1
2 /*
3 * Adaptec AIC7xxx device driver for Linux.
4 *
5 * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic7xxx_osm.c#235 $
6 *
7 * Copyright (c) 1994 John Aycock
8 * The University of Calgary Department of Computer Science.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
25 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
26 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
27 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
28 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
29 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
30 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
31 * ANSI SCSI-2 specification (draft 10c), ...
32 *
33 * --------------------------------------------------------------------------
34 *
35 * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
36 *
37 * Substantially modified to include support for wide and twin bus
38 * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
39 * SCB paging, and other rework of the code.
40 *
41 * --------------------------------------------------------------------------
42 * Copyright (c) 1994-2000 Justin T. Gibbs.
43 * Copyright (c) 2000-2001 Adaptec Inc.
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions, and the following disclaimer,
51 * without modification.
52 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
53 * substantially similar to the "NO WARRANTY" disclaimer below
54 * ("Disclaimer") and any redistribution must be conditioned upon
55 * including a substantially similar Disclaimer requirement for further
56 * binary redistribution.
57 * 3. Neither the names of the above-listed copyright holders nor the names
58 * of any contributors may be used to endorse or promote products derived
59 * from this software without specific prior written permission.
60 *
61 * Alternatively, this software may be distributed under the terms of the
62 * GNU General Public License ("GPL") version 2 as published by the Free
63 * Software Foundation.
64 *
65 * NO WARRANTY
66 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
67 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
68 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
69 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
70 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
74 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
75 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
76 * POSSIBILITY OF SUCH DAMAGES.
77 *
78 *---------------------------------------------------------------------------
79 *
80 * Thanks also go to (in alphabetical order) the following:
81 *
82 * Rory Bolt - Sequencer bug fixes
83 * Jay Estabrook - Initial DEC Alpha support
84 * Doug Ledford - Much needed abort/reset bug fixes
85 * Kai Makisara - DMAing of SCBs
86 *
87 * A Boot time option was also added for not resetting the scsi bus.
88 *
89 * Form: aic7xxx=extended
90 * aic7xxx=no_reset
91 * aic7xxx=verbose
92 *
93 * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
94 *
95 * Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp
96 */
97
98 /*
99 * Further driver modifications made by Doug Ledford <dledford@redhat.com>
100 *
101 * Copyright (c) 1997-1999 Doug Ledford
102 *
103 * These changes are released under the same licensing terms as the FreeBSD
104 * driver written by Justin Gibbs. Please see his Copyright notice above
105 * for the exact terms and conditions covering my changes as well as the
106 * warranty statement.
107 *
108 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
109 * but are not limited to:
110 *
111 * 1: Import of the latest FreeBSD sequencer code for this driver
112 * 2: Modification of kernel code to accommodate different sequencer semantics
113 * 3: Extensive changes throughout kernel portion of driver to improve
114 * abort/reset processing and error hanndling
115 * 4: Other work contributed by various people on the Internet
116 * 5: Changes to printk information and verbosity selection code
117 * 6: General reliability related changes, especially in IRQ management
118 * 7: Modifications to the default probe/attach order for supported cards
119 * 8: SMP friendliness has been improved
120 *
121 */
122
123 #include "aic7xxx_osm.h"
124 #include "aic7xxx_inline.h"
125 #include <scsi/scsicam.h>
126
127 static struct scsi_transport_template *ahc_linux_transport_template = NULL;
128
129 #include <linux/init.h> /* __setup */
130 #include <linux/mm.h> /* For fetching system memory size */
131 #include <linux/blkdev.h> /* For block_size() */
132 #include <linux/delay.h> /* For ssleep/msleep */
133 #include <linux/slab.h>
134
135
136 /*
137 * Set this to the delay in seconds after SCSI bus reset.
138 * Note, we honor this only for the initial bus reset.
139 * The scsi error recovery code performs its own bus settle
140 * delay handling for error recovery actions.
141 */
142 #ifdef CONFIG_AIC7XXX_RESET_DELAY_MS
143 #define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS
144 #else
145 #define AIC7XXX_RESET_DELAY 5000
146 #endif
147
148 /*
149 * To change the default number of tagged transactions allowed per-device,
150 * add a line to the lilo.conf file like:
151 * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}"
152 * which will result in the first four devices on the first two
153 * controllers being set to a tagged queue depth of 32.
154 *
155 * The tag_commands is an array of 16 to allow for wide and twin adapters.
156 * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15
157 * for channel 1.
158 */
159 typedef struct {
160 uint8_t tag_commands[16]; /* Allow for wide/twin adapters. */
161 } adapter_tag_info_t;
162
163 /*
164 * Modify this as you see fit for your system.
165 *
166 * 0 tagged queuing disabled
167 * 1 <= n <= 253 n == max tags ever dispatched.
168 *
169 * The driver will throttle the number of commands dispatched to a
170 * device if it returns queue full. For devices with a fixed maximum
171 * queue depth, the driver will eventually determine this depth and
172 * lock it in (a console message is printed to indicate that a lock
173 * has occurred). On some devices, queue full is returned for a temporary
174 * resource shortage. These devices will return queue full at varying
175 * depths. The driver will throttle back when the queue fulls occur and
176 * attempt to slowly increase the depth over time as the device recovers
177 * from the resource shortage.
178 *
179 * In this example, the first line will disable tagged queueing for all
180 * the devices on the first probed aic7xxx adapter.
181 *
182 * The second line enables tagged queueing with 4 commands/LUN for IDs
183 * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
184 * driver to attempt to use up to 64 tags for ID 1.
185 *
186 * The third line is the same as the first line.
187 *
188 * The fourth line disables tagged queueing for devices 0 and 3. It
189 * enables tagged queueing for the other IDs, with 16 commands/LUN
190 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
191 * IDs 2, 5-7, and 9-15.
192 */
193
194 /*
195 * NOTE: The below structure is for reference only, the actual structure
196 * to modify in order to change things is just below this comment block.
197 adapter_tag_info_t aic7xxx_tag_info[] =
198 {
199 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
200 {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}},
201 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
202 {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
203 };
204 */
205
206 #ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE
207 #define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE
208 #else
209 #define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE
210 #endif
211
212 #define AIC7XXX_CONFIGED_TAG_COMMANDS { \
213 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
214 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
215 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
216 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
217 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
218 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
219 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
220 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE \
221 }
222
223 /*
224 * By default, use the number of commands specified by
225 * the users kernel configuration.
226 */
227 static adapter_tag_info_t aic7xxx_tag_info[] =
228 {
229 {AIC7XXX_CONFIGED_TAG_COMMANDS},
230 {AIC7XXX_CONFIGED_TAG_COMMANDS},
231 {AIC7XXX_CONFIGED_TAG_COMMANDS},
232 {AIC7XXX_CONFIGED_TAG_COMMANDS},
233 {AIC7XXX_CONFIGED_TAG_COMMANDS},
234 {AIC7XXX_CONFIGED_TAG_COMMANDS},
235 {AIC7XXX_CONFIGED_TAG_COMMANDS},
236 {AIC7XXX_CONFIGED_TAG_COMMANDS},
237 {AIC7XXX_CONFIGED_TAG_COMMANDS},
238 {AIC7XXX_CONFIGED_TAG_COMMANDS},
239 {AIC7XXX_CONFIGED_TAG_COMMANDS},
240 {AIC7XXX_CONFIGED_TAG_COMMANDS},
241 {AIC7XXX_CONFIGED_TAG_COMMANDS},
242 {AIC7XXX_CONFIGED_TAG_COMMANDS},
243 {AIC7XXX_CONFIGED_TAG_COMMANDS},
244 {AIC7XXX_CONFIGED_TAG_COMMANDS}
245 };
246
247 /*
248 * There should be a specific return value for this in scsi.h, but
249 * it seems that most drivers ignore it.
250 */
251 #define DID_UNDERFLOW DID_ERROR
252
253 void
ahc_print_path(struct ahc_softc * ahc,struct scb * scb)254 ahc_print_path(struct ahc_softc *ahc, struct scb *scb)
255 {
256 printk("(scsi%d:%c:%d:%d): ",
257 ahc->platform_data->host->host_no,
258 scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X',
259 scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1,
260 scb != NULL ? SCB_GET_LUN(scb) : -1);
261 }
262
263 /*
264 * XXX - these options apply unilaterally to _all_ 274x/284x/294x
265 * cards in the system. This should be fixed. Exceptions to this
266 * rule are noted in the comments.
267 */
268
269 /*
270 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
271 * has no effect on any later resets that might occur due to things like
272 * SCSI bus timeouts.
273 */
274 static uint32_t aic7xxx_no_reset;
275
276 /*
277 * Should we force EXTENDED translation on a controller.
278 * 0 == Use whatever is in the SEEPROM or default to off
279 * 1 == Use whatever is in the SEEPROM or default to on
280 */
281 static uint32_t aic7xxx_extended;
282
283 /*
284 * PCI bus parity checking of the Adaptec controllers. This is somewhat
285 * dubious at best. To my knowledge, this option has never actually
286 * solved a PCI parity problem, but on certain machines with broken PCI
287 * chipset configurations where stray PCI transactions with bad parity are
288 * the norm rather than the exception, the error messages can be overwhelming.
289 * It's included in the driver for completeness.
290 * 0 = Shut off PCI parity check
291 * non-0 = reverse polarity pci parity checking
292 */
293 static uint32_t aic7xxx_pci_parity = ~0;
294
295 /*
296 * There are lots of broken chipsets in the world. Some of them will
297 * violate the PCI spec when we issue byte sized memory writes to our
298 * controller. I/O mapped register access, if allowed by the given
299 * platform, will work in almost all cases.
300 */
301 uint32_t aic7xxx_allow_memio = ~0;
302
303 /*
304 * So that we can set how long each device is given as a selection timeout.
305 * The table of values goes like this:
306 * 0 - 256ms
307 * 1 - 128ms
308 * 2 - 64ms
309 * 3 - 32ms
310 * We default to 256ms because some older devices need a longer time
311 * to respond to initial selection.
312 */
313 static uint32_t aic7xxx_seltime;
314
315 /*
316 * Certain devices do not perform any aging on commands. Should the
317 * device be saturated by commands in one portion of the disk, it is
318 * possible for transactions on far away sectors to never be serviced.
319 * To handle these devices, we can periodically send an ordered tag to
320 * force all outstanding transactions to be serviced prior to a new
321 * transaction.
322 */
323 static uint32_t aic7xxx_periodic_otag;
324
325 /*
326 * Module information and settable options.
327 */
328 static char *aic7xxx = NULL;
329
330 MODULE_AUTHOR("Maintainer: Hannes Reinecke <hare@suse.de>");
331 MODULE_DESCRIPTION("Adaptec AIC77XX/78XX SCSI Host Bus Adapter driver");
332 MODULE_LICENSE("Dual BSD/GPL");
333 MODULE_VERSION(AIC7XXX_DRIVER_VERSION);
334 module_param(aic7xxx, charp, 0444);
335 MODULE_PARM_DESC(aic7xxx,
336 "period-delimited options string:\n"
337 " verbose Enable verbose/diagnostic logging\n"
338 " allow_memio Allow device registers to be memory mapped\n"
339 " debug Bitmask of debug values to enable\n"
340 " no_probe Toggle EISA/VLB controller probing\n"
341 " probe_eisa_vl Toggle EISA/VLB controller probing\n"
342 " no_reset Suppress initial bus resets\n"
343 " extended Enable extended geometry on all controllers\n"
344 " periodic_otag Send an ordered tagged transaction\n"
345 " periodically to prevent tag starvation.\n"
346 " This may be required by some older disk\n"
347 " drives or RAID arrays.\n"
348 " tag_info:<tag_str> Set per-target tag depth\n"
349 " global_tag_depth:<int> Global tag depth for every target\n"
350 " on every bus\n"
351 " seltime:<int> Selection Timeout\n"
352 " (0/256ms,1/128ms,2/64ms,3/32ms)\n"
353 "\n"
354 " Sample modprobe configuration file:\n"
355 " # Toggle EISA/VLB probing\n"
356 " # Set tag depth on Controller 1/Target 1 to 10 tags\n"
357 " # Shorten the selection timeout to 128ms\n"
358 "\n"
359 " options aic7xxx 'aic7xxx=probe_eisa_vl.tag_info:{{}.{.10}}.seltime:1'\n"
360 );
361
362 static void ahc_linux_handle_scsi_status(struct ahc_softc *,
363 struct scsi_device *,
364 struct scb *);
365 static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc,
366 struct scsi_cmnd *cmd);
367 static void ahc_linux_freeze_simq(struct ahc_softc *ahc);
368 static void ahc_linux_release_simq(struct ahc_softc *ahc);
369 static int ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag);
370 static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc);
371 static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc,
372 struct ahc_devinfo *devinfo);
373 static void ahc_linux_device_queue_depth(struct scsi_device *);
374 static int ahc_linux_run_command(struct ahc_softc*,
375 struct ahc_linux_device *,
376 struct scsi_cmnd *);
377 static void ahc_linux_setup_tag_info_global(char *p);
378 static int aic7xxx_setup(char *s);
379
380 static int ahc_linux_unit;
381
382
383 /************************** OS Utility Wrappers *******************************/
384 void
ahc_delay(long usec)385 ahc_delay(long usec)
386 {
387 /*
388 * udelay on Linux can have problems for
389 * multi-millisecond waits. Wait at most
390 * 1024us per call.
391 */
392 while (usec > 0) {
393 udelay(usec % 1024);
394 usec -= 1024;
395 }
396 }
397
398 /***************************** Low Level I/O **********************************/
399 uint8_t
ahc_inb(struct ahc_softc * ahc,long port)400 ahc_inb(struct ahc_softc * ahc, long port)
401 {
402 uint8_t x;
403
404 if (ahc->tag == BUS_SPACE_MEMIO) {
405 x = readb(ahc->bsh.maddr + port);
406 } else {
407 x = inb(ahc->bsh.ioport + port);
408 }
409 mb();
410 return (x);
411 }
412
413 void
ahc_outb(struct ahc_softc * ahc,long port,uint8_t val)414 ahc_outb(struct ahc_softc * ahc, long port, uint8_t val)
415 {
416 if (ahc->tag == BUS_SPACE_MEMIO) {
417 writeb(val, ahc->bsh.maddr + port);
418 } else {
419 outb(val, ahc->bsh.ioport + port);
420 }
421 mb();
422 }
423
424 void
ahc_outsb(struct ahc_softc * ahc,long port,uint8_t * array,int count)425 ahc_outsb(struct ahc_softc * ahc, long port, uint8_t *array, int count)
426 {
427 int i;
428
429 /*
430 * There is probably a more efficient way to do this on Linux
431 * but we don't use this for anything speed critical and this
432 * should work.
433 */
434 for (i = 0; i < count; i++)
435 ahc_outb(ahc, port, *array++);
436 }
437
438 void
ahc_insb(struct ahc_softc * ahc,long port,uint8_t * array,int count)439 ahc_insb(struct ahc_softc * ahc, long port, uint8_t *array, int count)
440 {
441 int i;
442
443 /*
444 * There is probably a more efficient way to do this on Linux
445 * but we don't use this for anything speed critical and this
446 * should work.
447 */
448 for (i = 0; i < count; i++)
449 *array++ = ahc_inb(ahc, port);
450 }
451
452 /********************************* Inlines ************************************/
453 static void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*);
454
455 static int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
456 struct ahc_dma_seg *sg,
457 dma_addr_t addr, bus_size_t len);
458
459 static void
ahc_linux_unmap_scb(struct ahc_softc * ahc,struct scb * scb)460 ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb)
461 {
462 struct scsi_cmnd *cmd;
463
464 cmd = scb->io_ctx;
465 ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE);
466
467 scsi_dma_unmap(cmd);
468 }
469
470 static int
ahc_linux_map_seg(struct ahc_softc * ahc,struct scb * scb,struct ahc_dma_seg * sg,dma_addr_t addr,bus_size_t len)471 ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
472 struct ahc_dma_seg *sg, dma_addr_t addr, bus_size_t len)
473 {
474 int consumed;
475
476 if ((scb->sg_count + 1) > AHC_NSEG)
477 panic("Too few segs for dma mapping. "
478 "Increase AHC_NSEG\n");
479
480 consumed = 1;
481 sg->addr = ahc_htole32(addr & 0xFFFFFFFF);
482 scb->platform_data->xfer_len += len;
483
484 if (sizeof(dma_addr_t) > 4
485 && (ahc->flags & AHC_39BIT_ADDRESSING) != 0)
486 len |= (addr >> 8) & AHC_SG_HIGH_ADDR_MASK;
487
488 sg->len = ahc_htole32(len);
489 return (consumed);
490 }
491
492 /*
493 * Return a string describing the driver.
494 */
495 static const char *
ahc_linux_info(struct Scsi_Host * host)496 ahc_linux_info(struct Scsi_Host *host)
497 {
498 static char buffer[512];
499 char ahc_info[256];
500 char *bp;
501 struct ahc_softc *ahc;
502
503 bp = &buffer[0];
504 ahc = *(struct ahc_softc **)host->hostdata;
505 memset(bp, 0, sizeof(buffer));
506 strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev " AIC7XXX_DRIVER_VERSION "\n"
507 " <");
508 strcat(bp, ahc->description);
509 strcat(bp, ">\n"
510 " ");
511 ahc_controller_info(ahc, ahc_info);
512 strcat(bp, ahc_info);
513 strcat(bp, "\n");
514
515 return (bp);
516 }
517
518 /*
519 * Queue an SCB to the controller.
520 */
521 static int
ahc_linux_queue_lck(struct scsi_cmnd * cmd,void (* scsi_done)(struct scsi_cmnd *))522 ahc_linux_queue_lck(struct scsi_cmnd * cmd, void (*scsi_done) (struct scsi_cmnd *))
523 {
524 struct ahc_softc *ahc;
525 struct ahc_linux_device *dev = scsi_transport_device_data(cmd->device);
526 int rtn = SCSI_MLQUEUE_HOST_BUSY;
527 unsigned long flags;
528
529 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
530
531 ahc_lock(ahc, &flags);
532 if (ahc->platform_data->qfrozen == 0) {
533 cmd->scsi_done = scsi_done;
534 cmd->result = CAM_REQ_INPROG << 16;
535 rtn = ahc_linux_run_command(ahc, dev, cmd);
536 }
537 ahc_unlock(ahc, &flags);
538
539 return rtn;
540 }
541
DEF_SCSI_QCMD(ahc_linux_queue)542 static DEF_SCSI_QCMD(ahc_linux_queue)
543
544 static inline struct scsi_target **
545 ahc_linux_target_in_softc(struct scsi_target *starget)
546 {
547 struct ahc_softc *ahc =
548 *((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata);
549 unsigned int target_offset;
550
551 target_offset = starget->id;
552 if (starget->channel != 0)
553 target_offset += 8;
554
555 return &ahc->platform_data->starget[target_offset];
556 }
557
558 static int
ahc_linux_target_alloc(struct scsi_target * starget)559 ahc_linux_target_alloc(struct scsi_target *starget)
560 {
561 struct ahc_softc *ahc =
562 *((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata);
563 struct seeprom_config *sc = ahc->seep_config;
564 unsigned long flags;
565 struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget);
566 unsigned short scsirate;
567 struct ahc_devinfo devinfo;
568 char channel = starget->channel + 'A';
569 unsigned int our_id = ahc->our_id;
570 unsigned int target_offset;
571
572 target_offset = starget->id;
573 if (starget->channel != 0)
574 target_offset += 8;
575
576 if (starget->channel)
577 our_id = ahc->our_id_b;
578
579 ahc_lock(ahc, &flags);
580
581 BUG_ON(*ahc_targp != NULL);
582
583 *ahc_targp = starget;
584
585 if (sc) {
586 int maxsync = AHC_SYNCRATE_DT;
587 int ultra = 0;
588 int flags = sc->device_flags[target_offset];
589
590 if (ahc->flags & AHC_NEWEEPROM_FMT) {
591 if (flags & CFSYNCHISULTRA)
592 ultra = 1;
593 } else if (flags & CFULTRAEN)
594 ultra = 1;
595 /* AIC nutcase; 10MHz appears as ultra = 1, CFXFER = 0x04
596 * change it to ultra=0, CFXFER = 0 */
597 if(ultra && (flags & CFXFER) == 0x04) {
598 ultra = 0;
599 flags &= ~CFXFER;
600 }
601
602 if ((ahc->features & AHC_ULTRA2) != 0) {
603 scsirate = (flags & CFXFER) | (ultra ? 0x8 : 0);
604 } else {
605 scsirate = (flags & CFXFER) << 4;
606 maxsync = ultra ? AHC_SYNCRATE_ULTRA :
607 AHC_SYNCRATE_FAST;
608 }
609 spi_max_width(starget) = (flags & CFWIDEB) ? 1 : 0;
610 if (!(flags & CFSYNCH))
611 spi_max_offset(starget) = 0;
612 spi_min_period(starget) =
613 ahc_find_period(ahc, scsirate, maxsync);
614 }
615 ahc_compile_devinfo(&devinfo, our_id, starget->id,
616 CAM_LUN_WILDCARD, channel,
617 ROLE_INITIATOR);
618 ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0,
619 AHC_TRANS_GOAL, /*paused*/FALSE);
620 ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
621 AHC_TRANS_GOAL, /*paused*/FALSE);
622 ahc_unlock(ahc, &flags);
623
624 return 0;
625 }
626
627 static void
ahc_linux_target_destroy(struct scsi_target * starget)628 ahc_linux_target_destroy(struct scsi_target *starget)
629 {
630 struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget);
631
632 *ahc_targp = NULL;
633 }
634
635 static int
ahc_linux_slave_alloc(struct scsi_device * sdev)636 ahc_linux_slave_alloc(struct scsi_device *sdev)
637 {
638 struct ahc_softc *ahc =
639 *((struct ahc_softc **)sdev->host->hostdata);
640 struct scsi_target *starget = sdev->sdev_target;
641 struct ahc_linux_device *dev;
642
643 if (bootverbose)
644 printk("%s: Slave Alloc %d\n", ahc_name(ahc), sdev->id);
645
646 dev = scsi_transport_device_data(sdev);
647 memset(dev, 0, sizeof(*dev));
648
649 /*
650 * We start out life using untagged
651 * transactions of which we allow one.
652 */
653 dev->openings = 1;
654
655 /*
656 * Set maxtags to 0. This will be changed if we
657 * later determine that we are dealing with
658 * a tagged queuing capable device.
659 */
660 dev->maxtags = 0;
661
662 spi_period(starget) = 0;
663
664 return 0;
665 }
666
667 static int
ahc_linux_slave_configure(struct scsi_device * sdev)668 ahc_linux_slave_configure(struct scsi_device *sdev)
669 {
670 if (bootverbose)
671 sdev_printk(KERN_INFO, sdev, "Slave Configure\n");
672
673 ahc_linux_device_queue_depth(sdev);
674
675 /* Initial Domain Validation */
676 if (!spi_initial_dv(sdev->sdev_target))
677 spi_dv_device(sdev);
678
679 return 0;
680 }
681
682 #if defined(__i386__)
683 /*
684 * Return the disk geometry for the given SCSI device.
685 */
686 static int
ahc_linux_biosparam(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int geom[])687 ahc_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev,
688 sector_t capacity, int geom[])
689 {
690 int heads;
691 int sectors;
692 int cylinders;
693 int extended;
694 struct ahc_softc *ahc;
695 u_int channel;
696
697 ahc = *((struct ahc_softc **)sdev->host->hostdata);
698 channel = sdev_channel(sdev);
699
700 if (scsi_partsize(bdev, capacity, geom))
701 return 0;
702
703 heads = 64;
704 sectors = 32;
705 cylinders = aic_sector_div(capacity, heads, sectors);
706
707 if (aic7xxx_extended != 0)
708 extended = 1;
709 else if (channel == 0)
710 extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0;
711 else
712 extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0;
713 if (extended && cylinders >= 1024) {
714 heads = 255;
715 sectors = 63;
716 cylinders = aic_sector_div(capacity, heads, sectors);
717 }
718 geom[0] = heads;
719 geom[1] = sectors;
720 geom[2] = cylinders;
721 return (0);
722 }
723 #endif
724
725 /*
726 * Abort the current SCSI command(s).
727 */
728 static int
ahc_linux_abort(struct scsi_cmnd * cmd)729 ahc_linux_abort(struct scsi_cmnd *cmd)
730 {
731 int error;
732
733 error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT);
734 if (error != SUCCESS)
735 printk("aic7xxx_abort returns 0x%x\n", error);
736 return (error);
737 }
738
739 /*
740 * Attempt to send a target reset message to the device that timed out.
741 */
742 static int
ahc_linux_dev_reset(struct scsi_cmnd * cmd)743 ahc_linux_dev_reset(struct scsi_cmnd *cmd)
744 {
745 int error;
746
747 error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET);
748 if (error != SUCCESS)
749 printk("aic7xxx_dev_reset returns 0x%x\n", error);
750 return (error);
751 }
752
753 /*
754 * Reset the SCSI bus.
755 */
756 static int
ahc_linux_bus_reset(struct scsi_cmnd * cmd)757 ahc_linux_bus_reset(struct scsi_cmnd *cmd)
758 {
759 struct ahc_softc *ahc;
760 int found;
761 unsigned long flags;
762
763 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
764
765 ahc_lock(ahc, &flags);
766 found = ahc_reset_channel(ahc, scmd_channel(cmd) + 'A',
767 /*initiate reset*/TRUE);
768 ahc_unlock(ahc, &flags);
769
770 if (bootverbose)
771 printk("%s: SCSI bus reset delivered. "
772 "%d SCBs aborted.\n", ahc_name(ahc), found);
773
774 return SUCCESS;
775 }
776
777 struct scsi_host_template aic7xxx_driver_template = {
778 .module = THIS_MODULE,
779 .name = "aic7xxx",
780 .proc_name = "aic7xxx",
781 .show_info = ahc_linux_show_info,
782 .write_info = ahc_proc_write_seeprom,
783 .info = ahc_linux_info,
784 .queuecommand = ahc_linux_queue,
785 .eh_abort_handler = ahc_linux_abort,
786 .eh_device_reset_handler = ahc_linux_dev_reset,
787 .eh_bus_reset_handler = ahc_linux_bus_reset,
788 #if defined(__i386__)
789 .bios_param = ahc_linux_biosparam,
790 #endif
791 .can_queue = AHC_MAX_QUEUE,
792 .this_id = -1,
793 .max_sectors = 8192,
794 .cmd_per_lun = 2,
795 .slave_alloc = ahc_linux_slave_alloc,
796 .slave_configure = ahc_linux_slave_configure,
797 .target_alloc = ahc_linux_target_alloc,
798 .target_destroy = ahc_linux_target_destroy,
799 };
800
801 /**************************** Tasklet Handler *********************************/
802
803 /******************************** Macros **************************************/
804 #define BUILD_SCSIID(ahc, cmd) \
805 ((((cmd)->device->id << TID_SHIFT) & TID) \
806 | (((cmd)->device->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \
807 | (((cmd)->device->channel == 0) ? 0 : TWIN_CHNLB))
808
809 /******************************** Bus DMA *************************************/
810 int
ahc_dma_tag_create(struct ahc_softc * ahc,bus_dma_tag_t parent,bus_size_t alignment,bus_size_t boundary,dma_addr_t lowaddr,dma_addr_t highaddr,bus_dma_filter_t * filter,void * filterarg,bus_size_t maxsize,int nsegments,bus_size_t maxsegsz,int flags,bus_dma_tag_t * ret_tag)811 ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent,
812 bus_size_t alignment, bus_size_t boundary,
813 dma_addr_t lowaddr, dma_addr_t highaddr,
814 bus_dma_filter_t *filter, void *filterarg,
815 bus_size_t maxsize, int nsegments,
816 bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag)
817 {
818 bus_dma_tag_t dmat;
819
820 dmat = kmalloc(sizeof(*dmat), GFP_ATOMIC);
821 if (dmat == NULL)
822 return (ENOMEM);
823
824 /*
825 * Linux is very simplistic about DMA memory. For now don't
826 * maintain all specification information. Once Linux supplies
827 * better facilities for doing these operations, or the
828 * needs of this particular driver change, we might need to do
829 * more here.
830 */
831 dmat->alignment = alignment;
832 dmat->boundary = boundary;
833 dmat->maxsize = maxsize;
834 *ret_tag = dmat;
835 return (0);
836 }
837
838 void
ahc_dma_tag_destroy(struct ahc_softc * ahc,bus_dma_tag_t dmat)839 ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat)
840 {
841 kfree(dmat);
842 }
843
844 int
ahc_dmamem_alloc(struct ahc_softc * ahc,bus_dma_tag_t dmat,void ** vaddr,int flags,bus_dmamap_t * mapp)845 ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr,
846 int flags, bus_dmamap_t *mapp)
847 {
848 /* XXX: check if we really need the GFP_ATOMIC and unwind this mess! */
849 *vaddr = dma_alloc_coherent(ahc->dev, dmat->maxsize, mapp, GFP_ATOMIC);
850 if (*vaddr == NULL)
851 return ENOMEM;
852 return 0;
853 }
854
855 void
ahc_dmamem_free(struct ahc_softc * ahc,bus_dma_tag_t dmat,void * vaddr,bus_dmamap_t map)856 ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat,
857 void* vaddr, bus_dmamap_t map)
858 {
859 dma_free_coherent(ahc->dev, dmat->maxsize, vaddr, map);
860 }
861
862 int
ahc_dmamap_load(struct ahc_softc * ahc,bus_dma_tag_t dmat,bus_dmamap_t map,void * buf,bus_size_t buflen,bus_dmamap_callback_t * cb,void * cb_arg,int flags)863 ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map,
864 void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb,
865 void *cb_arg, int flags)
866 {
867 /*
868 * Assume for now that this will only be used during
869 * initialization and not for per-transaction buffer mapping.
870 */
871 bus_dma_segment_t stack_sg;
872
873 stack_sg.ds_addr = map;
874 stack_sg.ds_len = dmat->maxsize;
875 cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0);
876 return (0);
877 }
878
879 void
ahc_dmamap_destroy(struct ahc_softc * ahc,bus_dma_tag_t dmat,bus_dmamap_t map)880 ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
881 {
882 }
883
884 int
ahc_dmamap_unload(struct ahc_softc * ahc,bus_dma_tag_t dmat,bus_dmamap_t map)885 ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
886 {
887 /* Nothing to do */
888 return (0);
889 }
890
891 static void
ahc_linux_setup_tag_info_global(char * p)892 ahc_linux_setup_tag_info_global(char *p)
893 {
894 int tags, i, j;
895
896 tags = simple_strtoul(p + 1, NULL, 0) & 0xff;
897 printk("Setting Global Tags= %d\n", tags);
898
899 for (i = 0; i < ARRAY_SIZE(aic7xxx_tag_info); i++) {
900 for (j = 0; j < AHC_NUM_TARGETS; j++) {
901 aic7xxx_tag_info[i].tag_commands[j] = tags;
902 }
903 }
904 }
905
906 static void
ahc_linux_setup_tag_info(u_long arg,int instance,int targ,int32_t value)907 ahc_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value)
908 {
909
910 if ((instance >= 0) && (targ >= 0)
911 && (instance < ARRAY_SIZE(aic7xxx_tag_info))
912 && (targ < AHC_NUM_TARGETS)) {
913 aic7xxx_tag_info[instance].tag_commands[targ] = value & 0xff;
914 if (bootverbose)
915 printk("tag_info[%d:%d] = %d\n", instance, targ, value);
916 }
917 }
918
919 static char *
ahc_parse_brace_option(char * opt_name,char * opt_arg,char * end,int depth,void (* callback)(u_long,int,int,int32_t),u_long callback_arg)920 ahc_parse_brace_option(char *opt_name, char *opt_arg, char *end, int depth,
921 void (*callback)(u_long, int, int, int32_t),
922 u_long callback_arg)
923 {
924 char *tok_end;
925 char *tok_end2;
926 int i;
927 int instance;
928 int targ;
929 int done;
930 char tok_list[] = {'.', ',', '{', '}', '\0'};
931
932 /* All options use a ':' name/arg separator */
933 if (*opt_arg != ':')
934 return (opt_arg);
935 opt_arg++;
936 instance = -1;
937 targ = -1;
938 done = FALSE;
939 /*
940 * Restore separator that may be in
941 * the middle of our option argument.
942 */
943 tok_end = strchr(opt_arg, '\0');
944 if (tok_end < end)
945 *tok_end = ',';
946 while (!done) {
947 switch (*opt_arg) {
948 case '{':
949 if (instance == -1) {
950 instance = 0;
951 } else {
952 if (depth > 1) {
953 if (targ == -1)
954 targ = 0;
955 } else {
956 printk("Malformed Option %s\n",
957 opt_name);
958 done = TRUE;
959 }
960 }
961 opt_arg++;
962 break;
963 case '}':
964 if (targ != -1)
965 targ = -1;
966 else if (instance != -1)
967 instance = -1;
968 opt_arg++;
969 break;
970 case ',':
971 case '.':
972 if (instance == -1)
973 done = TRUE;
974 else if (targ >= 0)
975 targ++;
976 else if (instance >= 0)
977 instance++;
978 opt_arg++;
979 break;
980 case '\0':
981 done = TRUE;
982 break;
983 default:
984 tok_end = end;
985 for (i = 0; tok_list[i]; i++) {
986 tok_end2 = strchr(opt_arg, tok_list[i]);
987 if ((tok_end2) && (tok_end2 < tok_end))
988 tok_end = tok_end2;
989 }
990 callback(callback_arg, instance, targ,
991 simple_strtol(opt_arg, NULL, 0));
992 opt_arg = tok_end;
993 break;
994 }
995 }
996 return (opt_arg);
997 }
998
999 /*
1000 * Handle Linux boot parameters. This routine allows for assigning a value
1001 * to a parameter with a ':' between the parameter and the value.
1002 * ie. aic7xxx=stpwlev:1,extended
1003 */
1004 static int
aic7xxx_setup(char * s)1005 aic7xxx_setup(char *s)
1006 {
1007 int i, n;
1008 char *p;
1009 char *end;
1010
1011 static const struct {
1012 const char *name;
1013 uint32_t *flag;
1014 } options[] = {
1015 { "extended", &aic7xxx_extended },
1016 { "no_reset", &aic7xxx_no_reset },
1017 { "verbose", &aic7xxx_verbose },
1018 { "allow_memio", &aic7xxx_allow_memio},
1019 #ifdef AHC_DEBUG
1020 { "debug", &ahc_debug },
1021 #endif
1022 { "periodic_otag", &aic7xxx_periodic_otag },
1023 { "pci_parity", &aic7xxx_pci_parity },
1024 { "seltime", &aic7xxx_seltime },
1025 { "tag_info", NULL },
1026 { "global_tag_depth", NULL },
1027 { "dv", NULL }
1028 };
1029
1030 end = strchr(s, '\0');
1031
1032 /*
1033 * XXX ia64 gcc isn't smart enough to know that ARRAY_SIZE
1034 * will never be 0 in this case.
1035 */
1036 n = 0;
1037
1038 while ((p = strsep(&s, ",.")) != NULL) {
1039 if (*p == '\0')
1040 continue;
1041 for (i = 0; i < ARRAY_SIZE(options); i++) {
1042
1043 n = strlen(options[i].name);
1044 if (strncmp(options[i].name, p, n) == 0)
1045 break;
1046 }
1047 if (i == ARRAY_SIZE(options))
1048 continue;
1049
1050 if (strncmp(p, "global_tag_depth", n) == 0) {
1051 ahc_linux_setup_tag_info_global(p + n);
1052 } else if (strncmp(p, "tag_info", n) == 0) {
1053 s = ahc_parse_brace_option("tag_info", p + n, end,
1054 2, ahc_linux_setup_tag_info, 0);
1055 } else if (p[n] == ':') {
1056 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
1057 } else if (strncmp(p, "verbose", n) == 0) {
1058 *(options[i].flag) = 1;
1059 } else {
1060 *(options[i].flag) ^= 0xFFFFFFFF;
1061 }
1062 }
1063 return 1;
1064 }
1065
1066 __setup("aic7xxx=", aic7xxx_setup);
1067
1068 uint32_t aic7xxx_verbose;
1069
1070 int
ahc_linux_register_host(struct ahc_softc * ahc,struct scsi_host_template * template)1071 ahc_linux_register_host(struct ahc_softc *ahc, struct scsi_host_template *template)
1072 {
1073 char buf[80];
1074 struct Scsi_Host *host;
1075 char *new_name;
1076 u_long s;
1077 int retval;
1078
1079 template->name = ahc->description;
1080 host = scsi_host_alloc(template, sizeof(struct ahc_softc *));
1081 if (host == NULL)
1082 return (ENOMEM);
1083
1084 *((struct ahc_softc **)host->hostdata) = ahc;
1085 ahc->platform_data->host = host;
1086 host->can_queue = AHC_MAX_QUEUE;
1087 host->cmd_per_lun = 2;
1088 /* XXX No way to communicate the ID for multiple channels */
1089 host->this_id = ahc->our_id;
1090 host->irq = ahc->platform_data->irq;
1091 host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8;
1092 host->max_lun = AHC_NUM_LUNS;
1093 host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0;
1094 host->sg_tablesize = AHC_NSEG;
1095 ahc_lock(ahc, &s);
1096 ahc_set_unit(ahc, ahc_linux_unit++);
1097 ahc_unlock(ahc, &s);
1098 sprintf(buf, "scsi%d", host->host_no);
1099 new_name = kmalloc(strlen(buf) + 1, GFP_ATOMIC);
1100 if (new_name != NULL) {
1101 strcpy(new_name, buf);
1102 ahc_set_name(ahc, new_name);
1103 }
1104 host->unique_id = ahc->unit;
1105 ahc_linux_initialize_scsi_bus(ahc);
1106 ahc_intr_enable(ahc, TRUE);
1107
1108 host->transportt = ahc_linux_transport_template;
1109
1110 retval = scsi_add_host(host, ahc->dev);
1111 if (retval) {
1112 printk(KERN_WARNING "aic7xxx: scsi_add_host failed\n");
1113 scsi_host_put(host);
1114 return retval;
1115 }
1116
1117 scsi_scan_host(host);
1118 return 0;
1119 }
1120
1121 /*
1122 * Place the SCSI bus into a known state by either resetting it,
1123 * or forcing transfer negotiations on the next command to any
1124 * target.
1125 */
1126 static void
ahc_linux_initialize_scsi_bus(struct ahc_softc * ahc)1127 ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc)
1128 {
1129 int i;
1130 int numtarg;
1131 unsigned long s;
1132
1133 i = 0;
1134 numtarg = 0;
1135
1136 ahc_lock(ahc, &s);
1137
1138 if (aic7xxx_no_reset != 0)
1139 ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B);
1140
1141 if ((ahc->flags & AHC_RESET_BUS_A) != 0)
1142 ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE);
1143 else
1144 numtarg = (ahc->features & AHC_WIDE) ? 16 : 8;
1145
1146 if ((ahc->features & AHC_TWIN) != 0) {
1147
1148 if ((ahc->flags & AHC_RESET_BUS_B) != 0) {
1149 ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE);
1150 } else {
1151 if (numtarg == 0)
1152 i = 8;
1153 numtarg += 8;
1154 }
1155 }
1156
1157 /*
1158 * Force negotiation to async for all targets that
1159 * will not see an initial bus reset.
1160 */
1161 for (; i < numtarg; i++) {
1162 struct ahc_devinfo devinfo;
1163 struct ahc_initiator_tinfo *tinfo;
1164 struct ahc_tmode_tstate *tstate;
1165 u_int our_id;
1166 u_int target_id;
1167 char channel;
1168
1169 channel = 'A';
1170 our_id = ahc->our_id;
1171 target_id = i;
1172 if (i > 7 && (ahc->features & AHC_TWIN) != 0) {
1173 channel = 'B';
1174 our_id = ahc->our_id_b;
1175 target_id = i % 8;
1176 }
1177 tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
1178 target_id, &tstate);
1179 ahc_compile_devinfo(&devinfo, our_id, target_id,
1180 CAM_LUN_WILDCARD, channel, ROLE_INITIATOR);
1181 ahc_update_neg_request(ahc, &devinfo, tstate,
1182 tinfo, AHC_NEG_ALWAYS);
1183 }
1184 ahc_unlock(ahc, &s);
1185 /* Give the bus some time to recover */
1186 if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) {
1187 ahc_linux_freeze_simq(ahc);
1188 msleep(AIC7XXX_RESET_DELAY);
1189 ahc_linux_release_simq(ahc);
1190 }
1191 }
1192
1193 int
ahc_platform_alloc(struct ahc_softc * ahc,void * platform_arg)1194 ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg)
1195 {
1196
1197 ahc->platform_data =
1198 kzalloc(sizeof(struct ahc_platform_data), GFP_ATOMIC);
1199 if (ahc->platform_data == NULL)
1200 return (ENOMEM);
1201 ahc->platform_data->irq = AHC_LINUX_NOIRQ;
1202 ahc_lockinit(ahc);
1203 ahc->seltime = (aic7xxx_seltime & 0x3) << 4;
1204 ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4;
1205 if (aic7xxx_pci_parity == 0)
1206 ahc->flags |= AHC_DISABLE_PCI_PERR;
1207
1208 return (0);
1209 }
1210
1211 void
ahc_platform_free(struct ahc_softc * ahc)1212 ahc_platform_free(struct ahc_softc *ahc)
1213 {
1214 struct scsi_target *starget;
1215 int i;
1216
1217 if (ahc->platform_data != NULL) {
1218 /* destroy all of the device and target objects */
1219 for (i = 0; i < AHC_NUM_TARGETS; i++) {
1220 starget = ahc->platform_data->starget[i];
1221 if (starget != NULL) {
1222 ahc->platform_data->starget[i] = NULL;
1223 }
1224 }
1225
1226 if (ahc->platform_data->irq != AHC_LINUX_NOIRQ)
1227 free_irq(ahc->platform_data->irq, ahc);
1228 if (ahc->tag == BUS_SPACE_PIO
1229 && ahc->bsh.ioport != 0)
1230 release_region(ahc->bsh.ioport, 256);
1231 if (ahc->tag == BUS_SPACE_MEMIO
1232 && ahc->bsh.maddr != NULL) {
1233 iounmap(ahc->bsh.maddr);
1234 release_mem_region(ahc->platform_data->mem_busaddr,
1235 0x1000);
1236 }
1237
1238 if (ahc->platform_data->host)
1239 scsi_host_put(ahc->platform_data->host);
1240
1241 kfree(ahc->platform_data);
1242 }
1243 }
1244
1245 void
ahc_platform_freeze_devq(struct ahc_softc * ahc,struct scb * scb)1246 ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb)
1247 {
1248 ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb),
1249 SCB_GET_CHANNEL(ahc, scb),
1250 SCB_GET_LUN(scb), SCB_LIST_NULL,
1251 ROLE_UNKNOWN, CAM_REQUEUE_REQ);
1252 }
1253
1254 void
ahc_platform_set_tags(struct ahc_softc * ahc,struct scsi_device * sdev,struct ahc_devinfo * devinfo,ahc_queue_alg alg)1255 ahc_platform_set_tags(struct ahc_softc *ahc, struct scsi_device *sdev,
1256 struct ahc_devinfo *devinfo, ahc_queue_alg alg)
1257 {
1258 struct ahc_linux_device *dev;
1259 int was_queuing;
1260 int now_queuing;
1261
1262 if (sdev == NULL)
1263 return;
1264 dev = scsi_transport_device_data(sdev);
1265
1266 was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED);
1267 switch (alg) {
1268 default:
1269 case AHC_QUEUE_NONE:
1270 now_queuing = 0;
1271 break;
1272 case AHC_QUEUE_BASIC:
1273 now_queuing = AHC_DEV_Q_BASIC;
1274 break;
1275 case AHC_QUEUE_TAGGED:
1276 now_queuing = AHC_DEV_Q_TAGGED;
1277 break;
1278 }
1279 if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0
1280 && (was_queuing != now_queuing)
1281 && (dev->active != 0)) {
1282 dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY;
1283 dev->qfrozen++;
1284 }
1285
1286 dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG);
1287 if (now_queuing) {
1288 u_int usertags;
1289
1290 usertags = ahc_linux_user_tagdepth(ahc, devinfo);
1291 if (!was_queuing) {
1292 /*
1293 * Start out aggressively and allow our
1294 * dynamic queue depth algorithm to take
1295 * care of the rest.
1296 */
1297 dev->maxtags = usertags;
1298 dev->openings = dev->maxtags - dev->active;
1299 }
1300 if (dev->maxtags == 0) {
1301 /*
1302 * Queueing is disabled by the user.
1303 */
1304 dev->openings = 1;
1305 } else if (alg == AHC_QUEUE_TAGGED) {
1306 dev->flags |= AHC_DEV_Q_TAGGED;
1307 if (aic7xxx_periodic_otag != 0)
1308 dev->flags |= AHC_DEV_PERIODIC_OTAG;
1309 } else
1310 dev->flags |= AHC_DEV_Q_BASIC;
1311 } else {
1312 /* We can only have one opening. */
1313 dev->maxtags = 0;
1314 dev->openings = 1 - dev->active;
1315 }
1316 switch ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED))) {
1317 case AHC_DEV_Q_BASIC:
1318 case AHC_DEV_Q_TAGGED:
1319 scsi_change_queue_depth(sdev,
1320 dev->openings + dev->active);
1321 break;
1322 default:
1323 /*
1324 * We allow the OS to queue 2 untagged transactions to
1325 * us at any time even though we can only execute them
1326 * serially on the controller/device. This should
1327 * remove some latency.
1328 */
1329 scsi_change_queue_depth(sdev, 2);
1330 break;
1331 }
1332 }
1333
1334 int
ahc_platform_abort_scbs(struct ahc_softc * ahc,int target,char channel,int lun,u_int tag,role_t role,uint32_t status)1335 ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel,
1336 int lun, u_int tag, role_t role, uint32_t status)
1337 {
1338 return 0;
1339 }
1340
1341 static u_int
ahc_linux_user_tagdepth(struct ahc_softc * ahc,struct ahc_devinfo * devinfo)1342 ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
1343 {
1344 static int warned_user;
1345 u_int tags;
1346
1347 tags = 0;
1348 if ((ahc->user_discenable & devinfo->target_mask) != 0) {
1349 if (ahc->unit >= ARRAY_SIZE(aic7xxx_tag_info)) {
1350 if (warned_user == 0) {
1351
1352 printk(KERN_WARNING
1353 "aic7xxx: WARNING: Insufficient tag_info instances\n"
1354 "aic7xxx: for installed controllers. Using defaults\n"
1355 "aic7xxx: Please update the aic7xxx_tag_info array in\n"
1356 "aic7xxx: the aic7xxx_osm..c source file.\n");
1357 warned_user++;
1358 }
1359 tags = AHC_MAX_QUEUE;
1360 } else {
1361 adapter_tag_info_t *tag_info;
1362
1363 tag_info = &aic7xxx_tag_info[ahc->unit];
1364 tags = tag_info->tag_commands[devinfo->target_offset];
1365 if (tags > AHC_MAX_QUEUE)
1366 tags = AHC_MAX_QUEUE;
1367 }
1368 }
1369 return (tags);
1370 }
1371
1372 /*
1373 * Determines the queue depth for a given device.
1374 */
1375 static void
ahc_linux_device_queue_depth(struct scsi_device * sdev)1376 ahc_linux_device_queue_depth(struct scsi_device *sdev)
1377 {
1378 struct ahc_devinfo devinfo;
1379 u_int tags;
1380 struct ahc_softc *ahc = *((struct ahc_softc **)sdev->host->hostdata);
1381
1382 ahc_compile_devinfo(&devinfo,
1383 sdev->sdev_target->channel == 0
1384 ? ahc->our_id : ahc->our_id_b,
1385 sdev->sdev_target->id, sdev->lun,
1386 sdev->sdev_target->channel == 0 ? 'A' : 'B',
1387 ROLE_INITIATOR);
1388 tags = ahc_linux_user_tagdepth(ahc, &devinfo);
1389 if (tags != 0 && sdev->tagged_supported != 0) {
1390
1391 ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_TAGGED);
1392 ahc_send_async(ahc, devinfo.channel, devinfo.target,
1393 devinfo.lun, AC_TRANSFER_NEG);
1394 ahc_print_devinfo(ahc, &devinfo);
1395 printk("Tagged Queuing enabled. Depth %d\n", tags);
1396 } else {
1397 ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_NONE);
1398 ahc_send_async(ahc, devinfo.channel, devinfo.target,
1399 devinfo.lun, AC_TRANSFER_NEG);
1400 }
1401 }
1402
1403 static int
ahc_linux_run_command(struct ahc_softc * ahc,struct ahc_linux_device * dev,struct scsi_cmnd * cmd)1404 ahc_linux_run_command(struct ahc_softc *ahc, struct ahc_linux_device *dev,
1405 struct scsi_cmnd *cmd)
1406 {
1407 struct scb *scb;
1408 struct hardware_scb *hscb;
1409 struct ahc_initiator_tinfo *tinfo;
1410 struct ahc_tmode_tstate *tstate;
1411 uint16_t mask;
1412 struct scb_tailq *untagged_q = NULL;
1413 int nseg;
1414
1415 /*
1416 * Schedule us to run later. The only reason we are not
1417 * running is because the whole controller Q is frozen.
1418 */
1419 if (ahc->platform_data->qfrozen != 0)
1420 return SCSI_MLQUEUE_HOST_BUSY;
1421
1422 /*
1423 * We only allow one untagged transaction
1424 * per target in the initiator role unless
1425 * we are storing a full busy target *lun*
1426 * table in SCB space.
1427 */
1428 if (!(cmd->flags & SCMD_TAGGED)
1429 && (ahc->features & AHC_SCB_BTT) == 0) {
1430 int target_offset;
1431
1432 target_offset = cmd->device->id + cmd->device->channel * 8;
1433 untagged_q = &(ahc->untagged_queues[target_offset]);
1434 if (!TAILQ_EMPTY(untagged_q))
1435 /* if we're already executing an untagged command
1436 * we're busy to another */
1437 return SCSI_MLQUEUE_DEVICE_BUSY;
1438 }
1439
1440 nseg = scsi_dma_map(cmd);
1441 if (nseg < 0)
1442 return SCSI_MLQUEUE_HOST_BUSY;
1443
1444 /*
1445 * Get an scb to use.
1446 */
1447 scb = ahc_get_scb(ahc);
1448 if (!scb) {
1449 scsi_dma_unmap(cmd);
1450 return SCSI_MLQUEUE_HOST_BUSY;
1451 }
1452
1453 scb->io_ctx = cmd;
1454 scb->platform_data->dev = dev;
1455 hscb = scb->hscb;
1456 cmd->host_scribble = (char *)scb;
1457
1458 /*
1459 * Fill out basics of the HSCB.
1460 */
1461 hscb->control = 0;
1462 hscb->scsiid = BUILD_SCSIID(ahc, cmd);
1463 hscb->lun = cmd->device->lun;
1464 mask = SCB_GET_TARGET_MASK(ahc, scb);
1465 tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb),
1466 SCB_GET_OUR_ID(scb),
1467 SCB_GET_TARGET(ahc, scb), &tstate);
1468 hscb->scsirate = tinfo->scsirate;
1469 hscb->scsioffset = tinfo->curr.offset;
1470 if ((tstate->ultraenb & mask) != 0)
1471 hscb->control |= ULTRAENB;
1472
1473 if ((ahc->user_discenable & mask) != 0)
1474 hscb->control |= DISCENB;
1475
1476 if ((tstate->auto_negotiate & mask) != 0) {
1477 scb->flags |= SCB_AUTO_NEGOTIATE;
1478 scb->hscb->control |= MK_MESSAGE;
1479 }
1480
1481 if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) {
1482 if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH
1483 && (dev->flags & AHC_DEV_Q_TAGGED) != 0) {
1484 hscb->control |= ORDERED_QUEUE_TAG;
1485 dev->commands_since_idle_or_otag = 0;
1486 } else {
1487 hscb->control |= SIMPLE_QUEUE_TAG;
1488 }
1489 }
1490
1491 hscb->cdb_len = cmd->cmd_len;
1492 if (hscb->cdb_len <= 12) {
1493 memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len);
1494 } else {
1495 memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len);
1496 scb->flags |= SCB_CDB32_PTR;
1497 }
1498
1499 scb->platform_data->xfer_len = 0;
1500 ahc_set_residual(scb, 0);
1501 ahc_set_sense_residual(scb, 0);
1502 scb->sg_count = 0;
1503
1504 if (nseg > 0) {
1505 struct ahc_dma_seg *sg;
1506 struct scatterlist *cur_seg;
1507 int i;
1508
1509 /* Copy the segments into the SG list. */
1510 sg = scb->sg_list;
1511 /*
1512 * The sg_count may be larger than nseg if
1513 * a transfer crosses a 32bit page.
1514 */
1515 scsi_for_each_sg(cmd, cur_seg, nseg, i) {
1516 dma_addr_t addr;
1517 bus_size_t len;
1518 int consumed;
1519
1520 addr = sg_dma_address(cur_seg);
1521 len = sg_dma_len(cur_seg);
1522 consumed = ahc_linux_map_seg(ahc, scb,
1523 sg, addr, len);
1524 sg += consumed;
1525 scb->sg_count += consumed;
1526 }
1527 sg--;
1528 sg->len |= ahc_htole32(AHC_DMA_LAST_SEG);
1529
1530 /*
1531 * Reset the sg list pointer.
1532 */
1533 scb->hscb->sgptr =
1534 ahc_htole32(scb->sg_list_phys | SG_FULL_RESID);
1535
1536 /*
1537 * Copy the first SG into the "current"
1538 * data pointer area.
1539 */
1540 scb->hscb->dataptr = scb->sg_list->addr;
1541 scb->hscb->datacnt = scb->sg_list->len;
1542 } else {
1543 scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL);
1544 scb->hscb->dataptr = 0;
1545 scb->hscb->datacnt = 0;
1546 scb->sg_count = 0;
1547 }
1548
1549 LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links);
1550 dev->openings--;
1551 dev->active++;
1552 dev->commands_issued++;
1553 if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0)
1554 dev->commands_since_idle_or_otag++;
1555
1556 scb->flags |= SCB_ACTIVE;
1557 if (untagged_q) {
1558 TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe);
1559 scb->flags |= SCB_UNTAGGEDQ;
1560 }
1561 ahc_queue_scb(ahc, scb);
1562 return 0;
1563 }
1564
1565 /*
1566 * SCSI controller interrupt handler.
1567 */
1568 irqreturn_t
ahc_linux_isr(int irq,void * dev_id)1569 ahc_linux_isr(int irq, void *dev_id)
1570 {
1571 struct ahc_softc *ahc;
1572 u_long flags;
1573 int ours;
1574
1575 ahc = (struct ahc_softc *) dev_id;
1576 ahc_lock(ahc, &flags);
1577 ours = ahc_intr(ahc);
1578 ahc_unlock(ahc, &flags);
1579 return IRQ_RETVAL(ours);
1580 }
1581
1582 void
ahc_platform_flushwork(struct ahc_softc * ahc)1583 ahc_platform_flushwork(struct ahc_softc *ahc)
1584 {
1585
1586 }
1587
1588 void
ahc_send_async(struct ahc_softc * ahc,char channel,u_int target,u_int lun,ac_code code)1589 ahc_send_async(struct ahc_softc *ahc, char channel,
1590 u_int target, u_int lun, ac_code code)
1591 {
1592 switch (code) {
1593 case AC_TRANSFER_NEG:
1594 {
1595 struct scsi_target *starget;
1596 struct ahc_initiator_tinfo *tinfo;
1597 struct ahc_tmode_tstate *tstate;
1598 int target_offset;
1599 unsigned int target_ppr_options;
1600
1601 BUG_ON(target == CAM_TARGET_WILDCARD);
1602
1603 tinfo = ahc_fetch_transinfo(ahc, channel,
1604 channel == 'A' ? ahc->our_id
1605 : ahc->our_id_b,
1606 target, &tstate);
1607
1608 /*
1609 * Don't bother reporting results while
1610 * negotiations are still pending.
1611 */
1612 if (tinfo->curr.period != tinfo->goal.period
1613 || tinfo->curr.width != tinfo->goal.width
1614 || tinfo->curr.offset != tinfo->goal.offset
1615 || tinfo->curr.ppr_options != tinfo->goal.ppr_options)
1616 if (bootverbose == 0)
1617 break;
1618
1619 /*
1620 * Don't bother reporting results that
1621 * are identical to those last reported.
1622 */
1623 target_offset = target;
1624 if (channel == 'B')
1625 target_offset += 8;
1626 starget = ahc->platform_data->starget[target_offset];
1627 if (starget == NULL)
1628 break;
1629
1630 target_ppr_options =
1631 (spi_dt(starget) ? MSG_EXT_PPR_DT_REQ : 0)
1632 + (spi_qas(starget) ? MSG_EXT_PPR_QAS_REQ : 0)
1633 + (spi_iu(starget) ? MSG_EXT_PPR_IU_REQ : 0);
1634
1635 if (tinfo->curr.period == spi_period(starget)
1636 && tinfo->curr.width == spi_width(starget)
1637 && tinfo->curr.offset == spi_offset(starget)
1638 && tinfo->curr.ppr_options == target_ppr_options)
1639 if (bootverbose == 0)
1640 break;
1641
1642 spi_period(starget) = tinfo->curr.period;
1643 spi_width(starget) = tinfo->curr.width;
1644 spi_offset(starget) = tinfo->curr.offset;
1645 spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_DT_REQ ? 1 : 0;
1646 spi_qas(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_QAS_REQ ? 1 : 0;
1647 spi_iu(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ ? 1 : 0;
1648 spi_display_xfer_agreement(starget);
1649 break;
1650 }
1651 case AC_SENT_BDR:
1652 {
1653 WARN_ON(lun != CAM_LUN_WILDCARD);
1654 scsi_report_device_reset(ahc->platform_data->host,
1655 channel - 'A', target);
1656 break;
1657 }
1658 case AC_BUS_RESET:
1659 if (ahc->platform_data->host != NULL) {
1660 scsi_report_bus_reset(ahc->platform_data->host,
1661 channel - 'A');
1662 }
1663 break;
1664 default:
1665 panic("ahc_send_async: Unexpected async event");
1666 }
1667 }
1668
1669 /*
1670 * Calls the higher level scsi done function and frees the scb.
1671 */
1672 void
ahc_done(struct ahc_softc * ahc,struct scb * scb)1673 ahc_done(struct ahc_softc *ahc, struct scb *scb)
1674 {
1675 struct scsi_cmnd *cmd;
1676 struct ahc_linux_device *dev;
1677
1678 LIST_REMOVE(scb, pending_links);
1679 if ((scb->flags & SCB_UNTAGGEDQ) != 0) {
1680 struct scb_tailq *untagged_q;
1681 int target_offset;
1682
1683 target_offset = SCB_GET_TARGET_OFFSET(ahc, scb);
1684 untagged_q = &(ahc->untagged_queues[target_offset]);
1685 TAILQ_REMOVE(untagged_q, scb, links.tqe);
1686 BUG_ON(!TAILQ_EMPTY(untagged_q));
1687 } else if ((scb->flags & SCB_ACTIVE) == 0) {
1688 /*
1689 * Transactions aborted from the untagged queue may
1690 * not have been dispatched to the controller, so
1691 * only check the SCB_ACTIVE flag for tagged transactions.
1692 */
1693 printk("SCB %d done'd twice\n", scb->hscb->tag);
1694 ahc_dump_card_state(ahc);
1695 panic("Stopping for safety");
1696 }
1697 cmd = scb->io_ctx;
1698 dev = scb->platform_data->dev;
1699 dev->active--;
1700 dev->openings++;
1701 if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) {
1702 cmd->result &= ~(CAM_DEV_QFRZN << 16);
1703 dev->qfrozen--;
1704 }
1705 ahc_linux_unmap_scb(ahc, scb);
1706
1707 /*
1708 * Guard against stale sense data.
1709 * The Linux mid-layer assumes that sense
1710 * was retrieved anytime the first byte of
1711 * the sense buffer looks "sane".
1712 */
1713 cmd->sense_buffer[0] = 0;
1714 if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) {
1715 #ifdef AHC_REPORT_UNDERFLOWS
1716 uint32_t amount_xferred;
1717
1718 amount_xferred =
1719 ahc_get_transfer_length(scb) - ahc_get_residual(scb);
1720 #endif
1721 if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) {
1722 #ifdef AHC_DEBUG
1723 if ((ahc_debug & AHC_SHOW_MISC) != 0) {
1724 ahc_print_path(ahc, scb);
1725 printk("Set CAM_UNCOR_PARITY\n");
1726 }
1727 #endif
1728 ahc_set_transaction_status(scb, CAM_UNCOR_PARITY);
1729 #ifdef AHC_REPORT_UNDERFLOWS
1730 /*
1731 * This code is disabled by default as some
1732 * clients of the SCSI system do not properly
1733 * initialize the underflow parameter. This
1734 * results in spurious termination of commands
1735 * that complete as expected (e.g. underflow is
1736 * allowed as command can return variable amounts
1737 * of data.
1738 */
1739 } else if (amount_xferred < scb->io_ctx->underflow) {
1740 u_int i;
1741
1742 ahc_print_path(ahc, scb);
1743 printk("CDB:");
1744 for (i = 0; i < scb->io_ctx->cmd_len; i++)
1745 printk(" 0x%x", scb->io_ctx->cmnd[i]);
1746 printk("\n");
1747 ahc_print_path(ahc, scb);
1748 printk("Saw underflow (%ld of %ld bytes). "
1749 "Treated as error\n",
1750 ahc_get_residual(scb),
1751 ahc_get_transfer_length(scb));
1752 ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR);
1753 #endif
1754 } else {
1755 ahc_set_transaction_status(scb, CAM_REQ_CMP);
1756 }
1757 } else if (ahc_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) {
1758 ahc_linux_handle_scsi_status(ahc, cmd->device, scb);
1759 }
1760
1761 if (dev->openings == 1
1762 && ahc_get_transaction_status(scb) == CAM_REQ_CMP
1763 && ahc_get_scsi_status(scb) != SAM_STAT_TASK_SET_FULL)
1764 dev->tag_success_count++;
1765 /*
1766 * Some devices deal with temporary internal resource
1767 * shortages by returning queue full. When the queue
1768 * full occurrs, we throttle back. Slowly try to get
1769 * back to our previous queue depth.
1770 */
1771 if ((dev->openings + dev->active) < dev->maxtags
1772 && dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) {
1773 dev->tag_success_count = 0;
1774 dev->openings++;
1775 }
1776
1777 if (dev->active == 0)
1778 dev->commands_since_idle_or_otag = 0;
1779
1780 if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
1781 printk("Recovery SCB completes\n");
1782 if (ahc_get_transaction_status(scb) == CAM_BDR_SENT
1783 || ahc_get_transaction_status(scb) == CAM_REQ_ABORTED)
1784 ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT);
1785
1786 if (ahc->platform_data->eh_done)
1787 complete(ahc->platform_data->eh_done);
1788 }
1789
1790 ahc_free_scb(ahc, scb);
1791 ahc_linux_queue_cmd_complete(ahc, cmd);
1792 }
1793
1794 static void
ahc_linux_handle_scsi_status(struct ahc_softc * ahc,struct scsi_device * sdev,struct scb * scb)1795 ahc_linux_handle_scsi_status(struct ahc_softc *ahc,
1796 struct scsi_device *sdev, struct scb *scb)
1797 {
1798 struct ahc_devinfo devinfo;
1799 struct ahc_linux_device *dev = scsi_transport_device_data(sdev);
1800
1801 ahc_compile_devinfo(&devinfo,
1802 ahc->our_id,
1803 sdev->sdev_target->id, sdev->lun,
1804 sdev->sdev_target->channel == 0 ? 'A' : 'B',
1805 ROLE_INITIATOR);
1806
1807 /*
1808 * We don't currently trust the mid-layer to
1809 * properly deal with queue full or busy. So,
1810 * when one occurs, we tell the mid-layer to
1811 * unconditionally requeue the command to us
1812 * so that we can retry it ourselves. We also
1813 * implement our own throttling mechanism so
1814 * we don't clobber the device with too many
1815 * commands.
1816 */
1817 switch (ahc_get_scsi_status(scb)) {
1818 default:
1819 break;
1820 case SAM_STAT_CHECK_CONDITION:
1821 case SAM_STAT_COMMAND_TERMINATED:
1822 {
1823 struct scsi_cmnd *cmd;
1824
1825 /*
1826 * Copy sense information to the OS's cmd
1827 * structure if it is available.
1828 */
1829 cmd = scb->io_ctx;
1830 if (scb->flags & SCB_SENSE) {
1831 u_int sense_size;
1832
1833 sense_size = min(sizeof(struct scsi_sense_data)
1834 - ahc_get_sense_residual(scb),
1835 (u_long)SCSI_SENSE_BUFFERSIZE);
1836 memcpy(cmd->sense_buffer,
1837 ahc_get_sense_buf(ahc, scb), sense_size);
1838 if (sense_size < SCSI_SENSE_BUFFERSIZE)
1839 memset(&cmd->sense_buffer[sense_size], 0,
1840 SCSI_SENSE_BUFFERSIZE - sense_size);
1841 #ifdef AHC_DEBUG
1842 if (ahc_debug & AHC_SHOW_SENSE) {
1843 int i;
1844
1845 printk("Copied %d bytes of sense data:",
1846 sense_size);
1847 for (i = 0; i < sense_size; i++) {
1848 if ((i & 0xF) == 0)
1849 printk("\n");
1850 printk("0x%x ", cmd->sense_buffer[i]);
1851 }
1852 printk("\n");
1853 }
1854 #endif
1855 }
1856 break;
1857 }
1858 case SAM_STAT_TASK_SET_FULL:
1859 {
1860 /*
1861 * By the time the core driver has returned this
1862 * command, all other commands that were queued
1863 * to us but not the device have been returned.
1864 * This ensures that dev->active is equal to
1865 * the number of commands actually queued to
1866 * the device.
1867 */
1868 dev->tag_success_count = 0;
1869 if (dev->active != 0) {
1870 /*
1871 * Drop our opening count to the number
1872 * of commands currently outstanding.
1873 */
1874 dev->openings = 0;
1875 /*
1876 ahc_print_path(ahc, scb);
1877 printk("Dropping tag count to %d\n", dev->active);
1878 */
1879 if (dev->active == dev->tags_on_last_queuefull) {
1880
1881 dev->last_queuefull_same_count++;
1882 /*
1883 * If we repeatedly see a queue full
1884 * at the same queue depth, this
1885 * device has a fixed number of tag
1886 * slots. Lock in this tag depth
1887 * so we stop seeing queue fulls from
1888 * this device.
1889 */
1890 if (dev->last_queuefull_same_count
1891 == AHC_LOCK_TAGS_COUNT) {
1892 dev->maxtags = dev->active;
1893 ahc_print_path(ahc, scb);
1894 printk("Locking max tag count at %d\n",
1895 dev->active);
1896 }
1897 } else {
1898 dev->tags_on_last_queuefull = dev->active;
1899 dev->last_queuefull_same_count = 0;
1900 }
1901 ahc_set_transaction_status(scb, CAM_REQUEUE_REQ);
1902 ahc_set_scsi_status(scb, SAM_STAT_GOOD);
1903 ahc_platform_set_tags(ahc, sdev, &devinfo,
1904 (dev->flags & AHC_DEV_Q_BASIC)
1905 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
1906 break;
1907 }
1908 /*
1909 * Drop down to a single opening, and treat this
1910 * as if the target returned BUSY SCSI status.
1911 */
1912 dev->openings = 1;
1913 ahc_set_scsi_status(scb, SAM_STAT_BUSY);
1914 ahc_platform_set_tags(ahc, sdev, &devinfo,
1915 (dev->flags & AHC_DEV_Q_BASIC)
1916 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
1917 break;
1918 }
1919 }
1920 }
1921
1922 static void
ahc_linux_queue_cmd_complete(struct ahc_softc * ahc,struct scsi_cmnd * cmd)1923 ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, struct scsi_cmnd *cmd)
1924 {
1925 /*
1926 * Map CAM error codes into Linux Error codes. We
1927 * avoid the conversion so that the DV code has the
1928 * full error information available when making
1929 * state change decisions.
1930 */
1931 {
1932 u_int new_status;
1933
1934 switch (ahc_cmd_get_transaction_status(cmd)) {
1935 case CAM_REQ_INPROG:
1936 case CAM_REQ_CMP:
1937 case CAM_SCSI_STATUS_ERROR:
1938 new_status = DID_OK;
1939 break;
1940 case CAM_REQ_ABORTED:
1941 new_status = DID_ABORT;
1942 break;
1943 case CAM_BUSY:
1944 new_status = DID_BUS_BUSY;
1945 break;
1946 case CAM_REQ_INVALID:
1947 case CAM_PATH_INVALID:
1948 new_status = DID_BAD_TARGET;
1949 break;
1950 case CAM_SEL_TIMEOUT:
1951 new_status = DID_NO_CONNECT;
1952 break;
1953 case CAM_SCSI_BUS_RESET:
1954 case CAM_BDR_SENT:
1955 new_status = DID_RESET;
1956 break;
1957 case CAM_UNCOR_PARITY:
1958 new_status = DID_PARITY;
1959 break;
1960 case CAM_CMD_TIMEOUT:
1961 new_status = DID_TIME_OUT;
1962 break;
1963 case CAM_UA_ABORT:
1964 case CAM_REQ_CMP_ERR:
1965 case CAM_AUTOSENSE_FAIL:
1966 case CAM_NO_HBA:
1967 case CAM_DATA_RUN_ERR:
1968 case CAM_UNEXP_BUSFREE:
1969 case CAM_SEQUENCE_FAIL:
1970 case CAM_CCB_LEN_ERR:
1971 case CAM_PROVIDE_FAIL:
1972 case CAM_REQ_TERMIO:
1973 case CAM_UNREC_HBA_ERROR:
1974 case CAM_REQ_TOO_BIG:
1975 new_status = DID_ERROR;
1976 break;
1977 case CAM_REQUEUE_REQ:
1978 new_status = DID_REQUEUE;
1979 break;
1980 default:
1981 /* We should never get here */
1982 new_status = DID_ERROR;
1983 break;
1984 }
1985
1986 ahc_cmd_set_transaction_status(cmd, new_status);
1987 }
1988
1989 cmd->scsi_done(cmd);
1990 }
1991
1992 static void
ahc_linux_freeze_simq(struct ahc_softc * ahc)1993 ahc_linux_freeze_simq(struct ahc_softc *ahc)
1994 {
1995 unsigned long s;
1996
1997 ahc_lock(ahc, &s);
1998 ahc->platform_data->qfrozen++;
1999 if (ahc->platform_data->qfrozen == 1) {
2000 scsi_block_requests(ahc->platform_data->host);
2001
2002 /* XXX What about Twin channels? */
2003 ahc_platform_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS,
2004 CAM_LUN_WILDCARD, SCB_LIST_NULL,
2005 ROLE_INITIATOR, CAM_REQUEUE_REQ);
2006 }
2007 ahc_unlock(ahc, &s);
2008 }
2009
2010 static void
ahc_linux_release_simq(struct ahc_softc * ahc)2011 ahc_linux_release_simq(struct ahc_softc *ahc)
2012 {
2013 u_long s;
2014 int unblock_reqs;
2015
2016 unblock_reqs = 0;
2017 ahc_lock(ahc, &s);
2018 if (ahc->platform_data->qfrozen > 0)
2019 ahc->platform_data->qfrozen--;
2020 if (ahc->platform_data->qfrozen == 0)
2021 unblock_reqs = 1;
2022 ahc_unlock(ahc, &s);
2023 /*
2024 * There is still a race here. The mid-layer
2025 * should keep its own freeze count and use
2026 * a bottom half handler to run the queues
2027 * so we can unblock with our own lock held.
2028 */
2029 if (unblock_reqs)
2030 scsi_unblock_requests(ahc->platform_data->host);
2031 }
2032
2033 static int
ahc_linux_queue_recovery_cmd(struct scsi_cmnd * cmd,scb_flag flag)2034 ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag)
2035 {
2036 struct ahc_softc *ahc;
2037 struct ahc_linux_device *dev;
2038 struct scb *pending_scb;
2039 u_int saved_scbptr;
2040 u_int active_scb_index;
2041 u_int last_phase;
2042 u_int saved_scsiid;
2043 u_int cdb_byte;
2044 int retval;
2045 int was_paused;
2046 int paused;
2047 int wait;
2048 int disconnected;
2049 unsigned long flags;
2050
2051 pending_scb = NULL;
2052 paused = FALSE;
2053 wait = FALSE;
2054 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
2055
2056 scmd_printk(KERN_INFO, cmd, "Attempting to queue a%s message\n",
2057 flag == SCB_ABORT ? "n ABORT" : " TARGET RESET");
2058
2059 printk("CDB:");
2060 for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++)
2061 printk(" 0x%x", cmd->cmnd[cdb_byte]);
2062 printk("\n");
2063
2064 ahc_lock(ahc, &flags);
2065
2066 /*
2067 * First determine if we currently own this command.
2068 * Start by searching the device queue. If not found
2069 * there, check the pending_scb list. If not found
2070 * at all, and the system wanted us to just abort the
2071 * command, return success.
2072 */
2073 dev = scsi_transport_device_data(cmd->device);
2074
2075 if (dev == NULL) {
2076 /*
2077 * No target device for this command exists,
2078 * so we must not still own the command.
2079 */
2080 printk("%s:%d:%d:%d: Is not an active device\n",
2081 ahc_name(ahc), cmd->device->channel, cmd->device->id,
2082 (u8)cmd->device->lun);
2083 retval = SUCCESS;
2084 goto no_cmd;
2085 }
2086
2087 if ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED)) == 0
2088 && ahc_search_untagged_queues(ahc, cmd, cmd->device->id,
2089 cmd->device->channel + 'A',
2090 (u8)cmd->device->lun,
2091 CAM_REQ_ABORTED, SEARCH_COMPLETE) != 0) {
2092 printk("%s:%d:%d:%d: Command found on untagged queue\n",
2093 ahc_name(ahc), cmd->device->channel, cmd->device->id,
2094 (u8)cmd->device->lun);
2095 retval = SUCCESS;
2096 goto done;
2097 }
2098
2099 /*
2100 * See if we can find a matching cmd in the pending list.
2101 */
2102 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
2103 if (pending_scb->io_ctx == cmd)
2104 break;
2105 }
2106
2107 if (pending_scb == NULL && flag == SCB_DEVICE_RESET) {
2108
2109 /* Any SCB for this device will do for a target reset */
2110 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
2111 if (ahc_match_scb(ahc, pending_scb, scmd_id(cmd),
2112 scmd_channel(cmd) + 'A',
2113 CAM_LUN_WILDCARD,
2114 SCB_LIST_NULL, ROLE_INITIATOR))
2115 break;
2116 }
2117 }
2118
2119 if (pending_scb == NULL) {
2120 scmd_printk(KERN_INFO, cmd, "Command not found\n");
2121 goto no_cmd;
2122 }
2123
2124 if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) {
2125 /*
2126 * We can't queue two recovery actions using the same SCB
2127 */
2128 retval = FAILED;
2129 goto done;
2130 }
2131
2132 /*
2133 * Ensure that the card doesn't do anything
2134 * behind our back and that we didn't "just" miss
2135 * an interrupt that would affect this cmd.
2136 */
2137 was_paused = ahc_is_paused(ahc);
2138 ahc_pause_and_flushwork(ahc);
2139 paused = TRUE;
2140
2141 if ((pending_scb->flags & SCB_ACTIVE) == 0) {
2142 scmd_printk(KERN_INFO, cmd, "Command already completed\n");
2143 goto no_cmd;
2144 }
2145
2146 printk("%s: At time of recovery, card was %spaused\n",
2147 ahc_name(ahc), was_paused ? "" : "not ");
2148 ahc_dump_card_state(ahc);
2149
2150 disconnected = TRUE;
2151 if (flag == SCB_ABORT) {
2152 if (ahc_search_qinfifo(ahc, cmd->device->id,
2153 cmd->device->channel + 'A',
2154 cmd->device->lun,
2155 pending_scb->hscb->tag,
2156 ROLE_INITIATOR, CAM_REQ_ABORTED,
2157 SEARCH_COMPLETE) > 0) {
2158 printk("%s:%d:%d:%d: Cmd aborted from QINFIFO\n",
2159 ahc_name(ahc), cmd->device->channel,
2160 cmd->device->id, (u8)cmd->device->lun);
2161 retval = SUCCESS;
2162 goto done;
2163 }
2164 } else if (ahc_search_qinfifo(ahc, cmd->device->id,
2165 cmd->device->channel + 'A',
2166 cmd->device->lun,
2167 pending_scb->hscb->tag,
2168 ROLE_INITIATOR, /*status*/0,
2169 SEARCH_COUNT) > 0) {
2170 disconnected = FALSE;
2171 }
2172
2173 if (disconnected && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) {
2174 struct scb *bus_scb;
2175
2176 bus_scb = ahc_lookup_scb(ahc, ahc_inb(ahc, SCB_TAG));
2177 if (bus_scb == pending_scb)
2178 disconnected = FALSE;
2179 else if (flag != SCB_ABORT
2180 && ahc_inb(ahc, SAVED_SCSIID) == pending_scb->hscb->scsiid
2181 && ahc_inb(ahc, SAVED_LUN) == SCB_GET_LUN(pending_scb))
2182 disconnected = FALSE;
2183 }
2184
2185 /*
2186 * At this point, pending_scb is the scb associated with the
2187 * passed in command. That command is currently active on the
2188 * bus, is in the disconnected state, or we're hoping to find
2189 * a command for the same target active on the bus to abuse to
2190 * send a BDR. Queue the appropriate message based on which of
2191 * these states we are in.
2192 */
2193 last_phase = ahc_inb(ahc, LASTPHASE);
2194 saved_scbptr = ahc_inb(ahc, SCBPTR);
2195 active_scb_index = ahc_inb(ahc, SCB_TAG);
2196 saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
2197 if (last_phase != P_BUSFREE
2198 && (pending_scb->hscb->tag == active_scb_index
2199 || (flag == SCB_DEVICE_RESET
2200 && SCSIID_TARGET(ahc, saved_scsiid) == scmd_id(cmd)))) {
2201
2202 /*
2203 * We're active on the bus, so assert ATN
2204 * and hope that the target responds.
2205 */
2206 pending_scb = ahc_lookup_scb(ahc, active_scb_index);
2207 pending_scb->flags |= SCB_RECOVERY_SCB|flag;
2208 ahc_outb(ahc, MSG_OUT, HOST_MSG);
2209 ahc_outb(ahc, SCSISIGO, last_phase|ATNO);
2210 scmd_printk(KERN_INFO, cmd, "Device is active, asserting ATN\n");
2211 wait = TRUE;
2212 } else if (disconnected) {
2213
2214 /*
2215 * Actually re-queue this SCB in an attempt
2216 * to select the device before it reconnects.
2217 * In either case (selection or reselection),
2218 * we will now issue the approprate message
2219 * to the timed-out device.
2220 *
2221 * Set the MK_MESSAGE control bit indicating
2222 * that we desire to send a message. We
2223 * also set the disconnected flag since
2224 * in the paging case there is no guarantee
2225 * that our SCB control byte matches the
2226 * version on the card. We don't want the
2227 * sequencer to abort the command thinking
2228 * an unsolicited reselection occurred.
2229 */
2230 pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
2231 pending_scb->flags |= SCB_RECOVERY_SCB|flag;
2232
2233 /*
2234 * Remove any cached copy of this SCB in the
2235 * disconnected list in preparation for the
2236 * queuing of our abort SCB. We use the
2237 * same element in the SCB, SCB_NEXT, for
2238 * both the qinfifo and the disconnected list.
2239 */
2240 ahc_search_disc_list(ahc, cmd->device->id,
2241 cmd->device->channel + 'A',
2242 cmd->device->lun, pending_scb->hscb->tag,
2243 /*stop_on_first*/TRUE,
2244 /*remove*/TRUE,
2245 /*save_state*/FALSE);
2246
2247 /*
2248 * In the non-paging case, the sequencer will
2249 * never re-reference the in-core SCB.
2250 * To make sure we are notified during
2251 * reselection, set the MK_MESSAGE flag in
2252 * the card's copy of the SCB.
2253 */
2254 if ((ahc->flags & AHC_PAGESCBS) == 0) {
2255 ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag);
2256 ahc_outb(ahc, SCB_CONTROL,
2257 ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE);
2258 }
2259
2260 /*
2261 * Clear out any entries in the QINFIFO first
2262 * so we are the next SCB for this target
2263 * to run.
2264 */
2265 ahc_search_qinfifo(ahc, cmd->device->id,
2266 cmd->device->channel + 'A',
2267 cmd->device->lun, SCB_LIST_NULL,
2268 ROLE_INITIATOR, CAM_REQUEUE_REQ,
2269 SEARCH_COMPLETE);
2270 ahc_qinfifo_requeue_tail(ahc, pending_scb);
2271 ahc_outb(ahc, SCBPTR, saved_scbptr);
2272 ahc_print_path(ahc, pending_scb);
2273 printk("Device is disconnected, re-queuing SCB\n");
2274 wait = TRUE;
2275 } else {
2276 scmd_printk(KERN_INFO, cmd, "Unable to deliver message\n");
2277 retval = FAILED;
2278 goto done;
2279 }
2280
2281 no_cmd:
2282 /*
2283 * Our assumption is that if we don't have the command, no
2284 * recovery action was required, so we return success. Again,
2285 * the semantics of the mid-layer recovery engine are not
2286 * well defined, so this may change in time.
2287 */
2288 retval = SUCCESS;
2289 done:
2290 if (paused)
2291 ahc_unpause(ahc);
2292 if (wait) {
2293 DECLARE_COMPLETION_ONSTACK(done);
2294
2295 ahc->platform_data->eh_done = &done;
2296 ahc_unlock(ahc, &flags);
2297
2298 printk("Recovery code sleeping\n");
2299 if (!wait_for_completion_timeout(&done, 5 * HZ)) {
2300 ahc_lock(ahc, &flags);
2301 ahc->platform_data->eh_done = NULL;
2302 ahc_unlock(ahc, &flags);
2303
2304 printk("Timer Expired\n");
2305 retval = FAILED;
2306 }
2307 printk("Recovery code awake\n");
2308 } else
2309 ahc_unlock(ahc, &flags);
2310 return (retval);
2311 }
2312
ahc_linux_set_width(struct scsi_target * starget,int width)2313 static void ahc_linux_set_width(struct scsi_target *starget, int width)
2314 {
2315 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2316 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2317 struct ahc_devinfo devinfo;
2318 unsigned long flags;
2319
2320 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2321 starget->channel + 'A', ROLE_INITIATOR);
2322 ahc_lock(ahc, &flags);
2323 ahc_set_width(ahc, &devinfo, width, AHC_TRANS_GOAL, FALSE);
2324 ahc_unlock(ahc, &flags);
2325 }
2326
ahc_linux_set_period(struct scsi_target * starget,int period)2327 static void ahc_linux_set_period(struct scsi_target *starget, int period)
2328 {
2329 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2330 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2331 struct ahc_tmode_tstate *tstate;
2332 struct ahc_initiator_tinfo *tinfo
2333 = ahc_fetch_transinfo(ahc,
2334 starget->channel + 'A',
2335 shost->this_id, starget->id, &tstate);
2336 struct ahc_devinfo devinfo;
2337 unsigned int ppr_options = tinfo->goal.ppr_options;
2338 unsigned long flags;
2339 unsigned long offset = tinfo->goal.offset;
2340 const struct ahc_syncrate *syncrate;
2341
2342 if (offset == 0)
2343 offset = MAX_OFFSET;
2344
2345 if (period < 9)
2346 period = 9; /* 12.5ns is our minimum */
2347 if (period == 9) {
2348 if (spi_max_width(starget))
2349 ppr_options |= MSG_EXT_PPR_DT_REQ;
2350 else
2351 /* need wide for DT and need DT for 12.5 ns */
2352 period = 10;
2353 }
2354
2355 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2356 starget->channel + 'A', ROLE_INITIATOR);
2357
2358 /* all PPR requests apart from QAS require wide transfers */
2359 if (ppr_options & ~MSG_EXT_PPR_QAS_REQ) {
2360 if (spi_width(starget) == 0)
2361 ppr_options &= MSG_EXT_PPR_QAS_REQ;
2362 }
2363
2364 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2365 AHC_SYNCRATE_DT);
2366 ahc_lock(ahc, &flags);
2367 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset,
2368 ppr_options, AHC_TRANS_GOAL, FALSE);
2369 ahc_unlock(ahc, &flags);
2370 }
2371
ahc_linux_set_offset(struct scsi_target * starget,int offset)2372 static void ahc_linux_set_offset(struct scsi_target *starget, int offset)
2373 {
2374 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2375 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2376 struct ahc_tmode_tstate *tstate;
2377 struct ahc_initiator_tinfo *tinfo
2378 = ahc_fetch_transinfo(ahc,
2379 starget->channel + 'A',
2380 shost->this_id, starget->id, &tstate);
2381 struct ahc_devinfo devinfo;
2382 unsigned int ppr_options = 0;
2383 unsigned int period = 0;
2384 unsigned long flags;
2385 const struct ahc_syncrate *syncrate = NULL;
2386
2387 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2388 starget->channel + 'A', ROLE_INITIATOR);
2389 if (offset != 0) {
2390 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2391 AHC_SYNCRATE_DT);
2392 period = tinfo->goal.period;
2393 ppr_options = tinfo->goal.ppr_options;
2394 }
2395 ahc_lock(ahc, &flags);
2396 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset,
2397 ppr_options, AHC_TRANS_GOAL, FALSE);
2398 ahc_unlock(ahc, &flags);
2399 }
2400
ahc_linux_set_dt(struct scsi_target * starget,int dt)2401 static void ahc_linux_set_dt(struct scsi_target *starget, int dt)
2402 {
2403 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2404 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2405 struct ahc_tmode_tstate *tstate;
2406 struct ahc_initiator_tinfo *tinfo
2407 = ahc_fetch_transinfo(ahc,
2408 starget->channel + 'A',
2409 shost->this_id, starget->id, &tstate);
2410 struct ahc_devinfo devinfo;
2411 unsigned int ppr_options = tinfo->goal.ppr_options
2412 & ~MSG_EXT_PPR_DT_REQ;
2413 unsigned int period = tinfo->goal.period;
2414 unsigned int width = tinfo->goal.width;
2415 unsigned long flags;
2416 const struct ahc_syncrate *syncrate;
2417
2418 if (dt && spi_max_width(starget)) {
2419 ppr_options |= MSG_EXT_PPR_DT_REQ;
2420 if (!width)
2421 ahc_linux_set_width(starget, 1);
2422 } else if (period == 9)
2423 period = 10; /* if resetting DT, period must be >= 25ns */
2424
2425 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2426 starget->channel + 'A', ROLE_INITIATOR);
2427 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2428 AHC_SYNCRATE_DT);
2429 ahc_lock(ahc, &flags);
2430 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
2431 ppr_options, AHC_TRANS_GOAL, FALSE);
2432 ahc_unlock(ahc, &flags);
2433 }
2434
2435 #if 0
2436 /* FIXME: This code claims to support IU and QAS. However, the actual
2437 * sequencer code and aic7xxx_core have no support for these parameters and
2438 * will get into a bad state if they're negotiated. Do not enable this
2439 * unless you know what you're doing */
2440 static void ahc_linux_set_qas(struct scsi_target *starget, int qas)
2441 {
2442 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2443 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2444 struct ahc_tmode_tstate *tstate;
2445 struct ahc_initiator_tinfo *tinfo
2446 = ahc_fetch_transinfo(ahc,
2447 starget->channel + 'A',
2448 shost->this_id, starget->id, &tstate);
2449 struct ahc_devinfo devinfo;
2450 unsigned int ppr_options = tinfo->goal.ppr_options
2451 & ~MSG_EXT_PPR_QAS_REQ;
2452 unsigned int period = tinfo->goal.period;
2453 unsigned long flags;
2454 struct ahc_syncrate *syncrate;
2455
2456 if (qas)
2457 ppr_options |= MSG_EXT_PPR_QAS_REQ;
2458
2459 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2460 starget->channel + 'A', ROLE_INITIATOR);
2461 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2462 AHC_SYNCRATE_DT);
2463 ahc_lock(ahc, &flags);
2464 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
2465 ppr_options, AHC_TRANS_GOAL, FALSE);
2466 ahc_unlock(ahc, &flags);
2467 }
2468
2469 static void ahc_linux_set_iu(struct scsi_target *starget, int iu)
2470 {
2471 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2472 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2473 struct ahc_tmode_tstate *tstate;
2474 struct ahc_initiator_tinfo *tinfo
2475 = ahc_fetch_transinfo(ahc,
2476 starget->channel + 'A',
2477 shost->this_id, starget->id, &tstate);
2478 struct ahc_devinfo devinfo;
2479 unsigned int ppr_options = tinfo->goal.ppr_options
2480 & ~MSG_EXT_PPR_IU_REQ;
2481 unsigned int period = tinfo->goal.period;
2482 unsigned long flags;
2483 struct ahc_syncrate *syncrate;
2484
2485 if (iu)
2486 ppr_options |= MSG_EXT_PPR_IU_REQ;
2487
2488 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2489 starget->channel + 'A', ROLE_INITIATOR);
2490 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2491 AHC_SYNCRATE_DT);
2492 ahc_lock(ahc, &flags);
2493 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
2494 ppr_options, AHC_TRANS_GOAL, FALSE);
2495 ahc_unlock(ahc, &flags);
2496 }
2497 #endif
2498
ahc_linux_get_signalling(struct Scsi_Host * shost)2499 static void ahc_linux_get_signalling(struct Scsi_Host *shost)
2500 {
2501 struct ahc_softc *ahc = *(struct ahc_softc **)shost->hostdata;
2502 unsigned long flags;
2503 u8 mode;
2504
2505 if (!(ahc->features & AHC_ULTRA2)) {
2506 /* non-LVD chipset, may not have SBLKCTL reg */
2507 spi_signalling(shost) =
2508 ahc->features & AHC_HVD ?
2509 SPI_SIGNAL_HVD :
2510 SPI_SIGNAL_SE;
2511 return;
2512 }
2513
2514 ahc_lock(ahc, &flags);
2515 ahc_pause(ahc);
2516 mode = ahc_inb(ahc, SBLKCTL);
2517 ahc_unpause(ahc);
2518 ahc_unlock(ahc, &flags);
2519
2520 if (mode & ENAB40)
2521 spi_signalling(shost) = SPI_SIGNAL_LVD;
2522 else if (mode & ENAB20)
2523 spi_signalling(shost) = SPI_SIGNAL_SE;
2524 else
2525 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
2526 }
2527
2528 static struct spi_function_template ahc_linux_transport_functions = {
2529 .set_offset = ahc_linux_set_offset,
2530 .show_offset = 1,
2531 .set_period = ahc_linux_set_period,
2532 .show_period = 1,
2533 .set_width = ahc_linux_set_width,
2534 .show_width = 1,
2535 .set_dt = ahc_linux_set_dt,
2536 .show_dt = 1,
2537 #if 0
2538 .set_iu = ahc_linux_set_iu,
2539 .show_iu = 1,
2540 .set_qas = ahc_linux_set_qas,
2541 .show_qas = 1,
2542 #endif
2543 .get_signalling = ahc_linux_get_signalling,
2544 };
2545
2546
2547
2548 static int __init
ahc_linux_init(void)2549 ahc_linux_init(void)
2550 {
2551 /*
2552 * If we've been passed any parameters, process them now.
2553 */
2554 if (aic7xxx)
2555 aic7xxx_setup(aic7xxx);
2556
2557 ahc_linux_transport_template =
2558 spi_attach_transport(&ahc_linux_transport_functions);
2559 if (!ahc_linux_transport_template)
2560 return -ENODEV;
2561
2562 scsi_transport_reserve_device(ahc_linux_transport_template,
2563 sizeof(struct ahc_linux_device));
2564
2565 ahc_linux_pci_init();
2566 ahc_linux_eisa_init();
2567 return 0;
2568 }
2569
2570 static void
ahc_linux_exit(void)2571 ahc_linux_exit(void)
2572 {
2573 ahc_linux_pci_exit();
2574 ahc_linux_eisa_exit();
2575 spi_release_transport(ahc_linux_transport_template);
2576 }
2577
2578 module_init(ahc_linux_init);
2579 module_exit(ahc_linux_exit);
2580