pool = {
639 	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
640 		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
641 		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
642 	.hash.outlen = BLAKE2S_HASH_SIZE,
643 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
644 };
645 
_mix_pool_bytes(const void * buf,size_t len)646 static void _mix_pool_bytes(const void *buf, size_t len)
647 {
648 	blake2s_update(&input_pool.hash, buf, len);
649 }
650 
651 /*
652  * This function adds bytes into the input pool. It does not
653  * update the initialization bit counter; the caller should call
654  * credit_init_bits if this is appropriate.
655  */
mix_pool_bytes(const void * buf,size_t len)656 static void mix_pool_bytes(const void *buf, size_t len)
657 {
658 	unsigned long flags;
659 
660 	spin_lock_irqsave(&input_pool.lock, flags);
661 	_mix_pool_bytes(buf, len);
662 	spin_unlock_irqrestore(&input_pool.lock, flags);
663 }
664 
665 /*
666  * This is an HKDF-like construction for using the hashed collected entropy
667  * as a PRF key, that's then expanded block-by-block.
668  */
extract_entropy(void * buf,size_t len)669 static void extract_entropy(void *buf, size_t len)
670 {
671 	unsigned long flags;
672 	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
673 	struct {
674 		unsigned long rdseed[32 / sizeof(long)];
675 		size_t counter;
676 	} block;
677 	size_t i;
678 
679 	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
680 		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
681 		    !arch_get_random_long(&block.rdseed[i]))
682 			block.rdseed[i] = random_get_entropy();
683 	}
684 
685 	spin_lock_irqsave(&input_pool.lock, flags);
686 
687 	/* seed = HASHPRF(last_key, entropy_input) */
688 	blake2s_final(&input_pool.hash, seed);
689 
690 	/* next_key = HASHPRF(seed, RDSEED || 0) */
691 	block.counter = 0;
692 	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
693 	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
694 
695 	spin_unlock_irqrestore(&input_pool.lock, flags);
696 	memzero_explicit(next_key, sizeof(next_key));
697 
698 	while (len) {
699 		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
700 		/* output = HASHPRF(seed, RDSEED || ++counter) */
701 		++block.counter;
702 		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
703 		len -= i;
704 		buf += i;
705 	}
706 
707 	memzero_explicit(seed, sizeof(seed));
708 	memzero_explicit(&block, sizeof(block));
709 }
710 
711 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
712 
_credit_init_bits(size_t bits)713 static void __cold _credit_init_bits(size_t bits)
714 {
715 	unsigned int new, orig, add;
716 	unsigned long flags;
717 
718 	if (!bits)
719 		return;
720 
721 	add = min_t(size_t, bits, POOL_BITS);
722 
723 	do {
724 		orig = READ_ONCE(input_pool.init_bits);
725 		new = min_t(unsigned int, POOL_BITS, orig + add);
726 	} while (cmpxchg(&input_pool.init_bits, orig, new) != orig);
727 
728 	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
729 		crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
730 		process_random_ready_list();
731 		wake_up_interruptible(&crng_init_wait);
732 		kill_fasync(&fasync, SIGIO, POLL_IN);
733 		pr_notice("crng init done\n");
734 		if (urandom_warning.missed)
735 			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
736 				  urandom_warning.missed);
737 	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
738 		spin_lock_irqsave(&base_crng.lock, flags);
739 		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
740 		if (crng_init == CRNG_EMPTY) {
741 			extract_entropy(base_crng.key, sizeof(base_crng.key));
742 			crng_init = CRNG_EARLY;
743 		}
744 		spin_unlock_irqrestore(&base_crng.lock, flags);
745 	}
746 }
747 
748 
749 /**********************************************************************
750  *
751  * Entropy collection routines.
752  *
753  * The following exported functions are used for pushing entropy into
754  * the above entropy accumulation routines:
755  *
756  *	void add_device_randomness(const void *buf, size_t len);
757  *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
758  *	void add_bootloader_randomness(const void *buf, size_t len);
759  *	void add_interrupt_randomness(int irq);
760  *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
761  *	void add_disk_randomness(struct gendisk *disk);
762  *
763  * add_device_randomness() adds data to the input pool that
764  * is likely to differ between two devices (or possibly even per boot).
765  * This would be things like MAC addresses or serial numbers, or the
766  * read-out of the RTC. This does *not* credit any actual entropy to
767  * the pool, but it initializes the pool to different values for devices
768  * that might otherwise be identical and have very little entropy
769  * available to them (particularly common in the embedded world).
770  *
771  * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
772  * entropy as specified by the caller. If the entropy pool is full it will
773  * block until more entropy is needed.
774  *
775  * add_bootloader_randomness() is called by bootloader drivers, such as EFI
776  * and device tree, and credits its input depending on whether or not the
777  * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
778  *
779  * add_interrupt_randomness() uses the interrupt timing as random
780  * inputs to the entropy pool. Using the cycle counters and the irq source
781  * as inputs, it feeds the input pool roughly once a second or after 64
782  * interrupts, crediting 1 bit of entropy for whichever comes first.
783  *
784  * add_input_randomness() uses the input layer interrupt timing, as well
785  * as the event type information from the hardware.
786  *
787  * add_disk_randomness() uses what amounts to the seek time of block
788  * layer request events, on a per-disk_devt basis, as input to the
789  * entropy pool. Note that high-speed solid state drives with very low
790  * seek times do not make for good sources of entropy, as their seek
791  * times are usually fairly consistent.
792  *
793  * The last two routines try to estimate how many bits of entropy
794  * to credit. They do this by keeping track of the first and second
795  * order deltas of the event timings.
796  *
797  **********************************************************************/
798 
799 static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
800 static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
parse_trust_cpu(char * arg)801 static int __init parse_trust_cpu(char *arg)
802 {
803 	return kstrtobool(arg, &trust_cpu);
804 }
parse_trust_bootloader(char * arg)805 static int __init parse_trust_bootloader(char *arg)
806 {
807 	return kstrtobool(arg, &trust_bootloader);
808 }
809 early_param("random.trust_cpu", parse_trust_cpu);
810 early_param("random.trust_bootloader", parse_trust_bootloader);
811 
812 /*
813  * The first collection of entropy occurs at system boot while interrupts
814  * are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
815  * utsname(), and the command line. Depending on the above configuration knob,
816  * RDSEED may be considered sufficient for initialization. Note that much
817  * earlier setup may already have pushed entropy into the input pool by the
818  * time we get here.
819  */
random_init(const char * command_line)820 int __init random_init(const char *command_line)
821 {
822 	ktime_t now = ktime_get_real();
823 	unsigned int i, arch_bits;
824 	unsigned long entropy;
825 
826 #if defined(LATENT_ENTROPY_PLUGIN)
827 	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
828 	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
829 #endif
830 
831 	for (i = 0, arch_bits = BLAKE2S_BLOCK_SIZE * 8;
832 	     i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) {
833 		if (!arch_get_random_seed_long_early(&entropy) &&
834 		    !arch_get_random_long_early(&entropy)) {
835 			entropy = random_get_entropy();
836 			arch_bits -= sizeof(entropy) * 8;
837 		}
838 		_mix_pool_bytes(&entropy, sizeof(entropy));
839 	}
840 	_mix_pool_bytes(&now, sizeof(now));
841 	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
842 	_mix_pool_bytes(command_line, strlen(command_line));
843 	add_latent_entropy();
844 
845 	if (crng_ready())
846 		crng_reseed();
847 	else if (trust_cpu)
848 		_credit_init_bits(arch_bits);
849 
850 	return 0;
851 }
852 
853 /*
854  * Add device- or boot-specific data to the input pool to help
855  * initialize it.
856  *
857  * None of this adds any entropy; it is meant to avoid the problem of
858  * the entropy pool having similar initial state across largely
859  * identical devices.
860  */
add_device_randomness(const void * buf,unsigned int len)861 void add_device_randomness(const void *buf, unsigned int len)
862 {
863 	unsigned long entropy = random_get_entropy();
864 	unsigned long flags;
865 
866 	spin_lock_irqsave(&input_pool.lock, flags);
867 	_mix_pool_bytes(&entropy, sizeof(entropy));
868 	_mix_pool_bytes(buf, len);
869 	spin_unlock_irqrestore(&input_pool.lock, flags);
870 }
871 EXPORT_SYMBOL(add_device_randomness);
872 
873 /*
874  * Interface for in-kernel drivers of true hardware RNGs.
875  * Those devices may produce endless random bits and will be throttled
876  * when our pool is full.
877  */
add_hwgenerator_randomness(const void * buf,size_t len,size_t entropy)878 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
879 {
880 	mix_pool_bytes(buf, len);
881 	credit_init_bits(entropy);
882 
883 	/*
884 	 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
885 	 * we're not yet initialized.
886 	 */
887 	if (!kthread_should_stop() && crng_ready())
888 		schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
889 }
890 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
891 
892 /*
893  * Handle random seed passed by bootloader, and credit it if
894  * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
895  */
add_bootloader_randomness(const void * buf,size_t len)896 void __init add_bootloader_randomness(const void *buf, size_t len)
897 {
898 	mix_pool_bytes(buf, len);
899 	if (trust_bootloader)
900 		credit_init_bits(len * 8);
901 }
902 
903 struct fast_pool {
904 	unsigned long pool[4];
905 	unsigned long last;
906 	unsigned int count;
907 	struct timer_list mix;
908 };
909 
910 static void mix_interrupt_randomness(struct timer_list *work);
911 
912 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
913 #ifdef CONFIG_64BIT
914 #define FASTMIX_PERM SIPHASH_PERMUTATION
915 	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
916 #else
917 #define FASTMIX_PERM HSIPHASH_PERMUTATION
918 	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
919 #endif
920 	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
921 };
922 
923 /*
924  * This is [Half]SipHash-1-x, starting from an empty key. Because
925  * the key is fixed, it assumes that its inputs are non-malicious,
926  * and therefore this has no security on its own. s represents the
927  * four-word SipHash state, while v represents a two-word input.
928  */
fast_mix(unsigned long s[4],unsigned long v1,unsigned long v2)929 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
930 {
931 	s[3] ^= v1;
932 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
933 	s[0] ^= v1;
934 	s[3] ^= v2;
935 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
936 	s[0] ^= v2;
937 }
938 
939 #ifdef CONFIG_SMP
940 /*
941  * This function is called when the CPU has just come online, with
942  * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
943  */
random_online_cpu(unsigned int cpu)944 int __cold random_online_cpu(unsigned int cpu)
945 {
946 	/*
947 	 * During CPU shutdown and before CPU onlining, add_interrupt_
948 	 * randomness() may schedule mix_interrupt_randomness(), and
949 	 * set the MIX_INFLIGHT flag. However, because the worker can
950 	 * be scheduled on a different CPU during this period, that
951 	 * flag will never be cleared. For that reason, we zero out
952 	 * the flag here, which runs just after workqueues are onlined
953 	 * for the CPU again. This also has the effect of setting the
954 	 * irq randomness count to zero so that new accumulated irqs
955 	 * are fresh.
956 	 */
957 	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
958 	return 0;
959 }
960 #endif
961 
mix_interrupt_randomness(struct timer_list * work)962 static void mix_interrupt_randomness(struct timer_list *work)
963 {
964 	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
965 	/*
966 	 * The size of the copied stack pool is explicitly 2 longs so that we
967 	 * only ever ingest half of the siphash output each time, retaining
968 	 * the other half as the next "key" that carries over. The entropy is
969 	 * supposed to be sufficiently dispersed between bits so on average
970 	 * we don't wind up "losing" some.
971 	 */
972 	unsigned long pool[2];
973 	unsigned int count;
974 
975 	/* Check to see if we're running on the wrong CPU due to hotplug. */
976 	local_irq_disable();
977 	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
978 		local_irq_enable();
979 		return;
980 	}
981 
982 	/*
983 	 * Copy the pool to the stack so that the mixer always has a
984 	 * consistent view, before we reenable irqs again.
985 	 */
986 	memcpy(pool, fast_pool->pool, sizeof(pool));
987 	count = fast_pool->count;
988 	fast_pool->count = 0;
989 	fast_pool->last = jiffies;
990 	local_irq_enable();
991 
992 	mix_pool_bytes(pool, sizeof(pool));
993 	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
994 
995 	memzero_explicit(pool, sizeof(pool));
996 }
997 
add_interrupt_randomness(int irq)998 void add_interrupt_randomness(int irq)
999 {
1000 	enum { MIX_INFLIGHT = 1U << 31 };
1001 	unsigned long entropy = random_get_entropy();
1002 	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1003 	struct pt_regs *regs = get_irq_regs();
1004 	unsigned int new_count;
1005 
1006 	fast_mix(fast_pool->pool, entropy,
1007 		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1008 	new_count = ++fast_pool->count;
1009 
1010 	if (new_count & MIX_INFLIGHT)
1011 		return;
1012 
1013 	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1014 		return;
1015 
1016 	fast_pool->count |= MIX_INFLIGHT;
1017 	if (!timer_pending(&fast_pool->mix)) {
1018 		fast_pool->mix.expires = jiffies;
1019 		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1020 	}
1021 }
1022 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1023 
1024 /* There is one of these per entropy source */
1025 struct timer_rand_state {
1026 	unsigned long last_time;
1027 	long last_delta, last_delta2;
1028 };
1029 
1030 /*
1031  * This function adds entropy to the entropy "pool" by using timing
1032  * delays. It uses the timer_rand_state structure to make an estimate
1033  * of how many bits of entropy this call has added to the pool. The
1034  * value "num" is also added to the pool; it should somehow describe
1035  * the type of event that just happened.
1036  */
add_timer_randomness(struct timer_rand_state * state,unsigned int num)1037 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1038 {
1039 	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1040 	long delta, delta2, delta3;
1041 	unsigned int bits;
1042 
1043 	/*
1044 	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1045 	 * sometime after, so mix into the fast pool.
1046 	 */
1047 	if (in_hardirq()) {
1048 		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1049 	} else {
1050 		spin_lock_irqsave(&input_pool.lock, flags);
1051 		_mix_pool_bytes(&entropy, sizeof(entropy));
1052 		_mix_pool_bytes(&num, sizeof(num));
1053 		spin_unlock_irqrestore(&input_pool.lock, flags);
1054 	}
1055 
1056 	if (crng_ready())
1057 		return;
1058 
1059 	/*
1060 	 * Calculate number of bits of randomness we probably added.
1061 	 * We take into account the first, second and third-order deltas
1062 	 * in order to make our estimate.
1063 	 */
1064 	delta = now - READ_ONCE(state->last_time);
1065 	WRITE_ONCE(state->last_time, now);
1066 
1067 	delta2 = delta - READ_ONCE(state->last_delta);
1068 	WRITE_ONCE(state->last_delta, delta);
1069 
1070 	delta3 = delta2 - READ_ONCE(state->last_delta2);
1071 	WRITE_ONCE(state->last_delta2, delta2);
1072 
1073 	if (delta < 0)
1074 		delta = -delta;
1075 	if (delta2 < 0)
1076 		delta2 = -delta2;
1077 	if (delta3 < 0)
1078 		delta3 = -delta3;
1079 	if (delta > delta2)
1080 		delta = delta2;
1081 	if (delta > delta3)
1082 		delta = delta3;
1083 
1084 	/*
1085 	 * delta is now minimum absolute delta. Round down by 1 bit
1086 	 * on general principles, and limit entropy estimate to 11 bits.
1087 	 */
1088 	bits = min(fls(delta >> 1), 11);
1089 
1090 	/*
1091 	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1092 	 * will run after this, which uses a different crediting scheme of 1 bit
1093 	 * per every 64 interrupts. In order to let that function do accounting
1094 	 * close to the one in this function, we credit a full 64/64 bit per bit,
1095 	 * and then subtract one to account for the extra one added.
1096 	 */
1097 	if (in_hardirq())
1098 		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1099 	else
1100 		_credit_init_bits(bits);
1101 }
1102 
add_input_randomness(unsigned int type,unsigned int code,unsigned int value)1103 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1104 {
1105 	static unsigned char last_value;
1106 	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1107 
1108 	/* Ignore autorepeat and the like. */
1109 	if (value == last_value)
1110 		return;
1111 
1112 	last_value = value;
1113 	add_timer_randomness(&input_timer_state,
1114 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1115 }
1116 EXPORT_SYMBOL_GPL(add_input_randomness);
1117 
1118 #ifdef CONFIG_BLOCK
add_disk_randomness(struct gendisk * disk)1119 void add_disk_randomness(struct gendisk *disk)
1120 {
1121 	if (!disk || !disk->random)
1122 		return;
1123 	/* First major is 1, so we get >= 0x200 here. */
1124 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1125 }
1126 EXPORT_SYMBOL_GPL(add_disk_randomness);
1127 
rand_initialize_disk(struct gendisk * disk)1128 void __cold rand_initialize_disk(struct gendisk *disk)
1129 {
1130 	struct timer_rand_state *state;
1131 
1132 	/*
1133 	 * If kzalloc returns null, we just won't use that entropy
1134 	 * source.
1135 	 */
1136 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1137 	if (state) {
1138 		state->last_time = INITIAL_JIFFIES;
1139 		disk->random = state;
1140 	}
1141 }
1142 #endif
1143 
1144 /*
1145  * Each time the timer fires, we expect that we got an unpredictable
1146  * jump in the cycle counter. Even if the timer is running on another
1147  * CPU, the timer activity will be touching the stack of the CPU that is
1148  * generating entropy..
1149  *
1150  * Note that we don't re-arm the timer in the timer itself - we are
1151  * happy to be scheduled away, since that just makes the load more
1152  * complex, but we do not want the timer to keep ticking unless the
1153  * entropy loop is running.
1154  *
1155  * So the re-arming always happens in the entropy loop itself.
1156  */
entropy_timer(struct timer_list * t)1157 static void __cold entropy_timer(struct timer_list *t)
1158 {
1159 	credit_init_bits(1);
1160 }
1161 
1162 /*
1163  * If we have an actual cycle counter, see if we can
1164  * generate enough entropy with timing noise
1165  */
try_to_generate_entropy(void)1166 static void __cold try_to_generate_entropy(void)
1167 {
1168 	struct {
1169 		unsigned long entropy;
1170 		struct timer_list timer;
1171 	} stack;
1172 
1173 	stack.entropy = random_get_entropy();
1174 
1175 	/* Slow counter - or none. Don't even bother */
1176 	if (stack.entropy == random_get_entropy())
1177 		return;
1178 
1179 	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1180 	while (!crng_ready() && !signal_pending(current)) {
1181 		if (!timer_pending(&stack.timer))
1182 			mod_timer(&stack.timer, jiffies + 1);
1183 		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1184 		schedule();
1185 		stack.entropy = random_get_entropy();
1186 	}
1187 
1188 	del_timer_sync(&stack.timer);
1189 	destroy_timer_on_stack(&stack.timer);
1190 	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1191 }
1192 
1193 
1194 /**********************************************************************
1195  *
1196  * Userspace reader/writer interfaces.
1197  *
1198  * getrandom(2) is the primary modern interface into the RNG and should
1199  * be used in preference to anything else.
1200  *
1201  * Reading from /dev/random has the same functionality as calling
1202  * getrandom(2) with flags=0. In earlier versions, however, it had
1203  * vastly different semantics and should therefore be avoided, to
1204  * prevent backwards compatibility issues.
1205  *
1206  * Reading from /dev/urandom has the same functionality as calling
1207  * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1208  * waiting for the RNG to be ready, it should not be used.
1209  *
1210  * Writing to either /dev/random or /dev/urandom adds entropy to
1211  * the input pool but does not credit it.
1212  *
1213  * Polling on /dev/random indicates when the RNG is initialized, on
1214  * the read side, and when it wants new entropy, on the write side.
1215  *
1216  * Both /dev/random and /dev/urandom have the same set of ioctls for
1217  * adding entropy, getting the entropy count, zeroing the count, and
1218  * reseeding the crng.
1219  *
1220  **********************************************************************/
1221 
SYSCALL_DEFINE3(getrandom,char __user *,ubuf,size_t,len,unsigned int,flags)1222 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1223 {
1224 	struct iov_iter iter;
1225 	struct iovec iov;
1226 	int ret;
1227 
1228 	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1229 		return -EINVAL;
1230 
1231 	/*
1232 	 * Requesting insecure and blocking randomness at the same time makes
1233 	 * no sense.
1234 	 */
1235 	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1236 		return -EINVAL;
1237 
1238 	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1239 		if (flags & GRND_NONBLOCK)
1240 			return -EAGAIN;
1241 		ret = wait_for_random_bytes();
1242 		if (unlikely(ret))
1243 			return ret;
1244 	}
1245 
1246 	ret = import_single_range(READ, ubuf, len, &iov, &iter);
1247 	if (unlikely(ret))
1248 		return ret;
1249 	return get_random_bytes_user(&iter);
1250 }
1251 
random_poll(struct file * file,poll_table * wait)1252 static __poll_t random_poll(struct file *file, poll_table *wait)
1253 {
1254 	poll_wait(file, &crng_init_wait, wait);
1255 	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1256 }
1257 
write_pool_user(struct iov_iter * iter)1258 static ssize_t write_pool_user(struct iov_iter *iter)
1259 {
1260 	u8 block[BLAKE2S_BLOCK_SIZE];
1261 	ssize_t ret = 0;
1262 	size_t copied;
1263 
1264 	if (unlikely(!iov_iter_count(iter)))
1265 		return 0;
1266 
1267 	for (;;) {
1268 		copied = copy_from_iter(block, sizeof(block), iter);
1269 		ret += copied;
1270 		mix_pool_bytes(block, copied);
1271 		if (!iov_iter_count(iter) || copied != sizeof(block))
1272 			break;
1273 
1274 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1275 		if (ret % PAGE_SIZE == 0) {
1276 			if (signal_pending(current))
1277 				break;
1278 			cond_resched();
1279 		}
1280 	}
1281 
1282 	memzero_explicit(block, sizeof(block));
1283 	return ret ? ret : -EFAULT;
1284 }
1285 
random_write_iter(struct kiocb * kiocb,struct iov_iter * iter)1286 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1287 {
1288 	return write_pool_user(iter);
1289 }
1290 
urandom_read_iter(struct kiocb * kiocb,struct iov_iter * iter)1291 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1292 {
1293 	static int maxwarn = 10;
1294 
1295 	if (!crng_ready()) {
1296 		if (!ratelimit_disable && maxwarn <= 0)
1297 			++urandom_warning.missed;
1298 		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1299 			--maxwarn;
1300 			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1301 				  current->comm, iov_iter_count(iter));
1302 		}
1303 	}
1304 
1305 	return get_random_bytes_user(iter);
1306 }
1307 
random_read_iter(struct kiocb * kiocb,struct iov_iter * iter)1308 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1309 {
1310 	int ret;
1311 
1312 	if (!crng_ready() &&
1313 	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1314 	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1315 		return -EAGAIN;
1316 
1317 	ret = wait_for_random_bytes();
1318 	if (ret != 0)
1319 		return ret;
1320 	return get_random_bytes_user(iter);
1321 }
1322 
random_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1323 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1324 {
1325 	int __user *p = (int __user *)arg;
1326 	int ent_count;
1327 
1328 	switch (cmd) {
1329 	case RNDGETENTCNT:
1330 		/* Inherently racy, no point locking. */
1331 		if (put_user(input_pool.init_bits, p))
1332 			return -EFAULT;
1333 		return 0;
1334 	case RNDADDTOENTCNT:
1335 		if (!capable(CAP_SYS_ADMIN))
1336 			return -EPERM;
1337 		if (get_user(ent_count, p))
1338 			return -EFAULT;
1339 		if (ent_count < 0)
1340 			return -EINVAL;
1341 		credit_init_bits(ent_count);
1342 		return 0;
1343 	case RNDADDENTROPY: {
1344 		struct iov_iter iter;
1345 		struct iovec iov;
1346 		ssize_t ret;
1347 		int len;
1348 
1349 		if (!capable(CAP_SYS_ADMIN))
1350 			return -EPERM;
1351 		if (get_user(ent_count, p++))
1352 			return -EFAULT;
1353 		if (ent_count < 0)
1354 			return -EINVAL;
1355 		if (get_user(len, p++))
1356 			return -EFAULT;
1357 		ret = import_single_range(WRITE, p, len, &iov, &iter);
1358 		if (unlikely(ret))
1359 			return ret;
1360 		ret = write_pool_user(&iter);
1361 		if (unlikely(ret < 0))
1362 			return ret;
1363 		/* Since we're crediting, enforce that it was all written into the pool. */
1364 		if (unlikely(ret != len))
1365 			return -EFAULT;
1366 		credit_init_bits(ent_count);
1367 		return 0;
1368 	}
1369 	case RNDZAPENTCNT:
1370 	case RNDCLEARPOOL:
1371 		/* No longer has any effect. */
1372 		if (!capable(CAP_SYS_ADMIN))
1373 			return -EPERM;
1374 		return 0;
1375 	case RNDRESEEDCRNG:
1376 		if (!capable(CAP_SYS_ADMIN))
1377 			return -EPERM;
1378 		if (!crng_ready())
1379 			return -ENODATA;
1380 		crng_reseed();
1381 		return 0;
1382 	default:
1383 		return -EINVAL;
1384 	}
1385 }
1386 
random_fasync(int fd,struct file * filp,int on)1387 static int random_fasync(int fd, struct file *filp, int on)
1388 {
1389 	return fasync_helper(fd, filp, on, &fasync);
1390 }
1391 
1392 const struct file_operations random_fops = {
1393 	.read_iter = random_read_iter,
1394 	.write_iter = random_write_iter,
1395 	.poll = random_poll,
1396 	.unlocked_ioctl = random_ioctl,
1397 	.compat_ioctl = compat_ptr_ioctl,
1398 	.fasync = random_fasync,
1399 	.llseek = noop_llseek,
1400 	.splice_read = generic_file_splice_read,
1401 	.splice_write = iter_file_splice_write,
1402 };
1403 
1404 const struct file_operations urandom_fops = {
1405 	.read_iter = urandom_read_iter,
1406 	.write_iter = random_write_iter,
1407 	.unlocked_ioctl = random_ioctl,
1408 	.compat_ioctl = compat_ptr_ioctl,
1409 	.fasync = random_fasync,
1410 	.llseek = noop_llseek,
1411 	.splice_read = generic_file_splice_read,
1412 	.splice_write = iter_file_splice_write,
1413 };
1414 
1415 
1416 /********************************************************************
1417  *
1418  * Sysctl interface.
1419  *
1420  * These are partly unused legacy knobs with dummy values to not break
1421  * userspace and partly still useful things. They are usually accessible
1422  * in /proc/sys/kernel/random/ and are as follows:
1423  *
1424  * - boot_id - a UUID representing the current boot.
1425  *
1426  * - uuid - a random UUID, different each time the file is read.
1427  *
1428  * - poolsize - the number of bits of entropy that the input pool can
1429  *   hold, tied to the POOL_BITS constant.
1430  *
1431  * - entropy_avail - the number of bits of entropy currently in the
1432  *   input pool. Always <= poolsize.
1433  *
1434  * - write_wakeup_threshold - the amount of entropy in the input pool
1435  *   below which write polls to /dev/random will unblock, requesting
1436  *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1437  *   to avoid breaking old userspaces, but writing to it does not
1438  *   change any behavior of the RNG.
1439  *
1440  * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1441  *   It is writable to avoid breaking old userspaces, but writing
1442  *   to it does not change any behavior of the RNG.
1443  *
1444  ********************************************************************/
1445 
1446 #ifdef CONFIG_SYSCTL
1447 
1448 #include <linux/sysctl.h>
1449 
1450 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1451 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1452 static int sysctl_poolsize = POOL_BITS;
1453 static u8 sysctl_bootid[UUID_SIZE];
1454 
1455 /*
1456  * This function is used to return both the bootid UUID, and random
1457  * UUID. The difference is in whether table->data is NULL; if it is,
1458  * then a new UUID is generated and returned to the user.
1459  */
proc_do_uuid(struct ctl_table * table,int write,void * buf,size_t * lenp,loff_t * ppos)1460 static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1461 			size_t *lenp, loff_t *ppos)
1462 {
1463 	u8 tmp_uuid[UUID_SIZE], *uuid;
1464 	char uuid_string[UUID_STRING_LEN + 1];
1465 	struct ctl_table fake_table = {
1466 		.data = uuid_string,
1467 		.maxlen = UUID_STRING_LEN
1468 	};
1469 
1470 	if (write)
1471 		return -EPERM;
1472 
1473 	uuid = table->data;
1474 	if (!uuid) {
1475 		uuid = tmp_uuid;
1476 		generate_random_uuid(uuid);
1477 	} else {
1478 		static DEFINE_SPINLOCK(bootid_spinlock);
1479 
1480 		spin_lock(&bootid_spinlock);
1481 		if (!uuid[8])
1482 			generate_random_uuid(uuid);
1483 		spin_unlock(&bootid_spinlock);
1484 	}
1485 
1486 	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1487 	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1488 }
1489 
1490 /* The same as proc_dointvec, but writes don't change anything. */
proc_do_rointvec(struct ctl_table * table,int write,void * buf,size_t * lenp,loff_t * ppos)1491 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1492 			    size_t *lenp, loff_t *ppos)
1493 {
1494 	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1495 }
1496 
1497 extern struct ctl_table random_table[];
1498 struct ctl_table random_table[] = {
1499 	{
1500 		.procname	= "poolsize",
1501 		.data		= &sysctl_poolsize,
1502 		.maxlen		= sizeof(int),
1503 		.mode		= 0444,
1504 		.proc_handler	= proc_dointvec,
1505 	},
1506 	{
1507 		.procname	= "entropy_avail",
1508 		.data		= &input_pool.init_bits,
1509 		.maxlen		= sizeof(int),
1510 		.mode		= 0444,
1511 		.proc_handler	= proc_dointvec,
1512 	},
1513 	{
1514 		.procname	= "write_wakeup_threshold",
1515 		.data		= &sysctl_random_write_wakeup_bits,
1516 		.maxlen		= sizeof(int),
1517 		.mode		= 0644,
1518 		.proc_handler	= proc_do_rointvec,
1519 	},
1520 	{
1521 		.procname	= "urandom_min_reseed_secs",
1522 		.data		= &sysctl_random_min_urandom_seed,
1523 		.maxlen		= sizeof(int),
1524 		.mode		= 0644,
1525 		.proc_handler	= proc_do_rointvec,
1526 	},
1527 	{
1528 		.procname	= "boot_id",
1529 		.data		= &sysctl_bootid,
1530 		.mode		= 0444,
1531 		.proc_handler	= proc_do_uuid,
1532 	},
1533 	{
1534 		.procname	= "uuid",
1535 		.mode		= 0444,
1536 		.proc_handler	= proc_do_uuid,
1537 	},
1538 	{ }
1539 };
1540 #endif	/* CONFIG_SYSCTL */
1541 
1542 /*
1543  * Android KABI fixups
1544  *
1545  * Add back two functions that were being used by out-of-tree drivers.
1546  *
1547  * Yes, horrible hack, the things we do for FIPS "compliance"...
1548  */
1549 static DEFINE_SPINLOCK(random_ready_list_lock);
1550 static LIST_HEAD(random_ready_list);
1551 
add_random_ready_callback(struct random_ready_callback * rdy)1552 int add_random_ready_callback(struct random_ready_callback *rdy)
1553 {
1554 	struct module *owner;
1555 	unsigned long flags;
1556 	int err = -EALREADY;
1557 
1558 	if (crng_ready())
1559 		return err;
1560 
1561 	owner = rdy->owner;
1562 	if (!try_module_get(owner))
1563 		return -ENOENT;
1564 
1565 	spin_lock_irqsave(&random_ready_list_lock, flags);
1566 	if (crng_ready())
1567 		goto out;
1568 
1569 	owner = NULL;
1570 
1571 	list_add(&rdy->list, &random_ready_list);
1572 	err = 0;
1573 
1574 out:
1575 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1576 
1577 	module_put(owner);
1578 
1579 	return err;
1580 }
1581 EXPORT_SYMBOL(add_random_ready_callback);
1582 
del_random_ready_callback(struct random_ready_callback * rdy)1583 void del_random_ready_callback(struct random_ready_callback *rdy)
1584 {
1585 	unsigned long flags;
1586 	struct module *owner = NULL;
1587 
1588 	spin_lock_irqsave(&random_ready_list_lock, flags);
1589 	if (!list_empty(&rdy->list)) {
1590 		list_del_init(&rdy->list);
1591 		owner = rdy->owner;
1592 	}
1593 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1594 
1595 	module_put(owner);
1596 }
1597 EXPORT_SYMBOL(del_random_ready_callback);
1598 
process_oldschool_random_ready_list(void)1599 static void process_oldschool_random_ready_list(void)
1600 {
1601 	unsigned long flags;
1602 	struct random_ready_callback *rdy, *tmp;
1603 
1604 	spin_lock_irqsave(&random_ready_list_lock, flags);
1605 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
1606 		struct module *owner = rdy->owner;
1607 
1608 		list_del_init(&rdy->list);
1609 		rdy->func(rdy);
1610 		module_put(owner);
1611 	}
1612 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1613 }
1614