• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* AFS superblock handling
2  *
3  * Copyright (c) 2002, 2007, 2018 Red Hat, Inc. All rights reserved.
4  *
5  * This software may be freely redistributed under the terms of the
6  * GNU General Public License.
7  *
8  * You should have received a copy of the GNU General Public License
9  * along with this program; if not, write to the Free Software
10  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
11  *
12  * Authors: David Howells <dhowells@redhat.com>
13  *          David Woodhouse <dwmw2@infradead.org>
14  *
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mount.h>
20 #include <linux/init.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/fs_parser.h>
25 #include <linux/statfs.h>
26 #include <linux/sched.h>
27 #include <linux/nsproxy.h>
28 #include <linux/magic.h>
29 #include <net/net_namespace.h>
30 #include "internal.h"
31 
32 static void afs_i_init_once(void *foo);
33 static void afs_kill_super(struct super_block *sb);
34 static struct inode *afs_alloc_inode(struct super_block *sb);
35 static void afs_destroy_inode(struct inode *inode);
36 static void afs_free_inode(struct inode *inode);
37 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
38 static int afs_show_devname(struct seq_file *m, struct dentry *root);
39 static int afs_show_options(struct seq_file *m, struct dentry *root);
40 static int afs_init_fs_context(struct fs_context *fc);
41 static const struct fs_parameter_spec afs_fs_parameters[];
42 
43 struct file_system_type afs_fs_type = {
44 	.owner			= THIS_MODULE,
45 	.name			= "afs",
46 	.init_fs_context	= afs_init_fs_context,
47 	.parameters		= afs_fs_parameters,
48 	.kill_sb		= afs_kill_super,
49 	.fs_flags		= FS_RENAME_DOES_D_MOVE,
50 };
51 MODULE_ALIAS_FS("afs");
52 
53 int afs_net_id;
54 
55 static const struct super_operations afs_super_ops = {
56 	.statfs		= afs_statfs,
57 	.alloc_inode	= afs_alloc_inode,
58 	.drop_inode	= afs_drop_inode,
59 	.destroy_inode	= afs_destroy_inode,
60 	.free_inode	= afs_free_inode,
61 	.evict_inode	= afs_evict_inode,
62 	.show_devname	= afs_show_devname,
63 	.show_options	= afs_show_options,
64 };
65 
66 static struct kmem_cache *afs_inode_cachep;
67 static atomic_t afs_count_active_inodes;
68 
69 enum afs_param {
70 	Opt_autocell,
71 	Opt_dyn,
72 	Opt_flock,
73 	Opt_source,
74 };
75 
76 static const struct constant_table afs_param_flock[] = {
77 	{"local",	afs_flock_mode_local },
78 	{"openafs",	afs_flock_mode_openafs },
79 	{"strict",	afs_flock_mode_strict },
80 	{"write",	afs_flock_mode_write },
81 	{}
82 };
83 
84 static const struct fs_parameter_spec afs_fs_parameters[] = {
85 	fsparam_flag  ("autocell",	Opt_autocell),
86 	fsparam_flag  ("dyn",		Opt_dyn),
87 	fsparam_enum  ("flock",		Opt_flock, afs_param_flock),
88 	fsparam_string("source",	Opt_source),
89 	{}
90 };
91 
92 /*
93  * initialise the filesystem
94  */
afs_fs_init(void)95 int __init afs_fs_init(void)
96 {
97 	int ret;
98 
99 	_enter("");
100 
101 	/* create ourselves an inode cache */
102 	atomic_set(&afs_count_active_inodes, 0);
103 
104 	ret = -ENOMEM;
105 	afs_inode_cachep = kmem_cache_create("afs_inode_cache",
106 					     sizeof(struct afs_vnode),
107 					     0,
108 					     SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT,
109 					     afs_i_init_once);
110 	if (!afs_inode_cachep) {
111 		printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
112 		return ret;
113 	}
114 
115 	/* now export our filesystem to lesser mortals */
116 	ret = register_filesystem(&afs_fs_type);
117 	if (ret < 0) {
118 		kmem_cache_destroy(afs_inode_cachep);
119 		_leave(" = %d", ret);
120 		return ret;
121 	}
122 
123 	_leave(" = 0");
124 	return 0;
125 }
126 
127 /*
128  * clean up the filesystem
129  */
afs_fs_exit(void)130 void afs_fs_exit(void)
131 {
132 	_enter("");
133 
134 	afs_mntpt_kill_timer();
135 	unregister_filesystem(&afs_fs_type);
136 
137 	if (atomic_read(&afs_count_active_inodes) != 0) {
138 		printk("kAFS: %d active inode objects still present\n",
139 		       atomic_read(&afs_count_active_inodes));
140 		BUG();
141 	}
142 
143 	/*
144 	 * Make sure all delayed rcu free inodes are flushed before we
145 	 * destroy cache.
146 	 */
147 	rcu_barrier();
148 	kmem_cache_destroy(afs_inode_cachep);
149 	_leave("");
150 }
151 
152 /*
153  * Display the mount device name in /proc/mounts.
154  */
afs_show_devname(struct seq_file * m,struct dentry * root)155 static int afs_show_devname(struct seq_file *m, struct dentry *root)
156 {
157 	struct afs_super_info *as = AFS_FS_S(root->d_sb);
158 	struct afs_volume *volume = as->volume;
159 	struct afs_cell *cell = as->cell;
160 	const char *suf = "";
161 	char pref = '%';
162 
163 	if (as->dyn_root) {
164 		seq_puts(m, "none");
165 		return 0;
166 	}
167 
168 	switch (volume->type) {
169 	case AFSVL_RWVOL:
170 		break;
171 	case AFSVL_ROVOL:
172 		pref = '#';
173 		if (volume->type_force)
174 			suf = ".readonly";
175 		break;
176 	case AFSVL_BACKVOL:
177 		pref = '#';
178 		suf = ".backup";
179 		break;
180 	}
181 
182 	seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->name, suf);
183 	return 0;
184 }
185 
186 /*
187  * Display the mount options in /proc/mounts.
188  */
afs_show_options(struct seq_file * m,struct dentry * root)189 static int afs_show_options(struct seq_file *m, struct dentry *root)
190 {
191 	struct afs_super_info *as = AFS_FS_S(root->d_sb);
192 	const char *p = NULL;
193 
194 	if (as->dyn_root)
195 		seq_puts(m, ",dyn");
196 	if (test_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(d_inode(root))->flags))
197 		seq_puts(m, ",autocell");
198 	switch (as->flock_mode) {
199 	case afs_flock_mode_unset:	break;
200 	case afs_flock_mode_local:	p = "local";	break;
201 	case afs_flock_mode_openafs:	p = "openafs";	break;
202 	case afs_flock_mode_strict:	p = "strict";	break;
203 	case afs_flock_mode_write:	p = "write";	break;
204 	}
205 	if (p)
206 		seq_printf(m, ",flock=%s", p);
207 
208 	return 0;
209 }
210 
211 /*
212  * Parse the source name to get cell name, volume name, volume type and R/W
213  * selector.
214  *
215  * This can be one of the following:
216  *	"%[cell:]volume[.]"		R/W volume
217  *	"#[cell:]volume[.]"		R/O or R/W volume (R/O parent),
218  *					 or R/W (R/W parent) volume
219  *	"%[cell:]volume.readonly"	R/O volume
220  *	"#[cell:]volume.readonly"	R/O volume
221  *	"%[cell:]volume.backup"		Backup volume
222  *	"#[cell:]volume.backup"		Backup volume
223  */
afs_parse_source(struct fs_context * fc,struct fs_parameter * param)224 static int afs_parse_source(struct fs_context *fc, struct fs_parameter *param)
225 {
226 	struct afs_fs_context *ctx = fc->fs_private;
227 	struct afs_cell *cell;
228 	const char *cellname, *suffix, *name = param->string;
229 	int cellnamesz;
230 
231 	_enter(",%s", name);
232 
233 	if (fc->source)
234 		return invalf(fc, "kAFS: Multiple sources not supported");
235 
236 	if (!name) {
237 		printk(KERN_ERR "kAFS: no volume name specified\n");
238 		return -EINVAL;
239 	}
240 
241 	if ((name[0] != '%' && name[0] != '#') || !name[1]) {
242 		/* To use dynroot, we don't want to have to provide a source */
243 		if (strcmp(name, "none") == 0) {
244 			ctx->no_cell = true;
245 			return 0;
246 		}
247 		printk(KERN_ERR "kAFS: unparsable volume name\n");
248 		return -EINVAL;
249 	}
250 
251 	/* determine the type of volume we're looking for */
252 	if (name[0] == '%') {
253 		ctx->type = AFSVL_RWVOL;
254 		ctx->force = true;
255 	}
256 	name++;
257 
258 	/* split the cell name out if there is one */
259 	ctx->volname = strchr(name, ':');
260 	if (ctx->volname) {
261 		cellname = name;
262 		cellnamesz = ctx->volname - name;
263 		ctx->volname++;
264 	} else {
265 		ctx->volname = name;
266 		cellname = NULL;
267 		cellnamesz = 0;
268 	}
269 
270 	/* the volume type is further affected by a possible suffix */
271 	suffix = strrchr(ctx->volname, '.');
272 	if (suffix) {
273 		if (strcmp(suffix, ".readonly") == 0) {
274 			ctx->type = AFSVL_ROVOL;
275 			ctx->force = true;
276 		} else if (strcmp(suffix, ".backup") == 0) {
277 			ctx->type = AFSVL_BACKVOL;
278 			ctx->force = true;
279 		} else if (suffix[1] == 0) {
280 		} else {
281 			suffix = NULL;
282 		}
283 	}
284 
285 	ctx->volnamesz = suffix ?
286 		suffix - ctx->volname : strlen(ctx->volname);
287 
288 	_debug("cell %*.*s [%p]",
289 	       cellnamesz, cellnamesz, cellname ?: "", ctx->cell);
290 
291 	/* lookup the cell record */
292 	if (cellname) {
293 		cell = afs_lookup_cell(ctx->net, cellname, cellnamesz,
294 				       NULL, false);
295 		if (IS_ERR(cell)) {
296 			pr_err("kAFS: unable to lookup cell '%*.*s'\n",
297 			       cellnamesz, cellnamesz, cellname ?: "");
298 			return PTR_ERR(cell);
299 		}
300 		afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_parse);
301 		afs_see_cell(cell, afs_cell_trace_see_source);
302 		ctx->cell = cell;
303 	}
304 
305 	_debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
306 	       ctx->cell->name, ctx->cell,
307 	       ctx->volnamesz, ctx->volnamesz, ctx->volname,
308 	       suffix ?: "-", ctx->type, ctx->force ? " FORCE" : "");
309 
310 	fc->source = param->string;
311 	param->string = NULL;
312 	return 0;
313 }
314 
315 /*
316  * Parse a single mount parameter.
317  */
afs_parse_param(struct fs_context * fc,struct fs_parameter * param)318 static int afs_parse_param(struct fs_context *fc, struct fs_parameter *param)
319 {
320 	struct fs_parse_result result;
321 	struct afs_fs_context *ctx = fc->fs_private;
322 	int opt;
323 
324 	opt = fs_parse(fc, afs_fs_parameters, param, &result);
325 	if (opt < 0)
326 		return opt;
327 
328 	switch (opt) {
329 	case Opt_source:
330 		return afs_parse_source(fc, param);
331 
332 	case Opt_autocell:
333 		ctx->autocell = true;
334 		break;
335 
336 	case Opt_dyn:
337 		ctx->dyn_root = true;
338 		break;
339 
340 	case Opt_flock:
341 		ctx->flock_mode = result.uint_32;
342 		break;
343 
344 	default:
345 		return -EINVAL;
346 	}
347 
348 	_leave(" = 0");
349 	return 0;
350 }
351 
352 /*
353  * Validate the options, get the cell key and look up the volume.
354  */
afs_validate_fc(struct fs_context * fc)355 static int afs_validate_fc(struct fs_context *fc)
356 {
357 	struct afs_fs_context *ctx = fc->fs_private;
358 	struct afs_volume *volume;
359 	struct afs_cell *cell;
360 	struct key *key;
361 	int ret;
362 
363 	if (!ctx->dyn_root) {
364 		if (ctx->no_cell) {
365 			pr_warn("kAFS: Can only specify source 'none' with -o dyn\n");
366 			return -EINVAL;
367 		}
368 
369 		if (!ctx->cell) {
370 			pr_warn("kAFS: No cell specified\n");
371 			return -EDESTADDRREQ;
372 		}
373 
374 	reget_key:
375 		/* We try to do the mount securely. */
376 		key = afs_request_key(ctx->cell);
377 		if (IS_ERR(key))
378 			return PTR_ERR(key);
379 
380 		ctx->key = key;
381 
382 		if (ctx->volume) {
383 			afs_put_volume(ctx->net, ctx->volume,
384 				       afs_volume_trace_put_validate_fc);
385 			ctx->volume = NULL;
386 		}
387 
388 		if (test_bit(AFS_CELL_FL_CHECK_ALIAS, &ctx->cell->flags)) {
389 			ret = afs_cell_detect_alias(ctx->cell, key);
390 			if (ret < 0)
391 				return ret;
392 			if (ret == 1) {
393 				_debug("switch to alias");
394 				key_put(ctx->key);
395 				ctx->key = NULL;
396 				cell = afs_use_cell(ctx->cell->alias_of,
397 						    afs_cell_trace_use_fc_alias);
398 				afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_fc);
399 				ctx->cell = cell;
400 				goto reget_key;
401 			}
402 		}
403 
404 		volume = afs_create_volume(ctx);
405 		if (IS_ERR(volume))
406 			return PTR_ERR(volume);
407 
408 		ctx->volume = volume;
409 		if (volume->type != AFSVL_RWVOL)
410 			ctx->flock_mode = afs_flock_mode_local;
411 	}
412 
413 	return 0;
414 }
415 
416 /*
417  * check a superblock to see if it's the one we're looking for
418  */
afs_test_super(struct super_block * sb,struct fs_context * fc)419 static int afs_test_super(struct super_block *sb, struct fs_context *fc)
420 {
421 	struct afs_fs_context *ctx = fc->fs_private;
422 	struct afs_super_info *as = AFS_FS_S(sb);
423 
424 	return (as->net_ns == fc->net_ns &&
425 		as->volume &&
426 		as->volume->vid == ctx->volume->vid &&
427 		as->cell == ctx->cell &&
428 		!as->dyn_root);
429 }
430 
afs_dynroot_test_super(struct super_block * sb,struct fs_context * fc)431 static int afs_dynroot_test_super(struct super_block *sb, struct fs_context *fc)
432 {
433 	struct afs_super_info *as = AFS_FS_S(sb);
434 
435 	return (as->net_ns == fc->net_ns &&
436 		as->dyn_root);
437 }
438 
afs_set_super(struct super_block * sb,struct fs_context * fc)439 static int afs_set_super(struct super_block *sb, struct fs_context *fc)
440 {
441 	return set_anon_super(sb, NULL);
442 }
443 
444 /*
445  * fill in the superblock
446  */
afs_fill_super(struct super_block * sb,struct afs_fs_context * ctx)447 static int afs_fill_super(struct super_block *sb, struct afs_fs_context *ctx)
448 {
449 	struct afs_super_info *as = AFS_FS_S(sb);
450 	struct inode *inode = NULL;
451 	int ret;
452 
453 	_enter("");
454 
455 	/* fill in the superblock */
456 	sb->s_blocksize		= PAGE_SIZE;
457 	sb->s_blocksize_bits	= PAGE_SHIFT;
458 	sb->s_maxbytes		= MAX_LFS_FILESIZE;
459 	sb->s_magic		= AFS_FS_MAGIC;
460 	sb->s_op		= &afs_super_ops;
461 	if (!as->dyn_root)
462 		sb->s_xattr	= afs_xattr_handlers;
463 	ret = super_setup_bdi(sb);
464 	if (ret)
465 		return ret;
466 
467 	/* allocate the root inode and dentry */
468 	if (as->dyn_root) {
469 		inode = afs_iget_pseudo_dir(sb, true);
470 	} else {
471 		sprintf(sb->s_id, "%llu", as->volume->vid);
472 		afs_activate_volume(as->volume);
473 		inode = afs_root_iget(sb, ctx->key);
474 	}
475 
476 	if (IS_ERR(inode))
477 		return PTR_ERR(inode);
478 
479 	if (ctx->autocell || as->dyn_root)
480 		set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags);
481 
482 	ret = -ENOMEM;
483 	sb->s_root = d_make_root(inode);
484 	if (!sb->s_root)
485 		goto error;
486 
487 	if (as->dyn_root) {
488 		sb->s_d_op = &afs_dynroot_dentry_operations;
489 		ret = afs_dynroot_populate(sb);
490 		if (ret < 0)
491 			goto error;
492 	} else {
493 		sb->s_d_op = &afs_fs_dentry_operations;
494 		rcu_assign_pointer(as->volume->sb, sb);
495 	}
496 
497 	_leave(" = 0");
498 	return 0;
499 
500 error:
501 	_leave(" = %d", ret);
502 	return ret;
503 }
504 
afs_alloc_sbi(struct fs_context * fc)505 static struct afs_super_info *afs_alloc_sbi(struct fs_context *fc)
506 {
507 	struct afs_fs_context *ctx = fc->fs_private;
508 	struct afs_super_info *as;
509 
510 	as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
511 	if (as) {
512 		as->net_ns = get_net(fc->net_ns);
513 		as->flock_mode = ctx->flock_mode;
514 		if (ctx->dyn_root) {
515 			as->dyn_root = true;
516 		} else {
517 			as->cell = afs_use_cell(ctx->cell, afs_cell_trace_use_sbi);
518 			as->volume = afs_get_volume(ctx->volume,
519 						    afs_volume_trace_get_alloc_sbi);
520 		}
521 	}
522 	return as;
523 }
524 
afs_destroy_sbi(struct afs_super_info * as)525 static void afs_destroy_sbi(struct afs_super_info *as)
526 {
527 	if (as) {
528 		struct afs_net *net = afs_net(as->net_ns);
529 		afs_put_volume(net, as->volume, afs_volume_trace_put_destroy_sbi);
530 		afs_unuse_cell(net, as->cell, afs_cell_trace_unuse_sbi);
531 		put_net(as->net_ns);
532 		kfree(as);
533 	}
534 }
535 
afs_kill_super(struct super_block * sb)536 static void afs_kill_super(struct super_block *sb)
537 {
538 	struct afs_super_info *as = AFS_FS_S(sb);
539 
540 	if (as->dyn_root)
541 		afs_dynroot_depopulate(sb);
542 
543 	/* Clear the callback interests (which will do ilookup5) before
544 	 * deactivating the superblock.
545 	 */
546 	if (as->volume)
547 		rcu_assign_pointer(as->volume->sb, NULL);
548 	kill_anon_super(sb);
549 	if (as->volume)
550 		afs_deactivate_volume(as->volume);
551 	afs_destroy_sbi(as);
552 }
553 
554 /*
555  * Get an AFS superblock and root directory.
556  */
afs_get_tree(struct fs_context * fc)557 static int afs_get_tree(struct fs_context *fc)
558 {
559 	struct afs_fs_context *ctx = fc->fs_private;
560 	struct super_block *sb;
561 	struct afs_super_info *as;
562 	int ret;
563 
564 	ret = afs_validate_fc(fc);
565 	if (ret)
566 		goto error;
567 
568 	_enter("");
569 
570 	/* allocate a superblock info record */
571 	ret = -ENOMEM;
572 	as = afs_alloc_sbi(fc);
573 	if (!as)
574 		goto error;
575 	fc->s_fs_info = as;
576 
577 	/* allocate a deviceless superblock */
578 	sb = sget_fc(fc,
579 		     as->dyn_root ? afs_dynroot_test_super : afs_test_super,
580 		     afs_set_super);
581 	if (IS_ERR(sb)) {
582 		ret = PTR_ERR(sb);
583 		goto error;
584 	}
585 
586 	if (!sb->s_root) {
587 		/* initial superblock/root creation */
588 		_debug("create");
589 		ret = afs_fill_super(sb, ctx);
590 		if (ret < 0)
591 			goto error_sb;
592 		sb->s_flags |= SB_ACTIVE;
593 	} else {
594 		_debug("reuse");
595 		ASSERTCMP(sb->s_flags, &, SB_ACTIVE);
596 	}
597 
598 	fc->root = dget(sb->s_root);
599 	trace_afs_get_tree(as->cell, as->volume);
600 	_leave(" = 0 [%p]", sb);
601 	return 0;
602 
603 error_sb:
604 	deactivate_locked_super(sb);
605 error:
606 	_leave(" = %d", ret);
607 	return ret;
608 }
609 
afs_free_fc(struct fs_context * fc)610 static void afs_free_fc(struct fs_context *fc)
611 {
612 	struct afs_fs_context *ctx = fc->fs_private;
613 
614 	afs_destroy_sbi(fc->s_fs_info);
615 	afs_put_volume(ctx->net, ctx->volume, afs_volume_trace_put_free_fc);
616 	afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_fc);
617 	key_put(ctx->key);
618 	kfree(ctx);
619 }
620 
621 static const struct fs_context_operations afs_context_ops = {
622 	.free		= afs_free_fc,
623 	.parse_param	= afs_parse_param,
624 	.get_tree	= afs_get_tree,
625 };
626 
627 /*
628  * Set up the filesystem mount context.
629  */
afs_init_fs_context(struct fs_context * fc)630 static int afs_init_fs_context(struct fs_context *fc)
631 {
632 	struct afs_fs_context *ctx;
633 	struct afs_cell *cell;
634 
635 	ctx = kzalloc(sizeof(struct afs_fs_context), GFP_KERNEL);
636 	if (!ctx)
637 		return -ENOMEM;
638 
639 	ctx->type = AFSVL_ROVOL;
640 	ctx->net = afs_net(fc->net_ns);
641 
642 	/* Default to the workstation cell. */
643 	cell = afs_find_cell(ctx->net, NULL, 0, afs_cell_trace_use_fc);
644 	if (IS_ERR(cell))
645 		cell = NULL;
646 	ctx->cell = cell;
647 
648 	fc->fs_private = ctx;
649 	fc->ops = &afs_context_ops;
650 	return 0;
651 }
652 
653 /*
654  * Initialise an inode cache slab element prior to any use.  Note that
655  * afs_alloc_inode() *must* reset anything that could incorrectly leak from one
656  * inode to another.
657  */
afs_i_init_once(void * _vnode)658 static void afs_i_init_once(void *_vnode)
659 {
660 	struct afs_vnode *vnode = _vnode;
661 
662 	memset(vnode, 0, sizeof(*vnode));
663 	inode_init_once(&vnode->vfs_inode);
664 	mutex_init(&vnode->io_lock);
665 	init_rwsem(&vnode->validate_lock);
666 	spin_lock_init(&vnode->wb_lock);
667 	spin_lock_init(&vnode->lock);
668 	INIT_LIST_HEAD(&vnode->wb_keys);
669 	INIT_LIST_HEAD(&vnode->pending_locks);
670 	INIT_LIST_HEAD(&vnode->granted_locks);
671 	INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
672 	INIT_LIST_HEAD(&vnode->cb_mmap_link);
673 	seqlock_init(&vnode->cb_lock);
674 }
675 
676 /*
677  * allocate an AFS inode struct from our slab cache
678  */
afs_alloc_inode(struct super_block * sb)679 static struct inode *afs_alloc_inode(struct super_block *sb)
680 {
681 	struct afs_vnode *vnode;
682 
683 	vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL);
684 	if (!vnode)
685 		return NULL;
686 
687 	atomic_inc(&afs_count_active_inodes);
688 
689 	/* Reset anything that shouldn't leak from one inode to the next. */
690 	memset(&vnode->fid, 0, sizeof(vnode->fid));
691 	memset(&vnode->status, 0, sizeof(vnode->status));
692 
693 	vnode->volume		= NULL;
694 	vnode->lock_key		= NULL;
695 	vnode->permit_cache	= NULL;
696 #ifdef CONFIG_AFS_FSCACHE
697 	vnode->cache		= NULL;
698 #endif
699 
700 	vnode->flags		= 1 << AFS_VNODE_UNSET;
701 	vnode->lock_state	= AFS_VNODE_LOCK_NONE;
702 
703 	init_rwsem(&vnode->rmdir_lock);
704 	INIT_WORK(&vnode->cb_work, afs_invalidate_mmap_work);
705 
706 	_leave(" = %p", &vnode->vfs_inode);
707 	return &vnode->vfs_inode;
708 }
709 
afs_free_inode(struct inode * inode)710 static void afs_free_inode(struct inode *inode)
711 {
712 	kmem_cache_free(afs_inode_cachep, AFS_FS_I(inode));
713 }
714 
715 /*
716  * destroy an AFS inode struct
717  */
afs_destroy_inode(struct inode * inode)718 static void afs_destroy_inode(struct inode *inode)
719 {
720 	struct afs_vnode *vnode = AFS_FS_I(inode);
721 
722 	_enter("%p{%llx:%llu}", inode, vnode->fid.vid, vnode->fid.vnode);
723 
724 	_debug("DESTROY INODE %p", inode);
725 
726 	atomic_dec(&afs_count_active_inodes);
727 }
728 
afs_get_volume_status_success(struct afs_operation * op)729 static void afs_get_volume_status_success(struct afs_operation *op)
730 {
731 	struct afs_volume_status *vs = &op->volstatus.vs;
732 	struct kstatfs *buf = op->volstatus.buf;
733 
734 	if (vs->max_quota == 0)
735 		buf->f_blocks = vs->part_max_blocks;
736 	else
737 		buf->f_blocks = vs->max_quota;
738 
739 	if (buf->f_blocks > vs->blocks_in_use)
740 		buf->f_bavail = buf->f_bfree =
741 			buf->f_blocks - vs->blocks_in_use;
742 }
743 
744 static const struct afs_operation_ops afs_get_volume_status_operation = {
745 	.issue_afs_rpc	= afs_fs_get_volume_status,
746 	.issue_yfs_rpc	= yfs_fs_get_volume_status,
747 	.success	= afs_get_volume_status_success,
748 };
749 
750 /*
751  * return information about an AFS volume
752  */
afs_statfs(struct dentry * dentry,struct kstatfs * buf)753 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
754 {
755 	struct afs_super_info *as = AFS_FS_S(dentry->d_sb);
756 	struct afs_operation *op;
757 	struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
758 
759 	buf->f_type	= dentry->d_sb->s_magic;
760 	buf->f_bsize	= AFS_BLOCK_SIZE;
761 	buf->f_namelen	= AFSNAMEMAX - 1;
762 
763 	if (as->dyn_root) {
764 		buf->f_blocks	= 1;
765 		buf->f_bavail	= 0;
766 		buf->f_bfree	= 0;
767 		return 0;
768 	}
769 
770 	op = afs_alloc_operation(NULL, as->volume);
771 	if (IS_ERR(op))
772 		return PTR_ERR(op);
773 
774 	afs_op_set_vnode(op, 0, vnode);
775 	op->nr_files		= 1;
776 	op->volstatus.buf	= buf;
777 	op->ops			= &afs_get_volume_status_operation;
778 	return afs_do_sync_operation(op);
779 }
780