• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 #include <trace/hooks/net.h>
154 
155 #include "net-sysfs.h"
156 
157 #define MAX_GRO_SKBS 8
158 
159 /* This should be increased if a protocol with a bigger head is added. */
160 #define GRO_MAX_HEAD (MAX_HEADER + 128)
161 
162 static DEFINE_SPINLOCK(ptype_lock);
163 static DEFINE_SPINLOCK(offload_lock);
164 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
165 struct list_head ptype_all __read_mostly;	/* Taps */
166 static struct list_head offload_base __read_mostly;
167 
168 static int netif_rx_internal(struct sk_buff *skb);
169 static int call_netdevice_notifiers_info(unsigned long val,
170 					 struct netdev_notifier_info *info);
171 static int call_netdevice_notifiers_extack(unsigned long val,
172 					   struct net_device *dev,
173 					   struct netlink_ext_ack *extack);
174 static struct napi_struct *napi_by_id(unsigned int napi_id);
175 
176 /*
177  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178  * semaphore.
179  *
180  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181  *
182  * Writers must hold the rtnl semaphore while they loop through the
183  * dev_base_head list, and hold dev_base_lock for writing when they do the
184  * actual updates.  This allows pure readers to access the list even
185  * while a writer is preparing to update it.
186  *
187  * To put it another way, dev_base_lock is held for writing only to
188  * protect against pure readers; the rtnl semaphore provides the
189  * protection against other writers.
190  *
191  * See, for example usages, register_netdevice() and
192  * unregister_netdevice(), which must be called with the rtnl
193  * semaphore held.
194  */
195 DEFINE_RWLOCK(dev_base_lock);
196 EXPORT_SYMBOL(dev_base_lock);
197 
198 static DEFINE_MUTEX(ifalias_mutex);
199 
200 /* protects napi_hash addition/deletion and napi_gen_id */
201 static DEFINE_SPINLOCK(napi_hash_lock);
202 
203 static unsigned int napi_gen_id = NR_CPUS;
204 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
205 
206 static DECLARE_RWSEM(devnet_rename_sem);
207 
dev_base_seq_inc(struct net * net)208 static inline void dev_base_seq_inc(struct net *net)
209 {
210 	while (++net->dev_base_seq == 0)
211 		;
212 }
213 
dev_name_hash(struct net * net,const char * name)214 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
215 {
216 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
217 
218 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
219 }
220 
dev_index_hash(struct net * net,int ifindex)221 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
222 {
223 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
224 }
225 
rps_lock(struct softnet_data * sd)226 static inline void rps_lock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_lock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
rps_unlock(struct softnet_data * sd)233 static inline void rps_unlock(struct softnet_data *sd)
234 {
235 #ifdef CONFIG_RPS
236 	spin_unlock(&sd->input_pkt_queue.lock);
237 #endif
238 }
239 
netdev_name_node_alloc(struct net_device * dev,const char * name)240 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
241 						       const char *name)
242 {
243 	struct netdev_name_node *name_node;
244 
245 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
246 	if (!name_node)
247 		return NULL;
248 	INIT_HLIST_NODE(&name_node->hlist);
249 	name_node->dev = dev;
250 	name_node->name = name;
251 	return name_node;
252 }
253 
254 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)255 netdev_name_node_head_alloc(struct net_device *dev)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = netdev_name_node_alloc(dev, dev->name);
260 	if (!name_node)
261 		return NULL;
262 	INIT_LIST_HEAD(&name_node->list);
263 	return name_node;
264 }
265 
netdev_name_node_free(struct netdev_name_node * name_node)266 static void netdev_name_node_free(struct netdev_name_node *name_node)
267 {
268 	kfree(name_node);
269 }
270 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)271 static void netdev_name_node_add(struct net *net,
272 				 struct netdev_name_node *name_node)
273 {
274 	hlist_add_head_rcu(&name_node->hlist,
275 			   dev_name_hash(net, name_node->name));
276 }
277 
netdev_name_node_del(struct netdev_name_node * name_node)278 static void netdev_name_node_del(struct netdev_name_node *name_node)
279 {
280 	hlist_del_rcu(&name_node->hlist);
281 }
282 
netdev_name_node_lookup(struct net * net,const char * name)283 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
284 							const char *name)
285 {
286 	struct hlist_head *head = dev_name_hash(net, name);
287 	struct netdev_name_node *name_node;
288 
289 	hlist_for_each_entry(name_node, head, hlist)
290 		if (!strcmp(name_node->name, name))
291 			return name_node;
292 	return NULL;
293 }
294 
netdev_name_node_lookup_rcu(struct net * net,const char * name)295 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
296 							    const char *name)
297 {
298 	struct hlist_head *head = dev_name_hash(net, name);
299 	struct netdev_name_node *name_node;
300 
301 	hlist_for_each_entry_rcu(name_node, head, hlist)
302 		if (!strcmp(name_node->name, name))
303 			return name_node;
304 	return NULL;
305 }
306 
netdev_name_in_use(struct net * net,const char * name)307 bool netdev_name_in_use(struct net *net, const char *name)
308 {
309 	return netdev_name_node_lookup(net, name);
310 }
311 EXPORT_SYMBOL(netdev_name_in_use);
312 
netdev_name_node_alt_create(struct net_device * dev,const char * name)313 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
314 {
315 	struct netdev_name_node *name_node;
316 	struct net *net = dev_net(dev);
317 
318 	name_node = netdev_name_node_lookup(net, name);
319 	if (name_node)
320 		return -EEXIST;
321 	name_node = netdev_name_node_alloc(dev, name);
322 	if (!name_node)
323 		return -ENOMEM;
324 	netdev_name_node_add(net, name_node);
325 	/* The node that holds dev->name acts as a head of per-device list. */
326 	list_add_tail(&name_node->list, &dev->name_node->list);
327 
328 	return 0;
329 }
330 EXPORT_SYMBOL(netdev_name_node_alt_create);
331 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)332 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
333 {
334 	list_del(&name_node->list);
335 	netdev_name_node_del(name_node);
336 	kfree(name_node->name);
337 	netdev_name_node_free(name_node);
338 }
339 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)340 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
341 {
342 	struct netdev_name_node *name_node;
343 	struct net *net = dev_net(dev);
344 
345 	name_node = netdev_name_node_lookup(net, name);
346 	if (!name_node)
347 		return -ENOENT;
348 	/* lookup might have found our primary name or a name belonging
349 	 * to another device.
350 	 */
351 	if (name_node == dev->name_node || name_node->dev != dev)
352 		return -EINVAL;
353 
354 	__netdev_name_node_alt_destroy(name_node);
355 
356 	return 0;
357 }
358 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
359 
netdev_name_node_alt_flush(struct net_device * dev)360 static void netdev_name_node_alt_flush(struct net_device *dev)
361 {
362 	struct netdev_name_node *name_node, *tmp;
363 
364 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
365 		__netdev_name_node_alt_destroy(name_node);
366 }
367 
368 /* Device list insertion */
list_netdevice(struct net_device * dev)369 static void list_netdevice(struct net_device *dev)
370 {
371 	struct net *net = dev_net(dev);
372 
373 	ASSERT_RTNL();
374 
375 	write_lock(&dev_base_lock);
376 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
377 	netdev_name_node_add(net, dev->name_node);
378 	hlist_add_head_rcu(&dev->index_hlist,
379 			   dev_index_hash(net, dev->ifindex));
380 	write_unlock(&dev_base_lock);
381 
382 	dev_base_seq_inc(net);
383 }
384 
385 /* Device list removal
386  * caller must respect a RCU grace period before freeing/reusing dev
387  */
unlist_netdevice(struct net_device * dev,bool lock)388 static void unlist_netdevice(struct net_device *dev, bool lock)
389 {
390 	ASSERT_RTNL();
391 
392 	/* Unlink dev from the device chain */
393 	if (lock)
394 		write_lock(&dev_base_lock);
395 	list_del_rcu(&dev->dev_list);
396 	netdev_name_node_del(dev->name_node);
397 	hlist_del_rcu(&dev->index_hlist);
398 	if (lock)
399 		write_unlock(&dev_base_lock);
400 
401 	dev_base_seq_inc(dev_net(dev));
402 }
403 
404 /*
405  *	Our notifier list
406  */
407 
408 static RAW_NOTIFIER_HEAD(netdev_chain);
409 
410 /*
411  *	Device drivers call our routines to queue packets here. We empty the
412  *	queue in the local softnet handler.
413  */
414 
415 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
416 EXPORT_PER_CPU_SYMBOL(softnet_data);
417 
418 #ifdef CONFIG_LOCKDEP
419 /*
420  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
421  * according to dev->type
422  */
423 static const unsigned short netdev_lock_type[] = {
424 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
425 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
426 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
427 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
428 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
429 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
430 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
431 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
432 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
433 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
434 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
435 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
436 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
437 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
438 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
439 
440 static const char *const netdev_lock_name[] = {
441 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
442 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
443 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
444 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
445 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
446 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
447 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
448 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
449 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
450 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
451 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
452 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
453 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
454 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
455 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
456 
457 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
458 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
459 
netdev_lock_pos(unsigned short dev_type)460 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
461 {
462 	int i;
463 
464 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
465 		if (netdev_lock_type[i] == dev_type)
466 			return i;
467 	/* the last key is used by default */
468 	return ARRAY_SIZE(netdev_lock_type) - 1;
469 }
470 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)471 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
472 						 unsigned short dev_type)
473 {
474 	int i;
475 
476 	i = netdev_lock_pos(dev_type);
477 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
478 				   netdev_lock_name[i]);
479 }
480 
netdev_set_addr_lockdep_class(struct net_device * dev)481 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
482 {
483 	int i;
484 
485 	i = netdev_lock_pos(dev->type);
486 	lockdep_set_class_and_name(&dev->addr_list_lock,
487 				   &netdev_addr_lock_key[i],
488 				   netdev_lock_name[i]);
489 }
490 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)491 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
492 						 unsigned short dev_type)
493 {
494 }
495 
netdev_set_addr_lockdep_class(struct net_device * dev)496 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
497 {
498 }
499 #endif
500 
501 /*******************************************************************************
502  *
503  *		Protocol management and registration routines
504  *
505  *******************************************************************************/
506 
507 
508 /*
509  *	Add a protocol ID to the list. Now that the input handler is
510  *	smarter we can dispense with all the messy stuff that used to be
511  *	here.
512  *
513  *	BEWARE!!! Protocol handlers, mangling input packets,
514  *	MUST BE last in hash buckets and checking protocol handlers
515  *	MUST start from promiscuous ptype_all chain in net_bh.
516  *	It is true now, do not change it.
517  *	Explanation follows: if protocol handler, mangling packet, will
518  *	be the first on list, it is not able to sense, that packet
519  *	is cloned and should be copied-on-write, so that it will
520  *	change it and subsequent readers will get broken packet.
521  *							--ANK (980803)
522  */
523 
ptype_head(const struct packet_type * pt)524 static inline struct list_head *ptype_head(const struct packet_type *pt)
525 {
526 	struct list_head vendor_pt = { .next  = NULL, };
527 
528 	trace_android_vh_ptype_head(pt, &vendor_pt);
529 	if (vendor_pt.next)
530 		return vendor_pt.next;
531 
532 	if (pt->type == htons(ETH_P_ALL))
533 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
534 	else
535 		return pt->dev ? &pt->dev->ptype_specific :
536 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
537 }
538 
539 /**
540  *	dev_add_pack - add packet handler
541  *	@pt: packet type declaration
542  *
543  *	Add a protocol handler to the networking stack. The passed &packet_type
544  *	is linked into kernel lists and may not be freed until it has been
545  *	removed from the kernel lists.
546  *
547  *	This call does not sleep therefore it can not
548  *	guarantee all CPU's that are in middle of receiving packets
549  *	will see the new packet type (until the next received packet).
550  */
551 
dev_add_pack(struct packet_type * pt)552 void dev_add_pack(struct packet_type *pt)
553 {
554 	struct list_head *head = ptype_head(pt);
555 
556 	spin_lock(&ptype_lock);
557 	list_add_rcu(&pt->list, head);
558 	spin_unlock(&ptype_lock);
559 }
560 EXPORT_SYMBOL(dev_add_pack);
561 
562 /**
563  *	__dev_remove_pack	 - remove packet handler
564  *	@pt: packet type declaration
565  *
566  *	Remove a protocol handler that was previously added to the kernel
567  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
568  *	from the kernel lists and can be freed or reused once this function
569  *	returns.
570  *
571  *      The packet type might still be in use by receivers
572  *	and must not be freed until after all the CPU's have gone
573  *	through a quiescent state.
574  */
__dev_remove_pack(struct packet_type * pt)575 void __dev_remove_pack(struct packet_type *pt)
576 {
577 	struct list_head *head = ptype_head(pt);
578 	struct packet_type *pt1;
579 
580 	spin_lock(&ptype_lock);
581 
582 	list_for_each_entry(pt1, head, list) {
583 		if (pt == pt1) {
584 			list_del_rcu(&pt->list);
585 			goto out;
586 		}
587 	}
588 
589 	pr_warn("dev_remove_pack: %p not found\n", pt);
590 out:
591 	spin_unlock(&ptype_lock);
592 }
593 EXPORT_SYMBOL(__dev_remove_pack);
594 
595 /**
596  *	dev_remove_pack	 - remove packet handler
597  *	@pt: packet type declaration
598  *
599  *	Remove a protocol handler that was previously added to the kernel
600  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
601  *	from the kernel lists and can be freed or reused once this function
602  *	returns.
603  *
604  *	This call sleeps to guarantee that no CPU is looking at the packet
605  *	type after return.
606  */
dev_remove_pack(struct packet_type * pt)607 void dev_remove_pack(struct packet_type *pt)
608 {
609 	__dev_remove_pack(pt);
610 
611 	synchronize_net();
612 }
613 EXPORT_SYMBOL(dev_remove_pack);
614 
615 
616 /**
617  *	dev_add_offload - register offload handlers
618  *	@po: protocol offload declaration
619  *
620  *	Add protocol offload handlers to the networking stack. The passed
621  *	&proto_offload is linked into kernel lists and may not be freed until
622  *	it has been removed from the kernel lists.
623  *
624  *	This call does not sleep therefore it can not
625  *	guarantee all CPU's that are in middle of receiving packets
626  *	will see the new offload handlers (until the next received packet).
627  */
dev_add_offload(struct packet_offload * po)628 void dev_add_offload(struct packet_offload *po)
629 {
630 	struct packet_offload *elem;
631 
632 	spin_lock(&offload_lock);
633 	list_for_each_entry(elem, &offload_base, list) {
634 		if (po->priority < elem->priority)
635 			break;
636 	}
637 	list_add_rcu(&po->list, elem->list.prev);
638 	spin_unlock(&offload_lock);
639 }
640 EXPORT_SYMBOL(dev_add_offload);
641 
642 /**
643  *	__dev_remove_offload	 - remove offload handler
644  *	@po: packet offload declaration
645  *
646  *	Remove a protocol offload handler that was previously added to the
647  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
648  *	is removed from the kernel lists and can be freed or reused once this
649  *	function returns.
650  *
651  *      The packet type might still be in use by receivers
652  *	and must not be freed until after all the CPU's have gone
653  *	through a quiescent state.
654  */
__dev_remove_offload(struct packet_offload * po)655 static void __dev_remove_offload(struct packet_offload *po)
656 {
657 	struct list_head *head = &offload_base;
658 	struct packet_offload *po1;
659 
660 	spin_lock(&offload_lock);
661 
662 	list_for_each_entry(po1, head, list) {
663 		if (po == po1) {
664 			list_del_rcu(&po->list);
665 			goto out;
666 		}
667 	}
668 
669 	pr_warn("dev_remove_offload: %p not found\n", po);
670 out:
671 	spin_unlock(&offload_lock);
672 }
673 
674 /**
675  *	dev_remove_offload	 - remove packet offload handler
676  *	@po: packet offload declaration
677  *
678  *	Remove a packet offload handler that was previously added to the kernel
679  *	offload handlers by dev_add_offload(). The passed &offload_type is
680  *	removed from the kernel lists and can be freed or reused once this
681  *	function returns.
682  *
683  *	This call sleeps to guarantee that no CPU is looking at the packet
684  *	type after return.
685  */
dev_remove_offload(struct packet_offload * po)686 void dev_remove_offload(struct packet_offload *po)
687 {
688 	__dev_remove_offload(po);
689 
690 	synchronize_net();
691 }
692 EXPORT_SYMBOL(dev_remove_offload);
693 
694 /*******************************************************************************
695  *
696  *			    Device Interface Subroutines
697  *
698  *******************************************************************************/
699 
700 /**
701  *	dev_get_iflink	- get 'iflink' value of a interface
702  *	@dev: targeted interface
703  *
704  *	Indicates the ifindex the interface is linked to.
705  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
706  */
707 
dev_get_iflink(const struct net_device * dev)708 int dev_get_iflink(const struct net_device *dev)
709 {
710 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
711 		return dev->netdev_ops->ndo_get_iflink(dev);
712 
713 	return dev->ifindex;
714 }
715 EXPORT_SYMBOL(dev_get_iflink);
716 
717 /**
718  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
719  *	@dev: targeted interface
720  *	@skb: The packet.
721  *
722  *	For better visibility of tunnel traffic OVS needs to retrieve
723  *	egress tunnel information for a packet. Following API allows
724  *	user to get this info.
725  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)726 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
727 {
728 	struct ip_tunnel_info *info;
729 
730 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
731 		return -EINVAL;
732 
733 	info = skb_tunnel_info_unclone(skb);
734 	if (!info)
735 		return -ENOMEM;
736 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
737 		return -EINVAL;
738 
739 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
740 }
741 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
742 
dev_fwd_path(struct net_device_path_stack * stack)743 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
744 {
745 	int k = stack->num_paths++;
746 
747 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
748 		return NULL;
749 
750 	return &stack->path[k];
751 }
752 
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)753 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
754 			  struct net_device_path_stack *stack)
755 {
756 	const struct net_device *last_dev;
757 	struct net_device_path_ctx ctx = {
758 		.dev	= dev,
759 	};
760 	struct net_device_path *path;
761 	int ret = 0;
762 
763 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
764 	stack->num_paths = 0;
765 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
766 		last_dev = ctx.dev;
767 		path = dev_fwd_path(stack);
768 		if (!path)
769 			return -1;
770 
771 		memset(path, 0, sizeof(struct net_device_path));
772 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
773 		if (ret < 0)
774 			return -1;
775 
776 		if (WARN_ON_ONCE(last_dev == ctx.dev))
777 			return -1;
778 	}
779 	path = dev_fwd_path(stack);
780 	if (!path)
781 		return -1;
782 	path->type = DEV_PATH_ETHERNET;
783 	path->dev = ctx.dev;
784 
785 	return ret;
786 }
787 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
788 
789 /**
790  *	__dev_get_by_name	- find a device by its name
791  *	@net: the applicable net namespace
792  *	@name: name to find
793  *
794  *	Find an interface by name. Must be called under RTNL semaphore
795  *	or @dev_base_lock. If the name is found a pointer to the device
796  *	is returned. If the name is not found then %NULL is returned. The
797  *	reference counters are not incremented so the caller must be
798  *	careful with locks.
799  */
800 
__dev_get_by_name(struct net * net,const char * name)801 struct net_device *__dev_get_by_name(struct net *net, const char *name)
802 {
803 	struct netdev_name_node *node_name;
804 
805 	node_name = netdev_name_node_lookup(net, name);
806 	return node_name ? node_name->dev : NULL;
807 }
808 EXPORT_SYMBOL(__dev_get_by_name);
809 
810 /**
811  * dev_get_by_name_rcu	- find a device by its name
812  * @net: the applicable net namespace
813  * @name: name to find
814  *
815  * Find an interface by name.
816  * If the name is found a pointer to the device is returned.
817  * If the name is not found then %NULL is returned.
818  * The reference counters are not incremented so the caller must be
819  * careful with locks. The caller must hold RCU lock.
820  */
821 
dev_get_by_name_rcu(struct net * net,const char * name)822 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
823 {
824 	struct netdev_name_node *node_name;
825 
826 	node_name = netdev_name_node_lookup_rcu(net, name);
827 	return node_name ? node_name->dev : NULL;
828 }
829 EXPORT_SYMBOL(dev_get_by_name_rcu);
830 
831 /**
832  *	dev_get_by_name		- find a device by its name
833  *	@net: the applicable net namespace
834  *	@name: name to find
835  *
836  *	Find an interface by name. This can be called from any
837  *	context and does its own locking. The returned handle has
838  *	the usage count incremented and the caller must use dev_put() to
839  *	release it when it is no longer needed. %NULL is returned if no
840  *	matching device is found.
841  */
842 
dev_get_by_name(struct net * net,const char * name)843 struct net_device *dev_get_by_name(struct net *net, const char *name)
844 {
845 	struct net_device *dev;
846 
847 	rcu_read_lock();
848 	dev = dev_get_by_name_rcu(net, name);
849 	dev_hold(dev);
850 	rcu_read_unlock();
851 	return dev;
852 }
853 EXPORT_SYMBOL(dev_get_by_name);
854 
855 /**
856  *	__dev_get_by_index - find a device by its ifindex
857  *	@net: the applicable net namespace
858  *	@ifindex: index of device
859  *
860  *	Search for an interface by index. Returns %NULL if the device
861  *	is not found or a pointer to the device. The device has not
862  *	had its reference counter increased so the caller must be careful
863  *	about locking. The caller must hold either the RTNL semaphore
864  *	or @dev_base_lock.
865  */
866 
__dev_get_by_index(struct net * net,int ifindex)867 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
868 {
869 	struct net_device *dev;
870 	struct hlist_head *head = dev_index_hash(net, ifindex);
871 
872 	hlist_for_each_entry(dev, head, index_hlist)
873 		if (dev->ifindex == ifindex)
874 			return dev;
875 
876 	return NULL;
877 }
878 EXPORT_SYMBOL(__dev_get_by_index);
879 
880 /**
881  *	dev_get_by_index_rcu - find a device by its ifindex
882  *	@net: the applicable net namespace
883  *	@ifindex: index of device
884  *
885  *	Search for an interface by index. Returns %NULL if the device
886  *	is not found or a pointer to the device. The device has not
887  *	had its reference counter increased so the caller must be careful
888  *	about locking. The caller must hold RCU lock.
889  */
890 
dev_get_by_index_rcu(struct net * net,int ifindex)891 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
892 {
893 	struct net_device *dev;
894 	struct hlist_head *head = dev_index_hash(net, ifindex);
895 
896 	hlist_for_each_entry_rcu(dev, head, index_hlist)
897 		if (dev->ifindex == ifindex)
898 			return dev;
899 
900 	return NULL;
901 }
902 EXPORT_SYMBOL(dev_get_by_index_rcu);
903 
904 
905 /**
906  *	dev_get_by_index - find a device by its ifindex
907  *	@net: the applicable net namespace
908  *	@ifindex: index of device
909  *
910  *	Search for an interface by index. Returns NULL if the device
911  *	is not found or a pointer to the device. The device returned has
912  *	had a reference added and the pointer is safe until the user calls
913  *	dev_put to indicate they have finished with it.
914  */
915 
dev_get_by_index(struct net * net,int ifindex)916 struct net_device *dev_get_by_index(struct net *net, int ifindex)
917 {
918 	struct net_device *dev;
919 
920 	rcu_read_lock();
921 	dev = dev_get_by_index_rcu(net, ifindex);
922 	dev_hold(dev);
923 	rcu_read_unlock();
924 	return dev;
925 }
926 EXPORT_SYMBOL(dev_get_by_index);
927 
928 /**
929  *	dev_get_by_napi_id - find a device by napi_id
930  *	@napi_id: ID of the NAPI struct
931  *
932  *	Search for an interface by NAPI ID. Returns %NULL if the device
933  *	is not found or a pointer to the device. The device has not had
934  *	its reference counter increased so the caller must be careful
935  *	about locking. The caller must hold RCU lock.
936  */
937 
dev_get_by_napi_id(unsigned int napi_id)938 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
939 {
940 	struct napi_struct *napi;
941 
942 	WARN_ON_ONCE(!rcu_read_lock_held());
943 
944 	if (napi_id < MIN_NAPI_ID)
945 		return NULL;
946 
947 	napi = napi_by_id(napi_id);
948 
949 	return napi ? napi->dev : NULL;
950 }
951 EXPORT_SYMBOL(dev_get_by_napi_id);
952 
953 /**
954  *	netdev_get_name - get a netdevice name, knowing its ifindex.
955  *	@net: network namespace
956  *	@name: a pointer to the buffer where the name will be stored.
957  *	@ifindex: the ifindex of the interface to get the name from.
958  */
netdev_get_name(struct net * net,char * name,int ifindex)959 int netdev_get_name(struct net *net, char *name, int ifindex)
960 {
961 	struct net_device *dev;
962 	int ret;
963 
964 	down_read(&devnet_rename_sem);
965 	rcu_read_lock();
966 
967 	dev = dev_get_by_index_rcu(net, ifindex);
968 	if (!dev) {
969 		ret = -ENODEV;
970 		goto out;
971 	}
972 
973 	strcpy(name, dev->name);
974 
975 	ret = 0;
976 out:
977 	rcu_read_unlock();
978 	up_read(&devnet_rename_sem);
979 	return ret;
980 }
981 
982 /**
983  *	dev_getbyhwaddr_rcu - find a device by its hardware address
984  *	@net: the applicable net namespace
985  *	@type: media type of device
986  *	@ha: hardware address
987  *
988  *	Search for an interface by MAC address. Returns NULL if the device
989  *	is not found or a pointer to the device.
990  *	The caller must hold RCU or RTNL.
991  *	The returned device has not had its ref count increased
992  *	and the caller must therefore be careful about locking
993  *
994  */
995 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)996 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
997 				       const char *ha)
998 {
999 	struct net_device *dev;
1000 
1001 	for_each_netdev_rcu(net, dev)
1002 		if (dev->type == type &&
1003 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1004 			return dev;
1005 
1006 	return NULL;
1007 }
1008 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1009 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1010 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1011 {
1012 	struct net_device *dev, *ret = NULL;
1013 
1014 	rcu_read_lock();
1015 	for_each_netdev_rcu(net, dev)
1016 		if (dev->type == type) {
1017 			dev_hold(dev);
1018 			ret = dev;
1019 			break;
1020 		}
1021 	rcu_read_unlock();
1022 	return ret;
1023 }
1024 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1025 
1026 /**
1027  *	__dev_get_by_flags - find any device with given flags
1028  *	@net: the applicable net namespace
1029  *	@if_flags: IFF_* values
1030  *	@mask: bitmask of bits in if_flags to check
1031  *
1032  *	Search for any interface with the given flags. Returns NULL if a device
1033  *	is not found or a pointer to the device. Must be called inside
1034  *	rtnl_lock(), and result refcount is unchanged.
1035  */
1036 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1037 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1038 				      unsigned short mask)
1039 {
1040 	struct net_device *dev, *ret;
1041 
1042 	ASSERT_RTNL();
1043 
1044 	ret = NULL;
1045 	for_each_netdev(net, dev) {
1046 		if (((dev->flags ^ if_flags) & mask) == 0) {
1047 			ret = dev;
1048 			break;
1049 		}
1050 	}
1051 	return ret;
1052 }
1053 EXPORT_SYMBOL(__dev_get_by_flags);
1054 
1055 /**
1056  *	dev_valid_name - check if name is okay for network device
1057  *	@name: name string
1058  *
1059  *	Network device names need to be valid file names to
1060  *	allow sysfs to work.  We also disallow any kind of
1061  *	whitespace.
1062  */
dev_valid_name(const char * name)1063 bool dev_valid_name(const char *name)
1064 {
1065 	if (*name == '\0')
1066 		return false;
1067 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1068 		return false;
1069 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1070 		return false;
1071 
1072 	while (*name) {
1073 		if (*name == '/' || *name == ':' || isspace(*name))
1074 			return false;
1075 		name++;
1076 	}
1077 	return true;
1078 }
1079 EXPORT_SYMBOL(dev_valid_name);
1080 
1081 /**
1082  *	__dev_alloc_name - allocate a name for a device
1083  *	@net: network namespace to allocate the device name in
1084  *	@name: name format string
1085  *	@buf:  scratch buffer and result name string
1086  *
1087  *	Passed a format string - eg "lt%d" it will try and find a suitable
1088  *	id. It scans list of devices to build up a free map, then chooses
1089  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1090  *	while allocating the name and adding the device in order to avoid
1091  *	duplicates.
1092  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1093  *	Returns the number of the unit assigned or a negative errno code.
1094  */
1095 
__dev_alloc_name(struct net * net,const char * name,char * buf)1096 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1097 {
1098 	int i = 0;
1099 	const char *p;
1100 	const int max_netdevices = 8*PAGE_SIZE;
1101 	unsigned long *inuse;
1102 	struct net_device *d;
1103 
1104 	if (!dev_valid_name(name))
1105 		return -EINVAL;
1106 
1107 	p = strchr(name, '%');
1108 	if (p) {
1109 		/*
1110 		 * Verify the string as this thing may have come from
1111 		 * the user.  There must be either one "%d" and no other "%"
1112 		 * characters.
1113 		 */
1114 		if (p[1] != 'd' || strchr(p + 2, '%'))
1115 			return -EINVAL;
1116 
1117 		/* Use one page as a bit array of possible slots */
1118 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1119 		if (!inuse)
1120 			return -ENOMEM;
1121 
1122 		for_each_netdev(net, d) {
1123 			struct netdev_name_node *name_node;
1124 			list_for_each_entry(name_node, &d->name_node->list, list) {
1125 				if (!sscanf(name_node->name, name, &i))
1126 					continue;
1127 				if (i < 0 || i >= max_netdevices)
1128 					continue;
1129 
1130 				/*  avoid cases where sscanf is not exact inverse of printf */
1131 				snprintf(buf, IFNAMSIZ, name, i);
1132 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1133 					set_bit(i, inuse);
1134 			}
1135 			if (!sscanf(d->name, name, &i))
1136 				continue;
1137 			if (i < 0 || i >= max_netdevices)
1138 				continue;
1139 
1140 			/*  avoid cases where sscanf is not exact inverse of printf */
1141 			snprintf(buf, IFNAMSIZ, name, i);
1142 			if (!strncmp(buf, d->name, IFNAMSIZ))
1143 				set_bit(i, inuse);
1144 		}
1145 
1146 		i = find_first_zero_bit(inuse, max_netdevices);
1147 		free_page((unsigned long) inuse);
1148 	}
1149 
1150 	snprintf(buf, IFNAMSIZ, name, i);
1151 	if (!netdev_name_in_use(net, buf))
1152 		return i;
1153 
1154 	/* It is possible to run out of possible slots
1155 	 * when the name is long and there isn't enough space left
1156 	 * for the digits, or if all bits are used.
1157 	 */
1158 	return -ENFILE;
1159 }
1160 
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name)1161 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1162 			       const char *want_name, char *out_name)
1163 {
1164 	int ret;
1165 
1166 	if (!dev_valid_name(want_name))
1167 		return -EINVAL;
1168 
1169 	if (strchr(want_name, '%')) {
1170 		ret = __dev_alloc_name(net, want_name, out_name);
1171 		return ret < 0 ? ret : 0;
1172 	} else if (netdev_name_in_use(net, want_name)) {
1173 		return -EEXIST;
1174 	} else if (out_name != want_name) {
1175 		strscpy(out_name, want_name, IFNAMSIZ);
1176 	}
1177 
1178 	return 0;
1179 }
1180 
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1181 static int dev_alloc_name_ns(struct net *net,
1182 			     struct net_device *dev,
1183 			     const char *name)
1184 {
1185 	char buf[IFNAMSIZ];
1186 	int ret;
1187 
1188 	BUG_ON(!net);
1189 	ret = __dev_alloc_name(net, name, buf);
1190 	if (ret >= 0)
1191 		strscpy(dev->name, buf, IFNAMSIZ);
1192 	return ret;
1193 }
1194 
1195 /**
1196  *	dev_alloc_name - allocate a name for a device
1197  *	@dev: device
1198  *	@name: name format string
1199  *
1200  *	Passed a format string - eg "lt%d" it will try and find a suitable
1201  *	id. It scans list of devices to build up a free map, then chooses
1202  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1203  *	while allocating the name and adding the device in order to avoid
1204  *	duplicates.
1205  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1206  *	Returns the number of the unit assigned or a negative errno code.
1207  */
1208 
dev_alloc_name(struct net_device * dev,const char * name)1209 int dev_alloc_name(struct net_device *dev, const char *name)
1210 {
1211 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1212 }
1213 EXPORT_SYMBOL(dev_alloc_name);
1214 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1215 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1216 			      const char *name)
1217 {
1218 	char buf[IFNAMSIZ];
1219 	int ret;
1220 
1221 	ret = dev_prep_valid_name(net, dev, name, buf);
1222 	if (ret >= 0)
1223 		strscpy(dev->name, buf, IFNAMSIZ);
1224 	return ret;
1225 }
1226 
1227 /**
1228  *	dev_change_name - change name of a device
1229  *	@dev: device
1230  *	@newname: name (or format string) must be at least IFNAMSIZ
1231  *
1232  *	Change name of a device, can pass format strings "eth%d".
1233  *	for wildcarding.
1234  */
dev_change_name(struct net_device * dev,const char * newname)1235 int dev_change_name(struct net_device *dev, const char *newname)
1236 {
1237 	unsigned char old_assign_type;
1238 	char oldname[IFNAMSIZ];
1239 	int err = 0;
1240 	int ret;
1241 	struct net *net;
1242 
1243 	ASSERT_RTNL();
1244 	BUG_ON(!dev_net(dev));
1245 
1246 	net = dev_net(dev);
1247 
1248 	/* Some auto-enslaved devices e.g. failover slaves are
1249 	 * special, as userspace might rename the device after
1250 	 * the interface had been brought up and running since
1251 	 * the point kernel initiated auto-enslavement. Allow
1252 	 * live name change even when these slave devices are
1253 	 * up and running.
1254 	 *
1255 	 * Typically, users of these auto-enslaving devices
1256 	 * don't actually care about slave name change, as
1257 	 * they are supposed to operate on master interface
1258 	 * directly.
1259 	 */
1260 	if (dev->flags & IFF_UP &&
1261 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1262 		return -EBUSY;
1263 
1264 	down_write(&devnet_rename_sem);
1265 
1266 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1267 		up_write(&devnet_rename_sem);
1268 		return 0;
1269 	}
1270 
1271 	memcpy(oldname, dev->name, IFNAMSIZ);
1272 
1273 	err = dev_get_valid_name(net, dev, newname);
1274 	if (err < 0) {
1275 		up_write(&devnet_rename_sem);
1276 		return err;
1277 	}
1278 
1279 	if (oldname[0] && !strchr(oldname, '%'))
1280 		netdev_info(dev, "renamed from %s\n", oldname);
1281 
1282 	old_assign_type = dev->name_assign_type;
1283 	dev->name_assign_type = NET_NAME_RENAMED;
1284 
1285 rollback:
1286 	ret = device_rename(&dev->dev, dev->name);
1287 	if (ret) {
1288 		memcpy(dev->name, oldname, IFNAMSIZ);
1289 		dev->name_assign_type = old_assign_type;
1290 		up_write(&devnet_rename_sem);
1291 		return ret;
1292 	}
1293 
1294 	up_write(&devnet_rename_sem);
1295 
1296 	netdev_adjacent_rename_links(dev, oldname);
1297 
1298 	write_lock(&dev_base_lock);
1299 	netdev_name_node_del(dev->name_node);
1300 	write_unlock(&dev_base_lock);
1301 
1302 	synchronize_rcu();
1303 
1304 	write_lock(&dev_base_lock);
1305 	netdev_name_node_add(net, dev->name_node);
1306 	write_unlock(&dev_base_lock);
1307 
1308 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1309 	ret = notifier_to_errno(ret);
1310 
1311 	if (ret) {
1312 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1313 		if (err >= 0) {
1314 			err = ret;
1315 			down_write(&devnet_rename_sem);
1316 			memcpy(dev->name, oldname, IFNAMSIZ);
1317 			memcpy(oldname, newname, IFNAMSIZ);
1318 			dev->name_assign_type = old_assign_type;
1319 			old_assign_type = NET_NAME_RENAMED;
1320 			goto rollback;
1321 		} else {
1322 			pr_err("%s: name change rollback failed: %d\n",
1323 			       dev->name, ret);
1324 		}
1325 	}
1326 
1327 	return err;
1328 }
1329 
1330 /**
1331  *	dev_set_alias - change ifalias of a device
1332  *	@dev: device
1333  *	@alias: name up to IFALIASZ
1334  *	@len: limit of bytes to copy from info
1335  *
1336  *	Set ifalias for a device,
1337  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1338 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1339 {
1340 	struct dev_ifalias *new_alias = NULL;
1341 
1342 	if (len >= IFALIASZ)
1343 		return -EINVAL;
1344 
1345 	if (len) {
1346 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1347 		if (!new_alias)
1348 			return -ENOMEM;
1349 
1350 		memcpy(new_alias->ifalias, alias, len);
1351 		new_alias->ifalias[len] = 0;
1352 	}
1353 
1354 	mutex_lock(&ifalias_mutex);
1355 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1356 					mutex_is_locked(&ifalias_mutex));
1357 	mutex_unlock(&ifalias_mutex);
1358 
1359 	if (new_alias)
1360 		kfree_rcu(new_alias, rcuhead);
1361 
1362 	return len;
1363 }
1364 EXPORT_SYMBOL(dev_set_alias);
1365 
1366 /**
1367  *	dev_get_alias - get ifalias of a device
1368  *	@dev: device
1369  *	@name: buffer to store name of ifalias
1370  *	@len: size of buffer
1371  *
1372  *	get ifalias for a device.  Caller must make sure dev cannot go
1373  *	away,  e.g. rcu read lock or own a reference count to device.
1374  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1375 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1376 {
1377 	const struct dev_ifalias *alias;
1378 	int ret = 0;
1379 
1380 	rcu_read_lock();
1381 	alias = rcu_dereference(dev->ifalias);
1382 	if (alias)
1383 		ret = snprintf(name, len, "%s", alias->ifalias);
1384 	rcu_read_unlock();
1385 
1386 	return ret;
1387 }
1388 
1389 /**
1390  *	netdev_features_change - device changes features
1391  *	@dev: device to cause notification
1392  *
1393  *	Called to indicate a device has changed features.
1394  */
netdev_features_change(struct net_device * dev)1395 void netdev_features_change(struct net_device *dev)
1396 {
1397 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1398 }
1399 EXPORT_SYMBOL(netdev_features_change);
1400 
1401 /**
1402  *	netdev_state_change - device changes state
1403  *	@dev: device to cause notification
1404  *
1405  *	Called to indicate a device has changed state. This function calls
1406  *	the notifier chains for netdev_chain and sends a NEWLINK message
1407  *	to the routing socket.
1408  */
netdev_state_change(struct net_device * dev)1409 void netdev_state_change(struct net_device *dev)
1410 {
1411 	if (dev->flags & IFF_UP) {
1412 		struct netdev_notifier_change_info change_info = {
1413 			.info.dev = dev,
1414 		};
1415 
1416 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1417 					      &change_info.info);
1418 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1419 	}
1420 }
1421 EXPORT_SYMBOL(netdev_state_change);
1422 
1423 /**
1424  * __netdev_notify_peers - notify network peers about existence of @dev,
1425  * to be called when rtnl lock is already held.
1426  * @dev: network device
1427  *
1428  * Generate traffic such that interested network peers are aware of
1429  * @dev, such as by generating a gratuitous ARP. This may be used when
1430  * a device wants to inform the rest of the network about some sort of
1431  * reconfiguration such as a failover event or virtual machine
1432  * migration.
1433  */
__netdev_notify_peers(struct net_device * dev)1434 void __netdev_notify_peers(struct net_device *dev)
1435 {
1436 	ASSERT_RTNL();
1437 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1438 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1439 }
1440 EXPORT_SYMBOL(__netdev_notify_peers);
1441 
1442 /**
1443  * netdev_notify_peers - notify network peers about existence of @dev
1444  * @dev: network device
1445  *
1446  * Generate traffic such that interested network peers are aware of
1447  * @dev, such as by generating a gratuitous ARP. This may be used when
1448  * a device wants to inform the rest of the network about some sort of
1449  * reconfiguration such as a failover event or virtual machine
1450  * migration.
1451  */
netdev_notify_peers(struct net_device * dev)1452 void netdev_notify_peers(struct net_device *dev)
1453 {
1454 	rtnl_lock();
1455 	__netdev_notify_peers(dev);
1456 	rtnl_unlock();
1457 }
1458 EXPORT_SYMBOL(netdev_notify_peers);
1459 
1460 static int napi_threaded_poll(void *data);
1461 
napi_kthread_create(struct napi_struct * n)1462 static int napi_kthread_create(struct napi_struct *n)
1463 {
1464 	int err = 0;
1465 
1466 	/* Create and wake up the kthread once to put it in
1467 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1468 	 * warning and work with loadavg.
1469 	 */
1470 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1471 				n->dev->name, n->napi_id);
1472 	if (IS_ERR(n->thread)) {
1473 		err = PTR_ERR(n->thread);
1474 		pr_err("kthread_run failed with err %d\n", err);
1475 		n->thread = NULL;
1476 	}
1477 
1478 	return err;
1479 }
1480 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1481 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1482 {
1483 	const struct net_device_ops *ops = dev->netdev_ops;
1484 	int ret;
1485 
1486 	ASSERT_RTNL();
1487 
1488 	if (!netif_device_present(dev)) {
1489 		/* may be detached because parent is runtime-suspended */
1490 		if (dev->dev.parent)
1491 			pm_runtime_resume(dev->dev.parent);
1492 		if (!netif_device_present(dev))
1493 			return -ENODEV;
1494 	}
1495 
1496 	/* Block netpoll from trying to do any rx path servicing.
1497 	 * If we don't do this there is a chance ndo_poll_controller
1498 	 * or ndo_poll may be running while we open the device
1499 	 */
1500 	netpoll_poll_disable(dev);
1501 
1502 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1503 	ret = notifier_to_errno(ret);
1504 	if (ret)
1505 		return ret;
1506 
1507 	set_bit(__LINK_STATE_START, &dev->state);
1508 
1509 	if (ops->ndo_validate_addr)
1510 		ret = ops->ndo_validate_addr(dev);
1511 
1512 	if (!ret && ops->ndo_open)
1513 		ret = ops->ndo_open(dev);
1514 
1515 	netpoll_poll_enable(dev);
1516 
1517 	if (ret)
1518 		clear_bit(__LINK_STATE_START, &dev->state);
1519 	else {
1520 		dev->flags |= IFF_UP;
1521 		dev_set_rx_mode(dev);
1522 		dev_activate(dev);
1523 		add_device_randomness(dev->dev_addr, dev->addr_len);
1524 	}
1525 
1526 	return ret;
1527 }
1528 
1529 /**
1530  *	dev_open	- prepare an interface for use.
1531  *	@dev: device to open
1532  *	@extack: netlink extended ack
1533  *
1534  *	Takes a device from down to up state. The device's private open
1535  *	function is invoked and then the multicast lists are loaded. Finally
1536  *	the device is moved into the up state and a %NETDEV_UP message is
1537  *	sent to the netdev notifier chain.
1538  *
1539  *	Calling this function on an active interface is a nop. On a failure
1540  *	a negative errno code is returned.
1541  */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1542 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1543 {
1544 	int ret;
1545 
1546 	if (dev->flags & IFF_UP)
1547 		return 0;
1548 
1549 	ret = __dev_open(dev, extack);
1550 	if (ret < 0)
1551 		return ret;
1552 
1553 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1554 	call_netdevice_notifiers(NETDEV_UP, dev);
1555 
1556 	return ret;
1557 }
1558 EXPORT_SYMBOL(dev_open);
1559 
__dev_close_many(struct list_head * head)1560 static void __dev_close_many(struct list_head *head)
1561 {
1562 	struct net_device *dev;
1563 
1564 	ASSERT_RTNL();
1565 	might_sleep();
1566 
1567 	list_for_each_entry(dev, head, close_list) {
1568 		/* Temporarily disable netpoll until the interface is down */
1569 		netpoll_poll_disable(dev);
1570 
1571 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1572 
1573 		clear_bit(__LINK_STATE_START, &dev->state);
1574 
1575 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1576 		 * can be even on different cpu. So just clear netif_running().
1577 		 *
1578 		 * dev->stop() will invoke napi_disable() on all of it's
1579 		 * napi_struct instances on this device.
1580 		 */
1581 		smp_mb__after_atomic(); /* Commit netif_running(). */
1582 	}
1583 
1584 	dev_deactivate_many(head);
1585 
1586 	list_for_each_entry(dev, head, close_list) {
1587 		const struct net_device_ops *ops = dev->netdev_ops;
1588 
1589 		/*
1590 		 *	Call the device specific close. This cannot fail.
1591 		 *	Only if device is UP
1592 		 *
1593 		 *	We allow it to be called even after a DETACH hot-plug
1594 		 *	event.
1595 		 */
1596 		if (ops->ndo_stop)
1597 			ops->ndo_stop(dev);
1598 
1599 		dev->flags &= ~IFF_UP;
1600 		netpoll_poll_enable(dev);
1601 	}
1602 }
1603 
__dev_close(struct net_device * dev)1604 static void __dev_close(struct net_device *dev)
1605 {
1606 	LIST_HEAD(single);
1607 
1608 	list_add(&dev->close_list, &single);
1609 	__dev_close_many(&single);
1610 	list_del(&single);
1611 }
1612 
dev_close_many(struct list_head * head,bool unlink)1613 void dev_close_many(struct list_head *head, bool unlink)
1614 {
1615 	struct net_device *dev, *tmp;
1616 
1617 	/* Remove the devices that don't need to be closed */
1618 	list_for_each_entry_safe(dev, tmp, head, close_list)
1619 		if (!(dev->flags & IFF_UP))
1620 			list_del_init(&dev->close_list);
1621 
1622 	__dev_close_many(head);
1623 
1624 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1625 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1626 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1627 		if (unlink)
1628 			list_del_init(&dev->close_list);
1629 	}
1630 }
1631 EXPORT_SYMBOL(dev_close_many);
1632 
1633 /**
1634  *	dev_close - shutdown an interface.
1635  *	@dev: device to shutdown
1636  *
1637  *	This function moves an active device into down state. A
1638  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1639  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1640  *	chain.
1641  */
dev_close(struct net_device * dev)1642 void dev_close(struct net_device *dev)
1643 {
1644 	if (dev->flags & IFF_UP) {
1645 		LIST_HEAD(single);
1646 
1647 		list_add(&dev->close_list, &single);
1648 		dev_close_many(&single, true);
1649 		list_del(&single);
1650 	}
1651 }
1652 EXPORT_SYMBOL(dev_close);
1653 
1654 
1655 /**
1656  *	dev_disable_lro - disable Large Receive Offload on a device
1657  *	@dev: device
1658  *
1659  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1660  *	called under RTNL.  This is needed if received packets may be
1661  *	forwarded to another interface.
1662  */
dev_disable_lro(struct net_device * dev)1663 void dev_disable_lro(struct net_device *dev)
1664 {
1665 	struct net_device *lower_dev;
1666 	struct list_head *iter;
1667 
1668 	dev->wanted_features &= ~NETIF_F_LRO;
1669 	netdev_update_features(dev);
1670 
1671 	if (unlikely(dev->features & NETIF_F_LRO))
1672 		netdev_WARN(dev, "failed to disable LRO!\n");
1673 
1674 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1675 		dev_disable_lro(lower_dev);
1676 }
1677 EXPORT_SYMBOL(dev_disable_lro);
1678 
1679 /**
1680  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1681  *	@dev: device
1682  *
1683  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1684  *	called under RTNL.  This is needed if Generic XDP is installed on
1685  *	the device.
1686  */
dev_disable_gro_hw(struct net_device * dev)1687 static void dev_disable_gro_hw(struct net_device *dev)
1688 {
1689 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1690 	netdev_update_features(dev);
1691 
1692 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1693 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1694 }
1695 
netdev_cmd_to_name(enum netdev_cmd cmd)1696 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1697 {
1698 #define N(val) 						\
1699 	case NETDEV_##val:				\
1700 		return "NETDEV_" __stringify(val);
1701 	switch (cmd) {
1702 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1703 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1704 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1705 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1706 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1707 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1708 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1709 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1710 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1711 	N(PRE_CHANGEADDR)
1712 	}
1713 #undef N
1714 	return "UNKNOWN_NETDEV_EVENT";
1715 }
1716 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1717 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1718 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1719 				   struct net_device *dev)
1720 {
1721 	struct netdev_notifier_info info = {
1722 		.dev = dev,
1723 	};
1724 
1725 	return nb->notifier_call(nb, val, &info);
1726 }
1727 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1728 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1729 					     struct net_device *dev)
1730 {
1731 	int err;
1732 
1733 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1734 	err = notifier_to_errno(err);
1735 	if (err)
1736 		return err;
1737 
1738 	if (!(dev->flags & IFF_UP))
1739 		return 0;
1740 
1741 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1742 	return 0;
1743 }
1744 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1745 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1746 						struct net_device *dev)
1747 {
1748 	if (dev->flags & IFF_UP) {
1749 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1750 					dev);
1751 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1752 	}
1753 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1754 }
1755 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1756 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1757 						 struct net *net)
1758 {
1759 	struct net_device *dev;
1760 	int err;
1761 
1762 	for_each_netdev(net, dev) {
1763 		err = call_netdevice_register_notifiers(nb, dev);
1764 		if (err)
1765 			goto rollback;
1766 	}
1767 	return 0;
1768 
1769 rollback:
1770 	for_each_netdev_continue_reverse(net, dev)
1771 		call_netdevice_unregister_notifiers(nb, dev);
1772 	return err;
1773 }
1774 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1775 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1776 						    struct net *net)
1777 {
1778 	struct net_device *dev;
1779 
1780 	for_each_netdev(net, dev)
1781 		call_netdevice_unregister_notifiers(nb, dev);
1782 }
1783 
1784 static int dev_boot_phase = 1;
1785 
1786 /**
1787  * register_netdevice_notifier - register a network notifier block
1788  * @nb: notifier
1789  *
1790  * Register a notifier to be called when network device events occur.
1791  * The notifier passed is linked into the kernel structures and must
1792  * not be reused until it has been unregistered. A negative errno code
1793  * is returned on a failure.
1794  *
1795  * When registered all registration and up events are replayed
1796  * to the new notifier to allow device to have a race free
1797  * view of the network device list.
1798  */
1799 
register_netdevice_notifier(struct notifier_block * nb)1800 int register_netdevice_notifier(struct notifier_block *nb)
1801 {
1802 	struct net *net;
1803 	int err;
1804 
1805 	/* Close race with setup_net() and cleanup_net() */
1806 	down_write(&pernet_ops_rwsem);
1807 	rtnl_lock();
1808 	err = raw_notifier_chain_register(&netdev_chain, nb);
1809 	if (err)
1810 		goto unlock;
1811 	if (dev_boot_phase)
1812 		goto unlock;
1813 	for_each_net(net) {
1814 		err = call_netdevice_register_net_notifiers(nb, net);
1815 		if (err)
1816 			goto rollback;
1817 	}
1818 
1819 unlock:
1820 	rtnl_unlock();
1821 	up_write(&pernet_ops_rwsem);
1822 	return err;
1823 
1824 rollback:
1825 	for_each_net_continue_reverse(net)
1826 		call_netdevice_unregister_net_notifiers(nb, net);
1827 
1828 	raw_notifier_chain_unregister(&netdev_chain, nb);
1829 	goto unlock;
1830 }
1831 EXPORT_SYMBOL(register_netdevice_notifier);
1832 
1833 /**
1834  * unregister_netdevice_notifier - unregister a network notifier block
1835  * @nb: notifier
1836  *
1837  * Unregister a notifier previously registered by
1838  * register_netdevice_notifier(). The notifier is unlinked into the
1839  * kernel structures and may then be reused. A negative errno code
1840  * is returned on a failure.
1841  *
1842  * After unregistering unregister and down device events are synthesized
1843  * for all devices on the device list to the removed notifier to remove
1844  * the need for special case cleanup code.
1845  */
1846 
unregister_netdevice_notifier(struct notifier_block * nb)1847 int unregister_netdevice_notifier(struct notifier_block *nb)
1848 {
1849 	struct net *net;
1850 	int err;
1851 
1852 	/* Close race with setup_net() and cleanup_net() */
1853 	down_write(&pernet_ops_rwsem);
1854 	rtnl_lock();
1855 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1856 	if (err)
1857 		goto unlock;
1858 
1859 	for_each_net(net)
1860 		call_netdevice_unregister_net_notifiers(nb, net);
1861 
1862 unlock:
1863 	rtnl_unlock();
1864 	up_write(&pernet_ops_rwsem);
1865 	return err;
1866 }
1867 EXPORT_SYMBOL(unregister_netdevice_notifier);
1868 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1869 static int __register_netdevice_notifier_net(struct net *net,
1870 					     struct notifier_block *nb,
1871 					     bool ignore_call_fail)
1872 {
1873 	int err;
1874 
1875 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1876 	if (err)
1877 		return err;
1878 	if (dev_boot_phase)
1879 		return 0;
1880 
1881 	err = call_netdevice_register_net_notifiers(nb, net);
1882 	if (err && !ignore_call_fail)
1883 		goto chain_unregister;
1884 
1885 	return 0;
1886 
1887 chain_unregister:
1888 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1889 	return err;
1890 }
1891 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1892 static int __unregister_netdevice_notifier_net(struct net *net,
1893 					       struct notifier_block *nb)
1894 {
1895 	int err;
1896 
1897 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1898 	if (err)
1899 		return err;
1900 
1901 	call_netdevice_unregister_net_notifiers(nb, net);
1902 	return 0;
1903 }
1904 
1905 /**
1906  * register_netdevice_notifier_net - register a per-netns network notifier block
1907  * @net: network namespace
1908  * @nb: notifier
1909  *
1910  * Register a notifier to be called when network device events occur.
1911  * The notifier passed is linked into the kernel structures and must
1912  * not be reused until it has been unregistered. A negative errno code
1913  * is returned on a failure.
1914  *
1915  * When registered all registration and up events are replayed
1916  * to the new notifier to allow device to have a race free
1917  * view of the network device list.
1918  */
1919 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1920 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1921 {
1922 	int err;
1923 
1924 	rtnl_lock();
1925 	err = __register_netdevice_notifier_net(net, nb, false);
1926 	rtnl_unlock();
1927 	return err;
1928 }
1929 EXPORT_SYMBOL(register_netdevice_notifier_net);
1930 
1931 /**
1932  * unregister_netdevice_notifier_net - unregister a per-netns
1933  *                                     network notifier block
1934  * @net: network namespace
1935  * @nb: notifier
1936  *
1937  * Unregister a notifier previously registered by
1938  * register_netdevice_notifier(). The notifier is unlinked into the
1939  * kernel structures and may then be reused. A negative errno code
1940  * is returned on a failure.
1941  *
1942  * After unregistering unregister and down device events are synthesized
1943  * for all devices on the device list to the removed notifier to remove
1944  * the need for special case cleanup code.
1945  */
1946 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1947 int unregister_netdevice_notifier_net(struct net *net,
1948 				      struct notifier_block *nb)
1949 {
1950 	int err;
1951 
1952 	rtnl_lock();
1953 	err = __unregister_netdevice_notifier_net(net, nb);
1954 	rtnl_unlock();
1955 	return err;
1956 }
1957 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1958 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1959 int register_netdevice_notifier_dev_net(struct net_device *dev,
1960 					struct notifier_block *nb,
1961 					struct netdev_net_notifier *nn)
1962 {
1963 	int err;
1964 
1965 	rtnl_lock();
1966 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1967 	if (!err) {
1968 		nn->nb = nb;
1969 		list_add(&nn->list, &dev->net_notifier_list);
1970 	}
1971 	rtnl_unlock();
1972 	return err;
1973 }
1974 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1975 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1976 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1977 					  struct notifier_block *nb,
1978 					  struct netdev_net_notifier *nn)
1979 {
1980 	int err;
1981 
1982 	rtnl_lock();
1983 	list_del(&nn->list);
1984 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1985 	rtnl_unlock();
1986 	return err;
1987 }
1988 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1989 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)1990 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1991 					     struct net *net)
1992 {
1993 	struct netdev_net_notifier *nn;
1994 
1995 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1996 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1997 		__register_netdevice_notifier_net(net, nn->nb, true);
1998 	}
1999 }
2000 
2001 /**
2002  *	call_netdevice_notifiers_info - call all network notifier blocks
2003  *	@val: value passed unmodified to notifier function
2004  *	@info: notifier information data
2005  *
2006  *	Call all network notifier blocks.  Parameters and return value
2007  *	are as for raw_notifier_call_chain().
2008  */
2009 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2010 static int call_netdevice_notifiers_info(unsigned long val,
2011 					 struct netdev_notifier_info *info)
2012 {
2013 	struct net *net = dev_net(info->dev);
2014 	int ret;
2015 
2016 	ASSERT_RTNL();
2017 
2018 	/* Run per-netns notifier block chain first, then run the global one.
2019 	 * Hopefully, one day, the global one is going to be removed after
2020 	 * all notifier block registrators get converted to be per-netns.
2021 	 */
2022 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2023 	if (ret & NOTIFY_STOP_MASK)
2024 		return ret;
2025 	return raw_notifier_call_chain(&netdev_chain, val, info);
2026 }
2027 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2028 static int call_netdevice_notifiers_extack(unsigned long val,
2029 					   struct net_device *dev,
2030 					   struct netlink_ext_ack *extack)
2031 {
2032 	struct netdev_notifier_info info = {
2033 		.dev = dev,
2034 		.extack = extack,
2035 	};
2036 
2037 	return call_netdevice_notifiers_info(val, &info);
2038 }
2039 
2040 /**
2041  *	call_netdevice_notifiers - call all network notifier blocks
2042  *      @val: value passed unmodified to notifier function
2043  *      @dev: net_device pointer passed unmodified to notifier function
2044  *
2045  *	Call all network notifier blocks.  Parameters and return value
2046  *	are as for raw_notifier_call_chain().
2047  */
2048 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2049 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2050 {
2051 	return call_netdevice_notifiers_extack(val, dev, NULL);
2052 }
2053 EXPORT_SYMBOL(call_netdevice_notifiers);
2054 
2055 /**
2056  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2057  *	@val: value passed unmodified to notifier function
2058  *	@dev: net_device pointer passed unmodified to notifier function
2059  *	@arg: additional u32 argument passed to the notifier function
2060  *
2061  *	Call all network notifier blocks.  Parameters and return value
2062  *	are as for raw_notifier_call_chain().
2063  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2064 static int call_netdevice_notifiers_mtu(unsigned long val,
2065 					struct net_device *dev, u32 arg)
2066 {
2067 	struct netdev_notifier_info_ext info = {
2068 		.info.dev = dev,
2069 		.ext.mtu = arg,
2070 	};
2071 
2072 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2073 
2074 	return call_netdevice_notifiers_info(val, &info.info);
2075 }
2076 
2077 #ifdef CONFIG_NET_INGRESS
2078 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2079 
net_inc_ingress_queue(void)2080 void net_inc_ingress_queue(void)
2081 {
2082 	static_branch_inc(&ingress_needed_key);
2083 }
2084 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2085 
net_dec_ingress_queue(void)2086 void net_dec_ingress_queue(void)
2087 {
2088 	static_branch_dec(&ingress_needed_key);
2089 }
2090 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2091 #endif
2092 
2093 #ifdef CONFIG_NET_EGRESS
2094 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2095 
net_inc_egress_queue(void)2096 void net_inc_egress_queue(void)
2097 {
2098 	static_branch_inc(&egress_needed_key);
2099 }
2100 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2101 
net_dec_egress_queue(void)2102 void net_dec_egress_queue(void)
2103 {
2104 	static_branch_dec(&egress_needed_key);
2105 }
2106 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2107 #endif
2108 
2109 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2110 #ifdef CONFIG_JUMP_LABEL
2111 static atomic_t netstamp_needed_deferred;
2112 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2113 static void netstamp_clear(struct work_struct *work)
2114 {
2115 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2116 	int wanted;
2117 
2118 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2119 	if (wanted > 0)
2120 		static_branch_enable(&netstamp_needed_key);
2121 	else
2122 		static_branch_disable(&netstamp_needed_key);
2123 }
2124 static DECLARE_WORK(netstamp_work, netstamp_clear);
2125 #endif
2126 
net_enable_timestamp(void)2127 void net_enable_timestamp(void)
2128 {
2129 #ifdef CONFIG_JUMP_LABEL
2130 	int wanted;
2131 
2132 	while (1) {
2133 		wanted = atomic_read(&netstamp_wanted);
2134 		if (wanted <= 0)
2135 			break;
2136 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2137 			return;
2138 	}
2139 	atomic_inc(&netstamp_needed_deferred);
2140 	schedule_work(&netstamp_work);
2141 #else
2142 	static_branch_inc(&netstamp_needed_key);
2143 #endif
2144 }
2145 EXPORT_SYMBOL(net_enable_timestamp);
2146 
net_disable_timestamp(void)2147 void net_disable_timestamp(void)
2148 {
2149 #ifdef CONFIG_JUMP_LABEL
2150 	int wanted;
2151 
2152 	while (1) {
2153 		wanted = atomic_read(&netstamp_wanted);
2154 		if (wanted <= 1)
2155 			break;
2156 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2157 			return;
2158 	}
2159 	atomic_dec(&netstamp_needed_deferred);
2160 	schedule_work(&netstamp_work);
2161 #else
2162 	static_branch_dec(&netstamp_needed_key);
2163 #endif
2164 }
2165 EXPORT_SYMBOL(net_disable_timestamp);
2166 
net_timestamp_set(struct sk_buff * skb)2167 static inline void net_timestamp_set(struct sk_buff *skb)
2168 {
2169 	skb->tstamp = 0;
2170 	if (static_branch_unlikely(&netstamp_needed_key))
2171 		__net_timestamp(skb);
2172 }
2173 
2174 #define net_timestamp_check(COND, SKB)				\
2175 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2176 		if ((COND) && !(SKB)->tstamp)			\
2177 			__net_timestamp(SKB);			\
2178 	}							\
2179 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2180 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2181 {
2182 	return __is_skb_forwardable(dev, skb, true);
2183 }
2184 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2185 
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2186 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2187 			      bool check_mtu)
2188 {
2189 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2190 
2191 	if (likely(!ret)) {
2192 		skb->protocol = eth_type_trans(skb, dev);
2193 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2194 	}
2195 
2196 	return ret;
2197 }
2198 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2199 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2200 {
2201 	return __dev_forward_skb2(dev, skb, true);
2202 }
2203 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2204 
2205 /**
2206  * dev_forward_skb - loopback an skb to another netif
2207  *
2208  * @dev: destination network device
2209  * @skb: buffer to forward
2210  *
2211  * return values:
2212  *	NET_RX_SUCCESS	(no congestion)
2213  *	NET_RX_DROP     (packet was dropped, but freed)
2214  *
2215  * dev_forward_skb can be used for injecting an skb from the
2216  * start_xmit function of one device into the receive queue
2217  * of another device.
2218  *
2219  * The receiving device may be in another namespace, so
2220  * we have to clear all information in the skb that could
2221  * impact namespace isolation.
2222  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2223 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2224 {
2225 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2226 }
2227 EXPORT_SYMBOL_GPL(dev_forward_skb);
2228 
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2229 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2230 {
2231 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2232 }
2233 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2234 static inline int deliver_skb(struct sk_buff *skb,
2235 			      struct packet_type *pt_prev,
2236 			      struct net_device *orig_dev)
2237 {
2238 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2239 		return -ENOMEM;
2240 	refcount_inc(&skb->users);
2241 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2242 }
2243 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2244 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2245 					  struct packet_type **pt,
2246 					  struct net_device *orig_dev,
2247 					  __be16 type,
2248 					  struct list_head *ptype_list)
2249 {
2250 	struct packet_type *ptype, *pt_prev = *pt;
2251 
2252 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2253 		if (ptype->type != type)
2254 			continue;
2255 		if (pt_prev)
2256 			deliver_skb(skb, pt_prev, orig_dev);
2257 		pt_prev = ptype;
2258 	}
2259 	*pt = pt_prev;
2260 }
2261 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2262 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2263 {
2264 	if (!ptype->af_packet_priv || !skb->sk)
2265 		return false;
2266 
2267 	if (ptype->id_match)
2268 		return ptype->id_match(ptype, skb->sk);
2269 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2270 		return true;
2271 
2272 	return false;
2273 }
2274 
2275 /**
2276  * dev_nit_active - return true if any network interface taps are in use
2277  *
2278  * @dev: network device to check for the presence of taps
2279  */
dev_nit_active(struct net_device * dev)2280 bool dev_nit_active(struct net_device *dev)
2281 {
2282 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2283 }
2284 EXPORT_SYMBOL_GPL(dev_nit_active);
2285 
2286 /*
2287  *	Support routine. Sends outgoing frames to any network
2288  *	taps currently in use.
2289  */
2290 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2291 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2292 {
2293 	struct packet_type *ptype;
2294 	struct sk_buff *skb2 = NULL;
2295 	struct packet_type *pt_prev = NULL;
2296 	struct list_head *ptype_list = &ptype_all;
2297 
2298 	rcu_read_lock();
2299 again:
2300 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2301 		if (ptype->ignore_outgoing)
2302 			continue;
2303 
2304 		/* Never send packets back to the socket
2305 		 * they originated from - MvS (miquels@drinkel.ow.org)
2306 		 */
2307 		if (skb_loop_sk(ptype, skb))
2308 			continue;
2309 
2310 		if (pt_prev) {
2311 			deliver_skb(skb2, pt_prev, skb->dev);
2312 			pt_prev = ptype;
2313 			continue;
2314 		}
2315 
2316 		/* need to clone skb, done only once */
2317 		skb2 = skb_clone(skb, GFP_ATOMIC);
2318 		if (!skb2)
2319 			goto out_unlock;
2320 
2321 		net_timestamp_set(skb2);
2322 
2323 		/* skb->nh should be correctly
2324 		 * set by sender, so that the second statement is
2325 		 * just protection against buggy protocols.
2326 		 */
2327 		skb_reset_mac_header(skb2);
2328 
2329 		if (skb_network_header(skb2) < skb2->data ||
2330 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2331 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2332 					     ntohs(skb2->protocol),
2333 					     dev->name);
2334 			skb_reset_network_header(skb2);
2335 		}
2336 
2337 		skb2->transport_header = skb2->network_header;
2338 		skb2->pkt_type = PACKET_OUTGOING;
2339 		pt_prev = ptype;
2340 	}
2341 
2342 	if (ptype_list == &ptype_all) {
2343 		ptype_list = &dev->ptype_all;
2344 		goto again;
2345 	}
2346 out_unlock:
2347 	if (pt_prev) {
2348 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2349 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2350 		else
2351 			kfree_skb(skb2);
2352 	}
2353 	rcu_read_unlock();
2354 }
2355 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2356 
2357 /**
2358  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2359  * @dev: Network device
2360  * @txq: number of queues available
2361  *
2362  * If real_num_tx_queues is changed the tc mappings may no longer be
2363  * valid. To resolve this verify the tc mapping remains valid and if
2364  * not NULL the mapping. With no priorities mapping to this
2365  * offset/count pair it will no longer be used. In the worst case TC0
2366  * is invalid nothing can be done so disable priority mappings. If is
2367  * expected that drivers will fix this mapping if they can before
2368  * calling netif_set_real_num_tx_queues.
2369  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2370 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2371 {
2372 	int i;
2373 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2374 
2375 	/* If TC0 is invalidated disable TC mapping */
2376 	if (tc->offset + tc->count > txq) {
2377 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2378 		dev->num_tc = 0;
2379 		return;
2380 	}
2381 
2382 	/* Invalidated prio to tc mappings set to TC0 */
2383 	for (i = 1; i < TC_BITMASK + 1; i++) {
2384 		int q = netdev_get_prio_tc_map(dev, i);
2385 
2386 		tc = &dev->tc_to_txq[q];
2387 		if (tc->offset + tc->count > txq) {
2388 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2389 				i, q);
2390 			netdev_set_prio_tc_map(dev, i, 0);
2391 		}
2392 	}
2393 }
2394 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2395 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2396 {
2397 	if (dev->num_tc) {
2398 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2399 		int i;
2400 
2401 		/* walk through the TCs and see if it falls into any of them */
2402 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2403 			if ((txq - tc->offset) < tc->count)
2404 				return i;
2405 		}
2406 
2407 		/* didn't find it, just return -1 to indicate no match */
2408 		return -1;
2409 	}
2410 
2411 	return 0;
2412 }
2413 EXPORT_SYMBOL(netdev_txq_to_tc);
2414 
2415 #ifdef CONFIG_XPS
2416 static struct static_key xps_needed __read_mostly;
2417 static struct static_key xps_rxqs_needed __read_mostly;
2418 static DEFINE_MUTEX(xps_map_mutex);
2419 #define xmap_dereference(P)		\
2420 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2421 
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2422 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2423 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2424 {
2425 	struct xps_map *map = NULL;
2426 	int pos;
2427 
2428 	if (dev_maps)
2429 		map = xmap_dereference(dev_maps->attr_map[tci]);
2430 	if (!map)
2431 		return false;
2432 
2433 	for (pos = map->len; pos--;) {
2434 		if (map->queues[pos] != index)
2435 			continue;
2436 
2437 		if (map->len > 1) {
2438 			map->queues[pos] = map->queues[--map->len];
2439 			break;
2440 		}
2441 
2442 		if (old_maps)
2443 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2444 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2445 		kfree_rcu(map, rcu);
2446 		return false;
2447 	}
2448 
2449 	return true;
2450 }
2451 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2452 static bool remove_xps_queue_cpu(struct net_device *dev,
2453 				 struct xps_dev_maps *dev_maps,
2454 				 int cpu, u16 offset, u16 count)
2455 {
2456 	int num_tc = dev_maps->num_tc;
2457 	bool active = false;
2458 	int tci;
2459 
2460 	for (tci = cpu * num_tc; num_tc--; tci++) {
2461 		int i, j;
2462 
2463 		for (i = count, j = offset; i--; j++) {
2464 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2465 				break;
2466 		}
2467 
2468 		active |= i < 0;
2469 	}
2470 
2471 	return active;
2472 }
2473 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2474 static void reset_xps_maps(struct net_device *dev,
2475 			   struct xps_dev_maps *dev_maps,
2476 			   enum xps_map_type type)
2477 {
2478 	static_key_slow_dec_cpuslocked(&xps_needed);
2479 	if (type == XPS_RXQS)
2480 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2481 
2482 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2483 
2484 	kfree_rcu(dev_maps, rcu);
2485 }
2486 
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2487 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2488 			   u16 offset, u16 count)
2489 {
2490 	struct xps_dev_maps *dev_maps;
2491 	bool active = false;
2492 	int i, j;
2493 
2494 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2495 	if (!dev_maps)
2496 		return;
2497 
2498 	for (j = 0; j < dev_maps->nr_ids; j++)
2499 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2500 	if (!active)
2501 		reset_xps_maps(dev, dev_maps, type);
2502 
2503 	if (type == XPS_CPUS) {
2504 		for (i = offset + (count - 1); count--; i--)
2505 			netdev_queue_numa_node_write(
2506 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2507 	}
2508 }
2509 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2510 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2511 				   u16 count)
2512 {
2513 	if (!static_key_false(&xps_needed))
2514 		return;
2515 
2516 	cpus_read_lock();
2517 	mutex_lock(&xps_map_mutex);
2518 
2519 	if (static_key_false(&xps_rxqs_needed))
2520 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2521 
2522 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2523 
2524 	mutex_unlock(&xps_map_mutex);
2525 	cpus_read_unlock();
2526 }
2527 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2528 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2529 {
2530 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2531 }
2532 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2533 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2534 				      u16 index, bool is_rxqs_map)
2535 {
2536 	struct xps_map *new_map;
2537 	int alloc_len = XPS_MIN_MAP_ALLOC;
2538 	int i, pos;
2539 
2540 	for (pos = 0; map && pos < map->len; pos++) {
2541 		if (map->queues[pos] != index)
2542 			continue;
2543 		return map;
2544 	}
2545 
2546 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2547 	if (map) {
2548 		if (pos < map->alloc_len)
2549 			return map;
2550 
2551 		alloc_len = map->alloc_len * 2;
2552 	}
2553 
2554 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2555 	 *  map
2556 	 */
2557 	if (is_rxqs_map)
2558 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2559 	else
2560 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2561 				       cpu_to_node(attr_index));
2562 	if (!new_map)
2563 		return NULL;
2564 
2565 	for (i = 0; i < pos; i++)
2566 		new_map->queues[i] = map->queues[i];
2567 	new_map->alloc_len = alloc_len;
2568 	new_map->len = pos;
2569 
2570 	return new_map;
2571 }
2572 
2573 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2574 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2575 			      struct xps_dev_maps *new_dev_maps, int index,
2576 			      int tc, bool skip_tc)
2577 {
2578 	int i, tci = index * dev_maps->num_tc;
2579 	struct xps_map *map;
2580 
2581 	/* copy maps belonging to foreign traffic classes */
2582 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2583 		if (i == tc && skip_tc)
2584 			continue;
2585 
2586 		/* fill in the new device map from the old device map */
2587 		map = xmap_dereference(dev_maps->attr_map[tci]);
2588 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2589 	}
2590 }
2591 
2592 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2593 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2594 			  u16 index, enum xps_map_type type)
2595 {
2596 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2597 	const unsigned long *online_mask = NULL;
2598 	bool active = false, copy = false;
2599 	int i, j, tci, numa_node_id = -2;
2600 	int maps_sz, num_tc = 1, tc = 0;
2601 	struct xps_map *map, *new_map;
2602 	unsigned int nr_ids;
2603 
2604 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2605 
2606 	if (dev->num_tc) {
2607 		/* Do not allow XPS on subordinate device directly */
2608 		num_tc = dev->num_tc;
2609 		if (num_tc < 0)
2610 			return -EINVAL;
2611 
2612 		/* If queue belongs to subordinate dev use its map */
2613 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2614 
2615 		tc = netdev_txq_to_tc(dev, index);
2616 		if (tc < 0)
2617 			return -EINVAL;
2618 	}
2619 
2620 	mutex_lock(&xps_map_mutex);
2621 
2622 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2623 	if (type == XPS_RXQS) {
2624 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2625 		nr_ids = dev->num_rx_queues;
2626 	} else {
2627 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2628 		if (num_possible_cpus() > 1)
2629 			online_mask = cpumask_bits(cpu_online_mask);
2630 		nr_ids = nr_cpu_ids;
2631 	}
2632 
2633 	if (maps_sz < L1_CACHE_BYTES)
2634 		maps_sz = L1_CACHE_BYTES;
2635 
2636 	/* The old dev_maps could be larger or smaller than the one we're
2637 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2638 	 * between. We could try to be smart, but let's be safe instead and only
2639 	 * copy foreign traffic classes if the two map sizes match.
2640 	 */
2641 	if (dev_maps &&
2642 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2643 		copy = true;
2644 
2645 	/* allocate memory for queue storage */
2646 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2647 	     j < nr_ids;) {
2648 		if (!new_dev_maps) {
2649 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2650 			if (!new_dev_maps) {
2651 				mutex_unlock(&xps_map_mutex);
2652 				return -ENOMEM;
2653 			}
2654 
2655 			new_dev_maps->nr_ids = nr_ids;
2656 			new_dev_maps->num_tc = num_tc;
2657 		}
2658 
2659 		tci = j * num_tc + tc;
2660 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2661 
2662 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2663 		if (!map)
2664 			goto error;
2665 
2666 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2667 	}
2668 
2669 	if (!new_dev_maps)
2670 		goto out_no_new_maps;
2671 
2672 	if (!dev_maps) {
2673 		/* Increment static keys at most once per type */
2674 		static_key_slow_inc_cpuslocked(&xps_needed);
2675 		if (type == XPS_RXQS)
2676 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2677 	}
2678 
2679 	for (j = 0; j < nr_ids; j++) {
2680 		bool skip_tc = false;
2681 
2682 		tci = j * num_tc + tc;
2683 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2684 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2685 			/* add tx-queue to CPU/rx-queue maps */
2686 			int pos = 0;
2687 
2688 			skip_tc = true;
2689 
2690 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2691 			while ((pos < map->len) && (map->queues[pos] != index))
2692 				pos++;
2693 
2694 			if (pos == map->len)
2695 				map->queues[map->len++] = index;
2696 #ifdef CONFIG_NUMA
2697 			if (type == XPS_CPUS) {
2698 				if (numa_node_id == -2)
2699 					numa_node_id = cpu_to_node(j);
2700 				else if (numa_node_id != cpu_to_node(j))
2701 					numa_node_id = -1;
2702 			}
2703 #endif
2704 		}
2705 
2706 		if (copy)
2707 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2708 					  skip_tc);
2709 	}
2710 
2711 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2712 
2713 	/* Cleanup old maps */
2714 	if (!dev_maps)
2715 		goto out_no_old_maps;
2716 
2717 	for (j = 0; j < dev_maps->nr_ids; j++) {
2718 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2719 			map = xmap_dereference(dev_maps->attr_map[tci]);
2720 			if (!map)
2721 				continue;
2722 
2723 			if (copy) {
2724 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2725 				if (map == new_map)
2726 					continue;
2727 			}
2728 
2729 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2730 			kfree_rcu(map, rcu);
2731 		}
2732 	}
2733 
2734 	old_dev_maps = dev_maps;
2735 
2736 out_no_old_maps:
2737 	dev_maps = new_dev_maps;
2738 	active = true;
2739 
2740 out_no_new_maps:
2741 	if (type == XPS_CPUS)
2742 		/* update Tx queue numa node */
2743 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2744 					     (numa_node_id >= 0) ?
2745 					     numa_node_id : NUMA_NO_NODE);
2746 
2747 	if (!dev_maps)
2748 		goto out_no_maps;
2749 
2750 	/* removes tx-queue from unused CPUs/rx-queues */
2751 	for (j = 0; j < dev_maps->nr_ids; j++) {
2752 		tci = j * dev_maps->num_tc;
2753 
2754 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2755 			if (i == tc &&
2756 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2757 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2758 				continue;
2759 
2760 			active |= remove_xps_queue(dev_maps,
2761 						   copy ? old_dev_maps : NULL,
2762 						   tci, index);
2763 		}
2764 	}
2765 
2766 	if (old_dev_maps)
2767 		kfree_rcu(old_dev_maps, rcu);
2768 
2769 	/* free map if not active */
2770 	if (!active)
2771 		reset_xps_maps(dev, dev_maps, type);
2772 
2773 out_no_maps:
2774 	mutex_unlock(&xps_map_mutex);
2775 
2776 	return 0;
2777 error:
2778 	/* remove any maps that we added */
2779 	for (j = 0; j < nr_ids; j++) {
2780 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2781 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2782 			map = copy ?
2783 			      xmap_dereference(dev_maps->attr_map[tci]) :
2784 			      NULL;
2785 			if (new_map && new_map != map)
2786 				kfree(new_map);
2787 		}
2788 	}
2789 
2790 	mutex_unlock(&xps_map_mutex);
2791 
2792 	kfree(new_dev_maps);
2793 	return -ENOMEM;
2794 }
2795 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2796 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2797 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2798 			u16 index)
2799 {
2800 	int ret;
2801 
2802 	cpus_read_lock();
2803 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2804 	cpus_read_unlock();
2805 
2806 	return ret;
2807 }
2808 EXPORT_SYMBOL(netif_set_xps_queue);
2809 
2810 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2811 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2812 {
2813 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2814 
2815 	/* Unbind any subordinate channels */
2816 	while (txq-- != &dev->_tx[0]) {
2817 		if (txq->sb_dev)
2818 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2819 	}
2820 }
2821 
netdev_reset_tc(struct net_device * dev)2822 void netdev_reset_tc(struct net_device *dev)
2823 {
2824 #ifdef CONFIG_XPS
2825 	netif_reset_xps_queues_gt(dev, 0);
2826 #endif
2827 	netdev_unbind_all_sb_channels(dev);
2828 
2829 	/* Reset TC configuration of device */
2830 	dev->num_tc = 0;
2831 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2832 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2833 }
2834 EXPORT_SYMBOL(netdev_reset_tc);
2835 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2836 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2837 {
2838 	if (tc >= dev->num_tc)
2839 		return -EINVAL;
2840 
2841 #ifdef CONFIG_XPS
2842 	netif_reset_xps_queues(dev, offset, count);
2843 #endif
2844 	dev->tc_to_txq[tc].count = count;
2845 	dev->tc_to_txq[tc].offset = offset;
2846 	return 0;
2847 }
2848 EXPORT_SYMBOL(netdev_set_tc_queue);
2849 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2850 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2851 {
2852 	if (num_tc > TC_MAX_QUEUE)
2853 		return -EINVAL;
2854 
2855 #ifdef CONFIG_XPS
2856 	netif_reset_xps_queues_gt(dev, 0);
2857 #endif
2858 	netdev_unbind_all_sb_channels(dev);
2859 
2860 	dev->num_tc = num_tc;
2861 	return 0;
2862 }
2863 EXPORT_SYMBOL(netdev_set_num_tc);
2864 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2865 void netdev_unbind_sb_channel(struct net_device *dev,
2866 			      struct net_device *sb_dev)
2867 {
2868 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2869 
2870 #ifdef CONFIG_XPS
2871 	netif_reset_xps_queues_gt(sb_dev, 0);
2872 #endif
2873 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2874 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2875 
2876 	while (txq-- != &dev->_tx[0]) {
2877 		if (txq->sb_dev == sb_dev)
2878 			txq->sb_dev = NULL;
2879 	}
2880 }
2881 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2882 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2883 int netdev_bind_sb_channel_queue(struct net_device *dev,
2884 				 struct net_device *sb_dev,
2885 				 u8 tc, u16 count, u16 offset)
2886 {
2887 	/* Make certain the sb_dev and dev are already configured */
2888 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2889 		return -EINVAL;
2890 
2891 	/* We cannot hand out queues we don't have */
2892 	if ((offset + count) > dev->real_num_tx_queues)
2893 		return -EINVAL;
2894 
2895 	/* Record the mapping */
2896 	sb_dev->tc_to_txq[tc].count = count;
2897 	sb_dev->tc_to_txq[tc].offset = offset;
2898 
2899 	/* Provide a way for Tx queue to find the tc_to_txq map or
2900 	 * XPS map for itself.
2901 	 */
2902 	while (count--)
2903 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2904 
2905 	return 0;
2906 }
2907 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2908 
netdev_set_sb_channel(struct net_device * dev,u16 channel)2909 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2910 {
2911 	/* Do not use a multiqueue device to represent a subordinate channel */
2912 	if (netif_is_multiqueue(dev))
2913 		return -ENODEV;
2914 
2915 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2916 	 * Channel 0 is meant to be "native" mode and used only to represent
2917 	 * the main root device. We allow writing 0 to reset the device back
2918 	 * to normal mode after being used as a subordinate channel.
2919 	 */
2920 	if (channel > S16_MAX)
2921 		return -EINVAL;
2922 
2923 	dev->num_tc = -channel;
2924 
2925 	return 0;
2926 }
2927 EXPORT_SYMBOL(netdev_set_sb_channel);
2928 
2929 /*
2930  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2931  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2932  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2933 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2934 {
2935 	bool disabling;
2936 	int rc;
2937 
2938 	disabling = txq < dev->real_num_tx_queues;
2939 
2940 	if (txq < 1 || txq > dev->num_tx_queues)
2941 		return -EINVAL;
2942 
2943 	if (dev->reg_state == NETREG_REGISTERED ||
2944 	    dev->reg_state == NETREG_UNREGISTERING) {
2945 		ASSERT_RTNL();
2946 
2947 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2948 						  txq);
2949 		if (rc)
2950 			return rc;
2951 
2952 		if (dev->num_tc)
2953 			netif_setup_tc(dev, txq);
2954 
2955 		dev_qdisc_change_real_num_tx(dev, txq);
2956 
2957 		dev->real_num_tx_queues = txq;
2958 
2959 		if (disabling) {
2960 			synchronize_net();
2961 			qdisc_reset_all_tx_gt(dev, txq);
2962 #ifdef CONFIG_XPS
2963 			netif_reset_xps_queues_gt(dev, txq);
2964 #endif
2965 		}
2966 	} else {
2967 		dev->real_num_tx_queues = txq;
2968 	}
2969 
2970 	return 0;
2971 }
2972 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2973 
2974 #ifdef CONFIG_SYSFS
2975 /**
2976  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2977  *	@dev: Network device
2978  *	@rxq: Actual number of RX queues
2979  *
2980  *	This must be called either with the rtnl_lock held or before
2981  *	registration of the net device.  Returns 0 on success, or a
2982  *	negative error code.  If called before registration, it always
2983  *	succeeds.
2984  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2985 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2986 {
2987 	int rc;
2988 
2989 	if (rxq < 1 || rxq > dev->num_rx_queues)
2990 		return -EINVAL;
2991 
2992 	if (dev->reg_state == NETREG_REGISTERED) {
2993 		ASSERT_RTNL();
2994 
2995 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2996 						  rxq);
2997 		if (rc)
2998 			return rc;
2999 	}
3000 
3001 	dev->real_num_rx_queues = rxq;
3002 	return 0;
3003 }
3004 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3005 #endif
3006 
3007 /**
3008  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3009  *	@dev: Network device
3010  *	@txq: Actual number of TX queues
3011  *	@rxq: Actual number of RX queues
3012  *
3013  *	Set the real number of both TX and RX queues.
3014  *	Does nothing if the number of queues is already correct.
3015  */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3016 int netif_set_real_num_queues(struct net_device *dev,
3017 			      unsigned int txq, unsigned int rxq)
3018 {
3019 	unsigned int old_rxq = dev->real_num_rx_queues;
3020 	int err;
3021 
3022 	if (txq < 1 || txq > dev->num_tx_queues ||
3023 	    rxq < 1 || rxq > dev->num_rx_queues)
3024 		return -EINVAL;
3025 
3026 	/* Start from increases, so the error path only does decreases -
3027 	 * decreases can't fail.
3028 	 */
3029 	if (rxq > dev->real_num_rx_queues) {
3030 		err = netif_set_real_num_rx_queues(dev, rxq);
3031 		if (err)
3032 			return err;
3033 	}
3034 	if (txq > dev->real_num_tx_queues) {
3035 		err = netif_set_real_num_tx_queues(dev, txq);
3036 		if (err)
3037 			goto undo_rx;
3038 	}
3039 	if (rxq < dev->real_num_rx_queues)
3040 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3041 	if (txq < dev->real_num_tx_queues)
3042 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3043 
3044 	return 0;
3045 undo_rx:
3046 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3047 	return err;
3048 }
3049 EXPORT_SYMBOL(netif_set_real_num_queues);
3050 
3051 /**
3052  * netif_get_num_default_rss_queues - default number of RSS queues
3053  *
3054  * This routine should set an upper limit on the number of RSS queues
3055  * used by default by multiqueue devices.
3056  */
netif_get_num_default_rss_queues(void)3057 int netif_get_num_default_rss_queues(void)
3058 {
3059 	return is_kdump_kernel() ?
3060 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3061 }
3062 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3063 
__netif_reschedule(struct Qdisc * q)3064 static void __netif_reschedule(struct Qdisc *q)
3065 {
3066 	struct softnet_data *sd;
3067 	unsigned long flags;
3068 
3069 	local_irq_save(flags);
3070 	sd = this_cpu_ptr(&softnet_data);
3071 	q->next_sched = NULL;
3072 	*sd->output_queue_tailp = q;
3073 	sd->output_queue_tailp = &q->next_sched;
3074 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3075 	local_irq_restore(flags);
3076 }
3077 
__netif_schedule(struct Qdisc * q)3078 void __netif_schedule(struct Qdisc *q)
3079 {
3080 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3081 		__netif_reschedule(q);
3082 }
3083 EXPORT_SYMBOL(__netif_schedule);
3084 
3085 struct dev_kfree_skb_cb {
3086 	enum skb_free_reason reason;
3087 };
3088 
get_kfree_skb_cb(const struct sk_buff * skb)3089 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3090 {
3091 	return (struct dev_kfree_skb_cb *)skb->cb;
3092 }
3093 
netif_schedule_queue(struct netdev_queue * txq)3094 void netif_schedule_queue(struct netdev_queue *txq)
3095 {
3096 	rcu_read_lock();
3097 	if (!netif_xmit_stopped(txq)) {
3098 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3099 
3100 		__netif_schedule(q);
3101 	}
3102 	rcu_read_unlock();
3103 }
3104 EXPORT_SYMBOL(netif_schedule_queue);
3105 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3106 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3107 {
3108 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3109 		struct Qdisc *q;
3110 
3111 		rcu_read_lock();
3112 		q = rcu_dereference(dev_queue->qdisc);
3113 		__netif_schedule(q);
3114 		rcu_read_unlock();
3115 	}
3116 }
3117 EXPORT_SYMBOL(netif_tx_wake_queue);
3118 
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)3119 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3120 {
3121 	unsigned long flags;
3122 
3123 	if (unlikely(!skb))
3124 		return;
3125 
3126 	if (likely(refcount_read(&skb->users) == 1)) {
3127 		smp_rmb();
3128 		refcount_set(&skb->users, 0);
3129 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3130 		return;
3131 	}
3132 	get_kfree_skb_cb(skb)->reason = reason;
3133 	local_irq_save(flags);
3134 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3135 	__this_cpu_write(softnet_data.completion_queue, skb);
3136 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3137 	local_irq_restore(flags);
3138 }
3139 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3140 
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)3141 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3142 {
3143 	if (in_hardirq() || irqs_disabled())
3144 		__dev_kfree_skb_irq(skb, reason);
3145 	else if (unlikely(reason == SKB_REASON_DROPPED))
3146 		kfree_skb(skb);
3147 	else
3148 		consume_skb(skb);
3149 }
3150 EXPORT_SYMBOL(__dev_kfree_skb_any);
3151 
3152 
3153 /**
3154  * netif_device_detach - mark device as removed
3155  * @dev: network device
3156  *
3157  * Mark device as removed from system and therefore no longer available.
3158  */
netif_device_detach(struct net_device * dev)3159 void netif_device_detach(struct net_device *dev)
3160 {
3161 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3162 	    netif_running(dev)) {
3163 		netif_tx_stop_all_queues(dev);
3164 	}
3165 }
3166 EXPORT_SYMBOL(netif_device_detach);
3167 
3168 /**
3169  * netif_device_attach - mark device as attached
3170  * @dev: network device
3171  *
3172  * Mark device as attached from system and restart if needed.
3173  */
netif_device_attach(struct net_device * dev)3174 void netif_device_attach(struct net_device *dev)
3175 {
3176 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3177 	    netif_running(dev)) {
3178 		netif_tx_wake_all_queues(dev);
3179 		__netdev_watchdog_up(dev);
3180 	}
3181 }
3182 EXPORT_SYMBOL(netif_device_attach);
3183 
3184 /*
3185  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3186  * to be used as a distribution range.
3187  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3188 static u16 skb_tx_hash(const struct net_device *dev,
3189 		       const struct net_device *sb_dev,
3190 		       struct sk_buff *skb)
3191 {
3192 	u32 hash;
3193 	u16 qoffset = 0;
3194 	u16 qcount = dev->real_num_tx_queues;
3195 
3196 	if (dev->num_tc) {
3197 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3198 
3199 		qoffset = sb_dev->tc_to_txq[tc].offset;
3200 		qcount = sb_dev->tc_to_txq[tc].count;
3201 		if (unlikely(!qcount)) {
3202 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3203 					     sb_dev->name, qoffset, tc);
3204 			qoffset = 0;
3205 			qcount = dev->real_num_tx_queues;
3206 		}
3207 	}
3208 
3209 	if (skb_rx_queue_recorded(skb)) {
3210 		hash = skb_get_rx_queue(skb);
3211 		if (hash >= qoffset)
3212 			hash -= qoffset;
3213 		while (unlikely(hash >= qcount))
3214 			hash -= qcount;
3215 		return hash + qoffset;
3216 	}
3217 
3218 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3219 }
3220 
skb_warn_bad_offload(const struct sk_buff * skb)3221 static void skb_warn_bad_offload(const struct sk_buff *skb)
3222 {
3223 	static const netdev_features_t null_features;
3224 	struct net_device *dev = skb->dev;
3225 	const char *name = "";
3226 
3227 	if (!net_ratelimit())
3228 		return;
3229 
3230 	if (dev) {
3231 		if (dev->dev.parent)
3232 			name = dev_driver_string(dev->dev.parent);
3233 		else
3234 			name = netdev_name(dev);
3235 	}
3236 	skb_dump(KERN_WARNING, skb, false);
3237 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3238 	     name, dev ? &dev->features : &null_features,
3239 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3240 }
3241 
3242 /*
3243  * Invalidate hardware checksum when packet is to be mangled, and
3244  * complete checksum manually on outgoing path.
3245  */
skb_checksum_help(struct sk_buff * skb)3246 int skb_checksum_help(struct sk_buff *skb)
3247 {
3248 	__wsum csum;
3249 	int ret = 0, offset;
3250 
3251 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3252 		goto out_set_summed;
3253 
3254 	if (unlikely(skb_is_gso(skb))) {
3255 		skb_warn_bad_offload(skb);
3256 		return -EINVAL;
3257 	}
3258 
3259 	/* Before computing a checksum, we should make sure no frag could
3260 	 * be modified by an external entity : checksum could be wrong.
3261 	 */
3262 	if (skb_has_shared_frag(skb)) {
3263 		ret = __skb_linearize(skb);
3264 		if (ret)
3265 			goto out;
3266 	}
3267 
3268 	offset = skb_checksum_start_offset(skb);
3269 	ret = -EINVAL;
3270 	if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
3271 		goto out;
3272 
3273 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3274 
3275 	offset += skb->csum_offset;
3276 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb)))
3277 		goto out;
3278 
3279 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3280 	if (ret)
3281 		goto out;
3282 
3283 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3284 out_set_summed:
3285 	skb->ip_summed = CHECKSUM_NONE;
3286 out:
3287 	return ret;
3288 }
3289 EXPORT_SYMBOL(skb_checksum_help);
3290 
skb_crc32c_csum_help(struct sk_buff * skb)3291 int skb_crc32c_csum_help(struct sk_buff *skb)
3292 {
3293 	__le32 crc32c_csum;
3294 	int ret = 0, offset, start;
3295 
3296 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3297 		goto out;
3298 
3299 	if (unlikely(skb_is_gso(skb)))
3300 		goto out;
3301 
3302 	/* Before computing a checksum, we should make sure no frag could
3303 	 * be modified by an external entity : checksum could be wrong.
3304 	 */
3305 	if (unlikely(skb_has_shared_frag(skb))) {
3306 		ret = __skb_linearize(skb);
3307 		if (ret)
3308 			goto out;
3309 	}
3310 	start = skb_checksum_start_offset(skb);
3311 	offset = start + offsetof(struct sctphdr, checksum);
3312 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3313 		ret = -EINVAL;
3314 		goto out;
3315 	}
3316 
3317 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3318 	if (ret)
3319 		goto out;
3320 
3321 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3322 						  skb->len - start, ~(__u32)0,
3323 						  crc32c_csum_stub));
3324 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3325 	skb->ip_summed = CHECKSUM_NONE;
3326 	skb->csum_not_inet = 0;
3327 out:
3328 	return ret;
3329 }
3330 
skb_network_protocol(struct sk_buff * skb,int * depth)3331 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3332 {
3333 	__be16 type = skb->protocol;
3334 
3335 	/* Tunnel gso handlers can set protocol to ethernet. */
3336 	if (type == htons(ETH_P_TEB)) {
3337 		struct ethhdr *eth;
3338 
3339 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3340 			return 0;
3341 
3342 		eth = (struct ethhdr *)skb->data;
3343 		type = eth->h_proto;
3344 	}
3345 
3346 	return vlan_get_protocol_and_depth(skb, type, depth);
3347 }
3348 
3349 /**
3350  *	skb_mac_gso_segment - mac layer segmentation handler.
3351  *	@skb: buffer to segment
3352  *	@features: features for the output path (see dev->features)
3353  */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)3354 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3355 				    netdev_features_t features)
3356 {
3357 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3358 	struct packet_offload *ptype;
3359 	int vlan_depth = skb->mac_len;
3360 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3361 
3362 	if (unlikely(!type))
3363 		return ERR_PTR(-EINVAL);
3364 
3365 	__skb_pull(skb, vlan_depth);
3366 
3367 	rcu_read_lock();
3368 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3369 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3370 			segs = ptype->callbacks.gso_segment(skb, features);
3371 			break;
3372 		}
3373 	}
3374 	rcu_read_unlock();
3375 
3376 	__skb_push(skb, skb->data - skb_mac_header(skb));
3377 
3378 	return segs;
3379 }
3380 EXPORT_SYMBOL(skb_mac_gso_segment);
3381 
3382 
3383 /* openvswitch calls this on rx path, so we need a different check.
3384  */
skb_needs_check(struct sk_buff * skb,bool tx_path)3385 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3386 {
3387 	if (tx_path)
3388 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3389 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3390 
3391 	return skb->ip_summed == CHECKSUM_NONE;
3392 }
3393 
3394 /**
3395  *	__skb_gso_segment - Perform segmentation on skb.
3396  *	@skb: buffer to segment
3397  *	@features: features for the output path (see dev->features)
3398  *	@tx_path: whether it is called in TX path
3399  *
3400  *	This function segments the given skb and returns a list of segments.
3401  *
3402  *	It may return NULL if the skb requires no segmentation.  This is
3403  *	only possible when GSO is used for verifying header integrity.
3404  *
3405  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3406  */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3407 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3408 				  netdev_features_t features, bool tx_path)
3409 {
3410 	struct sk_buff *segs;
3411 
3412 	if (unlikely(skb_needs_check(skb, tx_path))) {
3413 		int err;
3414 
3415 		/* We're going to init ->check field in TCP or UDP header */
3416 		err = skb_cow_head(skb, 0);
3417 		if (err < 0)
3418 			return ERR_PTR(err);
3419 	}
3420 
3421 	/* Only report GSO partial support if it will enable us to
3422 	 * support segmentation on this frame without needing additional
3423 	 * work.
3424 	 */
3425 	if (features & NETIF_F_GSO_PARTIAL) {
3426 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3427 		struct net_device *dev = skb->dev;
3428 
3429 		partial_features |= dev->features & dev->gso_partial_features;
3430 		if (!skb_gso_ok(skb, features | partial_features))
3431 			features &= ~NETIF_F_GSO_PARTIAL;
3432 	}
3433 
3434 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3435 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3436 
3437 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3438 	SKB_GSO_CB(skb)->encap_level = 0;
3439 
3440 	skb_reset_mac_header(skb);
3441 	skb_reset_mac_len(skb);
3442 
3443 	segs = skb_mac_gso_segment(skb, features);
3444 
3445 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3446 		skb_warn_bad_offload(skb);
3447 
3448 	return segs;
3449 }
3450 EXPORT_SYMBOL(__skb_gso_segment);
3451 
3452 /* Take action when hardware reception checksum errors are detected. */
3453 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3454 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3455 {
3456 	pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3457 	skb_dump(KERN_ERR, skb, true);
3458 	dump_stack();
3459 }
3460 
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3461 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3462 {
3463 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3464 }
3465 EXPORT_SYMBOL(netdev_rx_csum_fault);
3466 #endif
3467 
3468 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3469 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3470 {
3471 #ifdef CONFIG_HIGHMEM
3472 	int i;
3473 
3474 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3475 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3476 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3477 
3478 			if (PageHighMem(skb_frag_page(frag)))
3479 				return 1;
3480 		}
3481 	}
3482 #endif
3483 	return 0;
3484 }
3485 
3486 /* If MPLS offload request, verify we are testing hardware MPLS features
3487  * instead of standard features for the netdev.
3488  */
3489 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3490 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3491 					   netdev_features_t features,
3492 					   __be16 type)
3493 {
3494 	if (eth_p_mpls(type))
3495 		features &= skb->dev->mpls_features;
3496 
3497 	return features;
3498 }
3499 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3500 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3501 					   netdev_features_t features,
3502 					   __be16 type)
3503 {
3504 	return features;
3505 }
3506 #endif
3507 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3508 static netdev_features_t harmonize_features(struct sk_buff *skb,
3509 	netdev_features_t features)
3510 {
3511 	__be16 type;
3512 
3513 	type = skb_network_protocol(skb, NULL);
3514 	features = net_mpls_features(skb, features, type);
3515 
3516 	if (skb->ip_summed != CHECKSUM_NONE &&
3517 	    !can_checksum_protocol(features, type)) {
3518 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3519 	}
3520 	if (illegal_highdma(skb->dev, skb))
3521 		features &= ~NETIF_F_SG;
3522 
3523 	return features;
3524 }
3525 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3526 netdev_features_t passthru_features_check(struct sk_buff *skb,
3527 					  struct net_device *dev,
3528 					  netdev_features_t features)
3529 {
3530 	return features;
3531 }
3532 EXPORT_SYMBOL(passthru_features_check);
3533 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3534 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3535 					     struct net_device *dev,
3536 					     netdev_features_t features)
3537 {
3538 	return vlan_features_check(skb, features);
3539 }
3540 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3541 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3542 					    struct net_device *dev,
3543 					    netdev_features_t features)
3544 {
3545 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3546 
3547 	if (gso_segs > dev->gso_max_segs)
3548 		return features & ~NETIF_F_GSO_MASK;
3549 
3550 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3551 		return features & ~NETIF_F_GSO_MASK;
3552 
3553 	if (!skb_shinfo(skb)->gso_type) {
3554 		skb_warn_bad_offload(skb);
3555 		return features & ~NETIF_F_GSO_MASK;
3556 	}
3557 
3558 	/* Support for GSO partial features requires software
3559 	 * intervention before we can actually process the packets
3560 	 * so we need to strip support for any partial features now
3561 	 * and we can pull them back in after we have partially
3562 	 * segmented the frame.
3563 	 */
3564 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3565 		features &= ~dev->gso_partial_features;
3566 
3567 	/* Make sure to clear the IPv4 ID mangling feature if the
3568 	 * IPv4 header has the potential to be fragmented.
3569 	 */
3570 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3571 		struct iphdr *iph = skb->encapsulation ?
3572 				    inner_ip_hdr(skb) : ip_hdr(skb);
3573 
3574 		if (!(iph->frag_off & htons(IP_DF)))
3575 			features &= ~NETIF_F_TSO_MANGLEID;
3576 	}
3577 
3578 	return features;
3579 }
3580 
netif_skb_features(struct sk_buff * skb)3581 netdev_features_t netif_skb_features(struct sk_buff *skb)
3582 {
3583 	struct net_device *dev = skb->dev;
3584 	netdev_features_t features = dev->features;
3585 
3586 	if (skb_is_gso(skb))
3587 		features = gso_features_check(skb, dev, features);
3588 
3589 	/* If encapsulation offload request, verify we are testing
3590 	 * hardware encapsulation features instead of standard
3591 	 * features for the netdev
3592 	 */
3593 	if (skb->encapsulation)
3594 		features &= dev->hw_enc_features;
3595 
3596 	if (skb_vlan_tagged(skb))
3597 		features = netdev_intersect_features(features,
3598 						     dev->vlan_features |
3599 						     NETIF_F_HW_VLAN_CTAG_TX |
3600 						     NETIF_F_HW_VLAN_STAG_TX);
3601 
3602 	if (dev->netdev_ops->ndo_features_check)
3603 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3604 								features);
3605 	else
3606 		features &= dflt_features_check(skb, dev, features);
3607 
3608 	return harmonize_features(skb, features);
3609 }
3610 EXPORT_SYMBOL(netif_skb_features);
3611 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3612 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3613 		    struct netdev_queue *txq, bool more)
3614 {
3615 	unsigned int len;
3616 	int rc;
3617 
3618 	if (dev_nit_active(dev))
3619 		dev_queue_xmit_nit(skb, dev);
3620 
3621 	len = skb->len;
3622 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3623 	trace_net_dev_start_xmit(skb, dev);
3624 	rc = netdev_start_xmit(skb, dev, txq, more);
3625 	trace_net_dev_xmit(skb, rc, dev, len);
3626 
3627 	return rc;
3628 }
3629 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3630 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3631 				    struct netdev_queue *txq, int *ret)
3632 {
3633 	struct sk_buff *skb = first;
3634 	int rc = NETDEV_TX_OK;
3635 
3636 	while (skb) {
3637 		struct sk_buff *next = skb->next;
3638 
3639 		skb_mark_not_on_list(skb);
3640 		rc = xmit_one(skb, dev, txq, next != NULL);
3641 		if (unlikely(!dev_xmit_complete(rc))) {
3642 			skb->next = next;
3643 			goto out;
3644 		}
3645 
3646 		skb = next;
3647 		if (netif_tx_queue_stopped(txq) && skb) {
3648 			rc = NETDEV_TX_BUSY;
3649 			break;
3650 		}
3651 	}
3652 
3653 out:
3654 	*ret = rc;
3655 	return skb;
3656 }
3657 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3658 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3659 					  netdev_features_t features)
3660 {
3661 	if (skb_vlan_tag_present(skb) &&
3662 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3663 		skb = __vlan_hwaccel_push_inside(skb);
3664 	return skb;
3665 }
3666 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3667 int skb_csum_hwoffload_help(struct sk_buff *skb,
3668 			    const netdev_features_t features)
3669 {
3670 	if (unlikely(skb_csum_is_sctp(skb)))
3671 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3672 			skb_crc32c_csum_help(skb);
3673 
3674 	if (features & NETIF_F_HW_CSUM)
3675 		return 0;
3676 
3677 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3678 		switch (skb->csum_offset) {
3679 		case offsetof(struct tcphdr, check):
3680 		case offsetof(struct udphdr, check):
3681 			return 0;
3682 		}
3683 	}
3684 
3685 	return skb_checksum_help(skb);
3686 }
3687 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3688 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3689 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3690 {
3691 	netdev_features_t features;
3692 
3693 	features = netif_skb_features(skb);
3694 	skb = validate_xmit_vlan(skb, features);
3695 	if (unlikely(!skb))
3696 		goto out_null;
3697 
3698 	skb = sk_validate_xmit_skb(skb, dev);
3699 	if (unlikely(!skb))
3700 		goto out_null;
3701 
3702 	if (netif_needs_gso(skb, features)) {
3703 		struct sk_buff *segs;
3704 
3705 		segs = skb_gso_segment(skb, features);
3706 		if (IS_ERR(segs)) {
3707 			goto out_kfree_skb;
3708 		} else if (segs) {
3709 			consume_skb(skb);
3710 			skb = segs;
3711 		}
3712 	} else {
3713 		if (skb_needs_linearize(skb, features) &&
3714 		    __skb_linearize(skb))
3715 			goto out_kfree_skb;
3716 
3717 		/* If packet is not checksummed and device does not
3718 		 * support checksumming for this protocol, complete
3719 		 * checksumming here.
3720 		 */
3721 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3722 			if (skb->encapsulation)
3723 				skb_set_inner_transport_header(skb,
3724 							       skb_checksum_start_offset(skb));
3725 			else
3726 				skb_set_transport_header(skb,
3727 							 skb_checksum_start_offset(skb));
3728 			if (skb_csum_hwoffload_help(skb, features))
3729 				goto out_kfree_skb;
3730 		}
3731 	}
3732 
3733 	skb = validate_xmit_xfrm(skb, features, again);
3734 
3735 	return skb;
3736 
3737 out_kfree_skb:
3738 	kfree_skb(skb);
3739 out_null:
3740 	atomic_long_inc(&dev->tx_dropped);
3741 	return NULL;
3742 }
3743 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3744 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3745 {
3746 	struct sk_buff *next, *head = NULL, *tail;
3747 
3748 	for (; skb != NULL; skb = next) {
3749 		next = skb->next;
3750 		skb_mark_not_on_list(skb);
3751 
3752 		/* in case skb wont be segmented, point to itself */
3753 		skb->prev = skb;
3754 
3755 		skb = validate_xmit_skb(skb, dev, again);
3756 		if (!skb)
3757 			continue;
3758 
3759 		if (!head)
3760 			head = skb;
3761 		else
3762 			tail->next = skb;
3763 		/* If skb was segmented, skb->prev points to
3764 		 * the last segment. If not, it still contains skb.
3765 		 */
3766 		tail = skb->prev;
3767 	}
3768 	return head;
3769 }
3770 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3771 
qdisc_pkt_len_init(struct sk_buff * skb)3772 static void qdisc_pkt_len_init(struct sk_buff *skb)
3773 {
3774 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3775 
3776 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3777 
3778 	/* To get more precise estimation of bytes sent on wire,
3779 	 * we add to pkt_len the headers size of all segments
3780 	 */
3781 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3782 		unsigned int hdr_len;
3783 		u16 gso_segs = shinfo->gso_segs;
3784 
3785 		/* mac layer + network layer */
3786 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3787 
3788 		/* + transport layer */
3789 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3790 			const struct tcphdr *th;
3791 			struct tcphdr _tcphdr;
3792 
3793 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3794 						sizeof(_tcphdr), &_tcphdr);
3795 			if (likely(th))
3796 				hdr_len += __tcp_hdrlen(th);
3797 		} else {
3798 			struct udphdr _udphdr;
3799 
3800 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3801 					       sizeof(_udphdr), &_udphdr))
3802 				hdr_len += sizeof(struct udphdr);
3803 		}
3804 
3805 		if (shinfo->gso_type & SKB_GSO_DODGY)
3806 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3807 						shinfo->gso_size);
3808 
3809 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3810 	}
3811 }
3812 
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3813 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3814 			     struct sk_buff **to_free,
3815 			     struct netdev_queue *txq)
3816 {
3817 	int rc;
3818 
3819 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3820 	if (rc == NET_XMIT_SUCCESS)
3821 		trace_qdisc_enqueue(q, txq, skb);
3822 	return rc;
3823 }
3824 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3825 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3826 				 struct net_device *dev,
3827 				 struct netdev_queue *txq)
3828 {
3829 	spinlock_t *root_lock = qdisc_lock(q);
3830 	struct sk_buff *to_free = NULL;
3831 	bool contended;
3832 	int rc;
3833 
3834 	qdisc_calculate_pkt_len(skb, q);
3835 
3836 	if (q->flags & TCQ_F_NOLOCK) {
3837 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3838 		    qdisc_run_begin(q)) {
3839 			/* Retest nolock_qdisc_is_empty() within the protection
3840 			 * of q->seqlock to protect from racing with requeuing.
3841 			 */
3842 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3843 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3844 				__qdisc_run(q);
3845 				qdisc_run_end(q);
3846 
3847 				goto no_lock_out;
3848 			}
3849 
3850 			qdisc_bstats_cpu_update(q, skb);
3851 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3852 			    !nolock_qdisc_is_empty(q))
3853 				__qdisc_run(q);
3854 
3855 			qdisc_run_end(q);
3856 			return NET_XMIT_SUCCESS;
3857 		}
3858 
3859 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3860 		qdisc_run(q);
3861 
3862 no_lock_out:
3863 		if (unlikely(to_free))
3864 			kfree_skb_list(to_free);
3865 		return rc;
3866 	}
3867 
3868 	/*
3869 	 * Heuristic to force contended enqueues to serialize on a
3870 	 * separate lock before trying to get qdisc main lock.
3871 	 * This permits qdisc->running owner to get the lock more
3872 	 * often and dequeue packets faster.
3873 	 */
3874 	contended = qdisc_is_running(q);
3875 	if (unlikely(contended))
3876 		spin_lock(&q->busylock);
3877 
3878 	spin_lock(root_lock);
3879 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3880 		__qdisc_drop(skb, &to_free);
3881 		rc = NET_XMIT_DROP;
3882 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3883 		   qdisc_run_begin(q)) {
3884 		/*
3885 		 * This is a work-conserving queue; there are no old skbs
3886 		 * waiting to be sent out; and the qdisc is not running -
3887 		 * xmit the skb directly.
3888 		 */
3889 
3890 		qdisc_bstats_update(q, skb);
3891 
3892 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3893 			if (unlikely(contended)) {
3894 				spin_unlock(&q->busylock);
3895 				contended = false;
3896 			}
3897 			__qdisc_run(q);
3898 		}
3899 
3900 		qdisc_run_end(q);
3901 		rc = NET_XMIT_SUCCESS;
3902 	} else {
3903 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3904 		if (qdisc_run_begin(q)) {
3905 			if (unlikely(contended)) {
3906 				spin_unlock(&q->busylock);
3907 				contended = false;
3908 			}
3909 			__qdisc_run(q);
3910 			qdisc_run_end(q);
3911 		}
3912 	}
3913 	spin_unlock(root_lock);
3914 	if (unlikely(to_free))
3915 		kfree_skb_list(to_free);
3916 	if (unlikely(contended))
3917 		spin_unlock(&q->busylock);
3918 	return rc;
3919 }
3920 
3921 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3922 static void skb_update_prio(struct sk_buff *skb)
3923 {
3924 	const struct netprio_map *map;
3925 	const struct sock *sk;
3926 	unsigned int prioidx;
3927 
3928 	if (skb->priority)
3929 		return;
3930 	map = rcu_dereference_bh(skb->dev->priomap);
3931 	if (!map)
3932 		return;
3933 	sk = skb_to_full_sk(skb);
3934 	if (!sk)
3935 		return;
3936 
3937 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3938 
3939 	if (prioidx < map->priomap_len)
3940 		skb->priority = map->priomap[prioidx];
3941 }
3942 #else
3943 #define skb_update_prio(skb)
3944 #endif
3945 
3946 /**
3947  *	dev_loopback_xmit - loop back @skb
3948  *	@net: network namespace this loopback is happening in
3949  *	@sk:  sk needed to be a netfilter okfn
3950  *	@skb: buffer to transmit
3951  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3952 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3953 {
3954 	skb_reset_mac_header(skb);
3955 	__skb_pull(skb, skb_network_offset(skb));
3956 	skb->pkt_type = PACKET_LOOPBACK;
3957 	if (skb->ip_summed == CHECKSUM_NONE)
3958 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3959 	WARN_ON(!skb_dst(skb));
3960 	skb_dst_force(skb);
3961 	netif_rx_ni(skb);
3962 	return 0;
3963 }
3964 EXPORT_SYMBOL(dev_loopback_xmit);
3965 
3966 #ifdef CONFIG_NET_EGRESS
3967 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3968 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3969 {
3970 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3971 	struct tcf_result cl_res;
3972 
3973 	if (!miniq)
3974 		return skb;
3975 
3976 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3977 	tc_skb_cb(skb)->mru = 0;
3978 	tc_skb_cb(skb)->post_ct = false;
3979 	mini_qdisc_bstats_cpu_update(miniq, skb);
3980 
3981 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3982 	case TC_ACT_OK:
3983 	case TC_ACT_RECLASSIFY:
3984 		skb->tc_index = TC_H_MIN(cl_res.classid);
3985 		break;
3986 	case TC_ACT_SHOT:
3987 		mini_qdisc_qstats_cpu_drop(miniq);
3988 		*ret = NET_XMIT_DROP;
3989 		kfree_skb(skb);
3990 		return NULL;
3991 	case TC_ACT_STOLEN:
3992 	case TC_ACT_QUEUED:
3993 	case TC_ACT_TRAP:
3994 		*ret = NET_XMIT_SUCCESS;
3995 		consume_skb(skb);
3996 		return NULL;
3997 	case TC_ACT_REDIRECT:
3998 		/* No need to push/pop skb's mac_header here on egress! */
3999 		skb_do_redirect(skb);
4000 		*ret = NET_XMIT_SUCCESS;
4001 		return NULL;
4002 	default:
4003 		break;
4004 	}
4005 
4006 	return skb;
4007 }
4008 #endif /* CONFIG_NET_EGRESS */
4009 
4010 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4011 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4012 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4013 {
4014 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4015 	struct xps_map *map;
4016 	int queue_index = -1;
4017 
4018 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4019 		return queue_index;
4020 
4021 	tci *= dev_maps->num_tc;
4022 	tci += tc;
4023 
4024 	map = rcu_dereference(dev_maps->attr_map[tci]);
4025 	if (map) {
4026 		if (map->len == 1)
4027 			queue_index = map->queues[0];
4028 		else
4029 			queue_index = map->queues[reciprocal_scale(
4030 						skb_get_hash(skb), map->len)];
4031 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4032 			queue_index = -1;
4033 	}
4034 	return queue_index;
4035 }
4036 #endif
4037 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4038 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4039 			 struct sk_buff *skb)
4040 {
4041 #ifdef CONFIG_XPS
4042 	struct xps_dev_maps *dev_maps;
4043 	struct sock *sk = skb->sk;
4044 	int queue_index = -1;
4045 
4046 	if (!static_key_false(&xps_needed))
4047 		return -1;
4048 
4049 	rcu_read_lock();
4050 	if (!static_key_false(&xps_rxqs_needed))
4051 		goto get_cpus_map;
4052 
4053 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4054 	if (dev_maps) {
4055 		int tci = sk_rx_queue_get(sk);
4056 
4057 		if (tci >= 0)
4058 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4059 							  tci);
4060 	}
4061 
4062 get_cpus_map:
4063 	if (queue_index < 0) {
4064 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4065 		if (dev_maps) {
4066 			unsigned int tci = skb->sender_cpu - 1;
4067 
4068 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4069 							  tci);
4070 		}
4071 	}
4072 	rcu_read_unlock();
4073 
4074 	return queue_index;
4075 #else
4076 	return -1;
4077 #endif
4078 }
4079 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4080 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4081 		     struct net_device *sb_dev)
4082 {
4083 	return 0;
4084 }
4085 EXPORT_SYMBOL(dev_pick_tx_zero);
4086 
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4087 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4088 		       struct net_device *sb_dev)
4089 {
4090 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4091 }
4092 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4093 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4094 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4095 		     struct net_device *sb_dev)
4096 {
4097 	struct sock *sk = skb->sk;
4098 	int queue_index = sk_tx_queue_get(sk);
4099 
4100 	sb_dev = sb_dev ? : dev;
4101 
4102 	if (queue_index < 0 || skb->ooo_okay ||
4103 	    queue_index >= dev->real_num_tx_queues) {
4104 		int new_index = get_xps_queue(dev, sb_dev, skb);
4105 
4106 		if (new_index < 0)
4107 			new_index = skb_tx_hash(dev, sb_dev, skb);
4108 
4109 		if (queue_index != new_index && sk &&
4110 		    sk_fullsock(sk) &&
4111 		    rcu_access_pointer(sk->sk_dst_cache))
4112 			sk_tx_queue_set(sk, new_index);
4113 
4114 		queue_index = new_index;
4115 	}
4116 
4117 	return queue_index;
4118 }
4119 EXPORT_SYMBOL(netdev_pick_tx);
4120 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4121 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4122 					 struct sk_buff *skb,
4123 					 struct net_device *sb_dev)
4124 {
4125 	int queue_index = 0;
4126 
4127 #ifdef CONFIG_XPS
4128 	u32 sender_cpu = skb->sender_cpu - 1;
4129 
4130 	if (sender_cpu >= (u32)NR_CPUS)
4131 		skb->sender_cpu = raw_smp_processor_id() + 1;
4132 #endif
4133 
4134 	if (dev->real_num_tx_queues != 1) {
4135 		const struct net_device_ops *ops = dev->netdev_ops;
4136 
4137 		if (ops->ndo_select_queue)
4138 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4139 		else
4140 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4141 
4142 		queue_index = netdev_cap_txqueue(dev, queue_index);
4143 	}
4144 
4145 	skb_set_queue_mapping(skb, queue_index);
4146 	return netdev_get_tx_queue(dev, queue_index);
4147 }
4148 
4149 /**
4150  *	__dev_queue_xmit - transmit a buffer
4151  *	@skb: buffer to transmit
4152  *	@sb_dev: suboordinate device used for L2 forwarding offload
4153  *
4154  *	Queue a buffer for transmission to a network device. The caller must
4155  *	have set the device and priority and built the buffer before calling
4156  *	this function. The function can be called from an interrupt.
4157  *
4158  *	A negative errno code is returned on a failure. A success does not
4159  *	guarantee the frame will be transmitted as it may be dropped due
4160  *	to congestion or traffic shaping.
4161  *
4162  * -----------------------------------------------------------------------------------
4163  *      I notice this method can also return errors from the queue disciplines,
4164  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4165  *      be positive.
4166  *
4167  *      Regardless of the return value, the skb is consumed, so it is currently
4168  *      difficult to retry a send to this method.  (You can bump the ref count
4169  *      before sending to hold a reference for retry if you are careful.)
4170  *
4171  *      When calling this method, interrupts MUST be enabled.  This is because
4172  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4173  *          --BLG
4174  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4175 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4176 {
4177 	struct net_device *dev = skb->dev;
4178 	struct netdev_queue *txq;
4179 	struct Qdisc *q;
4180 	int rc = -ENOMEM;
4181 	bool again = false;
4182 
4183 	skb_reset_mac_header(skb);
4184 	skb_assert_len(skb);
4185 
4186 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4187 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4188 
4189 	/* Disable soft irqs for various locks below. Also
4190 	 * stops preemption for RCU.
4191 	 */
4192 	rcu_read_lock_bh();
4193 
4194 	skb_update_prio(skb);
4195 
4196 	qdisc_pkt_len_init(skb);
4197 #ifdef CONFIG_NET_CLS_ACT
4198 	skb->tc_at_ingress = 0;
4199 # ifdef CONFIG_NET_EGRESS
4200 	if (static_branch_unlikely(&egress_needed_key)) {
4201 		skb = sch_handle_egress(skb, &rc, dev);
4202 		if (!skb)
4203 			goto out;
4204 	}
4205 # endif
4206 #endif
4207 	/* If device/qdisc don't need skb->dst, release it right now while
4208 	 * its hot in this cpu cache.
4209 	 */
4210 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4211 		skb_dst_drop(skb);
4212 	else
4213 		skb_dst_force(skb);
4214 
4215 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4216 	q = rcu_dereference_bh(txq->qdisc);
4217 
4218 	trace_net_dev_queue(skb);
4219 	if (q->enqueue) {
4220 		rc = __dev_xmit_skb(skb, q, dev, txq);
4221 		goto out;
4222 	}
4223 
4224 	/* The device has no queue. Common case for software devices:
4225 	 * loopback, all the sorts of tunnels...
4226 
4227 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4228 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4229 	 * counters.)
4230 	 * However, it is possible, that they rely on protection
4231 	 * made by us here.
4232 
4233 	 * Check this and shot the lock. It is not prone from deadlocks.
4234 	 *Either shot noqueue qdisc, it is even simpler 8)
4235 	 */
4236 	if (dev->flags & IFF_UP) {
4237 		int cpu = smp_processor_id(); /* ok because BHs are off */
4238 
4239 		/* Other cpus might concurrently change txq->xmit_lock_owner
4240 		 * to -1 or to their cpu id, but not to our id.
4241 		 */
4242 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4243 			if (dev_xmit_recursion())
4244 				goto recursion_alert;
4245 
4246 			skb = validate_xmit_skb(skb, dev, &again);
4247 			if (!skb)
4248 				goto out;
4249 
4250 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4251 			HARD_TX_LOCK(dev, txq, cpu);
4252 
4253 			if (!netif_xmit_stopped(txq)) {
4254 				dev_xmit_recursion_inc();
4255 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4256 				dev_xmit_recursion_dec();
4257 				if (dev_xmit_complete(rc)) {
4258 					HARD_TX_UNLOCK(dev, txq);
4259 					goto out;
4260 				}
4261 			}
4262 			HARD_TX_UNLOCK(dev, txq);
4263 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4264 					     dev->name);
4265 		} else {
4266 			/* Recursion is detected! It is possible,
4267 			 * unfortunately
4268 			 */
4269 recursion_alert:
4270 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4271 					     dev->name);
4272 		}
4273 	}
4274 
4275 	rc = -ENETDOWN;
4276 	rcu_read_unlock_bh();
4277 
4278 	atomic_long_inc(&dev->tx_dropped);
4279 	kfree_skb_list(skb);
4280 	return rc;
4281 out:
4282 	rcu_read_unlock_bh();
4283 	return rc;
4284 }
4285 
dev_queue_xmit(struct sk_buff * skb)4286 int dev_queue_xmit(struct sk_buff *skb)
4287 {
4288 	return __dev_queue_xmit(skb, NULL);
4289 }
4290 EXPORT_SYMBOL(dev_queue_xmit);
4291 
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)4292 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4293 {
4294 	return __dev_queue_xmit(skb, sb_dev);
4295 }
4296 EXPORT_SYMBOL(dev_queue_xmit_accel);
4297 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4298 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4299 {
4300 	struct net_device *dev = skb->dev;
4301 	struct sk_buff *orig_skb = skb;
4302 	struct netdev_queue *txq;
4303 	int ret = NETDEV_TX_BUSY;
4304 	bool again = false;
4305 
4306 	if (unlikely(!netif_running(dev) ||
4307 		     !netif_carrier_ok(dev)))
4308 		goto drop;
4309 
4310 	skb = validate_xmit_skb_list(skb, dev, &again);
4311 	if (skb != orig_skb)
4312 		goto drop;
4313 
4314 	skb_set_queue_mapping(skb, queue_id);
4315 	txq = skb_get_tx_queue(dev, skb);
4316 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4317 
4318 	local_bh_disable();
4319 
4320 	dev_xmit_recursion_inc();
4321 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4322 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4323 		ret = netdev_start_xmit(skb, dev, txq, false);
4324 	HARD_TX_UNLOCK(dev, txq);
4325 	dev_xmit_recursion_dec();
4326 
4327 	local_bh_enable();
4328 	return ret;
4329 drop:
4330 	atomic_long_inc(&dev->tx_dropped);
4331 	kfree_skb_list(skb);
4332 	return NET_XMIT_DROP;
4333 }
4334 EXPORT_SYMBOL(__dev_direct_xmit);
4335 
4336 /*************************************************************************
4337  *			Receiver routines
4338  *************************************************************************/
4339 
4340 int netdev_max_backlog __read_mostly = 1000;
4341 EXPORT_SYMBOL(netdev_max_backlog);
4342 
4343 int netdev_tstamp_prequeue __read_mostly = 1;
4344 int netdev_budget __read_mostly = 300;
4345 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4346 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4347 int weight_p __read_mostly = 64;           /* old backlog weight */
4348 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4349 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4350 int dev_rx_weight __read_mostly = 64;
4351 int dev_tx_weight __read_mostly = 64;
4352 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4353 int gro_normal_batch __read_mostly = 8;
4354 
4355 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4356 static inline void ____napi_schedule(struct softnet_data *sd,
4357 				     struct napi_struct *napi)
4358 {
4359 	struct task_struct *thread;
4360 
4361 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4362 		/* Paired with smp_mb__before_atomic() in
4363 		 * napi_enable()/dev_set_threaded().
4364 		 * Use READ_ONCE() to guarantee a complete
4365 		 * read on napi->thread. Only call
4366 		 * wake_up_process() when it's not NULL.
4367 		 */
4368 		thread = READ_ONCE(napi->thread);
4369 		if (thread) {
4370 			/* Avoid doing set_bit() if the thread is in
4371 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4372 			 * makes sure to proceed with napi polling
4373 			 * if the thread is explicitly woken from here.
4374 			 */
4375 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4376 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4377 			wake_up_process(thread);
4378 			return;
4379 		}
4380 	}
4381 
4382 	list_add_tail(&napi->poll_list, &sd->poll_list);
4383 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4384 }
4385 
4386 #ifdef CONFIG_RPS
4387 
4388 /* One global table that all flow-based protocols share. */
4389 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4390 EXPORT_SYMBOL(rps_sock_flow_table);
4391 u32 rps_cpu_mask __read_mostly;
4392 EXPORT_SYMBOL(rps_cpu_mask);
4393 
4394 struct static_key_false rps_needed __read_mostly;
4395 EXPORT_SYMBOL(rps_needed);
4396 struct static_key_false rfs_needed __read_mostly;
4397 EXPORT_SYMBOL(rfs_needed);
4398 
4399 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4400 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4401 	    struct rps_dev_flow *rflow, u16 next_cpu)
4402 {
4403 	if (next_cpu < nr_cpu_ids) {
4404 #ifdef CONFIG_RFS_ACCEL
4405 		struct netdev_rx_queue *rxqueue;
4406 		struct rps_dev_flow_table *flow_table;
4407 		struct rps_dev_flow *old_rflow;
4408 		u32 flow_id;
4409 		u16 rxq_index;
4410 		int rc;
4411 
4412 		/* Should we steer this flow to a different hardware queue? */
4413 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4414 		    !(dev->features & NETIF_F_NTUPLE))
4415 			goto out;
4416 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4417 		if (rxq_index == skb_get_rx_queue(skb))
4418 			goto out;
4419 
4420 		rxqueue = dev->_rx + rxq_index;
4421 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4422 		if (!flow_table)
4423 			goto out;
4424 		flow_id = skb_get_hash(skb) & flow_table->mask;
4425 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4426 							rxq_index, flow_id);
4427 		if (rc < 0)
4428 			goto out;
4429 		old_rflow = rflow;
4430 		rflow = &flow_table->flows[flow_id];
4431 		rflow->filter = rc;
4432 		if (old_rflow->filter == rflow->filter)
4433 			old_rflow->filter = RPS_NO_FILTER;
4434 	out:
4435 #endif
4436 		rflow->last_qtail =
4437 			per_cpu(softnet_data, next_cpu).input_queue_head;
4438 	}
4439 
4440 	rflow->cpu = next_cpu;
4441 	return rflow;
4442 }
4443 
4444 /*
4445  * get_rps_cpu is called from netif_receive_skb and returns the target
4446  * CPU from the RPS map of the receiving queue for a given skb.
4447  * rcu_read_lock must be held on entry.
4448  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4449 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4450 		       struct rps_dev_flow **rflowp)
4451 {
4452 	const struct rps_sock_flow_table *sock_flow_table;
4453 	struct netdev_rx_queue *rxqueue = dev->_rx;
4454 	struct rps_dev_flow_table *flow_table;
4455 	struct rps_map *map;
4456 	int cpu = -1;
4457 	u32 tcpu;
4458 	u32 hash;
4459 
4460 	if (skb_rx_queue_recorded(skb)) {
4461 		u16 index = skb_get_rx_queue(skb);
4462 
4463 		if (unlikely(index >= dev->real_num_rx_queues)) {
4464 			WARN_ONCE(dev->real_num_rx_queues > 1,
4465 				  "%s received packet on queue %u, but number "
4466 				  "of RX queues is %u\n",
4467 				  dev->name, index, dev->real_num_rx_queues);
4468 			goto done;
4469 		}
4470 		rxqueue += index;
4471 	}
4472 
4473 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4474 
4475 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4476 	map = rcu_dereference(rxqueue->rps_map);
4477 	if (!flow_table && !map)
4478 		goto done;
4479 
4480 	skb_reset_network_header(skb);
4481 	hash = skb_get_hash(skb);
4482 	if (!hash)
4483 		goto done;
4484 
4485 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4486 	if (flow_table && sock_flow_table) {
4487 		struct rps_dev_flow *rflow;
4488 		u32 next_cpu;
4489 		u32 ident;
4490 
4491 		/* First check into global flow table if there is a match.
4492 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4493 		 */
4494 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4495 		if ((ident ^ hash) & ~rps_cpu_mask)
4496 			goto try_rps;
4497 
4498 		next_cpu = ident & rps_cpu_mask;
4499 
4500 		/* OK, now we know there is a match,
4501 		 * we can look at the local (per receive queue) flow table
4502 		 */
4503 		rflow = &flow_table->flows[hash & flow_table->mask];
4504 		tcpu = rflow->cpu;
4505 
4506 		/*
4507 		 * If the desired CPU (where last recvmsg was done) is
4508 		 * different from current CPU (one in the rx-queue flow
4509 		 * table entry), switch if one of the following holds:
4510 		 *   - Current CPU is unset (>= nr_cpu_ids).
4511 		 *   - Current CPU is offline.
4512 		 *   - The current CPU's queue tail has advanced beyond the
4513 		 *     last packet that was enqueued using this table entry.
4514 		 *     This guarantees that all previous packets for the flow
4515 		 *     have been dequeued, thus preserving in order delivery.
4516 		 */
4517 		if (unlikely(tcpu != next_cpu) &&
4518 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4519 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4520 		      rflow->last_qtail)) >= 0)) {
4521 			tcpu = next_cpu;
4522 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4523 		}
4524 
4525 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4526 			*rflowp = rflow;
4527 			cpu = tcpu;
4528 			goto done;
4529 		}
4530 	}
4531 
4532 try_rps:
4533 
4534 	if (map) {
4535 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4536 		if (cpu_online(tcpu)) {
4537 			cpu = tcpu;
4538 			goto done;
4539 		}
4540 	}
4541 
4542 done:
4543 	return cpu;
4544 }
4545 
4546 #ifdef CONFIG_RFS_ACCEL
4547 
4548 /**
4549  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4550  * @dev: Device on which the filter was set
4551  * @rxq_index: RX queue index
4552  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4553  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4554  *
4555  * Drivers that implement ndo_rx_flow_steer() should periodically call
4556  * this function for each installed filter and remove the filters for
4557  * which it returns %true.
4558  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4559 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4560 			 u32 flow_id, u16 filter_id)
4561 {
4562 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4563 	struct rps_dev_flow_table *flow_table;
4564 	struct rps_dev_flow *rflow;
4565 	bool expire = true;
4566 	unsigned int cpu;
4567 
4568 	rcu_read_lock();
4569 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4570 	if (flow_table && flow_id <= flow_table->mask) {
4571 		rflow = &flow_table->flows[flow_id];
4572 		cpu = READ_ONCE(rflow->cpu);
4573 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4574 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4575 			   rflow->last_qtail) <
4576 		     (int)(10 * flow_table->mask)))
4577 			expire = false;
4578 	}
4579 	rcu_read_unlock();
4580 	return expire;
4581 }
4582 EXPORT_SYMBOL(rps_may_expire_flow);
4583 
4584 #endif /* CONFIG_RFS_ACCEL */
4585 
4586 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4587 static void rps_trigger_softirq(void *data)
4588 {
4589 	struct softnet_data *sd = data;
4590 
4591 	____napi_schedule(sd, &sd->backlog);
4592 	sd->received_rps++;
4593 }
4594 
4595 #endif /* CONFIG_RPS */
4596 
4597 /*
4598  * Check if this softnet_data structure is another cpu one
4599  * If yes, queue it to our IPI list and return 1
4600  * If no, return 0
4601  */
rps_ipi_queued(struct softnet_data * sd)4602 static int rps_ipi_queued(struct softnet_data *sd)
4603 {
4604 #ifdef CONFIG_RPS
4605 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4606 
4607 	if (sd != mysd) {
4608 		sd->rps_ipi_next = mysd->rps_ipi_list;
4609 		mysd->rps_ipi_list = sd;
4610 
4611 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4612 		return 1;
4613 	}
4614 #endif /* CONFIG_RPS */
4615 	return 0;
4616 }
4617 
4618 #ifdef CONFIG_NET_FLOW_LIMIT
4619 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4620 #endif
4621 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4622 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4623 {
4624 #ifdef CONFIG_NET_FLOW_LIMIT
4625 	struct sd_flow_limit *fl;
4626 	struct softnet_data *sd;
4627 	unsigned int old_flow, new_flow;
4628 
4629 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4630 		return false;
4631 
4632 	sd = this_cpu_ptr(&softnet_data);
4633 
4634 	rcu_read_lock();
4635 	fl = rcu_dereference(sd->flow_limit);
4636 	if (fl) {
4637 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4638 		old_flow = fl->history[fl->history_head];
4639 		fl->history[fl->history_head] = new_flow;
4640 
4641 		fl->history_head++;
4642 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4643 
4644 		if (likely(fl->buckets[old_flow]))
4645 			fl->buckets[old_flow]--;
4646 
4647 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4648 			fl->count++;
4649 			rcu_read_unlock();
4650 			return true;
4651 		}
4652 	}
4653 	rcu_read_unlock();
4654 #endif
4655 	return false;
4656 }
4657 
4658 /*
4659  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4660  * queue (may be a remote CPU queue).
4661  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4662 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4663 			      unsigned int *qtail)
4664 {
4665 	struct softnet_data *sd;
4666 	unsigned long flags;
4667 	unsigned int qlen;
4668 
4669 	sd = &per_cpu(softnet_data, cpu);
4670 
4671 	local_irq_save(flags);
4672 
4673 	rps_lock(sd);
4674 	if (!netif_running(skb->dev))
4675 		goto drop;
4676 	qlen = skb_queue_len(&sd->input_pkt_queue);
4677 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4678 		if (qlen) {
4679 enqueue:
4680 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4681 			input_queue_tail_incr_save(sd, qtail);
4682 			rps_unlock(sd);
4683 			local_irq_restore(flags);
4684 			return NET_RX_SUCCESS;
4685 		}
4686 
4687 		/* Schedule NAPI for backlog device
4688 		 * We can use non atomic operation since we own the queue lock
4689 		 */
4690 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4691 			if (!rps_ipi_queued(sd))
4692 				____napi_schedule(sd, &sd->backlog);
4693 		}
4694 		goto enqueue;
4695 	}
4696 
4697 drop:
4698 	sd->dropped++;
4699 	rps_unlock(sd);
4700 
4701 	local_irq_restore(flags);
4702 
4703 	atomic_long_inc(&skb->dev->rx_dropped);
4704 	kfree_skb(skb);
4705 	return NET_RX_DROP;
4706 }
4707 
netif_get_rxqueue(struct sk_buff * skb)4708 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4709 {
4710 	struct net_device *dev = skb->dev;
4711 	struct netdev_rx_queue *rxqueue;
4712 
4713 	rxqueue = dev->_rx;
4714 
4715 	if (skb_rx_queue_recorded(skb)) {
4716 		u16 index = skb_get_rx_queue(skb);
4717 
4718 		if (unlikely(index >= dev->real_num_rx_queues)) {
4719 			WARN_ONCE(dev->real_num_rx_queues > 1,
4720 				  "%s received packet on queue %u, but number "
4721 				  "of RX queues is %u\n",
4722 				  dev->name, index, dev->real_num_rx_queues);
4723 
4724 			return rxqueue; /* Return first rxqueue */
4725 		}
4726 		rxqueue += index;
4727 	}
4728 	return rxqueue;
4729 }
4730 
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4731 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4732 			     struct bpf_prog *xdp_prog)
4733 {
4734 	void *orig_data, *orig_data_end, *hard_start;
4735 	struct netdev_rx_queue *rxqueue;
4736 	bool orig_bcast, orig_host;
4737 	u32 mac_len, frame_sz;
4738 	__be16 orig_eth_type;
4739 	struct ethhdr *eth;
4740 	u32 metalen, act;
4741 	int off;
4742 
4743 	/* The XDP program wants to see the packet starting at the MAC
4744 	 * header.
4745 	 */
4746 	mac_len = skb->data - skb_mac_header(skb);
4747 	hard_start = skb->data - skb_headroom(skb);
4748 
4749 	/* SKB "head" area always have tailroom for skb_shared_info */
4750 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4751 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4752 
4753 	rxqueue = netif_get_rxqueue(skb);
4754 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4755 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4756 			 skb_headlen(skb) + mac_len, true);
4757 
4758 	orig_data_end = xdp->data_end;
4759 	orig_data = xdp->data;
4760 	eth = (struct ethhdr *)xdp->data;
4761 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4762 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4763 	orig_eth_type = eth->h_proto;
4764 
4765 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4766 
4767 	/* check if bpf_xdp_adjust_head was used */
4768 	off = xdp->data - orig_data;
4769 	if (off) {
4770 		if (off > 0)
4771 			__skb_pull(skb, off);
4772 		else if (off < 0)
4773 			__skb_push(skb, -off);
4774 
4775 		skb->mac_header += off;
4776 		skb_reset_network_header(skb);
4777 	}
4778 
4779 	/* check if bpf_xdp_adjust_tail was used */
4780 	off = xdp->data_end - orig_data_end;
4781 	if (off != 0) {
4782 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4783 		skb->len += off; /* positive on grow, negative on shrink */
4784 	}
4785 
4786 	/* check if XDP changed eth hdr such SKB needs update */
4787 	eth = (struct ethhdr *)xdp->data;
4788 	if ((orig_eth_type != eth->h_proto) ||
4789 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4790 						  skb->dev->dev_addr)) ||
4791 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4792 		__skb_push(skb, ETH_HLEN);
4793 		skb->pkt_type = PACKET_HOST;
4794 		skb->protocol = eth_type_trans(skb, skb->dev);
4795 	}
4796 
4797 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4798 	 * before calling us again on redirect path. We do not call do_redirect
4799 	 * as we leave that up to the caller.
4800 	 *
4801 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4802 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4803 	 */
4804 	switch (act) {
4805 	case XDP_REDIRECT:
4806 	case XDP_TX:
4807 		__skb_push(skb, mac_len);
4808 		break;
4809 	case XDP_PASS:
4810 		metalen = xdp->data - xdp->data_meta;
4811 		if (metalen)
4812 			skb_metadata_set(skb, metalen);
4813 		break;
4814 	}
4815 
4816 	return act;
4817 }
4818 
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4819 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4820 				     struct xdp_buff *xdp,
4821 				     struct bpf_prog *xdp_prog)
4822 {
4823 	u32 act = XDP_DROP;
4824 
4825 	/* Reinjected packets coming from act_mirred or similar should
4826 	 * not get XDP generic processing.
4827 	 */
4828 	if (skb_is_redirected(skb))
4829 		return XDP_PASS;
4830 
4831 	/* XDP packets must be linear and must have sufficient headroom
4832 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4833 	 * native XDP provides, thus we need to do it here as well.
4834 	 */
4835 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4836 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4837 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4838 		int troom = skb->tail + skb->data_len - skb->end;
4839 
4840 		/* In case we have to go down the path and also linearize,
4841 		 * then lets do the pskb_expand_head() work just once here.
4842 		 */
4843 		if (pskb_expand_head(skb,
4844 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4845 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4846 			goto do_drop;
4847 		if (skb_linearize(skb))
4848 			goto do_drop;
4849 	}
4850 
4851 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4852 	switch (act) {
4853 	case XDP_REDIRECT:
4854 	case XDP_TX:
4855 	case XDP_PASS:
4856 		break;
4857 	default:
4858 		bpf_warn_invalid_xdp_action(act);
4859 		fallthrough;
4860 	case XDP_ABORTED:
4861 		trace_xdp_exception(skb->dev, xdp_prog, act);
4862 		fallthrough;
4863 	case XDP_DROP:
4864 	do_drop:
4865 		kfree_skb(skb);
4866 		break;
4867 	}
4868 
4869 	return act;
4870 }
4871 
4872 /* When doing generic XDP we have to bypass the qdisc layer and the
4873  * network taps in order to match in-driver-XDP behavior.
4874  */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4875 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4876 {
4877 	struct net_device *dev = skb->dev;
4878 	struct netdev_queue *txq;
4879 	bool free_skb = true;
4880 	int cpu, rc;
4881 
4882 	txq = netdev_core_pick_tx(dev, skb, NULL);
4883 	cpu = smp_processor_id();
4884 	HARD_TX_LOCK(dev, txq, cpu);
4885 	if (!netif_xmit_stopped(txq)) {
4886 		rc = netdev_start_xmit(skb, dev, txq, 0);
4887 		if (dev_xmit_complete(rc))
4888 			free_skb = false;
4889 	}
4890 	HARD_TX_UNLOCK(dev, txq);
4891 	if (free_skb) {
4892 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4893 		kfree_skb(skb);
4894 	}
4895 }
4896 
4897 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4898 
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4899 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4900 {
4901 	if (xdp_prog) {
4902 		struct xdp_buff xdp;
4903 		u32 act;
4904 		int err;
4905 
4906 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4907 		if (act != XDP_PASS) {
4908 			switch (act) {
4909 			case XDP_REDIRECT:
4910 				err = xdp_do_generic_redirect(skb->dev, skb,
4911 							      &xdp, xdp_prog);
4912 				if (err)
4913 					goto out_redir;
4914 				break;
4915 			case XDP_TX:
4916 				generic_xdp_tx(skb, xdp_prog);
4917 				break;
4918 			}
4919 			return XDP_DROP;
4920 		}
4921 	}
4922 	return XDP_PASS;
4923 out_redir:
4924 	kfree_skb(skb);
4925 	return XDP_DROP;
4926 }
4927 EXPORT_SYMBOL_GPL(do_xdp_generic);
4928 
netif_rx_internal(struct sk_buff * skb)4929 static int netif_rx_internal(struct sk_buff *skb)
4930 {
4931 	int ret;
4932 
4933 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4934 
4935 	trace_netif_rx(skb);
4936 
4937 #ifdef CONFIG_RPS
4938 	if (static_branch_unlikely(&rps_needed)) {
4939 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4940 		int cpu;
4941 
4942 		preempt_disable();
4943 		rcu_read_lock();
4944 
4945 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4946 		if (cpu < 0)
4947 			cpu = smp_processor_id();
4948 
4949 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4950 
4951 		rcu_read_unlock();
4952 		preempt_enable();
4953 	} else
4954 #endif
4955 	{
4956 		unsigned int qtail;
4957 
4958 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4959 		put_cpu();
4960 	}
4961 	return ret;
4962 }
4963 
4964 /**
4965  *	netif_rx	-	post buffer to the network code
4966  *	@skb: buffer to post
4967  *
4968  *	This function receives a packet from a device driver and queues it for
4969  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4970  *	may be dropped during processing for congestion control or by the
4971  *	protocol layers.
4972  *
4973  *	return values:
4974  *	NET_RX_SUCCESS	(no congestion)
4975  *	NET_RX_DROP     (packet was dropped)
4976  *
4977  */
4978 
netif_rx(struct sk_buff * skb)4979 int netif_rx(struct sk_buff *skb)
4980 {
4981 	int ret;
4982 
4983 	trace_netif_rx_entry(skb);
4984 
4985 	ret = netif_rx_internal(skb);
4986 	trace_netif_rx_exit(ret);
4987 
4988 	return ret;
4989 }
4990 EXPORT_SYMBOL(netif_rx);
4991 
netif_rx_ni(struct sk_buff * skb)4992 int netif_rx_ni(struct sk_buff *skb)
4993 {
4994 	int err;
4995 
4996 	trace_netif_rx_ni_entry(skb);
4997 
4998 	preempt_disable();
4999 	err = netif_rx_internal(skb);
5000 	if (local_softirq_pending())
5001 		do_softirq();
5002 	preempt_enable();
5003 	trace_netif_rx_ni_exit(err);
5004 
5005 	return err;
5006 }
5007 EXPORT_SYMBOL(netif_rx_ni);
5008 
netif_rx_any_context(struct sk_buff * skb)5009 int netif_rx_any_context(struct sk_buff *skb)
5010 {
5011 	/*
5012 	 * If invoked from contexts which do not invoke bottom half
5013 	 * processing either at return from interrupt or when softrqs are
5014 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5015 	 * directly.
5016 	 */
5017 	if (in_interrupt())
5018 		return netif_rx(skb);
5019 	else
5020 		return netif_rx_ni(skb);
5021 }
5022 EXPORT_SYMBOL(netif_rx_any_context);
5023 
net_tx_action(struct softirq_action * h)5024 static __latent_entropy void net_tx_action(struct softirq_action *h)
5025 {
5026 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5027 
5028 	if (sd->completion_queue) {
5029 		struct sk_buff *clist;
5030 
5031 		local_irq_disable();
5032 		clist = sd->completion_queue;
5033 		sd->completion_queue = NULL;
5034 		local_irq_enable();
5035 
5036 		while (clist) {
5037 			struct sk_buff *skb = clist;
5038 
5039 			clist = clist->next;
5040 
5041 			WARN_ON(refcount_read(&skb->users));
5042 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5043 				trace_consume_skb(skb);
5044 			else
5045 				trace_kfree_skb(skb, net_tx_action,
5046 						SKB_DROP_REASON_NOT_SPECIFIED);
5047 
5048 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5049 				__kfree_skb(skb);
5050 			else
5051 				__kfree_skb_defer(skb);
5052 		}
5053 	}
5054 
5055 	if (sd->output_queue) {
5056 		struct Qdisc *head;
5057 
5058 		local_irq_disable();
5059 		head = sd->output_queue;
5060 		sd->output_queue = NULL;
5061 		sd->output_queue_tailp = &sd->output_queue;
5062 		local_irq_enable();
5063 
5064 		rcu_read_lock();
5065 
5066 		while (head) {
5067 			struct Qdisc *q = head;
5068 			spinlock_t *root_lock = NULL;
5069 
5070 			head = head->next_sched;
5071 
5072 			/* We need to make sure head->next_sched is read
5073 			 * before clearing __QDISC_STATE_SCHED
5074 			 */
5075 			smp_mb__before_atomic();
5076 
5077 			if (!(q->flags & TCQ_F_NOLOCK)) {
5078 				root_lock = qdisc_lock(q);
5079 				spin_lock(root_lock);
5080 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5081 						     &q->state))) {
5082 				/* There is a synchronize_net() between
5083 				 * STATE_DEACTIVATED flag being set and
5084 				 * qdisc_reset()/some_qdisc_is_busy() in
5085 				 * dev_deactivate(), so we can safely bail out
5086 				 * early here to avoid data race between
5087 				 * qdisc_deactivate() and some_qdisc_is_busy()
5088 				 * for lockless qdisc.
5089 				 */
5090 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5091 				continue;
5092 			}
5093 
5094 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5095 			qdisc_run(q);
5096 			if (root_lock)
5097 				spin_unlock(root_lock);
5098 		}
5099 
5100 		rcu_read_unlock();
5101 	}
5102 
5103 	xfrm_dev_backlog(sd);
5104 }
5105 
5106 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5107 /* This hook is defined here for ATM LANE */
5108 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5109 			     unsigned char *addr) __read_mostly;
5110 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5111 #endif
5112 
5113 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)5114 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5115 		   struct net_device *orig_dev, bool *another)
5116 {
5117 #ifdef CONFIG_NET_CLS_ACT
5118 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5119 	struct tcf_result cl_res;
5120 
5121 	/* If there's at least one ingress present somewhere (so
5122 	 * we get here via enabled static key), remaining devices
5123 	 * that are not configured with an ingress qdisc will bail
5124 	 * out here.
5125 	 */
5126 	if (!miniq)
5127 		return skb;
5128 
5129 	if (*pt_prev) {
5130 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5131 		*pt_prev = NULL;
5132 	}
5133 
5134 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5135 	tc_skb_cb(skb)->mru = 0;
5136 	tc_skb_cb(skb)->post_ct = false;
5137 	skb->tc_at_ingress = 1;
5138 	mini_qdisc_bstats_cpu_update(miniq, skb);
5139 
5140 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5141 	case TC_ACT_OK:
5142 	case TC_ACT_RECLASSIFY:
5143 		skb->tc_index = TC_H_MIN(cl_res.classid);
5144 		break;
5145 	case TC_ACT_SHOT:
5146 		mini_qdisc_qstats_cpu_drop(miniq);
5147 		kfree_skb(skb);
5148 		return NULL;
5149 	case TC_ACT_STOLEN:
5150 	case TC_ACT_QUEUED:
5151 	case TC_ACT_TRAP:
5152 		consume_skb(skb);
5153 		return NULL;
5154 	case TC_ACT_REDIRECT:
5155 		/* skb_mac_header check was done by cls/act_bpf, so
5156 		 * we can safely push the L2 header back before
5157 		 * redirecting to another netdev
5158 		 */
5159 		__skb_push(skb, skb->mac_len);
5160 		if (skb_do_redirect(skb) == -EAGAIN) {
5161 			__skb_pull(skb, skb->mac_len);
5162 			*another = true;
5163 			break;
5164 		}
5165 		return NULL;
5166 	case TC_ACT_CONSUMED:
5167 		return NULL;
5168 	default:
5169 		break;
5170 	}
5171 #endif /* CONFIG_NET_CLS_ACT */
5172 	return skb;
5173 }
5174 
5175 /**
5176  *	netdev_is_rx_handler_busy - check if receive handler is registered
5177  *	@dev: device to check
5178  *
5179  *	Check if a receive handler is already registered for a given device.
5180  *	Return true if there one.
5181  *
5182  *	The caller must hold the rtnl_mutex.
5183  */
netdev_is_rx_handler_busy(struct net_device * dev)5184 bool netdev_is_rx_handler_busy(struct net_device *dev)
5185 {
5186 	ASSERT_RTNL();
5187 	return dev && rtnl_dereference(dev->rx_handler);
5188 }
5189 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5190 
5191 /**
5192  *	netdev_rx_handler_register - register receive handler
5193  *	@dev: device to register a handler for
5194  *	@rx_handler: receive handler to register
5195  *	@rx_handler_data: data pointer that is used by rx handler
5196  *
5197  *	Register a receive handler for a device. This handler will then be
5198  *	called from __netif_receive_skb. A negative errno code is returned
5199  *	on a failure.
5200  *
5201  *	The caller must hold the rtnl_mutex.
5202  *
5203  *	For a general description of rx_handler, see enum rx_handler_result.
5204  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5205 int netdev_rx_handler_register(struct net_device *dev,
5206 			       rx_handler_func_t *rx_handler,
5207 			       void *rx_handler_data)
5208 {
5209 	if (netdev_is_rx_handler_busy(dev))
5210 		return -EBUSY;
5211 
5212 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5213 		return -EINVAL;
5214 
5215 	/* Note: rx_handler_data must be set before rx_handler */
5216 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5217 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5218 
5219 	return 0;
5220 }
5221 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5222 
5223 /**
5224  *	netdev_rx_handler_unregister - unregister receive handler
5225  *	@dev: device to unregister a handler from
5226  *
5227  *	Unregister a receive handler from a device.
5228  *
5229  *	The caller must hold the rtnl_mutex.
5230  */
netdev_rx_handler_unregister(struct net_device * dev)5231 void netdev_rx_handler_unregister(struct net_device *dev)
5232 {
5233 
5234 	ASSERT_RTNL();
5235 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5236 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5237 	 * section has a guarantee to see a non NULL rx_handler_data
5238 	 * as well.
5239 	 */
5240 	synchronize_net();
5241 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5242 }
5243 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5244 
5245 /*
5246  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5247  * the special handling of PFMEMALLOC skbs.
5248  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5249 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5250 {
5251 	switch (skb->protocol) {
5252 	case htons(ETH_P_ARP):
5253 	case htons(ETH_P_IP):
5254 	case htons(ETH_P_IPV6):
5255 	case htons(ETH_P_8021Q):
5256 	case htons(ETH_P_8021AD):
5257 		return true;
5258 	default:
5259 		return false;
5260 	}
5261 }
5262 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5263 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5264 			     int *ret, struct net_device *orig_dev)
5265 {
5266 	if (nf_hook_ingress_active(skb)) {
5267 		int ingress_retval;
5268 
5269 		if (*pt_prev) {
5270 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5271 			*pt_prev = NULL;
5272 		}
5273 
5274 		rcu_read_lock();
5275 		ingress_retval = nf_hook_ingress(skb);
5276 		rcu_read_unlock();
5277 		return ingress_retval;
5278 	}
5279 	return 0;
5280 }
5281 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5282 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5283 				    struct packet_type **ppt_prev)
5284 {
5285 	struct packet_type *ptype, *pt_prev;
5286 	rx_handler_func_t *rx_handler;
5287 	struct sk_buff *skb = *pskb;
5288 	struct net_device *orig_dev;
5289 	bool deliver_exact = false;
5290 	int ret = NET_RX_DROP;
5291 	__be16 type;
5292 
5293 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5294 
5295 	trace_netif_receive_skb(skb);
5296 
5297 	orig_dev = skb->dev;
5298 
5299 	skb_reset_network_header(skb);
5300 	if (!skb_transport_header_was_set(skb))
5301 		skb_reset_transport_header(skb);
5302 	skb_reset_mac_len(skb);
5303 
5304 	pt_prev = NULL;
5305 
5306 another_round:
5307 	skb->skb_iif = skb->dev->ifindex;
5308 
5309 	__this_cpu_inc(softnet_data.processed);
5310 
5311 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5312 		int ret2;
5313 
5314 		migrate_disable();
5315 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5316 		migrate_enable();
5317 
5318 		if (ret2 != XDP_PASS) {
5319 			ret = NET_RX_DROP;
5320 			goto out;
5321 		}
5322 	}
5323 
5324 	if (eth_type_vlan(skb->protocol)) {
5325 		skb = skb_vlan_untag(skb);
5326 		if (unlikely(!skb))
5327 			goto out;
5328 	}
5329 
5330 	if (skb_skip_tc_classify(skb))
5331 		goto skip_classify;
5332 
5333 	if (pfmemalloc)
5334 		goto skip_taps;
5335 
5336 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5337 		if (pt_prev)
5338 			ret = deliver_skb(skb, pt_prev, orig_dev);
5339 		pt_prev = ptype;
5340 	}
5341 
5342 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5343 		if (pt_prev)
5344 			ret = deliver_skb(skb, pt_prev, orig_dev);
5345 		pt_prev = ptype;
5346 	}
5347 
5348 skip_taps:
5349 #ifdef CONFIG_NET_INGRESS
5350 	if (static_branch_unlikely(&ingress_needed_key)) {
5351 		bool another = false;
5352 
5353 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5354 					 &another);
5355 		if (another)
5356 			goto another_round;
5357 		if (!skb)
5358 			goto out;
5359 
5360 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5361 			goto out;
5362 	}
5363 #endif
5364 	skb_reset_redirect(skb);
5365 skip_classify:
5366 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5367 		goto drop;
5368 
5369 	if (skb_vlan_tag_present(skb)) {
5370 		if (pt_prev) {
5371 			ret = deliver_skb(skb, pt_prev, orig_dev);
5372 			pt_prev = NULL;
5373 		}
5374 		if (vlan_do_receive(&skb))
5375 			goto another_round;
5376 		else if (unlikely(!skb))
5377 			goto out;
5378 	}
5379 
5380 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5381 	if (rx_handler) {
5382 		if (pt_prev) {
5383 			ret = deliver_skb(skb, pt_prev, orig_dev);
5384 			pt_prev = NULL;
5385 		}
5386 		switch (rx_handler(&skb)) {
5387 		case RX_HANDLER_CONSUMED:
5388 			ret = NET_RX_SUCCESS;
5389 			goto out;
5390 		case RX_HANDLER_ANOTHER:
5391 			goto another_round;
5392 		case RX_HANDLER_EXACT:
5393 			deliver_exact = true;
5394 			break;
5395 		case RX_HANDLER_PASS:
5396 			break;
5397 		default:
5398 			BUG();
5399 		}
5400 	}
5401 
5402 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5403 check_vlan_id:
5404 		if (skb_vlan_tag_get_id(skb)) {
5405 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5406 			 * find vlan device.
5407 			 */
5408 			skb->pkt_type = PACKET_OTHERHOST;
5409 		} else if (eth_type_vlan(skb->protocol)) {
5410 			/* Outer header is 802.1P with vlan 0, inner header is
5411 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5412 			 * not find vlan dev for vlan id 0.
5413 			 */
5414 			__vlan_hwaccel_clear_tag(skb);
5415 			skb = skb_vlan_untag(skb);
5416 			if (unlikely(!skb))
5417 				goto out;
5418 			if (vlan_do_receive(&skb))
5419 				/* After stripping off 802.1P header with vlan 0
5420 				 * vlan dev is found for inner header.
5421 				 */
5422 				goto another_round;
5423 			else if (unlikely(!skb))
5424 				goto out;
5425 			else
5426 				/* We have stripped outer 802.1P vlan 0 header.
5427 				 * But could not find vlan dev.
5428 				 * check again for vlan id to set OTHERHOST.
5429 				 */
5430 				goto check_vlan_id;
5431 		}
5432 		/* Note: we might in the future use prio bits
5433 		 * and set skb->priority like in vlan_do_receive()
5434 		 * For the time being, just ignore Priority Code Point
5435 		 */
5436 		__vlan_hwaccel_clear_tag(skb);
5437 	}
5438 
5439 	type = skb->protocol;
5440 
5441 	/* deliver only exact match when indicated */
5442 	if (likely(!deliver_exact)) {
5443 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5444 				       &ptype_base[ntohs(type) &
5445 						   PTYPE_HASH_MASK]);
5446 	}
5447 
5448 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5449 			       &orig_dev->ptype_specific);
5450 
5451 	if (unlikely(skb->dev != orig_dev)) {
5452 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5453 				       &skb->dev->ptype_specific);
5454 	}
5455 
5456 	if (pt_prev) {
5457 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5458 			goto drop;
5459 		*ppt_prev = pt_prev;
5460 	} else {
5461 drop:
5462 		if (!deliver_exact)
5463 			atomic_long_inc(&skb->dev->rx_dropped);
5464 		else
5465 			atomic_long_inc(&skb->dev->rx_nohandler);
5466 		kfree_skb(skb);
5467 		/* Jamal, now you will not able to escape explaining
5468 		 * me how you were going to use this. :-)
5469 		 */
5470 		ret = NET_RX_DROP;
5471 	}
5472 
5473 out:
5474 	/* The invariant here is that if *ppt_prev is not NULL
5475 	 * then skb should also be non-NULL.
5476 	 *
5477 	 * Apparently *ppt_prev assignment above holds this invariant due to
5478 	 * skb dereferencing near it.
5479 	 */
5480 	*pskb = skb;
5481 	return ret;
5482 }
5483 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5484 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5485 {
5486 	struct net_device *orig_dev = skb->dev;
5487 	struct packet_type *pt_prev = NULL;
5488 	int ret;
5489 
5490 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5491 	if (pt_prev)
5492 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5493 					 skb->dev, pt_prev, orig_dev);
5494 	return ret;
5495 }
5496 
5497 /**
5498  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5499  *	@skb: buffer to process
5500  *
5501  *	More direct receive version of netif_receive_skb().  It should
5502  *	only be used by callers that have a need to skip RPS and Generic XDP.
5503  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5504  *
5505  *	This function may only be called from softirq context and interrupts
5506  *	should be enabled.
5507  *
5508  *	Return values (usually ignored):
5509  *	NET_RX_SUCCESS: no congestion
5510  *	NET_RX_DROP: packet was dropped
5511  */
netif_receive_skb_core(struct sk_buff * skb)5512 int netif_receive_skb_core(struct sk_buff *skb)
5513 {
5514 	int ret;
5515 
5516 	rcu_read_lock();
5517 	ret = __netif_receive_skb_one_core(skb, false);
5518 	rcu_read_unlock();
5519 
5520 	return ret;
5521 }
5522 EXPORT_SYMBOL(netif_receive_skb_core);
5523 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5524 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5525 						  struct packet_type *pt_prev,
5526 						  struct net_device *orig_dev)
5527 {
5528 	struct sk_buff *skb, *next;
5529 
5530 	if (!pt_prev)
5531 		return;
5532 	if (list_empty(head))
5533 		return;
5534 	if (pt_prev->list_func != NULL)
5535 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5536 				   ip_list_rcv, head, pt_prev, orig_dev);
5537 	else
5538 		list_for_each_entry_safe(skb, next, head, list) {
5539 			skb_list_del_init(skb);
5540 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5541 		}
5542 }
5543 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5544 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5545 {
5546 	/* Fast-path assumptions:
5547 	 * - There is no RX handler.
5548 	 * - Only one packet_type matches.
5549 	 * If either of these fails, we will end up doing some per-packet
5550 	 * processing in-line, then handling the 'last ptype' for the whole
5551 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5552 	 * because the 'last ptype' must be constant across the sublist, and all
5553 	 * other ptypes are handled per-packet.
5554 	 */
5555 	/* Current (common) ptype of sublist */
5556 	struct packet_type *pt_curr = NULL;
5557 	/* Current (common) orig_dev of sublist */
5558 	struct net_device *od_curr = NULL;
5559 	struct list_head sublist;
5560 	struct sk_buff *skb, *next;
5561 
5562 	INIT_LIST_HEAD(&sublist);
5563 	list_for_each_entry_safe(skb, next, head, list) {
5564 		struct net_device *orig_dev = skb->dev;
5565 		struct packet_type *pt_prev = NULL;
5566 
5567 		skb_list_del_init(skb);
5568 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5569 		if (!pt_prev)
5570 			continue;
5571 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5572 			/* dispatch old sublist */
5573 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5574 			/* start new sublist */
5575 			INIT_LIST_HEAD(&sublist);
5576 			pt_curr = pt_prev;
5577 			od_curr = orig_dev;
5578 		}
5579 		list_add_tail(&skb->list, &sublist);
5580 	}
5581 
5582 	/* dispatch final sublist */
5583 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5584 }
5585 
__netif_receive_skb(struct sk_buff * skb)5586 static int __netif_receive_skb(struct sk_buff *skb)
5587 {
5588 	int ret;
5589 
5590 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5591 		unsigned int noreclaim_flag;
5592 
5593 		/*
5594 		 * PFMEMALLOC skbs are special, they should
5595 		 * - be delivered to SOCK_MEMALLOC sockets only
5596 		 * - stay away from userspace
5597 		 * - have bounded memory usage
5598 		 *
5599 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5600 		 * context down to all allocation sites.
5601 		 */
5602 		noreclaim_flag = memalloc_noreclaim_save();
5603 		ret = __netif_receive_skb_one_core(skb, true);
5604 		memalloc_noreclaim_restore(noreclaim_flag);
5605 	} else
5606 		ret = __netif_receive_skb_one_core(skb, false);
5607 
5608 	return ret;
5609 }
5610 
__netif_receive_skb_list(struct list_head * head)5611 static void __netif_receive_skb_list(struct list_head *head)
5612 {
5613 	unsigned long noreclaim_flag = 0;
5614 	struct sk_buff *skb, *next;
5615 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5616 
5617 	list_for_each_entry_safe(skb, next, head, list) {
5618 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5619 			struct list_head sublist;
5620 
5621 			/* Handle the previous sublist */
5622 			list_cut_before(&sublist, head, &skb->list);
5623 			if (!list_empty(&sublist))
5624 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5625 			pfmemalloc = !pfmemalloc;
5626 			/* See comments in __netif_receive_skb */
5627 			if (pfmemalloc)
5628 				noreclaim_flag = memalloc_noreclaim_save();
5629 			else
5630 				memalloc_noreclaim_restore(noreclaim_flag);
5631 		}
5632 	}
5633 	/* Handle the remaining sublist */
5634 	if (!list_empty(head))
5635 		__netif_receive_skb_list_core(head, pfmemalloc);
5636 	/* Restore pflags */
5637 	if (pfmemalloc)
5638 		memalloc_noreclaim_restore(noreclaim_flag);
5639 }
5640 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5641 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5642 {
5643 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5644 	struct bpf_prog *new = xdp->prog;
5645 	int ret = 0;
5646 
5647 	switch (xdp->command) {
5648 	case XDP_SETUP_PROG:
5649 		rcu_assign_pointer(dev->xdp_prog, new);
5650 		if (old)
5651 			bpf_prog_put(old);
5652 
5653 		if (old && !new) {
5654 			static_branch_dec(&generic_xdp_needed_key);
5655 		} else if (new && !old) {
5656 			static_branch_inc(&generic_xdp_needed_key);
5657 			dev_disable_lro(dev);
5658 			dev_disable_gro_hw(dev);
5659 		}
5660 		break;
5661 
5662 	default:
5663 		ret = -EINVAL;
5664 		break;
5665 	}
5666 
5667 	return ret;
5668 }
5669 
netif_receive_skb_internal(struct sk_buff * skb)5670 static int netif_receive_skb_internal(struct sk_buff *skb)
5671 {
5672 	int ret;
5673 
5674 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5675 
5676 	if (skb_defer_rx_timestamp(skb))
5677 		return NET_RX_SUCCESS;
5678 
5679 	rcu_read_lock();
5680 #ifdef CONFIG_RPS
5681 	if (static_branch_unlikely(&rps_needed)) {
5682 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5683 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5684 
5685 		if (cpu >= 0) {
5686 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5687 			rcu_read_unlock();
5688 			return ret;
5689 		}
5690 	}
5691 #endif
5692 	ret = __netif_receive_skb(skb);
5693 	rcu_read_unlock();
5694 	return ret;
5695 }
5696 
netif_receive_skb_list_internal(struct list_head * head)5697 static void netif_receive_skb_list_internal(struct list_head *head)
5698 {
5699 	struct sk_buff *skb, *next;
5700 	struct list_head sublist;
5701 
5702 	INIT_LIST_HEAD(&sublist);
5703 	list_for_each_entry_safe(skb, next, head, list) {
5704 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5705 		skb_list_del_init(skb);
5706 		if (!skb_defer_rx_timestamp(skb))
5707 			list_add_tail(&skb->list, &sublist);
5708 	}
5709 	list_splice_init(&sublist, head);
5710 
5711 	rcu_read_lock();
5712 #ifdef CONFIG_RPS
5713 	if (static_branch_unlikely(&rps_needed)) {
5714 		list_for_each_entry_safe(skb, next, head, list) {
5715 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5716 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5717 
5718 			if (cpu >= 0) {
5719 				/* Will be handled, remove from list */
5720 				skb_list_del_init(skb);
5721 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5722 			}
5723 		}
5724 	}
5725 #endif
5726 	__netif_receive_skb_list(head);
5727 	rcu_read_unlock();
5728 }
5729 
5730 /**
5731  *	netif_receive_skb - process receive buffer from network
5732  *	@skb: buffer to process
5733  *
5734  *	netif_receive_skb() is the main receive data processing function.
5735  *	It always succeeds. The buffer may be dropped during processing
5736  *	for congestion control or by the protocol layers.
5737  *
5738  *	This function may only be called from softirq context and interrupts
5739  *	should be enabled.
5740  *
5741  *	Return values (usually ignored):
5742  *	NET_RX_SUCCESS: no congestion
5743  *	NET_RX_DROP: packet was dropped
5744  */
netif_receive_skb(struct sk_buff * skb)5745 int netif_receive_skb(struct sk_buff *skb)
5746 {
5747 	int ret;
5748 
5749 	trace_netif_receive_skb_entry(skb);
5750 
5751 	ret = netif_receive_skb_internal(skb);
5752 	trace_netif_receive_skb_exit(ret);
5753 
5754 	return ret;
5755 }
5756 EXPORT_SYMBOL(netif_receive_skb);
5757 
5758 /**
5759  *	netif_receive_skb_list - process many receive buffers from network
5760  *	@head: list of skbs to process.
5761  *
5762  *	Since return value of netif_receive_skb() is normally ignored, and
5763  *	wouldn't be meaningful for a list, this function returns void.
5764  *
5765  *	This function may only be called from softirq context and interrupts
5766  *	should be enabled.
5767  */
netif_receive_skb_list(struct list_head * head)5768 void netif_receive_skb_list(struct list_head *head)
5769 {
5770 	struct sk_buff *skb;
5771 
5772 	if (list_empty(head))
5773 		return;
5774 	if (trace_netif_receive_skb_list_entry_enabled()) {
5775 		list_for_each_entry(skb, head, list)
5776 			trace_netif_receive_skb_list_entry(skb);
5777 	}
5778 	netif_receive_skb_list_internal(head);
5779 	trace_netif_receive_skb_list_exit(0);
5780 }
5781 EXPORT_SYMBOL(netif_receive_skb_list);
5782 
5783 static DEFINE_PER_CPU(struct work_struct, flush_works);
5784 
5785 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5786 static void flush_backlog(struct work_struct *work)
5787 {
5788 	struct sk_buff *skb, *tmp;
5789 	struct softnet_data *sd;
5790 
5791 	local_bh_disable();
5792 	sd = this_cpu_ptr(&softnet_data);
5793 
5794 	local_irq_disable();
5795 	rps_lock(sd);
5796 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5797 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5798 			__skb_unlink(skb, &sd->input_pkt_queue);
5799 			dev_kfree_skb_irq(skb);
5800 			input_queue_head_incr(sd);
5801 		}
5802 	}
5803 	rps_unlock(sd);
5804 	local_irq_enable();
5805 
5806 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5807 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5808 			__skb_unlink(skb, &sd->process_queue);
5809 			kfree_skb(skb);
5810 			input_queue_head_incr(sd);
5811 		}
5812 	}
5813 	local_bh_enable();
5814 }
5815 
flush_required(int cpu)5816 static bool flush_required(int cpu)
5817 {
5818 #if IS_ENABLED(CONFIG_RPS)
5819 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5820 	bool do_flush;
5821 
5822 	local_irq_disable();
5823 	rps_lock(sd);
5824 
5825 	/* as insertion into process_queue happens with the rps lock held,
5826 	 * process_queue access may race only with dequeue
5827 	 */
5828 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5829 		   !skb_queue_empty_lockless(&sd->process_queue);
5830 	rps_unlock(sd);
5831 	local_irq_enable();
5832 
5833 	return do_flush;
5834 #endif
5835 	/* without RPS we can't safely check input_pkt_queue: during a
5836 	 * concurrent remote skb_queue_splice() we can detect as empty both
5837 	 * input_pkt_queue and process_queue even if the latter could end-up
5838 	 * containing a lot of packets.
5839 	 */
5840 	return true;
5841 }
5842 
flush_all_backlogs(void)5843 static void flush_all_backlogs(void)
5844 {
5845 	static cpumask_t flush_cpus;
5846 	unsigned int cpu;
5847 
5848 	/* since we are under rtnl lock protection we can use static data
5849 	 * for the cpumask and avoid allocating on stack the possibly
5850 	 * large mask
5851 	 */
5852 	ASSERT_RTNL();
5853 
5854 	cpus_read_lock();
5855 
5856 	cpumask_clear(&flush_cpus);
5857 	for_each_online_cpu(cpu) {
5858 		if (flush_required(cpu)) {
5859 			queue_work_on(cpu, system_highpri_wq,
5860 				      per_cpu_ptr(&flush_works, cpu));
5861 			cpumask_set_cpu(cpu, &flush_cpus);
5862 		}
5863 	}
5864 
5865 	/* we can have in flight packet[s] on the cpus we are not flushing,
5866 	 * synchronize_net() in unregister_netdevice_many() will take care of
5867 	 * them
5868 	 */
5869 	for_each_cpu(cpu, &flush_cpus)
5870 		flush_work(per_cpu_ptr(&flush_works, cpu));
5871 
5872 	cpus_read_unlock();
5873 }
5874 
5875 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
gro_normal_list(struct napi_struct * napi)5876 static void gro_normal_list(struct napi_struct *napi)
5877 {
5878 	if (!napi->rx_count)
5879 		return;
5880 	netif_receive_skb_list_internal(&napi->rx_list);
5881 	INIT_LIST_HEAD(&napi->rx_list);
5882 	napi->rx_count = 0;
5883 }
5884 
5885 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5886  * pass the whole batch up to the stack.
5887  */
gro_normal_one(struct napi_struct * napi,struct sk_buff * skb,int segs)5888 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5889 {
5890 	list_add_tail(&skb->list, &napi->rx_list);
5891 	napi->rx_count += segs;
5892 	if (napi->rx_count >= gro_normal_batch)
5893 		gro_normal_list(napi);
5894 }
5895 
napi_gro_complete(struct napi_struct * napi,struct sk_buff * skb)5896 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5897 {
5898 	struct packet_offload *ptype;
5899 	__be16 type = skb->protocol;
5900 	struct list_head *head = &offload_base;
5901 	int err = -ENOENT;
5902 
5903 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5904 
5905 	if (NAPI_GRO_CB(skb)->count == 1) {
5906 		skb_shinfo(skb)->gso_size = 0;
5907 		goto out;
5908 	}
5909 
5910 	rcu_read_lock();
5911 	list_for_each_entry_rcu(ptype, head, list) {
5912 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5913 			continue;
5914 
5915 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5916 					 ipv6_gro_complete, inet_gro_complete,
5917 					 skb, 0);
5918 		break;
5919 	}
5920 	rcu_read_unlock();
5921 
5922 	if (err) {
5923 		WARN_ON(&ptype->list == head);
5924 		kfree_skb(skb);
5925 		return NET_RX_SUCCESS;
5926 	}
5927 
5928 out:
5929 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5930 	return NET_RX_SUCCESS;
5931 }
5932 
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5933 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5934 				   bool flush_old)
5935 {
5936 	struct list_head *head = &napi->gro_hash[index].list;
5937 	struct sk_buff *skb, *p;
5938 
5939 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5940 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5941 			return;
5942 		skb_list_del_init(skb);
5943 		napi_gro_complete(napi, skb);
5944 		napi->gro_hash[index].count--;
5945 	}
5946 
5947 	if (!napi->gro_hash[index].count)
5948 		__clear_bit(index, &napi->gro_bitmask);
5949 }
5950 
5951 /* napi->gro_hash[].list contains packets ordered by age.
5952  * youngest packets at the head of it.
5953  * Complete skbs in reverse order to reduce latencies.
5954  */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5955 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5956 {
5957 	unsigned long bitmask = napi->gro_bitmask;
5958 	unsigned int i, base = ~0U;
5959 
5960 	while ((i = ffs(bitmask)) != 0) {
5961 		bitmask >>= i;
5962 		base += i;
5963 		__napi_gro_flush_chain(napi, base, flush_old);
5964 	}
5965 }
5966 EXPORT_SYMBOL(napi_gro_flush);
5967 
gro_list_prepare(const struct list_head * head,const struct sk_buff * skb)5968 static void gro_list_prepare(const struct list_head *head,
5969 			     const struct sk_buff *skb)
5970 {
5971 	unsigned int maclen = skb->dev->hard_header_len;
5972 	u32 hash = skb_get_hash_raw(skb);
5973 	struct sk_buff *p;
5974 
5975 	list_for_each_entry(p, head, list) {
5976 		unsigned long diffs;
5977 
5978 		NAPI_GRO_CB(p)->flush = 0;
5979 
5980 		if (hash != skb_get_hash_raw(p)) {
5981 			NAPI_GRO_CB(p)->same_flow = 0;
5982 			continue;
5983 		}
5984 
5985 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5986 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5987 		if (skb_vlan_tag_present(p))
5988 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5989 		diffs |= skb_metadata_differs(p, skb);
5990 		if (maclen == ETH_HLEN)
5991 			diffs |= compare_ether_header(skb_mac_header(p),
5992 						      skb_mac_header(skb));
5993 		else if (!diffs)
5994 			diffs = memcmp(skb_mac_header(p),
5995 				       skb_mac_header(skb),
5996 				       maclen);
5997 
5998 		/* in most common scenarions 'slow_gro' is 0
5999 		 * otherwise we are already on some slower paths
6000 		 * either skip all the infrequent tests altogether or
6001 		 * avoid trying too hard to skip each of them individually
6002 		 */
6003 		if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
6004 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
6005 			struct tc_skb_ext *skb_ext;
6006 			struct tc_skb_ext *p_ext;
6007 #endif
6008 
6009 			diffs |= p->sk != skb->sk;
6010 			diffs |= skb_metadata_dst_cmp(p, skb);
6011 			diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
6012 
6013 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
6014 			skb_ext = skb_ext_find(skb, TC_SKB_EXT);
6015 			p_ext = skb_ext_find(p, TC_SKB_EXT);
6016 
6017 			diffs |= (!!p_ext) ^ (!!skb_ext);
6018 			if (!diffs && unlikely(skb_ext))
6019 				diffs |= p_ext->chain ^ skb_ext->chain;
6020 #endif
6021 		}
6022 
6023 		NAPI_GRO_CB(p)->same_flow = !diffs;
6024 	}
6025 }
6026 
skb_gro_reset_offset(struct sk_buff * skb,u32 nhoff)6027 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6028 {
6029 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
6030 	const skb_frag_t *frag0 = &pinfo->frags[0];
6031 
6032 	NAPI_GRO_CB(skb)->data_offset = 0;
6033 	NAPI_GRO_CB(skb)->frag0 = NULL;
6034 	NAPI_GRO_CB(skb)->frag0_len = 0;
6035 
6036 	if (!skb_headlen(skb) && pinfo->nr_frags &&
6037 	    !PageHighMem(skb_frag_page(frag0)) &&
6038 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6039 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6040 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6041 						    skb_frag_size(frag0),
6042 						    skb->end - skb->tail);
6043 	}
6044 }
6045 
gro_pull_from_frag0(struct sk_buff * skb,int grow)6046 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6047 {
6048 	struct skb_shared_info *pinfo = skb_shinfo(skb);
6049 
6050 	BUG_ON(skb->end - skb->tail < grow);
6051 
6052 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6053 
6054 	skb->data_len -= grow;
6055 	skb->tail += grow;
6056 
6057 	skb_frag_off_add(&pinfo->frags[0], grow);
6058 	skb_frag_size_sub(&pinfo->frags[0], grow);
6059 
6060 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6061 		skb_frag_unref(skb, 0);
6062 		memmove(pinfo->frags, pinfo->frags + 1,
6063 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
6064 	}
6065 }
6066 
gro_flush_oldest(struct napi_struct * napi,struct list_head * head)6067 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6068 {
6069 	struct sk_buff *oldest;
6070 
6071 	oldest = list_last_entry(head, struct sk_buff, list);
6072 
6073 	/* We are called with head length >= MAX_GRO_SKBS, so this is
6074 	 * impossible.
6075 	 */
6076 	if (WARN_ON_ONCE(!oldest))
6077 		return;
6078 
6079 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
6080 	 * SKB to the chain.
6081 	 */
6082 	skb_list_del_init(oldest);
6083 	napi_gro_complete(napi, oldest);
6084 }
6085 
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6086 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6087 {
6088 	u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6089 	struct gro_list *gro_list = &napi->gro_hash[bucket];
6090 	struct list_head *head = &offload_base;
6091 	struct packet_offload *ptype;
6092 	__be16 type = skb->protocol;
6093 	struct sk_buff *pp = NULL;
6094 	enum gro_result ret;
6095 	int same_flow;
6096 	int grow;
6097 
6098 	if (netif_elide_gro(skb->dev))
6099 		goto normal;
6100 
6101 	gro_list_prepare(&gro_list->list, skb);
6102 
6103 	rcu_read_lock();
6104 	list_for_each_entry_rcu(ptype, head, list) {
6105 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6106 			continue;
6107 
6108 		skb_set_network_header(skb, skb_gro_offset(skb));
6109 		skb_reset_mac_len(skb);
6110 		NAPI_GRO_CB(skb)->same_flow = 0;
6111 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6112 		NAPI_GRO_CB(skb)->free = 0;
6113 		NAPI_GRO_CB(skb)->encap_mark = 0;
6114 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6115 		NAPI_GRO_CB(skb)->is_fou = 0;
6116 		NAPI_GRO_CB(skb)->is_atomic = 1;
6117 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6118 
6119 		/* Setup for GRO checksum validation */
6120 		switch (skb->ip_summed) {
6121 		case CHECKSUM_COMPLETE:
6122 			NAPI_GRO_CB(skb)->csum = skb->csum;
6123 			NAPI_GRO_CB(skb)->csum_valid = 1;
6124 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6125 			break;
6126 		case CHECKSUM_UNNECESSARY:
6127 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6128 			NAPI_GRO_CB(skb)->csum_valid = 0;
6129 			break;
6130 		default:
6131 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6132 			NAPI_GRO_CB(skb)->csum_valid = 0;
6133 		}
6134 
6135 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6136 					ipv6_gro_receive, inet_gro_receive,
6137 					&gro_list->list, skb);
6138 		break;
6139 	}
6140 	rcu_read_unlock();
6141 
6142 	if (&ptype->list == head)
6143 		goto normal;
6144 
6145 	if (PTR_ERR(pp) == -EINPROGRESS) {
6146 		ret = GRO_CONSUMED;
6147 		goto ok;
6148 	}
6149 
6150 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6151 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6152 
6153 	if (pp) {
6154 		skb_list_del_init(pp);
6155 		napi_gro_complete(napi, pp);
6156 		gro_list->count--;
6157 	}
6158 
6159 	if (same_flow)
6160 		goto ok;
6161 
6162 	if (NAPI_GRO_CB(skb)->flush)
6163 		goto normal;
6164 
6165 	if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6166 		gro_flush_oldest(napi, &gro_list->list);
6167 	else
6168 		gro_list->count++;
6169 
6170 	NAPI_GRO_CB(skb)->count = 1;
6171 	NAPI_GRO_CB(skb)->age = jiffies;
6172 	NAPI_GRO_CB(skb)->last = skb;
6173 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6174 	list_add(&skb->list, &gro_list->list);
6175 	ret = GRO_HELD;
6176 
6177 pull:
6178 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6179 	if (grow > 0)
6180 		gro_pull_from_frag0(skb, grow);
6181 ok:
6182 	if (gro_list->count) {
6183 		if (!test_bit(bucket, &napi->gro_bitmask))
6184 			__set_bit(bucket, &napi->gro_bitmask);
6185 	} else if (test_bit(bucket, &napi->gro_bitmask)) {
6186 		__clear_bit(bucket, &napi->gro_bitmask);
6187 	}
6188 
6189 	return ret;
6190 
6191 normal:
6192 	ret = GRO_NORMAL;
6193 	goto pull;
6194 }
6195 
gro_find_receive_by_type(__be16 type)6196 struct packet_offload *gro_find_receive_by_type(__be16 type)
6197 {
6198 	struct list_head *offload_head = &offload_base;
6199 	struct packet_offload *ptype;
6200 
6201 	list_for_each_entry_rcu(ptype, offload_head, list) {
6202 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6203 			continue;
6204 		return ptype;
6205 	}
6206 	return NULL;
6207 }
6208 EXPORT_SYMBOL(gro_find_receive_by_type);
6209 
gro_find_complete_by_type(__be16 type)6210 struct packet_offload *gro_find_complete_by_type(__be16 type)
6211 {
6212 	struct list_head *offload_head = &offload_base;
6213 	struct packet_offload *ptype;
6214 
6215 	list_for_each_entry_rcu(ptype, offload_head, list) {
6216 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6217 			continue;
6218 		return ptype;
6219 	}
6220 	return NULL;
6221 }
6222 EXPORT_SYMBOL(gro_find_complete_by_type);
6223 
napi_skb_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6224 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6225 				    struct sk_buff *skb,
6226 				    gro_result_t ret)
6227 {
6228 	switch (ret) {
6229 	case GRO_NORMAL:
6230 		gro_normal_one(napi, skb, 1);
6231 		break;
6232 
6233 	case GRO_MERGED_FREE:
6234 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6235 			napi_skb_free_stolen_head(skb);
6236 		else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6237 			__kfree_skb(skb);
6238 		else
6239 			__kfree_skb_defer(skb);
6240 		break;
6241 
6242 	case GRO_HELD:
6243 	case GRO_MERGED:
6244 	case GRO_CONSUMED:
6245 		break;
6246 	}
6247 
6248 	return ret;
6249 }
6250 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6251 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6252 {
6253 	gro_result_t ret;
6254 
6255 	skb_mark_napi_id(skb, napi);
6256 	trace_napi_gro_receive_entry(skb);
6257 
6258 	skb_gro_reset_offset(skb, 0);
6259 
6260 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6261 	trace_napi_gro_receive_exit(ret);
6262 
6263 	return ret;
6264 }
6265 EXPORT_SYMBOL(napi_gro_receive);
6266 
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)6267 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6268 {
6269 	if (unlikely(skb->pfmemalloc)) {
6270 		consume_skb(skb);
6271 		return;
6272 	}
6273 	__skb_pull(skb, skb_headlen(skb));
6274 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6275 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6276 	__vlan_hwaccel_clear_tag(skb);
6277 	skb->dev = napi->dev;
6278 	skb->skb_iif = 0;
6279 
6280 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6281 	skb->pkt_type = PACKET_HOST;
6282 
6283 	skb->encapsulation = 0;
6284 	skb_shinfo(skb)->gso_type = 0;
6285 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6286 	if (unlikely(skb->slow_gro)) {
6287 		skb_orphan(skb);
6288 		skb_ext_reset(skb);
6289 		nf_reset_ct(skb);
6290 		skb->slow_gro = 0;
6291 	}
6292 
6293 	napi->skb = skb;
6294 }
6295 
napi_get_frags(struct napi_struct * napi)6296 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6297 {
6298 	struct sk_buff *skb = napi->skb;
6299 
6300 	if (!skb) {
6301 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6302 		if (skb) {
6303 			napi->skb = skb;
6304 			skb_mark_napi_id(skb, napi);
6305 		}
6306 	}
6307 	return skb;
6308 }
6309 EXPORT_SYMBOL(napi_get_frags);
6310 
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6311 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6312 				      struct sk_buff *skb,
6313 				      gro_result_t ret)
6314 {
6315 	switch (ret) {
6316 	case GRO_NORMAL:
6317 	case GRO_HELD:
6318 		__skb_push(skb, ETH_HLEN);
6319 		skb->protocol = eth_type_trans(skb, skb->dev);
6320 		if (ret == GRO_NORMAL)
6321 			gro_normal_one(napi, skb, 1);
6322 		break;
6323 
6324 	case GRO_MERGED_FREE:
6325 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6326 			napi_skb_free_stolen_head(skb);
6327 		else
6328 			napi_reuse_skb(napi, skb);
6329 		break;
6330 
6331 	case GRO_MERGED:
6332 	case GRO_CONSUMED:
6333 		break;
6334 	}
6335 
6336 	return ret;
6337 }
6338 
6339 /* Upper GRO stack assumes network header starts at gro_offset=0
6340  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6341  * We copy ethernet header into skb->data to have a common layout.
6342  */
napi_frags_skb(struct napi_struct * napi)6343 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6344 {
6345 	struct sk_buff *skb = napi->skb;
6346 	const struct ethhdr *eth;
6347 	unsigned int hlen = sizeof(*eth);
6348 
6349 	napi->skb = NULL;
6350 
6351 	skb_reset_mac_header(skb);
6352 	skb_gro_reset_offset(skb, hlen);
6353 
6354 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6355 		eth = skb_gro_header_slow(skb, hlen, 0);
6356 		if (unlikely(!eth)) {
6357 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6358 					     __func__, napi->dev->name);
6359 			napi_reuse_skb(napi, skb);
6360 			return NULL;
6361 		}
6362 	} else {
6363 		eth = (const struct ethhdr *)skb->data;
6364 		gro_pull_from_frag0(skb, hlen);
6365 		NAPI_GRO_CB(skb)->frag0 += hlen;
6366 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6367 	}
6368 	__skb_pull(skb, hlen);
6369 
6370 	/*
6371 	 * This works because the only protocols we care about don't require
6372 	 * special handling.
6373 	 * We'll fix it up properly in napi_frags_finish()
6374 	 */
6375 	skb->protocol = eth->h_proto;
6376 
6377 	return skb;
6378 }
6379 
napi_gro_frags(struct napi_struct * napi)6380 gro_result_t napi_gro_frags(struct napi_struct *napi)
6381 {
6382 	gro_result_t ret;
6383 	struct sk_buff *skb = napi_frags_skb(napi);
6384 
6385 	trace_napi_gro_frags_entry(skb);
6386 
6387 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6388 	trace_napi_gro_frags_exit(ret);
6389 
6390 	return ret;
6391 }
6392 EXPORT_SYMBOL(napi_gro_frags);
6393 
6394 /* Compute the checksum from gro_offset and return the folded value
6395  * after adding in any pseudo checksum.
6396  */
__skb_gro_checksum_complete(struct sk_buff * skb)6397 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6398 {
6399 	__wsum wsum;
6400 	__sum16 sum;
6401 
6402 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6403 
6404 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6405 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6406 	/* See comments in __skb_checksum_complete(). */
6407 	if (likely(!sum)) {
6408 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6409 		    !skb->csum_complete_sw)
6410 			netdev_rx_csum_fault(skb->dev, skb);
6411 	}
6412 
6413 	NAPI_GRO_CB(skb)->csum = wsum;
6414 	NAPI_GRO_CB(skb)->csum_valid = 1;
6415 
6416 	return sum;
6417 }
6418 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6419 
net_rps_send_ipi(struct softnet_data * remsd)6420 static void net_rps_send_ipi(struct softnet_data *remsd)
6421 {
6422 #ifdef CONFIG_RPS
6423 	while (remsd) {
6424 		struct softnet_data *next = remsd->rps_ipi_next;
6425 
6426 		if (cpu_online(remsd->cpu))
6427 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6428 		remsd = next;
6429 	}
6430 #endif
6431 }
6432 
6433 /*
6434  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6435  * Note: called with local irq disabled, but exits with local irq enabled.
6436  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6437 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6438 {
6439 #ifdef CONFIG_RPS
6440 	struct softnet_data *remsd = sd->rps_ipi_list;
6441 
6442 	if (remsd) {
6443 		sd->rps_ipi_list = NULL;
6444 
6445 		local_irq_enable();
6446 
6447 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6448 		net_rps_send_ipi(remsd);
6449 	} else
6450 #endif
6451 		local_irq_enable();
6452 }
6453 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6454 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6455 {
6456 #ifdef CONFIG_RPS
6457 	return sd->rps_ipi_list != NULL;
6458 #else
6459 	return false;
6460 #endif
6461 }
6462 
process_backlog(struct napi_struct * napi,int quota)6463 static int process_backlog(struct napi_struct *napi, int quota)
6464 {
6465 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6466 	bool again = true;
6467 	int work = 0;
6468 
6469 	/* Check if we have pending ipi, its better to send them now,
6470 	 * not waiting net_rx_action() end.
6471 	 */
6472 	if (sd_has_rps_ipi_waiting(sd)) {
6473 		local_irq_disable();
6474 		net_rps_action_and_irq_enable(sd);
6475 	}
6476 
6477 	napi->weight = READ_ONCE(dev_rx_weight);
6478 	while (again) {
6479 		struct sk_buff *skb;
6480 
6481 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6482 			rcu_read_lock();
6483 			__netif_receive_skb(skb);
6484 			rcu_read_unlock();
6485 			input_queue_head_incr(sd);
6486 			if (++work >= quota)
6487 				return work;
6488 
6489 		}
6490 
6491 		local_irq_disable();
6492 		rps_lock(sd);
6493 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6494 			/*
6495 			 * Inline a custom version of __napi_complete().
6496 			 * only current cpu owns and manipulates this napi,
6497 			 * and NAPI_STATE_SCHED is the only possible flag set
6498 			 * on backlog.
6499 			 * We can use a plain write instead of clear_bit(),
6500 			 * and we dont need an smp_mb() memory barrier.
6501 			 */
6502 			napi->state = 0;
6503 			again = false;
6504 		} else {
6505 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6506 						   &sd->process_queue);
6507 		}
6508 		rps_unlock(sd);
6509 		local_irq_enable();
6510 	}
6511 
6512 	return work;
6513 }
6514 
6515 /**
6516  * __napi_schedule - schedule for receive
6517  * @n: entry to schedule
6518  *
6519  * The entry's receive function will be scheduled to run.
6520  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6521  */
__napi_schedule(struct napi_struct * n)6522 void __napi_schedule(struct napi_struct *n)
6523 {
6524 	unsigned long flags;
6525 
6526 	local_irq_save(flags);
6527 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6528 	local_irq_restore(flags);
6529 }
6530 EXPORT_SYMBOL(__napi_schedule);
6531 
6532 /**
6533  *	napi_schedule_prep - check if napi can be scheduled
6534  *	@n: napi context
6535  *
6536  * Test if NAPI routine is already running, and if not mark
6537  * it as running.  This is used as a condition variable to
6538  * insure only one NAPI poll instance runs.  We also make
6539  * sure there is no pending NAPI disable.
6540  */
napi_schedule_prep(struct napi_struct * n)6541 bool napi_schedule_prep(struct napi_struct *n)
6542 {
6543 	unsigned long val, new;
6544 
6545 	do {
6546 		val = READ_ONCE(n->state);
6547 		if (unlikely(val & NAPIF_STATE_DISABLE))
6548 			return false;
6549 		new = val | NAPIF_STATE_SCHED;
6550 
6551 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6552 		 * This was suggested by Alexander Duyck, as compiler
6553 		 * emits better code than :
6554 		 * if (val & NAPIF_STATE_SCHED)
6555 		 *     new |= NAPIF_STATE_MISSED;
6556 		 */
6557 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6558 						   NAPIF_STATE_MISSED;
6559 	} while (cmpxchg(&n->state, val, new) != val);
6560 
6561 	return !(val & NAPIF_STATE_SCHED);
6562 }
6563 EXPORT_SYMBOL(napi_schedule_prep);
6564 
6565 /**
6566  * __napi_schedule_irqoff - schedule for receive
6567  * @n: entry to schedule
6568  *
6569  * Variant of __napi_schedule() assuming hard irqs are masked.
6570  *
6571  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6572  * because the interrupt disabled assumption might not be true
6573  * due to force-threaded interrupts and spinlock substitution.
6574  */
__napi_schedule_irqoff(struct napi_struct * n)6575 void __napi_schedule_irqoff(struct napi_struct *n)
6576 {
6577 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6578 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6579 	else
6580 		__napi_schedule(n);
6581 }
6582 EXPORT_SYMBOL(__napi_schedule_irqoff);
6583 
napi_complete_done(struct napi_struct * n,int work_done)6584 bool napi_complete_done(struct napi_struct *n, int work_done)
6585 {
6586 	unsigned long flags, val, new, timeout = 0;
6587 	bool ret = true;
6588 
6589 	/*
6590 	 * 1) Don't let napi dequeue from the cpu poll list
6591 	 *    just in case its running on a different cpu.
6592 	 * 2) If we are busy polling, do nothing here, we have
6593 	 *    the guarantee we will be called later.
6594 	 */
6595 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6596 				 NAPIF_STATE_IN_BUSY_POLL)))
6597 		return false;
6598 
6599 	if (work_done) {
6600 		if (n->gro_bitmask)
6601 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6602 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6603 	}
6604 	if (n->defer_hard_irqs_count > 0) {
6605 		n->defer_hard_irqs_count--;
6606 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6607 		if (timeout)
6608 			ret = false;
6609 	}
6610 	if (n->gro_bitmask) {
6611 		/* When the NAPI instance uses a timeout and keeps postponing
6612 		 * it, we need to bound somehow the time packets are kept in
6613 		 * the GRO layer
6614 		 */
6615 		napi_gro_flush(n, !!timeout);
6616 	}
6617 
6618 	gro_normal_list(n);
6619 
6620 	if (unlikely(!list_empty(&n->poll_list))) {
6621 		/* If n->poll_list is not empty, we need to mask irqs */
6622 		local_irq_save(flags);
6623 		list_del_init(&n->poll_list);
6624 		local_irq_restore(flags);
6625 	}
6626 
6627 	do {
6628 		val = READ_ONCE(n->state);
6629 
6630 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6631 
6632 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6633 			      NAPIF_STATE_SCHED_THREADED |
6634 			      NAPIF_STATE_PREFER_BUSY_POLL);
6635 
6636 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6637 		 * because we will call napi->poll() one more time.
6638 		 * This C code was suggested by Alexander Duyck to help gcc.
6639 		 */
6640 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6641 						    NAPIF_STATE_SCHED;
6642 	} while (cmpxchg(&n->state, val, new) != val);
6643 
6644 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6645 		__napi_schedule(n);
6646 		return false;
6647 	}
6648 
6649 	if (timeout)
6650 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6651 			      HRTIMER_MODE_REL_PINNED);
6652 	return ret;
6653 }
6654 EXPORT_SYMBOL(napi_complete_done);
6655 
6656 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6657 static struct napi_struct *napi_by_id(unsigned int napi_id)
6658 {
6659 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6660 	struct napi_struct *napi;
6661 
6662 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6663 		if (napi->napi_id == napi_id)
6664 			return napi;
6665 
6666 	return NULL;
6667 }
6668 
6669 #if defined(CONFIG_NET_RX_BUSY_POLL)
6670 
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6671 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6672 {
6673 	if (!skip_schedule) {
6674 		gro_normal_list(napi);
6675 		__napi_schedule(napi);
6676 		return;
6677 	}
6678 
6679 	if (napi->gro_bitmask) {
6680 		/* flush too old packets
6681 		 * If HZ < 1000, flush all packets.
6682 		 */
6683 		napi_gro_flush(napi, HZ >= 1000);
6684 	}
6685 
6686 	gro_normal_list(napi);
6687 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6688 }
6689 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,bool prefer_busy_poll,u16 budget)6690 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6691 			   u16 budget)
6692 {
6693 	bool skip_schedule = false;
6694 	unsigned long timeout;
6695 	int rc;
6696 
6697 	/* Busy polling means there is a high chance device driver hard irq
6698 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6699 	 * set in napi_schedule_prep().
6700 	 * Since we are about to call napi->poll() once more, we can safely
6701 	 * clear NAPI_STATE_MISSED.
6702 	 *
6703 	 * Note: x86 could use a single "lock and ..." instruction
6704 	 * to perform these two clear_bit()
6705 	 */
6706 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6707 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6708 
6709 	local_bh_disable();
6710 
6711 	if (prefer_busy_poll) {
6712 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6713 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6714 		if (napi->defer_hard_irqs_count && timeout) {
6715 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6716 			skip_schedule = true;
6717 		}
6718 	}
6719 
6720 	/* All we really want here is to re-enable device interrupts.
6721 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6722 	 */
6723 	rc = napi->poll(napi, budget);
6724 	/* We can't gro_normal_list() here, because napi->poll() might have
6725 	 * rearmed the napi (napi_complete_done()) in which case it could
6726 	 * already be running on another CPU.
6727 	 */
6728 	trace_napi_poll(napi, rc, budget);
6729 	netpoll_poll_unlock(have_poll_lock);
6730 	if (rc == budget)
6731 		__busy_poll_stop(napi, skip_schedule);
6732 	local_bh_enable();
6733 }
6734 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6735 void napi_busy_loop(unsigned int napi_id,
6736 		    bool (*loop_end)(void *, unsigned long),
6737 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6738 {
6739 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6740 	int (*napi_poll)(struct napi_struct *napi, int budget);
6741 	void *have_poll_lock = NULL;
6742 	struct napi_struct *napi;
6743 
6744 restart:
6745 	napi_poll = NULL;
6746 
6747 	rcu_read_lock();
6748 
6749 	napi = napi_by_id(napi_id);
6750 	if (!napi)
6751 		goto out;
6752 
6753 	preempt_disable();
6754 	for (;;) {
6755 		int work = 0;
6756 
6757 		local_bh_disable();
6758 		if (!napi_poll) {
6759 			unsigned long val = READ_ONCE(napi->state);
6760 
6761 			/* If multiple threads are competing for this napi,
6762 			 * we avoid dirtying napi->state as much as we can.
6763 			 */
6764 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6765 				   NAPIF_STATE_IN_BUSY_POLL)) {
6766 				if (prefer_busy_poll)
6767 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6768 				goto count;
6769 			}
6770 			if (cmpxchg(&napi->state, val,
6771 				    val | NAPIF_STATE_IN_BUSY_POLL |
6772 					  NAPIF_STATE_SCHED) != val) {
6773 				if (prefer_busy_poll)
6774 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6775 				goto count;
6776 			}
6777 			have_poll_lock = netpoll_poll_lock(napi);
6778 			napi_poll = napi->poll;
6779 		}
6780 		work = napi_poll(napi, budget);
6781 		trace_napi_poll(napi, work, budget);
6782 		gro_normal_list(napi);
6783 count:
6784 		if (work > 0)
6785 			__NET_ADD_STATS(dev_net(napi->dev),
6786 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6787 		local_bh_enable();
6788 
6789 		if (!loop_end || loop_end(loop_end_arg, start_time))
6790 			break;
6791 
6792 		if (unlikely(need_resched())) {
6793 			if (napi_poll)
6794 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6795 			preempt_enable();
6796 			rcu_read_unlock();
6797 			cond_resched();
6798 			if (loop_end(loop_end_arg, start_time))
6799 				return;
6800 			goto restart;
6801 		}
6802 		cpu_relax();
6803 	}
6804 	if (napi_poll)
6805 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6806 	preempt_enable();
6807 out:
6808 	rcu_read_unlock();
6809 }
6810 EXPORT_SYMBOL(napi_busy_loop);
6811 
6812 #endif /* CONFIG_NET_RX_BUSY_POLL */
6813 
napi_hash_add(struct napi_struct * napi)6814 static void napi_hash_add(struct napi_struct *napi)
6815 {
6816 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6817 		return;
6818 
6819 	spin_lock(&napi_hash_lock);
6820 
6821 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6822 	do {
6823 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6824 			napi_gen_id = MIN_NAPI_ID;
6825 	} while (napi_by_id(napi_gen_id));
6826 	napi->napi_id = napi_gen_id;
6827 
6828 	hlist_add_head_rcu(&napi->napi_hash_node,
6829 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6830 
6831 	spin_unlock(&napi_hash_lock);
6832 }
6833 
6834 /* Warning : caller is responsible to make sure rcu grace period
6835  * is respected before freeing memory containing @napi
6836  */
napi_hash_del(struct napi_struct * napi)6837 static void napi_hash_del(struct napi_struct *napi)
6838 {
6839 	spin_lock(&napi_hash_lock);
6840 
6841 	hlist_del_init_rcu(&napi->napi_hash_node);
6842 
6843 	spin_unlock(&napi_hash_lock);
6844 }
6845 
napi_watchdog(struct hrtimer * timer)6846 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6847 {
6848 	struct napi_struct *napi;
6849 
6850 	napi = container_of(timer, struct napi_struct, timer);
6851 
6852 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6853 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6854 	 */
6855 	if (!napi_disable_pending(napi) &&
6856 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6857 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6858 		__napi_schedule_irqoff(napi);
6859 	}
6860 
6861 	return HRTIMER_NORESTART;
6862 }
6863 
init_gro_hash(struct napi_struct * napi)6864 static void init_gro_hash(struct napi_struct *napi)
6865 {
6866 	int i;
6867 
6868 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6869 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6870 		napi->gro_hash[i].count = 0;
6871 	}
6872 	napi->gro_bitmask = 0;
6873 }
6874 
dev_set_threaded(struct net_device * dev,bool threaded)6875 int dev_set_threaded(struct net_device *dev, bool threaded)
6876 {
6877 	struct napi_struct *napi;
6878 	int err = 0;
6879 
6880 	if (dev->threaded == threaded)
6881 		return 0;
6882 
6883 	if (threaded) {
6884 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6885 			if (!napi->thread) {
6886 				err = napi_kthread_create(napi);
6887 				if (err) {
6888 					threaded = false;
6889 					break;
6890 				}
6891 			}
6892 		}
6893 	}
6894 
6895 	dev->threaded = threaded;
6896 
6897 	/* Make sure kthread is created before THREADED bit
6898 	 * is set.
6899 	 */
6900 	smp_mb__before_atomic();
6901 
6902 	/* Setting/unsetting threaded mode on a napi might not immediately
6903 	 * take effect, if the current napi instance is actively being
6904 	 * polled. In this case, the switch between threaded mode and
6905 	 * softirq mode will happen in the next round of napi_schedule().
6906 	 * This should not cause hiccups/stalls to the live traffic.
6907 	 */
6908 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6909 		if (threaded)
6910 			set_bit(NAPI_STATE_THREADED, &napi->state);
6911 		else
6912 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6913 	}
6914 
6915 	return err;
6916 }
6917 EXPORT_SYMBOL(dev_set_threaded);
6918 
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6919 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6920 		    int (*poll)(struct napi_struct *, int), int weight)
6921 {
6922 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6923 		return;
6924 
6925 	INIT_LIST_HEAD(&napi->poll_list);
6926 	INIT_HLIST_NODE(&napi->napi_hash_node);
6927 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6928 	napi->timer.function = napi_watchdog;
6929 	init_gro_hash(napi);
6930 	napi->skb = NULL;
6931 	INIT_LIST_HEAD(&napi->rx_list);
6932 	napi->rx_count = 0;
6933 	napi->poll = poll;
6934 	if (weight > NAPI_POLL_WEIGHT)
6935 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6936 				weight);
6937 	napi->weight = weight;
6938 	napi->dev = dev;
6939 #ifdef CONFIG_NETPOLL
6940 	napi->poll_owner = -1;
6941 #endif
6942 	set_bit(NAPI_STATE_SCHED, &napi->state);
6943 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6944 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6945 	napi_hash_add(napi);
6946 	/* Create kthread for this napi if dev->threaded is set.
6947 	 * Clear dev->threaded if kthread creation failed so that
6948 	 * threaded mode will not be enabled in napi_enable().
6949 	 */
6950 	if (dev->threaded && napi_kthread_create(napi))
6951 		dev->threaded = 0;
6952 }
6953 EXPORT_SYMBOL(netif_napi_add);
6954 
napi_disable(struct napi_struct * n)6955 void napi_disable(struct napi_struct *n)
6956 {
6957 	might_sleep();
6958 	set_bit(NAPI_STATE_DISABLE, &n->state);
6959 
6960 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6961 		msleep(1);
6962 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6963 		msleep(1);
6964 
6965 	hrtimer_cancel(&n->timer);
6966 
6967 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6968 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6969 	clear_bit(NAPI_STATE_THREADED, &n->state);
6970 }
6971 EXPORT_SYMBOL(napi_disable);
6972 
6973 /**
6974  *	napi_enable - enable NAPI scheduling
6975  *	@n: NAPI context
6976  *
6977  * Resume NAPI from being scheduled on this context.
6978  * Must be paired with napi_disable.
6979  */
napi_enable(struct napi_struct * n)6980 void napi_enable(struct napi_struct *n)
6981 {
6982 	unsigned long val, new;
6983 
6984 	do {
6985 		val = READ_ONCE(n->state);
6986 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6987 
6988 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6989 		if (n->dev->threaded && n->thread)
6990 			new |= NAPIF_STATE_THREADED;
6991 	} while (cmpxchg(&n->state, val, new) != val);
6992 }
6993 EXPORT_SYMBOL(napi_enable);
6994 
flush_gro_hash(struct napi_struct * napi)6995 static void flush_gro_hash(struct napi_struct *napi)
6996 {
6997 	int i;
6998 
6999 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
7000 		struct sk_buff *skb, *n;
7001 
7002 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
7003 			kfree_skb(skb);
7004 		napi->gro_hash[i].count = 0;
7005 	}
7006 }
7007 
7008 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)7009 void __netif_napi_del(struct napi_struct *napi)
7010 {
7011 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7012 		return;
7013 
7014 	napi_hash_del(napi);
7015 	list_del_rcu(&napi->dev_list);
7016 	napi_free_frags(napi);
7017 
7018 	flush_gro_hash(napi);
7019 	napi->gro_bitmask = 0;
7020 
7021 	if (napi->thread) {
7022 		kthread_stop(napi->thread);
7023 		napi->thread = NULL;
7024 	}
7025 }
7026 EXPORT_SYMBOL(__netif_napi_del);
7027 
__napi_poll(struct napi_struct * n,bool * repoll)7028 static int __napi_poll(struct napi_struct *n, bool *repoll)
7029 {
7030 	int work, weight;
7031 
7032 	weight = n->weight;
7033 
7034 	/* This NAPI_STATE_SCHED test is for avoiding a race
7035 	 * with netpoll's poll_napi().  Only the entity which
7036 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7037 	 * actually make the ->poll() call.  Therefore we avoid
7038 	 * accidentally calling ->poll() when NAPI is not scheduled.
7039 	 */
7040 	work = 0;
7041 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7042 		work = n->poll(n, weight);
7043 		trace_napi_poll(n, work, weight);
7044 	}
7045 
7046 	if (unlikely(work > weight))
7047 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7048 			    n->poll, work, weight);
7049 
7050 	if (likely(work < weight))
7051 		return work;
7052 
7053 	/* Drivers must not modify the NAPI state if they
7054 	 * consume the entire weight.  In such cases this code
7055 	 * still "owns" the NAPI instance and therefore can
7056 	 * move the instance around on the list at-will.
7057 	 */
7058 	if (unlikely(napi_disable_pending(n))) {
7059 		napi_complete(n);
7060 		return work;
7061 	}
7062 
7063 	/* The NAPI context has more processing work, but busy-polling
7064 	 * is preferred. Exit early.
7065 	 */
7066 	if (napi_prefer_busy_poll(n)) {
7067 		if (napi_complete_done(n, work)) {
7068 			/* If timeout is not set, we need to make sure
7069 			 * that the NAPI is re-scheduled.
7070 			 */
7071 			napi_schedule(n);
7072 		}
7073 		return work;
7074 	}
7075 
7076 	if (n->gro_bitmask) {
7077 		/* flush too old packets
7078 		 * If HZ < 1000, flush all packets.
7079 		 */
7080 		napi_gro_flush(n, HZ >= 1000);
7081 	}
7082 
7083 	gro_normal_list(n);
7084 
7085 	/* Some drivers may have called napi_schedule
7086 	 * prior to exhausting their budget.
7087 	 */
7088 	if (unlikely(!list_empty(&n->poll_list))) {
7089 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7090 			     n->dev ? n->dev->name : "backlog");
7091 		return work;
7092 	}
7093 
7094 	*repoll = true;
7095 
7096 	return work;
7097 }
7098 
napi_poll(struct napi_struct * n,struct list_head * repoll)7099 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7100 {
7101 	bool do_repoll = false;
7102 	void *have;
7103 	int work;
7104 
7105 	list_del_init(&n->poll_list);
7106 
7107 	have = netpoll_poll_lock(n);
7108 
7109 	work = __napi_poll(n, &do_repoll);
7110 
7111 	if (do_repoll)
7112 		list_add_tail(&n->poll_list, repoll);
7113 
7114 	netpoll_poll_unlock(have);
7115 
7116 	return work;
7117 }
7118 
napi_thread_wait(struct napi_struct * napi)7119 static int napi_thread_wait(struct napi_struct *napi)
7120 {
7121 	bool woken = false;
7122 
7123 	set_current_state(TASK_INTERRUPTIBLE);
7124 
7125 	while (!kthread_should_stop()) {
7126 		/* Testing SCHED_THREADED bit here to make sure the current
7127 		 * kthread owns this napi and could poll on this napi.
7128 		 * Testing SCHED bit is not enough because SCHED bit might be
7129 		 * set by some other busy poll thread or by napi_disable().
7130 		 */
7131 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7132 			WARN_ON(!list_empty(&napi->poll_list));
7133 			__set_current_state(TASK_RUNNING);
7134 			return 0;
7135 		}
7136 
7137 		schedule();
7138 		/* woken being true indicates this thread owns this napi. */
7139 		woken = true;
7140 		set_current_state(TASK_INTERRUPTIBLE);
7141 	}
7142 	__set_current_state(TASK_RUNNING);
7143 
7144 	return -1;
7145 }
7146 
napi_threaded_poll(void * data)7147 static int napi_threaded_poll(void *data)
7148 {
7149 	struct napi_struct *napi = data;
7150 	void *have;
7151 
7152 	while (!napi_thread_wait(napi)) {
7153 		for (;;) {
7154 			bool repoll = false;
7155 
7156 			local_bh_disable();
7157 
7158 			have = netpoll_poll_lock(napi);
7159 			__napi_poll(napi, &repoll);
7160 			netpoll_poll_unlock(have);
7161 
7162 			local_bh_enable();
7163 
7164 			if (!repoll)
7165 				break;
7166 
7167 			cond_resched();
7168 		}
7169 	}
7170 	return 0;
7171 }
7172 
net_rx_action(struct softirq_action * h)7173 static __latent_entropy void net_rx_action(struct softirq_action *h)
7174 {
7175 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7176 	unsigned long time_limit = jiffies +
7177 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
7178 	int budget = READ_ONCE(netdev_budget);
7179 	LIST_HEAD(list);
7180 	LIST_HEAD(repoll);
7181 
7182 	local_irq_disable();
7183 	list_splice_init(&sd->poll_list, &list);
7184 	local_irq_enable();
7185 
7186 	for (;;) {
7187 		struct napi_struct *n;
7188 
7189 		if (list_empty(&list)) {
7190 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7191 				return;
7192 			break;
7193 		}
7194 
7195 		n = list_first_entry(&list, struct napi_struct, poll_list);
7196 		budget -= napi_poll(n, &repoll);
7197 
7198 		/* If softirq window is exhausted then punt.
7199 		 * Allow this to run for 2 jiffies since which will allow
7200 		 * an average latency of 1.5/HZ.
7201 		 */
7202 		if (unlikely(budget <= 0 ||
7203 			     time_after_eq(jiffies, time_limit))) {
7204 			sd->time_squeeze++;
7205 			break;
7206 		}
7207 	}
7208 
7209 	local_irq_disable();
7210 
7211 	list_splice_tail_init(&sd->poll_list, &list);
7212 	list_splice_tail(&repoll, &list);
7213 	list_splice(&list, &sd->poll_list);
7214 	if (!list_empty(&sd->poll_list))
7215 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7216 
7217 	net_rps_action_and_irq_enable(sd);
7218 }
7219 
7220 struct netdev_adjacent {
7221 	struct net_device *dev;
7222 
7223 	/* upper master flag, there can only be one master device per list */
7224 	bool master;
7225 
7226 	/* lookup ignore flag */
7227 	bool ignore;
7228 
7229 	/* counter for the number of times this device was added to us */
7230 	u16 ref_nr;
7231 
7232 	/* private field for the users */
7233 	void *private;
7234 
7235 	struct list_head list;
7236 	struct rcu_head rcu;
7237 };
7238 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7239 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7240 						 struct list_head *adj_list)
7241 {
7242 	struct netdev_adjacent *adj;
7243 
7244 	list_for_each_entry(adj, adj_list, list) {
7245 		if (adj->dev == adj_dev)
7246 			return adj;
7247 	}
7248 	return NULL;
7249 }
7250 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7251 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7252 				    struct netdev_nested_priv *priv)
7253 {
7254 	struct net_device *dev = (struct net_device *)priv->data;
7255 
7256 	return upper_dev == dev;
7257 }
7258 
7259 /**
7260  * netdev_has_upper_dev - Check if device is linked to an upper device
7261  * @dev: device
7262  * @upper_dev: upper device to check
7263  *
7264  * Find out if a device is linked to specified upper device and return true
7265  * in case it is. Note that this checks only immediate upper device,
7266  * not through a complete stack of devices. The caller must hold the RTNL lock.
7267  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7268 bool netdev_has_upper_dev(struct net_device *dev,
7269 			  struct net_device *upper_dev)
7270 {
7271 	struct netdev_nested_priv priv = {
7272 		.data = (void *)upper_dev,
7273 	};
7274 
7275 	ASSERT_RTNL();
7276 
7277 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7278 					     &priv);
7279 }
7280 EXPORT_SYMBOL(netdev_has_upper_dev);
7281 
7282 /**
7283  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7284  * @dev: device
7285  * @upper_dev: upper device to check
7286  *
7287  * Find out if a device is linked to specified upper device and return true
7288  * in case it is. Note that this checks the entire upper device chain.
7289  * The caller must hold rcu lock.
7290  */
7291 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7292 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7293 				  struct net_device *upper_dev)
7294 {
7295 	struct netdev_nested_priv priv = {
7296 		.data = (void *)upper_dev,
7297 	};
7298 
7299 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7300 					       &priv);
7301 }
7302 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7303 
7304 /**
7305  * netdev_has_any_upper_dev - Check if device is linked to some device
7306  * @dev: device
7307  *
7308  * Find out if a device is linked to an upper device and return true in case
7309  * it is. The caller must hold the RTNL lock.
7310  */
netdev_has_any_upper_dev(struct net_device * dev)7311 bool netdev_has_any_upper_dev(struct net_device *dev)
7312 {
7313 	ASSERT_RTNL();
7314 
7315 	return !list_empty(&dev->adj_list.upper);
7316 }
7317 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7318 
7319 /**
7320  * netdev_master_upper_dev_get - Get master upper device
7321  * @dev: device
7322  *
7323  * Find a master upper device and return pointer to it or NULL in case
7324  * it's not there. The caller must hold the RTNL lock.
7325  */
netdev_master_upper_dev_get(struct net_device * dev)7326 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7327 {
7328 	struct netdev_adjacent *upper;
7329 
7330 	ASSERT_RTNL();
7331 
7332 	if (list_empty(&dev->adj_list.upper))
7333 		return NULL;
7334 
7335 	upper = list_first_entry(&dev->adj_list.upper,
7336 				 struct netdev_adjacent, list);
7337 	if (likely(upper->master))
7338 		return upper->dev;
7339 	return NULL;
7340 }
7341 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7342 
__netdev_master_upper_dev_get(struct net_device * dev)7343 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7344 {
7345 	struct netdev_adjacent *upper;
7346 
7347 	ASSERT_RTNL();
7348 
7349 	if (list_empty(&dev->adj_list.upper))
7350 		return NULL;
7351 
7352 	upper = list_first_entry(&dev->adj_list.upper,
7353 				 struct netdev_adjacent, list);
7354 	if (likely(upper->master) && !upper->ignore)
7355 		return upper->dev;
7356 	return NULL;
7357 }
7358 
7359 /**
7360  * netdev_has_any_lower_dev - Check if device is linked to some device
7361  * @dev: device
7362  *
7363  * Find out if a device is linked to a lower device and return true in case
7364  * it is. The caller must hold the RTNL lock.
7365  */
netdev_has_any_lower_dev(struct net_device * dev)7366 static bool netdev_has_any_lower_dev(struct net_device *dev)
7367 {
7368 	ASSERT_RTNL();
7369 
7370 	return !list_empty(&dev->adj_list.lower);
7371 }
7372 
netdev_adjacent_get_private(struct list_head * adj_list)7373 void *netdev_adjacent_get_private(struct list_head *adj_list)
7374 {
7375 	struct netdev_adjacent *adj;
7376 
7377 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7378 
7379 	return adj->private;
7380 }
7381 EXPORT_SYMBOL(netdev_adjacent_get_private);
7382 
7383 /**
7384  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7385  * @dev: device
7386  * @iter: list_head ** of the current position
7387  *
7388  * Gets the next device from the dev's upper list, starting from iter
7389  * position. The caller must hold RCU read lock.
7390  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7391 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7392 						 struct list_head **iter)
7393 {
7394 	struct netdev_adjacent *upper;
7395 
7396 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7397 
7398 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7399 
7400 	if (&upper->list == &dev->adj_list.upper)
7401 		return NULL;
7402 
7403 	*iter = &upper->list;
7404 
7405 	return upper->dev;
7406 }
7407 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7408 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7409 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7410 						  struct list_head **iter,
7411 						  bool *ignore)
7412 {
7413 	struct netdev_adjacent *upper;
7414 
7415 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7416 
7417 	if (&upper->list == &dev->adj_list.upper)
7418 		return NULL;
7419 
7420 	*iter = &upper->list;
7421 	*ignore = upper->ignore;
7422 
7423 	return upper->dev;
7424 }
7425 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7426 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7427 						    struct list_head **iter)
7428 {
7429 	struct netdev_adjacent *upper;
7430 
7431 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7432 
7433 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7434 
7435 	if (&upper->list == &dev->adj_list.upper)
7436 		return NULL;
7437 
7438 	*iter = &upper->list;
7439 
7440 	return upper->dev;
7441 }
7442 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7443 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7444 				       int (*fn)(struct net_device *dev,
7445 					 struct netdev_nested_priv *priv),
7446 				       struct netdev_nested_priv *priv)
7447 {
7448 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7449 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7450 	int ret, cur = 0;
7451 	bool ignore;
7452 
7453 	now = dev;
7454 	iter = &dev->adj_list.upper;
7455 
7456 	while (1) {
7457 		if (now != dev) {
7458 			ret = fn(now, priv);
7459 			if (ret)
7460 				return ret;
7461 		}
7462 
7463 		next = NULL;
7464 		while (1) {
7465 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7466 			if (!udev)
7467 				break;
7468 			if (ignore)
7469 				continue;
7470 
7471 			next = udev;
7472 			niter = &udev->adj_list.upper;
7473 			dev_stack[cur] = now;
7474 			iter_stack[cur++] = iter;
7475 			break;
7476 		}
7477 
7478 		if (!next) {
7479 			if (!cur)
7480 				return 0;
7481 			next = dev_stack[--cur];
7482 			niter = iter_stack[cur];
7483 		}
7484 
7485 		now = next;
7486 		iter = niter;
7487 	}
7488 
7489 	return 0;
7490 }
7491 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7492 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7493 				  int (*fn)(struct net_device *dev,
7494 					    struct netdev_nested_priv *priv),
7495 				  struct netdev_nested_priv *priv)
7496 {
7497 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7498 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7499 	int ret, cur = 0;
7500 
7501 	now = dev;
7502 	iter = &dev->adj_list.upper;
7503 
7504 	while (1) {
7505 		if (now != dev) {
7506 			ret = fn(now, priv);
7507 			if (ret)
7508 				return ret;
7509 		}
7510 
7511 		next = NULL;
7512 		while (1) {
7513 			udev = netdev_next_upper_dev_rcu(now, &iter);
7514 			if (!udev)
7515 				break;
7516 
7517 			next = udev;
7518 			niter = &udev->adj_list.upper;
7519 			dev_stack[cur] = now;
7520 			iter_stack[cur++] = iter;
7521 			break;
7522 		}
7523 
7524 		if (!next) {
7525 			if (!cur)
7526 				return 0;
7527 			next = dev_stack[--cur];
7528 			niter = iter_stack[cur];
7529 		}
7530 
7531 		now = next;
7532 		iter = niter;
7533 	}
7534 
7535 	return 0;
7536 }
7537 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7538 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7539 static bool __netdev_has_upper_dev(struct net_device *dev,
7540 				   struct net_device *upper_dev)
7541 {
7542 	struct netdev_nested_priv priv = {
7543 		.flags = 0,
7544 		.data = (void *)upper_dev,
7545 	};
7546 
7547 	ASSERT_RTNL();
7548 
7549 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7550 					   &priv);
7551 }
7552 
7553 /**
7554  * netdev_lower_get_next_private - Get the next ->private from the
7555  *				   lower neighbour list
7556  * @dev: device
7557  * @iter: list_head ** of the current position
7558  *
7559  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7560  * list, starting from iter position. The caller must hold either hold the
7561  * RTNL lock or its own locking that guarantees that the neighbour lower
7562  * list will remain unchanged.
7563  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7564 void *netdev_lower_get_next_private(struct net_device *dev,
7565 				    struct list_head **iter)
7566 {
7567 	struct netdev_adjacent *lower;
7568 
7569 	lower = list_entry(*iter, struct netdev_adjacent, list);
7570 
7571 	if (&lower->list == &dev->adj_list.lower)
7572 		return NULL;
7573 
7574 	*iter = lower->list.next;
7575 
7576 	return lower->private;
7577 }
7578 EXPORT_SYMBOL(netdev_lower_get_next_private);
7579 
7580 /**
7581  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7582  *				       lower neighbour list, RCU
7583  *				       variant
7584  * @dev: device
7585  * @iter: list_head ** of the current position
7586  *
7587  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7588  * list, starting from iter position. The caller must hold RCU read lock.
7589  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7590 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7591 					struct list_head **iter)
7592 {
7593 	struct netdev_adjacent *lower;
7594 
7595 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7596 
7597 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7598 
7599 	if (&lower->list == &dev->adj_list.lower)
7600 		return NULL;
7601 
7602 	*iter = &lower->list;
7603 
7604 	return lower->private;
7605 }
7606 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7607 
7608 /**
7609  * netdev_lower_get_next - Get the next device from the lower neighbour
7610  *                         list
7611  * @dev: device
7612  * @iter: list_head ** of the current position
7613  *
7614  * Gets the next netdev_adjacent from the dev's lower neighbour
7615  * list, starting from iter position. The caller must hold RTNL lock or
7616  * its own locking that guarantees that the neighbour lower
7617  * list will remain unchanged.
7618  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7619 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7620 {
7621 	struct netdev_adjacent *lower;
7622 
7623 	lower = list_entry(*iter, struct netdev_adjacent, list);
7624 
7625 	if (&lower->list == &dev->adj_list.lower)
7626 		return NULL;
7627 
7628 	*iter = lower->list.next;
7629 
7630 	return lower->dev;
7631 }
7632 EXPORT_SYMBOL(netdev_lower_get_next);
7633 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7634 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7635 						struct list_head **iter)
7636 {
7637 	struct netdev_adjacent *lower;
7638 
7639 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7640 
7641 	if (&lower->list == &dev->adj_list.lower)
7642 		return NULL;
7643 
7644 	*iter = &lower->list;
7645 
7646 	return lower->dev;
7647 }
7648 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7649 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7650 						  struct list_head **iter,
7651 						  bool *ignore)
7652 {
7653 	struct netdev_adjacent *lower;
7654 
7655 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7656 
7657 	if (&lower->list == &dev->adj_list.lower)
7658 		return NULL;
7659 
7660 	*iter = &lower->list;
7661 	*ignore = lower->ignore;
7662 
7663 	return lower->dev;
7664 }
7665 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7666 int netdev_walk_all_lower_dev(struct net_device *dev,
7667 			      int (*fn)(struct net_device *dev,
7668 					struct netdev_nested_priv *priv),
7669 			      struct netdev_nested_priv *priv)
7670 {
7671 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7672 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7673 	int ret, cur = 0;
7674 
7675 	now = dev;
7676 	iter = &dev->adj_list.lower;
7677 
7678 	while (1) {
7679 		if (now != dev) {
7680 			ret = fn(now, priv);
7681 			if (ret)
7682 				return ret;
7683 		}
7684 
7685 		next = NULL;
7686 		while (1) {
7687 			ldev = netdev_next_lower_dev(now, &iter);
7688 			if (!ldev)
7689 				break;
7690 
7691 			next = ldev;
7692 			niter = &ldev->adj_list.lower;
7693 			dev_stack[cur] = now;
7694 			iter_stack[cur++] = iter;
7695 			break;
7696 		}
7697 
7698 		if (!next) {
7699 			if (!cur)
7700 				return 0;
7701 			next = dev_stack[--cur];
7702 			niter = iter_stack[cur];
7703 		}
7704 
7705 		now = next;
7706 		iter = niter;
7707 	}
7708 
7709 	return 0;
7710 }
7711 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7712 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7713 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7714 				       int (*fn)(struct net_device *dev,
7715 					 struct netdev_nested_priv *priv),
7716 				       struct netdev_nested_priv *priv)
7717 {
7718 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7719 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7720 	int ret, cur = 0;
7721 	bool ignore;
7722 
7723 	now = dev;
7724 	iter = &dev->adj_list.lower;
7725 
7726 	while (1) {
7727 		if (now != dev) {
7728 			ret = fn(now, priv);
7729 			if (ret)
7730 				return ret;
7731 		}
7732 
7733 		next = NULL;
7734 		while (1) {
7735 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7736 			if (!ldev)
7737 				break;
7738 			if (ignore)
7739 				continue;
7740 
7741 			next = ldev;
7742 			niter = &ldev->adj_list.lower;
7743 			dev_stack[cur] = now;
7744 			iter_stack[cur++] = iter;
7745 			break;
7746 		}
7747 
7748 		if (!next) {
7749 			if (!cur)
7750 				return 0;
7751 			next = dev_stack[--cur];
7752 			niter = iter_stack[cur];
7753 		}
7754 
7755 		now = next;
7756 		iter = niter;
7757 	}
7758 
7759 	return 0;
7760 }
7761 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7762 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7763 					     struct list_head **iter)
7764 {
7765 	struct netdev_adjacent *lower;
7766 
7767 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7768 	if (&lower->list == &dev->adj_list.lower)
7769 		return NULL;
7770 
7771 	*iter = &lower->list;
7772 
7773 	return lower->dev;
7774 }
7775 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7776 
__netdev_upper_depth(struct net_device * dev)7777 static u8 __netdev_upper_depth(struct net_device *dev)
7778 {
7779 	struct net_device *udev;
7780 	struct list_head *iter;
7781 	u8 max_depth = 0;
7782 	bool ignore;
7783 
7784 	for (iter = &dev->adj_list.upper,
7785 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7786 	     udev;
7787 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7788 		if (ignore)
7789 			continue;
7790 		if (max_depth < udev->upper_level)
7791 			max_depth = udev->upper_level;
7792 	}
7793 
7794 	return max_depth;
7795 }
7796 
__netdev_lower_depth(struct net_device * dev)7797 static u8 __netdev_lower_depth(struct net_device *dev)
7798 {
7799 	struct net_device *ldev;
7800 	struct list_head *iter;
7801 	u8 max_depth = 0;
7802 	bool ignore;
7803 
7804 	for (iter = &dev->adj_list.lower,
7805 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7806 	     ldev;
7807 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7808 		if (ignore)
7809 			continue;
7810 		if (max_depth < ldev->lower_level)
7811 			max_depth = ldev->lower_level;
7812 	}
7813 
7814 	return max_depth;
7815 }
7816 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7817 static int __netdev_update_upper_level(struct net_device *dev,
7818 				       struct netdev_nested_priv *__unused)
7819 {
7820 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7821 	return 0;
7822 }
7823 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7824 static int __netdev_update_lower_level(struct net_device *dev,
7825 				       struct netdev_nested_priv *priv)
7826 {
7827 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7828 
7829 #ifdef CONFIG_LOCKDEP
7830 	if (!priv)
7831 		return 0;
7832 
7833 	if (priv->flags & NESTED_SYNC_IMM)
7834 		dev->nested_level = dev->lower_level - 1;
7835 	if (priv->flags & NESTED_SYNC_TODO)
7836 		net_unlink_todo(dev);
7837 #endif
7838 	return 0;
7839 }
7840 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7841 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7842 				  int (*fn)(struct net_device *dev,
7843 					    struct netdev_nested_priv *priv),
7844 				  struct netdev_nested_priv *priv)
7845 {
7846 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7847 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7848 	int ret, cur = 0;
7849 
7850 	now = dev;
7851 	iter = &dev->adj_list.lower;
7852 
7853 	while (1) {
7854 		if (now != dev) {
7855 			ret = fn(now, priv);
7856 			if (ret)
7857 				return ret;
7858 		}
7859 
7860 		next = NULL;
7861 		while (1) {
7862 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7863 			if (!ldev)
7864 				break;
7865 
7866 			next = ldev;
7867 			niter = &ldev->adj_list.lower;
7868 			dev_stack[cur] = now;
7869 			iter_stack[cur++] = iter;
7870 			break;
7871 		}
7872 
7873 		if (!next) {
7874 			if (!cur)
7875 				return 0;
7876 			next = dev_stack[--cur];
7877 			niter = iter_stack[cur];
7878 		}
7879 
7880 		now = next;
7881 		iter = niter;
7882 	}
7883 
7884 	return 0;
7885 }
7886 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7887 
7888 /**
7889  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7890  *				       lower neighbour list, RCU
7891  *				       variant
7892  * @dev: device
7893  *
7894  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7895  * list. The caller must hold RCU read lock.
7896  */
netdev_lower_get_first_private_rcu(struct net_device * dev)7897 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7898 {
7899 	struct netdev_adjacent *lower;
7900 
7901 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7902 			struct netdev_adjacent, list);
7903 	if (lower)
7904 		return lower->private;
7905 	return NULL;
7906 }
7907 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7908 
7909 /**
7910  * netdev_master_upper_dev_get_rcu - Get master upper device
7911  * @dev: device
7912  *
7913  * Find a master upper device and return pointer to it or NULL in case
7914  * it's not there. The caller must hold the RCU read lock.
7915  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7916 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7917 {
7918 	struct netdev_adjacent *upper;
7919 
7920 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7921 				       struct netdev_adjacent, list);
7922 	if (upper && likely(upper->master))
7923 		return upper->dev;
7924 	return NULL;
7925 }
7926 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7927 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7928 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7929 			      struct net_device *adj_dev,
7930 			      struct list_head *dev_list)
7931 {
7932 	char linkname[IFNAMSIZ+7];
7933 
7934 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7935 		"upper_%s" : "lower_%s", adj_dev->name);
7936 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7937 				 linkname);
7938 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7939 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7940 			       char *name,
7941 			       struct list_head *dev_list)
7942 {
7943 	char linkname[IFNAMSIZ+7];
7944 
7945 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7946 		"upper_%s" : "lower_%s", name);
7947 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7948 }
7949 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7950 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7951 						 struct net_device *adj_dev,
7952 						 struct list_head *dev_list)
7953 {
7954 	return (dev_list == &dev->adj_list.upper ||
7955 		dev_list == &dev->adj_list.lower) &&
7956 		net_eq(dev_net(dev), dev_net(adj_dev));
7957 }
7958 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7959 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7960 					struct net_device *adj_dev,
7961 					struct list_head *dev_list,
7962 					void *private, bool master)
7963 {
7964 	struct netdev_adjacent *adj;
7965 	int ret;
7966 
7967 	adj = __netdev_find_adj(adj_dev, dev_list);
7968 
7969 	if (adj) {
7970 		adj->ref_nr += 1;
7971 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7972 			 dev->name, adj_dev->name, adj->ref_nr);
7973 
7974 		return 0;
7975 	}
7976 
7977 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7978 	if (!adj)
7979 		return -ENOMEM;
7980 
7981 	adj->dev = adj_dev;
7982 	adj->master = master;
7983 	adj->ref_nr = 1;
7984 	adj->private = private;
7985 	adj->ignore = false;
7986 	dev_hold(adj_dev);
7987 
7988 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7989 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7990 
7991 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7992 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7993 		if (ret)
7994 			goto free_adj;
7995 	}
7996 
7997 	/* Ensure that master link is always the first item in list. */
7998 	if (master) {
7999 		ret = sysfs_create_link(&(dev->dev.kobj),
8000 					&(adj_dev->dev.kobj), "master");
8001 		if (ret)
8002 			goto remove_symlinks;
8003 
8004 		list_add_rcu(&adj->list, dev_list);
8005 	} else {
8006 		list_add_tail_rcu(&adj->list, dev_list);
8007 	}
8008 
8009 	return 0;
8010 
8011 remove_symlinks:
8012 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8013 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8014 free_adj:
8015 	kfree(adj);
8016 	dev_put(adj_dev);
8017 
8018 	return ret;
8019 }
8020 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8021 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8022 					 struct net_device *adj_dev,
8023 					 u16 ref_nr,
8024 					 struct list_head *dev_list)
8025 {
8026 	struct netdev_adjacent *adj;
8027 
8028 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8029 		 dev->name, adj_dev->name, ref_nr);
8030 
8031 	adj = __netdev_find_adj(adj_dev, dev_list);
8032 
8033 	if (!adj) {
8034 		pr_err("Adjacency does not exist for device %s from %s\n",
8035 		       dev->name, adj_dev->name);
8036 		WARN_ON(1);
8037 		return;
8038 	}
8039 
8040 	if (adj->ref_nr > ref_nr) {
8041 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8042 			 dev->name, adj_dev->name, ref_nr,
8043 			 adj->ref_nr - ref_nr);
8044 		adj->ref_nr -= ref_nr;
8045 		return;
8046 	}
8047 
8048 	if (adj->master)
8049 		sysfs_remove_link(&(dev->dev.kobj), "master");
8050 
8051 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8052 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8053 
8054 	list_del_rcu(&adj->list);
8055 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8056 		 adj_dev->name, dev->name, adj_dev->name);
8057 	dev_put(adj_dev);
8058 	kfree_rcu(adj, rcu);
8059 }
8060 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8061 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8062 					    struct net_device *upper_dev,
8063 					    struct list_head *up_list,
8064 					    struct list_head *down_list,
8065 					    void *private, bool master)
8066 {
8067 	int ret;
8068 
8069 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8070 					   private, master);
8071 	if (ret)
8072 		return ret;
8073 
8074 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8075 					   private, false);
8076 	if (ret) {
8077 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8078 		return ret;
8079 	}
8080 
8081 	return 0;
8082 }
8083 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8084 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8085 					       struct net_device *upper_dev,
8086 					       u16 ref_nr,
8087 					       struct list_head *up_list,
8088 					       struct list_head *down_list)
8089 {
8090 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8091 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8092 }
8093 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8094 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8095 						struct net_device *upper_dev,
8096 						void *private, bool master)
8097 {
8098 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8099 						&dev->adj_list.upper,
8100 						&upper_dev->adj_list.lower,
8101 						private, master);
8102 }
8103 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8104 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8105 						   struct net_device *upper_dev)
8106 {
8107 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8108 					   &dev->adj_list.upper,
8109 					   &upper_dev->adj_list.lower);
8110 }
8111 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8112 static int __netdev_upper_dev_link(struct net_device *dev,
8113 				   struct net_device *upper_dev, bool master,
8114 				   void *upper_priv, void *upper_info,
8115 				   struct netdev_nested_priv *priv,
8116 				   struct netlink_ext_ack *extack)
8117 {
8118 	struct netdev_notifier_changeupper_info changeupper_info = {
8119 		.info = {
8120 			.dev = dev,
8121 			.extack = extack,
8122 		},
8123 		.upper_dev = upper_dev,
8124 		.master = master,
8125 		.linking = true,
8126 		.upper_info = upper_info,
8127 	};
8128 	struct net_device *master_dev;
8129 	int ret = 0;
8130 
8131 	ASSERT_RTNL();
8132 
8133 	if (dev == upper_dev)
8134 		return -EBUSY;
8135 
8136 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8137 	if (__netdev_has_upper_dev(upper_dev, dev))
8138 		return -EBUSY;
8139 
8140 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8141 		return -EMLINK;
8142 
8143 	if (!master) {
8144 		if (__netdev_has_upper_dev(dev, upper_dev))
8145 			return -EEXIST;
8146 	} else {
8147 		master_dev = __netdev_master_upper_dev_get(dev);
8148 		if (master_dev)
8149 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8150 	}
8151 
8152 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8153 					    &changeupper_info.info);
8154 	ret = notifier_to_errno(ret);
8155 	if (ret)
8156 		return ret;
8157 
8158 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8159 						   master);
8160 	if (ret)
8161 		return ret;
8162 
8163 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8164 					    &changeupper_info.info);
8165 	ret = notifier_to_errno(ret);
8166 	if (ret)
8167 		goto rollback;
8168 
8169 	__netdev_update_upper_level(dev, NULL);
8170 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8171 
8172 	__netdev_update_lower_level(upper_dev, priv);
8173 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8174 				    priv);
8175 
8176 	return 0;
8177 
8178 rollback:
8179 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8180 
8181 	return ret;
8182 }
8183 
8184 /**
8185  * netdev_upper_dev_link - Add a link to the upper device
8186  * @dev: device
8187  * @upper_dev: new upper device
8188  * @extack: netlink extended ack
8189  *
8190  * Adds a link to device which is upper to this one. The caller must hold
8191  * the RTNL lock. On a failure a negative errno code is returned.
8192  * On success the reference counts are adjusted and the function
8193  * returns zero.
8194  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8195 int netdev_upper_dev_link(struct net_device *dev,
8196 			  struct net_device *upper_dev,
8197 			  struct netlink_ext_ack *extack)
8198 {
8199 	struct netdev_nested_priv priv = {
8200 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8201 		.data = NULL,
8202 	};
8203 
8204 	return __netdev_upper_dev_link(dev, upper_dev, false,
8205 				       NULL, NULL, &priv, extack);
8206 }
8207 EXPORT_SYMBOL(netdev_upper_dev_link);
8208 
8209 /**
8210  * netdev_master_upper_dev_link - Add a master link to the upper device
8211  * @dev: device
8212  * @upper_dev: new upper device
8213  * @upper_priv: upper device private
8214  * @upper_info: upper info to be passed down via notifier
8215  * @extack: netlink extended ack
8216  *
8217  * Adds a link to device which is upper to this one. In this case, only
8218  * one master upper device can be linked, although other non-master devices
8219  * might be linked as well. The caller must hold the RTNL lock.
8220  * On a failure a negative errno code is returned. On success the reference
8221  * counts are adjusted and the function returns zero.
8222  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8223 int netdev_master_upper_dev_link(struct net_device *dev,
8224 				 struct net_device *upper_dev,
8225 				 void *upper_priv, void *upper_info,
8226 				 struct netlink_ext_ack *extack)
8227 {
8228 	struct netdev_nested_priv priv = {
8229 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8230 		.data = NULL,
8231 	};
8232 
8233 	return __netdev_upper_dev_link(dev, upper_dev, true,
8234 				       upper_priv, upper_info, &priv, extack);
8235 }
8236 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8237 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8238 static void __netdev_upper_dev_unlink(struct net_device *dev,
8239 				      struct net_device *upper_dev,
8240 				      struct netdev_nested_priv *priv)
8241 {
8242 	struct netdev_notifier_changeupper_info changeupper_info = {
8243 		.info = {
8244 			.dev = dev,
8245 		},
8246 		.upper_dev = upper_dev,
8247 		.linking = false,
8248 	};
8249 
8250 	ASSERT_RTNL();
8251 
8252 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8253 
8254 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8255 				      &changeupper_info.info);
8256 
8257 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8258 
8259 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8260 				      &changeupper_info.info);
8261 
8262 	__netdev_update_upper_level(dev, NULL);
8263 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8264 
8265 	__netdev_update_lower_level(upper_dev, priv);
8266 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8267 				    priv);
8268 }
8269 
8270 /**
8271  * netdev_upper_dev_unlink - Removes a link to upper device
8272  * @dev: device
8273  * @upper_dev: new upper device
8274  *
8275  * Removes a link to device which is upper to this one. The caller must hold
8276  * the RTNL lock.
8277  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8278 void netdev_upper_dev_unlink(struct net_device *dev,
8279 			     struct net_device *upper_dev)
8280 {
8281 	struct netdev_nested_priv priv = {
8282 		.flags = NESTED_SYNC_TODO,
8283 		.data = NULL,
8284 	};
8285 
8286 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8287 }
8288 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8289 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8290 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8291 				      struct net_device *lower_dev,
8292 				      bool val)
8293 {
8294 	struct netdev_adjacent *adj;
8295 
8296 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8297 	if (adj)
8298 		adj->ignore = val;
8299 
8300 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8301 	if (adj)
8302 		adj->ignore = val;
8303 }
8304 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8305 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8306 					struct net_device *lower_dev)
8307 {
8308 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8309 }
8310 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8311 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8312 				       struct net_device *lower_dev)
8313 {
8314 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8315 }
8316 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8317 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8318 				   struct net_device *new_dev,
8319 				   struct net_device *dev,
8320 				   struct netlink_ext_ack *extack)
8321 {
8322 	struct netdev_nested_priv priv = {
8323 		.flags = 0,
8324 		.data = NULL,
8325 	};
8326 	int err;
8327 
8328 	if (!new_dev)
8329 		return 0;
8330 
8331 	if (old_dev && new_dev != old_dev)
8332 		netdev_adjacent_dev_disable(dev, old_dev);
8333 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8334 				      extack);
8335 	if (err) {
8336 		if (old_dev && new_dev != old_dev)
8337 			netdev_adjacent_dev_enable(dev, old_dev);
8338 		return err;
8339 	}
8340 
8341 	return 0;
8342 }
8343 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8344 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8345 void netdev_adjacent_change_commit(struct net_device *old_dev,
8346 				   struct net_device *new_dev,
8347 				   struct net_device *dev)
8348 {
8349 	struct netdev_nested_priv priv = {
8350 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8351 		.data = NULL,
8352 	};
8353 
8354 	if (!new_dev || !old_dev)
8355 		return;
8356 
8357 	if (new_dev == old_dev)
8358 		return;
8359 
8360 	netdev_adjacent_dev_enable(dev, old_dev);
8361 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8362 }
8363 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8364 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8365 void netdev_adjacent_change_abort(struct net_device *old_dev,
8366 				  struct net_device *new_dev,
8367 				  struct net_device *dev)
8368 {
8369 	struct netdev_nested_priv priv = {
8370 		.flags = 0,
8371 		.data = NULL,
8372 	};
8373 
8374 	if (!new_dev)
8375 		return;
8376 
8377 	if (old_dev && new_dev != old_dev)
8378 		netdev_adjacent_dev_enable(dev, old_dev);
8379 
8380 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8381 }
8382 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8383 
8384 /**
8385  * netdev_bonding_info_change - Dispatch event about slave change
8386  * @dev: device
8387  * @bonding_info: info to dispatch
8388  *
8389  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8390  * The caller must hold the RTNL lock.
8391  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8392 void netdev_bonding_info_change(struct net_device *dev,
8393 				struct netdev_bonding_info *bonding_info)
8394 {
8395 	struct netdev_notifier_bonding_info info = {
8396 		.info.dev = dev,
8397 	};
8398 
8399 	memcpy(&info.bonding_info, bonding_info,
8400 	       sizeof(struct netdev_bonding_info));
8401 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8402 				      &info.info);
8403 }
8404 EXPORT_SYMBOL(netdev_bonding_info_change);
8405 
8406 /**
8407  * netdev_get_xmit_slave - Get the xmit slave of master device
8408  * @dev: device
8409  * @skb: The packet
8410  * @all_slaves: assume all the slaves are active
8411  *
8412  * The reference counters are not incremented so the caller must be
8413  * careful with locks. The caller must hold RCU lock.
8414  * %NULL is returned if no slave is found.
8415  */
8416 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8417 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8418 					 struct sk_buff *skb,
8419 					 bool all_slaves)
8420 {
8421 	const struct net_device_ops *ops = dev->netdev_ops;
8422 
8423 	if (!ops->ndo_get_xmit_slave)
8424 		return NULL;
8425 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8426 }
8427 EXPORT_SYMBOL(netdev_get_xmit_slave);
8428 
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8429 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8430 						  struct sock *sk)
8431 {
8432 	const struct net_device_ops *ops = dev->netdev_ops;
8433 
8434 	if (!ops->ndo_sk_get_lower_dev)
8435 		return NULL;
8436 	return ops->ndo_sk_get_lower_dev(dev, sk);
8437 }
8438 
8439 /**
8440  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8441  * @dev: device
8442  * @sk: the socket
8443  *
8444  * %NULL is returned if no lower device is found.
8445  */
8446 
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)8447 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8448 					    struct sock *sk)
8449 {
8450 	struct net_device *lower;
8451 
8452 	lower = netdev_sk_get_lower_dev(dev, sk);
8453 	while (lower) {
8454 		dev = lower;
8455 		lower = netdev_sk_get_lower_dev(dev, sk);
8456 	}
8457 
8458 	return dev;
8459 }
8460 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8461 
netdev_adjacent_add_links(struct net_device * dev)8462 static void netdev_adjacent_add_links(struct net_device *dev)
8463 {
8464 	struct netdev_adjacent *iter;
8465 
8466 	struct net *net = dev_net(dev);
8467 
8468 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8469 		if (!net_eq(net, dev_net(iter->dev)))
8470 			continue;
8471 		netdev_adjacent_sysfs_add(iter->dev, dev,
8472 					  &iter->dev->adj_list.lower);
8473 		netdev_adjacent_sysfs_add(dev, iter->dev,
8474 					  &dev->adj_list.upper);
8475 	}
8476 
8477 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8478 		if (!net_eq(net, dev_net(iter->dev)))
8479 			continue;
8480 		netdev_adjacent_sysfs_add(iter->dev, dev,
8481 					  &iter->dev->adj_list.upper);
8482 		netdev_adjacent_sysfs_add(dev, iter->dev,
8483 					  &dev->adj_list.lower);
8484 	}
8485 }
8486 
netdev_adjacent_del_links(struct net_device * dev)8487 static void netdev_adjacent_del_links(struct net_device *dev)
8488 {
8489 	struct netdev_adjacent *iter;
8490 
8491 	struct net *net = dev_net(dev);
8492 
8493 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8494 		if (!net_eq(net, dev_net(iter->dev)))
8495 			continue;
8496 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8497 					  &iter->dev->adj_list.lower);
8498 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8499 					  &dev->adj_list.upper);
8500 	}
8501 
8502 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8503 		if (!net_eq(net, dev_net(iter->dev)))
8504 			continue;
8505 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8506 					  &iter->dev->adj_list.upper);
8507 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8508 					  &dev->adj_list.lower);
8509 	}
8510 }
8511 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8512 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8513 {
8514 	struct netdev_adjacent *iter;
8515 
8516 	struct net *net = dev_net(dev);
8517 
8518 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8519 		if (!net_eq(net, dev_net(iter->dev)))
8520 			continue;
8521 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8522 					  &iter->dev->adj_list.lower);
8523 		netdev_adjacent_sysfs_add(iter->dev, dev,
8524 					  &iter->dev->adj_list.lower);
8525 	}
8526 
8527 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8528 		if (!net_eq(net, dev_net(iter->dev)))
8529 			continue;
8530 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8531 					  &iter->dev->adj_list.upper);
8532 		netdev_adjacent_sysfs_add(iter->dev, dev,
8533 					  &iter->dev->adj_list.upper);
8534 	}
8535 }
8536 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8537 void *netdev_lower_dev_get_private(struct net_device *dev,
8538 				   struct net_device *lower_dev)
8539 {
8540 	struct netdev_adjacent *lower;
8541 
8542 	if (!lower_dev)
8543 		return NULL;
8544 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8545 	if (!lower)
8546 		return NULL;
8547 
8548 	return lower->private;
8549 }
8550 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8551 
8552 
8553 /**
8554  * netdev_lower_state_changed - Dispatch event about lower device state change
8555  * @lower_dev: device
8556  * @lower_state_info: state to dispatch
8557  *
8558  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8559  * The caller must hold the RTNL lock.
8560  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8561 void netdev_lower_state_changed(struct net_device *lower_dev,
8562 				void *lower_state_info)
8563 {
8564 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8565 		.info.dev = lower_dev,
8566 	};
8567 
8568 	ASSERT_RTNL();
8569 	changelowerstate_info.lower_state_info = lower_state_info;
8570 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8571 				      &changelowerstate_info.info);
8572 }
8573 EXPORT_SYMBOL(netdev_lower_state_changed);
8574 
dev_change_rx_flags(struct net_device * dev,int flags)8575 static void dev_change_rx_flags(struct net_device *dev, int flags)
8576 {
8577 	const struct net_device_ops *ops = dev->netdev_ops;
8578 
8579 	if (ops->ndo_change_rx_flags)
8580 		ops->ndo_change_rx_flags(dev, flags);
8581 }
8582 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8583 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8584 {
8585 	unsigned int old_flags = dev->flags;
8586 	kuid_t uid;
8587 	kgid_t gid;
8588 
8589 	ASSERT_RTNL();
8590 
8591 	dev->flags |= IFF_PROMISC;
8592 	dev->promiscuity += inc;
8593 	if (dev->promiscuity == 0) {
8594 		/*
8595 		 * Avoid overflow.
8596 		 * If inc causes overflow, untouch promisc and return error.
8597 		 */
8598 		if (inc < 0)
8599 			dev->flags &= ~IFF_PROMISC;
8600 		else {
8601 			dev->promiscuity -= inc;
8602 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8603 				dev->name);
8604 			return -EOVERFLOW;
8605 		}
8606 	}
8607 	if (dev->flags != old_flags) {
8608 		pr_info("device %s %s promiscuous mode\n",
8609 			dev->name,
8610 			dev->flags & IFF_PROMISC ? "entered" : "left");
8611 		if (audit_enabled) {
8612 			current_uid_gid(&uid, &gid);
8613 			audit_log(audit_context(), GFP_ATOMIC,
8614 				  AUDIT_ANOM_PROMISCUOUS,
8615 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8616 				  dev->name, (dev->flags & IFF_PROMISC),
8617 				  (old_flags & IFF_PROMISC),
8618 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8619 				  from_kuid(&init_user_ns, uid),
8620 				  from_kgid(&init_user_ns, gid),
8621 				  audit_get_sessionid(current));
8622 		}
8623 
8624 		dev_change_rx_flags(dev, IFF_PROMISC);
8625 	}
8626 	if (notify)
8627 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8628 	return 0;
8629 }
8630 
8631 /**
8632  *	dev_set_promiscuity	- update promiscuity count on a device
8633  *	@dev: device
8634  *	@inc: modifier
8635  *
8636  *	Add or remove promiscuity from a device. While the count in the device
8637  *	remains above zero the interface remains promiscuous. Once it hits zero
8638  *	the device reverts back to normal filtering operation. A negative inc
8639  *	value is used to drop promiscuity on the device.
8640  *	Return 0 if successful or a negative errno code on error.
8641  */
dev_set_promiscuity(struct net_device * dev,int inc)8642 int dev_set_promiscuity(struct net_device *dev, int inc)
8643 {
8644 	unsigned int old_flags = dev->flags;
8645 	int err;
8646 
8647 	err = __dev_set_promiscuity(dev, inc, true);
8648 	if (err < 0)
8649 		return err;
8650 	if (dev->flags != old_flags)
8651 		dev_set_rx_mode(dev);
8652 	return err;
8653 }
8654 EXPORT_SYMBOL(dev_set_promiscuity);
8655 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8656 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8657 {
8658 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8659 
8660 	ASSERT_RTNL();
8661 
8662 	dev->flags |= IFF_ALLMULTI;
8663 	dev->allmulti += inc;
8664 	if (dev->allmulti == 0) {
8665 		/*
8666 		 * Avoid overflow.
8667 		 * If inc causes overflow, untouch allmulti and return error.
8668 		 */
8669 		if (inc < 0)
8670 			dev->flags &= ~IFF_ALLMULTI;
8671 		else {
8672 			dev->allmulti -= inc;
8673 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8674 				dev->name);
8675 			return -EOVERFLOW;
8676 		}
8677 	}
8678 	if (dev->flags ^ old_flags) {
8679 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8680 		dev_set_rx_mode(dev);
8681 		if (notify)
8682 			__dev_notify_flags(dev, old_flags,
8683 					   dev->gflags ^ old_gflags);
8684 	}
8685 	return 0;
8686 }
8687 
8688 /**
8689  *	dev_set_allmulti	- update allmulti count on a device
8690  *	@dev: device
8691  *	@inc: modifier
8692  *
8693  *	Add or remove reception of all multicast frames to a device. While the
8694  *	count in the device remains above zero the interface remains listening
8695  *	to all interfaces. Once it hits zero the device reverts back to normal
8696  *	filtering operation. A negative @inc value is used to drop the counter
8697  *	when releasing a resource needing all multicasts.
8698  *	Return 0 if successful or a negative errno code on error.
8699  */
8700 
dev_set_allmulti(struct net_device * dev,int inc)8701 int dev_set_allmulti(struct net_device *dev, int inc)
8702 {
8703 	return __dev_set_allmulti(dev, inc, true);
8704 }
8705 EXPORT_SYMBOL(dev_set_allmulti);
8706 
8707 /*
8708  *	Upload unicast and multicast address lists to device and
8709  *	configure RX filtering. When the device doesn't support unicast
8710  *	filtering it is put in promiscuous mode while unicast addresses
8711  *	are present.
8712  */
__dev_set_rx_mode(struct net_device * dev)8713 void __dev_set_rx_mode(struct net_device *dev)
8714 {
8715 	const struct net_device_ops *ops = dev->netdev_ops;
8716 
8717 	/* dev_open will call this function so the list will stay sane. */
8718 	if (!(dev->flags&IFF_UP))
8719 		return;
8720 
8721 	if (!netif_device_present(dev))
8722 		return;
8723 
8724 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8725 		/* Unicast addresses changes may only happen under the rtnl,
8726 		 * therefore calling __dev_set_promiscuity here is safe.
8727 		 */
8728 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8729 			__dev_set_promiscuity(dev, 1, false);
8730 			dev->uc_promisc = true;
8731 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8732 			__dev_set_promiscuity(dev, -1, false);
8733 			dev->uc_promisc = false;
8734 		}
8735 	}
8736 
8737 	if (ops->ndo_set_rx_mode)
8738 		ops->ndo_set_rx_mode(dev);
8739 }
8740 
dev_set_rx_mode(struct net_device * dev)8741 void dev_set_rx_mode(struct net_device *dev)
8742 {
8743 	netif_addr_lock_bh(dev);
8744 	__dev_set_rx_mode(dev);
8745 	netif_addr_unlock_bh(dev);
8746 }
8747 
8748 /**
8749  *	dev_get_flags - get flags reported to userspace
8750  *	@dev: device
8751  *
8752  *	Get the combination of flag bits exported through APIs to userspace.
8753  */
dev_get_flags(const struct net_device * dev)8754 unsigned int dev_get_flags(const struct net_device *dev)
8755 {
8756 	unsigned int flags;
8757 
8758 	flags = (dev->flags & ~(IFF_PROMISC |
8759 				IFF_ALLMULTI |
8760 				IFF_RUNNING |
8761 				IFF_LOWER_UP |
8762 				IFF_DORMANT)) |
8763 		(dev->gflags & (IFF_PROMISC |
8764 				IFF_ALLMULTI));
8765 
8766 	if (netif_running(dev)) {
8767 		if (netif_oper_up(dev))
8768 			flags |= IFF_RUNNING;
8769 		if (netif_carrier_ok(dev))
8770 			flags |= IFF_LOWER_UP;
8771 		if (netif_dormant(dev))
8772 			flags |= IFF_DORMANT;
8773 	}
8774 
8775 	return flags;
8776 }
8777 EXPORT_SYMBOL(dev_get_flags);
8778 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8779 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8780 		       struct netlink_ext_ack *extack)
8781 {
8782 	unsigned int old_flags = dev->flags;
8783 	int ret;
8784 
8785 	ASSERT_RTNL();
8786 
8787 	/*
8788 	 *	Set the flags on our device.
8789 	 */
8790 
8791 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8792 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8793 			       IFF_AUTOMEDIA)) |
8794 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8795 				    IFF_ALLMULTI));
8796 
8797 	/*
8798 	 *	Load in the correct multicast list now the flags have changed.
8799 	 */
8800 
8801 	if ((old_flags ^ flags) & IFF_MULTICAST)
8802 		dev_change_rx_flags(dev, IFF_MULTICAST);
8803 
8804 	dev_set_rx_mode(dev);
8805 
8806 	/*
8807 	 *	Have we downed the interface. We handle IFF_UP ourselves
8808 	 *	according to user attempts to set it, rather than blindly
8809 	 *	setting it.
8810 	 */
8811 
8812 	ret = 0;
8813 	if ((old_flags ^ flags) & IFF_UP) {
8814 		if (old_flags & IFF_UP)
8815 			__dev_close(dev);
8816 		else
8817 			ret = __dev_open(dev, extack);
8818 	}
8819 
8820 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8821 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8822 		unsigned int old_flags = dev->flags;
8823 
8824 		dev->gflags ^= IFF_PROMISC;
8825 
8826 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8827 			if (dev->flags != old_flags)
8828 				dev_set_rx_mode(dev);
8829 	}
8830 
8831 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8832 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8833 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8834 	 */
8835 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8836 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8837 
8838 		dev->gflags ^= IFF_ALLMULTI;
8839 		__dev_set_allmulti(dev, inc, false);
8840 	}
8841 
8842 	return ret;
8843 }
8844 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)8845 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8846 			unsigned int gchanges)
8847 {
8848 	unsigned int changes = dev->flags ^ old_flags;
8849 
8850 	if (gchanges)
8851 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8852 
8853 	if (changes & IFF_UP) {
8854 		if (dev->flags & IFF_UP)
8855 			call_netdevice_notifiers(NETDEV_UP, dev);
8856 		else
8857 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8858 	}
8859 
8860 	if (dev->flags & IFF_UP &&
8861 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8862 		struct netdev_notifier_change_info change_info = {
8863 			.info = {
8864 				.dev = dev,
8865 			},
8866 			.flags_changed = changes,
8867 		};
8868 
8869 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8870 	}
8871 }
8872 
8873 /**
8874  *	dev_change_flags - change device settings
8875  *	@dev: device
8876  *	@flags: device state flags
8877  *	@extack: netlink extended ack
8878  *
8879  *	Change settings on device based state flags. The flags are
8880  *	in the userspace exported format.
8881  */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8882 int dev_change_flags(struct net_device *dev, unsigned int flags,
8883 		     struct netlink_ext_ack *extack)
8884 {
8885 	int ret;
8886 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8887 
8888 	ret = __dev_change_flags(dev, flags, extack);
8889 	if (ret < 0)
8890 		return ret;
8891 
8892 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8893 	__dev_notify_flags(dev, old_flags, changes);
8894 	return ret;
8895 }
8896 EXPORT_SYMBOL(dev_change_flags);
8897 
__dev_set_mtu(struct net_device * dev,int new_mtu)8898 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8899 {
8900 	const struct net_device_ops *ops = dev->netdev_ops;
8901 
8902 	if (ops->ndo_change_mtu)
8903 		return ops->ndo_change_mtu(dev, new_mtu);
8904 
8905 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8906 	WRITE_ONCE(dev->mtu, new_mtu);
8907 	return 0;
8908 }
8909 EXPORT_SYMBOL(__dev_set_mtu);
8910 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8911 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8912 		     struct netlink_ext_ack *extack)
8913 {
8914 	/* MTU must be positive, and in range */
8915 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8916 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8917 		return -EINVAL;
8918 	}
8919 
8920 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8921 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8922 		return -EINVAL;
8923 	}
8924 	return 0;
8925 }
8926 
8927 /**
8928  *	dev_set_mtu_ext - Change maximum transfer unit
8929  *	@dev: device
8930  *	@new_mtu: new transfer unit
8931  *	@extack: netlink extended ack
8932  *
8933  *	Change the maximum transfer size of the network device.
8934  */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8935 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8936 		    struct netlink_ext_ack *extack)
8937 {
8938 	int err, orig_mtu;
8939 
8940 	if (new_mtu == dev->mtu)
8941 		return 0;
8942 
8943 	err = dev_validate_mtu(dev, new_mtu, extack);
8944 	if (err)
8945 		return err;
8946 
8947 	if (!netif_device_present(dev))
8948 		return -ENODEV;
8949 
8950 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8951 	err = notifier_to_errno(err);
8952 	if (err)
8953 		return err;
8954 
8955 	orig_mtu = dev->mtu;
8956 	err = __dev_set_mtu(dev, new_mtu);
8957 
8958 	if (!err) {
8959 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8960 						   orig_mtu);
8961 		err = notifier_to_errno(err);
8962 		if (err) {
8963 			/* setting mtu back and notifying everyone again,
8964 			 * so that they have a chance to revert changes.
8965 			 */
8966 			__dev_set_mtu(dev, orig_mtu);
8967 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8968 						     new_mtu);
8969 		}
8970 	}
8971 	return err;
8972 }
8973 
dev_set_mtu(struct net_device * dev,int new_mtu)8974 int dev_set_mtu(struct net_device *dev, int new_mtu)
8975 {
8976 	struct netlink_ext_ack extack;
8977 	int err;
8978 
8979 	memset(&extack, 0, sizeof(extack));
8980 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8981 	if (err && extack._msg)
8982 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8983 	return err;
8984 }
8985 EXPORT_SYMBOL(dev_set_mtu);
8986 
8987 /**
8988  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8989  *	@dev: device
8990  *	@new_len: new tx queue length
8991  */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8992 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8993 {
8994 	unsigned int orig_len = dev->tx_queue_len;
8995 	int res;
8996 
8997 	if (new_len != (unsigned int)new_len)
8998 		return -ERANGE;
8999 
9000 	if (new_len != orig_len) {
9001 		dev->tx_queue_len = new_len;
9002 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9003 		res = notifier_to_errno(res);
9004 		if (res)
9005 			goto err_rollback;
9006 		res = dev_qdisc_change_tx_queue_len(dev);
9007 		if (res)
9008 			goto err_rollback;
9009 	}
9010 
9011 	return 0;
9012 
9013 err_rollback:
9014 	netdev_err(dev, "refused to change device tx_queue_len\n");
9015 	dev->tx_queue_len = orig_len;
9016 	return res;
9017 }
9018 
9019 /**
9020  *	dev_set_group - Change group this device belongs to
9021  *	@dev: device
9022  *	@new_group: group this device should belong to
9023  */
dev_set_group(struct net_device * dev,int new_group)9024 void dev_set_group(struct net_device *dev, int new_group)
9025 {
9026 	dev->group = new_group;
9027 }
9028 EXPORT_SYMBOL(dev_set_group);
9029 
9030 /**
9031  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9032  *	@dev: device
9033  *	@addr: new address
9034  *	@extack: netlink extended ack
9035  */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9036 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9037 			      struct netlink_ext_ack *extack)
9038 {
9039 	struct netdev_notifier_pre_changeaddr_info info = {
9040 		.info.dev = dev,
9041 		.info.extack = extack,
9042 		.dev_addr = addr,
9043 	};
9044 	int rc;
9045 
9046 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9047 	return notifier_to_errno(rc);
9048 }
9049 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9050 
9051 /**
9052  *	dev_set_mac_address - Change Media Access Control Address
9053  *	@dev: device
9054  *	@sa: new address
9055  *	@extack: netlink extended ack
9056  *
9057  *	Change the hardware (MAC) address of the device
9058  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9059 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9060 			struct netlink_ext_ack *extack)
9061 {
9062 	const struct net_device_ops *ops = dev->netdev_ops;
9063 	int err;
9064 
9065 	if (!ops->ndo_set_mac_address)
9066 		return -EOPNOTSUPP;
9067 	if (sa->sa_family != dev->type)
9068 		return -EINVAL;
9069 	if (!netif_device_present(dev))
9070 		return -ENODEV;
9071 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9072 	if (err)
9073 		return err;
9074 	err = ops->ndo_set_mac_address(dev, sa);
9075 	if (err)
9076 		return err;
9077 	dev->addr_assign_type = NET_ADDR_SET;
9078 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9079 	add_device_randomness(dev->dev_addr, dev->addr_len);
9080 	return 0;
9081 }
9082 EXPORT_SYMBOL(dev_set_mac_address);
9083 
9084 static DECLARE_RWSEM(dev_addr_sem);
9085 
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9086 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9087 			     struct netlink_ext_ack *extack)
9088 {
9089 	int ret;
9090 
9091 	down_write(&dev_addr_sem);
9092 	ret = dev_set_mac_address(dev, sa, extack);
9093 	up_write(&dev_addr_sem);
9094 	return ret;
9095 }
9096 EXPORT_SYMBOL(dev_set_mac_address_user);
9097 
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9098 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9099 {
9100 	size_t size = sizeof(sa->sa_data);
9101 	struct net_device *dev;
9102 	int ret = 0;
9103 
9104 	down_read(&dev_addr_sem);
9105 	rcu_read_lock();
9106 
9107 	dev = dev_get_by_name_rcu(net, dev_name);
9108 	if (!dev) {
9109 		ret = -ENODEV;
9110 		goto unlock;
9111 	}
9112 	if (!dev->addr_len)
9113 		memset(sa->sa_data, 0, size);
9114 	else
9115 		memcpy(sa->sa_data, dev->dev_addr,
9116 		       min_t(size_t, size, dev->addr_len));
9117 	sa->sa_family = dev->type;
9118 
9119 unlock:
9120 	rcu_read_unlock();
9121 	up_read(&dev_addr_sem);
9122 	return ret;
9123 }
9124 EXPORT_SYMBOL(dev_get_mac_address);
9125 
9126 /**
9127  *	dev_change_carrier - Change device carrier
9128  *	@dev: device
9129  *	@new_carrier: new value
9130  *
9131  *	Change device carrier
9132  */
dev_change_carrier(struct net_device * dev,bool new_carrier)9133 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9134 {
9135 	const struct net_device_ops *ops = dev->netdev_ops;
9136 
9137 	if (!ops->ndo_change_carrier)
9138 		return -EOPNOTSUPP;
9139 	if (!netif_device_present(dev))
9140 		return -ENODEV;
9141 	return ops->ndo_change_carrier(dev, new_carrier);
9142 }
9143 EXPORT_SYMBOL(dev_change_carrier);
9144 
9145 /**
9146  *	dev_get_phys_port_id - Get device physical port ID
9147  *	@dev: device
9148  *	@ppid: port ID
9149  *
9150  *	Get device physical port ID
9151  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9152 int dev_get_phys_port_id(struct net_device *dev,
9153 			 struct netdev_phys_item_id *ppid)
9154 {
9155 	const struct net_device_ops *ops = dev->netdev_ops;
9156 
9157 	if (!ops->ndo_get_phys_port_id)
9158 		return -EOPNOTSUPP;
9159 	return ops->ndo_get_phys_port_id(dev, ppid);
9160 }
9161 EXPORT_SYMBOL(dev_get_phys_port_id);
9162 
9163 /**
9164  *	dev_get_phys_port_name - Get device physical port name
9165  *	@dev: device
9166  *	@name: port name
9167  *	@len: limit of bytes to copy to name
9168  *
9169  *	Get device physical port name
9170  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9171 int dev_get_phys_port_name(struct net_device *dev,
9172 			   char *name, size_t len)
9173 {
9174 	const struct net_device_ops *ops = dev->netdev_ops;
9175 	int err;
9176 
9177 	if (ops->ndo_get_phys_port_name) {
9178 		err = ops->ndo_get_phys_port_name(dev, name, len);
9179 		if (err != -EOPNOTSUPP)
9180 			return err;
9181 	}
9182 	return devlink_compat_phys_port_name_get(dev, name, len);
9183 }
9184 EXPORT_SYMBOL(dev_get_phys_port_name);
9185 
9186 /**
9187  *	dev_get_port_parent_id - Get the device's port parent identifier
9188  *	@dev: network device
9189  *	@ppid: pointer to a storage for the port's parent identifier
9190  *	@recurse: allow/disallow recursion to lower devices
9191  *
9192  *	Get the devices's port parent identifier
9193  */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9194 int dev_get_port_parent_id(struct net_device *dev,
9195 			   struct netdev_phys_item_id *ppid,
9196 			   bool recurse)
9197 {
9198 	const struct net_device_ops *ops = dev->netdev_ops;
9199 	struct netdev_phys_item_id first = { };
9200 	struct net_device *lower_dev;
9201 	struct list_head *iter;
9202 	int err;
9203 
9204 	if (ops->ndo_get_port_parent_id) {
9205 		err = ops->ndo_get_port_parent_id(dev, ppid);
9206 		if (err != -EOPNOTSUPP)
9207 			return err;
9208 	}
9209 
9210 	err = devlink_compat_switch_id_get(dev, ppid);
9211 	if (!err || err != -EOPNOTSUPP)
9212 		return err;
9213 
9214 	if (!recurse)
9215 		return -EOPNOTSUPP;
9216 
9217 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9218 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9219 		if (err)
9220 			break;
9221 		if (!first.id_len)
9222 			first = *ppid;
9223 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9224 			return -EOPNOTSUPP;
9225 	}
9226 
9227 	return err;
9228 }
9229 EXPORT_SYMBOL(dev_get_port_parent_id);
9230 
9231 /**
9232  *	netdev_port_same_parent_id - Indicate if two network devices have
9233  *	the same port parent identifier
9234  *	@a: first network device
9235  *	@b: second network device
9236  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9237 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9238 {
9239 	struct netdev_phys_item_id a_id = { };
9240 	struct netdev_phys_item_id b_id = { };
9241 
9242 	if (dev_get_port_parent_id(a, &a_id, true) ||
9243 	    dev_get_port_parent_id(b, &b_id, true))
9244 		return false;
9245 
9246 	return netdev_phys_item_id_same(&a_id, &b_id);
9247 }
9248 EXPORT_SYMBOL(netdev_port_same_parent_id);
9249 
9250 /**
9251  *	dev_change_proto_down - update protocol port state information
9252  *	@dev: device
9253  *	@proto_down: new value
9254  *
9255  *	This info can be used by switch drivers to set the phys state of the
9256  *	port.
9257  */
dev_change_proto_down(struct net_device * dev,bool proto_down)9258 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9259 {
9260 	const struct net_device_ops *ops = dev->netdev_ops;
9261 
9262 	if (!ops->ndo_change_proto_down)
9263 		return -EOPNOTSUPP;
9264 	if (!netif_device_present(dev))
9265 		return -ENODEV;
9266 	return ops->ndo_change_proto_down(dev, proto_down);
9267 }
9268 EXPORT_SYMBOL(dev_change_proto_down);
9269 
9270 /**
9271  *	dev_change_proto_down_generic - generic implementation for
9272  * 	ndo_change_proto_down that sets carrier according to
9273  * 	proto_down.
9274  *
9275  *	@dev: device
9276  *	@proto_down: new value
9277  */
dev_change_proto_down_generic(struct net_device * dev,bool proto_down)9278 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9279 {
9280 	if (proto_down)
9281 		netif_carrier_off(dev);
9282 	else
9283 		netif_carrier_on(dev);
9284 	dev->proto_down = proto_down;
9285 	return 0;
9286 }
9287 EXPORT_SYMBOL(dev_change_proto_down_generic);
9288 
9289 /**
9290  *	dev_change_proto_down_reason - proto down reason
9291  *
9292  *	@dev: device
9293  *	@mask: proto down mask
9294  *	@value: proto down value
9295  */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)9296 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9297 				  u32 value)
9298 {
9299 	int b;
9300 
9301 	if (!mask) {
9302 		dev->proto_down_reason = value;
9303 	} else {
9304 		for_each_set_bit(b, &mask, 32) {
9305 			if (value & (1 << b))
9306 				dev->proto_down_reason |= BIT(b);
9307 			else
9308 				dev->proto_down_reason &= ~BIT(b);
9309 		}
9310 	}
9311 }
9312 EXPORT_SYMBOL(dev_change_proto_down_reason);
9313 
9314 struct bpf_xdp_link {
9315 	struct bpf_link link;
9316 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9317 	int flags;
9318 };
9319 
dev_xdp_mode(struct net_device * dev,u32 flags)9320 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9321 {
9322 	if (flags & XDP_FLAGS_HW_MODE)
9323 		return XDP_MODE_HW;
9324 	if (flags & XDP_FLAGS_DRV_MODE)
9325 		return XDP_MODE_DRV;
9326 	if (flags & XDP_FLAGS_SKB_MODE)
9327 		return XDP_MODE_SKB;
9328 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9329 }
9330 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9331 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9332 {
9333 	switch (mode) {
9334 	case XDP_MODE_SKB:
9335 		return generic_xdp_install;
9336 	case XDP_MODE_DRV:
9337 	case XDP_MODE_HW:
9338 		return dev->netdev_ops->ndo_bpf;
9339 	default:
9340 		return NULL;
9341 	}
9342 }
9343 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9344 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9345 					 enum bpf_xdp_mode mode)
9346 {
9347 	return dev->xdp_state[mode].link;
9348 }
9349 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9350 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9351 				     enum bpf_xdp_mode mode)
9352 {
9353 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9354 
9355 	if (link)
9356 		return link->link.prog;
9357 	return dev->xdp_state[mode].prog;
9358 }
9359 
dev_xdp_prog_count(struct net_device * dev)9360 u8 dev_xdp_prog_count(struct net_device *dev)
9361 {
9362 	u8 count = 0;
9363 	int i;
9364 
9365 	for (i = 0; i < __MAX_XDP_MODE; i++)
9366 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9367 			count++;
9368 	return count;
9369 }
9370 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9371 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9372 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9373 {
9374 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9375 
9376 	return prog ? prog->aux->id : 0;
9377 }
9378 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9379 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9380 			     struct bpf_xdp_link *link)
9381 {
9382 	dev->xdp_state[mode].link = link;
9383 	dev->xdp_state[mode].prog = NULL;
9384 }
9385 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9386 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9387 			     struct bpf_prog *prog)
9388 {
9389 	dev->xdp_state[mode].link = NULL;
9390 	dev->xdp_state[mode].prog = prog;
9391 }
9392 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9393 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9394 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9395 			   u32 flags, struct bpf_prog *prog)
9396 {
9397 	struct netdev_bpf xdp;
9398 	int err;
9399 
9400 	memset(&xdp, 0, sizeof(xdp));
9401 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9402 	xdp.extack = extack;
9403 	xdp.flags = flags;
9404 	xdp.prog = prog;
9405 
9406 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9407 	 * "moved" into driver), so they don't increment it on their own, but
9408 	 * they do decrement refcnt when program is detached or replaced.
9409 	 * Given net_device also owns link/prog, we need to bump refcnt here
9410 	 * to prevent drivers from underflowing it.
9411 	 */
9412 	if (prog)
9413 		bpf_prog_inc(prog);
9414 	err = bpf_op(dev, &xdp);
9415 	if (err) {
9416 		if (prog)
9417 			bpf_prog_put(prog);
9418 		return err;
9419 	}
9420 
9421 	if (mode != XDP_MODE_HW)
9422 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9423 
9424 	return 0;
9425 }
9426 
dev_xdp_uninstall(struct net_device * dev)9427 static void dev_xdp_uninstall(struct net_device *dev)
9428 {
9429 	struct bpf_xdp_link *link;
9430 	struct bpf_prog *prog;
9431 	enum bpf_xdp_mode mode;
9432 	bpf_op_t bpf_op;
9433 
9434 	ASSERT_RTNL();
9435 
9436 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9437 		prog = dev_xdp_prog(dev, mode);
9438 		if (!prog)
9439 			continue;
9440 
9441 		bpf_op = dev_xdp_bpf_op(dev, mode);
9442 		if (!bpf_op)
9443 			continue;
9444 
9445 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9446 
9447 		/* auto-detach link from net device */
9448 		link = dev_xdp_link(dev, mode);
9449 		if (link)
9450 			link->dev = NULL;
9451 		else
9452 			bpf_prog_put(prog);
9453 
9454 		dev_xdp_set_link(dev, mode, NULL);
9455 	}
9456 }
9457 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9458 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9459 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9460 			  struct bpf_prog *old_prog, u32 flags)
9461 {
9462 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9463 	struct bpf_prog *cur_prog;
9464 	struct net_device *upper;
9465 	struct list_head *iter;
9466 	enum bpf_xdp_mode mode;
9467 	bpf_op_t bpf_op;
9468 	int err;
9469 
9470 	ASSERT_RTNL();
9471 
9472 	/* either link or prog attachment, never both */
9473 	if (link && (new_prog || old_prog))
9474 		return -EINVAL;
9475 	/* link supports only XDP mode flags */
9476 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9477 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9478 		return -EINVAL;
9479 	}
9480 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9481 	if (num_modes > 1) {
9482 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9483 		return -EINVAL;
9484 	}
9485 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9486 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9487 		NL_SET_ERR_MSG(extack,
9488 			       "More than one program loaded, unset mode is ambiguous");
9489 		return -EINVAL;
9490 	}
9491 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9492 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9493 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9494 		return -EINVAL;
9495 	}
9496 
9497 	mode = dev_xdp_mode(dev, flags);
9498 	/* can't replace attached link */
9499 	if (dev_xdp_link(dev, mode)) {
9500 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9501 		return -EBUSY;
9502 	}
9503 
9504 	/* don't allow if an upper device already has a program */
9505 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9506 		if (dev_xdp_prog_count(upper) > 0) {
9507 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9508 			return -EEXIST;
9509 		}
9510 	}
9511 
9512 	cur_prog = dev_xdp_prog(dev, mode);
9513 	/* can't replace attached prog with link */
9514 	if (link && cur_prog) {
9515 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9516 		return -EBUSY;
9517 	}
9518 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9519 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9520 		return -EEXIST;
9521 	}
9522 
9523 	/* put effective new program into new_prog */
9524 	if (link)
9525 		new_prog = link->link.prog;
9526 
9527 	if (new_prog) {
9528 		bool offload = mode == XDP_MODE_HW;
9529 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9530 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9531 
9532 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9533 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9534 			return -EBUSY;
9535 		}
9536 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9537 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9538 			return -EEXIST;
9539 		}
9540 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9541 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9542 			return -EINVAL;
9543 		}
9544 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9545 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9546 			return -EINVAL;
9547 		}
9548 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9549 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9550 			return -EINVAL;
9551 		}
9552 	}
9553 
9554 	/* don't call drivers if the effective program didn't change */
9555 	if (new_prog != cur_prog) {
9556 		bpf_op = dev_xdp_bpf_op(dev, mode);
9557 		if (!bpf_op) {
9558 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9559 			return -EOPNOTSUPP;
9560 		}
9561 
9562 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9563 		if (err)
9564 			return err;
9565 	}
9566 
9567 	if (link)
9568 		dev_xdp_set_link(dev, mode, link);
9569 	else
9570 		dev_xdp_set_prog(dev, mode, new_prog);
9571 	if (cur_prog)
9572 		bpf_prog_put(cur_prog);
9573 
9574 	return 0;
9575 }
9576 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9577 static int dev_xdp_attach_link(struct net_device *dev,
9578 			       struct netlink_ext_ack *extack,
9579 			       struct bpf_xdp_link *link)
9580 {
9581 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9582 }
9583 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9584 static int dev_xdp_detach_link(struct net_device *dev,
9585 			       struct netlink_ext_ack *extack,
9586 			       struct bpf_xdp_link *link)
9587 {
9588 	enum bpf_xdp_mode mode;
9589 	bpf_op_t bpf_op;
9590 
9591 	ASSERT_RTNL();
9592 
9593 	mode = dev_xdp_mode(dev, link->flags);
9594 	if (dev_xdp_link(dev, mode) != link)
9595 		return -EINVAL;
9596 
9597 	bpf_op = dev_xdp_bpf_op(dev, mode);
9598 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9599 	dev_xdp_set_link(dev, mode, NULL);
9600 	return 0;
9601 }
9602 
bpf_xdp_link_release(struct bpf_link * link)9603 static void bpf_xdp_link_release(struct bpf_link *link)
9604 {
9605 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9606 
9607 	rtnl_lock();
9608 
9609 	/* if racing with net_device's tear down, xdp_link->dev might be
9610 	 * already NULL, in which case link was already auto-detached
9611 	 */
9612 	if (xdp_link->dev) {
9613 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9614 		xdp_link->dev = NULL;
9615 	}
9616 
9617 	rtnl_unlock();
9618 }
9619 
bpf_xdp_link_detach(struct bpf_link * link)9620 static int bpf_xdp_link_detach(struct bpf_link *link)
9621 {
9622 	bpf_xdp_link_release(link);
9623 	return 0;
9624 }
9625 
bpf_xdp_link_dealloc(struct bpf_link * link)9626 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9627 {
9628 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9629 
9630 	kfree(xdp_link);
9631 }
9632 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9633 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9634 				     struct seq_file *seq)
9635 {
9636 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9637 	u32 ifindex = 0;
9638 
9639 	rtnl_lock();
9640 	if (xdp_link->dev)
9641 		ifindex = xdp_link->dev->ifindex;
9642 	rtnl_unlock();
9643 
9644 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9645 }
9646 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9647 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9648 				       struct bpf_link_info *info)
9649 {
9650 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9651 	u32 ifindex = 0;
9652 
9653 	rtnl_lock();
9654 	if (xdp_link->dev)
9655 		ifindex = xdp_link->dev->ifindex;
9656 	rtnl_unlock();
9657 
9658 	info->xdp.ifindex = ifindex;
9659 	return 0;
9660 }
9661 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9662 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9663 			       struct bpf_prog *old_prog)
9664 {
9665 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9666 	enum bpf_xdp_mode mode;
9667 	bpf_op_t bpf_op;
9668 	int err = 0;
9669 
9670 	rtnl_lock();
9671 
9672 	/* link might have been auto-released already, so fail */
9673 	if (!xdp_link->dev) {
9674 		err = -ENOLINK;
9675 		goto out_unlock;
9676 	}
9677 
9678 	if (old_prog && link->prog != old_prog) {
9679 		err = -EPERM;
9680 		goto out_unlock;
9681 	}
9682 	old_prog = link->prog;
9683 	if (old_prog->type != new_prog->type ||
9684 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9685 		err = -EINVAL;
9686 		goto out_unlock;
9687 	}
9688 
9689 	if (old_prog == new_prog) {
9690 		/* no-op, don't disturb drivers */
9691 		bpf_prog_put(new_prog);
9692 		goto out_unlock;
9693 	}
9694 
9695 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9696 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9697 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9698 			      xdp_link->flags, new_prog);
9699 	if (err)
9700 		goto out_unlock;
9701 
9702 	old_prog = xchg(&link->prog, new_prog);
9703 	bpf_prog_put(old_prog);
9704 
9705 out_unlock:
9706 	rtnl_unlock();
9707 	return err;
9708 }
9709 
9710 static const struct bpf_link_ops bpf_xdp_link_lops = {
9711 	.release = bpf_xdp_link_release,
9712 	.dealloc = bpf_xdp_link_dealloc,
9713 	.detach = bpf_xdp_link_detach,
9714 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9715 	.fill_link_info = bpf_xdp_link_fill_link_info,
9716 	.update_prog = bpf_xdp_link_update,
9717 };
9718 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9719 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9720 {
9721 	struct net *net = current->nsproxy->net_ns;
9722 	struct bpf_link_primer link_primer;
9723 	struct bpf_xdp_link *link;
9724 	struct net_device *dev;
9725 	int err, fd;
9726 
9727 	rtnl_lock();
9728 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9729 	if (!dev) {
9730 		rtnl_unlock();
9731 		return -EINVAL;
9732 	}
9733 
9734 	link = kzalloc(sizeof(*link), GFP_USER);
9735 	if (!link) {
9736 		err = -ENOMEM;
9737 		goto unlock;
9738 	}
9739 
9740 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9741 	link->dev = dev;
9742 	link->flags = attr->link_create.flags;
9743 
9744 	err = bpf_link_prime(&link->link, &link_primer);
9745 	if (err) {
9746 		kfree(link);
9747 		goto unlock;
9748 	}
9749 
9750 	err = dev_xdp_attach_link(dev, NULL, link);
9751 	rtnl_unlock();
9752 
9753 	if (err) {
9754 		link->dev = NULL;
9755 		bpf_link_cleanup(&link_primer);
9756 		goto out_put_dev;
9757 	}
9758 
9759 	fd = bpf_link_settle(&link_primer);
9760 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9761 	dev_put(dev);
9762 	return fd;
9763 
9764 unlock:
9765 	rtnl_unlock();
9766 
9767 out_put_dev:
9768 	dev_put(dev);
9769 	return err;
9770 }
9771 
9772 /**
9773  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9774  *	@dev: device
9775  *	@extack: netlink extended ack
9776  *	@fd: new program fd or negative value to clear
9777  *	@expected_fd: old program fd that userspace expects to replace or clear
9778  *	@flags: xdp-related flags
9779  *
9780  *	Set or clear a bpf program for a device
9781  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9782 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9783 		      int fd, int expected_fd, u32 flags)
9784 {
9785 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9786 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9787 	int err;
9788 
9789 	ASSERT_RTNL();
9790 
9791 	if (fd >= 0) {
9792 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9793 						 mode != XDP_MODE_SKB);
9794 		if (IS_ERR(new_prog))
9795 			return PTR_ERR(new_prog);
9796 	}
9797 
9798 	if (expected_fd >= 0) {
9799 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9800 						 mode != XDP_MODE_SKB);
9801 		if (IS_ERR(old_prog)) {
9802 			err = PTR_ERR(old_prog);
9803 			old_prog = NULL;
9804 			goto err_out;
9805 		}
9806 	}
9807 
9808 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9809 
9810 err_out:
9811 	if (err && new_prog)
9812 		bpf_prog_put(new_prog);
9813 	if (old_prog)
9814 		bpf_prog_put(old_prog);
9815 	return err;
9816 }
9817 
9818 /**
9819  *	dev_new_index	-	allocate an ifindex
9820  *	@net: the applicable net namespace
9821  *
9822  *	Returns a suitable unique value for a new device interface
9823  *	number.  The caller must hold the rtnl semaphore or the
9824  *	dev_base_lock to be sure it remains unique.
9825  */
dev_new_index(struct net * net)9826 static int dev_new_index(struct net *net)
9827 {
9828 	int ifindex = net->ifindex;
9829 
9830 	for (;;) {
9831 		if (++ifindex <= 0)
9832 			ifindex = 1;
9833 		if (!__dev_get_by_index(net, ifindex))
9834 			return net->ifindex = ifindex;
9835 	}
9836 }
9837 
9838 /* Delayed registration/unregisteration */
9839 static LIST_HEAD(net_todo_list);
9840 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9841 
net_set_todo(struct net_device * dev)9842 static void net_set_todo(struct net_device *dev)
9843 {
9844 	list_add_tail(&dev->todo_list, &net_todo_list);
9845 	dev_net(dev)->dev_unreg_count++;
9846 }
9847 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9848 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9849 	struct net_device *upper, netdev_features_t features)
9850 {
9851 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9852 	netdev_features_t feature;
9853 	int feature_bit;
9854 
9855 	for_each_netdev_feature(upper_disables, feature_bit) {
9856 		feature = __NETIF_F_BIT(feature_bit);
9857 		if (!(upper->wanted_features & feature)
9858 		    && (features & feature)) {
9859 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9860 				   &feature, upper->name);
9861 			features &= ~feature;
9862 		}
9863 	}
9864 
9865 	return features;
9866 }
9867 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9868 static void netdev_sync_lower_features(struct net_device *upper,
9869 	struct net_device *lower, netdev_features_t features)
9870 {
9871 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9872 	netdev_features_t feature;
9873 	int feature_bit;
9874 
9875 	for_each_netdev_feature(upper_disables, feature_bit) {
9876 		feature = __NETIF_F_BIT(feature_bit);
9877 		if (!(features & feature) && (lower->features & feature)) {
9878 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9879 				   &feature, lower->name);
9880 			lower->wanted_features &= ~feature;
9881 			__netdev_update_features(lower);
9882 
9883 			if (unlikely(lower->features & feature))
9884 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9885 					    &feature, lower->name);
9886 			else
9887 				netdev_features_change(lower);
9888 		}
9889 	}
9890 }
9891 
netdev_fix_features(struct net_device * dev,netdev_features_t features)9892 static netdev_features_t netdev_fix_features(struct net_device *dev,
9893 	netdev_features_t features)
9894 {
9895 	/* Fix illegal checksum combinations */
9896 	if ((features & NETIF_F_HW_CSUM) &&
9897 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9898 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9899 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9900 	}
9901 
9902 	/* TSO requires that SG is present as well. */
9903 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9904 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9905 		features &= ~NETIF_F_ALL_TSO;
9906 	}
9907 
9908 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9909 					!(features & NETIF_F_IP_CSUM)) {
9910 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9911 		features &= ~NETIF_F_TSO;
9912 		features &= ~NETIF_F_TSO_ECN;
9913 	}
9914 
9915 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9916 					 !(features & NETIF_F_IPV6_CSUM)) {
9917 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9918 		features &= ~NETIF_F_TSO6;
9919 	}
9920 
9921 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9922 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9923 		features &= ~NETIF_F_TSO_MANGLEID;
9924 
9925 	/* TSO ECN requires that TSO is present as well. */
9926 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9927 		features &= ~NETIF_F_TSO_ECN;
9928 
9929 	/* Software GSO depends on SG. */
9930 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9931 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9932 		features &= ~NETIF_F_GSO;
9933 	}
9934 
9935 	/* GSO partial features require GSO partial be set */
9936 	if ((features & dev->gso_partial_features) &&
9937 	    !(features & NETIF_F_GSO_PARTIAL)) {
9938 		netdev_dbg(dev,
9939 			   "Dropping partially supported GSO features since no GSO partial.\n");
9940 		features &= ~dev->gso_partial_features;
9941 	}
9942 
9943 	if (!(features & NETIF_F_RXCSUM)) {
9944 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9945 		 * successfully merged by hardware must also have the
9946 		 * checksum verified by hardware.  If the user does not
9947 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9948 		 */
9949 		if (features & NETIF_F_GRO_HW) {
9950 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9951 			features &= ~NETIF_F_GRO_HW;
9952 		}
9953 	}
9954 
9955 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9956 	if (features & NETIF_F_RXFCS) {
9957 		if (features & NETIF_F_LRO) {
9958 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9959 			features &= ~NETIF_F_LRO;
9960 		}
9961 
9962 		if (features & NETIF_F_GRO_HW) {
9963 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9964 			features &= ~NETIF_F_GRO_HW;
9965 		}
9966 	}
9967 
9968 	if (features & NETIF_F_HW_TLS_TX) {
9969 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9970 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9971 		bool hw_csum = features & NETIF_F_HW_CSUM;
9972 
9973 		if (!ip_csum && !hw_csum) {
9974 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9975 			features &= ~NETIF_F_HW_TLS_TX;
9976 		}
9977 	}
9978 
9979 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9980 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9981 		features &= ~NETIF_F_HW_TLS_RX;
9982 	}
9983 
9984 	return features;
9985 }
9986 
__netdev_update_features(struct net_device * dev)9987 int __netdev_update_features(struct net_device *dev)
9988 {
9989 	struct net_device *upper, *lower;
9990 	netdev_features_t features;
9991 	struct list_head *iter;
9992 	int err = -1;
9993 
9994 	ASSERT_RTNL();
9995 
9996 	features = netdev_get_wanted_features(dev);
9997 
9998 	if (dev->netdev_ops->ndo_fix_features)
9999 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10000 
10001 	/* driver might be less strict about feature dependencies */
10002 	features = netdev_fix_features(dev, features);
10003 
10004 	/* some features can't be enabled if they're off on an upper device */
10005 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10006 		features = netdev_sync_upper_features(dev, upper, features);
10007 
10008 	if (dev->features == features)
10009 		goto sync_lower;
10010 
10011 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10012 		&dev->features, &features);
10013 
10014 	if (dev->netdev_ops->ndo_set_features)
10015 		err = dev->netdev_ops->ndo_set_features(dev, features);
10016 	else
10017 		err = 0;
10018 
10019 	if (unlikely(err < 0)) {
10020 		netdev_err(dev,
10021 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10022 			err, &features, &dev->features);
10023 		/* return non-0 since some features might have changed and
10024 		 * it's better to fire a spurious notification than miss it
10025 		 */
10026 		return -1;
10027 	}
10028 
10029 sync_lower:
10030 	/* some features must be disabled on lower devices when disabled
10031 	 * on an upper device (think: bonding master or bridge)
10032 	 */
10033 	netdev_for_each_lower_dev(dev, lower, iter)
10034 		netdev_sync_lower_features(dev, lower, features);
10035 
10036 	if (!err) {
10037 		netdev_features_t diff = features ^ dev->features;
10038 
10039 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10040 			/* udp_tunnel_{get,drop}_rx_info both need
10041 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10042 			 * device, or they won't do anything.
10043 			 * Thus we need to update dev->features
10044 			 * *before* calling udp_tunnel_get_rx_info,
10045 			 * but *after* calling udp_tunnel_drop_rx_info.
10046 			 */
10047 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10048 				dev->features = features;
10049 				udp_tunnel_get_rx_info(dev);
10050 			} else {
10051 				udp_tunnel_drop_rx_info(dev);
10052 			}
10053 		}
10054 
10055 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10056 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10057 				dev->features = features;
10058 				err |= vlan_get_rx_ctag_filter_info(dev);
10059 			} else {
10060 				vlan_drop_rx_ctag_filter_info(dev);
10061 			}
10062 		}
10063 
10064 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10065 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10066 				dev->features = features;
10067 				err |= vlan_get_rx_stag_filter_info(dev);
10068 			} else {
10069 				vlan_drop_rx_stag_filter_info(dev);
10070 			}
10071 		}
10072 
10073 		dev->features = features;
10074 	}
10075 
10076 	return err < 0 ? 0 : 1;
10077 }
10078 
10079 /**
10080  *	netdev_update_features - recalculate device features
10081  *	@dev: the device to check
10082  *
10083  *	Recalculate dev->features set and send notifications if it
10084  *	has changed. Should be called after driver or hardware dependent
10085  *	conditions might have changed that influence the features.
10086  */
netdev_update_features(struct net_device * dev)10087 void netdev_update_features(struct net_device *dev)
10088 {
10089 	if (__netdev_update_features(dev))
10090 		netdev_features_change(dev);
10091 }
10092 EXPORT_SYMBOL(netdev_update_features);
10093 
10094 /**
10095  *	netdev_change_features - recalculate device features
10096  *	@dev: the device to check
10097  *
10098  *	Recalculate dev->features set and send notifications even
10099  *	if they have not changed. Should be called instead of
10100  *	netdev_update_features() if also dev->vlan_features might
10101  *	have changed to allow the changes to be propagated to stacked
10102  *	VLAN devices.
10103  */
netdev_change_features(struct net_device * dev)10104 void netdev_change_features(struct net_device *dev)
10105 {
10106 	__netdev_update_features(dev);
10107 	netdev_features_change(dev);
10108 }
10109 EXPORT_SYMBOL(netdev_change_features);
10110 
10111 /**
10112  *	netif_stacked_transfer_operstate -	transfer operstate
10113  *	@rootdev: the root or lower level device to transfer state from
10114  *	@dev: the device to transfer operstate to
10115  *
10116  *	Transfer operational state from root to device. This is normally
10117  *	called when a stacking relationship exists between the root
10118  *	device and the device(a leaf device).
10119  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10120 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10121 					struct net_device *dev)
10122 {
10123 	if (rootdev->operstate == IF_OPER_DORMANT)
10124 		netif_dormant_on(dev);
10125 	else
10126 		netif_dormant_off(dev);
10127 
10128 	if (rootdev->operstate == IF_OPER_TESTING)
10129 		netif_testing_on(dev);
10130 	else
10131 		netif_testing_off(dev);
10132 
10133 	if (netif_carrier_ok(rootdev))
10134 		netif_carrier_on(dev);
10135 	else
10136 		netif_carrier_off(dev);
10137 }
10138 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10139 
netif_alloc_rx_queues(struct net_device * dev)10140 static int netif_alloc_rx_queues(struct net_device *dev)
10141 {
10142 	unsigned int i, count = dev->num_rx_queues;
10143 	struct netdev_rx_queue *rx;
10144 	size_t sz = count * sizeof(*rx);
10145 	int err = 0;
10146 
10147 	BUG_ON(count < 1);
10148 
10149 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10150 	if (!rx)
10151 		return -ENOMEM;
10152 
10153 	dev->_rx = rx;
10154 
10155 	for (i = 0; i < count; i++) {
10156 		rx[i].dev = dev;
10157 
10158 		/* XDP RX-queue setup */
10159 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10160 		if (err < 0)
10161 			goto err_rxq_info;
10162 	}
10163 	return 0;
10164 
10165 err_rxq_info:
10166 	/* Rollback successful reg's and free other resources */
10167 	while (i--)
10168 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10169 	kvfree(dev->_rx);
10170 	dev->_rx = NULL;
10171 	return err;
10172 }
10173 
netif_free_rx_queues(struct net_device * dev)10174 static void netif_free_rx_queues(struct net_device *dev)
10175 {
10176 	unsigned int i, count = dev->num_rx_queues;
10177 
10178 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10179 	if (!dev->_rx)
10180 		return;
10181 
10182 	for (i = 0; i < count; i++)
10183 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10184 
10185 	kvfree(dev->_rx);
10186 }
10187 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10188 static void netdev_init_one_queue(struct net_device *dev,
10189 				  struct netdev_queue *queue, void *_unused)
10190 {
10191 	/* Initialize queue lock */
10192 	spin_lock_init(&queue->_xmit_lock);
10193 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10194 	queue->xmit_lock_owner = -1;
10195 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10196 	queue->dev = dev;
10197 #ifdef CONFIG_BQL
10198 	dql_init(&queue->dql, HZ);
10199 #endif
10200 }
10201 
netif_free_tx_queues(struct net_device * dev)10202 static void netif_free_tx_queues(struct net_device *dev)
10203 {
10204 	kvfree(dev->_tx);
10205 }
10206 
netif_alloc_netdev_queues(struct net_device * dev)10207 static int netif_alloc_netdev_queues(struct net_device *dev)
10208 {
10209 	unsigned int count = dev->num_tx_queues;
10210 	struct netdev_queue *tx;
10211 	size_t sz = count * sizeof(*tx);
10212 
10213 	if (count < 1 || count > 0xffff)
10214 		return -EINVAL;
10215 
10216 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10217 	if (!tx)
10218 		return -ENOMEM;
10219 
10220 	dev->_tx = tx;
10221 
10222 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10223 	spin_lock_init(&dev->tx_global_lock);
10224 
10225 	return 0;
10226 }
10227 
netif_tx_stop_all_queues(struct net_device * dev)10228 void netif_tx_stop_all_queues(struct net_device *dev)
10229 {
10230 	unsigned int i;
10231 
10232 	for (i = 0; i < dev->num_tx_queues; i++) {
10233 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10234 
10235 		netif_tx_stop_queue(txq);
10236 	}
10237 }
10238 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10239 
10240 /**
10241  *	register_netdevice	- register a network device
10242  *	@dev: device to register
10243  *
10244  *	Take a completed network device structure and add it to the kernel
10245  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10246  *	chain. 0 is returned on success. A negative errno code is returned
10247  *	on a failure to set up the device, or if the name is a duplicate.
10248  *
10249  *	Callers must hold the rtnl semaphore. You may want
10250  *	register_netdev() instead of this.
10251  *
10252  *	BUGS:
10253  *	The locking appears insufficient to guarantee two parallel registers
10254  *	will not get the same name.
10255  */
10256 
register_netdevice(struct net_device * dev)10257 int register_netdevice(struct net_device *dev)
10258 {
10259 	int ret;
10260 	struct net *net = dev_net(dev);
10261 
10262 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10263 		     NETDEV_FEATURE_COUNT);
10264 	BUG_ON(dev_boot_phase);
10265 	ASSERT_RTNL();
10266 
10267 	might_sleep();
10268 
10269 	/* When net_device's are persistent, this will be fatal. */
10270 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10271 	BUG_ON(!net);
10272 
10273 	ret = ethtool_check_ops(dev->ethtool_ops);
10274 	if (ret)
10275 		return ret;
10276 
10277 	spin_lock_init(&dev->addr_list_lock);
10278 	netdev_set_addr_lockdep_class(dev);
10279 
10280 	ret = dev_get_valid_name(net, dev, dev->name);
10281 	if (ret < 0)
10282 		goto out;
10283 
10284 	ret = -ENOMEM;
10285 	dev->name_node = netdev_name_node_head_alloc(dev);
10286 	if (!dev->name_node)
10287 		goto out;
10288 
10289 	/* Init, if this function is available */
10290 	if (dev->netdev_ops->ndo_init) {
10291 		ret = dev->netdev_ops->ndo_init(dev);
10292 		if (ret) {
10293 			if (ret > 0)
10294 				ret = -EIO;
10295 			goto err_free_name;
10296 		}
10297 	}
10298 
10299 	if (((dev->hw_features | dev->features) &
10300 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10301 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10302 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10303 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10304 		ret = -EINVAL;
10305 		goto err_uninit;
10306 	}
10307 
10308 	ret = -EBUSY;
10309 	if (!dev->ifindex)
10310 		dev->ifindex = dev_new_index(net);
10311 	else if (__dev_get_by_index(net, dev->ifindex))
10312 		goto err_uninit;
10313 
10314 	/* Transfer changeable features to wanted_features and enable
10315 	 * software offloads (GSO and GRO).
10316 	 */
10317 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10318 	dev->features |= NETIF_F_SOFT_FEATURES;
10319 
10320 	if (dev->udp_tunnel_nic_info) {
10321 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10322 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10323 	}
10324 
10325 	dev->wanted_features = dev->features & dev->hw_features;
10326 
10327 	if (!(dev->flags & IFF_LOOPBACK))
10328 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10329 
10330 	/* If IPv4 TCP segmentation offload is supported we should also
10331 	 * allow the device to enable segmenting the frame with the option
10332 	 * of ignoring a static IP ID value.  This doesn't enable the
10333 	 * feature itself but allows the user to enable it later.
10334 	 */
10335 	if (dev->hw_features & NETIF_F_TSO)
10336 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10337 	if (dev->vlan_features & NETIF_F_TSO)
10338 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10339 	if (dev->mpls_features & NETIF_F_TSO)
10340 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10341 	if (dev->hw_enc_features & NETIF_F_TSO)
10342 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10343 
10344 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10345 	 */
10346 	dev->vlan_features |= NETIF_F_HIGHDMA;
10347 
10348 	/* Make NETIF_F_SG inheritable to tunnel devices.
10349 	 */
10350 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10351 
10352 	/* Make NETIF_F_SG inheritable to MPLS.
10353 	 */
10354 	dev->mpls_features |= NETIF_F_SG;
10355 
10356 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10357 	ret = notifier_to_errno(ret);
10358 	if (ret)
10359 		goto err_uninit;
10360 
10361 	ret = netdev_register_kobject(dev);
10362 	write_lock(&dev_base_lock);
10363 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10364 	write_unlock(&dev_base_lock);
10365 	if (ret)
10366 		goto err_uninit;
10367 
10368 	__netdev_update_features(dev);
10369 
10370 	/*
10371 	 *	Default initial state at registry is that the
10372 	 *	device is present.
10373 	 */
10374 
10375 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10376 
10377 	linkwatch_init_dev(dev);
10378 
10379 	dev_init_scheduler(dev);
10380 	dev_hold(dev);
10381 	list_netdevice(dev);
10382 	add_device_randomness(dev->dev_addr, dev->addr_len);
10383 
10384 	/* If the device has permanent device address, driver should
10385 	 * set dev_addr and also addr_assign_type should be set to
10386 	 * NET_ADDR_PERM (default value).
10387 	 */
10388 	if (dev->addr_assign_type == NET_ADDR_PERM)
10389 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10390 
10391 	/* Notify protocols, that a new device appeared. */
10392 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10393 	ret = notifier_to_errno(ret);
10394 	if (ret) {
10395 		/* Expect explicit free_netdev() on failure */
10396 		dev->needs_free_netdev = false;
10397 		unregister_netdevice_queue(dev, NULL);
10398 		goto out;
10399 	}
10400 	/*
10401 	 *	Prevent userspace races by waiting until the network
10402 	 *	device is fully setup before sending notifications.
10403 	 */
10404 	if (!dev->rtnl_link_ops ||
10405 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10406 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10407 
10408 out:
10409 	return ret;
10410 
10411 err_uninit:
10412 	if (dev->netdev_ops->ndo_uninit)
10413 		dev->netdev_ops->ndo_uninit(dev);
10414 	if (dev->priv_destructor)
10415 		dev->priv_destructor(dev);
10416 err_free_name:
10417 	netdev_name_node_free(dev->name_node);
10418 	goto out;
10419 }
10420 EXPORT_SYMBOL(register_netdevice);
10421 
10422 /**
10423  *	init_dummy_netdev	- init a dummy network device for NAPI
10424  *	@dev: device to init
10425  *
10426  *	This takes a network device structure and initialize the minimum
10427  *	amount of fields so it can be used to schedule NAPI polls without
10428  *	registering a full blown interface. This is to be used by drivers
10429  *	that need to tie several hardware interfaces to a single NAPI
10430  *	poll scheduler due to HW limitations.
10431  */
init_dummy_netdev(struct net_device * dev)10432 int init_dummy_netdev(struct net_device *dev)
10433 {
10434 	/* Clear everything. Note we don't initialize spinlocks
10435 	 * are they aren't supposed to be taken by any of the
10436 	 * NAPI code and this dummy netdev is supposed to be
10437 	 * only ever used for NAPI polls
10438 	 */
10439 	memset(dev, 0, sizeof(struct net_device));
10440 
10441 	/* make sure we BUG if trying to hit standard
10442 	 * register/unregister code path
10443 	 */
10444 	dev->reg_state = NETREG_DUMMY;
10445 
10446 	/* NAPI wants this */
10447 	INIT_LIST_HEAD(&dev->napi_list);
10448 
10449 	/* a dummy interface is started by default */
10450 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10451 	set_bit(__LINK_STATE_START, &dev->state);
10452 
10453 	/* napi_busy_loop stats accounting wants this */
10454 	dev_net_set(dev, &init_net);
10455 
10456 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10457 	 * because users of this 'device' dont need to change
10458 	 * its refcount.
10459 	 */
10460 
10461 	return 0;
10462 }
10463 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10464 
10465 
10466 /**
10467  *	register_netdev	- register a network device
10468  *	@dev: device to register
10469  *
10470  *	Take a completed network device structure and add it to the kernel
10471  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10472  *	chain. 0 is returned on success. A negative errno code is returned
10473  *	on a failure to set up the device, or if the name is a duplicate.
10474  *
10475  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10476  *	and expands the device name if you passed a format string to
10477  *	alloc_netdev.
10478  */
register_netdev(struct net_device * dev)10479 int register_netdev(struct net_device *dev)
10480 {
10481 	int err;
10482 
10483 	if (rtnl_lock_killable())
10484 		return -EINTR;
10485 	err = register_netdevice(dev);
10486 	rtnl_unlock();
10487 	return err;
10488 }
10489 EXPORT_SYMBOL(register_netdev);
10490 
netdev_refcnt_read(const struct net_device * dev)10491 int netdev_refcnt_read(const struct net_device *dev)
10492 {
10493 #ifdef CONFIG_PCPU_DEV_REFCNT
10494 	int i, refcnt = 0;
10495 
10496 	for_each_possible_cpu(i)
10497 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10498 	return refcnt;
10499 #else
10500 	return refcount_read(&dev->dev_refcnt);
10501 #endif
10502 }
10503 EXPORT_SYMBOL(netdev_refcnt_read);
10504 
10505 int netdev_unregister_timeout_secs __read_mostly = 10;
10506 
10507 #define WAIT_REFS_MIN_MSECS 1
10508 #define WAIT_REFS_MAX_MSECS 250
10509 /**
10510  * netdev_wait_allrefs - wait until all references are gone.
10511  * @dev: target net_device
10512  *
10513  * This is called when unregistering network devices.
10514  *
10515  * Any protocol or device that holds a reference should register
10516  * for netdevice notification, and cleanup and put back the
10517  * reference if they receive an UNREGISTER event.
10518  * We can get stuck here if buggy protocols don't correctly
10519  * call dev_put.
10520  */
netdev_wait_allrefs(struct net_device * dev)10521 static void netdev_wait_allrefs(struct net_device *dev)
10522 {
10523 	unsigned long rebroadcast_time, warning_time;
10524 	int wait = 0, refcnt;
10525 
10526 	rebroadcast_time = warning_time = jiffies;
10527 	refcnt = netdev_refcnt_read(dev);
10528 
10529 	while (refcnt != 1) {
10530 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10531 			rtnl_lock();
10532 
10533 			/* Rebroadcast unregister notification */
10534 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10535 
10536 			__rtnl_unlock();
10537 			rcu_barrier();
10538 			rtnl_lock();
10539 
10540 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10541 				     &dev->state)) {
10542 				/* We must not have linkwatch events
10543 				 * pending on unregister. If this
10544 				 * happens, we simply run the queue
10545 				 * unscheduled, resulting in a noop
10546 				 * for this device.
10547 				 */
10548 				linkwatch_run_queue();
10549 			}
10550 
10551 			__rtnl_unlock();
10552 
10553 			rebroadcast_time = jiffies;
10554 		}
10555 
10556 		if (!wait) {
10557 			rcu_barrier();
10558 			wait = WAIT_REFS_MIN_MSECS;
10559 		} else {
10560 			msleep(wait);
10561 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10562 		}
10563 
10564 		refcnt = netdev_refcnt_read(dev);
10565 
10566 		if (refcnt != 1 &&
10567 		    time_after(jiffies, warning_time +
10568 			       netdev_unregister_timeout_secs * HZ)) {
10569 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10570 				 dev->name, refcnt);
10571 			warning_time = jiffies;
10572 		}
10573 	}
10574 }
10575 
10576 /* The sequence is:
10577  *
10578  *	rtnl_lock();
10579  *	...
10580  *	register_netdevice(x1);
10581  *	register_netdevice(x2);
10582  *	...
10583  *	unregister_netdevice(y1);
10584  *	unregister_netdevice(y2);
10585  *      ...
10586  *	rtnl_unlock();
10587  *	free_netdev(y1);
10588  *	free_netdev(y2);
10589  *
10590  * We are invoked by rtnl_unlock().
10591  * This allows us to deal with problems:
10592  * 1) We can delete sysfs objects which invoke hotplug
10593  *    without deadlocking with linkwatch via keventd.
10594  * 2) Since we run with the RTNL semaphore not held, we can sleep
10595  *    safely in order to wait for the netdev refcnt to drop to zero.
10596  *
10597  * We must not return until all unregister events added during
10598  * the interval the lock was held have been completed.
10599  */
netdev_run_todo(void)10600 void netdev_run_todo(void)
10601 {
10602 	struct list_head list;
10603 #ifdef CONFIG_LOCKDEP
10604 	struct list_head unlink_list;
10605 
10606 	list_replace_init(&net_unlink_list, &unlink_list);
10607 
10608 	while (!list_empty(&unlink_list)) {
10609 		struct net_device *dev = list_first_entry(&unlink_list,
10610 							  struct net_device,
10611 							  unlink_list);
10612 		list_del_init(&dev->unlink_list);
10613 		dev->nested_level = dev->lower_level - 1;
10614 	}
10615 #endif
10616 
10617 	/* Snapshot list, allow later requests */
10618 	list_replace_init(&net_todo_list, &list);
10619 
10620 	__rtnl_unlock();
10621 
10622 
10623 	/* Wait for rcu callbacks to finish before next phase */
10624 	if (!list_empty(&list))
10625 		rcu_barrier();
10626 
10627 	while (!list_empty(&list)) {
10628 		struct net_device *dev
10629 			= list_first_entry(&list, struct net_device, todo_list);
10630 		list_del(&dev->todo_list);
10631 
10632 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10633 			pr_err("network todo '%s' but state %d\n",
10634 			       dev->name, dev->reg_state);
10635 			dump_stack();
10636 			continue;
10637 		}
10638 
10639 		write_lock(&dev_base_lock);
10640 		dev->reg_state = NETREG_UNREGISTERED;
10641 		write_unlock(&dev_base_lock);
10642 		linkwatch_forget_dev(dev);
10643 
10644 		netdev_wait_allrefs(dev);
10645 
10646 		/* paranoia */
10647 		BUG_ON(netdev_refcnt_read(dev) != 1);
10648 		BUG_ON(!list_empty(&dev->ptype_all));
10649 		BUG_ON(!list_empty(&dev->ptype_specific));
10650 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10651 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10652 
10653 		if (dev->priv_destructor)
10654 			dev->priv_destructor(dev);
10655 		if (dev->needs_free_netdev)
10656 			free_netdev(dev);
10657 
10658 		/* Report a network device has been unregistered */
10659 		rtnl_lock();
10660 		dev_net(dev)->dev_unreg_count--;
10661 		__rtnl_unlock();
10662 		wake_up(&netdev_unregistering_wq);
10663 
10664 		/* Free network device */
10665 		kobject_put(&dev->dev.kobj);
10666 	}
10667 }
10668 
10669 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10670  * all the same fields in the same order as net_device_stats, with only
10671  * the type differing, but rtnl_link_stats64 may have additional fields
10672  * at the end for newer counters.
10673  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10674 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10675 			     const struct net_device_stats *netdev_stats)
10676 {
10677 #if BITS_PER_LONG == 64
10678 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10679 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10680 	/* zero out counters that only exist in rtnl_link_stats64 */
10681 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10682 	       sizeof(*stats64) - sizeof(*netdev_stats));
10683 #else
10684 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10685 	const unsigned long *src = (const unsigned long *)netdev_stats;
10686 	u64 *dst = (u64 *)stats64;
10687 
10688 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10689 	for (i = 0; i < n; i++)
10690 		dst[i] = src[i];
10691 	/* zero out counters that only exist in rtnl_link_stats64 */
10692 	memset((char *)stats64 + n * sizeof(u64), 0,
10693 	       sizeof(*stats64) - n * sizeof(u64));
10694 #endif
10695 }
10696 EXPORT_SYMBOL(netdev_stats_to_stats64);
10697 
10698 /**
10699  *	dev_get_stats	- get network device statistics
10700  *	@dev: device to get statistics from
10701  *	@storage: place to store stats
10702  *
10703  *	Get network statistics from device. Return @storage.
10704  *	The device driver may provide its own method by setting
10705  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10706  *	otherwise the internal statistics structure is used.
10707  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10708 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10709 					struct rtnl_link_stats64 *storage)
10710 {
10711 	const struct net_device_ops *ops = dev->netdev_ops;
10712 
10713 	if (ops->ndo_get_stats64) {
10714 		memset(storage, 0, sizeof(*storage));
10715 		ops->ndo_get_stats64(dev, storage);
10716 	} else if (ops->ndo_get_stats) {
10717 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10718 	} else {
10719 		netdev_stats_to_stats64(storage, &dev->stats);
10720 	}
10721 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10722 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10723 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10724 	return storage;
10725 }
10726 EXPORT_SYMBOL(dev_get_stats);
10727 
10728 /**
10729  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10730  *	@s: place to store stats
10731  *	@netstats: per-cpu network stats to read from
10732  *
10733  *	Read per-cpu network statistics and populate the related fields in @s.
10734  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10735 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10736 			   const struct pcpu_sw_netstats __percpu *netstats)
10737 {
10738 	int cpu;
10739 
10740 	for_each_possible_cpu(cpu) {
10741 		const struct pcpu_sw_netstats *stats;
10742 		struct pcpu_sw_netstats tmp;
10743 		unsigned int start;
10744 
10745 		stats = per_cpu_ptr(netstats, cpu);
10746 		do {
10747 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10748 			tmp.rx_packets = stats->rx_packets;
10749 			tmp.rx_bytes   = stats->rx_bytes;
10750 			tmp.tx_packets = stats->tx_packets;
10751 			tmp.tx_bytes   = stats->tx_bytes;
10752 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10753 
10754 		s->rx_packets += tmp.rx_packets;
10755 		s->rx_bytes   += tmp.rx_bytes;
10756 		s->tx_packets += tmp.tx_packets;
10757 		s->tx_bytes   += tmp.tx_bytes;
10758 	}
10759 }
10760 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10761 
10762 /**
10763  *	dev_get_tstats64 - ndo_get_stats64 implementation
10764  *	@dev: device to get statistics from
10765  *	@s: place to store stats
10766  *
10767  *	Populate @s from dev->stats and dev->tstats. Can be used as
10768  *	ndo_get_stats64() callback.
10769  */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)10770 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10771 {
10772 	netdev_stats_to_stats64(s, &dev->stats);
10773 	dev_fetch_sw_netstats(s, dev->tstats);
10774 }
10775 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10776 
dev_ingress_queue_create(struct net_device * dev)10777 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10778 {
10779 	struct netdev_queue *queue = dev_ingress_queue(dev);
10780 
10781 #ifdef CONFIG_NET_CLS_ACT
10782 	if (queue)
10783 		return queue;
10784 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10785 	if (!queue)
10786 		return NULL;
10787 	netdev_init_one_queue(dev, queue, NULL);
10788 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10789 	queue->qdisc_sleeping = &noop_qdisc;
10790 	rcu_assign_pointer(dev->ingress_queue, queue);
10791 #endif
10792 	return queue;
10793 }
10794 
10795 static const struct ethtool_ops default_ethtool_ops;
10796 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10797 void netdev_set_default_ethtool_ops(struct net_device *dev,
10798 				    const struct ethtool_ops *ops)
10799 {
10800 	if (dev->ethtool_ops == &default_ethtool_ops)
10801 		dev->ethtool_ops = ops;
10802 }
10803 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10804 
netdev_freemem(struct net_device * dev)10805 void netdev_freemem(struct net_device *dev)
10806 {
10807 	char *addr = (char *)dev - dev->padded;
10808 
10809 	kvfree(addr);
10810 }
10811 
10812 /**
10813  * alloc_netdev_mqs - allocate network device
10814  * @sizeof_priv: size of private data to allocate space for
10815  * @name: device name format string
10816  * @name_assign_type: origin of device name
10817  * @setup: callback to initialize device
10818  * @txqs: the number of TX subqueues to allocate
10819  * @rxqs: the number of RX subqueues to allocate
10820  *
10821  * Allocates a struct net_device with private data area for driver use
10822  * and performs basic initialization.  Also allocates subqueue structs
10823  * for each queue on the device.
10824  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10825 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10826 		unsigned char name_assign_type,
10827 		void (*setup)(struct net_device *),
10828 		unsigned int txqs, unsigned int rxqs)
10829 {
10830 	struct net_device *dev;
10831 	unsigned int alloc_size;
10832 	struct net_device *p;
10833 
10834 	BUG_ON(strlen(name) >= sizeof(dev->name));
10835 
10836 	if (txqs < 1) {
10837 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10838 		return NULL;
10839 	}
10840 
10841 	if (rxqs < 1) {
10842 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10843 		return NULL;
10844 	}
10845 
10846 	alloc_size = sizeof(struct net_device);
10847 	if (sizeof_priv) {
10848 		/* ensure 32-byte alignment of private area */
10849 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10850 		alloc_size += sizeof_priv;
10851 	}
10852 	/* ensure 32-byte alignment of whole construct */
10853 	alloc_size += NETDEV_ALIGN - 1;
10854 
10855 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10856 	if (!p)
10857 		return NULL;
10858 
10859 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10860 	dev->padded = (char *)dev - (char *)p;
10861 
10862 #ifdef CONFIG_PCPU_DEV_REFCNT
10863 	dev->pcpu_refcnt = alloc_percpu(int);
10864 	if (!dev->pcpu_refcnt)
10865 		goto free_dev;
10866 	dev_hold(dev);
10867 #else
10868 	refcount_set(&dev->dev_refcnt, 1);
10869 #endif
10870 
10871 	if (dev_addr_init(dev))
10872 		goto free_pcpu;
10873 
10874 	dev_mc_init(dev);
10875 	dev_uc_init(dev);
10876 
10877 	dev_net_set(dev, &init_net);
10878 
10879 	dev->gso_max_size = GSO_MAX_SIZE;
10880 	dev->gso_max_segs = GSO_MAX_SEGS;
10881 	dev->upper_level = 1;
10882 	dev->lower_level = 1;
10883 #ifdef CONFIG_LOCKDEP
10884 	dev->nested_level = 0;
10885 	INIT_LIST_HEAD(&dev->unlink_list);
10886 #endif
10887 
10888 	INIT_LIST_HEAD(&dev->napi_list);
10889 	INIT_LIST_HEAD(&dev->unreg_list);
10890 	INIT_LIST_HEAD(&dev->close_list);
10891 	INIT_LIST_HEAD(&dev->link_watch_list);
10892 	INIT_LIST_HEAD(&dev->adj_list.upper);
10893 	INIT_LIST_HEAD(&dev->adj_list.lower);
10894 	INIT_LIST_HEAD(&dev->ptype_all);
10895 	INIT_LIST_HEAD(&dev->ptype_specific);
10896 	INIT_LIST_HEAD(&dev->net_notifier_list);
10897 #ifdef CONFIG_NET_SCHED
10898 	hash_init(dev->qdisc_hash);
10899 #endif
10900 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10901 	setup(dev);
10902 
10903 	if (!dev->tx_queue_len) {
10904 		dev->priv_flags |= IFF_NO_QUEUE;
10905 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10906 	}
10907 
10908 	dev->num_tx_queues = txqs;
10909 	dev->real_num_tx_queues = txqs;
10910 	if (netif_alloc_netdev_queues(dev))
10911 		goto free_all;
10912 
10913 	dev->num_rx_queues = rxqs;
10914 	dev->real_num_rx_queues = rxqs;
10915 	if (netif_alloc_rx_queues(dev))
10916 		goto free_all;
10917 
10918 	strcpy(dev->name, name);
10919 	dev->name_assign_type = name_assign_type;
10920 	dev->group = INIT_NETDEV_GROUP;
10921 	if (!dev->ethtool_ops)
10922 		dev->ethtool_ops = &default_ethtool_ops;
10923 
10924 	nf_hook_ingress_init(dev);
10925 
10926 	return dev;
10927 
10928 free_all:
10929 	free_netdev(dev);
10930 	return NULL;
10931 
10932 free_pcpu:
10933 #ifdef CONFIG_PCPU_DEV_REFCNT
10934 	free_percpu(dev->pcpu_refcnt);
10935 free_dev:
10936 #endif
10937 	netdev_freemem(dev);
10938 	return NULL;
10939 }
10940 EXPORT_SYMBOL(alloc_netdev_mqs);
10941 
10942 /**
10943  * free_netdev - free network device
10944  * @dev: device
10945  *
10946  * This function does the last stage of destroying an allocated device
10947  * interface. The reference to the device object is released. If this
10948  * is the last reference then it will be freed.Must be called in process
10949  * context.
10950  */
free_netdev(struct net_device * dev)10951 void free_netdev(struct net_device *dev)
10952 {
10953 	struct napi_struct *p, *n;
10954 
10955 	might_sleep();
10956 
10957 	/* When called immediately after register_netdevice() failed the unwind
10958 	 * handling may still be dismantling the device. Handle that case by
10959 	 * deferring the free.
10960 	 */
10961 	if (dev->reg_state == NETREG_UNREGISTERING) {
10962 		ASSERT_RTNL();
10963 		dev->needs_free_netdev = true;
10964 		return;
10965 	}
10966 
10967 	netif_free_tx_queues(dev);
10968 	netif_free_rx_queues(dev);
10969 
10970 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10971 
10972 	/* Flush device addresses */
10973 	dev_addr_flush(dev);
10974 
10975 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10976 		netif_napi_del(p);
10977 
10978 #ifdef CONFIG_PCPU_DEV_REFCNT
10979 	free_percpu(dev->pcpu_refcnt);
10980 	dev->pcpu_refcnt = NULL;
10981 #endif
10982 	free_percpu(dev->xdp_bulkq);
10983 	dev->xdp_bulkq = NULL;
10984 
10985 	/*  Compatibility with error handling in drivers */
10986 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10987 		netdev_freemem(dev);
10988 		return;
10989 	}
10990 
10991 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10992 	dev->reg_state = NETREG_RELEASED;
10993 
10994 	/* will free via device release */
10995 	put_device(&dev->dev);
10996 }
10997 EXPORT_SYMBOL(free_netdev);
10998 
10999 /**
11000  *	synchronize_net -  Synchronize with packet receive processing
11001  *
11002  *	Wait for packets currently being received to be done.
11003  *	Does not block later packets from starting.
11004  */
synchronize_net(void)11005 void synchronize_net(void)
11006 {
11007 	might_sleep();
11008 	if (rtnl_is_locked())
11009 		synchronize_rcu_expedited();
11010 	else
11011 		synchronize_rcu();
11012 }
11013 EXPORT_SYMBOL(synchronize_net);
11014 
11015 /**
11016  *	unregister_netdevice_queue - remove device from the kernel
11017  *	@dev: device
11018  *	@head: list
11019  *
11020  *	This function shuts down a device interface and removes it
11021  *	from the kernel tables.
11022  *	If head not NULL, device is queued to be unregistered later.
11023  *
11024  *	Callers must hold the rtnl semaphore.  You may want
11025  *	unregister_netdev() instead of this.
11026  */
11027 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)11028 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11029 {
11030 	ASSERT_RTNL();
11031 
11032 	if (head) {
11033 		list_move_tail(&dev->unreg_list, head);
11034 	} else {
11035 		LIST_HEAD(single);
11036 
11037 		list_add(&dev->unreg_list, &single);
11038 		unregister_netdevice_many(&single);
11039 	}
11040 }
11041 EXPORT_SYMBOL(unregister_netdevice_queue);
11042 
11043 /**
11044  *	unregister_netdevice_many - unregister many devices
11045  *	@head: list of devices
11046  *
11047  *  Note: As most callers use a stack allocated list_head,
11048  *  we force a list_del() to make sure stack wont be corrupted later.
11049  */
unregister_netdevice_many(struct list_head * head)11050 void unregister_netdevice_many(struct list_head *head)
11051 {
11052 	struct net_device *dev, *tmp;
11053 	LIST_HEAD(close_head);
11054 
11055 	BUG_ON(dev_boot_phase);
11056 	ASSERT_RTNL();
11057 
11058 	if (list_empty(head))
11059 		return;
11060 
11061 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11062 		/* Some devices call without registering
11063 		 * for initialization unwind. Remove those
11064 		 * devices and proceed with the remaining.
11065 		 */
11066 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11067 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11068 				 dev->name, dev);
11069 
11070 			WARN_ON(1);
11071 			list_del(&dev->unreg_list);
11072 			continue;
11073 		}
11074 		dev->dismantle = true;
11075 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11076 	}
11077 
11078 	/* If device is running, close it first. */
11079 	list_for_each_entry(dev, head, unreg_list)
11080 		list_add_tail(&dev->close_list, &close_head);
11081 	dev_close_many(&close_head, true);
11082 
11083 	list_for_each_entry(dev, head, unreg_list) {
11084 		/* And unlink it from device chain. */
11085 		write_lock(&dev_base_lock);
11086 		unlist_netdevice(dev, false);
11087 		dev->reg_state = NETREG_UNREGISTERING;
11088 		write_unlock(&dev_base_lock);
11089 	}
11090 	flush_all_backlogs();
11091 
11092 	synchronize_net();
11093 
11094 	list_for_each_entry(dev, head, unreg_list) {
11095 		struct sk_buff *skb = NULL;
11096 
11097 		/* Shutdown queueing discipline. */
11098 		dev_shutdown(dev);
11099 
11100 		dev_xdp_uninstall(dev);
11101 
11102 		/* Notify protocols, that we are about to destroy
11103 		 * this device. They should clean all the things.
11104 		 */
11105 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11106 
11107 		if (!dev->rtnl_link_ops ||
11108 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11109 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11110 						     GFP_KERNEL, NULL, 0);
11111 
11112 		/*
11113 		 *	Flush the unicast and multicast chains
11114 		 */
11115 		dev_uc_flush(dev);
11116 		dev_mc_flush(dev);
11117 
11118 		netdev_name_node_alt_flush(dev);
11119 		netdev_name_node_free(dev->name_node);
11120 
11121 		if (dev->netdev_ops->ndo_uninit)
11122 			dev->netdev_ops->ndo_uninit(dev);
11123 
11124 		if (skb)
11125 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11126 
11127 		/* Notifier chain MUST detach us all upper devices. */
11128 		WARN_ON(netdev_has_any_upper_dev(dev));
11129 		WARN_ON(netdev_has_any_lower_dev(dev));
11130 
11131 		/* Remove entries from kobject tree */
11132 		netdev_unregister_kobject(dev);
11133 #ifdef CONFIG_XPS
11134 		/* Remove XPS queueing entries */
11135 		netif_reset_xps_queues_gt(dev, 0);
11136 #endif
11137 	}
11138 
11139 	synchronize_net();
11140 
11141 	list_for_each_entry(dev, head, unreg_list) {
11142 		dev_put(dev);
11143 		net_set_todo(dev);
11144 	}
11145 
11146 	list_del(head);
11147 }
11148 EXPORT_SYMBOL(unregister_netdevice_many);
11149 
11150 /**
11151  *	unregister_netdev - remove device from the kernel
11152  *	@dev: device
11153  *
11154  *	This function shuts down a device interface and removes it
11155  *	from the kernel tables.
11156  *
11157  *	This is just a wrapper for unregister_netdevice that takes
11158  *	the rtnl semaphore.  In general you want to use this and not
11159  *	unregister_netdevice.
11160  */
unregister_netdev(struct net_device * dev)11161 void unregister_netdev(struct net_device *dev)
11162 {
11163 	rtnl_lock();
11164 	unregister_netdevice(dev);
11165 	rtnl_unlock();
11166 }
11167 EXPORT_SYMBOL(unregister_netdev);
11168 
11169 /**
11170  *	__dev_change_net_namespace - move device to different nethost namespace
11171  *	@dev: device
11172  *	@net: network namespace
11173  *	@pat: If not NULL name pattern to try if the current device name
11174  *	      is already taken in the destination network namespace.
11175  *	@new_ifindex: If not zero, specifies device index in the target
11176  *	              namespace.
11177  *
11178  *	This function shuts down a device interface and moves it
11179  *	to a new network namespace. On success 0 is returned, on
11180  *	a failure a netagive errno code is returned.
11181  *
11182  *	Callers must hold the rtnl semaphore.
11183  */
11184 
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex)11185 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11186 			       const char *pat, int new_ifindex)
11187 {
11188 	struct net *net_old = dev_net(dev);
11189 	char new_name[IFNAMSIZ] = {};
11190 	int err, new_nsid;
11191 
11192 	ASSERT_RTNL();
11193 
11194 	/* Don't allow namespace local devices to be moved. */
11195 	err = -EINVAL;
11196 	if (dev->features & NETIF_F_NETNS_LOCAL)
11197 		goto out;
11198 
11199 	/* Ensure the device has been registrered */
11200 	if (dev->reg_state != NETREG_REGISTERED)
11201 		goto out;
11202 
11203 	/* Get out if there is nothing todo */
11204 	err = 0;
11205 	if (net_eq(net_old, net))
11206 		goto out;
11207 
11208 	/* Pick the destination device name, and ensure
11209 	 * we can use it in the destination network namespace.
11210 	 */
11211 	err = -EEXIST;
11212 	if (netdev_name_in_use(net, dev->name)) {
11213 		/* We get here if we can't use the current device name */
11214 		if (!pat)
11215 			goto out;
11216 		err = dev_prep_valid_name(net, dev, pat, new_name);
11217 		if (err < 0)
11218 			goto out;
11219 	}
11220 
11221 	/* Check that new_ifindex isn't used yet. */
11222 	err = -EBUSY;
11223 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11224 		goto out;
11225 
11226 	/*
11227 	 * And now a mini version of register_netdevice unregister_netdevice.
11228 	 */
11229 
11230 	/* If device is running close it first. */
11231 	dev_close(dev);
11232 
11233 	/* And unlink it from device chain */
11234 	unlist_netdevice(dev, true);
11235 
11236 	synchronize_net();
11237 
11238 	/* Shutdown queueing discipline. */
11239 	dev_shutdown(dev);
11240 
11241 	/* Notify protocols, that we are about to destroy
11242 	 * this device. They should clean all the things.
11243 	 *
11244 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11245 	 * This is wanted because this way 8021q and macvlan know
11246 	 * the device is just moving and can keep their slaves up.
11247 	 */
11248 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11249 	rcu_barrier();
11250 
11251 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11252 	/* If there is an ifindex conflict assign a new one */
11253 	if (!new_ifindex) {
11254 		if (__dev_get_by_index(net, dev->ifindex))
11255 			new_ifindex = dev_new_index(net);
11256 		else
11257 			new_ifindex = dev->ifindex;
11258 	}
11259 
11260 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11261 			    new_ifindex);
11262 
11263 	/*
11264 	 *	Flush the unicast and multicast chains
11265 	 */
11266 	dev_uc_flush(dev);
11267 	dev_mc_flush(dev);
11268 
11269 	/* Send a netdev-removed uevent to the old namespace */
11270 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11271 	netdev_adjacent_del_links(dev);
11272 
11273 	/* Move per-net netdevice notifiers that are following the netdevice */
11274 	move_netdevice_notifiers_dev_net(dev, net);
11275 
11276 	/* Actually switch the network namespace */
11277 	dev_net_set(dev, net);
11278 	dev->ifindex = new_ifindex;
11279 
11280 	/* Send a netdev-add uevent to the new namespace */
11281 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11282 	netdev_adjacent_add_links(dev);
11283 
11284 	if (new_name[0]) /* Rename the netdev to prepared name */
11285 		strscpy(dev->name, new_name, IFNAMSIZ);
11286 
11287 	/* Fixup kobjects */
11288 	err = device_rename(&dev->dev, dev->name);
11289 	WARN_ON(err);
11290 
11291 	/* Adapt owner in case owning user namespace of target network
11292 	 * namespace is different from the original one.
11293 	 */
11294 	err = netdev_change_owner(dev, net_old, net);
11295 	WARN_ON(err);
11296 
11297 	/* Add the device back in the hashes */
11298 	list_netdevice(dev);
11299 
11300 	/* Notify protocols, that a new device appeared. */
11301 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11302 
11303 	/*
11304 	 *	Prevent userspace races by waiting until the network
11305 	 *	device is fully setup before sending notifications.
11306 	 */
11307 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11308 
11309 	synchronize_net();
11310 	err = 0;
11311 out:
11312 	return err;
11313 }
11314 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11315 
dev_cpu_dead(unsigned int oldcpu)11316 static int dev_cpu_dead(unsigned int oldcpu)
11317 {
11318 	struct sk_buff **list_skb;
11319 	struct sk_buff *skb;
11320 	unsigned int cpu;
11321 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11322 
11323 	local_irq_disable();
11324 	cpu = smp_processor_id();
11325 	sd = &per_cpu(softnet_data, cpu);
11326 	oldsd = &per_cpu(softnet_data, oldcpu);
11327 
11328 	/* Find end of our completion_queue. */
11329 	list_skb = &sd->completion_queue;
11330 	while (*list_skb)
11331 		list_skb = &(*list_skb)->next;
11332 	/* Append completion queue from offline CPU. */
11333 	*list_skb = oldsd->completion_queue;
11334 	oldsd->completion_queue = NULL;
11335 
11336 	/* Append output queue from offline CPU. */
11337 	if (oldsd->output_queue) {
11338 		*sd->output_queue_tailp = oldsd->output_queue;
11339 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11340 		oldsd->output_queue = NULL;
11341 		oldsd->output_queue_tailp = &oldsd->output_queue;
11342 	}
11343 	/* Append NAPI poll list from offline CPU, with one exception :
11344 	 * process_backlog() must be called by cpu owning percpu backlog.
11345 	 * We properly handle process_queue & input_pkt_queue later.
11346 	 */
11347 	while (!list_empty(&oldsd->poll_list)) {
11348 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11349 							    struct napi_struct,
11350 							    poll_list);
11351 
11352 		list_del_init(&napi->poll_list);
11353 		if (napi->poll == process_backlog)
11354 			napi->state = 0;
11355 		else
11356 			____napi_schedule(sd, napi);
11357 	}
11358 
11359 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11360 	local_irq_enable();
11361 
11362 #ifdef CONFIG_RPS
11363 	remsd = oldsd->rps_ipi_list;
11364 	oldsd->rps_ipi_list = NULL;
11365 #endif
11366 	/* send out pending IPI's on offline CPU */
11367 	net_rps_send_ipi(remsd);
11368 
11369 	/* Process offline CPU's input_pkt_queue */
11370 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11371 		netif_rx_ni(skb);
11372 		input_queue_head_incr(oldsd);
11373 	}
11374 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11375 		netif_rx_ni(skb);
11376 		input_queue_head_incr(oldsd);
11377 	}
11378 
11379 	return 0;
11380 }
11381 
11382 /**
11383  *	netdev_increment_features - increment feature set by one
11384  *	@all: current feature set
11385  *	@one: new feature set
11386  *	@mask: mask feature set
11387  *
11388  *	Computes a new feature set after adding a device with feature set
11389  *	@one to the master device with current feature set @all.  Will not
11390  *	enable anything that is off in @mask. Returns the new feature set.
11391  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11392 netdev_features_t netdev_increment_features(netdev_features_t all,
11393 	netdev_features_t one, netdev_features_t mask)
11394 {
11395 	if (mask & NETIF_F_HW_CSUM)
11396 		mask |= NETIF_F_CSUM_MASK;
11397 	mask |= NETIF_F_VLAN_CHALLENGED;
11398 
11399 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11400 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11401 
11402 	/* If one device supports hw checksumming, set for all. */
11403 	if (all & NETIF_F_HW_CSUM)
11404 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11405 
11406 	return all;
11407 }
11408 EXPORT_SYMBOL(netdev_increment_features);
11409 
netdev_create_hash(void)11410 static struct hlist_head * __net_init netdev_create_hash(void)
11411 {
11412 	int i;
11413 	struct hlist_head *hash;
11414 
11415 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11416 	if (hash != NULL)
11417 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11418 			INIT_HLIST_HEAD(&hash[i]);
11419 
11420 	return hash;
11421 }
11422 
11423 /* Initialize per network namespace state */
netdev_init(struct net * net)11424 static int __net_init netdev_init(struct net *net)
11425 {
11426 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11427 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11428 
11429 	INIT_LIST_HEAD(&net->dev_base_head);
11430 
11431 	net->dev_name_head = netdev_create_hash();
11432 	if (net->dev_name_head == NULL)
11433 		goto err_name;
11434 
11435 	net->dev_index_head = netdev_create_hash();
11436 	if (net->dev_index_head == NULL)
11437 		goto err_idx;
11438 
11439 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11440 
11441 	return 0;
11442 
11443 err_idx:
11444 	kfree(net->dev_name_head);
11445 err_name:
11446 	return -ENOMEM;
11447 }
11448 
11449 /**
11450  *	netdev_drivername - network driver for the device
11451  *	@dev: network device
11452  *
11453  *	Determine network driver for device.
11454  */
netdev_drivername(const struct net_device * dev)11455 const char *netdev_drivername(const struct net_device *dev)
11456 {
11457 	const struct device_driver *driver;
11458 	const struct device *parent;
11459 	const char *empty = "";
11460 
11461 	parent = dev->dev.parent;
11462 	if (!parent)
11463 		return empty;
11464 
11465 	driver = parent->driver;
11466 	if (driver && driver->name)
11467 		return driver->name;
11468 	return empty;
11469 }
11470 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11471 static void __netdev_printk(const char *level, const struct net_device *dev,
11472 			    struct va_format *vaf)
11473 {
11474 	if (dev && dev->dev.parent) {
11475 		dev_printk_emit(level[1] - '0',
11476 				dev->dev.parent,
11477 				"%s %s %s%s: %pV",
11478 				dev_driver_string(dev->dev.parent),
11479 				dev_name(dev->dev.parent),
11480 				netdev_name(dev), netdev_reg_state(dev),
11481 				vaf);
11482 	} else if (dev) {
11483 		printk("%s%s%s: %pV",
11484 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11485 	} else {
11486 		printk("%s(NULL net_device): %pV", level, vaf);
11487 	}
11488 }
11489 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11490 void netdev_printk(const char *level, const struct net_device *dev,
11491 		   const char *format, ...)
11492 {
11493 	struct va_format vaf;
11494 	va_list args;
11495 
11496 	va_start(args, format);
11497 
11498 	vaf.fmt = format;
11499 	vaf.va = &args;
11500 
11501 	__netdev_printk(level, dev, &vaf);
11502 
11503 	va_end(args);
11504 }
11505 EXPORT_SYMBOL(netdev_printk);
11506 
11507 #define define_netdev_printk_level(func, level)			\
11508 void func(const struct net_device *dev, const char *fmt, ...)	\
11509 {								\
11510 	struct va_format vaf;					\
11511 	va_list args;						\
11512 								\
11513 	va_start(args, fmt);					\
11514 								\
11515 	vaf.fmt = fmt;						\
11516 	vaf.va = &args;						\
11517 								\
11518 	__netdev_printk(level, dev, &vaf);			\
11519 								\
11520 	va_end(args);						\
11521 }								\
11522 EXPORT_SYMBOL(func);
11523 
11524 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11525 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11526 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11527 define_netdev_printk_level(netdev_err, KERN_ERR);
11528 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11529 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11530 define_netdev_printk_level(netdev_info, KERN_INFO);
11531 
netdev_exit(struct net * net)11532 static void __net_exit netdev_exit(struct net *net)
11533 {
11534 	kfree(net->dev_name_head);
11535 	kfree(net->dev_index_head);
11536 	if (net != &init_net)
11537 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11538 }
11539 
11540 static struct pernet_operations __net_initdata netdev_net_ops = {
11541 	.init = netdev_init,
11542 	.exit = netdev_exit,
11543 };
11544 
default_device_exit(struct net * net)11545 static void __net_exit default_device_exit(struct net *net)
11546 {
11547 	struct net_device *dev, *aux;
11548 	/*
11549 	 * Push all migratable network devices back to the
11550 	 * initial network namespace
11551 	 */
11552 	rtnl_lock();
11553 	for_each_netdev_safe(net, dev, aux) {
11554 		int err;
11555 		char fb_name[IFNAMSIZ];
11556 
11557 		/* Ignore unmoveable devices (i.e. loopback) */
11558 		if (dev->features & NETIF_F_NETNS_LOCAL)
11559 			continue;
11560 
11561 		/* Leave virtual devices for the generic cleanup */
11562 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11563 			continue;
11564 
11565 		/* Push remaining network devices to init_net */
11566 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11567 		if (netdev_name_in_use(&init_net, fb_name))
11568 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11569 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11570 		if (err) {
11571 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11572 				 __func__, dev->name, err);
11573 			BUG();
11574 		}
11575 	}
11576 	rtnl_unlock();
11577 }
11578 
rtnl_lock_unregistering(struct list_head * net_list)11579 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11580 {
11581 	/* Return with the rtnl_lock held when there are no network
11582 	 * devices unregistering in any network namespace in net_list.
11583 	 */
11584 	struct net *net;
11585 	bool unregistering;
11586 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11587 
11588 	add_wait_queue(&netdev_unregistering_wq, &wait);
11589 	for (;;) {
11590 		unregistering = false;
11591 		rtnl_lock();
11592 		list_for_each_entry(net, net_list, exit_list) {
11593 			if (net->dev_unreg_count > 0) {
11594 				unregistering = true;
11595 				break;
11596 			}
11597 		}
11598 		if (!unregistering)
11599 			break;
11600 		__rtnl_unlock();
11601 
11602 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11603 	}
11604 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11605 }
11606 
default_device_exit_batch(struct list_head * net_list)11607 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11608 {
11609 	/* At exit all network devices most be removed from a network
11610 	 * namespace.  Do this in the reverse order of registration.
11611 	 * Do this across as many network namespaces as possible to
11612 	 * improve batching efficiency.
11613 	 */
11614 	struct net_device *dev;
11615 	struct net *net;
11616 	LIST_HEAD(dev_kill_list);
11617 
11618 	/* To prevent network device cleanup code from dereferencing
11619 	 * loopback devices or network devices that have been freed
11620 	 * wait here for all pending unregistrations to complete,
11621 	 * before unregistring the loopback device and allowing the
11622 	 * network namespace be freed.
11623 	 *
11624 	 * The netdev todo list containing all network devices
11625 	 * unregistrations that happen in default_device_exit_batch
11626 	 * will run in the rtnl_unlock() at the end of
11627 	 * default_device_exit_batch.
11628 	 */
11629 	rtnl_lock_unregistering(net_list);
11630 	list_for_each_entry(net, net_list, exit_list) {
11631 		for_each_netdev_reverse(net, dev) {
11632 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11633 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11634 			else
11635 				unregister_netdevice_queue(dev, &dev_kill_list);
11636 		}
11637 	}
11638 	unregister_netdevice_many(&dev_kill_list);
11639 	rtnl_unlock();
11640 }
11641 
11642 static struct pernet_operations __net_initdata default_device_ops = {
11643 	.exit = default_device_exit,
11644 	.exit_batch = default_device_exit_batch,
11645 };
11646 
11647 /*
11648  *	Initialize the DEV module. At boot time this walks the device list and
11649  *	unhooks any devices that fail to initialise (normally hardware not
11650  *	present) and leaves us with a valid list of present and active devices.
11651  *
11652  */
11653 
11654 /*
11655  *       This is called single threaded during boot, so no need
11656  *       to take the rtnl semaphore.
11657  */
net_dev_init(void)11658 static int __init net_dev_init(void)
11659 {
11660 	int i, rc = -ENOMEM;
11661 
11662 	BUG_ON(!dev_boot_phase);
11663 
11664 	if (dev_proc_init())
11665 		goto out;
11666 
11667 	if (netdev_kobject_init())
11668 		goto out;
11669 
11670 	INIT_LIST_HEAD(&ptype_all);
11671 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11672 		INIT_LIST_HEAD(&ptype_base[i]);
11673 
11674 	INIT_LIST_HEAD(&offload_base);
11675 
11676 	if (register_pernet_subsys(&netdev_net_ops))
11677 		goto out;
11678 
11679 	/*
11680 	 *	Initialise the packet receive queues.
11681 	 */
11682 
11683 	for_each_possible_cpu(i) {
11684 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11685 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11686 
11687 		INIT_WORK(flush, flush_backlog);
11688 
11689 		skb_queue_head_init(&sd->input_pkt_queue);
11690 		skb_queue_head_init(&sd->process_queue);
11691 #ifdef CONFIG_XFRM_OFFLOAD
11692 		skb_queue_head_init(&sd->xfrm_backlog);
11693 #endif
11694 		INIT_LIST_HEAD(&sd->poll_list);
11695 		sd->output_queue_tailp = &sd->output_queue;
11696 #ifdef CONFIG_RPS
11697 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11698 		sd->cpu = i;
11699 #endif
11700 
11701 		init_gro_hash(&sd->backlog);
11702 		sd->backlog.poll = process_backlog;
11703 		sd->backlog.weight = weight_p;
11704 	}
11705 
11706 	dev_boot_phase = 0;
11707 
11708 	/* The loopback device is special if any other network devices
11709 	 * is present in a network namespace the loopback device must
11710 	 * be present. Since we now dynamically allocate and free the
11711 	 * loopback device ensure this invariant is maintained by
11712 	 * keeping the loopback device as the first device on the
11713 	 * list of network devices.  Ensuring the loopback devices
11714 	 * is the first device that appears and the last network device
11715 	 * that disappears.
11716 	 */
11717 	if (register_pernet_device(&loopback_net_ops))
11718 		goto out;
11719 
11720 	if (register_pernet_device(&default_device_ops))
11721 		goto out;
11722 
11723 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11724 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11725 
11726 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11727 				       NULL, dev_cpu_dead);
11728 	WARN_ON(rc < 0);
11729 	rc = 0;
11730 out:
11731 	return rc;
11732 }
11733 
11734 subsys_initcall(net_dev_init);
11735