1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40
41 #include "usb.h"
42 #include "phy.h"
43
44
45 /*-------------------------------------------------------------------------*/
46
47 /*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78 /*-------------------------------------------------------------------------*/
79
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS 64
90
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107 /*-------------------------------------------------------------------------*/
108
109 /*
110 * Sharable chunks of root hub code.
111 */
112
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR)
115 #define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL)
116
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136 };
137
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157 };
158
159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160 static const u8 usb25_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178 };
179
180 /* usb 2.0 root hub device descriptor */
181 static const u8 usb2_rh_dev_descriptor[18] = {
182 0x12, /* __u8 bLength; */
183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
185
186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
187 0x00, /* __u8 bDeviceSubClass; */
188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
190
191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
194
195 0x03, /* __u8 iManufacturer; */
196 0x02, /* __u8 iProduct; */
197 0x01, /* __u8 iSerialNumber; */
198 0x01 /* __u8 bNumConfigurations; */
199 };
200
201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202
203 /* usb 1.1 root hub device descriptor */
204 static const u8 usb11_rh_dev_descriptor[18] = {
205 0x12, /* __u8 bLength; */
206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
208
209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
210 0x00, /* __u8 bDeviceSubClass; */
211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
213
214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
217
218 0x03, /* __u8 iManufacturer; */
219 0x02, /* __u8 iProduct; */
220 0x01, /* __u8 iSerialNumber; */
221 0x01 /* __u8 bNumConfigurations; */
222 };
223
224
225 /*-------------------------------------------------------------------------*/
226
227 /* Configuration descriptors for our root hubs */
228
229 static const u8 fs_rh_config_descriptor[] = {
230
231 /* one configuration */
232 0x09, /* __u8 bLength; */
233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 0x19, 0x00, /* __le16 wTotalLength; */
235 0x01, /* __u8 bNumInterfaces; (1) */
236 0x01, /* __u8 bConfigurationValue; */
237 0x00, /* __u8 iConfiguration; */
238 0xc0, /* __u8 bmAttributes;
239 Bit 7: must be set,
240 6: Self-powered,
241 5: Remote wakeup,
242 4..0: resvd */
243 0x00, /* __u8 MaxPower; */
244
245 /* USB 1.1:
246 * USB 2.0, single TT organization (mandatory):
247 * one interface, protocol 0
248 *
249 * USB 2.0, multiple TT organization (optional):
250 * two interfaces, protocols 1 (like single TT)
251 * and 2 (multiple TT mode) ... config is
252 * sometimes settable
253 * NOT IMPLEMENTED
254 */
255
256 /* one interface */
257 0x09, /* __u8 if_bLength; */
258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
259 0x00, /* __u8 if_bInterfaceNumber; */
260 0x00, /* __u8 if_bAlternateSetting; */
261 0x01, /* __u8 if_bNumEndpoints; */
262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
263 0x00, /* __u8 if_bInterfaceSubClass; */
264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
265 0x00, /* __u8 if_iInterface; */
266
267 /* one endpoint (status change endpoint) */
268 0x07, /* __u8 ep_bLength; */
269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
271 0x03, /* __u8 ep_bmAttributes; Interrupt */
272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
274 };
275
276 static const u8 hs_rh_config_descriptor[] = {
277
278 /* one configuration */
279 0x09, /* __u8 bLength; */
280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 0x19, 0x00, /* __le16 wTotalLength; */
282 0x01, /* __u8 bNumInterfaces; (1) */
283 0x01, /* __u8 bConfigurationValue; */
284 0x00, /* __u8 iConfiguration; */
285 0xc0, /* __u8 bmAttributes;
286 Bit 7: must be set,
287 6: Self-powered,
288 5: Remote wakeup,
289 4..0: resvd */
290 0x00, /* __u8 MaxPower; */
291
292 /* USB 1.1:
293 * USB 2.0, single TT organization (mandatory):
294 * one interface, protocol 0
295 *
296 * USB 2.0, multiple TT organization (optional):
297 * two interfaces, protocols 1 (like single TT)
298 * and 2 (multiple TT mode) ... config is
299 * sometimes settable
300 * NOT IMPLEMENTED
301 */
302
303 /* one interface */
304 0x09, /* __u8 if_bLength; */
305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 0x00, /* __u8 if_bInterfaceNumber; */
307 0x00, /* __u8 if_bAlternateSetting; */
308 0x01, /* __u8 if_bNumEndpoints; */
309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
310 0x00, /* __u8 if_bInterfaceSubClass; */
311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
312 0x00, /* __u8 if_iInterface; */
313
314 /* one endpoint (status change endpoint) */
315 0x07, /* __u8 ep_bLength; */
316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
318 0x03, /* __u8 ep_bmAttributes; Interrupt */
319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 * see hub.c:hub_configure() for details. */
321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
323 };
324
325 static const u8 ss_rh_config_descriptor[] = {
326 /* one configuration */
327 0x09, /* __u8 bLength; */
328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 0x1f, 0x00, /* __le16 wTotalLength; */
330 0x01, /* __u8 bNumInterfaces; (1) */
331 0x01, /* __u8 bConfigurationValue; */
332 0x00, /* __u8 iConfiguration; */
333 0xc0, /* __u8 bmAttributes;
334 Bit 7: must be set,
335 6: Self-powered,
336 5: Remote wakeup,
337 4..0: resvd */
338 0x00, /* __u8 MaxPower; */
339
340 /* one interface */
341 0x09, /* __u8 if_bLength; */
342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 0x00, /* __u8 if_bInterfaceNumber; */
344 0x00, /* __u8 if_bAlternateSetting; */
345 0x01, /* __u8 if_bNumEndpoints; */
346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
347 0x00, /* __u8 if_bInterfaceSubClass; */
348 0x00, /* __u8 if_bInterfaceProtocol; */
349 0x00, /* __u8 if_iInterface; */
350
351 /* one endpoint (status change endpoint) */
352 0x07, /* __u8 ep_bLength; */
353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
355 0x03, /* __u8 ep_bmAttributes; Interrupt */
356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 * see hub.c:hub_configure() for details. */
358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
360
361 /* one SuperSpeed endpoint companion descriptor */
362 0x06, /* __u8 ss_bLength */
363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 /* Companion */
365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368 };
369
370 /* authorized_default behaviour:
371 * -1 is authorized for all devices except wireless (old behaviour)
372 * 0 is unauthorized for all devices
373 * 1 is authorized for all devices
374 * 2 is authorized for internal devices
375 */
376 #define USB_AUTHORIZE_WIRED -1
377 #define USB_AUTHORIZE_NONE 0
378 #define USB_AUTHORIZE_ALL 1
379 #define USB_AUTHORIZE_INTERNAL 2
380
381 static int authorized_default = USB_AUTHORIZE_WIRED;
382 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383 MODULE_PARM_DESC(authorized_default,
384 "Default USB device authorization: 0 is not authorized, 1 is "
385 "authorized, 2 is authorized for internal devices, -1 is "
386 "authorized except for wireless USB (default, old behaviour)");
387 /*-------------------------------------------------------------------------*/
388
389 /**
390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393 * @len: Length (in bytes; may be odd) of descriptor buffer.
394 *
395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396 * whichever is less.
397 *
398 * Note:
399 * USB String descriptors can contain at most 126 characters; input
400 * strings longer than that are truncated.
401 */
402 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)403 ascii2desc(char const *s, u8 *buf, unsigned len)
404 {
405 unsigned n, t = 2 + 2*strlen(s);
406
407 if (t > 254)
408 t = 254; /* Longest possible UTF string descriptor */
409 if (len > t)
410 len = t;
411
412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
413
414 n = len;
415 while (n--) {
416 *buf++ = t;
417 if (!n--)
418 break;
419 *buf++ = t >> 8;
420 t = (unsigned char)*s++;
421 }
422 return len;
423 }
424
425 /**
426 * rh_string() - provides string descriptors for root hub
427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428 * @hcd: the host controller for this root hub
429 * @data: buffer for output packet
430 * @len: length of the provided buffer
431 *
432 * Produces either a manufacturer, product or serial number string for the
433 * virtual root hub device.
434 *
435 * Return: The number of bytes filled in: the length of the descriptor or
436 * of the provided buffer, whichever is less.
437 */
438 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440 {
441 char buf[100];
442 char const *s;
443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444
445 /* language ids */
446 switch (id) {
447 case 0:
448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 if (len > 4)
451 len = 4;
452 memcpy(data, langids, len);
453 return len;
454 case 1:
455 /* Serial number */
456 s = hcd->self.bus_name;
457 break;
458 case 2:
459 /* Product name */
460 s = hcd->product_desc;
461 break;
462 case 3:
463 /* Manufacturer */
464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 init_utsname()->release, hcd->driver->description);
466 s = buf;
467 break;
468 default:
469 /* Can't happen; caller guarantees it */
470 return 0;
471 }
472
473 return ascii2desc(s, data, len);
474 }
475
476
477 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479 {
480 struct usb_ctrlrequest *cmd;
481 u16 typeReq, wValue, wIndex, wLength;
482 u8 *ubuf = urb->transfer_buffer;
483 unsigned len = 0;
484 int status;
485 u8 patch_wakeup = 0;
486 u8 patch_protocol = 0;
487 u16 tbuf_size;
488 u8 *tbuf = NULL;
489 const u8 *bufp;
490
491 might_sleep();
492
493 spin_lock_irq(&hcd_root_hub_lock);
494 status = usb_hcd_link_urb_to_ep(hcd, urb);
495 spin_unlock_irq(&hcd_root_hub_lock);
496 if (status)
497 return status;
498 urb->hcpriv = hcd; /* Indicate it's queued */
499
500 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
502 wValue = le16_to_cpu (cmd->wValue);
503 wIndex = le16_to_cpu (cmd->wIndex);
504 wLength = le16_to_cpu (cmd->wLength);
505
506 if (wLength > urb->transfer_buffer_length)
507 goto error;
508
509 /*
510 * tbuf should be at least as big as the
511 * USB hub descriptor.
512 */
513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 if (!tbuf) {
516 status = -ENOMEM;
517 goto err_alloc;
518 }
519
520 bufp = tbuf;
521
522
523 urb->actual_length = 0;
524 switch (typeReq) {
525
526 /* DEVICE REQUESTS */
527
528 /* The root hub's remote wakeup enable bit is implemented using
529 * driver model wakeup flags. If this system supports wakeup
530 * through USB, userspace may change the default "allow wakeup"
531 * policy through sysfs or these calls.
532 *
533 * Most root hubs support wakeup from downstream devices, for
534 * runtime power management (disabling USB clocks and reducing
535 * VBUS power usage). However, not all of them do so; silicon,
536 * board, and BIOS bugs here are not uncommon, so these can't
537 * be treated quite like external hubs.
538 *
539 * Likewise, not all root hubs will pass wakeup events upstream,
540 * to wake up the whole system. So don't assume root hub and
541 * controller capabilities are identical.
542 */
543
544 case DeviceRequest | USB_REQ_GET_STATUS:
545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 << USB_DEVICE_REMOTE_WAKEUP)
547 | (1 << USB_DEVICE_SELF_POWERED);
548 tbuf[1] = 0;
549 len = 2;
550 break;
551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 else
555 goto error;
556 break;
557 case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 if (device_can_wakeup(&hcd->self.root_hub->dev)
559 && wValue == USB_DEVICE_REMOTE_WAKEUP)
560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 else
562 goto error;
563 break;
564 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 tbuf[0] = 1;
566 len = 1;
567 fallthrough;
568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 break;
570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 switch (wValue & 0xff00) {
572 case USB_DT_DEVICE << 8:
573 switch (hcd->speed) {
574 case HCD_USB32:
575 case HCD_USB31:
576 bufp = usb31_rh_dev_descriptor;
577 break;
578 case HCD_USB3:
579 bufp = usb3_rh_dev_descriptor;
580 break;
581 case HCD_USB25:
582 bufp = usb25_rh_dev_descriptor;
583 break;
584 case HCD_USB2:
585 bufp = usb2_rh_dev_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = usb11_rh_dev_descriptor;
589 break;
590 default:
591 goto error;
592 }
593 len = 18;
594 if (hcd->has_tt)
595 patch_protocol = 1;
596 break;
597 case USB_DT_CONFIG << 8:
598 switch (hcd->speed) {
599 case HCD_USB32:
600 case HCD_USB31:
601 case HCD_USB3:
602 bufp = ss_rh_config_descriptor;
603 len = sizeof ss_rh_config_descriptor;
604 break;
605 case HCD_USB25:
606 case HCD_USB2:
607 bufp = hs_rh_config_descriptor;
608 len = sizeof hs_rh_config_descriptor;
609 break;
610 case HCD_USB11:
611 bufp = fs_rh_config_descriptor;
612 len = sizeof fs_rh_config_descriptor;
613 break;
614 default:
615 goto error;
616 }
617 if (device_can_wakeup(&hcd->self.root_hub->dev))
618 patch_wakeup = 1;
619 break;
620 case USB_DT_STRING << 8:
621 if ((wValue & 0xff) < 4)
622 urb->actual_length = rh_string(wValue & 0xff,
623 hcd, ubuf, wLength);
624 else /* unsupported IDs --> "protocol stall" */
625 goto error;
626 break;
627 case USB_DT_BOS << 8:
628 goto nongeneric;
629 default:
630 goto error;
631 }
632 break;
633 case DeviceRequest | USB_REQ_GET_INTERFACE:
634 tbuf[0] = 0;
635 len = 1;
636 fallthrough;
637 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 break;
639 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 /* wValue == urb->dev->devaddr */
641 dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 wValue);
643 break;
644
645 /* INTERFACE REQUESTS (no defined feature/status flags) */
646
647 /* ENDPOINT REQUESTS */
648
649 case EndpointRequest | USB_REQ_GET_STATUS:
650 /* ENDPOINT_HALT flag */
651 tbuf[0] = 0;
652 tbuf[1] = 0;
653 len = 2;
654 fallthrough;
655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 break;
659
660 /* CLASS REQUESTS (and errors) */
661
662 default:
663 nongeneric:
664 /* non-generic request */
665 switch (typeReq) {
666 case GetHubStatus:
667 len = 4;
668 break;
669 case GetPortStatus:
670 if (wValue == HUB_PORT_STATUS)
671 len = 4;
672 else
673 /* other port status types return 8 bytes */
674 len = 8;
675 break;
676 case GetHubDescriptor:
677 len = sizeof (struct usb_hub_descriptor);
678 break;
679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 /* len is returned by hub_control */
681 break;
682 }
683 status = hcd->driver->hub_control (hcd,
684 typeReq, wValue, wIndex,
685 tbuf, wLength);
686
687 if (typeReq == GetHubDescriptor)
688 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 (struct usb_hub_descriptor *)tbuf);
690 break;
691 error:
692 /* "protocol stall" on error */
693 status = -EPIPE;
694 }
695
696 if (status < 0) {
697 len = 0;
698 if (status != -EPIPE) {
699 dev_dbg (hcd->self.controller,
700 "CTRL: TypeReq=0x%x val=0x%x "
701 "idx=0x%x len=%d ==> %d\n",
702 typeReq, wValue, wIndex,
703 wLength, status);
704 }
705 } else if (status > 0) {
706 /* hub_control may return the length of data copied. */
707 len = status;
708 status = 0;
709 }
710 if (len) {
711 if (urb->transfer_buffer_length < len)
712 len = urb->transfer_buffer_length;
713 urb->actual_length = len;
714 /* always USB_DIR_IN, toward host */
715 memcpy (ubuf, bufp, len);
716
717 /* report whether RH hardware supports remote wakeup */
718 if (patch_wakeup &&
719 len > offsetof (struct usb_config_descriptor,
720 bmAttributes))
721 ((struct usb_config_descriptor *)ubuf)->bmAttributes
722 |= USB_CONFIG_ATT_WAKEUP;
723
724 /* report whether RH hardware has an integrated TT */
725 if (patch_protocol &&
726 len > offsetof(struct usb_device_descriptor,
727 bDeviceProtocol))
728 ((struct usb_device_descriptor *) ubuf)->
729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 }
731
732 kfree(tbuf);
733 err_alloc:
734
735 /* any errors get returned through the urb completion */
736 spin_lock_irq(&hcd_root_hub_lock);
737 usb_hcd_unlink_urb_from_ep(hcd, urb);
738 usb_hcd_giveback_urb(hcd, urb, status);
739 spin_unlock_irq(&hcd_root_hub_lock);
740 return 0;
741 }
742
743 /*-------------------------------------------------------------------------*/
744
745 /*
746 * Root Hub interrupt transfers are polled using a timer if the
747 * driver requests it; otherwise the driver is responsible for
748 * calling usb_hcd_poll_rh_status() when an event occurs.
749 *
750 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
751 */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
753 {
754 struct urb *urb;
755 int length;
756 int status;
757 unsigned long flags;
758 char buffer[6]; /* Any root hubs with > 31 ports? */
759
760 if (unlikely(!hcd->rh_pollable))
761 return;
762 if (!hcd->uses_new_polling && !hcd->status_urb)
763 return;
764
765 length = hcd->driver->hub_status_data(hcd, buffer);
766 if (length > 0) {
767
768 /* try to complete the status urb */
769 spin_lock_irqsave(&hcd_root_hub_lock, flags);
770 urb = hcd->status_urb;
771 if (urb) {
772 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
773 hcd->status_urb = NULL;
774 if (urb->transfer_buffer_length >= length) {
775 status = 0;
776 } else {
777 status = -EOVERFLOW;
778 length = urb->transfer_buffer_length;
779 }
780 urb->actual_length = length;
781 memcpy(urb->transfer_buffer, buffer, length);
782
783 usb_hcd_unlink_urb_from_ep(hcd, urb);
784 usb_hcd_giveback_urb(hcd, urb, status);
785 } else {
786 length = 0;
787 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
788 }
789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790 }
791
792 /* The USB 2.0 spec says 256 ms. This is close enough and won't
793 * exceed that limit if HZ is 100. The math is more clunky than
794 * maybe expected, this is to make sure that all timers for USB devices
795 * fire at the same time to give the CPU a break in between */
796 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797 (length == 0 && hcd->status_urb != NULL))
798 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799 }
800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
801
802 /* timer callback */
rh_timer_func(struct timer_list * t)803 static void rh_timer_func (struct timer_list *t)
804 {
805 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
806
807 usb_hcd_poll_rh_status(_hcd);
808 }
809
810 /*-------------------------------------------------------------------------*/
811
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)812 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
813 {
814 int retval;
815 unsigned long flags;
816 unsigned len = 1 + (urb->dev->maxchild / 8);
817
818 spin_lock_irqsave (&hcd_root_hub_lock, flags);
819 if (hcd->status_urb || urb->transfer_buffer_length < len) {
820 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
821 retval = -EINVAL;
822 goto done;
823 }
824
825 retval = usb_hcd_link_urb_to_ep(hcd, urb);
826 if (retval)
827 goto done;
828
829 hcd->status_urb = urb;
830 urb->hcpriv = hcd; /* indicate it's queued */
831 if (!hcd->uses_new_polling)
832 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
833
834 /* If a status change has already occurred, report it ASAP */
835 else if (HCD_POLL_PENDING(hcd))
836 mod_timer(&hcd->rh_timer, jiffies);
837 retval = 0;
838 done:
839 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
840 return retval;
841 }
842
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)843 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
844 {
845 if (usb_endpoint_xfer_int(&urb->ep->desc))
846 return rh_queue_status (hcd, urb);
847 if (usb_endpoint_xfer_control(&urb->ep->desc))
848 return rh_call_control (hcd, urb);
849 return -EINVAL;
850 }
851
852 /*-------------------------------------------------------------------------*/
853
854 /* Unlinks of root-hub control URBs are legal, but they don't do anything
855 * since these URBs always execute synchronously.
856 */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)857 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
858 {
859 unsigned long flags;
860 int rc;
861
862 spin_lock_irqsave(&hcd_root_hub_lock, flags);
863 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
864 if (rc)
865 goto done;
866
867 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
868 ; /* Do nothing */
869
870 } else { /* Status URB */
871 if (!hcd->uses_new_polling)
872 del_timer (&hcd->rh_timer);
873 if (urb == hcd->status_urb) {
874 hcd->status_urb = NULL;
875 usb_hcd_unlink_urb_from_ep(hcd, urb);
876 usb_hcd_giveback_urb(hcd, urb, status);
877 }
878 }
879 done:
880 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
881 return rc;
882 }
883
884
885 /*-------------------------------------------------------------------------*/
886
887 /**
888 * usb_bus_init - shared initialization code
889 * @bus: the bus structure being initialized
890 *
891 * This code is used to initialize a usb_bus structure, memory for which is
892 * separately managed.
893 */
usb_bus_init(struct usb_bus * bus)894 static void usb_bus_init (struct usb_bus *bus)
895 {
896 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
897
898 bus->devnum_next = 1;
899
900 bus->root_hub = NULL;
901 bus->busnum = -1;
902 bus->bandwidth_allocated = 0;
903 bus->bandwidth_int_reqs = 0;
904 bus->bandwidth_isoc_reqs = 0;
905 mutex_init(&bus->devnum_next_mutex);
906 }
907
908 /*-------------------------------------------------------------------------*/
909
910 /**
911 * usb_register_bus - registers the USB host controller with the usb core
912 * @bus: pointer to the bus to register
913 *
914 * Context: task context, might sleep.
915 *
916 * Assigns a bus number, and links the controller into usbcore data
917 * structures so that it can be seen by scanning the bus list.
918 *
919 * Return: 0 if successful. A negative error code otherwise.
920 */
usb_register_bus(struct usb_bus * bus)921 static int usb_register_bus(struct usb_bus *bus)
922 {
923 int result = -E2BIG;
924 int busnum;
925
926 mutex_lock(&usb_bus_idr_lock);
927 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
928 if (busnum < 0) {
929 pr_err("%s: failed to get bus number\n", usbcore_name);
930 goto error_find_busnum;
931 }
932 bus->busnum = busnum;
933 mutex_unlock(&usb_bus_idr_lock);
934
935 usb_notify_add_bus(bus);
936
937 dev_info (bus->controller, "new USB bus registered, assigned bus "
938 "number %d\n", bus->busnum);
939 return 0;
940
941 error_find_busnum:
942 mutex_unlock(&usb_bus_idr_lock);
943 return result;
944 }
945
946 /**
947 * usb_deregister_bus - deregisters the USB host controller
948 * @bus: pointer to the bus to deregister
949 *
950 * Context: task context, might sleep.
951 *
952 * Recycles the bus number, and unlinks the controller from usbcore data
953 * structures so that it won't be seen by scanning the bus list.
954 */
usb_deregister_bus(struct usb_bus * bus)955 static void usb_deregister_bus (struct usb_bus *bus)
956 {
957 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
958
959 /*
960 * NOTE: make sure that all the devices are removed by the
961 * controller code, as well as having it call this when cleaning
962 * itself up
963 */
964 mutex_lock(&usb_bus_idr_lock);
965 idr_remove(&usb_bus_idr, bus->busnum);
966 mutex_unlock(&usb_bus_idr_lock);
967
968 usb_notify_remove_bus(bus);
969 }
970
971 /**
972 * register_root_hub - called by usb_add_hcd() to register a root hub
973 * @hcd: host controller for this root hub
974 *
975 * This function registers the root hub with the USB subsystem. It sets up
976 * the device properly in the device tree and then calls usb_new_device()
977 * to register the usb device. It also assigns the root hub's USB address
978 * (always 1).
979 *
980 * Return: 0 if successful. A negative error code otherwise.
981 */
register_root_hub(struct usb_hcd * hcd)982 static int register_root_hub(struct usb_hcd *hcd)
983 {
984 struct device *parent_dev = hcd->self.controller;
985 struct usb_device *usb_dev = hcd->self.root_hub;
986 struct usb_device_descriptor *descr;
987 const int devnum = 1;
988 int retval;
989
990 usb_dev->devnum = devnum;
991 usb_dev->bus->devnum_next = devnum + 1;
992 set_bit (devnum, usb_dev->bus->devmap.devicemap);
993 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
994
995 mutex_lock(&usb_bus_idr_lock);
996
997 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
998 descr = usb_get_device_descriptor(usb_dev);
999 if (IS_ERR(descr)) {
1000 retval = PTR_ERR(descr);
1001 mutex_unlock(&usb_bus_idr_lock);
1002 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1003 dev_name(&usb_dev->dev), retval);
1004 return retval;
1005 }
1006 usb_dev->descriptor = *descr;
1007 kfree(descr);
1008
1009 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1010 retval = usb_get_bos_descriptor(usb_dev);
1011 if (!retval) {
1012 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1013 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1014 mutex_unlock(&usb_bus_idr_lock);
1015 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1016 dev_name(&usb_dev->dev), retval);
1017 return retval;
1018 }
1019 }
1020
1021 retval = usb_new_device (usb_dev);
1022 if (retval) {
1023 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1024 dev_name(&usb_dev->dev), retval);
1025 } else {
1026 spin_lock_irq (&hcd_root_hub_lock);
1027 hcd->rh_registered = 1;
1028 spin_unlock_irq (&hcd_root_hub_lock);
1029
1030 /* Did the HC die before the root hub was registered? */
1031 if (HCD_DEAD(hcd))
1032 usb_hc_died (hcd); /* This time clean up */
1033 }
1034 mutex_unlock(&usb_bus_idr_lock);
1035
1036 return retval;
1037 }
1038
1039 /*
1040 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1041 * @bus: the bus which the root hub belongs to
1042 * @portnum: the port which is being resumed
1043 *
1044 * HCDs should call this function when they know that a resume signal is
1045 * being sent to a root-hub port. The root hub will be prevented from
1046 * going into autosuspend until usb_hcd_end_port_resume() is called.
1047 *
1048 * The bus's private lock must be held by the caller.
1049 */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1050 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1051 {
1052 unsigned bit = 1 << portnum;
1053
1054 if (!(bus->resuming_ports & bit)) {
1055 bus->resuming_ports |= bit;
1056 pm_runtime_get_noresume(&bus->root_hub->dev);
1057 }
1058 }
1059 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1060
1061 /*
1062 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1063 * @bus: the bus which the root hub belongs to
1064 * @portnum: the port which is being resumed
1065 *
1066 * HCDs should call this function when they know that a resume signal has
1067 * stopped being sent to a root-hub port. The root hub will be allowed to
1068 * autosuspend again.
1069 *
1070 * The bus's private lock must be held by the caller.
1071 */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1072 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1073 {
1074 unsigned bit = 1 << portnum;
1075
1076 if (bus->resuming_ports & bit) {
1077 bus->resuming_ports &= ~bit;
1078 pm_runtime_put_noidle(&bus->root_hub->dev);
1079 }
1080 }
1081 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1082
1083 /*-------------------------------------------------------------------------*/
1084
1085 /**
1086 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1087 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1088 * @is_input: true iff the transaction sends data to the host
1089 * @isoc: true for isochronous transactions, false for interrupt ones
1090 * @bytecount: how many bytes in the transaction.
1091 *
1092 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1093 *
1094 * Note:
1095 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1096 * scheduled in software, this function is only used for such scheduling.
1097 */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1098 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1099 {
1100 unsigned long tmp;
1101
1102 switch (speed) {
1103 case USB_SPEED_LOW: /* INTR only */
1104 if (is_input) {
1105 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1106 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1107 } else {
1108 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1109 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1110 }
1111 case USB_SPEED_FULL: /* ISOC or INTR */
1112 if (isoc) {
1113 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1114 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1115 } else {
1116 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1117 return 9107L + BW_HOST_DELAY + tmp;
1118 }
1119 case USB_SPEED_HIGH: /* ISOC or INTR */
1120 /* FIXME adjust for input vs output */
1121 if (isoc)
1122 tmp = HS_NSECS_ISO (bytecount);
1123 else
1124 tmp = HS_NSECS (bytecount);
1125 return tmp;
1126 default:
1127 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1128 return -1;
1129 }
1130 }
1131 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1132
1133
1134 /*-------------------------------------------------------------------------*/
1135
1136 /*
1137 * Generic HC operations.
1138 */
1139
1140 /*-------------------------------------------------------------------------*/
1141
1142 /**
1143 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1144 * @hcd: host controller to which @urb was submitted
1145 * @urb: URB being submitted
1146 *
1147 * Host controller drivers should call this routine in their enqueue()
1148 * method. The HCD's private spinlock must be held and interrupts must
1149 * be disabled. The actions carried out here are required for URB
1150 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1151 *
1152 * Return: 0 for no error, otherwise a negative error code (in which case
1153 * the enqueue() method must fail). If no error occurs but enqueue() fails
1154 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1155 * the private spinlock and returning.
1156 */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1157 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1158 {
1159 int rc = 0;
1160
1161 spin_lock(&hcd_urb_list_lock);
1162
1163 /* Check that the URB isn't being killed */
1164 if (unlikely(atomic_read(&urb->reject))) {
1165 rc = -EPERM;
1166 goto done;
1167 }
1168
1169 if (unlikely(!urb->ep->enabled)) {
1170 rc = -ENOENT;
1171 goto done;
1172 }
1173
1174 if (unlikely(!urb->dev->can_submit)) {
1175 rc = -EHOSTUNREACH;
1176 goto done;
1177 }
1178
1179 /*
1180 * Check the host controller's state and add the URB to the
1181 * endpoint's queue.
1182 */
1183 if (HCD_RH_RUNNING(hcd)) {
1184 urb->unlinked = 0;
1185 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1186 } else {
1187 rc = -ESHUTDOWN;
1188 goto done;
1189 }
1190 done:
1191 spin_unlock(&hcd_urb_list_lock);
1192 return rc;
1193 }
1194 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1195
1196 /**
1197 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1198 * @hcd: host controller to which @urb was submitted
1199 * @urb: URB being checked for unlinkability
1200 * @status: error code to store in @urb if the unlink succeeds
1201 *
1202 * Host controller drivers should call this routine in their dequeue()
1203 * method. The HCD's private spinlock must be held and interrupts must
1204 * be disabled. The actions carried out here are required for making
1205 * sure than an unlink is valid.
1206 *
1207 * Return: 0 for no error, otherwise a negative error code (in which case
1208 * the dequeue() method must fail). The possible error codes are:
1209 *
1210 * -EIDRM: @urb was not submitted or has already completed.
1211 * The completion function may not have been called yet.
1212 *
1213 * -EBUSY: @urb has already been unlinked.
1214 */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1215 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1216 int status)
1217 {
1218 struct list_head *tmp;
1219
1220 /* insist the urb is still queued */
1221 list_for_each(tmp, &urb->ep->urb_list) {
1222 if (tmp == &urb->urb_list)
1223 break;
1224 }
1225 if (tmp != &urb->urb_list)
1226 return -EIDRM;
1227
1228 /* Any status except -EINPROGRESS means something already started to
1229 * unlink this URB from the hardware. So there's no more work to do.
1230 */
1231 if (urb->unlinked)
1232 return -EBUSY;
1233 urb->unlinked = status;
1234 return 0;
1235 }
1236 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1237
1238 /**
1239 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1240 * @hcd: host controller to which @urb was submitted
1241 * @urb: URB being unlinked
1242 *
1243 * Host controller drivers should call this routine before calling
1244 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1245 * interrupts must be disabled. The actions carried out here are required
1246 * for URB completion.
1247 */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1248 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1249 {
1250 /* clear all state linking urb to this dev (and hcd) */
1251 spin_lock(&hcd_urb_list_lock);
1252 list_del_init(&urb->urb_list);
1253 spin_unlock(&hcd_urb_list_lock);
1254 }
1255 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1256
1257 /*
1258 * Some usb host controllers can only perform dma using a small SRAM area.
1259 * The usb core itself is however optimized for host controllers that can dma
1260 * using regular system memory - like pci devices doing bus mastering.
1261 *
1262 * To support host controllers with limited dma capabilities we provide dma
1263 * bounce buffers. This feature can be enabled by initializing
1264 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1265 *
1266 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1267 * data for dma using the genalloc API.
1268 *
1269 * So, to summarize...
1270 *
1271 * - We need "local" memory, canonical example being
1272 * a small SRAM on a discrete controller being the
1273 * only memory that the controller can read ...
1274 * (a) "normal" kernel memory is no good, and
1275 * (b) there's not enough to share
1276 *
1277 * - So we use that, even though the primary requirement
1278 * is that the memory be "local" (hence addressable
1279 * by that device), not "coherent".
1280 *
1281 */
1282
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1283 static int hcd_alloc_coherent(struct usb_bus *bus,
1284 gfp_t mem_flags, dma_addr_t *dma_handle,
1285 void **vaddr_handle, size_t size,
1286 enum dma_data_direction dir)
1287 {
1288 unsigned char *vaddr;
1289
1290 if (*vaddr_handle == NULL) {
1291 WARN_ON_ONCE(1);
1292 return -EFAULT;
1293 }
1294
1295 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1296 mem_flags, dma_handle);
1297 if (!vaddr)
1298 return -ENOMEM;
1299
1300 /*
1301 * Store the virtual address of the buffer at the end
1302 * of the allocated dma buffer. The size of the buffer
1303 * may be uneven so use unaligned functions instead
1304 * of just rounding up. It makes sense to optimize for
1305 * memory footprint over access speed since the amount
1306 * of memory available for dma may be limited.
1307 */
1308 put_unaligned((unsigned long)*vaddr_handle,
1309 (unsigned long *)(vaddr + size));
1310
1311 if (dir == DMA_TO_DEVICE)
1312 memcpy(vaddr, *vaddr_handle, size);
1313
1314 *vaddr_handle = vaddr;
1315 return 0;
1316 }
1317
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1318 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1319 void **vaddr_handle, size_t size,
1320 enum dma_data_direction dir)
1321 {
1322 unsigned char *vaddr = *vaddr_handle;
1323
1324 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1325
1326 if (dir == DMA_FROM_DEVICE)
1327 memcpy(vaddr, *vaddr_handle, size);
1328
1329 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1330
1331 *vaddr_handle = vaddr;
1332 *dma_handle = 0;
1333 }
1334
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1335 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1336 {
1337 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1338 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1339 dma_unmap_single(hcd->self.sysdev,
1340 urb->setup_dma,
1341 sizeof(struct usb_ctrlrequest),
1342 DMA_TO_DEVICE);
1343 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1344 hcd_free_coherent(urb->dev->bus,
1345 &urb->setup_dma,
1346 (void **) &urb->setup_packet,
1347 sizeof(struct usb_ctrlrequest),
1348 DMA_TO_DEVICE);
1349
1350 /* Make it safe to call this routine more than once */
1351 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1352 }
1353 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1354
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1355 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1356 {
1357 if (hcd->driver->unmap_urb_for_dma)
1358 hcd->driver->unmap_urb_for_dma(hcd, urb);
1359 else
1360 usb_hcd_unmap_urb_for_dma(hcd, urb);
1361 }
1362
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1363 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1364 {
1365 enum dma_data_direction dir;
1366
1367 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1368
1369 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1370 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1371 (urb->transfer_flags & URB_DMA_MAP_SG))
1372 dma_unmap_sg(hcd->self.sysdev,
1373 urb->sg,
1374 urb->num_sgs,
1375 dir);
1376 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1377 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1378 dma_unmap_page(hcd->self.sysdev,
1379 urb->transfer_dma,
1380 urb->transfer_buffer_length,
1381 dir);
1382 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1383 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1384 dma_unmap_single(hcd->self.sysdev,
1385 urb->transfer_dma,
1386 urb->transfer_buffer_length,
1387 dir);
1388 else if (urb->transfer_flags & URB_MAP_LOCAL)
1389 hcd_free_coherent(urb->dev->bus,
1390 &urb->transfer_dma,
1391 &urb->transfer_buffer,
1392 urb->transfer_buffer_length,
1393 dir);
1394
1395 /* Make it safe to call this routine more than once */
1396 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1397 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1398 }
1399 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1400
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1401 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1402 gfp_t mem_flags)
1403 {
1404 if (hcd->driver->map_urb_for_dma)
1405 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1406 else
1407 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1408 }
1409
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1410 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1411 gfp_t mem_flags)
1412 {
1413 enum dma_data_direction dir;
1414 int ret = 0;
1415
1416 /* Map the URB's buffers for DMA access.
1417 * Lower level HCD code should use *_dma exclusively,
1418 * unless it uses pio or talks to another transport,
1419 * or uses the provided scatter gather list for bulk.
1420 */
1421
1422 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1423 if (hcd->self.uses_pio_for_control)
1424 return ret;
1425 if (hcd->localmem_pool) {
1426 ret = hcd_alloc_coherent(
1427 urb->dev->bus, mem_flags,
1428 &urb->setup_dma,
1429 (void **)&urb->setup_packet,
1430 sizeof(struct usb_ctrlrequest),
1431 DMA_TO_DEVICE);
1432 if (ret)
1433 return ret;
1434 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1435 } else if (hcd_uses_dma(hcd)) {
1436 if (object_is_on_stack(urb->setup_packet)) {
1437 WARN_ONCE(1, "setup packet is on stack\n");
1438 return -EAGAIN;
1439 }
1440
1441 urb->setup_dma = dma_map_single(
1442 hcd->self.sysdev,
1443 urb->setup_packet,
1444 sizeof(struct usb_ctrlrequest),
1445 DMA_TO_DEVICE);
1446 if (dma_mapping_error(hcd->self.sysdev,
1447 urb->setup_dma))
1448 return -EAGAIN;
1449 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1450 }
1451 }
1452
1453 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1454 if (urb->transfer_buffer_length != 0
1455 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1456 if (hcd->localmem_pool) {
1457 ret = hcd_alloc_coherent(
1458 urb->dev->bus, mem_flags,
1459 &urb->transfer_dma,
1460 &urb->transfer_buffer,
1461 urb->transfer_buffer_length,
1462 dir);
1463 if (ret == 0)
1464 urb->transfer_flags |= URB_MAP_LOCAL;
1465 } else if (hcd_uses_dma(hcd)) {
1466 if (urb->num_sgs) {
1467 int n;
1468
1469 /* We don't support sg for isoc transfers ! */
1470 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1471 WARN_ON(1);
1472 return -EINVAL;
1473 }
1474
1475 n = dma_map_sg(
1476 hcd->self.sysdev,
1477 urb->sg,
1478 urb->num_sgs,
1479 dir);
1480 if (n <= 0)
1481 ret = -EAGAIN;
1482 else
1483 urb->transfer_flags |= URB_DMA_MAP_SG;
1484 urb->num_mapped_sgs = n;
1485 if (n != urb->num_sgs)
1486 urb->transfer_flags |=
1487 URB_DMA_SG_COMBINED;
1488 } else if (urb->sg) {
1489 struct scatterlist *sg = urb->sg;
1490 urb->transfer_dma = dma_map_page(
1491 hcd->self.sysdev,
1492 sg_page(sg),
1493 sg->offset,
1494 urb->transfer_buffer_length,
1495 dir);
1496 if (dma_mapping_error(hcd->self.sysdev,
1497 urb->transfer_dma))
1498 ret = -EAGAIN;
1499 else
1500 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1501 } else if (object_is_on_stack(urb->transfer_buffer)) {
1502 WARN_ONCE(1, "transfer buffer is on stack\n");
1503 ret = -EAGAIN;
1504 } else {
1505 urb->transfer_dma = dma_map_single(
1506 hcd->self.sysdev,
1507 urb->transfer_buffer,
1508 urb->transfer_buffer_length,
1509 dir);
1510 if (dma_mapping_error(hcd->self.sysdev,
1511 urb->transfer_dma))
1512 ret = -EAGAIN;
1513 else
1514 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1515 }
1516 }
1517 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1518 URB_SETUP_MAP_LOCAL)))
1519 usb_hcd_unmap_urb_for_dma(hcd, urb);
1520 }
1521 return ret;
1522 }
1523 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1524
1525 /*-------------------------------------------------------------------------*/
1526
1527 /* may be called in any context with a valid urb->dev usecount
1528 * caller surrenders "ownership" of urb
1529 * expects usb_submit_urb() to have sanity checked and conditioned all
1530 * inputs in the urb
1531 */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1532 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1533 {
1534 int status;
1535 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1536
1537 /* increment urb's reference count as part of giving it to the HCD
1538 * (which will control it). HCD guarantees that it either returns
1539 * an error or calls giveback(), but not both.
1540 */
1541 usb_get_urb(urb);
1542 atomic_inc(&urb->use_count);
1543 atomic_inc(&urb->dev->urbnum);
1544 usbmon_urb_submit(&hcd->self, urb);
1545
1546 /* NOTE requirements on root-hub callers (usbfs and the hub
1547 * driver, for now): URBs' urb->transfer_buffer must be
1548 * valid and usb_buffer_{sync,unmap}() not be needed, since
1549 * they could clobber root hub response data. Also, control
1550 * URBs must be submitted in process context with interrupts
1551 * enabled.
1552 */
1553
1554 if (is_root_hub(urb->dev)) {
1555 status = rh_urb_enqueue(hcd, urb);
1556 } else {
1557 status = map_urb_for_dma(hcd, urb, mem_flags);
1558 if (likely(status == 0)) {
1559 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1560 if (unlikely(status))
1561 unmap_urb_for_dma(hcd, urb);
1562 }
1563 }
1564
1565 if (unlikely(status)) {
1566 usbmon_urb_submit_error(&hcd->self, urb, status);
1567 urb->hcpriv = NULL;
1568 INIT_LIST_HEAD(&urb->urb_list);
1569 atomic_dec(&urb->use_count);
1570 /*
1571 * Order the write of urb->use_count above before the read
1572 * of urb->reject below. Pairs with the memory barriers in
1573 * usb_kill_urb() and usb_poison_urb().
1574 */
1575 smp_mb__after_atomic();
1576
1577 atomic_dec(&urb->dev->urbnum);
1578 if (atomic_read(&urb->reject))
1579 wake_up(&usb_kill_urb_queue);
1580 usb_put_urb(urb);
1581 }
1582 return status;
1583 }
1584
1585 /*-------------------------------------------------------------------------*/
1586
1587 /* this makes the hcd giveback() the urb more quickly, by kicking it
1588 * off hardware queues (which may take a while) and returning it as
1589 * soon as practical. we've already set up the urb's return status,
1590 * but we can't know if the callback completed already.
1591 */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1592 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1593 {
1594 int value;
1595
1596 if (is_root_hub(urb->dev))
1597 value = usb_rh_urb_dequeue(hcd, urb, status);
1598 else {
1599
1600 /* The only reason an HCD might fail this call is if
1601 * it has not yet fully queued the urb to begin with.
1602 * Such failures should be harmless. */
1603 value = hcd->driver->urb_dequeue(hcd, urb, status);
1604 }
1605 return value;
1606 }
1607
1608 /*
1609 * called in any context
1610 *
1611 * caller guarantees urb won't be recycled till both unlink()
1612 * and the urb's completion function return
1613 */
usb_hcd_unlink_urb(struct urb * urb,int status)1614 int usb_hcd_unlink_urb (struct urb *urb, int status)
1615 {
1616 struct usb_hcd *hcd;
1617 struct usb_device *udev = urb->dev;
1618 int retval = -EIDRM;
1619 unsigned long flags;
1620
1621 /* Prevent the device and bus from going away while
1622 * the unlink is carried out. If they are already gone
1623 * then urb->use_count must be 0, since disconnected
1624 * devices can't have any active URBs.
1625 */
1626 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1627 if (atomic_read(&urb->use_count) > 0) {
1628 retval = 0;
1629 usb_get_dev(udev);
1630 }
1631 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1632 if (retval == 0) {
1633 hcd = bus_to_hcd(urb->dev->bus);
1634 retval = unlink1(hcd, urb, status);
1635 if (retval == 0)
1636 retval = -EINPROGRESS;
1637 else if (retval != -EIDRM && retval != -EBUSY)
1638 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1639 urb, retval);
1640 usb_put_dev(udev);
1641 }
1642 return retval;
1643 }
1644
1645 /*-------------------------------------------------------------------------*/
1646
__usb_hcd_giveback_urb(struct urb * urb)1647 static void __usb_hcd_giveback_urb(struct urb *urb)
1648 {
1649 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1650 struct usb_anchor *anchor = urb->anchor;
1651 int status = urb->unlinked;
1652
1653 urb->hcpriv = NULL;
1654 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1655 urb->actual_length < urb->transfer_buffer_length &&
1656 !status))
1657 status = -EREMOTEIO;
1658
1659 unmap_urb_for_dma(hcd, urb);
1660 usbmon_urb_complete(&hcd->self, urb, status);
1661 usb_anchor_suspend_wakeups(anchor);
1662 usb_unanchor_urb(urb);
1663 if (likely(status == 0))
1664 usb_led_activity(USB_LED_EVENT_HOST);
1665
1666 /* pass ownership to the completion handler */
1667 urb->status = status;
1668 /*
1669 * This function can be called in task context inside another remote
1670 * coverage collection section, but kcov doesn't support that kind of
1671 * recursion yet. Only collect coverage in softirq context for now.
1672 */
1673 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1674 urb->complete(urb);
1675 kcov_remote_stop_softirq();
1676
1677 usb_anchor_resume_wakeups(anchor);
1678 atomic_dec(&urb->use_count);
1679 /*
1680 * Order the write of urb->use_count above before the read
1681 * of urb->reject below. Pairs with the memory barriers in
1682 * usb_kill_urb() and usb_poison_urb().
1683 */
1684 smp_mb__after_atomic();
1685
1686 if (unlikely(atomic_read(&urb->reject)))
1687 wake_up(&usb_kill_urb_queue);
1688 usb_put_urb(urb);
1689 }
1690
usb_giveback_urb_bh(struct tasklet_struct * t)1691 static void usb_giveback_urb_bh(struct tasklet_struct *t)
1692 {
1693 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1694 struct list_head local_list;
1695
1696 spin_lock_irq(&bh->lock);
1697 bh->running = true;
1698 restart:
1699 list_replace_init(&bh->head, &local_list);
1700 spin_unlock_irq(&bh->lock);
1701
1702 while (!list_empty(&local_list)) {
1703 struct urb *urb;
1704
1705 urb = list_entry(local_list.next, struct urb, urb_list);
1706 list_del_init(&urb->urb_list);
1707 bh->completing_ep = urb->ep;
1708 __usb_hcd_giveback_urb(urb);
1709 bh->completing_ep = NULL;
1710 }
1711
1712 /* check if there are new URBs to giveback */
1713 spin_lock_irq(&bh->lock);
1714 if (!list_empty(&bh->head))
1715 goto restart;
1716 bh->running = false;
1717 spin_unlock_irq(&bh->lock);
1718 }
1719
1720 /**
1721 * usb_hcd_giveback_urb - return URB from HCD to device driver
1722 * @hcd: host controller returning the URB
1723 * @urb: urb being returned to the USB device driver.
1724 * @status: completion status code for the URB.
1725 *
1726 * Context: atomic. The completion callback is invoked in caller's context.
1727 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1728 * context (except for URBs submitted to the root hub which always complete in
1729 * caller's context).
1730 *
1731 * This hands the URB from HCD to its USB device driver, using its
1732 * completion function. The HCD has freed all per-urb resources
1733 * (and is done using urb->hcpriv). It also released all HCD locks;
1734 * the device driver won't cause problems if it frees, modifies,
1735 * or resubmits this URB.
1736 *
1737 * If @urb was unlinked, the value of @status will be overridden by
1738 * @urb->unlinked. Erroneous short transfers are detected in case
1739 * the HCD hasn't checked for them.
1740 */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1741 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1742 {
1743 struct giveback_urb_bh *bh;
1744 bool running, high_prio_bh;
1745
1746 /* pass status to tasklet via unlinked */
1747 if (likely(!urb->unlinked))
1748 urb->unlinked = status;
1749
1750 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1751 __usb_hcd_giveback_urb(urb);
1752 return;
1753 }
1754
1755 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1756 bh = &hcd->high_prio_bh;
1757 high_prio_bh = true;
1758 } else {
1759 bh = &hcd->low_prio_bh;
1760 high_prio_bh = false;
1761 }
1762
1763 spin_lock(&bh->lock);
1764 list_add_tail(&urb->urb_list, &bh->head);
1765 running = bh->running;
1766 spin_unlock(&bh->lock);
1767
1768 if (running)
1769 ;
1770 else if (high_prio_bh)
1771 tasklet_hi_schedule(&bh->bh);
1772 else
1773 tasklet_schedule(&bh->bh);
1774 }
1775 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1776
1777 /*-------------------------------------------------------------------------*/
1778
1779 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1780 * queue to drain completely. The caller must first insure that no more
1781 * URBs can be submitted for this endpoint.
1782 */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1783 void usb_hcd_flush_endpoint(struct usb_device *udev,
1784 struct usb_host_endpoint *ep)
1785 {
1786 struct usb_hcd *hcd;
1787 struct urb *urb;
1788
1789 if (!ep)
1790 return;
1791 might_sleep();
1792 hcd = bus_to_hcd(udev->bus);
1793
1794 /* No more submits can occur */
1795 spin_lock_irq(&hcd_urb_list_lock);
1796 rescan:
1797 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1798 int is_in;
1799
1800 if (urb->unlinked)
1801 continue;
1802 usb_get_urb (urb);
1803 is_in = usb_urb_dir_in(urb);
1804 spin_unlock(&hcd_urb_list_lock);
1805
1806 /* kick hcd */
1807 unlink1(hcd, urb, -ESHUTDOWN);
1808 dev_dbg (hcd->self.controller,
1809 "shutdown urb %pK ep%d%s-%s\n",
1810 urb, usb_endpoint_num(&ep->desc),
1811 is_in ? "in" : "out",
1812 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1813 usb_put_urb (urb);
1814
1815 /* list contents may have changed */
1816 spin_lock(&hcd_urb_list_lock);
1817 goto rescan;
1818 }
1819 spin_unlock_irq(&hcd_urb_list_lock);
1820
1821 /* Wait until the endpoint queue is completely empty */
1822 while (!list_empty (&ep->urb_list)) {
1823 spin_lock_irq(&hcd_urb_list_lock);
1824
1825 /* The list may have changed while we acquired the spinlock */
1826 urb = NULL;
1827 if (!list_empty (&ep->urb_list)) {
1828 urb = list_entry (ep->urb_list.prev, struct urb,
1829 urb_list);
1830 usb_get_urb (urb);
1831 }
1832 spin_unlock_irq(&hcd_urb_list_lock);
1833
1834 if (urb) {
1835 usb_kill_urb (urb);
1836 usb_put_urb (urb);
1837 }
1838 }
1839 }
1840
1841 /**
1842 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1843 * the bus bandwidth
1844 * @udev: target &usb_device
1845 * @new_config: new configuration to install
1846 * @cur_alt: the current alternate interface setting
1847 * @new_alt: alternate interface setting that is being installed
1848 *
1849 * To change configurations, pass in the new configuration in new_config,
1850 * and pass NULL for cur_alt and new_alt.
1851 *
1852 * To reset a device's configuration (put the device in the ADDRESSED state),
1853 * pass in NULL for new_config, cur_alt, and new_alt.
1854 *
1855 * To change alternate interface settings, pass in NULL for new_config,
1856 * pass in the current alternate interface setting in cur_alt,
1857 * and pass in the new alternate interface setting in new_alt.
1858 *
1859 * Return: An error if the requested bandwidth change exceeds the
1860 * bus bandwidth or host controller internal resources.
1861 */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1862 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1863 struct usb_host_config *new_config,
1864 struct usb_host_interface *cur_alt,
1865 struct usb_host_interface *new_alt)
1866 {
1867 int num_intfs, i, j;
1868 struct usb_host_interface *alt = NULL;
1869 int ret = 0;
1870 struct usb_hcd *hcd;
1871 struct usb_host_endpoint *ep;
1872
1873 hcd = bus_to_hcd(udev->bus);
1874 if (!hcd->driver->check_bandwidth)
1875 return 0;
1876
1877 /* Configuration is being removed - set configuration 0 */
1878 if (!new_config && !cur_alt) {
1879 for (i = 1; i < 16; ++i) {
1880 ep = udev->ep_out[i];
1881 if (ep)
1882 hcd->driver->drop_endpoint(hcd, udev, ep);
1883 ep = udev->ep_in[i];
1884 if (ep)
1885 hcd->driver->drop_endpoint(hcd, udev, ep);
1886 }
1887 hcd->driver->check_bandwidth(hcd, udev);
1888 return 0;
1889 }
1890 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1891 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1892 * of the bus. There will always be bandwidth for endpoint 0, so it's
1893 * ok to exclude it.
1894 */
1895 if (new_config) {
1896 num_intfs = new_config->desc.bNumInterfaces;
1897 /* Remove endpoints (except endpoint 0, which is always on the
1898 * schedule) from the old config from the schedule
1899 */
1900 for (i = 1; i < 16; ++i) {
1901 ep = udev->ep_out[i];
1902 if (ep) {
1903 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1904 if (ret < 0)
1905 goto reset;
1906 }
1907 ep = udev->ep_in[i];
1908 if (ep) {
1909 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1910 if (ret < 0)
1911 goto reset;
1912 }
1913 }
1914 for (i = 0; i < num_intfs; ++i) {
1915 struct usb_host_interface *first_alt;
1916 int iface_num;
1917
1918 first_alt = &new_config->intf_cache[i]->altsetting[0];
1919 iface_num = first_alt->desc.bInterfaceNumber;
1920 /* Set up endpoints for alternate interface setting 0 */
1921 alt = usb_find_alt_setting(new_config, iface_num, 0);
1922 if (!alt)
1923 /* No alt setting 0? Pick the first setting. */
1924 alt = first_alt;
1925
1926 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1927 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1928 if (ret < 0)
1929 goto reset;
1930 }
1931 }
1932 }
1933 if (cur_alt && new_alt) {
1934 struct usb_interface *iface = usb_ifnum_to_if(udev,
1935 cur_alt->desc.bInterfaceNumber);
1936
1937 if (!iface)
1938 return -EINVAL;
1939 if (iface->resetting_device) {
1940 /*
1941 * The USB core just reset the device, so the xHCI host
1942 * and the device will think alt setting 0 is installed.
1943 * However, the USB core will pass in the alternate
1944 * setting installed before the reset as cur_alt. Dig
1945 * out the alternate setting 0 structure, or the first
1946 * alternate setting if a broken device doesn't have alt
1947 * setting 0.
1948 */
1949 cur_alt = usb_altnum_to_altsetting(iface, 0);
1950 if (!cur_alt)
1951 cur_alt = &iface->altsetting[0];
1952 }
1953
1954 /* Drop all the endpoints in the current alt setting */
1955 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1956 ret = hcd->driver->drop_endpoint(hcd, udev,
1957 &cur_alt->endpoint[i]);
1958 if (ret < 0)
1959 goto reset;
1960 }
1961 /* Add all the endpoints in the new alt setting */
1962 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1963 ret = hcd->driver->add_endpoint(hcd, udev,
1964 &new_alt->endpoint[i]);
1965 if (ret < 0)
1966 goto reset;
1967 }
1968 }
1969 ret = hcd->driver->check_bandwidth(hcd, udev);
1970 reset:
1971 if (ret < 0)
1972 hcd->driver->reset_bandwidth(hcd, udev);
1973 return ret;
1974 }
1975
1976 /* Disables the endpoint: synchronizes with the hcd to make sure all
1977 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1978 * have been called previously. Use for set_configuration, set_interface,
1979 * driver removal, physical disconnect.
1980 *
1981 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1982 * type, maxpacket size, toggle, halt status, and scheduling.
1983 */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1984 void usb_hcd_disable_endpoint(struct usb_device *udev,
1985 struct usb_host_endpoint *ep)
1986 {
1987 struct usb_hcd *hcd;
1988
1989 might_sleep();
1990 hcd = bus_to_hcd(udev->bus);
1991 if (hcd->driver->endpoint_disable)
1992 hcd->driver->endpoint_disable(hcd, ep);
1993 }
1994
1995 /**
1996 * usb_hcd_reset_endpoint - reset host endpoint state
1997 * @udev: USB device.
1998 * @ep: the endpoint to reset.
1999 *
2000 * Resets any host endpoint state such as the toggle bit, sequence
2001 * number and current window.
2002 */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)2003 void usb_hcd_reset_endpoint(struct usb_device *udev,
2004 struct usb_host_endpoint *ep)
2005 {
2006 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2007
2008 if (hcd->driver->endpoint_reset)
2009 hcd->driver->endpoint_reset(hcd, ep);
2010 else {
2011 int epnum = usb_endpoint_num(&ep->desc);
2012 int is_out = usb_endpoint_dir_out(&ep->desc);
2013 int is_control = usb_endpoint_xfer_control(&ep->desc);
2014
2015 usb_settoggle(udev, epnum, is_out, 0);
2016 if (is_control)
2017 usb_settoggle(udev, epnum, !is_out, 0);
2018 }
2019 }
2020
2021 /**
2022 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2023 * @interface: alternate setting that includes all endpoints.
2024 * @eps: array of endpoints that need streams.
2025 * @num_eps: number of endpoints in the array.
2026 * @num_streams: number of streams to allocate.
2027 * @mem_flags: flags hcd should use to allocate memory.
2028 *
2029 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2030 * Drivers may queue multiple transfers to different stream IDs, which may
2031 * complete in a different order than they were queued.
2032 *
2033 * Return: On success, the number of allocated streams. On failure, a negative
2034 * error code.
2035 */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2036 int usb_alloc_streams(struct usb_interface *interface,
2037 struct usb_host_endpoint **eps, unsigned int num_eps,
2038 unsigned int num_streams, gfp_t mem_flags)
2039 {
2040 struct usb_hcd *hcd;
2041 struct usb_device *dev;
2042 int i, ret;
2043
2044 dev = interface_to_usbdev(interface);
2045 hcd = bus_to_hcd(dev->bus);
2046 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2047 return -EINVAL;
2048 if (dev->speed < USB_SPEED_SUPER)
2049 return -EINVAL;
2050 if (dev->state < USB_STATE_CONFIGURED)
2051 return -ENODEV;
2052
2053 for (i = 0; i < num_eps; i++) {
2054 /* Streams only apply to bulk endpoints. */
2055 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2056 return -EINVAL;
2057 /* Re-alloc is not allowed */
2058 if (eps[i]->streams)
2059 return -EINVAL;
2060 }
2061
2062 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2063 num_streams, mem_flags);
2064 if (ret < 0)
2065 return ret;
2066
2067 for (i = 0; i < num_eps; i++)
2068 eps[i]->streams = ret;
2069
2070 return ret;
2071 }
2072 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2073
2074 /**
2075 * usb_free_streams - free bulk endpoint stream IDs.
2076 * @interface: alternate setting that includes all endpoints.
2077 * @eps: array of endpoints to remove streams from.
2078 * @num_eps: number of endpoints in the array.
2079 * @mem_flags: flags hcd should use to allocate memory.
2080 *
2081 * Reverts a group of bulk endpoints back to not using stream IDs.
2082 * Can fail if we are given bad arguments, or HCD is broken.
2083 *
2084 * Return: 0 on success. On failure, a negative error code.
2085 */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2086 int usb_free_streams(struct usb_interface *interface,
2087 struct usb_host_endpoint **eps, unsigned int num_eps,
2088 gfp_t mem_flags)
2089 {
2090 struct usb_hcd *hcd;
2091 struct usb_device *dev;
2092 int i, ret;
2093
2094 dev = interface_to_usbdev(interface);
2095 hcd = bus_to_hcd(dev->bus);
2096 if (dev->speed < USB_SPEED_SUPER)
2097 return -EINVAL;
2098
2099 /* Double-free is not allowed */
2100 for (i = 0; i < num_eps; i++)
2101 if (!eps[i] || !eps[i]->streams)
2102 return -EINVAL;
2103
2104 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2105 if (ret < 0)
2106 return ret;
2107
2108 for (i = 0; i < num_eps; i++)
2109 eps[i]->streams = 0;
2110
2111 return ret;
2112 }
2113 EXPORT_SYMBOL_GPL(usb_free_streams);
2114
2115 /* Protect against drivers that try to unlink URBs after the device
2116 * is gone, by waiting until all unlinks for @udev are finished.
2117 * Since we don't currently track URBs by device, simply wait until
2118 * nothing is running in the locked region of usb_hcd_unlink_urb().
2119 */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2120 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2121 {
2122 spin_lock_irq(&hcd_urb_unlink_lock);
2123 spin_unlock_irq(&hcd_urb_unlink_lock);
2124 }
2125
2126 /*-------------------------------------------------------------------------*/
2127
2128 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2129 int usb_hcd_get_frame_number (struct usb_device *udev)
2130 {
2131 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2132
2133 if (!HCD_RH_RUNNING(hcd))
2134 return -ESHUTDOWN;
2135 return hcd->driver->get_frame_number (hcd);
2136 }
2137
2138 /*-------------------------------------------------------------------------*/
2139 #ifdef CONFIG_USB_HCD_TEST_MODE
2140
usb_ehset_completion(struct urb * urb)2141 static void usb_ehset_completion(struct urb *urb)
2142 {
2143 struct completion *done = urb->context;
2144
2145 complete(done);
2146 }
2147 /*
2148 * Allocate and initialize a control URB. This request will be used by the
2149 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2150 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2151 * Return NULL if failed.
2152 */
request_single_step_set_feature_urb(struct usb_device * udev,void * dr,void * buf,struct completion * done)2153 static struct urb *request_single_step_set_feature_urb(
2154 struct usb_device *udev,
2155 void *dr,
2156 void *buf,
2157 struct completion *done)
2158 {
2159 struct urb *urb;
2160 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2161 struct usb_host_endpoint *ep;
2162
2163 urb = usb_alloc_urb(0, GFP_KERNEL);
2164 if (!urb)
2165 return NULL;
2166
2167 urb->pipe = usb_rcvctrlpipe(udev, 0);
2168 ep = (usb_pipein(urb->pipe) ? udev->ep_in : udev->ep_out)
2169 [usb_pipeendpoint(urb->pipe)];
2170 if (!ep) {
2171 usb_free_urb(urb);
2172 return NULL;
2173 }
2174
2175 urb->ep = ep;
2176 urb->dev = udev;
2177 urb->setup_packet = (void *)dr;
2178 urb->transfer_buffer = buf;
2179 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2180 urb->complete = usb_ehset_completion;
2181 urb->status = -EINPROGRESS;
2182 urb->actual_length = 0;
2183 urb->transfer_flags = URB_DIR_IN;
2184 usb_get_urb(urb);
2185 atomic_inc(&urb->use_count);
2186 atomic_inc(&urb->dev->urbnum);
2187 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2188 usb_put_urb(urb);
2189 usb_free_urb(urb);
2190 return NULL;
2191 }
2192
2193 urb->context = done;
2194 return urb;
2195 }
2196
ehset_single_step_set_feature(struct usb_hcd * hcd,int port)2197 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2198 {
2199 int retval = -ENOMEM;
2200 struct usb_ctrlrequest *dr;
2201 struct urb *urb;
2202 struct usb_device *udev;
2203 struct usb_device_descriptor *buf;
2204 DECLARE_COMPLETION_ONSTACK(done);
2205
2206 /* Obtain udev of the rhub's child port */
2207 udev = usb_hub_find_child(hcd->self.root_hub, port);
2208 if (!udev) {
2209 dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2210 return -ENODEV;
2211 }
2212 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2213 if (!buf)
2214 return -ENOMEM;
2215
2216 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2217 if (!dr) {
2218 kfree(buf);
2219 return -ENOMEM;
2220 }
2221
2222 /* Fill Setup packet for GetDescriptor */
2223 dr->bRequestType = USB_DIR_IN;
2224 dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2225 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2226 dr->wIndex = 0;
2227 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2228 urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2229 if (!urb)
2230 goto cleanup;
2231
2232 /* Submit just the SETUP stage */
2233 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2234 if (retval)
2235 goto out1;
2236 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2237 usb_kill_urb(urb);
2238 retval = -ETIMEDOUT;
2239 dev_err(hcd->self.controller,
2240 "%s SETUP stage timed out on ep0\n", __func__);
2241 goto out1;
2242 }
2243 msleep(15 * 1000);
2244
2245 /* Complete remaining DATA and STATUS stages using the same URB */
2246 urb->status = -EINPROGRESS;
2247 usb_get_urb(urb);
2248 atomic_inc(&urb->use_count);
2249 atomic_inc(&urb->dev->urbnum);
2250 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2251 if (!retval && !wait_for_completion_timeout(&done,
2252 msecs_to_jiffies(2000))) {
2253 usb_kill_urb(urb);
2254 retval = -ETIMEDOUT;
2255 dev_err(hcd->self.controller,
2256 "%s IN stage timed out on ep0\n", __func__);
2257 }
2258 out1:
2259 usb_free_urb(urb);
2260 cleanup:
2261 kfree(dr);
2262 kfree(buf);
2263 return retval;
2264 }
2265 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2266 #endif /* CONFIG_USB_HCD_TEST_MODE */
2267
2268 /*-------------------------------------------------------------------------*/
2269
2270 #ifdef CONFIG_PM
2271
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2272 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2273 {
2274 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2275 int status;
2276 int old_state = hcd->state;
2277
2278 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2279 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2280 rhdev->do_remote_wakeup);
2281 if (HCD_DEAD(hcd)) {
2282 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2283 return 0;
2284 }
2285
2286 if (!hcd->driver->bus_suspend) {
2287 status = -ENOENT;
2288 } else {
2289 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2290 hcd->state = HC_STATE_QUIESCING;
2291 status = hcd->driver->bus_suspend(hcd);
2292 }
2293 if (status == 0) {
2294 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2295 hcd->state = HC_STATE_SUSPENDED;
2296
2297 if (!PMSG_IS_AUTO(msg))
2298 usb_phy_roothub_suspend(hcd->self.sysdev,
2299 hcd->phy_roothub);
2300
2301 /* Did we race with a root-hub wakeup event? */
2302 if (rhdev->do_remote_wakeup) {
2303 char buffer[6];
2304
2305 status = hcd->driver->hub_status_data(hcd, buffer);
2306 if (status != 0) {
2307 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2308 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2309 status = -EBUSY;
2310 }
2311 }
2312 } else {
2313 spin_lock_irq(&hcd_root_hub_lock);
2314 if (!HCD_DEAD(hcd)) {
2315 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2316 hcd->state = old_state;
2317 }
2318 spin_unlock_irq(&hcd_root_hub_lock);
2319 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2320 "suspend", status);
2321 }
2322 return status;
2323 }
2324
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2325 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2326 {
2327 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2328 int status;
2329 int old_state = hcd->state;
2330
2331 dev_dbg(&rhdev->dev, "usb %sresume\n",
2332 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2333 if (HCD_DEAD(hcd)) {
2334 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2335 return 0;
2336 }
2337
2338 if (!PMSG_IS_AUTO(msg)) {
2339 status = usb_phy_roothub_resume(hcd->self.sysdev,
2340 hcd->phy_roothub);
2341 if (status)
2342 return status;
2343 }
2344
2345 if (!hcd->driver->bus_resume)
2346 return -ENOENT;
2347 if (HCD_RH_RUNNING(hcd))
2348 return 0;
2349
2350 hcd->state = HC_STATE_RESUMING;
2351 status = hcd->driver->bus_resume(hcd);
2352 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2353 if (status == 0)
2354 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2355
2356 if (status == 0) {
2357 struct usb_device *udev;
2358 int port1;
2359
2360 spin_lock_irq(&hcd_root_hub_lock);
2361 if (!HCD_DEAD(hcd)) {
2362 usb_set_device_state(rhdev, rhdev->actconfig
2363 ? USB_STATE_CONFIGURED
2364 : USB_STATE_ADDRESS);
2365 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2366 hcd->state = HC_STATE_RUNNING;
2367 }
2368 spin_unlock_irq(&hcd_root_hub_lock);
2369
2370 /*
2371 * Check whether any of the enabled ports on the root hub are
2372 * unsuspended. If they are then a TRSMRCY delay is needed
2373 * (this is what the USB-2 spec calls a "global resume").
2374 * Otherwise we can skip the delay.
2375 */
2376 usb_hub_for_each_child(rhdev, port1, udev) {
2377 if (udev->state != USB_STATE_NOTATTACHED &&
2378 !udev->port_is_suspended) {
2379 usleep_range(10000, 11000); /* TRSMRCY */
2380 break;
2381 }
2382 }
2383 } else {
2384 hcd->state = old_state;
2385 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2386 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2387 "resume", status);
2388 if (status != -ESHUTDOWN)
2389 usb_hc_died(hcd);
2390 }
2391 return status;
2392 }
2393
2394 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2395 static void hcd_resume_work(struct work_struct *work)
2396 {
2397 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2398 struct usb_device *udev = hcd->self.root_hub;
2399
2400 usb_remote_wakeup(udev);
2401 }
2402
2403 /**
2404 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2405 * @hcd: host controller for this root hub
2406 *
2407 * The USB host controller calls this function when its root hub is
2408 * suspended (with the remote wakeup feature enabled) and a remote
2409 * wakeup request is received. The routine submits a workqueue request
2410 * to resume the root hub (that is, manage its downstream ports again).
2411 */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2412 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2413 {
2414 unsigned long flags;
2415
2416 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2417 if (hcd->rh_registered) {
2418 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2419 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2420 queue_work(pm_wq, &hcd->wakeup_work);
2421 }
2422 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2423 }
2424 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2425
2426 #endif /* CONFIG_PM */
2427
2428 /*-------------------------------------------------------------------------*/
2429
2430 #ifdef CONFIG_USB_OTG
2431
2432 /**
2433 * usb_bus_start_enum - start immediate enumeration (for OTG)
2434 * @bus: the bus (must use hcd framework)
2435 * @port_num: 1-based number of port; usually bus->otg_port
2436 * Context: atomic
2437 *
2438 * Starts enumeration, with an immediate reset followed later by
2439 * hub_wq identifying and possibly configuring the device.
2440 * This is needed by OTG controller drivers, where it helps meet
2441 * HNP protocol timing requirements for starting a port reset.
2442 *
2443 * Return: 0 if successful.
2444 */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2445 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2446 {
2447 struct usb_hcd *hcd;
2448 int status = -EOPNOTSUPP;
2449
2450 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2451 * boards with root hubs hooked up to internal devices (instead of
2452 * just the OTG port) may need more attention to resetting...
2453 */
2454 hcd = bus_to_hcd(bus);
2455 if (port_num && hcd->driver->start_port_reset)
2456 status = hcd->driver->start_port_reset(hcd, port_num);
2457
2458 /* allocate hub_wq shortly after (first) root port reset finishes;
2459 * it may issue others, until at least 50 msecs have passed.
2460 */
2461 if (status == 0)
2462 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2463 return status;
2464 }
2465 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2466
2467 #endif
2468
2469 /*-------------------------------------------------------------------------*/
2470
2471 /**
2472 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2473 * @irq: the IRQ being raised
2474 * @__hcd: pointer to the HCD whose IRQ is being signaled
2475 *
2476 * If the controller isn't HALTed, calls the driver's irq handler.
2477 * Checks whether the controller is now dead.
2478 *
2479 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2480 */
usb_hcd_irq(int irq,void * __hcd)2481 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2482 {
2483 struct usb_hcd *hcd = __hcd;
2484 irqreturn_t rc;
2485
2486 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2487 rc = IRQ_NONE;
2488 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2489 rc = IRQ_NONE;
2490 else
2491 rc = IRQ_HANDLED;
2492
2493 return rc;
2494 }
2495 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2496
2497 /*-------------------------------------------------------------------------*/
2498
2499 /* Workqueue routine for when the root-hub has died. */
hcd_died_work(struct work_struct * work)2500 static void hcd_died_work(struct work_struct *work)
2501 {
2502 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2503 static char *env[] = {
2504 "ERROR=DEAD",
2505 NULL
2506 };
2507
2508 /* Notify user space that the host controller has died */
2509 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2510 }
2511
2512 /**
2513 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2514 * @hcd: pointer to the HCD representing the controller
2515 *
2516 * This is called by bus glue to report a USB host controller that died
2517 * while operations may still have been pending. It's called automatically
2518 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2519 *
2520 * Only call this function with the primary HCD.
2521 */
usb_hc_died(struct usb_hcd * hcd)2522 void usb_hc_died (struct usb_hcd *hcd)
2523 {
2524 unsigned long flags;
2525
2526 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2527
2528 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2529 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2530 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2531 if (hcd->rh_registered) {
2532 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2533
2534 /* make hub_wq clean up old urbs and devices */
2535 usb_set_device_state (hcd->self.root_hub,
2536 USB_STATE_NOTATTACHED);
2537 usb_kick_hub_wq(hcd->self.root_hub);
2538 }
2539 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2540 hcd = hcd->shared_hcd;
2541 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2542 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2543 if (hcd->rh_registered) {
2544 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2545
2546 /* make hub_wq clean up old urbs and devices */
2547 usb_set_device_state(hcd->self.root_hub,
2548 USB_STATE_NOTATTACHED);
2549 usb_kick_hub_wq(hcd->self.root_hub);
2550 }
2551 }
2552
2553 /* Handle the case where this function gets called with a shared HCD */
2554 if (usb_hcd_is_primary_hcd(hcd))
2555 schedule_work(&hcd->died_work);
2556 else
2557 schedule_work(&hcd->primary_hcd->died_work);
2558
2559 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2560 /* Make sure that the other roothub is also deallocated. */
2561 }
2562 EXPORT_SYMBOL_GPL (usb_hc_died);
2563
2564 /*-------------------------------------------------------------------------*/
2565
init_giveback_urb_bh(struct giveback_urb_bh * bh)2566 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2567 {
2568
2569 spin_lock_init(&bh->lock);
2570 INIT_LIST_HEAD(&bh->head);
2571 tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2572 }
2573
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2574 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2575 struct device *sysdev, struct device *dev, const char *bus_name,
2576 struct usb_hcd *primary_hcd)
2577 {
2578 struct usb_hcd *hcd;
2579
2580 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2581 if (!hcd)
2582 return NULL;
2583 if (primary_hcd == NULL) {
2584 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2585 GFP_KERNEL);
2586 if (!hcd->address0_mutex) {
2587 kfree(hcd);
2588 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2589 return NULL;
2590 }
2591 mutex_init(hcd->address0_mutex);
2592 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2593 GFP_KERNEL);
2594 if (!hcd->bandwidth_mutex) {
2595 kfree(hcd->address0_mutex);
2596 kfree(hcd);
2597 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2598 return NULL;
2599 }
2600 mutex_init(hcd->bandwidth_mutex);
2601 dev_set_drvdata(dev, hcd);
2602 } else {
2603 mutex_lock(&usb_port_peer_mutex);
2604 hcd->address0_mutex = primary_hcd->address0_mutex;
2605 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2606 hcd->primary_hcd = primary_hcd;
2607 primary_hcd->primary_hcd = primary_hcd;
2608 hcd->shared_hcd = primary_hcd;
2609 primary_hcd->shared_hcd = hcd;
2610 mutex_unlock(&usb_port_peer_mutex);
2611 }
2612
2613 kref_init(&hcd->kref);
2614
2615 usb_bus_init(&hcd->self);
2616 hcd->self.controller = dev;
2617 hcd->self.sysdev = sysdev;
2618 hcd->self.bus_name = bus_name;
2619
2620 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2621 #ifdef CONFIG_PM
2622 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2623 #endif
2624
2625 INIT_WORK(&hcd->died_work, hcd_died_work);
2626
2627 hcd->driver = driver;
2628 hcd->speed = driver->flags & HCD_MASK;
2629 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2630 "USB Host Controller";
2631 return hcd;
2632 }
2633 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2634
2635 /**
2636 * usb_create_shared_hcd - create and initialize an HCD structure
2637 * @driver: HC driver that will use this hcd
2638 * @dev: device for this HC, stored in hcd->self.controller
2639 * @bus_name: value to store in hcd->self.bus_name
2640 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2641 * PCI device. Only allocate certain resources for the primary HCD
2642 *
2643 * Context: task context, might sleep.
2644 *
2645 * Allocate a struct usb_hcd, with extra space at the end for the
2646 * HC driver's private data. Initialize the generic members of the
2647 * hcd structure.
2648 *
2649 * Return: On success, a pointer to the created and initialized HCD structure.
2650 * On failure (e.g. if memory is unavailable), %NULL.
2651 */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2652 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2653 struct device *dev, const char *bus_name,
2654 struct usb_hcd *primary_hcd)
2655 {
2656 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2657 }
2658 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2659
2660 /**
2661 * usb_create_hcd - create and initialize an HCD structure
2662 * @driver: HC driver that will use this hcd
2663 * @dev: device for this HC, stored in hcd->self.controller
2664 * @bus_name: value to store in hcd->self.bus_name
2665 *
2666 * Context: task context, might sleep.
2667 *
2668 * Allocate a struct usb_hcd, with extra space at the end for the
2669 * HC driver's private data. Initialize the generic members of the
2670 * hcd structure.
2671 *
2672 * Return: On success, a pointer to the created and initialized HCD
2673 * structure. On failure (e.g. if memory is unavailable), %NULL.
2674 */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2675 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2676 struct device *dev, const char *bus_name)
2677 {
2678 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2679 }
2680 EXPORT_SYMBOL_GPL(usb_create_hcd);
2681
2682 /*
2683 * Roothubs that share one PCI device must also share the bandwidth mutex.
2684 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2685 * deallocated.
2686 *
2687 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2688 * freed. When hcd_release() is called for either hcd in a peer set,
2689 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2690 */
hcd_release(struct kref * kref)2691 static void hcd_release(struct kref *kref)
2692 {
2693 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2694
2695 mutex_lock(&usb_port_peer_mutex);
2696 if (hcd->shared_hcd) {
2697 struct usb_hcd *peer = hcd->shared_hcd;
2698
2699 peer->shared_hcd = NULL;
2700 peer->primary_hcd = NULL;
2701 } else {
2702 kfree(hcd->address0_mutex);
2703 kfree(hcd->bandwidth_mutex);
2704 }
2705 mutex_unlock(&usb_port_peer_mutex);
2706 kfree(hcd);
2707 }
2708
usb_get_hcd(struct usb_hcd * hcd)2709 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2710 {
2711 if (hcd)
2712 kref_get (&hcd->kref);
2713 return hcd;
2714 }
2715 EXPORT_SYMBOL_GPL(usb_get_hcd);
2716
usb_put_hcd(struct usb_hcd * hcd)2717 void usb_put_hcd (struct usb_hcd *hcd)
2718 {
2719 if (hcd)
2720 kref_put (&hcd->kref, hcd_release);
2721 }
2722 EXPORT_SYMBOL_GPL(usb_put_hcd);
2723
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2724 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2725 {
2726 if (!hcd->primary_hcd)
2727 return 1;
2728 return hcd == hcd->primary_hcd;
2729 }
2730 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2731
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2732 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2733 {
2734 if (!hcd->driver->find_raw_port_number)
2735 return port1;
2736
2737 return hcd->driver->find_raw_port_number(hcd, port1);
2738 }
2739
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2740 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2741 unsigned int irqnum, unsigned long irqflags)
2742 {
2743 int retval;
2744
2745 if (hcd->driver->irq) {
2746
2747 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2748 hcd->driver->description, hcd->self.busnum);
2749 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2750 hcd->irq_descr, hcd);
2751 if (retval != 0) {
2752 dev_err(hcd->self.controller,
2753 "request interrupt %d failed\n",
2754 irqnum);
2755 return retval;
2756 }
2757 hcd->irq = irqnum;
2758 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2759 (hcd->driver->flags & HCD_MEMORY) ?
2760 "io mem" : "io base",
2761 (unsigned long long)hcd->rsrc_start);
2762 } else {
2763 hcd->irq = 0;
2764 if (hcd->rsrc_start)
2765 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2766 (hcd->driver->flags & HCD_MEMORY) ?
2767 "io mem" : "io base",
2768 (unsigned long long)hcd->rsrc_start);
2769 }
2770 return 0;
2771 }
2772
2773 /*
2774 * Before we free this root hub, flush in-flight peering attempts
2775 * and disable peer lookups
2776 */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2777 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2778 {
2779 struct usb_device *rhdev;
2780
2781 mutex_lock(&usb_port_peer_mutex);
2782 rhdev = hcd->self.root_hub;
2783 hcd->self.root_hub = NULL;
2784 mutex_unlock(&usb_port_peer_mutex);
2785 usb_put_dev(rhdev);
2786 }
2787
2788 /**
2789 * usb_stop_hcd - Halt the HCD
2790 * @hcd: the usb_hcd that has to be halted
2791 *
2792 * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2793 */
usb_stop_hcd(struct usb_hcd * hcd)2794 static void usb_stop_hcd(struct usb_hcd *hcd)
2795 {
2796 hcd->rh_pollable = 0;
2797 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2798 del_timer_sync(&hcd->rh_timer);
2799
2800 hcd->driver->stop(hcd);
2801 hcd->state = HC_STATE_HALT;
2802
2803 /* In case the HCD restarted the timer, stop it again. */
2804 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2805 del_timer_sync(&hcd->rh_timer);
2806 }
2807
2808 /**
2809 * usb_add_hcd - finish generic HCD structure initialization and register
2810 * @hcd: the usb_hcd structure to initialize
2811 * @irqnum: Interrupt line to allocate
2812 * @irqflags: Interrupt type flags
2813 *
2814 * Finish the remaining parts of generic HCD initialization: allocate the
2815 * buffers of consistent memory, register the bus, request the IRQ line,
2816 * and call the driver's reset() and start() routines.
2817 */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2818 int usb_add_hcd(struct usb_hcd *hcd,
2819 unsigned int irqnum, unsigned long irqflags)
2820 {
2821 int retval;
2822 struct usb_device *rhdev;
2823 struct usb_hcd *shared_hcd;
2824
2825 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2826 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2827 if (IS_ERR(hcd->phy_roothub))
2828 return PTR_ERR(hcd->phy_roothub);
2829
2830 retval = usb_phy_roothub_init(hcd->phy_roothub);
2831 if (retval)
2832 return retval;
2833
2834 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2835 PHY_MODE_USB_HOST_SS);
2836 if (retval)
2837 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2838 PHY_MODE_USB_HOST);
2839 if (retval)
2840 goto err_usb_phy_roothub_power_on;
2841
2842 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2843 if (retval)
2844 goto err_usb_phy_roothub_power_on;
2845 }
2846
2847 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2848
2849 switch (authorized_default) {
2850 case USB_AUTHORIZE_NONE:
2851 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2852 break;
2853
2854 case USB_AUTHORIZE_ALL:
2855 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2856 break;
2857
2858 case USB_AUTHORIZE_INTERNAL:
2859 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2860 break;
2861
2862 case USB_AUTHORIZE_WIRED:
2863 default:
2864 hcd->dev_policy = hcd->wireless ?
2865 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2866 break;
2867 }
2868
2869 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2870
2871 /* per default all interfaces are authorized */
2872 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2873
2874 /* HC is in reset state, but accessible. Now do the one-time init,
2875 * bottom up so that hcds can customize the root hubs before hub_wq
2876 * starts talking to them. (Note, bus id is assigned early too.)
2877 */
2878 retval = hcd_buffer_create(hcd);
2879 if (retval != 0) {
2880 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2881 goto err_create_buf;
2882 }
2883
2884 retval = usb_register_bus(&hcd->self);
2885 if (retval < 0)
2886 goto err_register_bus;
2887
2888 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2889 if (rhdev == NULL) {
2890 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2891 retval = -ENOMEM;
2892 goto err_allocate_root_hub;
2893 }
2894 mutex_lock(&usb_port_peer_mutex);
2895 hcd->self.root_hub = rhdev;
2896 mutex_unlock(&usb_port_peer_mutex);
2897
2898 rhdev->rx_lanes = 1;
2899 rhdev->tx_lanes = 1;
2900 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2901
2902 switch (hcd->speed) {
2903 case HCD_USB11:
2904 rhdev->speed = USB_SPEED_FULL;
2905 break;
2906 case HCD_USB2:
2907 rhdev->speed = USB_SPEED_HIGH;
2908 break;
2909 case HCD_USB25:
2910 rhdev->speed = USB_SPEED_WIRELESS;
2911 break;
2912 case HCD_USB3:
2913 rhdev->speed = USB_SPEED_SUPER;
2914 break;
2915 case HCD_USB32:
2916 rhdev->rx_lanes = 2;
2917 rhdev->tx_lanes = 2;
2918 rhdev->ssp_rate = USB_SSP_GEN_2x2;
2919 rhdev->speed = USB_SPEED_SUPER_PLUS;
2920 break;
2921 case HCD_USB31:
2922 rhdev->ssp_rate = USB_SSP_GEN_2x1;
2923 rhdev->speed = USB_SPEED_SUPER_PLUS;
2924 break;
2925 default:
2926 retval = -EINVAL;
2927 goto err_set_rh_speed;
2928 }
2929
2930 /* wakeup flag init defaults to "everything works" for root hubs,
2931 * but drivers can override it in reset() if needed, along with
2932 * recording the overall controller's system wakeup capability.
2933 */
2934 device_set_wakeup_capable(&rhdev->dev, 1);
2935
2936 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2937 * registered. But since the controller can die at any time,
2938 * let's initialize the flag before touching the hardware.
2939 */
2940 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2941
2942 /* "reset" is misnamed; its role is now one-time init. the controller
2943 * should already have been reset (and boot firmware kicked off etc).
2944 */
2945 if (hcd->driver->reset) {
2946 retval = hcd->driver->reset(hcd);
2947 if (retval < 0) {
2948 dev_err(hcd->self.controller, "can't setup: %d\n",
2949 retval);
2950 goto err_hcd_driver_setup;
2951 }
2952 }
2953 hcd->rh_pollable = 1;
2954
2955 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2956 if (retval)
2957 goto err_hcd_driver_setup;
2958
2959 /* NOTE: root hub and controller capabilities may not be the same */
2960 if (device_can_wakeup(hcd->self.controller)
2961 && device_can_wakeup(&hcd->self.root_hub->dev))
2962 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2963
2964 /* initialize tasklets */
2965 init_giveback_urb_bh(&hcd->high_prio_bh);
2966 init_giveback_urb_bh(&hcd->low_prio_bh);
2967
2968 /* enable irqs just before we start the controller,
2969 * if the BIOS provides legacy PCI irqs.
2970 */
2971 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2972 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2973 if (retval)
2974 goto err_request_irq;
2975 }
2976
2977 hcd->state = HC_STATE_RUNNING;
2978 retval = hcd->driver->start(hcd);
2979 if (retval < 0) {
2980 dev_err(hcd->self.controller, "startup error %d\n", retval);
2981 goto err_hcd_driver_start;
2982 }
2983
2984 /* starting here, usbcore will pay attention to the shared HCD roothub */
2985 shared_hcd = hcd->shared_hcd;
2986 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2987 retval = register_root_hub(shared_hcd);
2988 if (retval != 0)
2989 goto err_register_root_hub;
2990
2991 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2992 usb_hcd_poll_rh_status(shared_hcd);
2993 }
2994
2995 /* starting here, usbcore will pay attention to this root hub */
2996 if (!HCD_DEFER_RH_REGISTER(hcd)) {
2997 retval = register_root_hub(hcd);
2998 if (retval != 0)
2999 goto err_register_root_hub;
3000
3001 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
3002 usb_hcd_poll_rh_status(hcd);
3003 }
3004
3005 return retval;
3006
3007 err_register_root_hub:
3008 usb_stop_hcd(hcd);
3009 err_hcd_driver_start:
3010 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
3011 free_irq(irqnum, hcd);
3012 err_request_irq:
3013 err_hcd_driver_setup:
3014 err_set_rh_speed:
3015 usb_put_invalidate_rhdev(hcd);
3016 err_allocate_root_hub:
3017 usb_deregister_bus(&hcd->self);
3018 err_register_bus:
3019 hcd_buffer_destroy(hcd);
3020 err_create_buf:
3021 usb_phy_roothub_power_off(hcd->phy_roothub);
3022 err_usb_phy_roothub_power_on:
3023 usb_phy_roothub_exit(hcd->phy_roothub);
3024
3025 return retval;
3026 }
3027 EXPORT_SYMBOL_GPL(usb_add_hcd);
3028
3029 /**
3030 * usb_remove_hcd - shutdown processing for generic HCDs
3031 * @hcd: the usb_hcd structure to remove
3032 *
3033 * Context: task context, might sleep.
3034 *
3035 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3036 * invoking the HCD's stop() method.
3037 */
usb_remove_hcd(struct usb_hcd * hcd)3038 void usb_remove_hcd(struct usb_hcd *hcd)
3039 {
3040 struct usb_device *rhdev = hcd->self.root_hub;
3041 bool rh_registered;
3042
3043 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3044
3045 usb_get_dev(rhdev);
3046 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3047 if (HC_IS_RUNNING (hcd->state))
3048 hcd->state = HC_STATE_QUIESCING;
3049
3050 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3051 spin_lock_irq (&hcd_root_hub_lock);
3052 rh_registered = hcd->rh_registered;
3053 hcd->rh_registered = 0;
3054 spin_unlock_irq (&hcd_root_hub_lock);
3055
3056 #ifdef CONFIG_PM
3057 cancel_work_sync(&hcd->wakeup_work);
3058 #endif
3059 cancel_work_sync(&hcd->died_work);
3060
3061 mutex_lock(&usb_bus_idr_lock);
3062 if (rh_registered)
3063 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
3064 mutex_unlock(&usb_bus_idr_lock);
3065
3066 /*
3067 * tasklet_kill() isn't needed here because:
3068 * - driver's disconnect() called from usb_disconnect() should
3069 * make sure its URBs are completed during the disconnect()
3070 * callback
3071 *
3072 * - it is too late to run complete() here since driver may have
3073 * been removed already now
3074 */
3075
3076 /* Prevent any more root-hub status calls from the timer.
3077 * The HCD might still restart the timer (if a port status change
3078 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3079 * the hub_status_data() callback.
3080 */
3081 usb_stop_hcd(hcd);
3082
3083 if (usb_hcd_is_primary_hcd(hcd)) {
3084 if (hcd->irq > 0)
3085 free_irq(hcd->irq, hcd);
3086 }
3087
3088 usb_deregister_bus(&hcd->self);
3089 hcd_buffer_destroy(hcd);
3090
3091 usb_phy_roothub_power_off(hcd->phy_roothub);
3092 usb_phy_roothub_exit(hcd->phy_roothub);
3093
3094 usb_put_invalidate_rhdev(hcd);
3095 hcd->flags = 0;
3096 }
3097 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3098
3099 void
usb_hcd_platform_shutdown(struct platform_device * dev)3100 usb_hcd_platform_shutdown(struct platform_device *dev)
3101 {
3102 struct usb_hcd *hcd = platform_get_drvdata(dev);
3103
3104 /* No need for pm_runtime_put(), we're shutting down */
3105 pm_runtime_get_sync(&dev->dev);
3106
3107 if (hcd->driver->shutdown)
3108 hcd->driver->shutdown(hcd);
3109 }
3110 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3111
usb_hcd_setup_local_mem(struct usb_hcd * hcd,phys_addr_t phys_addr,dma_addr_t dma,size_t size)3112 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3113 dma_addr_t dma, size_t size)
3114 {
3115 int err;
3116 void *local_mem;
3117
3118 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3119 dev_to_node(hcd->self.sysdev),
3120 dev_name(hcd->self.sysdev));
3121 if (IS_ERR(hcd->localmem_pool))
3122 return PTR_ERR(hcd->localmem_pool);
3123
3124 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3125 size, MEMREMAP_WC);
3126 if (IS_ERR(local_mem))
3127 return PTR_ERR(local_mem);
3128
3129 /*
3130 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3131 * It's not backed by system memory and thus there's no kernel mapping
3132 * for it.
3133 */
3134 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3135 dma, size, dev_to_node(hcd->self.sysdev));
3136 if (err < 0) {
3137 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3138 err);
3139 return err;
3140 }
3141
3142 return 0;
3143 }
3144 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3145
3146 /*-------------------------------------------------------------------------*/
3147
3148 const struct usb_mon_operations *mon_ops;
3149
3150 /*
3151 * The registration is unlocked.
3152 * We do it this way because we do not want to lock in hot paths.
3153 *
3154 * Notice that the code is minimally error-proof. Because usbmon needs
3155 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3156 */
3157
usb_mon_register(const struct usb_mon_operations * ops)3158 int usb_mon_register(const struct usb_mon_operations *ops)
3159 {
3160
3161 if (mon_ops)
3162 return -EBUSY;
3163
3164 mon_ops = ops;
3165 mb();
3166 return 0;
3167 }
3168 EXPORT_SYMBOL_GPL (usb_mon_register);
3169
usb_mon_deregister(void)3170 void usb_mon_deregister (void)
3171 {
3172
3173 if (mon_ops == NULL) {
3174 printk(KERN_ERR "USB: monitor was not registered\n");
3175 return;
3176 }
3177 mon_ops = NULL;
3178 mb();
3179 }
3180 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3181