• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10 
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16 
17 struct workqueue_struct *afs_async_calls;
18 
19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
21 static void afs_process_async_call(struct work_struct *);
22 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
24 static int afs_deliver_cm_op_id(struct afs_call *);
25 
26 /* asynchronous incoming call initial processing */
27 static const struct afs_call_type afs_RXCMxxxx = {
28 	.name		= "CB.xxxx",
29 	.deliver	= afs_deliver_cm_op_id,
30 };
31 
32 /*
33  * open an RxRPC socket and bind it to be a server for callback notifications
34  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
35  */
afs_open_socket(struct afs_net * net)36 int afs_open_socket(struct afs_net *net)
37 {
38 	struct sockaddr_rxrpc srx;
39 	struct socket *socket;
40 	int ret;
41 
42 	_enter("");
43 
44 	ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
45 	if (ret < 0)
46 		goto error_1;
47 
48 	socket->sk->sk_allocation = GFP_NOFS;
49 
50 	/* bind the callback manager's address to make this a server socket */
51 	memset(&srx, 0, sizeof(srx));
52 	srx.srx_family			= AF_RXRPC;
53 	srx.srx_service			= CM_SERVICE;
54 	srx.transport_type		= SOCK_DGRAM;
55 	srx.transport_len		= sizeof(srx.transport.sin6);
56 	srx.transport.sin6.sin6_family	= AF_INET6;
57 	srx.transport.sin6.sin6_port	= htons(AFS_CM_PORT);
58 
59 	ret = rxrpc_sock_set_min_security_level(socket->sk,
60 						RXRPC_SECURITY_ENCRYPT);
61 	if (ret < 0)
62 		goto error_2;
63 
64 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
65 	if (ret == -EADDRINUSE) {
66 		srx.transport.sin6.sin6_port = 0;
67 		ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
68 	}
69 	if (ret < 0)
70 		goto error_2;
71 
72 	srx.srx_service = YFS_CM_SERVICE;
73 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
74 	if (ret < 0)
75 		goto error_2;
76 
77 	/* Ideally, we'd turn on service upgrade here, but we can't because
78 	 * OpenAFS is buggy and leaks the userStatus field from packet to
79 	 * packet and between FS packets and CB packets - so if we try to do an
80 	 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
81 	 * it sends back to us.
82 	 */
83 
84 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
85 					   afs_rx_discard_new_call);
86 
87 	ret = kernel_listen(socket, INT_MAX);
88 	if (ret < 0)
89 		goto error_2;
90 
91 	net->socket = socket;
92 	afs_charge_preallocation(&net->charge_preallocation_work);
93 	_leave(" = 0");
94 	return 0;
95 
96 error_2:
97 	sock_release(socket);
98 error_1:
99 	_leave(" = %d", ret);
100 	return ret;
101 }
102 
103 /*
104  * close the RxRPC socket AFS was using
105  */
afs_close_socket(struct afs_net * net)106 void afs_close_socket(struct afs_net *net)
107 {
108 	_enter("");
109 
110 	kernel_listen(net->socket, 0);
111 	flush_workqueue(afs_async_calls);
112 
113 	if (net->spare_incoming_call) {
114 		afs_put_call(net->spare_incoming_call);
115 		net->spare_incoming_call = NULL;
116 	}
117 
118 	_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
119 	wait_var_event(&net->nr_outstanding_calls,
120 		       !atomic_read(&net->nr_outstanding_calls));
121 	_debug("no outstanding calls");
122 
123 	kernel_sock_shutdown(net->socket, SHUT_RDWR);
124 	flush_workqueue(afs_async_calls);
125 	sock_release(net->socket);
126 
127 	_debug("dework");
128 	_leave("");
129 }
130 
131 /*
132  * Allocate a call.
133  */
afs_alloc_call(struct afs_net * net,const struct afs_call_type * type,gfp_t gfp)134 static struct afs_call *afs_alloc_call(struct afs_net *net,
135 				       const struct afs_call_type *type,
136 				       gfp_t gfp)
137 {
138 	struct afs_call *call;
139 	int o;
140 
141 	call = kzalloc(sizeof(*call), gfp);
142 	if (!call)
143 		return NULL;
144 
145 	call->type = type;
146 	call->net = net;
147 	call->debug_id = atomic_inc_return(&rxrpc_debug_id);
148 	refcount_set(&call->ref, 1);
149 	INIT_WORK(&call->async_work, afs_process_async_call);
150 	init_waitqueue_head(&call->waitq);
151 	spin_lock_init(&call->state_lock);
152 	call->iter = &call->def_iter;
153 
154 	o = atomic_inc_return(&net->nr_outstanding_calls);
155 	trace_afs_call(call, afs_call_trace_alloc, 1, o,
156 		       __builtin_return_address(0));
157 	return call;
158 }
159 
160 /*
161  * Dispose of a reference on a call.
162  */
afs_put_call(struct afs_call * call)163 void afs_put_call(struct afs_call *call)
164 {
165 	struct afs_net *net = call->net;
166 	bool zero;
167 	int r, o;
168 
169 	zero = __refcount_dec_and_test(&call->ref, &r);
170 	o = atomic_read(&net->nr_outstanding_calls);
171 	trace_afs_call(call, afs_call_trace_put, r - 1, o,
172 		       __builtin_return_address(0));
173 
174 	if (zero) {
175 		ASSERT(!work_pending(&call->async_work));
176 		ASSERT(call->type->name != NULL);
177 
178 		if (call->rxcall) {
179 			rxrpc_kernel_end_call(net->socket, call->rxcall);
180 			call->rxcall = NULL;
181 		}
182 		if (call->type->destructor)
183 			call->type->destructor(call);
184 
185 		afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
186 		afs_put_addrlist(call->alist);
187 		kfree(call->request);
188 
189 		trace_afs_call(call, afs_call_trace_free, 0, o,
190 			       __builtin_return_address(0));
191 		kfree(call);
192 
193 		o = atomic_dec_return(&net->nr_outstanding_calls);
194 		if (o == 0)
195 			wake_up_var(&net->nr_outstanding_calls);
196 	}
197 }
198 
afs_get_call(struct afs_call * call,enum afs_call_trace why)199 static struct afs_call *afs_get_call(struct afs_call *call,
200 				     enum afs_call_trace why)
201 {
202 	int r;
203 
204 	__refcount_inc(&call->ref, &r);
205 
206 	trace_afs_call(call, why, r + 1,
207 		       atomic_read(&call->net->nr_outstanding_calls),
208 		       __builtin_return_address(0));
209 	return call;
210 }
211 
212 /*
213  * Queue the call for actual work.
214  */
afs_queue_call_work(struct afs_call * call)215 static void afs_queue_call_work(struct afs_call *call)
216 {
217 	if (call->type->work) {
218 		INIT_WORK(&call->work, call->type->work);
219 
220 		afs_get_call(call, afs_call_trace_work);
221 		if (!queue_work(afs_wq, &call->work))
222 			afs_put_call(call);
223 	}
224 }
225 
226 /*
227  * allocate a call with flat request and reply buffers
228  */
afs_alloc_flat_call(struct afs_net * net,const struct afs_call_type * type,size_t request_size,size_t reply_max)229 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
230 				     const struct afs_call_type *type,
231 				     size_t request_size, size_t reply_max)
232 {
233 	struct afs_call *call;
234 
235 	call = afs_alloc_call(net, type, GFP_NOFS);
236 	if (!call)
237 		goto nomem_call;
238 
239 	if (request_size) {
240 		call->request_size = request_size;
241 		call->request = kmalloc(request_size, GFP_NOFS);
242 		if (!call->request)
243 			goto nomem_free;
244 	}
245 
246 	if (reply_max) {
247 		call->reply_max = reply_max;
248 		call->buffer = kmalloc(reply_max, GFP_NOFS);
249 		if (!call->buffer)
250 			goto nomem_free;
251 	}
252 
253 	afs_extract_to_buf(call, call->reply_max);
254 	call->operation_ID = type->op;
255 	init_waitqueue_head(&call->waitq);
256 	return call;
257 
258 nomem_free:
259 	afs_put_call(call);
260 nomem_call:
261 	return NULL;
262 }
263 
264 /*
265  * clean up a call with flat buffer
266  */
afs_flat_call_destructor(struct afs_call * call)267 void afs_flat_call_destructor(struct afs_call *call)
268 {
269 	_enter("");
270 
271 	kfree(call->request);
272 	call->request = NULL;
273 	kfree(call->buffer);
274 	call->buffer = NULL;
275 }
276 
277 /*
278  * Advance the AFS call state when the RxRPC call ends the transmit phase.
279  */
afs_notify_end_request_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)280 static void afs_notify_end_request_tx(struct sock *sock,
281 				      struct rxrpc_call *rxcall,
282 				      unsigned long call_user_ID)
283 {
284 	struct afs_call *call = (struct afs_call *)call_user_ID;
285 
286 	afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
287 }
288 
289 /*
290  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
291  * error is stored into the call struct, which the caller must check for.
292  */
afs_make_call(struct afs_addr_cursor * ac,struct afs_call * call,gfp_t gfp)293 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
294 {
295 	struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
296 	struct rxrpc_call *rxcall;
297 	struct msghdr msg;
298 	struct kvec iov[1];
299 	size_t len;
300 	s64 tx_total_len;
301 	int ret;
302 
303 	_enter(",{%pISp},", &srx->transport);
304 
305 	ASSERT(call->type != NULL);
306 	ASSERT(call->type->name != NULL);
307 
308 	_debug("____MAKE %p{%s,%x} [%d]____",
309 	       call, call->type->name, key_serial(call->key),
310 	       atomic_read(&call->net->nr_outstanding_calls));
311 
312 	call->addr_ix = ac->index;
313 	call->alist = afs_get_addrlist(ac->alist);
314 
315 	/* Work out the length we're going to transmit.  This is awkward for
316 	 * calls such as FS.StoreData where there's an extra injection of data
317 	 * after the initial fixed part.
318 	 */
319 	tx_total_len = call->request_size;
320 	if (call->write_iter)
321 		tx_total_len += iov_iter_count(call->write_iter);
322 
323 	/* If the call is going to be asynchronous, we need an extra ref for
324 	 * the call to hold itself so the caller need not hang on to its ref.
325 	 */
326 	if (call->async) {
327 		afs_get_call(call, afs_call_trace_get);
328 		call->drop_ref = true;
329 	}
330 
331 	/* create a call */
332 	rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
333 					 (unsigned long)call,
334 					 tx_total_len, gfp,
335 					 (call->async ?
336 					  afs_wake_up_async_call :
337 					  afs_wake_up_call_waiter),
338 					 call->upgrade,
339 					 (call->intr ? RXRPC_PREINTERRUPTIBLE :
340 					  RXRPC_UNINTERRUPTIBLE),
341 					 call->debug_id);
342 	if (IS_ERR(rxcall)) {
343 		ret = PTR_ERR(rxcall);
344 		call->error = ret;
345 		goto error_kill_call;
346 	}
347 
348 	call->rxcall = rxcall;
349 
350 	if (call->max_lifespan)
351 		rxrpc_kernel_set_max_life(call->net->socket, rxcall,
352 					  call->max_lifespan);
353 	call->issue_time = ktime_get_real();
354 
355 	/* send the request */
356 	iov[0].iov_base	= call->request;
357 	iov[0].iov_len	= call->request_size;
358 
359 	msg.msg_name		= NULL;
360 	msg.msg_namelen		= 0;
361 	iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
362 	msg.msg_control		= NULL;
363 	msg.msg_controllen	= 0;
364 	msg.msg_flags		= MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
365 
366 	ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
367 				     &msg, call->request_size,
368 				     afs_notify_end_request_tx);
369 	if (ret < 0)
370 		goto error_do_abort;
371 
372 	if (call->write_iter) {
373 		msg.msg_iter = *call->write_iter;
374 		msg.msg_flags &= ~MSG_MORE;
375 		trace_afs_send_data(call, &msg);
376 
377 		ret = rxrpc_kernel_send_data(call->net->socket,
378 					     call->rxcall, &msg,
379 					     iov_iter_count(&msg.msg_iter),
380 					     afs_notify_end_request_tx);
381 		*call->write_iter = msg.msg_iter;
382 
383 		trace_afs_sent_data(call, &msg, ret);
384 		if (ret < 0)
385 			goto error_do_abort;
386 	}
387 
388 	/* Note that at this point, we may have received the reply or an abort
389 	 * - and an asynchronous call may already have completed.
390 	 *
391 	 * afs_wait_for_call_to_complete(call, ac)
392 	 * must be called to synchronously clean up.
393 	 */
394 	return;
395 
396 error_do_abort:
397 	if (ret != -ECONNABORTED) {
398 		rxrpc_kernel_abort_call(call->net->socket, rxcall,
399 					RX_USER_ABORT, ret, "KSD");
400 	} else {
401 		len = 0;
402 		iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
403 		rxrpc_kernel_recv_data(call->net->socket, rxcall,
404 				       &msg.msg_iter, &len, false,
405 				       &call->abort_code, &call->service_id);
406 		ac->abort_code = call->abort_code;
407 		ac->responded = true;
408 	}
409 	call->error = ret;
410 	trace_afs_call_done(call);
411 error_kill_call:
412 	if (call->type->done)
413 		call->type->done(call);
414 
415 	/* We need to dispose of the extra ref we grabbed for an async call.
416 	 * The call, however, might be queued on afs_async_calls and we need to
417 	 * make sure we don't get any more notifications that might requeue it.
418 	 */
419 	if (call->rxcall) {
420 		rxrpc_kernel_end_call(call->net->socket, call->rxcall);
421 		call->rxcall = NULL;
422 	}
423 	if (call->async) {
424 		if (cancel_work_sync(&call->async_work))
425 			afs_put_call(call);
426 		afs_set_call_complete(call, ret, 0);
427 	}
428 
429 	ac->error = ret;
430 	call->state = AFS_CALL_COMPLETE;
431 	_leave(" = %d", ret);
432 }
433 
434 /*
435  * Log remote abort codes that indicate that we have a protocol disagreement
436  * with the server.
437  */
afs_log_error(struct afs_call * call,s32 remote_abort)438 static void afs_log_error(struct afs_call *call, s32 remote_abort)
439 {
440 	static int max = 0;
441 	const char *msg;
442 	int m;
443 
444 	switch (remote_abort) {
445 	case RX_EOF:		 msg = "unexpected EOF";	break;
446 	case RXGEN_CC_MARSHAL:	 msg = "client marshalling";	break;
447 	case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling";	break;
448 	case RXGEN_SS_MARSHAL:	 msg = "server marshalling";	break;
449 	case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling";	break;
450 	case RXGEN_DECODE:	 msg = "opcode decode";		break;
451 	case RXGEN_SS_XDRFREE:	 msg = "server XDR cleanup";	break;
452 	case RXGEN_CC_XDRFREE:	 msg = "client XDR cleanup";	break;
453 	case -32:		 msg = "insufficient data";	break;
454 	default:
455 		return;
456 	}
457 
458 	m = max;
459 	if (m < 3) {
460 		max = m + 1;
461 		pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
462 			  msg, call->type->name,
463 			  &call->alist->addrs[call->addr_ix].transport);
464 	}
465 }
466 
467 /*
468  * deliver messages to a call
469  */
afs_deliver_to_call(struct afs_call * call)470 static void afs_deliver_to_call(struct afs_call *call)
471 {
472 	enum afs_call_state state;
473 	size_t len;
474 	u32 abort_code, remote_abort = 0;
475 	int ret;
476 
477 	_enter("%s", call->type->name);
478 
479 	while (state = READ_ONCE(call->state),
480 	       state == AFS_CALL_CL_AWAIT_REPLY ||
481 	       state == AFS_CALL_SV_AWAIT_OP_ID ||
482 	       state == AFS_CALL_SV_AWAIT_REQUEST ||
483 	       state == AFS_CALL_SV_AWAIT_ACK
484 	       ) {
485 		if (state == AFS_CALL_SV_AWAIT_ACK) {
486 			len = 0;
487 			iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0);
488 			ret = rxrpc_kernel_recv_data(call->net->socket,
489 						     call->rxcall, &call->def_iter,
490 						     &len, false, &remote_abort,
491 						     &call->service_id);
492 			trace_afs_receive_data(call, &call->def_iter, false, ret);
493 
494 			if (ret == -EINPROGRESS || ret == -EAGAIN)
495 				return;
496 			if (ret < 0 || ret == 1) {
497 				if (ret == 1)
498 					ret = 0;
499 				goto call_complete;
500 			}
501 			return;
502 		}
503 
504 		ret = call->type->deliver(call);
505 		state = READ_ONCE(call->state);
506 		if (ret == 0 && call->unmarshalling_error)
507 			ret = -EBADMSG;
508 		switch (ret) {
509 		case 0:
510 			afs_queue_call_work(call);
511 			if (state == AFS_CALL_CL_PROC_REPLY) {
512 				if (call->op)
513 					set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
514 						&call->op->server->flags);
515 				goto call_complete;
516 			}
517 			ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
518 			goto done;
519 		case -EINPROGRESS:
520 		case -EAGAIN:
521 			goto out;
522 		case -ECONNABORTED:
523 			ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
524 			afs_log_error(call, call->abort_code);
525 			goto done;
526 		case -ENOTSUPP:
527 			abort_code = RXGEN_OPCODE;
528 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
529 						abort_code, ret, "KIV");
530 			goto local_abort;
531 		case -EIO:
532 			pr_err("kAFS: Call %u in bad state %u\n",
533 			       call->debug_id, state);
534 			fallthrough;
535 		case -ENODATA:
536 		case -EBADMSG:
537 		case -EMSGSIZE:
538 		case -ENOMEM:
539 		case -EFAULT:
540 			abort_code = RXGEN_CC_UNMARSHAL;
541 			if (state != AFS_CALL_CL_AWAIT_REPLY)
542 				abort_code = RXGEN_SS_UNMARSHAL;
543 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
544 						abort_code, ret, "KUM");
545 			goto local_abort;
546 		default:
547 			abort_code = RX_CALL_DEAD;
548 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
549 						abort_code, ret, "KER");
550 			goto local_abort;
551 		}
552 	}
553 
554 done:
555 	if (call->type->done)
556 		call->type->done(call);
557 out:
558 	_leave("");
559 	return;
560 
561 local_abort:
562 	abort_code = 0;
563 call_complete:
564 	afs_set_call_complete(call, ret, remote_abort);
565 	state = AFS_CALL_COMPLETE;
566 	goto done;
567 }
568 
569 /*
570  * Wait synchronously for a call to complete and clean up the call struct.
571  */
afs_wait_for_call_to_complete(struct afs_call * call,struct afs_addr_cursor * ac)572 long afs_wait_for_call_to_complete(struct afs_call *call,
573 				   struct afs_addr_cursor *ac)
574 {
575 	long ret;
576 	bool rxrpc_complete = false;
577 
578 	DECLARE_WAITQUEUE(myself, current);
579 
580 	_enter("");
581 
582 	ret = call->error;
583 	if (ret < 0)
584 		goto out;
585 
586 	add_wait_queue(&call->waitq, &myself);
587 	for (;;) {
588 		set_current_state(TASK_UNINTERRUPTIBLE);
589 
590 		/* deliver any messages that are in the queue */
591 		if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
592 		    call->need_attention) {
593 			call->need_attention = false;
594 			__set_current_state(TASK_RUNNING);
595 			afs_deliver_to_call(call);
596 			continue;
597 		}
598 
599 		if (afs_check_call_state(call, AFS_CALL_COMPLETE))
600 			break;
601 
602 		if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
603 			/* rxrpc terminated the call. */
604 			rxrpc_complete = true;
605 			break;
606 		}
607 
608 		schedule();
609 	}
610 
611 	remove_wait_queue(&call->waitq, &myself);
612 	__set_current_state(TASK_RUNNING);
613 
614 	if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
615 		if (rxrpc_complete) {
616 			afs_set_call_complete(call, call->error, call->abort_code);
617 		} else {
618 			/* Kill off the call if it's still live. */
619 			_debug("call interrupted");
620 			if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
621 						    RX_USER_ABORT, -EINTR, "KWI"))
622 				afs_set_call_complete(call, -EINTR, 0);
623 		}
624 	}
625 
626 	spin_lock_bh(&call->state_lock);
627 	ac->abort_code = call->abort_code;
628 	ac->error = call->error;
629 	spin_unlock_bh(&call->state_lock);
630 
631 	ret = ac->error;
632 	switch (ret) {
633 	case 0:
634 		ret = call->ret0;
635 		call->ret0 = 0;
636 
637 		fallthrough;
638 	case -ECONNABORTED:
639 		ac->responded = true;
640 		break;
641 	}
642 
643 out:
644 	_debug("call complete");
645 	afs_put_call(call);
646 	_leave(" = %p", (void *)ret);
647 	return ret;
648 }
649 
650 /*
651  * wake up a waiting call
652  */
afs_wake_up_call_waiter(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)653 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
654 				    unsigned long call_user_ID)
655 {
656 	struct afs_call *call = (struct afs_call *)call_user_ID;
657 
658 	call->need_attention = true;
659 	wake_up(&call->waitq);
660 }
661 
662 /*
663  * wake up an asynchronous call
664  */
afs_wake_up_async_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)665 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
666 				   unsigned long call_user_ID)
667 {
668 	struct afs_call *call = (struct afs_call *)call_user_ID;
669 	int r;
670 
671 	trace_afs_notify_call(rxcall, call);
672 	call->need_attention = true;
673 
674 	if (__refcount_inc_not_zero(&call->ref, &r)) {
675 		trace_afs_call(call, afs_call_trace_wake, r + 1,
676 			       atomic_read(&call->net->nr_outstanding_calls),
677 			       __builtin_return_address(0));
678 
679 		if (!queue_work(afs_async_calls, &call->async_work))
680 			afs_put_call(call);
681 	}
682 }
683 
684 /*
685  * Perform I/O processing on an asynchronous call.  The work item carries a ref
686  * to the call struct that we either need to release or to pass on.
687  */
afs_process_async_call(struct work_struct * work)688 static void afs_process_async_call(struct work_struct *work)
689 {
690 	struct afs_call *call = container_of(work, struct afs_call, async_work);
691 
692 	_enter("");
693 
694 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
695 		call->need_attention = false;
696 		afs_deliver_to_call(call);
697 	}
698 
699 	afs_put_call(call);
700 	_leave("");
701 }
702 
afs_rx_attach(struct rxrpc_call * rxcall,unsigned long user_call_ID)703 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
704 {
705 	struct afs_call *call = (struct afs_call *)user_call_ID;
706 
707 	call->rxcall = rxcall;
708 }
709 
710 /*
711  * Charge the incoming call preallocation.
712  */
afs_charge_preallocation(struct work_struct * work)713 void afs_charge_preallocation(struct work_struct *work)
714 {
715 	struct afs_net *net =
716 		container_of(work, struct afs_net, charge_preallocation_work);
717 	struct afs_call *call = net->spare_incoming_call;
718 
719 	for (;;) {
720 		if (!call) {
721 			call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
722 			if (!call)
723 				break;
724 
725 			call->drop_ref = true;
726 			call->async = true;
727 			call->state = AFS_CALL_SV_AWAIT_OP_ID;
728 			init_waitqueue_head(&call->waitq);
729 			afs_extract_to_tmp(call);
730 		}
731 
732 		if (rxrpc_kernel_charge_accept(net->socket,
733 					       afs_wake_up_async_call,
734 					       afs_rx_attach,
735 					       (unsigned long)call,
736 					       GFP_KERNEL,
737 					       call->debug_id) < 0)
738 			break;
739 		call = NULL;
740 	}
741 	net->spare_incoming_call = call;
742 }
743 
744 /*
745  * Discard a preallocated call when a socket is shut down.
746  */
afs_rx_discard_new_call(struct rxrpc_call * rxcall,unsigned long user_call_ID)747 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
748 				    unsigned long user_call_ID)
749 {
750 	struct afs_call *call = (struct afs_call *)user_call_ID;
751 
752 	call->rxcall = NULL;
753 	afs_put_call(call);
754 }
755 
756 /*
757  * Notification of an incoming call.
758  */
afs_rx_new_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long user_call_ID)759 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
760 			    unsigned long user_call_ID)
761 {
762 	struct afs_net *net = afs_sock2net(sk);
763 
764 	queue_work(afs_wq, &net->charge_preallocation_work);
765 }
766 
767 /*
768  * Grab the operation ID from an incoming cache manager call.  The socket
769  * buffer is discarded on error or if we don't yet have sufficient data.
770  */
afs_deliver_cm_op_id(struct afs_call * call)771 static int afs_deliver_cm_op_id(struct afs_call *call)
772 {
773 	int ret;
774 
775 	_enter("{%zu}", iov_iter_count(call->iter));
776 
777 	/* the operation ID forms the first four bytes of the request data */
778 	ret = afs_extract_data(call, true);
779 	if (ret < 0)
780 		return ret;
781 
782 	call->operation_ID = ntohl(call->tmp);
783 	afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
784 
785 	/* ask the cache manager to route the call (it'll change the call type
786 	 * if successful) */
787 	if (!afs_cm_incoming_call(call))
788 		return -ENOTSUPP;
789 
790 	trace_afs_cb_call(call);
791 
792 	/* pass responsibility for the remainer of this message off to the
793 	 * cache manager op */
794 	return call->type->deliver(call);
795 }
796 
797 /*
798  * Advance the AFS call state when an RxRPC service call ends the transmit
799  * phase.
800  */
afs_notify_end_reply_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)801 static void afs_notify_end_reply_tx(struct sock *sock,
802 				    struct rxrpc_call *rxcall,
803 				    unsigned long call_user_ID)
804 {
805 	struct afs_call *call = (struct afs_call *)call_user_ID;
806 
807 	afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
808 }
809 
810 /*
811  * send an empty reply
812  */
afs_send_empty_reply(struct afs_call * call)813 void afs_send_empty_reply(struct afs_call *call)
814 {
815 	struct afs_net *net = call->net;
816 	struct msghdr msg;
817 
818 	_enter("");
819 
820 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
821 
822 	msg.msg_name		= NULL;
823 	msg.msg_namelen		= 0;
824 	iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
825 	msg.msg_control		= NULL;
826 	msg.msg_controllen	= 0;
827 	msg.msg_flags		= 0;
828 
829 	switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
830 				       afs_notify_end_reply_tx)) {
831 	case 0:
832 		_leave(" [replied]");
833 		return;
834 
835 	case -ENOMEM:
836 		_debug("oom");
837 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
838 					RXGEN_SS_MARSHAL, -ENOMEM, "KOO");
839 		fallthrough;
840 	default:
841 		_leave(" [error]");
842 		return;
843 	}
844 }
845 
846 /*
847  * send a simple reply
848  */
afs_send_simple_reply(struct afs_call * call,const void * buf,size_t len)849 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
850 {
851 	struct afs_net *net = call->net;
852 	struct msghdr msg;
853 	struct kvec iov[1];
854 	int n;
855 
856 	_enter("");
857 
858 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
859 
860 	iov[0].iov_base		= (void *) buf;
861 	iov[0].iov_len		= len;
862 	msg.msg_name		= NULL;
863 	msg.msg_namelen		= 0;
864 	iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
865 	msg.msg_control		= NULL;
866 	msg.msg_controllen	= 0;
867 	msg.msg_flags		= 0;
868 
869 	n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
870 				   afs_notify_end_reply_tx);
871 	if (n >= 0) {
872 		/* Success */
873 		_leave(" [replied]");
874 		return;
875 	}
876 
877 	if (n == -ENOMEM) {
878 		_debug("oom");
879 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
880 					RXGEN_SS_MARSHAL, -ENOMEM, "KOO");
881 	}
882 	_leave(" [error]");
883 }
884 
885 /*
886  * Extract a piece of data from the received data socket buffers.
887  */
afs_extract_data(struct afs_call * call,bool want_more)888 int afs_extract_data(struct afs_call *call, bool want_more)
889 {
890 	struct afs_net *net = call->net;
891 	struct iov_iter *iter = call->iter;
892 	enum afs_call_state state;
893 	u32 remote_abort = 0;
894 	int ret;
895 
896 	_enter("{%s,%zu,%zu},%d",
897 	       call->type->name, call->iov_len, iov_iter_count(iter), want_more);
898 
899 	ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
900 				     &call->iov_len, want_more, &remote_abort,
901 				     &call->service_id);
902 	if (ret == 0 || ret == -EAGAIN)
903 		return ret;
904 
905 	state = READ_ONCE(call->state);
906 	if (ret == 1) {
907 		switch (state) {
908 		case AFS_CALL_CL_AWAIT_REPLY:
909 			afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
910 			break;
911 		case AFS_CALL_SV_AWAIT_REQUEST:
912 			afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
913 			break;
914 		case AFS_CALL_COMPLETE:
915 			kdebug("prem complete %d", call->error);
916 			return afs_io_error(call, afs_io_error_extract);
917 		default:
918 			break;
919 		}
920 		return 0;
921 	}
922 
923 	afs_set_call_complete(call, ret, remote_abort);
924 	return ret;
925 }
926 
927 /*
928  * Log protocol error production.
929  */
afs_protocol_error(struct afs_call * call,enum afs_eproto_cause cause)930 noinline int afs_protocol_error(struct afs_call *call,
931 				enum afs_eproto_cause cause)
932 {
933 	trace_afs_protocol_error(call, cause);
934 	if (call)
935 		call->unmarshalling_error = true;
936 	return -EBADMSG;
937 }
938