• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-map-ops.h>
22 #include <linux/dma-direct.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/iommu-helper.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/irqdomain.h>
32 #include <linux/percpu.h>
33 #include <linux/io-pgtable.h>
34 #include <asm/irq_remapping.h>
35 #include <asm/io_apic.h>
36 #include <asm/apic.h>
37 #include <asm/hw_irq.h>
38 #include <asm/proto.h>
39 #include <asm/iommu.h>
40 #include <asm/gart.h>
41 #include <asm/dma.h>
42 
43 #include "amd_iommu.h"
44 #include "../irq_remapping.h"
45 
46 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
47 
48 #define LOOP_TIMEOUT	100000
49 
50 /* IO virtual address start page frame number */
51 #define IOVA_START_PFN		(1)
52 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
53 
54 /* Reserved IOVA ranges */
55 #define MSI_RANGE_START		(0xfee00000)
56 #define MSI_RANGE_END		(0xfeefffff)
57 #define HT_RANGE_START		(0xfd00000000ULL)
58 #define HT_RANGE_END		(0xffffffffffULL)
59 
60 #define DEFAULT_PGTABLE_LEVEL	PAGE_MODE_3_LEVEL
61 
62 static DEFINE_SPINLOCK(pd_bitmap_lock);
63 
64 /* List of all available dev_data structures */
65 static LLIST_HEAD(dev_data_list);
66 
67 LIST_HEAD(ioapic_map);
68 LIST_HEAD(hpet_map);
69 LIST_HEAD(acpihid_map);
70 
71 /*
72  * Domain for untranslated devices - only allocated
73  * if iommu=pt passed on kernel cmd line.
74  */
75 const struct iommu_ops amd_iommu_ops;
76 
77 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
78 int amd_iommu_max_glx_val = -1;
79 
80 /*
81  * general struct to manage commands send to an IOMMU
82  */
83 struct iommu_cmd {
84 	u32 data[4];
85 };
86 
87 struct kmem_cache *amd_iommu_irq_cache;
88 
89 static void detach_device(struct device *dev);
90 
91 /****************************************************************************
92  *
93  * Helper functions
94  *
95  ****************************************************************************/
96 
get_pci_device_id(struct device * dev)97 static inline u16 get_pci_device_id(struct device *dev)
98 {
99 	struct pci_dev *pdev = to_pci_dev(dev);
100 
101 	return pci_dev_id(pdev);
102 }
103 
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)104 static inline int get_acpihid_device_id(struct device *dev,
105 					struct acpihid_map_entry **entry)
106 {
107 	struct acpi_device *adev = ACPI_COMPANION(dev);
108 	struct acpihid_map_entry *p;
109 
110 	if (!adev)
111 		return -ENODEV;
112 
113 	list_for_each_entry(p, &acpihid_map, list) {
114 		if (acpi_dev_hid_uid_match(adev, p->hid,
115 					   p->uid[0] ? p->uid : NULL)) {
116 			if (entry)
117 				*entry = p;
118 			return p->devid;
119 		}
120 	}
121 	return -EINVAL;
122 }
123 
get_device_id(struct device * dev)124 static inline int get_device_id(struct device *dev)
125 {
126 	int devid;
127 
128 	if (dev_is_pci(dev))
129 		devid = get_pci_device_id(dev);
130 	else
131 		devid = get_acpihid_device_id(dev, NULL);
132 
133 	return devid;
134 }
135 
to_pdomain(struct iommu_domain * dom)136 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
137 {
138 	return container_of(dom, struct protection_domain, domain);
139 }
140 
alloc_dev_data(u16 devid)141 static struct iommu_dev_data *alloc_dev_data(u16 devid)
142 {
143 	struct iommu_dev_data *dev_data;
144 
145 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
146 	if (!dev_data)
147 		return NULL;
148 
149 	spin_lock_init(&dev_data->lock);
150 	dev_data->devid = devid;
151 	ratelimit_default_init(&dev_data->rs);
152 
153 	llist_add(&dev_data->dev_data_list, &dev_data_list);
154 	return dev_data;
155 }
156 
search_dev_data(u16 devid)157 static struct iommu_dev_data *search_dev_data(u16 devid)
158 {
159 	struct iommu_dev_data *dev_data;
160 	struct llist_node *node;
161 
162 	if (llist_empty(&dev_data_list))
163 		return NULL;
164 
165 	node = dev_data_list.first;
166 	llist_for_each_entry(dev_data, node, dev_data_list) {
167 		if (dev_data->devid == devid)
168 			return dev_data;
169 	}
170 
171 	return NULL;
172 }
173 
clone_alias(struct pci_dev * pdev,u16 alias,void * data)174 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
175 {
176 	u16 devid = pci_dev_id(pdev);
177 
178 	if (devid == alias)
179 		return 0;
180 
181 	amd_iommu_rlookup_table[alias] =
182 		amd_iommu_rlookup_table[devid];
183 	memcpy(amd_iommu_dev_table[alias].data,
184 	       amd_iommu_dev_table[devid].data,
185 	       sizeof(amd_iommu_dev_table[alias].data));
186 
187 	return 0;
188 }
189 
clone_aliases(struct pci_dev * pdev)190 static void clone_aliases(struct pci_dev *pdev)
191 {
192 	if (!pdev)
193 		return;
194 
195 	/*
196 	 * The IVRS alias stored in the alias table may not be
197 	 * part of the PCI DMA aliases if it's bus differs
198 	 * from the original device.
199 	 */
200 	clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL);
201 
202 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
203 }
204 
setup_aliases(struct device * dev)205 static struct pci_dev *setup_aliases(struct device *dev)
206 {
207 	struct pci_dev *pdev = to_pci_dev(dev);
208 	u16 ivrs_alias;
209 
210 	/* For ACPI HID devices, there are no aliases */
211 	if (!dev_is_pci(dev))
212 		return NULL;
213 
214 	/*
215 	 * Add the IVRS alias to the pci aliases if it is on the same
216 	 * bus. The IVRS table may know about a quirk that we don't.
217 	 */
218 	ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)];
219 	if (ivrs_alias != pci_dev_id(pdev) &&
220 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
221 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
222 
223 	clone_aliases(pdev);
224 
225 	return pdev;
226 }
227 
find_dev_data(u16 devid)228 static struct iommu_dev_data *find_dev_data(u16 devid)
229 {
230 	struct iommu_dev_data *dev_data;
231 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
232 
233 	dev_data = search_dev_data(devid);
234 
235 	if (dev_data == NULL) {
236 		dev_data = alloc_dev_data(devid);
237 		if (!dev_data)
238 			return NULL;
239 
240 		if (translation_pre_enabled(iommu))
241 			dev_data->defer_attach = true;
242 	}
243 
244 	return dev_data;
245 }
246 
247 /*
248 * Find or create an IOMMU group for a acpihid device.
249 */
acpihid_device_group(struct device * dev)250 static struct iommu_group *acpihid_device_group(struct device *dev)
251 {
252 	struct acpihid_map_entry *p, *entry = NULL;
253 	int devid;
254 
255 	devid = get_acpihid_device_id(dev, &entry);
256 	if (devid < 0)
257 		return ERR_PTR(devid);
258 
259 	list_for_each_entry(p, &acpihid_map, list) {
260 		if ((devid == p->devid) && p->group)
261 			entry->group = p->group;
262 	}
263 
264 	if (!entry->group)
265 		entry->group = generic_device_group(dev);
266 	else
267 		iommu_group_ref_get(entry->group);
268 
269 	return entry->group;
270 }
271 
pci_iommuv2_capable(struct pci_dev * pdev)272 static bool pci_iommuv2_capable(struct pci_dev *pdev)
273 {
274 	static const int caps[] = {
275 		PCI_EXT_CAP_ID_PRI,
276 		PCI_EXT_CAP_ID_PASID,
277 	};
278 	int i, pos;
279 
280 	if (!pci_ats_supported(pdev))
281 		return false;
282 
283 	for (i = 0; i < 2; ++i) {
284 		pos = pci_find_ext_capability(pdev, caps[i]);
285 		if (pos == 0)
286 			return false;
287 	}
288 
289 	return true;
290 }
291 
292 /*
293  * This function checks if the driver got a valid device from the caller to
294  * avoid dereferencing invalid pointers.
295  */
check_device(struct device * dev)296 static bool check_device(struct device *dev)
297 {
298 	int devid;
299 
300 	if (!dev)
301 		return false;
302 
303 	devid = get_device_id(dev);
304 	if (devid < 0)
305 		return false;
306 
307 	/* Out of our scope? */
308 	if (devid > amd_iommu_last_bdf)
309 		return false;
310 
311 	if (amd_iommu_rlookup_table[devid] == NULL)
312 		return false;
313 
314 	return true;
315 }
316 
iommu_init_device(struct device * dev)317 static int iommu_init_device(struct device *dev)
318 {
319 	struct iommu_dev_data *dev_data;
320 	int devid;
321 
322 	if (dev_iommu_priv_get(dev))
323 		return 0;
324 
325 	devid = get_device_id(dev);
326 	if (devid < 0)
327 		return devid;
328 
329 	dev_data = find_dev_data(devid);
330 	if (!dev_data)
331 		return -ENOMEM;
332 
333 	dev_data->pdev = setup_aliases(dev);
334 
335 	/*
336 	 * By default we use passthrough mode for IOMMUv2 capable device.
337 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
338 	 * invalid address), we ignore the capability for the device so
339 	 * it'll be forced to go into translation mode.
340 	 */
341 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
342 	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
343 		struct amd_iommu *iommu;
344 
345 		iommu = amd_iommu_rlookup_table[dev_data->devid];
346 		dev_data->iommu_v2 = iommu->is_iommu_v2;
347 	}
348 
349 	dev_iommu_priv_set(dev, dev_data);
350 
351 	return 0;
352 }
353 
iommu_ignore_device(struct device * dev)354 static void iommu_ignore_device(struct device *dev)
355 {
356 	int devid;
357 
358 	devid = get_device_id(dev);
359 	if (devid < 0)
360 		return;
361 
362 	amd_iommu_rlookup_table[devid] = NULL;
363 	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
364 
365 	setup_aliases(dev);
366 }
367 
amd_iommu_uninit_device(struct device * dev)368 static void amd_iommu_uninit_device(struct device *dev)
369 {
370 	struct iommu_dev_data *dev_data;
371 
372 	dev_data = dev_iommu_priv_get(dev);
373 	if (!dev_data)
374 		return;
375 
376 	if (dev_data->domain)
377 		detach_device(dev);
378 
379 	dev_iommu_priv_set(dev, NULL);
380 
381 	/*
382 	 * We keep dev_data around for unplugged devices and reuse it when the
383 	 * device is re-plugged - not doing so would introduce a ton of races.
384 	 */
385 }
386 
387 /****************************************************************************
388  *
389  * Interrupt handling functions
390  *
391  ****************************************************************************/
392 
dump_dte_entry(u16 devid)393 static void dump_dte_entry(u16 devid)
394 {
395 	int i;
396 
397 	for (i = 0; i < 4; ++i)
398 		pr_err("DTE[%d]: %016llx\n", i,
399 			amd_iommu_dev_table[devid].data[i]);
400 }
401 
dump_command(unsigned long phys_addr)402 static void dump_command(unsigned long phys_addr)
403 {
404 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
405 	int i;
406 
407 	for (i = 0; i < 4; ++i)
408 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
409 }
410 
amd_iommu_report_rmp_hw_error(volatile u32 * event)411 static void amd_iommu_report_rmp_hw_error(volatile u32 *event)
412 {
413 	struct iommu_dev_data *dev_data = NULL;
414 	int devid, vmg_tag, flags;
415 	struct pci_dev *pdev;
416 	u64 spa;
417 
418 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
419 	vmg_tag = (event[1]) & 0xFFFF;
420 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
421 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
422 
423 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
424 					   devid & 0xff);
425 	if (pdev)
426 		dev_data = dev_iommu_priv_get(&pdev->dev);
427 
428 	if (dev_data) {
429 		if (__ratelimit(&dev_data->rs)) {
430 			pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
431 				vmg_tag, spa, flags);
432 		}
433 	} else {
434 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
435 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
436 			vmg_tag, spa, flags);
437 	}
438 
439 	if (pdev)
440 		pci_dev_put(pdev);
441 }
442 
amd_iommu_report_rmp_fault(volatile u32 * event)443 static void amd_iommu_report_rmp_fault(volatile u32 *event)
444 {
445 	struct iommu_dev_data *dev_data = NULL;
446 	int devid, flags_rmp, vmg_tag, flags;
447 	struct pci_dev *pdev;
448 	u64 gpa;
449 
450 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
451 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
452 	vmg_tag   = (event[1]) & 0xFFFF;
453 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
454 	gpa       = ((u64)event[3] << 32) | event[2];
455 
456 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
457 					   devid & 0xff);
458 	if (pdev)
459 		dev_data = dev_iommu_priv_get(&pdev->dev);
460 
461 	if (dev_data) {
462 		if (__ratelimit(&dev_data->rs)) {
463 			pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
464 				vmg_tag, gpa, flags_rmp, flags);
465 		}
466 	} else {
467 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
468 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
469 			vmg_tag, gpa, flags_rmp, flags);
470 	}
471 
472 	if (pdev)
473 		pci_dev_put(pdev);
474 }
475 
amd_iommu_report_page_fault(u16 devid,u16 domain_id,u64 address,int flags)476 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
477 					u64 address, int flags)
478 {
479 	struct iommu_dev_data *dev_data = NULL;
480 	struct pci_dev *pdev;
481 
482 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
483 					   devid & 0xff);
484 	if (pdev)
485 		dev_data = dev_iommu_priv_get(&pdev->dev);
486 
487 	if (dev_data) {
488 		if (__ratelimit(&dev_data->rs)) {
489 			pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
490 				domain_id, address, flags);
491 		}
492 	} else {
493 		pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
494 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
495 			domain_id, address, flags);
496 	}
497 
498 	if (pdev)
499 		pci_dev_put(pdev);
500 }
501 
iommu_print_event(struct amd_iommu * iommu,void * __evt)502 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
503 {
504 	struct device *dev = iommu->iommu.dev;
505 	int type, devid, flags, tag;
506 	volatile u32 *event = __evt;
507 	int count = 0;
508 	u64 address;
509 	u32 pasid;
510 
511 retry:
512 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
513 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
514 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
515 		  (event[1] & EVENT_DOMID_MASK_LO);
516 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
517 	address = (u64)(((u64)event[3]) << 32) | event[2];
518 
519 	if (type == 0) {
520 		/* Did we hit the erratum? */
521 		if (++count == LOOP_TIMEOUT) {
522 			pr_err("No event written to event log\n");
523 			return;
524 		}
525 		udelay(1);
526 		goto retry;
527 	}
528 
529 	if (type == EVENT_TYPE_IO_FAULT) {
530 		amd_iommu_report_page_fault(devid, pasid, address, flags);
531 		return;
532 	}
533 
534 	switch (type) {
535 	case EVENT_TYPE_ILL_DEV:
536 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
537 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
538 			pasid, address, flags);
539 		dump_dte_entry(devid);
540 		break;
541 	case EVENT_TYPE_DEV_TAB_ERR:
542 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
543 			"address=0x%llx flags=0x%04x]\n",
544 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
545 			address, flags);
546 		break;
547 	case EVENT_TYPE_PAGE_TAB_ERR:
548 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
549 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
550 			pasid, address, flags);
551 		break;
552 	case EVENT_TYPE_ILL_CMD:
553 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
554 		dump_command(address);
555 		break;
556 	case EVENT_TYPE_CMD_HARD_ERR:
557 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
558 			address, flags);
559 		break;
560 	case EVENT_TYPE_IOTLB_INV_TO:
561 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
562 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
563 			address);
564 		break;
565 	case EVENT_TYPE_INV_DEV_REQ:
566 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
567 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
568 			pasid, address, flags);
569 		break;
570 	case EVENT_TYPE_RMP_FAULT:
571 		amd_iommu_report_rmp_fault(event);
572 		break;
573 	case EVENT_TYPE_RMP_HW_ERR:
574 		amd_iommu_report_rmp_hw_error(event);
575 		break;
576 	case EVENT_TYPE_INV_PPR_REQ:
577 		pasid = PPR_PASID(*((u64 *)__evt));
578 		tag = event[1] & 0x03FF;
579 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
580 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
581 			pasid, address, flags, tag);
582 		break;
583 	default:
584 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
585 			event[0], event[1], event[2], event[3]);
586 	}
587 
588 	memset(__evt, 0, 4 * sizeof(u32));
589 }
590 
iommu_poll_events(struct amd_iommu * iommu)591 static void iommu_poll_events(struct amd_iommu *iommu)
592 {
593 	u32 head, tail;
594 
595 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
596 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
597 
598 	while (head != tail) {
599 		iommu_print_event(iommu, iommu->evt_buf + head);
600 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
601 	}
602 
603 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
604 }
605 
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)606 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
607 {
608 	struct amd_iommu_fault fault;
609 
610 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
611 		pr_err_ratelimited("Unknown PPR request received\n");
612 		return;
613 	}
614 
615 	fault.address   = raw[1];
616 	fault.pasid     = PPR_PASID(raw[0]);
617 	fault.device_id = PPR_DEVID(raw[0]);
618 	fault.tag       = PPR_TAG(raw[0]);
619 	fault.flags     = PPR_FLAGS(raw[0]);
620 
621 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
622 }
623 
iommu_poll_ppr_log(struct amd_iommu * iommu)624 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
625 {
626 	u32 head, tail;
627 
628 	if (iommu->ppr_log == NULL)
629 		return;
630 
631 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
632 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
633 
634 	while (head != tail) {
635 		volatile u64 *raw;
636 		u64 entry[2];
637 		int i;
638 
639 		raw = (u64 *)(iommu->ppr_log + head);
640 
641 		/*
642 		 * Hardware bug: Interrupt may arrive before the entry is
643 		 * written to memory. If this happens we need to wait for the
644 		 * entry to arrive.
645 		 */
646 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
647 			if (PPR_REQ_TYPE(raw[0]) != 0)
648 				break;
649 			udelay(1);
650 		}
651 
652 		/* Avoid memcpy function-call overhead */
653 		entry[0] = raw[0];
654 		entry[1] = raw[1];
655 
656 		/*
657 		 * To detect the hardware bug we need to clear the entry
658 		 * back to zero.
659 		 */
660 		raw[0] = raw[1] = 0UL;
661 
662 		/* Update head pointer of hardware ring-buffer */
663 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
664 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
665 
666 		/* Handle PPR entry */
667 		iommu_handle_ppr_entry(iommu, entry);
668 
669 		/* Refresh ring-buffer information */
670 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
671 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
672 	}
673 }
674 
675 #ifdef CONFIG_IRQ_REMAP
676 static int (*iommu_ga_log_notifier)(u32);
677 
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))678 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
679 {
680 	iommu_ga_log_notifier = notifier;
681 
682 	return 0;
683 }
684 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
685 
iommu_poll_ga_log(struct amd_iommu * iommu)686 static void iommu_poll_ga_log(struct amd_iommu *iommu)
687 {
688 	u32 head, tail, cnt = 0;
689 
690 	if (iommu->ga_log == NULL)
691 		return;
692 
693 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
694 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
695 
696 	while (head != tail) {
697 		volatile u64 *raw;
698 		u64 log_entry;
699 
700 		raw = (u64 *)(iommu->ga_log + head);
701 		cnt++;
702 
703 		/* Avoid memcpy function-call overhead */
704 		log_entry = *raw;
705 
706 		/* Update head pointer of hardware ring-buffer */
707 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
708 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
709 
710 		/* Handle GA entry */
711 		switch (GA_REQ_TYPE(log_entry)) {
712 		case GA_GUEST_NR:
713 			if (!iommu_ga_log_notifier)
714 				break;
715 
716 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
717 				 __func__, GA_DEVID(log_entry),
718 				 GA_TAG(log_entry));
719 
720 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
721 				pr_err("GA log notifier failed.\n");
722 			break;
723 		default:
724 			break;
725 		}
726 	}
727 }
728 
729 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)730 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
731 {
732 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
733 	    pci_dev_has_special_msi_domain(to_pci_dev(dev)))
734 		return;
735 
736 	dev_set_msi_domain(dev, iommu->msi_domain);
737 }
738 
739 #else /* CONFIG_IRQ_REMAP */
740 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)741 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
742 #endif /* !CONFIG_IRQ_REMAP */
743 
744 #define AMD_IOMMU_INT_MASK	\
745 	(MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \
746 	 MMIO_STATUS_EVT_INT_MASK | \
747 	 MMIO_STATUS_PPR_INT_MASK | \
748 	 MMIO_STATUS_GALOG_INT_MASK)
749 
amd_iommu_int_thread(int irq,void * data)750 irqreturn_t amd_iommu_int_thread(int irq, void *data)
751 {
752 	struct amd_iommu *iommu = (struct amd_iommu *) data;
753 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
754 
755 	while (status & AMD_IOMMU_INT_MASK) {
756 		/* Enable interrupt sources again */
757 		writel(AMD_IOMMU_INT_MASK,
758 			iommu->mmio_base + MMIO_STATUS_OFFSET);
759 
760 		if (status & MMIO_STATUS_EVT_INT_MASK) {
761 			pr_devel("Processing IOMMU Event Log\n");
762 			iommu_poll_events(iommu);
763 		}
764 
765 		if (status & MMIO_STATUS_PPR_INT_MASK) {
766 			pr_devel("Processing IOMMU PPR Log\n");
767 			iommu_poll_ppr_log(iommu);
768 		}
769 
770 #ifdef CONFIG_IRQ_REMAP
771 		if (status & MMIO_STATUS_GALOG_INT_MASK) {
772 			pr_devel("Processing IOMMU GA Log\n");
773 			iommu_poll_ga_log(iommu);
774 		}
775 #endif
776 
777 		if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) {
778 			pr_info_ratelimited("IOMMU event log overflow\n");
779 			amd_iommu_restart_event_logging(iommu);
780 		}
781 
782 		/*
783 		 * Hardware bug: ERBT1312
784 		 * When re-enabling interrupt (by writing 1
785 		 * to clear the bit), the hardware might also try to set
786 		 * the interrupt bit in the event status register.
787 		 * In this scenario, the bit will be set, and disable
788 		 * subsequent interrupts.
789 		 *
790 		 * Workaround: The IOMMU driver should read back the
791 		 * status register and check if the interrupt bits are cleared.
792 		 * If not, driver will need to go through the interrupt handler
793 		 * again and re-clear the bits
794 		 */
795 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
796 	}
797 	return IRQ_HANDLED;
798 }
799 
amd_iommu_int_handler(int irq,void * data)800 irqreturn_t amd_iommu_int_handler(int irq, void *data)
801 {
802 	return IRQ_WAKE_THREAD;
803 }
804 
805 /****************************************************************************
806  *
807  * IOMMU command queuing functions
808  *
809  ****************************************************************************/
810 
wait_on_sem(struct amd_iommu * iommu,u64 data)811 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
812 {
813 	int i = 0;
814 
815 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
816 		udelay(1);
817 		i += 1;
818 	}
819 
820 	if (i == LOOP_TIMEOUT) {
821 		pr_alert("Completion-Wait loop timed out\n");
822 		return -EIO;
823 	}
824 
825 	return 0;
826 }
827 
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)828 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
829 			       struct iommu_cmd *cmd)
830 {
831 	u8 *target;
832 	u32 tail;
833 
834 	/* Copy command to buffer */
835 	tail = iommu->cmd_buf_tail;
836 	target = iommu->cmd_buf + tail;
837 	memcpy(target, cmd, sizeof(*cmd));
838 
839 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
840 	iommu->cmd_buf_tail = tail;
841 
842 	/* Tell the IOMMU about it */
843 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
844 }
845 
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)846 static void build_completion_wait(struct iommu_cmd *cmd,
847 				  struct amd_iommu *iommu,
848 				  u64 data)
849 {
850 	u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
851 
852 	memset(cmd, 0, sizeof(*cmd));
853 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
854 	cmd->data[1] = upper_32_bits(paddr);
855 	cmd->data[2] = lower_32_bits(data);
856 	cmd->data[3] = upper_32_bits(data);
857 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
858 }
859 
build_inv_dte(struct iommu_cmd * cmd,u16 devid)860 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
861 {
862 	memset(cmd, 0, sizeof(*cmd));
863 	cmd->data[0] = devid;
864 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
865 }
866 
867 /*
868  * Builds an invalidation address which is suitable for one page or multiple
869  * pages. Sets the size bit (S) as needed is more than one page is flushed.
870  */
build_inv_address(u64 address,size_t size)871 static inline u64 build_inv_address(u64 address, size_t size)
872 {
873 	u64 pages, end, msb_diff;
874 
875 	pages = iommu_num_pages(address, size, PAGE_SIZE);
876 
877 	if (pages == 1)
878 		return address & PAGE_MASK;
879 
880 	end = address + size - 1;
881 
882 	/*
883 	 * msb_diff would hold the index of the most significant bit that
884 	 * flipped between the start and end.
885 	 */
886 	msb_diff = fls64(end ^ address) - 1;
887 
888 	/*
889 	 * Bits 63:52 are sign extended. If for some reason bit 51 is different
890 	 * between the start and the end, invalidate everything.
891 	 */
892 	if (unlikely(msb_diff > 51)) {
893 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
894 	} else {
895 		/*
896 		 * The msb-bit must be clear on the address. Just set all the
897 		 * lower bits.
898 		 */
899 		address |= (1ull << msb_diff) - 1;
900 	}
901 
902 	/* Clear bits 11:0 */
903 	address &= PAGE_MASK;
904 
905 	/* Set the size bit - we flush more than one 4kb page */
906 	return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
907 }
908 
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)909 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
910 				  size_t size, u16 domid, int pde)
911 {
912 	u64 inv_address = build_inv_address(address, size);
913 
914 	memset(cmd, 0, sizeof(*cmd));
915 	cmd->data[1] |= domid;
916 	cmd->data[2]  = lower_32_bits(inv_address);
917 	cmd->data[3]  = upper_32_bits(inv_address);
918 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
919 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
920 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
921 }
922 
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)923 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
924 				  u64 address, size_t size)
925 {
926 	u64 inv_address = build_inv_address(address, size);
927 
928 	memset(cmd, 0, sizeof(*cmd));
929 	cmd->data[0]  = devid;
930 	cmd->data[0] |= (qdep & 0xff) << 24;
931 	cmd->data[1]  = devid;
932 	cmd->data[2]  = lower_32_bits(inv_address);
933 	cmd->data[3]  = upper_32_bits(inv_address);
934 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
935 }
936 
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,u32 pasid,u64 address,bool size)937 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
938 				  u64 address, bool size)
939 {
940 	memset(cmd, 0, sizeof(*cmd));
941 
942 	address &= ~(0xfffULL);
943 
944 	cmd->data[0]  = pasid;
945 	cmd->data[1]  = domid;
946 	cmd->data[2]  = lower_32_bits(address);
947 	cmd->data[3]  = upper_32_bits(address);
948 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
949 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
950 	if (size)
951 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
952 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
953 }
954 
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,u32 pasid,int qdep,u64 address,bool size)955 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
956 				  int qdep, u64 address, bool size)
957 {
958 	memset(cmd, 0, sizeof(*cmd));
959 
960 	address &= ~(0xfffULL);
961 
962 	cmd->data[0]  = devid;
963 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
964 	cmd->data[0] |= (qdep  & 0xff) << 24;
965 	cmd->data[1]  = devid;
966 	cmd->data[1] |= (pasid & 0xff) << 16;
967 	cmd->data[2]  = lower_32_bits(address);
968 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
969 	cmd->data[3]  = upper_32_bits(address);
970 	if (size)
971 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
972 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
973 }
974 
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,bool gn)975 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
976 			       int status, int tag, bool gn)
977 {
978 	memset(cmd, 0, sizeof(*cmd));
979 
980 	cmd->data[0]  = devid;
981 	if (gn) {
982 		cmd->data[1]  = pasid;
983 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
984 	}
985 	cmd->data[3]  = tag & 0x1ff;
986 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
987 
988 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
989 }
990 
build_inv_all(struct iommu_cmd * cmd)991 static void build_inv_all(struct iommu_cmd *cmd)
992 {
993 	memset(cmd, 0, sizeof(*cmd));
994 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
995 }
996 
build_inv_irt(struct iommu_cmd * cmd,u16 devid)997 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
998 {
999 	memset(cmd, 0, sizeof(*cmd));
1000 	cmd->data[0] = devid;
1001 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1002 }
1003 
1004 /*
1005  * Writes the command to the IOMMUs command buffer and informs the
1006  * hardware about the new command.
1007  */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1008 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1009 				      struct iommu_cmd *cmd,
1010 				      bool sync)
1011 {
1012 	unsigned int count = 0;
1013 	u32 left, next_tail;
1014 
1015 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1016 again:
1017 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1018 
1019 	if (left <= 0x20) {
1020 		/* Skip udelay() the first time around */
1021 		if (count++) {
1022 			if (count == LOOP_TIMEOUT) {
1023 				pr_err("Command buffer timeout\n");
1024 				return -EIO;
1025 			}
1026 
1027 			udelay(1);
1028 		}
1029 
1030 		/* Update head and recheck remaining space */
1031 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1032 					    MMIO_CMD_HEAD_OFFSET);
1033 
1034 		goto again;
1035 	}
1036 
1037 	copy_cmd_to_buffer(iommu, cmd);
1038 
1039 	/* Do we need to make sure all commands are processed? */
1040 	iommu->need_sync = sync;
1041 
1042 	return 0;
1043 }
1044 
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1045 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1046 				    struct iommu_cmd *cmd,
1047 				    bool sync)
1048 {
1049 	unsigned long flags;
1050 	int ret;
1051 
1052 	raw_spin_lock_irqsave(&iommu->lock, flags);
1053 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1054 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1055 
1056 	return ret;
1057 }
1058 
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1059 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1060 {
1061 	return iommu_queue_command_sync(iommu, cmd, true);
1062 }
1063 
1064 /*
1065  * This function queues a completion wait command into the command
1066  * buffer of an IOMMU
1067  */
iommu_completion_wait(struct amd_iommu * iommu)1068 static int iommu_completion_wait(struct amd_iommu *iommu)
1069 {
1070 	struct iommu_cmd cmd;
1071 	unsigned long flags;
1072 	int ret;
1073 	u64 data;
1074 
1075 	if (!iommu->need_sync)
1076 		return 0;
1077 
1078 	raw_spin_lock_irqsave(&iommu->lock, flags);
1079 
1080 	data = ++iommu->cmd_sem_val;
1081 	build_completion_wait(&cmd, iommu, data);
1082 
1083 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1084 	if (ret)
1085 		goto out_unlock;
1086 
1087 	ret = wait_on_sem(iommu, data);
1088 
1089 out_unlock:
1090 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1091 
1092 	return ret;
1093 }
1094 
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1095 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1096 {
1097 	struct iommu_cmd cmd;
1098 
1099 	build_inv_dte(&cmd, devid);
1100 
1101 	return iommu_queue_command(iommu, &cmd);
1102 }
1103 
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1104 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1105 {
1106 	u32 devid;
1107 
1108 	for (devid = 0; devid <= 0xffff; ++devid)
1109 		iommu_flush_dte(iommu, devid);
1110 
1111 	iommu_completion_wait(iommu);
1112 }
1113 
1114 /*
1115  * This function uses heavy locking and may disable irqs for some time. But
1116  * this is no issue because it is only called during resume.
1117  */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1118 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1119 {
1120 	u32 dom_id;
1121 
1122 	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1123 		struct iommu_cmd cmd;
1124 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1125 				      dom_id, 1);
1126 		iommu_queue_command(iommu, &cmd);
1127 	}
1128 
1129 	iommu_completion_wait(iommu);
1130 }
1131 
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1132 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1133 {
1134 	struct iommu_cmd cmd;
1135 
1136 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1137 			      dom_id, 1);
1138 	iommu_queue_command(iommu, &cmd);
1139 
1140 	iommu_completion_wait(iommu);
1141 }
1142 
amd_iommu_flush_all(struct amd_iommu * iommu)1143 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1144 {
1145 	struct iommu_cmd cmd;
1146 
1147 	build_inv_all(&cmd);
1148 
1149 	iommu_queue_command(iommu, &cmd);
1150 	iommu_completion_wait(iommu);
1151 }
1152 
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1153 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1154 {
1155 	struct iommu_cmd cmd;
1156 
1157 	build_inv_irt(&cmd, devid);
1158 
1159 	iommu_queue_command(iommu, &cmd);
1160 }
1161 
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1162 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1163 {
1164 	u32 devid;
1165 
1166 	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1167 		iommu_flush_irt(iommu, devid);
1168 
1169 	iommu_completion_wait(iommu);
1170 }
1171 
iommu_flush_all_caches(struct amd_iommu * iommu)1172 void iommu_flush_all_caches(struct amd_iommu *iommu)
1173 {
1174 	if (iommu_feature(iommu, FEATURE_IA)) {
1175 		amd_iommu_flush_all(iommu);
1176 	} else {
1177 		amd_iommu_flush_dte_all(iommu);
1178 		amd_iommu_flush_irt_all(iommu);
1179 		amd_iommu_flush_tlb_all(iommu);
1180 	}
1181 }
1182 
1183 /*
1184  * Command send function for flushing on-device TLB
1185  */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1186 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1187 			      u64 address, size_t size)
1188 {
1189 	struct amd_iommu *iommu;
1190 	struct iommu_cmd cmd;
1191 	int qdep;
1192 
1193 	qdep     = dev_data->ats.qdep;
1194 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1195 
1196 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1197 
1198 	return iommu_queue_command(iommu, &cmd);
1199 }
1200 
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1201 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1202 {
1203 	struct amd_iommu *iommu = data;
1204 
1205 	return iommu_flush_dte(iommu, alias);
1206 }
1207 
1208 /*
1209  * Command send function for invalidating a device table entry
1210  */
device_flush_dte(struct iommu_dev_data * dev_data)1211 static int device_flush_dte(struct iommu_dev_data *dev_data)
1212 {
1213 	struct amd_iommu *iommu;
1214 	u16 alias;
1215 	int ret;
1216 
1217 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1218 
1219 	if (dev_data->pdev)
1220 		ret = pci_for_each_dma_alias(dev_data->pdev,
1221 					     device_flush_dte_alias, iommu);
1222 	else
1223 		ret = iommu_flush_dte(iommu, dev_data->devid);
1224 	if (ret)
1225 		return ret;
1226 
1227 	alias = amd_iommu_alias_table[dev_data->devid];
1228 	if (alias != dev_data->devid) {
1229 		ret = iommu_flush_dte(iommu, alias);
1230 		if (ret)
1231 			return ret;
1232 	}
1233 
1234 	if (dev_data->ats.enabled)
1235 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1236 
1237 	return ret;
1238 }
1239 
1240 /*
1241  * TLB invalidation function which is called from the mapping functions.
1242  * It invalidates a single PTE if the range to flush is within a single
1243  * page. Otherwise it flushes the whole TLB of the IOMMU.
1244  */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1245 static void __domain_flush_pages(struct protection_domain *domain,
1246 				 u64 address, size_t size, int pde)
1247 {
1248 	struct iommu_dev_data *dev_data;
1249 	struct iommu_cmd cmd;
1250 	int ret = 0, i;
1251 
1252 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1253 
1254 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1255 		if (!domain->dev_iommu[i])
1256 			continue;
1257 
1258 		/*
1259 		 * Devices of this domain are behind this IOMMU
1260 		 * We need a TLB flush
1261 		 */
1262 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1263 	}
1264 
1265 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1266 
1267 		if (!dev_data->ats.enabled)
1268 			continue;
1269 
1270 		ret |= device_flush_iotlb(dev_data, address, size);
1271 	}
1272 
1273 	WARN_ON(ret);
1274 }
1275 
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1276 static void domain_flush_pages(struct protection_domain *domain,
1277 			       u64 address, size_t size, int pde)
1278 {
1279 	if (likely(!amd_iommu_np_cache)) {
1280 		__domain_flush_pages(domain, address, size, pde);
1281 		return;
1282 	}
1283 
1284 	/*
1285 	 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1286 	 * In such setups it is best to avoid flushes of ranges which are not
1287 	 * naturally aligned, since it would lead to flushes of unmodified
1288 	 * PTEs. Such flushes would require the hypervisor to do more work than
1289 	 * necessary. Therefore, perform repeated flushes of aligned ranges
1290 	 * until you cover the range. Each iteration flushes the smaller
1291 	 * between the natural alignment of the address that we flush and the
1292 	 * greatest naturally aligned region that fits in the range.
1293 	 */
1294 	while (size != 0) {
1295 		int addr_alignment = __ffs(address);
1296 		int size_alignment = __fls(size);
1297 		int min_alignment;
1298 		size_t flush_size;
1299 
1300 		/*
1301 		 * size is always non-zero, but address might be zero, causing
1302 		 * addr_alignment to be negative. As the casting of the
1303 		 * argument in __ffs(address) to long might trim the high bits
1304 		 * of the address on x86-32, cast to long when doing the check.
1305 		 */
1306 		if (likely((unsigned long)address != 0))
1307 			min_alignment = min(addr_alignment, size_alignment);
1308 		else
1309 			min_alignment = size_alignment;
1310 
1311 		flush_size = 1ul << min_alignment;
1312 
1313 		__domain_flush_pages(domain, address, flush_size, pde);
1314 		address += flush_size;
1315 		size -= flush_size;
1316 	}
1317 }
1318 
1319 /* Flush the whole IO/TLB for a given protection domain - including PDE */
amd_iommu_domain_flush_tlb_pde(struct protection_domain * domain)1320 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain)
1321 {
1322 	domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1323 }
1324 
amd_iommu_domain_flush_complete(struct protection_domain * domain)1325 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1326 {
1327 	int i;
1328 
1329 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1330 		if (domain && !domain->dev_iommu[i])
1331 			continue;
1332 
1333 		/*
1334 		 * Devices of this domain are behind this IOMMU
1335 		 * We need to wait for completion of all commands.
1336 		 */
1337 		iommu_completion_wait(amd_iommus[i]);
1338 	}
1339 }
1340 
1341 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1342 static void domain_flush_np_cache(struct protection_domain *domain,
1343 		dma_addr_t iova, size_t size)
1344 {
1345 	if (unlikely(amd_iommu_np_cache)) {
1346 		unsigned long flags;
1347 
1348 		spin_lock_irqsave(&domain->lock, flags);
1349 		domain_flush_pages(domain, iova, size, 1);
1350 		amd_iommu_domain_flush_complete(domain);
1351 		spin_unlock_irqrestore(&domain->lock, flags);
1352 	}
1353 }
1354 
1355 
1356 /*
1357  * This function flushes the DTEs for all devices in domain
1358  */
domain_flush_devices(struct protection_domain * domain)1359 static void domain_flush_devices(struct protection_domain *domain)
1360 {
1361 	struct iommu_dev_data *dev_data;
1362 
1363 	list_for_each_entry(dev_data, &domain->dev_list, list)
1364 		device_flush_dte(dev_data);
1365 }
1366 
1367 /****************************************************************************
1368  *
1369  * The next functions belong to the domain allocation. A domain is
1370  * allocated for every IOMMU as the default domain. If device isolation
1371  * is enabled, every device get its own domain. The most important thing
1372  * about domains is the page table mapping the DMA address space they
1373  * contain.
1374  *
1375  ****************************************************************************/
1376 
domain_id_alloc(void)1377 static u16 domain_id_alloc(void)
1378 {
1379 	int id;
1380 
1381 	spin_lock(&pd_bitmap_lock);
1382 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1383 	BUG_ON(id == 0);
1384 	if (id > 0 && id < MAX_DOMAIN_ID)
1385 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1386 	else
1387 		id = 0;
1388 	spin_unlock(&pd_bitmap_lock);
1389 
1390 	return id;
1391 }
1392 
domain_id_free(int id)1393 static void domain_id_free(int id)
1394 {
1395 	spin_lock(&pd_bitmap_lock);
1396 	if (id > 0 && id < MAX_DOMAIN_ID)
1397 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1398 	spin_unlock(&pd_bitmap_lock);
1399 }
1400 
free_gcr3_tbl_level1(u64 * tbl)1401 static void free_gcr3_tbl_level1(u64 *tbl)
1402 {
1403 	u64 *ptr;
1404 	int i;
1405 
1406 	for (i = 0; i < 512; ++i) {
1407 		if (!(tbl[i] & GCR3_VALID))
1408 			continue;
1409 
1410 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1411 
1412 		free_page((unsigned long)ptr);
1413 	}
1414 }
1415 
free_gcr3_tbl_level2(u64 * tbl)1416 static void free_gcr3_tbl_level2(u64 *tbl)
1417 {
1418 	u64 *ptr;
1419 	int i;
1420 
1421 	for (i = 0; i < 512; ++i) {
1422 		if (!(tbl[i] & GCR3_VALID))
1423 			continue;
1424 
1425 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1426 
1427 		free_gcr3_tbl_level1(ptr);
1428 	}
1429 }
1430 
free_gcr3_table(struct protection_domain * domain)1431 static void free_gcr3_table(struct protection_domain *domain)
1432 {
1433 	if (domain->glx == 2)
1434 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1435 	else if (domain->glx == 1)
1436 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1437 	else
1438 		BUG_ON(domain->glx != 0);
1439 
1440 	free_page((unsigned long)domain->gcr3_tbl);
1441 }
1442 
set_dte_entry(u16 devid,struct protection_domain * domain,bool ats,bool ppr)1443 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1444 			  bool ats, bool ppr)
1445 {
1446 	u64 pte_root = 0;
1447 	u64 flags = 0;
1448 	u32 old_domid;
1449 
1450 	if (domain->iop.mode != PAGE_MODE_NONE)
1451 		pte_root = iommu_virt_to_phys(domain->iop.root);
1452 
1453 	pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1454 		    << DEV_ENTRY_MODE_SHIFT;
1455 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1456 
1457 	flags = amd_iommu_dev_table[devid].data[1];
1458 
1459 	if (ats)
1460 		flags |= DTE_FLAG_IOTLB;
1461 
1462 	if (ppr) {
1463 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1464 
1465 		if (iommu_feature(iommu, FEATURE_EPHSUP))
1466 			pte_root |= 1ULL << DEV_ENTRY_PPR;
1467 	}
1468 
1469 	if (domain->flags & PD_IOMMUV2_MASK) {
1470 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1471 		u64 glx  = domain->glx;
1472 		u64 tmp;
1473 
1474 		pte_root |= DTE_FLAG_GV;
1475 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1476 
1477 		/* First mask out possible old values for GCR3 table */
1478 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1479 		flags    &= ~tmp;
1480 
1481 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1482 		flags    &= ~tmp;
1483 
1484 		/* Encode GCR3 table into DTE */
1485 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1486 		pte_root |= tmp;
1487 
1488 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1489 		flags    |= tmp;
1490 
1491 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1492 		flags    |= tmp;
1493 	}
1494 
1495 	flags &= ~DEV_DOMID_MASK;
1496 	flags |= domain->id;
1497 
1498 	old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
1499 	amd_iommu_dev_table[devid].data[1]  = flags;
1500 	amd_iommu_dev_table[devid].data[0]  = pte_root;
1501 
1502 	/*
1503 	 * A kdump kernel might be replacing a domain ID that was copied from
1504 	 * the previous kernel--if so, it needs to flush the translation cache
1505 	 * entries for the old domain ID that is being overwritten
1506 	 */
1507 	if (old_domid) {
1508 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1509 
1510 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1511 	}
1512 }
1513 
clear_dte_entry(u16 devid)1514 static void clear_dte_entry(u16 devid)
1515 {
1516 	/* remove entry from the device table seen by the hardware */
1517 	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1518 	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1519 
1520 	amd_iommu_apply_erratum_63(devid);
1521 }
1522 
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)1523 static void do_attach(struct iommu_dev_data *dev_data,
1524 		      struct protection_domain *domain)
1525 {
1526 	struct amd_iommu *iommu;
1527 	bool ats;
1528 
1529 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1530 	ats   = dev_data->ats.enabled;
1531 
1532 	/* Update data structures */
1533 	dev_data->domain = domain;
1534 	list_add(&dev_data->list, &domain->dev_list);
1535 
1536 	/* Do reference counting */
1537 	domain->dev_iommu[iommu->index] += 1;
1538 	domain->dev_cnt                 += 1;
1539 
1540 	/* Update device table */
1541 	set_dte_entry(dev_data->devid, domain,
1542 		      ats, dev_data->iommu_v2);
1543 	clone_aliases(dev_data->pdev);
1544 
1545 	device_flush_dte(dev_data);
1546 }
1547 
do_detach(struct iommu_dev_data * dev_data)1548 static void do_detach(struct iommu_dev_data *dev_data)
1549 {
1550 	struct protection_domain *domain = dev_data->domain;
1551 	struct amd_iommu *iommu;
1552 
1553 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1554 
1555 	/* Update data structures */
1556 	dev_data->domain = NULL;
1557 	list_del(&dev_data->list);
1558 	clear_dte_entry(dev_data->devid);
1559 	clone_aliases(dev_data->pdev);
1560 
1561 	/* Flush the DTE entry */
1562 	device_flush_dte(dev_data);
1563 
1564 	/* Flush IOTLB */
1565 	amd_iommu_domain_flush_tlb_pde(domain);
1566 
1567 	/* Wait for the flushes to finish */
1568 	amd_iommu_domain_flush_complete(domain);
1569 
1570 	/* decrease reference counters - needs to happen after the flushes */
1571 	domain->dev_iommu[iommu->index] -= 1;
1572 	domain->dev_cnt                 -= 1;
1573 }
1574 
pdev_iommuv2_disable(struct pci_dev * pdev)1575 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1576 {
1577 	pci_disable_ats(pdev);
1578 	pci_disable_pri(pdev);
1579 	pci_disable_pasid(pdev);
1580 }
1581 
pdev_iommuv2_enable(struct pci_dev * pdev)1582 static int pdev_iommuv2_enable(struct pci_dev *pdev)
1583 {
1584 	int ret;
1585 
1586 	/* Only allow access to user-accessible pages */
1587 	ret = pci_enable_pasid(pdev, 0);
1588 	if (ret)
1589 		return ret;
1590 
1591 	/* First reset the PRI state of the device */
1592 	ret = pci_reset_pri(pdev);
1593 	if (ret)
1594 		goto out_err_pasid;
1595 
1596 	/* Enable PRI */
1597 	/* FIXME: Hardcode number of outstanding requests for now */
1598 	ret = pci_enable_pri(pdev, 32);
1599 	if (ret)
1600 		goto out_err_pasid;
1601 
1602 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
1603 	if (ret)
1604 		goto out_err_pri;
1605 
1606 	return 0;
1607 
1608 out_err_pri:
1609 	pci_disable_pri(pdev);
1610 
1611 out_err_pasid:
1612 	pci_disable_pasid(pdev);
1613 
1614 	return ret;
1615 }
1616 
1617 /*
1618  * If a device is not yet associated with a domain, this function makes the
1619  * device visible in the domain
1620  */
attach_device(struct device * dev,struct protection_domain * domain)1621 static int attach_device(struct device *dev,
1622 			 struct protection_domain *domain)
1623 {
1624 	struct iommu_dev_data *dev_data;
1625 	struct pci_dev *pdev;
1626 	unsigned long flags;
1627 	int ret;
1628 
1629 	spin_lock_irqsave(&domain->lock, flags);
1630 
1631 	dev_data = dev_iommu_priv_get(dev);
1632 
1633 	spin_lock(&dev_data->lock);
1634 
1635 	ret = -EBUSY;
1636 	if (dev_data->domain != NULL)
1637 		goto out;
1638 
1639 	if (!dev_is_pci(dev))
1640 		goto skip_ats_check;
1641 
1642 	pdev = to_pci_dev(dev);
1643 	if (domain->flags & PD_IOMMUV2_MASK) {
1644 		struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
1645 
1646 		ret = -EINVAL;
1647 		if (def_domain->type != IOMMU_DOMAIN_IDENTITY)
1648 			goto out;
1649 
1650 		if (dev_data->iommu_v2) {
1651 			if (pdev_iommuv2_enable(pdev) != 0)
1652 				goto out;
1653 
1654 			dev_data->ats.enabled = true;
1655 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1656 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
1657 		}
1658 	} else if (amd_iommu_iotlb_sup &&
1659 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1660 		dev_data->ats.enabled = true;
1661 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1662 	}
1663 
1664 skip_ats_check:
1665 	ret = 0;
1666 
1667 	do_attach(dev_data, domain);
1668 
1669 	/*
1670 	 * We might boot into a crash-kernel here. The crashed kernel
1671 	 * left the caches in the IOMMU dirty. So we have to flush
1672 	 * here to evict all dirty stuff.
1673 	 */
1674 	amd_iommu_domain_flush_tlb_pde(domain);
1675 
1676 	amd_iommu_domain_flush_complete(domain);
1677 
1678 out:
1679 	spin_unlock(&dev_data->lock);
1680 
1681 	spin_unlock_irqrestore(&domain->lock, flags);
1682 
1683 	return ret;
1684 }
1685 
1686 /*
1687  * Removes a device from a protection domain (with devtable_lock held)
1688  */
detach_device(struct device * dev)1689 static void detach_device(struct device *dev)
1690 {
1691 	struct protection_domain *domain;
1692 	struct iommu_dev_data *dev_data;
1693 	unsigned long flags;
1694 
1695 	dev_data = dev_iommu_priv_get(dev);
1696 	domain   = dev_data->domain;
1697 
1698 	spin_lock_irqsave(&domain->lock, flags);
1699 
1700 	spin_lock(&dev_data->lock);
1701 
1702 	/*
1703 	 * First check if the device is still attached. It might already
1704 	 * be detached from its domain because the generic
1705 	 * iommu_detach_group code detached it and we try again here in
1706 	 * our alias handling.
1707 	 */
1708 	if (WARN_ON(!dev_data->domain))
1709 		goto out;
1710 
1711 	do_detach(dev_data);
1712 
1713 	if (!dev_is_pci(dev))
1714 		goto out;
1715 
1716 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
1717 		pdev_iommuv2_disable(to_pci_dev(dev));
1718 	else if (dev_data->ats.enabled)
1719 		pci_disable_ats(to_pci_dev(dev));
1720 
1721 	dev_data->ats.enabled = false;
1722 
1723 out:
1724 	spin_unlock(&dev_data->lock);
1725 
1726 	spin_unlock_irqrestore(&domain->lock, flags);
1727 }
1728 
amd_iommu_probe_device(struct device * dev)1729 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1730 {
1731 	struct iommu_device *iommu_dev;
1732 	struct amd_iommu *iommu;
1733 	int ret, devid;
1734 
1735 	if (!check_device(dev))
1736 		return ERR_PTR(-ENODEV);
1737 
1738 	devid = get_device_id(dev);
1739 	iommu = amd_iommu_rlookup_table[devid];
1740 
1741 	if (dev_iommu_priv_get(dev))
1742 		return &iommu->iommu;
1743 
1744 	ret = iommu_init_device(dev);
1745 	if (ret) {
1746 		if (ret != -ENOTSUPP)
1747 			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1748 		iommu_dev = ERR_PTR(ret);
1749 		iommu_ignore_device(dev);
1750 	} else {
1751 		amd_iommu_set_pci_msi_domain(dev, iommu);
1752 		iommu_dev = &iommu->iommu;
1753 	}
1754 
1755 	iommu_completion_wait(iommu);
1756 
1757 	return iommu_dev;
1758 }
1759 
amd_iommu_probe_finalize(struct device * dev)1760 static void amd_iommu_probe_finalize(struct device *dev)
1761 {
1762 	/* Domains are initialized for this device - have a look what we ended up with */
1763 	set_dma_ops(dev, NULL);
1764 	iommu_setup_dma_ops(dev, 0, U64_MAX);
1765 }
1766 
amd_iommu_release_device(struct device * dev)1767 static void amd_iommu_release_device(struct device *dev)
1768 {
1769 	int devid = get_device_id(dev);
1770 	struct amd_iommu *iommu;
1771 
1772 	if (!check_device(dev))
1773 		return;
1774 
1775 	iommu = amd_iommu_rlookup_table[devid];
1776 
1777 	amd_iommu_uninit_device(dev);
1778 	iommu_completion_wait(iommu);
1779 }
1780 
amd_iommu_device_group(struct device * dev)1781 static struct iommu_group *amd_iommu_device_group(struct device *dev)
1782 {
1783 	if (dev_is_pci(dev))
1784 		return pci_device_group(dev);
1785 
1786 	return acpihid_device_group(dev);
1787 }
1788 
1789 /*****************************************************************************
1790  *
1791  * The next functions belong to the dma_ops mapping/unmapping code.
1792  *
1793  *****************************************************************************/
1794 
update_device_table(struct protection_domain * domain)1795 static void update_device_table(struct protection_domain *domain)
1796 {
1797 	struct iommu_dev_data *dev_data;
1798 
1799 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1800 		set_dte_entry(dev_data->devid, domain,
1801 			      dev_data->ats.enabled, dev_data->iommu_v2);
1802 		clone_aliases(dev_data->pdev);
1803 	}
1804 }
1805 
amd_iommu_update_and_flush_device_table(struct protection_domain * domain)1806 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1807 {
1808 	update_device_table(domain);
1809 	domain_flush_devices(domain);
1810 }
1811 
amd_iommu_domain_update(struct protection_domain * domain)1812 void amd_iommu_domain_update(struct protection_domain *domain)
1813 {
1814 	/* Update device table */
1815 	amd_iommu_update_and_flush_device_table(domain);
1816 
1817 	/* Flush domain TLB(s) and wait for completion */
1818 	amd_iommu_domain_flush_tlb_pde(domain);
1819 	amd_iommu_domain_flush_complete(domain);
1820 }
1821 
amd_iommu_init_api(void)1822 int __init amd_iommu_init_api(void)
1823 {
1824 	int err;
1825 
1826 	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
1827 	if (err)
1828 		return err;
1829 #ifdef CONFIG_ARM_AMBA
1830 	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
1831 	if (err)
1832 		return err;
1833 #endif
1834 	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
1835 	if (err)
1836 		return err;
1837 
1838 	return 0;
1839 }
1840 
1841 /*****************************************************************************
1842  *
1843  * The following functions belong to the exported interface of AMD IOMMU
1844  *
1845  * This interface allows access to lower level functions of the IOMMU
1846  * like protection domain handling and assignement of devices to domains
1847  * which is not possible with the dma_ops interface.
1848  *
1849  *****************************************************************************/
1850 
cleanup_domain(struct protection_domain * domain)1851 static void cleanup_domain(struct protection_domain *domain)
1852 {
1853 	struct iommu_dev_data *entry;
1854 	unsigned long flags;
1855 
1856 	spin_lock_irqsave(&domain->lock, flags);
1857 
1858 	while (!list_empty(&domain->dev_list)) {
1859 		entry = list_first_entry(&domain->dev_list,
1860 					 struct iommu_dev_data, list);
1861 		BUG_ON(!entry->domain);
1862 		do_detach(entry);
1863 	}
1864 
1865 	spin_unlock_irqrestore(&domain->lock, flags);
1866 }
1867 
protection_domain_free(struct protection_domain * domain)1868 static void protection_domain_free(struct protection_domain *domain)
1869 {
1870 	if (!domain)
1871 		return;
1872 
1873 	if (domain->id)
1874 		domain_id_free(domain->id);
1875 
1876 	if (domain->iop.pgtbl_cfg.tlb)
1877 		free_io_pgtable_ops(&domain->iop.iop.ops);
1878 
1879 	kfree(domain);
1880 }
1881 
protection_domain_init_v1(struct protection_domain * domain,int mode)1882 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
1883 {
1884 	u64 *pt_root = NULL;
1885 
1886 	BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
1887 
1888 	spin_lock_init(&domain->lock);
1889 	domain->id = domain_id_alloc();
1890 	if (!domain->id)
1891 		return -ENOMEM;
1892 	INIT_LIST_HEAD(&domain->dev_list);
1893 
1894 	if (mode != PAGE_MODE_NONE) {
1895 		pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1896 		if (!pt_root)
1897 			return -ENOMEM;
1898 	}
1899 
1900 	amd_iommu_domain_set_pgtable(domain, pt_root, mode);
1901 
1902 	return 0;
1903 }
1904 
protection_domain_alloc(unsigned int type)1905 static struct protection_domain *protection_domain_alloc(unsigned int type)
1906 {
1907 	struct io_pgtable_ops *pgtbl_ops;
1908 	struct protection_domain *domain;
1909 	int pgtable = amd_iommu_pgtable;
1910 	int mode = DEFAULT_PGTABLE_LEVEL;
1911 	int ret;
1912 
1913 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1914 	if (!domain)
1915 		return NULL;
1916 
1917 	/*
1918 	 * Force IOMMU v1 page table when iommu=pt and
1919 	 * when allocating domain for pass-through devices.
1920 	 */
1921 	if (type == IOMMU_DOMAIN_IDENTITY) {
1922 		pgtable = AMD_IOMMU_V1;
1923 		mode = PAGE_MODE_NONE;
1924 	} else if (type == IOMMU_DOMAIN_UNMANAGED) {
1925 		pgtable = AMD_IOMMU_V1;
1926 	}
1927 
1928 	switch (pgtable) {
1929 	case AMD_IOMMU_V1:
1930 		ret = protection_domain_init_v1(domain, mode);
1931 		break;
1932 	default:
1933 		ret = -EINVAL;
1934 	}
1935 
1936 	if (ret)
1937 		goto out_err;
1938 
1939 	pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
1940 	if (!pgtbl_ops)
1941 		goto out_err;
1942 
1943 	return domain;
1944 out_err:
1945 	kfree(domain);
1946 	return NULL;
1947 }
1948 
amd_iommu_domain_alloc(unsigned type)1949 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
1950 {
1951 	struct protection_domain *domain;
1952 
1953 	domain = protection_domain_alloc(type);
1954 	if (!domain)
1955 		return NULL;
1956 
1957 	domain->domain.geometry.aperture_start = 0;
1958 	domain->domain.geometry.aperture_end   = ~0ULL;
1959 	domain->domain.geometry.force_aperture = true;
1960 
1961 	return &domain->domain;
1962 }
1963 
amd_iommu_domain_free(struct iommu_domain * dom)1964 static void amd_iommu_domain_free(struct iommu_domain *dom)
1965 {
1966 	struct protection_domain *domain;
1967 
1968 	domain = to_pdomain(dom);
1969 
1970 	if (domain->dev_cnt > 0)
1971 		cleanup_domain(domain);
1972 
1973 	BUG_ON(domain->dev_cnt != 0);
1974 
1975 	if (!dom)
1976 		return;
1977 
1978 	if (domain->flags & PD_IOMMUV2_MASK)
1979 		free_gcr3_table(domain);
1980 
1981 	protection_domain_free(domain);
1982 }
1983 
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)1984 static void amd_iommu_detach_device(struct iommu_domain *dom,
1985 				    struct device *dev)
1986 {
1987 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
1988 	int devid = get_device_id(dev);
1989 	struct amd_iommu *iommu;
1990 
1991 	if (!check_device(dev))
1992 		return;
1993 
1994 	if (dev_data->domain != NULL)
1995 		detach_device(dev);
1996 
1997 	iommu = amd_iommu_rlookup_table[devid];
1998 	if (!iommu)
1999 		return;
2000 
2001 #ifdef CONFIG_IRQ_REMAP
2002 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2003 	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
2004 		dev_data->use_vapic = 0;
2005 #endif
2006 
2007 	iommu_completion_wait(iommu);
2008 }
2009 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2010 static int amd_iommu_attach_device(struct iommu_domain *dom,
2011 				   struct device *dev)
2012 {
2013 	struct protection_domain *domain = to_pdomain(dom);
2014 	struct iommu_dev_data *dev_data;
2015 	struct amd_iommu *iommu;
2016 	int ret;
2017 
2018 	if (!check_device(dev))
2019 		return -EINVAL;
2020 
2021 	dev_data = dev_iommu_priv_get(dev);
2022 	dev_data->defer_attach = false;
2023 
2024 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2025 	if (!iommu)
2026 		return -EINVAL;
2027 
2028 	if (dev_data->domain)
2029 		detach_device(dev);
2030 
2031 	ret = attach_device(dev, domain);
2032 
2033 #ifdef CONFIG_IRQ_REMAP
2034 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2035 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2036 			dev_data->use_vapic = 1;
2037 		else
2038 			dev_data->use_vapic = 0;
2039 	}
2040 #endif
2041 
2042 	iommu_completion_wait(iommu);
2043 
2044 	return ret;
2045 }
2046 
amd_iommu_iotlb_sync_map(struct iommu_domain * dom,unsigned long iova,size_t size)2047 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2048 				     unsigned long iova, size_t size)
2049 {
2050 	struct protection_domain *domain = to_pdomain(dom);
2051 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2052 
2053 	if (ops->map)
2054 		domain_flush_np_cache(domain, iova, size);
2055 }
2056 
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t page_size,int iommu_prot,gfp_t gfp)2057 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2058 			 phys_addr_t paddr, size_t page_size, int iommu_prot,
2059 			 gfp_t gfp)
2060 {
2061 	struct protection_domain *domain = to_pdomain(dom);
2062 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2063 	int prot = 0;
2064 	int ret = -EINVAL;
2065 
2066 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2067 	    (domain->iop.mode == PAGE_MODE_NONE))
2068 		return -EINVAL;
2069 
2070 	if (iommu_prot & IOMMU_READ)
2071 		prot |= IOMMU_PROT_IR;
2072 	if (iommu_prot & IOMMU_WRITE)
2073 		prot |= IOMMU_PROT_IW;
2074 
2075 	if (ops->map)
2076 		ret = ops->map(ops, iova, paddr, page_size, prot, gfp);
2077 
2078 	return ret;
2079 }
2080 
amd_iommu_iotlb_gather_add_page(struct iommu_domain * domain,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size)2081 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2082 					    struct iommu_iotlb_gather *gather,
2083 					    unsigned long iova, size_t size)
2084 {
2085 	/*
2086 	 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2087 	 * Unless we run in a virtual machine, which can be inferred according
2088 	 * to whether "non-present cache" is on, it is probably best to prefer
2089 	 * (potentially) too extensive TLB flushing (i.e., more misses) over
2090 	 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2091 	 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2092 	 * the guest, and the trade-off is different: unnecessary TLB flushes
2093 	 * should be avoided.
2094 	 */
2095 	if (amd_iommu_np_cache &&
2096 	    iommu_iotlb_gather_is_disjoint(gather, iova, size))
2097 		iommu_iotlb_sync(domain, gather);
2098 
2099 	iommu_iotlb_gather_add_range(gather, iova, size);
2100 }
2101 
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,size_t page_size,struct iommu_iotlb_gather * gather)2102 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2103 			      size_t page_size,
2104 			      struct iommu_iotlb_gather *gather)
2105 {
2106 	struct protection_domain *domain = to_pdomain(dom);
2107 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2108 	size_t r;
2109 
2110 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2111 	    (domain->iop.mode == PAGE_MODE_NONE))
2112 		return 0;
2113 
2114 	r = (ops->unmap) ? ops->unmap(ops, iova, page_size, gather) : 0;
2115 
2116 	amd_iommu_iotlb_gather_add_page(dom, gather, iova, page_size);
2117 
2118 	return r;
2119 }
2120 
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)2121 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2122 					  dma_addr_t iova)
2123 {
2124 	struct protection_domain *domain = to_pdomain(dom);
2125 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2126 
2127 	return ops->iova_to_phys(ops, iova);
2128 }
2129 
amd_iommu_capable(enum iommu_cap cap)2130 static bool amd_iommu_capable(enum iommu_cap cap)
2131 {
2132 	switch (cap) {
2133 	case IOMMU_CAP_CACHE_COHERENCY:
2134 		return true;
2135 	case IOMMU_CAP_INTR_REMAP:
2136 		return (irq_remapping_enabled == 1);
2137 	case IOMMU_CAP_NOEXEC:
2138 		return false;
2139 	default:
2140 		break;
2141 	}
2142 
2143 	return false;
2144 }
2145 
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2146 static void amd_iommu_get_resv_regions(struct device *dev,
2147 				       struct list_head *head)
2148 {
2149 	struct iommu_resv_region *region;
2150 	struct unity_map_entry *entry;
2151 	int devid;
2152 
2153 	devid = get_device_id(dev);
2154 	if (devid < 0)
2155 		return;
2156 
2157 	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
2158 		int type, prot = 0;
2159 		size_t length;
2160 
2161 		if (devid < entry->devid_start || devid > entry->devid_end)
2162 			continue;
2163 
2164 		type   = IOMMU_RESV_DIRECT;
2165 		length = entry->address_end - entry->address_start;
2166 		if (entry->prot & IOMMU_PROT_IR)
2167 			prot |= IOMMU_READ;
2168 		if (entry->prot & IOMMU_PROT_IW)
2169 			prot |= IOMMU_WRITE;
2170 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2171 			/* Exclusion range */
2172 			type = IOMMU_RESV_RESERVED;
2173 
2174 		region = iommu_alloc_resv_region(entry->address_start,
2175 						 length, prot, type);
2176 		if (!region) {
2177 			dev_err(dev, "Out of memory allocating dm-regions\n");
2178 			return;
2179 		}
2180 		list_add_tail(&region->list, head);
2181 	}
2182 
2183 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2184 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2185 					 0, IOMMU_RESV_MSI);
2186 	if (!region)
2187 		return;
2188 	list_add_tail(&region->list, head);
2189 
2190 	region = iommu_alloc_resv_region(HT_RANGE_START,
2191 					 HT_RANGE_END - HT_RANGE_START + 1,
2192 					 0, IOMMU_RESV_RESERVED);
2193 	if (!region)
2194 		return;
2195 	list_add_tail(&region->list, head);
2196 }
2197 
amd_iommu_is_attach_deferred(struct iommu_domain * domain,struct device * dev)2198 bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
2199 				  struct device *dev)
2200 {
2201 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2202 
2203 	return dev_data->defer_attach;
2204 }
2205 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2206 
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2207 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2208 {
2209 	struct protection_domain *dom = to_pdomain(domain);
2210 	unsigned long flags;
2211 
2212 	spin_lock_irqsave(&dom->lock, flags);
2213 	amd_iommu_domain_flush_tlb_pde(dom);
2214 	amd_iommu_domain_flush_complete(dom);
2215 	spin_unlock_irqrestore(&dom->lock, flags);
2216 }
2217 
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2218 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2219 				 struct iommu_iotlb_gather *gather)
2220 {
2221 	struct protection_domain *dom = to_pdomain(domain);
2222 	unsigned long flags;
2223 
2224 	spin_lock_irqsave(&dom->lock, flags);
2225 	domain_flush_pages(dom, gather->start, gather->end - gather->start + 1, 1);
2226 	amd_iommu_domain_flush_complete(dom);
2227 	spin_unlock_irqrestore(&dom->lock, flags);
2228 }
2229 
amd_iommu_def_domain_type(struct device * dev)2230 static int amd_iommu_def_domain_type(struct device *dev)
2231 {
2232 	struct iommu_dev_data *dev_data;
2233 
2234 	dev_data = dev_iommu_priv_get(dev);
2235 	if (!dev_data)
2236 		return 0;
2237 
2238 	/*
2239 	 * Do not identity map IOMMUv2 capable devices when memory encryption is
2240 	 * active, because some of those devices (AMD GPUs) don't have the
2241 	 * encryption bit in their DMA-mask and require remapping.
2242 	 */
2243 	if (!mem_encrypt_active() && dev_data->iommu_v2)
2244 		return IOMMU_DOMAIN_IDENTITY;
2245 
2246 	return 0;
2247 }
2248 
2249 const struct iommu_ops amd_iommu_ops = {
2250 	.capable = amd_iommu_capable,
2251 	.domain_alloc = amd_iommu_domain_alloc,
2252 	.domain_free  = amd_iommu_domain_free,
2253 	.attach_dev = amd_iommu_attach_device,
2254 	.detach_dev = amd_iommu_detach_device,
2255 	.map = amd_iommu_map,
2256 	.iotlb_sync_map	= amd_iommu_iotlb_sync_map,
2257 	.unmap = amd_iommu_unmap,
2258 	.iova_to_phys = amd_iommu_iova_to_phys,
2259 	.probe_device = amd_iommu_probe_device,
2260 	.release_device = amd_iommu_release_device,
2261 	.probe_finalize = amd_iommu_probe_finalize,
2262 	.device_group = amd_iommu_device_group,
2263 	.get_resv_regions = amd_iommu_get_resv_regions,
2264 	.put_resv_regions = generic_iommu_put_resv_regions,
2265 	.is_attach_deferred = amd_iommu_is_attach_deferred,
2266 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2267 	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2268 	.iotlb_sync = amd_iommu_iotlb_sync,
2269 	.def_domain_type = amd_iommu_def_domain_type,
2270 };
2271 
2272 /*****************************************************************************
2273  *
2274  * The next functions do a basic initialization of IOMMU for pass through
2275  * mode
2276  *
2277  * In passthrough mode the IOMMU is initialized and enabled but not used for
2278  * DMA-API translation.
2279  *
2280  *****************************************************************************/
2281 
2282 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)2283 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2284 {
2285 	return atomic_notifier_chain_register(&ppr_notifier, nb);
2286 }
2287 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2288 
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)2289 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2290 {
2291 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2292 }
2293 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2294 
amd_iommu_domain_direct_map(struct iommu_domain * dom)2295 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2296 {
2297 	struct protection_domain *domain = to_pdomain(dom);
2298 	unsigned long flags;
2299 
2300 	spin_lock_irqsave(&domain->lock, flags);
2301 
2302 	if (domain->iop.pgtbl_cfg.tlb)
2303 		free_io_pgtable_ops(&domain->iop.iop.ops);
2304 
2305 	spin_unlock_irqrestore(&domain->lock, flags);
2306 }
2307 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2308 
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)2309 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2310 {
2311 	struct protection_domain *domain = to_pdomain(dom);
2312 	unsigned long flags;
2313 	int levels, ret;
2314 
2315 	/* Number of GCR3 table levels required */
2316 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2317 		levels += 1;
2318 
2319 	if (levels > amd_iommu_max_glx_val)
2320 		return -EINVAL;
2321 
2322 	spin_lock_irqsave(&domain->lock, flags);
2323 
2324 	/*
2325 	 * Save us all sanity checks whether devices already in the
2326 	 * domain support IOMMUv2. Just force that the domain has no
2327 	 * devices attached when it is switched into IOMMUv2 mode.
2328 	 */
2329 	ret = -EBUSY;
2330 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
2331 		goto out;
2332 
2333 	ret = -ENOMEM;
2334 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2335 	if (domain->gcr3_tbl == NULL)
2336 		goto out;
2337 
2338 	domain->glx      = levels;
2339 	domain->flags   |= PD_IOMMUV2_MASK;
2340 
2341 	amd_iommu_domain_update(domain);
2342 
2343 	ret = 0;
2344 
2345 out:
2346 	spin_unlock_irqrestore(&domain->lock, flags);
2347 
2348 	return ret;
2349 }
2350 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2351 
__flush_pasid(struct protection_domain * domain,u32 pasid,u64 address,bool size)2352 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2353 			 u64 address, bool size)
2354 {
2355 	struct iommu_dev_data *dev_data;
2356 	struct iommu_cmd cmd;
2357 	int i, ret;
2358 
2359 	if (!(domain->flags & PD_IOMMUV2_MASK))
2360 		return -EINVAL;
2361 
2362 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2363 
2364 	/*
2365 	 * IOMMU TLB needs to be flushed before Device TLB to
2366 	 * prevent device TLB refill from IOMMU TLB
2367 	 */
2368 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2369 		if (domain->dev_iommu[i] == 0)
2370 			continue;
2371 
2372 		ret = iommu_queue_command(amd_iommus[i], &cmd);
2373 		if (ret != 0)
2374 			goto out;
2375 	}
2376 
2377 	/* Wait until IOMMU TLB flushes are complete */
2378 	amd_iommu_domain_flush_complete(domain);
2379 
2380 	/* Now flush device TLBs */
2381 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2382 		struct amd_iommu *iommu;
2383 		int qdep;
2384 
2385 		/*
2386 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
2387 		 * domain.
2388 		 */
2389 		if (!dev_data->ats.enabled)
2390 			continue;
2391 
2392 		qdep  = dev_data->ats.qdep;
2393 		iommu = amd_iommu_rlookup_table[dev_data->devid];
2394 
2395 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2396 				      qdep, address, size);
2397 
2398 		ret = iommu_queue_command(iommu, &cmd);
2399 		if (ret != 0)
2400 			goto out;
2401 	}
2402 
2403 	/* Wait until all device TLBs are flushed */
2404 	amd_iommu_domain_flush_complete(domain);
2405 
2406 	ret = 0;
2407 
2408 out:
2409 
2410 	return ret;
2411 }
2412 
__amd_iommu_flush_page(struct protection_domain * domain,u32 pasid,u64 address)2413 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2414 				  u64 address)
2415 {
2416 	return __flush_pasid(domain, pasid, address, false);
2417 }
2418 
amd_iommu_flush_page(struct iommu_domain * dom,u32 pasid,u64 address)2419 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2420 			 u64 address)
2421 {
2422 	struct protection_domain *domain = to_pdomain(dom);
2423 	unsigned long flags;
2424 	int ret;
2425 
2426 	spin_lock_irqsave(&domain->lock, flags);
2427 	ret = __amd_iommu_flush_page(domain, pasid, address);
2428 	spin_unlock_irqrestore(&domain->lock, flags);
2429 
2430 	return ret;
2431 }
2432 EXPORT_SYMBOL(amd_iommu_flush_page);
2433 
__amd_iommu_flush_tlb(struct protection_domain * domain,u32 pasid)2434 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2435 {
2436 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2437 			     true);
2438 }
2439 
amd_iommu_flush_tlb(struct iommu_domain * dom,u32 pasid)2440 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2441 {
2442 	struct protection_domain *domain = to_pdomain(dom);
2443 	unsigned long flags;
2444 	int ret;
2445 
2446 	spin_lock_irqsave(&domain->lock, flags);
2447 	ret = __amd_iommu_flush_tlb(domain, pasid);
2448 	spin_unlock_irqrestore(&domain->lock, flags);
2449 
2450 	return ret;
2451 }
2452 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2453 
__get_gcr3_pte(u64 * root,int level,u32 pasid,bool alloc)2454 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2455 {
2456 	int index;
2457 	u64 *pte;
2458 
2459 	while (true) {
2460 
2461 		index = (pasid >> (9 * level)) & 0x1ff;
2462 		pte   = &root[index];
2463 
2464 		if (level == 0)
2465 			break;
2466 
2467 		if (!(*pte & GCR3_VALID)) {
2468 			if (!alloc)
2469 				return NULL;
2470 
2471 			root = (void *)get_zeroed_page(GFP_ATOMIC);
2472 			if (root == NULL)
2473 				return NULL;
2474 
2475 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
2476 		}
2477 
2478 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
2479 
2480 		level -= 1;
2481 	}
2482 
2483 	return pte;
2484 }
2485 
__set_gcr3(struct protection_domain * domain,u32 pasid,unsigned long cr3)2486 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2487 		      unsigned long cr3)
2488 {
2489 	u64 *pte;
2490 
2491 	if (domain->iop.mode != PAGE_MODE_NONE)
2492 		return -EINVAL;
2493 
2494 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2495 	if (pte == NULL)
2496 		return -ENOMEM;
2497 
2498 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2499 
2500 	return __amd_iommu_flush_tlb(domain, pasid);
2501 }
2502 
__clear_gcr3(struct protection_domain * domain,u32 pasid)2503 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2504 {
2505 	u64 *pte;
2506 
2507 	if (domain->iop.mode != PAGE_MODE_NONE)
2508 		return -EINVAL;
2509 
2510 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2511 	if (pte == NULL)
2512 		return 0;
2513 
2514 	*pte = 0;
2515 
2516 	return __amd_iommu_flush_tlb(domain, pasid);
2517 }
2518 
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,u32 pasid,unsigned long cr3)2519 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2520 			      unsigned long cr3)
2521 {
2522 	struct protection_domain *domain = to_pdomain(dom);
2523 	unsigned long flags;
2524 	int ret;
2525 
2526 	spin_lock_irqsave(&domain->lock, flags);
2527 	ret = __set_gcr3(domain, pasid, cr3);
2528 	spin_unlock_irqrestore(&domain->lock, flags);
2529 
2530 	return ret;
2531 }
2532 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
2533 
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,u32 pasid)2534 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2535 {
2536 	struct protection_domain *domain = to_pdomain(dom);
2537 	unsigned long flags;
2538 	int ret;
2539 
2540 	spin_lock_irqsave(&domain->lock, flags);
2541 	ret = __clear_gcr3(domain, pasid);
2542 	spin_unlock_irqrestore(&domain->lock, flags);
2543 
2544 	return ret;
2545 }
2546 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
2547 
amd_iommu_complete_ppr(struct pci_dev * pdev,u32 pasid,int status,int tag)2548 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2549 			   int status, int tag)
2550 {
2551 	struct iommu_dev_data *dev_data;
2552 	struct amd_iommu *iommu;
2553 	struct iommu_cmd cmd;
2554 
2555 	dev_data = dev_iommu_priv_get(&pdev->dev);
2556 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
2557 
2558 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2559 			   tag, dev_data->pri_tlp);
2560 
2561 	return iommu_queue_command(iommu, &cmd);
2562 }
2563 EXPORT_SYMBOL(amd_iommu_complete_ppr);
2564 
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)2565 int amd_iommu_device_info(struct pci_dev *pdev,
2566                           struct amd_iommu_device_info *info)
2567 {
2568 	int max_pasids;
2569 	int pos;
2570 
2571 	if (pdev == NULL || info == NULL)
2572 		return -EINVAL;
2573 
2574 	if (!amd_iommu_v2_supported())
2575 		return -EINVAL;
2576 
2577 	memset(info, 0, sizeof(*info));
2578 
2579 	if (pci_ats_supported(pdev))
2580 		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
2581 
2582 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2583 	if (pos)
2584 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
2585 
2586 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
2587 	if (pos) {
2588 		int features;
2589 
2590 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
2591 		max_pasids = min(max_pasids, (1 << 20));
2592 
2593 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
2594 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
2595 
2596 		features = pci_pasid_features(pdev);
2597 		if (features & PCI_PASID_CAP_EXEC)
2598 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
2599 		if (features & PCI_PASID_CAP_PRIV)
2600 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
2601 	}
2602 
2603 	return 0;
2604 }
2605 EXPORT_SYMBOL(amd_iommu_device_info);
2606 
2607 #ifdef CONFIG_IRQ_REMAP
2608 
2609 /*****************************************************************************
2610  *
2611  * Interrupt Remapping Implementation
2612  *
2613  *****************************************************************************/
2614 
2615 static struct irq_chip amd_ir_chip;
2616 static DEFINE_SPINLOCK(iommu_table_lock);
2617 
set_dte_irq_entry(u16 devid,struct irq_remap_table * table)2618 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
2619 {
2620 	u64 dte;
2621 
2622 	dte	= amd_iommu_dev_table[devid].data[2];
2623 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
2624 	dte	|= iommu_virt_to_phys(table->table);
2625 	dte	|= DTE_IRQ_REMAP_INTCTL;
2626 	dte	|= DTE_INTTABLEN;
2627 	dte	|= DTE_IRQ_REMAP_ENABLE;
2628 
2629 	amd_iommu_dev_table[devid].data[2] = dte;
2630 }
2631 
get_irq_table(u16 devid)2632 static struct irq_remap_table *get_irq_table(u16 devid)
2633 {
2634 	struct irq_remap_table *table;
2635 
2636 	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
2637 		      "%s: no iommu for devid %x\n", __func__, devid))
2638 		return NULL;
2639 
2640 	table = irq_lookup_table[devid];
2641 	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
2642 		return NULL;
2643 
2644 	return table;
2645 }
2646 
__alloc_irq_table(void)2647 static struct irq_remap_table *__alloc_irq_table(void)
2648 {
2649 	struct irq_remap_table *table;
2650 
2651 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2652 	if (!table)
2653 		return NULL;
2654 
2655 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2656 	if (!table->table) {
2657 		kfree(table);
2658 		return NULL;
2659 	}
2660 	raw_spin_lock_init(&table->lock);
2661 
2662 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2663 		memset(table->table, 0,
2664 		       MAX_IRQS_PER_TABLE * sizeof(u32));
2665 	else
2666 		memset(table->table, 0,
2667 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2668 	return table;
2669 }
2670 
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)2671 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2672 				  struct irq_remap_table *table)
2673 {
2674 	irq_lookup_table[devid] = table;
2675 	set_dte_irq_entry(devid, table);
2676 	iommu_flush_dte(iommu, devid);
2677 }
2678 
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)2679 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2680 				       void *data)
2681 {
2682 	struct irq_remap_table *table = data;
2683 
2684 	irq_lookup_table[alias] = table;
2685 	set_dte_irq_entry(alias, table);
2686 
2687 	iommu_flush_dte(amd_iommu_rlookup_table[alias], alias);
2688 
2689 	return 0;
2690 }
2691 
alloc_irq_table(u16 devid,struct pci_dev * pdev)2692 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev)
2693 {
2694 	struct irq_remap_table *table = NULL;
2695 	struct irq_remap_table *new_table = NULL;
2696 	struct amd_iommu *iommu;
2697 	unsigned long flags;
2698 	u16 alias;
2699 
2700 	spin_lock_irqsave(&iommu_table_lock, flags);
2701 
2702 	iommu = amd_iommu_rlookup_table[devid];
2703 	if (!iommu)
2704 		goto out_unlock;
2705 
2706 	table = irq_lookup_table[devid];
2707 	if (table)
2708 		goto out_unlock;
2709 
2710 	alias = amd_iommu_alias_table[devid];
2711 	table = irq_lookup_table[alias];
2712 	if (table) {
2713 		set_remap_table_entry(iommu, devid, table);
2714 		goto out_wait;
2715 	}
2716 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2717 
2718 	/* Nothing there yet, allocate new irq remapping table */
2719 	new_table = __alloc_irq_table();
2720 	if (!new_table)
2721 		return NULL;
2722 
2723 	spin_lock_irqsave(&iommu_table_lock, flags);
2724 
2725 	table = irq_lookup_table[devid];
2726 	if (table)
2727 		goto out_unlock;
2728 
2729 	table = irq_lookup_table[alias];
2730 	if (table) {
2731 		set_remap_table_entry(iommu, devid, table);
2732 		goto out_wait;
2733 	}
2734 
2735 	table = new_table;
2736 	new_table = NULL;
2737 
2738 	if (pdev)
2739 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
2740 				       table);
2741 	else
2742 		set_remap_table_entry(iommu, devid, table);
2743 
2744 	if (devid != alias)
2745 		set_remap_table_entry(iommu, alias, table);
2746 
2747 out_wait:
2748 	iommu_completion_wait(iommu);
2749 
2750 out_unlock:
2751 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2752 
2753 	if (new_table) {
2754 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
2755 		kfree(new_table);
2756 	}
2757 	return table;
2758 }
2759 
alloc_irq_index(u16 devid,int count,bool align,struct pci_dev * pdev)2760 static int alloc_irq_index(u16 devid, int count, bool align,
2761 			   struct pci_dev *pdev)
2762 {
2763 	struct irq_remap_table *table;
2764 	int index, c, alignment = 1;
2765 	unsigned long flags;
2766 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
2767 
2768 	if (!iommu)
2769 		return -ENODEV;
2770 
2771 	table = alloc_irq_table(devid, pdev);
2772 	if (!table)
2773 		return -ENODEV;
2774 
2775 	if (align)
2776 		alignment = roundup_pow_of_two(count);
2777 
2778 	raw_spin_lock_irqsave(&table->lock, flags);
2779 
2780 	/* Scan table for free entries */
2781 	for (index = ALIGN(table->min_index, alignment), c = 0;
2782 	     index < MAX_IRQS_PER_TABLE;) {
2783 		if (!iommu->irte_ops->is_allocated(table, index)) {
2784 			c += 1;
2785 		} else {
2786 			c     = 0;
2787 			index = ALIGN(index + 1, alignment);
2788 			continue;
2789 		}
2790 
2791 		if (c == count)	{
2792 			for (; c != 0; --c)
2793 				iommu->irte_ops->set_allocated(table, index - c + 1);
2794 
2795 			index -= count - 1;
2796 			goto out;
2797 		}
2798 
2799 		index++;
2800 	}
2801 
2802 	index = -ENOSPC;
2803 
2804 out:
2805 	raw_spin_unlock_irqrestore(&table->lock, flags);
2806 
2807 	return index;
2808 }
2809 
modify_irte_ga(u16 devid,int index,struct irte_ga * irte,struct amd_ir_data * data)2810 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
2811 			  struct amd_ir_data *data)
2812 {
2813 	bool ret;
2814 	struct irq_remap_table *table;
2815 	struct amd_iommu *iommu;
2816 	unsigned long flags;
2817 	struct irte_ga *entry;
2818 
2819 	iommu = amd_iommu_rlookup_table[devid];
2820 	if (iommu == NULL)
2821 		return -EINVAL;
2822 
2823 	table = get_irq_table(devid);
2824 	if (!table)
2825 		return -ENOMEM;
2826 
2827 	raw_spin_lock_irqsave(&table->lock, flags);
2828 
2829 	entry = (struct irte_ga *)table->table;
2830 	entry = &entry[index];
2831 
2832 	ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
2833 			     entry->lo.val, entry->hi.val,
2834 			     irte->lo.val, irte->hi.val);
2835 	/*
2836 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
2837 	 * and it cannot be updated by the hardware or other processors
2838 	 * behind us, so the return value of cmpxchg16 should be the
2839 	 * same as the old value.
2840 	 */
2841 	WARN_ON(!ret);
2842 
2843 	if (data)
2844 		data->ref = entry;
2845 
2846 	raw_spin_unlock_irqrestore(&table->lock, flags);
2847 
2848 	iommu_flush_irt(iommu, devid);
2849 	iommu_completion_wait(iommu);
2850 
2851 	return 0;
2852 }
2853 
modify_irte(u16 devid,int index,union irte * irte)2854 static int modify_irte(u16 devid, int index, union irte *irte)
2855 {
2856 	struct irq_remap_table *table;
2857 	struct amd_iommu *iommu;
2858 	unsigned long flags;
2859 
2860 	iommu = amd_iommu_rlookup_table[devid];
2861 	if (iommu == NULL)
2862 		return -EINVAL;
2863 
2864 	table = get_irq_table(devid);
2865 	if (!table)
2866 		return -ENOMEM;
2867 
2868 	raw_spin_lock_irqsave(&table->lock, flags);
2869 	table->table[index] = irte->val;
2870 	raw_spin_unlock_irqrestore(&table->lock, flags);
2871 
2872 	iommu_flush_irt(iommu, devid);
2873 	iommu_completion_wait(iommu);
2874 
2875 	return 0;
2876 }
2877 
free_irte(u16 devid,int index)2878 static void free_irte(u16 devid, int index)
2879 {
2880 	struct irq_remap_table *table;
2881 	struct amd_iommu *iommu;
2882 	unsigned long flags;
2883 
2884 	iommu = amd_iommu_rlookup_table[devid];
2885 	if (iommu == NULL)
2886 		return;
2887 
2888 	table = get_irq_table(devid);
2889 	if (!table)
2890 		return;
2891 
2892 	raw_spin_lock_irqsave(&table->lock, flags);
2893 	iommu->irte_ops->clear_allocated(table, index);
2894 	raw_spin_unlock_irqrestore(&table->lock, flags);
2895 
2896 	iommu_flush_irt(iommu, devid);
2897 	iommu_completion_wait(iommu);
2898 }
2899 
irte_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)2900 static void irte_prepare(void *entry,
2901 			 u32 delivery_mode, bool dest_mode,
2902 			 u8 vector, u32 dest_apicid, int devid)
2903 {
2904 	union irte *irte = (union irte *) entry;
2905 
2906 	irte->val                = 0;
2907 	irte->fields.vector      = vector;
2908 	irte->fields.int_type    = delivery_mode;
2909 	irte->fields.destination = dest_apicid;
2910 	irte->fields.dm          = dest_mode;
2911 	irte->fields.valid       = 1;
2912 }
2913 
irte_ga_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)2914 static void irte_ga_prepare(void *entry,
2915 			    u32 delivery_mode, bool dest_mode,
2916 			    u8 vector, u32 dest_apicid, int devid)
2917 {
2918 	struct irte_ga *irte = (struct irte_ga *) entry;
2919 
2920 	irte->lo.val                      = 0;
2921 	irte->hi.val                      = 0;
2922 	irte->lo.fields_remap.int_type    = delivery_mode;
2923 	irte->lo.fields_remap.dm          = dest_mode;
2924 	irte->hi.fields.vector            = vector;
2925 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
2926 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
2927 	irte->lo.fields_remap.valid       = 1;
2928 }
2929 
irte_activate(void * entry,u16 devid,u16 index)2930 static void irte_activate(void *entry, u16 devid, u16 index)
2931 {
2932 	union irte *irte = (union irte *) entry;
2933 
2934 	irte->fields.valid = 1;
2935 	modify_irte(devid, index, irte);
2936 }
2937 
irte_ga_activate(void * entry,u16 devid,u16 index)2938 static void irte_ga_activate(void *entry, u16 devid, u16 index)
2939 {
2940 	struct irte_ga *irte = (struct irte_ga *) entry;
2941 
2942 	irte->lo.fields_remap.valid = 1;
2943 	modify_irte_ga(devid, index, irte, NULL);
2944 }
2945 
irte_deactivate(void * entry,u16 devid,u16 index)2946 static void irte_deactivate(void *entry, u16 devid, u16 index)
2947 {
2948 	union irte *irte = (union irte *) entry;
2949 
2950 	irte->fields.valid = 0;
2951 	modify_irte(devid, index, irte);
2952 }
2953 
irte_ga_deactivate(void * entry,u16 devid,u16 index)2954 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
2955 {
2956 	struct irte_ga *irte = (struct irte_ga *) entry;
2957 
2958 	irte->lo.fields_remap.valid = 0;
2959 	modify_irte_ga(devid, index, irte, NULL);
2960 }
2961 
irte_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)2962 static void irte_set_affinity(void *entry, u16 devid, u16 index,
2963 			      u8 vector, u32 dest_apicid)
2964 {
2965 	union irte *irte = (union irte *) entry;
2966 
2967 	irte->fields.vector = vector;
2968 	irte->fields.destination = dest_apicid;
2969 	modify_irte(devid, index, irte);
2970 }
2971 
irte_ga_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)2972 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
2973 				 u8 vector, u32 dest_apicid)
2974 {
2975 	struct irte_ga *irte = (struct irte_ga *) entry;
2976 
2977 	if (!irte->lo.fields_remap.guest_mode) {
2978 		irte->hi.fields.vector = vector;
2979 		irte->lo.fields_remap.destination =
2980 					APICID_TO_IRTE_DEST_LO(dest_apicid);
2981 		irte->hi.fields.destination =
2982 					APICID_TO_IRTE_DEST_HI(dest_apicid);
2983 		modify_irte_ga(devid, index, irte, NULL);
2984 	}
2985 }
2986 
2987 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)2988 static void irte_set_allocated(struct irq_remap_table *table, int index)
2989 {
2990 	table->table[index] = IRTE_ALLOCATED;
2991 }
2992 
irte_ga_set_allocated(struct irq_remap_table * table,int index)2993 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
2994 {
2995 	struct irte_ga *ptr = (struct irte_ga *)table->table;
2996 	struct irte_ga *irte = &ptr[index];
2997 
2998 	memset(&irte->lo.val, 0, sizeof(u64));
2999 	memset(&irte->hi.val, 0, sizeof(u64));
3000 	irte->hi.fields.vector = 0xff;
3001 }
3002 
irte_is_allocated(struct irq_remap_table * table,int index)3003 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3004 {
3005 	union irte *ptr = (union irte *)table->table;
3006 	union irte *irte = &ptr[index];
3007 
3008 	return irte->val != 0;
3009 }
3010 
irte_ga_is_allocated(struct irq_remap_table * table,int index)3011 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3012 {
3013 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3014 	struct irte_ga *irte = &ptr[index];
3015 
3016 	return irte->hi.fields.vector != 0;
3017 }
3018 
irte_clear_allocated(struct irq_remap_table * table,int index)3019 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3020 {
3021 	table->table[index] = 0;
3022 }
3023 
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3024 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3025 {
3026 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3027 	struct irte_ga *irte = &ptr[index];
3028 
3029 	memset(&irte->lo.val, 0, sizeof(u64));
3030 	memset(&irte->hi.val, 0, sizeof(u64));
3031 }
3032 
get_devid(struct irq_alloc_info * info)3033 static int get_devid(struct irq_alloc_info *info)
3034 {
3035 	switch (info->type) {
3036 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3037 		return get_ioapic_devid(info->devid);
3038 	case X86_IRQ_ALLOC_TYPE_HPET:
3039 		return get_hpet_devid(info->devid);
3040 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3041 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3042 		return get_device_id(msi_desc_to_dev(info->desc));
3043 	default:
3044 		WARN_ON_ONCE(1);
3045 		return -1;
3046 	}
3047 }
3048 
3049 struct irq_remap_ops amd_iommu_irq_ops = {
3050 	.prepare		= amd_iommu_prepare,
3051 	.enable			= amd_iommu_enable,
3052 	.disable		= amd_iommu_disable,
3053 	.reenable		= amd_iommu_reenable,
3054 	.enable_faulting	= amd_iommu_enable_faulting,
3055 };
3056 
fill_msi_msg(struct msi_msg * msg,u32 index)3057 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3058 {
3059 	msg->data = index;
3060 	msg->address_lo = 0;
3061 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3062 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3063 }
3064 
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3065 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3066 				       struct irq_cfg *irq_cfg,
3067 				       struct irq_alloc_info *info,
3068 				       int devid, int index, int sub_handle)
3069 {
3070 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3071 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3072 
3073 	if (!iommu)
3074 		return;
3075 
3076 	data->irq_2_irte.devid = devid;
3077 	data->irq_2_irte.index = index + sub_handle;
3078 	iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
3079 				 apic->dest_mode_logical, irq_cfg->vector,
3080 				 irq_cfg->dest_apicid, devid);
3081 
3082 	switch (info->type) {
3083 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3084 	case X86_IRQ_ALLOC_TYPE_HPET:
3085 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3086 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3087 		fill_msi_msg(&data->msi_entry, irte_info->index);
3088 		break;
3089 
3090 	default:
3091 		BUG_ON(1);
3092 		break;
3093 	}
3094 }
3095 
3096 struct amd_irte_ops irte_32_ops = {
3097 	.prepare = irte_prepare,
3098 	.activate = irte_activate,
3099 	.deactivate = irte_deactivate,
3100 	.set_affinity = irte_set_affinity,
3101 	.set_allocated = irte_set_allocated,
3102 	.is_allocated = irte_is_allocated,
3103 	.clear_allocated = irte_clear_allocated,
3104 };
3105 
3106 struct amd_irte_ops irte_128_ops = {
3107 	.prepare = irte_ga_prepare,
3108 	.activate = irte_ga_activate,
3109 	.deactivate = irte_ga_deactivate,
3110 	.set_affinity = irte_ga_set_affinity,
3111 	.set_allocated = irte_ga_set_allocated,
3112 	.is_allocated = irte_ga_is_allocated,
3113 	.clear_allocated = irte_ga_clear_allocated,
3114 };
3115 
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3116 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3117 			       unsigned int nr_irqs, void *arg)
3118 {
3119 	struct irq_alloc_info *info = arg;
3120 	struct irq_data *irq_data;
3121 	struct amd_ir_data *data = NULL;
3122 	struct irq_cfg *cfg;
3123 	int i, ret, devid;
3124 	int index;
3125 
3126 	if (!info)
3127 		return -EINVAL;
3128 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
3129 	    info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
3130 		return -EINVAL;
3131 
3132 	/*
3133 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
3134 	 * to support multiple MSI interrupts.
3135 	 */
3136 	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
3137 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3138 
3139 	devid = get_devid(info);
3140 	if (devid < 0)
3141 		return -EINVAL;
3142 
3143 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3144 	if (ret < 0)
3145 		return ret;
3146 
3147 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3148 		struct irq_remap_table *table;
3149 		struct amd_iommu *iommu;
3150 
3151 		table = alloc_irq_table(devid, NULL);
3152 		if (table) {
3153 			if (!table->min_index) {
3154 				/*
3155 				 * Keep the first 32 indexes free for IOAPIC
3156 				 * interrupts.
3157 				 */
3158 				table->min_index = 32;
3159 				iommu = amd_iommu_rlookup_table[devid];
3160 				for (i = 0; i < 32; ++i)
3161 					iommu->irte_ops->set_allocated(table, i);
3162 			}
3163 			WARN_ON(table->min_index != 32);
3164 			index = info->ioapic.pin;
3165 		} else {
3166 			index = -ENOMEM;
3167 		}
3168 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3169 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3170 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3171 
3172 		index = alloc_irq_index(devid, nr_irqs, align,
3173 					msi_desc_to_pci_dev(info->desc));
3174 	} else {
3175 		index = alloc_irq_index(devid, nr_irqs, false, NULL);
3176 	}
3177 
3178 	if (index < 0) {
3179 		pr_warn("Failed to allocate IRTE\n");
3180 		ret = index;
3181 		goto out_free_parent;
3182 	}
3183 
3184 	for (i = 0; i < nr_irqs; i++) {
3185 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3186 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3187 		if (!cfg) {
3188 			ret = -EINVAL;
3189 			goto out_free_data;
3190 		}
3191 
3192 		ret = -ENOMEM;
3193 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3194 		if (!data)
3195 			goto out_free_data;
3196 
3197 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3198 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3199 		else
3200 			data->entry = kzalloc(sizeof(struct irte_ga),
3201 						     GFP_KERNEL);
3202 		if (!data->entry) {
3203 			kfree(data);
3204 			goto out_free_data;
3205 		}
3206 
3207 		irq_data->hwirq = (devid << 16) + i;
3208 		irq_data->chip_data = data;
3209 		irq_data->chip = &amd_ir_chip;
3210 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3211 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3212 	}
3213 
3214 	return 0;
3215 
3216 out_free_data:
3217 	for (i--; i >= 0; i--) {
3218 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3219 		if (irq_data)
3220 			kfree(irq_data->chip_data);
3221 	}
3222 	for (i = 0; i < nr_irqs; i++)
3223 		free_irte(devid, index + i);
3224 out_free_parent:
3225 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3226 	return ret;
3227 }
3228 
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3229 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3230 			       unsigned int nr_irqs)
3231 {
3232 	struct irq_2_irte *irte_info;
3233 	struct irq_data *irq_data;
3234 	struct amd_ir_data *data;
3235 	int i;
3236 
3237 	for (i = 0; i < nr_irqs; i++) {
3238 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3239 		if (irq_data && irq_data->chip_data) {
3240 			data = irq_data->chip_data;
3241 			irte_info = &data->irq_2_irte;
3242 			free_irte(irte_info->devid, irte_info->index);
3243 			kfree(data->entry);
3244 			kfree(data);
3245 		}
3246 	}
3247 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3248 }
3249 
3250 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3251 			       struct amd_ir_data *ir_data,
3252 			       struct irq_2_irte *irte_info,
3253 			       struct irq_cfg *cfg);
3254 
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3255 static int irq_remapping_activate(struct irq_domain *domain,
3256 				  struct irq_data *irq_data, bool reserve)
3257 {
3258 	struct amd_ir_data *data = irq_data->chip_data;
3259 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3260 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3261 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3262 
3263 	if (!iommu)
3264 		return 0;
3265 
3266 	iommu->irte_ops->activate(data->entry, irte_info->devid,
3267 				  irte_info->index);
3268 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3269 	return 0;
3270 }
3271 
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3272 static void irq_remapping_deactivate(struct irq_domain *domain,
3273 				     struct irq_data *irq_data)
3274 {
3275 	struct amd_ir_data *data = irq_data->chip_data;
3276 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3277 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3278 
3279 	if (iommu)
3280 		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
3281 					    irte_info->index);
3282 }
3283 
irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)3284 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3285 				enum irq_domain_bus_token bus_token)
3286 {
3287 	struct amd_iommu *iommu;
3288 	int devid = -1;
3289 
3290 	if (!amd_iommu_irq_remap)
3291 		return 0;
3292 
3293 	if (x86_fwspec_is_ioapic(fwspec))
3294 		devid = get_ioapic_devid(fwspec->param[0]);
3295 	else if (x86_fwspec_is_hpet(fwspec))
3296 		devid = get_hpet_devid(fwspec->param[0]);
3297 
3298 	if (devid < 0)
3299 		return 0;
3300 
3301 	iommu = amd_iommu_rlookup_table[devid];
3302 	return iommu && iommu->ir_domain == d;
3303 }
3304 
3305 static const struct irq_domain_ops amd_ir_domain_ops = {
3306 	.select = irq_remapping_select,
3307 	.alloc = irq_remapping_alloc,
3308 	.free = irq_remapping_free,
3309 	.activate = irq_remapping_activate,
3310 	.deactivate = irq_remapping_deactivate,
3311 };
3312 
amd_iommu_activate_guest_mode(void * data)3313 int amd_iommu_activate_guest_mode(void *data)
3314 {
3315 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3316 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3317 	u64 valid;
3318 
3319 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3320 		return 0;
3321 
3322 	valid = entry->lo.fields_vapic.valid;
3323 
3324 	entry->lo.val = 0;
3325 	entry->hi.val = 0;
3326 
3327 	entry->lo.fields_vapic.valid       = valid;
3328 	entry->lo.fields_vapic.guest_mode  = 1;
3329 	entry->lo.fields_vapic.ga_log_intr = 1;
3330 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3331 	entry->hi.fields.vector            = ir_data->ga_vector;
3332 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3333 
3334 	return modify_irte_ga(ir_data->irq_2_irte.devid,
3335 			      ir_data->irq_2_irte.index, entry, ir_data);
3336 }
3337 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3338 
amd_iommu_deactivate_guest_mode(void * data)3339 int amd_iommu_deactivate_guest_mode(void *data)
3340 {
3341 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3342 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3343 	struct irq_cfg *cfg = ir_data->cfg;
3344 	u64 valid;
3345 
3346 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3347 	    !entry || !entry->lo.fields_vapic.guest_mode)
3348 		return 0;
3349 
3350 	valid = entry->lo.fields_remap.valid;
3351 
3352 	entry->lo.val = 0;
3353 	entry->hi.val = 0;
3354 
3355 	entry->lo.fields_remap.valid       = valid;
3356 	entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3357 	entry->lo.fields_remap.int_type    = apic->delivery_mode;
3358 	entry->hi.fields.vector            = cfg->vector;
3359 	entry->lo.fields_remap.destination =
3360 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3361 	entry->hi.fields.destination =
3362 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3363 
3364 	return modify_irte_ga(ir_data->irq_2_irte.devid,
3365 			      ir_data->irq_2_irte.index, entry, ir_data);
3366 }
3367 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3368 
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)3369 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3370 {
3371 	int ret;
3372 	struct amd_iommu *iommu;
3373 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3374 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3375 	struct amd_ir_data *ir_data = data->chip_data;
3376 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3377 	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
3378 
3379 	/* Note:
3380 	 * This device has never been set up for guest mode.
3381 	 * we should not modify the IRTE
3382 	 */
3383 	if (!dev_data || !dev_data->use_vapic)
3384 		return 0;
3385 
3386 	ir_data->cfg = irqd_cfg(data);
3387 	pi_data->ir_data = ir_data;
3388 
3389 	/* Note:
3390 	 * SVM tries to set up for VAPIC mode, but we are in
3391 	 * legacy mode. So, we force legacy mode instead.
3392 	 */
3393 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3394 		pr_debug("%s: Fall back to using intr legacy remap\n",
3395 			 __func__);
3396 		pi_data->is_guest_mode = false;
3397 	}
3398 
3399 	iommu = amd_iommu_rlookup_table[irte_info->devid];
3400 	if (iommu == NULL)
3401 		return -EINVAL;
3402 
3403 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3404 	if (pi_data->is_guest_mode) {
3405 		ir_data->ga_root_ptr = (pi_data->base >> 12);
3406 		ir_data->ga_vector = vcpu_pi_info->vector;
3407 		ir_data->ga_tag = pi_data->ga_tag;
3408 		ret = amd_iommu_activate_guest_mode(ir_data);
3409 		if (!ret)
3410 			ir_data->cached_ga_tag = pi_data->ga_tag;
3411 	} else {
3412 		ret = amd_iommu_deactivate_guest_mode(ir_data);
3413 
3414 		/*
3415 		 * This communicates the ga_tag back to the caller
3416 		 * so that it can do all the necessary clean up.
3417 		 */
3418 		if (!ret)
3419 			ir_data->cached_ga_tag = 0;
3420 	}
3421 
3422 	return ret;
3423 }
3424 
3425 
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)3426 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3427 			       struct amd_ir_data *ir_data,
3428 			       struct irq_2_irte *irte_info,
3429 			       struct irq_cfg *cfg)
3430 {
3431 
3432 	/*
3433 	 * Atomically updates the IRTE with the new destination, vector
3434 	 * and flushes the interrupt entry cache.
3435 	 */
3436 	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
3437 				      irte_info->index, cfg->vector,
3438 				      cfg->dest_apicid);
3439 }
3440 
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3441 static int amd_ir_set_affinity(struct irq_data *data,
3442 			       const struct cpumask *mask, bool force)
3443 {
3444 	struct amd_ir_data *ir_data = data->chip_data;
3445 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3446 	struct irq_cfg *cfg = irqd_cfg(data);
3447 	struct irq_data *parent = data->parent_data;
3448 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3449 	int ret;
3450 
3451 	if (!iommu)
3452 		return -ENODEV;
3453 
3454 	ret = parent->chip->irq_set_affinity(parent, mask, force);
3455 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3456 		return ret;
3457 
3458 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3459 	/*
3460 	 * After this point, all the interrupts will start arriving
3461 	 * at the new destination. So, time to cleanup the previous
3462 	 * vector allocation.
3463 	 */
3464 	send_cleanup_vector(cfg);
3465 
3466 	return IRQ_SET_MASK_OK_DONE;
3467 }
3468 
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)3469 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3470 {
3471 	struct amd_ir_data *ir_data = irq_data->chip_data;
3472 
3473 	*msg = ir_data->msi_entry;
3474 }
3475 
3476 static struct irq_chip amd_ir_chip = {
3477 	.name			= "AMD-IR",
3478 	.irq_ack		= apic_ack_irq,
3479 	.irq_set_affinity	= amd_ir_set_affinity,
3480 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
3481 	.irq_compose_msi_msg	= ir_compose_msi_msg,
3482 };
3483 
amd_iommu_create_irq_domain(struct amd_iommu * iommu)3484 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3485 {
3486 	struct fwnode_handle *fn;
3487 
3488 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3489 	if (!fn)
3490 		return -ENOMEM;
3491 	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
3492 	if (!iommu->ir_domain) {
3493 		irq_domain_free_fwnode(fn);
3494 		return -ENOMEM;
3495 	}
3496 
3497 	iommu->ir_domain->parent = arch_get_ir_parent_domain();
3498 	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
3499 							     "AMD-IR-MSI",
3500 							     iommu->index);
3501 	return 0;
3502 }
3503 
amd_iommu_update_ga(int cpu,bool is_run,void * data)3504 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3505 {
3506 	unsigned long flags;
3507 	struct amd_iommu *iommu;
3508 	struct irq_remap_table *table;
3509 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3510 	int devid = ir_data->irq_2_irte.devid;
3511 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3512 	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
3513 
3514 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3515 	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
3516 		return 0;
3517 
3518 	iommu = amd_iommu_rlookup_table[devid];
3519 	if (!iommu)
3520 		return -ENODEV;
3521 
3522 	table = get_irq_table(devid);
3523 	if (!table)
3524 		return -ENODEV;
3525 
3526 	raw_spin_lock_irqsave(&table->lock, flags);
3527 
3528 	if (ref->lo.fields_vapic.guest_mode) {
3529 		if (cpu >= 0) {
3530 			ref->lo.fields_vapic.destination =
3531 						APICID_TO_IRTE_DEST_LO(cpu);
3532 			ref->hi.fields.destination =
3533 						APICID_TO_IRTE_DEST_HI(cpu);
3534 		}
3535 		ref->lo.fields_vapic.is_run = is_run;
3536 		barrier();
3537 	}
3538 
3539 	raw_spin_unlock_irqrestore(&table->lock, flags);
3540 
3541 	iommu_flush_irt(iommu, devid);
3542 	iommu_completion_wait(iommu);
3543 	return 0;
3544 }
3545 EXPORT_SYMBOL(amd_iommu_update_ga);
3546 #endif
3547