1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/major.h>
8 #include <linux/genhd.h>
9 #include <linux/list.h>
10 #include <linux/llist.h>
11 #include <linux/minmax.h>
12 #include <linux/timer.h>
13 #include <linux/workqueue.h>
14 #include <linux/wait.h>
15 #include <linux/mempool.h>
16 #include <linux/pfn.h>
17 #include <linux/bio.h>
18 #include <linux/stringify.h>
19 #include <linux/gfp.h>
20 #include <linux/smp.h>
21 #include <linux/rcupdate.h>
22 #include <linux/percpu-refcount.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blkzoned.h>
25 #include <linux/pm.h>
26 #include <linux/sbitmap.h>
27 #include <linux/android_kabi.h>
28 #include <linux/android_vendor.h>
29
30 struct module;
31 struct request_queue;
32 struct elevator_queue;
33 struct blk_trace;
34 struct request;
35 struct sg_io_hdr;
36 struct blkcg_gq;
37 struct blk_flush_queue;
38 struct pr_ops;
39 struct rq_qos;
40 struct blk_queue_stats;
41 struct blk_stat_callback;
42 struct blk_keyslot_manager;
43
44 #define BLKDEV_MIN_RQ 4
45 #define BLKDEV_MAX_RQ 128 /* Default maximum */
46
47 /* Must be consistent with blk_mq_poll_stats_bkt() */
48 #define BLK_MQ_POLL_STATS_BKTS 16
49
50 /* Doing classic polling */
51 #define BLK_MQ_POLL_CLASSIC -1
52
53 /*
54 * Maximum number of blkcg policies allowed to be registered concurrently.
55 * Defined here to simplify include dependency.
56 */
57 #define BLKCG_MAX_POLS 6
58
59 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
60
61 /*
62 * request flags */
63 typedef __u32 __bitwise req_flags_t;
64
65 /* drive already may have started this one */
66 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
67 /* may not be passed by ioscheduler */
68 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
69 /* request for flush sequence */
70 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
71 /* merge of different types, fail separately */
72 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
73 /* track inflight for MQ */
74 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
75 /* don't call prep for this one */
76 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
77 /* vaguely specified driver internal error. Ignored by the block layer */
78 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
79 /* don't warn about errors */
80 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
81 /* elevator private data attached */
82 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
83 /* account into disk and partition IO statistics */
84 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
85 /* runtime pm request */
86 #define RQF_PM ((__force req_flags_t)(1 << 15))
87 /* on IO scheduler merge hash */
88 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
89 /* track IO completion time */
90 #define RQF_STATS ((__force req_flags_t)(1 << 17))
91 /* Look at ->special_vec for the actual data payload instead of the
92 bio chain. */
93 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
94 /* The per-zone write lock is held for this request */
95 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
96 /* already slept for hybrid poll */
97 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
98 /* ->timeout has been called, don't expire again */
99 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
100
101 /* flags that prevent us from merging requests: */
102 #define RQF_NOMERGE_FLAGS \
103 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
104
105 /*
106 * Request state for blk-mq.
107 */
108 enum mq_rq_state {
109 MQ_RQ_IDLE = 0,
110 MQ_RQ_IN_FLIGHT = 1,
111 MQ_RQ_COMPLETE = 2,
112 };
113
114 /*
115 * Try to put the fields that are referenced together in the same cacheline.
116 *
117 * If you modify this structure, make sure to update blk_rq_init() and
118 * especially blk_mq_rq_ctx_init() to take care of the added fields.
119 */
120 struct request {
121 struct request_queue *q;
122 struct blk_mq_ctx *mq_ctx;
123 struct blk_mq_hw_ctx *mq_hctx;
124
125 unsigned int cmd_flags; /* op and common flags */
126 req_flags_t rq_flags;
127
128 int tag;
129 int internal_tag;
130
131 /* the following two fields are internal, NEVER access directly */
132 unsigned int __data_len; /* total data len */
133 sector_t __sector; /* sector cursor */
134
135 struct bio *bio;
136 struct bio *biotail;
137
138 struct list_head queuelist;
139
140 /*
141 * The hash is used inside the scheduler, and killed once the
142 * request reaches the dispatch list. The ipi_list is only used
143 * to queue the request for softirq completion, which is long
144 * after the request has been unhashed (and even removed from
145 * the dispatch list).
146 */
147 union {
148 struct hlist_node hash; /* merge hash */
149 struct llist_node ipi_list;
150 };
151
152 /*
153 * The rb_node is only used inside the io scheduler, requests
154 * are pruned when moved to the dispatch queue. So let the
155 * completion_data share space with the rb_node.
156 */
157 union {
158 struct rb_node rb_node; /* sort/lookup */
159 struct bio_vec special_vec;
160 void *completion_data;
161 int error_count; /* for legacy drivers, don't use */
162 };
163
164 /*
165 * Three pointers are available for the IO schedulers, if they need
166 * more they have to dynamically allocate it. Flush requests are
167 * never put on the IO scheduler. So let the flush fields share
168 * space with the elevator data.
169 */
170 union {
171 struct {
172 struct io_cq *icq;
173 void *priv[2];
174 } elv;
175
176 struct {
177 unsigned int seq;
178 struct list_head list;
179 rq_end_io_fn *saved_end_io;
180 } flush;
181 };
182
183 struct gendisk *rq_disk;
184 struct block_device *part;
185 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
186 /* Time that the first bio started allocating this request. */
187 u64 alloc_time_ns;
188 #endif
189 /* Time that this request was allocated for this IO. */
190 u64 start_time_ns;
191 /* Time that I/O was submitted to the device. */
192 u64 io_start_time_ns;
193
194 #ifdef CONFIG_BLK_WBT
195 unsigned short wbt_flags;
196 #endif
197 /*
198 * rq sectors used for blk stats. It has the same value
199 * with blk_rq_sectors(rq), except that it never be zeroed
200 * by completion.
201 */
202 unsigned short stats_sectors;
203
204 /*
205 * Number of scatter-gather DMA addr+len pairs after
206 * physical address coalescing is performed.
207 */
208 unsigned short nr_phys_segments;
209
210 #if defined(CONFIG_BLK_DEV_INTEGRITY)
211 unsigned short nr_integrity_segments;
212 #endif
213
214 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
215 struct bio_crypt_ctx *crypt_ctx;
216 struct blk_ksm_keyslot *crypt_keyslot;
217 #endif
218
219 unsigned short write_hint;
220 unsigned short ioprio;
221
222 enum mq_rq_state state;
223 refcount_t ref;
224
225 unsigned int timeout;
226 unsigned long deadline;
227
228 union {
229 struct __call_single_data csd;
230 u64 fifo_time;
231 };
232
233 /*
234 * completion callback.
235 */
236 rq_end_io_fn *end_io;
237 void *end_io_data;
238
239 ANDROID_KABI_RESERVE(1);
240 };
241
blk_validate_block_size(unsigned int bsize)242 static inline int blk_validate_block_size(unsigned int bsize)
243 {
244 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
245 return -EINVAL;
246
247 return 0;
248 }
249
blk_op_is_passthrough(unsigned int op)250 static inline bool blk_op_is_passthrough(unsigned int op)
251 {
252 op &= REQ_OP_MASK;
253 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
254 }
255
blk_rq_is_passthrough(struct request * rq)256 static inline bool blk_rq_is_passthrough(struct request *rq)
257 {
258 return blk_op_is_passthrough(req_op(rq));
259 }
260
req_get_ioprio(struct request * req)261 static inline unsigned short req_get_ioprio(struct request *req)
262 {
263 return req->ioprio;
264 }
265
266 #include <linux/elevator.h>
267
268 struct bio_vec;
269
270 enum blk_eh_timer_return {
271 BLK_EH_DONE, /* drivers has completed the command */
272 BLK_EH_RESET_TIMER, /* reset timer and try again */
273 };
274
275 enum blk_queue_state {
276 Queue_down,
277 Queue_up,
278 };
279
280 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
281 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
282
283 /*
284 * Zoned block device models (zoned limit).
285 *
286 * Note: This needs to be ordered from the least to the most severe
287 * restrictions for the inheritance in blk_stack_limits() to work.
288 */
289 enum blk_zoned_model {
290 BLK_ZONED_NONE = 0, /* Regular block device */
291 BLK_ZONED_HA, /* Host-aware zoned block device */
292 BLK_ZONED_HM, /* Host-managed zoned block device */
293 };
294
295 /*
296 * BLK_BOUNCE_NONE: never bounce (default)
297 * BLK_BOUNCE_HIGH: bounce all highmem pages
298 */
299 enum blk_bounce {
300 BLK_BOUNCE_NONE,
301 BLK_BOUNCE_HIGH,
302 };
303
304 struct queue_limits {
305 enum blk_bounce bounce;
306 unsigned long seg_boundary_mask;
307 unsigned long virt_boundary_mask;
308
309 unsigned int max_hw_sectors;
310 unsigned int max_dev_sectors;
311 unsigned int chunk_sectors;
312 unsigned int max_sectors;
313 unsigned int max_segment_size;
314 unsigned int physical_block_size;
315 unsigned int logical_block_size;
316 unsigned int alignment_offset;
317 unsigned int io_min;
318 unsigned int io_opt;
319 unsigned int max_discard_sectors;
320 unsigned int max_hw_discard_sectors;
321 unsigned int max_write_same_sectors;
322 unsigned int max_write_zeroes_sectors;
323 unsigned int max_zone_append_sectors;
324 unsigned int discard_granularity;
325 unsigned int discard_alignment;
326 unsigned int zone_write_granularity;
327
328 unsigned short max_segments;
329 unsigned short max_integrity_segments;
330 unsigned short max_discard_segments;
331
332 unsigned char misaligned;
333 unsigned char discard_misaligned;
334 unsigned char raid_partial_stripes_expensive;
335 enum blk_zoned_model zoned;
336
337 ANDROID_KABI_RESERVE(1);
338
339 ANDROID_OEM_DATA(1);
340 };
341
342 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
343 void *data);
344
345 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
346
347 #ifdef CONFIG_BLK_DEV_ZONED
348
349 #define BLK_ALL_ZONES ((unsigned int)-1)
350 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
351 unsigned int nr_zones, report_zones_cb cb, void *data);
352 unsigned int blkdev_nr_zones(struct gendisk *disk);
353 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
354 sector_t sectors, sector_t nr_sectors,
355 gfp_t gfp_mask);
356 int blk_revalidate_disk_zones(struct gendisk *disk,
357 void (*update_driver_data)(struct gendisk *disk));
358
359 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
360 unsigned int cmd, unsigned long arg);
361 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
362 unsigned int cmd, unsigned long arg);
363
364 #else /* CONFIG_BLK_DEV_ZONED */
365
blkdev_nr_zones(struct gendisk * disk)366 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
367 {
368 return 0;
369 }
370
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)371 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
372 fmode_t mode, unsigned int cmd,
373 unsigned long arg)
374 {
375 return -ENOTTY;
376 }
377
blkdev_zone_mgmt_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)378 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
379 fmode_t mode, unsigned int cmd,
380 unsigned long arg)
381 {
382 return -ENOTTY;
383 }
384
385 #endif /* CONFIG_BLK_DEV_ZONED */
386
387 struct request_queue {
388 struct request *last_merge;
389 struct elevator_queue *elevator;
390
391 struct percpu_ref q_usage_counter;
392
393 struct blk_queue_stats *stats;
394 struct rq_qos *rq_qos;
395
396 const struct blk_mq_ops *mq_ops;
397
398 /* sw queues */
399 struct blk_mq_ctx __percpu *queue_ctx;
400
401 unsigned int queue_depth;
402
403 /* hw dispatch queues */
404 struct blk_mq_hw_ctx **queue_hw_ctx;
405 unsigned int nr_hw_queues;
406
407 /*
408 * The queue owner gets to use this for whatever they like.
409 * ll_rw_blk doesn't touch it.
410 */
411 void *queuedata;
412
413 /*
414 * various queue flags, see QUEUE_* below
415 */
416 unsigned long queue_flags;
417 /*
418 * Number of contexts that have called blk_set_pm_only(). If this
419 * counter is above zero then only RQF_PM requests are processed.
420 */
421 atomic_t pm_only;
422
423 /*
424 * ida allocated id for this queue. Used to index queues from
425 * ioctx.
426 */
427 int id;
428
429 spinlock_t queue_lock;
430
431 struct gendisk *disk;
432
433 /*
434 * queue kobject
435 */
436 struct kobject kobj;
437
438 /*
439 * mq queue kobject
440 */
441 struct kobject *mq_kobj;
442
443 #ifdef CONFIG_BLK_DEV_INTEGRITY
444 struct blk_integrity integrity;
445 #endif /* CONFIG_BLK_DEV_INTEGRITY */
446
447 #ifdef CONFIG_PM
448 struct device *dev;
449 enum rpm_status rpm_status;
450 #endif
451
452 /*
453 * queue settings
454 */
455 unsigned long nr_requests; /* Max # of requests */
456
457 unsigned int dma_pad_mask;
458 unsigned int dma_alignment;
459
460 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
461 /* Inline crypto capabilities */
462 struct blk_keyslot_manager *ksm;
463 #endif
464
465 unsigned int rq_timeout;
466 int poll_nsec;
467
468 struct blk_stat_callback *poll_cb;
469 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
470
471 struct timer_list timeout;
472 struct work_struct timeout_work;
473
474 atomic_t nr_active_requests_shared_sbitmap;
475
476 struct sbitmap_queue sched_bitmap_tags;
477 struct sbitmap_queue sched_breserved_tags;
478
479 struct list_head icq_list;
480 #ifdef CONFIG_BLK_CGROUP
481 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
482 struct blkcg_gq *root_blkg;
483 struct list_head blkg_list;
484 #endif
485
486 struct queue_limits limits;
487
488 unsigned int required_elevator_features;
489
490 #ifdef CONFIG_BLK_DEV_ZONED
491 /*
492 * Zoned block device information for request dispatch control.
493 * nr_zones is the total number of zones of the device. This is always
494 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
495 * bits which indicates if a zone is conventional (bit set) or
496 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
497 * bits which indicates if a zone is write locked, that is, if a write
498 * request targeting the zone was dispatched. All three fields are
499 * initialized by the low level device driver (e.g. scsi/sd.c).
500 * Stacking drivers (device mappers) may or may not initialize
501 * these fields.
502 *
503 * Reads of this information must be protected with blk_queue_enter() /
504 * blk_queue_exit(). Modifying this information is only allowed while
505 * no requests are being processed. See also blk_mq_freeze_queue() and
506 * blk_mq_unfreeze_queue().
507 */
508 unsigned int nr_zones;
509 unsigned long *conv_zones_bitmap;
510 unsigned long *seq_zones_wlock;
511 unsigned int max_open_zones;
512 unsigned int max_active_zones;
513 #endif /* CONFIG_BLK_DEV_ZONED */
514
515 int node;
516 struct mutex debugfs_mutex;
517 #ifdef CONFIG_BLK_DEV_IO_TRACE
518 struct blk_trace __rcu *blk_trace;
519 #endif
520 /*
521 * for flush operations
522 */
523 struct blk_flush_queue *fq;
524
525 struct list_head requeue_list;
526 spinlock_t requeue_lock;
527 struct delayed_work requeue_work;
528
529 struct mutex sysfs_lock;
530 struct mutex sysfs_dir_lock;
531
532 /*
533 * for reusing dead hctx instance in case of updating
534 * nr_hw_queues
535 */
536 struct list_head unused_hctx_list;
537 spinlock_t unused_hctx_lock;
538
539 int mq_freeze_depth;
540
541 #ifdef CONFIG_BLK_DEV_THROTTLING
542 /* Throttle data */
543 struct throtl_data *td;
544 #endif
545 struct rcu_head rcu_head;
546 wait_queue_head_t mq_freeze_wq;
547 /*
548 * Protect concurrent access to q_usage_counter by
549 * percpu_ref_kill() and percpu_ref_reinit().
550 */
551 struct mutex mq_freeze_lock;
552
553 struct blk_mq_tag_set *tag_set;
554 struct list_head tag_set_list;
555 struct bio_set bio_split;
556
557 struct dentry *debugfs_dir;
558
559 #ifdef CONFIG_BLK_DEBUG_FS
560 struct dentry *sched_debugfs_dir;
561 struct dentry *rqos_debugfs_dir;
562 #endif
563
564 bool mq_sysfs_init_done;
565
566 size_t cmd_size;
567
568 #define BLK_MAX_WRITE_HINTS 5
569 u64 write_hints[BLK_MAX_WRITE_HINTS];
570
571 ANDROID_KABI_RESERVE(1);
572 ANDROID_KABI_RESERVE(2);
573 ANDROID_KABI_RESERVE(3);
574 ANDROID_KABI_RESERVE(4);
575
576 ANDROID_OEM_DATA(1);
577 };
578
579 /* Keep blk_queue_flag_name[] in sync with the definitions below */
580 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
581 #define QUEUE_FLAG_DYING 1 /* queue being torn down */
582 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
583 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
584 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
585 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
586 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
587 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
588 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */
589 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
590 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
591 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */
592 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
593 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
594 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
595 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */
596 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
597 #define QUEUE_FLAG_WC 17 /* Write back caching */
598 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
599 #define QUEUE_FLAG_DAX 19 /* device supports DAX */
600 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
601 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */
602 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
603 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */
604 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
605 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
606 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */
607 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */
608 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */
609 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */
610
611 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
612 (1 << QUEUE_FLAG_SAME_COMP) | \
613 (1 << QUEUE_FLAG_NOWAIT))
614
615 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
616 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
617 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
618
619 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
620 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
621 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
622 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
623 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
624 #define blk_queue_noxmerges(q) \
625 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
626 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
627 #define blk_queue_stable_writes(q) \
628 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
629 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
630 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
631 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
632 #define blk_queue_zone_resetall(q) \
633 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
634 #define blk_queue_secure_erase(q) \
635 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
636 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
637 #define blk_queue_scsi_passthrough(q) \
638 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
639 #define blk_queue_pci_p2pdma(q) \
640 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
641 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
642 #define blk_queue_rq_alloc_time(q) \
643 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
644 #else
645 #define blk_queue_rq_alloc_time(q) false
646 #endif
647
648 #define blk_noretry_request(rq) \
649 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
650 REQ_FAILFAST_DRIVER))
651 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
652 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
653 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
654 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
655 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags)
656
657 extern void blk_set_pm_only(struct request_queue *q);
658 extern void blk_clear_pm_only(struct request_queue *q);
659
660 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
661
662 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
663
664 #define rq_dma_dir(rq) \
665 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
666
667 #define dma_map_bvec(dev, bv, dir, attrs) \
668 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
669 (dir), (attrs))
670
queue_is_mq(struct request_queue * q)671 static inline bool queue_is_mq(struct request_queue *q)
672 {
673 return q->mq_ops;
674 }
675
676 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)677 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
678 {
679 return q->rpm_status;
680 }
681 #else
queue_rpm_status(struct request_queue * q)682 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
683 {
684 return RPM_ACTIVE;
685 }
686 #endif
687
688 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)689 blk_queue_zoned_model(struct request_queue *q)
690 {
691 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
692 return q->limits.zoned;
693 return BLK_ZONED_NONE;
694 }
695
blk_queue_is_zoned(struct request_queue * q)696 static inline bool blk_queue_is_zoned(struct request_queue *q)
697 {
698 switch (blk_queue_zoned_model(q)) {
699 case BLK_ZONED_HA:
700 case BLK_ZONED_HM:
701 return true;
702 default:
703 return false;
704 }
705 }
706
blk_queue_zone_sectors(struct request_queue * q)707 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
708 {
709 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
710 }
711
712 #ifdef CONFIG_BLK_DEV_ZONED
blk_queue_nr_zones(struct request_queue * q)713 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
714 {
715 return blk_queue_is_zoned(q) ? q->nr_zones : 0;
716 }
717
blk_queue_zone_no(struct request_queue * q,sector_t sector)718 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
719 sector_t sector)
720 {
721 if (!blk_queue_is_zoned(q))
722 return 0;
723 return sector >> ilog2(q->limits.chunk_sectors);
724 }
725
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)726 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
727 sector_t sector)
728 {
729 if (!blk_queue_is_zoned(q))
730 return false;
731 if (!q->conv_zones_bitmap)
732 return true;
733 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
734 }
735
blk_queue_max_open_zones(struct request_queue * q,unsigned int max_open_zones)736 static inline void blk_queue_max_open_zones(struct request_queue *q,
737 unsigned int max_open_zones)
738 {
739 q->max_open_zones = max_open_zones;
740 }
741
queue_max_open_zones(const struct request_queue * q)742 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
743 {
744 return q->max_open_zones;
745 }
746
blk_queue_max_active_zones(struct request_queue * q,unsigned int max_active_zones)747 static inline void blk_queue_max_active_zones(struct request_queue *q,
748 unsigned int max_active_zones)
749 {
750 q->max_active_zones = max_active_zones;
751 }
752
queue_max_active_zones(const struct request_queue * q)753 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
754 {
755 return q->max_active_zones;
756 }
757 #else /* CONFIG_BLK_DEV_ZONED */
blk_queue_nr_zones(struct request_queue * q)758 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
759 {
760 return 0;
761 }
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)762 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
763 sector_t sector)
764 {
765 return false;
766 }
blk_queue_zone_no(struct request_queue * q,sector_t sector)767 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
768 sector_t sector)
769 {
770 return 0;
771 }
queue_max_open_zones(const struct request_queue * q)772 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
773 {
774 return 0;
775 }
queue_max_active_zones(const struct request_queue * q)776 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
777 {
778 return 0;
779 }
780 #endif /* CONFIG_BLK_DEV_ZONED */
781
rq_is_sync(struct request * rq)782 static inline bool rq_is_sync(struct request *rq)
783 {
784 return op_is_sync(rq->cmd_flags);
785 }
786
rq_mergeable(struct request * rq)787 static inline bool rq_mergeable(struct request *rq)
788 {
789 if (blk_rq_is_passthrough(rq))
790 return false;
791
792 if (req_op(rq) == REQ_OP_FLUSH)
793 return false;
794
795 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
796 return false;
797
798 if (req_op(rq) == REQ_OP_ZONE_APPEND)
799 return false;
800
801 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
802 return false;
803 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
804 return false;
805
806 return true;
807 }
808
blk_write_same_mergeable(struct bio * a,struct bio * b)809 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
810 {
811 if (bio_page(a) == bio_page(b) &&
812 bio_offset(a) == bio_offset(b))
813 return true;
814
815 return false;
816 }
817
blk_queue_depth(struct request_queue * q)818 static inline unsigned int blk_queue_depth(struct request_queue *q)
819 {
820 if (q->queue_depth)
821 return q->queue_depth;
822
823 return q->nr_requests;
824 }
825
826 /*
827 * default timeout for SG_IO if none specified
828 */
829 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
830 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
831
832 struct rq_map_data {
833 struct page **pages;
834 int page_order;
835 int nr_entries;
836 unsigned long offset;
837 int null_mapped;
838 int from_user;
839 };
840
841 struct req_iterator {
842 struct bvec_iter iter;
843 struct bio *bio;
844 };
845
846 /* This should not be used directly - use rq_for_each_segment */
847 #define for_each_bio(_bio) \
848 for (; _bio; _bio = _bio->bi_next)
849 #define __rq_for_each_bio(_bio, rq) \
850 if ((rq->bio)) \
851 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
852
853 #define rq_for_each_segment(bvl, _rq, _iter) \
854 __rq_for_each_bio(_iter.bio, _rq) \
855 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
856
857 #define rq_for_each_bvec(bvl, _rq, _iter) \
858 __rq_for_each_bio(_iter.bio, _rq) \
859 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
860
861 #define rq_iter_last(bvec, _iter) \
862 (_iter.bio->bi_next == NULL && \
863 bio_iter_last(bvec, _iter.iter))
864
865 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
866 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
867 #endif
868 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
869 extern void rq_flush_dcache_pages(struct request *rq);
870 #else
rq_flush_dcache_pages(struct request * rq)871 static inline void rq_flush_dcache_pages(struct request *rq)
872 {
873 }
874 #endif
875
876 extern int blk_register_queue(struct gendisk *disk);
877 extern void blk_unregister_queue(struct gendisk *disk);
878 blk_qc_t submit_bio_noacct(struct bio *bio);
879 extern void blk_rq_init(struct request_queue *q, struct request *rq);
880 extern void blk_put_request(struct request *);
881 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
882 blk_mq_req_flags_t flags);
883 extern int blk_lld_busy(struct request_queue *q);
884 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
885 struct bio_set *bs, gfp_t gfp_mask,
886 int (*bio_ctr)(struct bio *, struct bio *, void *),
887 void *data);
888 extern void blk_rq_unprep_clone(struct request *rq);
889 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
890 struct request *rq);
891 int blk_rq_append_bio(struct request *rq, struct bio *bio);
892 extern void blk_queue_split(struct bio **);
893 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
894 extern void blk_queue_exit(struct request_queue *q);
895 extern void blk_sync_queue(struct request_queue *q);
896 extern int blk_rq_map_user(struct request_queue *, struct request *,
897 struct rq_map_data *, void __user *, unsigned long,
898 gfp_t);
899 extern int blk_rq_unmap_user(struct bio *);
900 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
901 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
902 struct rq_map_data *, const struct iov_iter *,
903 gfp_t);
904 extern void blk_execute_rq_nowait(struct gendisk *,
905 struct request *, int, rq_end_io_fn *);
906
907 blk_status_t blk_execute_rq(struct gendisk *bd_disk, struct request *rq,
908 int at_head);
909
910 /* Helper to convert REQ_OP_XXX to its string format XXX */
911 extern const char *blk_op_str(unsigned int op);
912
913 int blk_status_to_errno(blk_status_t status);
914 blk_status_t errno_to_blk_status(int errno);
915
916 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
917
bdev_get_queue(struct block_device * bdev)918 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
919 {
920 return bdev->bd_disk->queue; /* this is never NULL */
921 }
922
923 /*
924 * The basic unit of block I/O is a sector. It is used in a number of contexts
925 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
926 * bytes. Variables of type sector_t represent an offset or size that is a
927 * multiple of 512 bytes. Hence these two constants.
928 */
929 #ifndef SECTOR_SHIFT
930 #define SECTOR_SHIFT 9
931 #endif
932 #ifndef SECTOR_SIZE
933 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
934 #endif
935
936 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
937 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
938 #define SECTOR_MASK (PAGE_SECTORS - 1)
939
940 /*
941 * blk_rq_pos() : the current sector
942 * blk_rq_bytes() : bytes left in the entire request
943 * blk_rq_cur_bytes() : bytes left in the current segment
944 * blk_rq_err_bytes() : bytes left till the next error boundary
945 * blk_rq_sectors() : sectors left in the entire request
946 * blk_rq_cur_sectors() : sectors left in the current segment
947 * blk_rq_stats_sectors() : sectors of the entire request used for stats
948 */
blk_rq_pos(const struct request * rq)949 static inline sector_t blk_rq_pos(const struct request *rq)
950 {
951 return rq->__sector;
952 }
953
blk_rq_bytes(const struct request * rq)954 static inline unsigned int blk_rq_bytes(const struct request *rq)
955 {
956 return rq->__data_len;
957 }
958
blk_rq_cur_bytes(const struct request * rq)959 static inline int blk_rq_cur_bytes(const struct request *rq)
960 {
961 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
962 }
963
964 extern unsigned int blk_rq_err_bytes(const struct request *rq);
965
blk_rq_sectors(const struct request * rq)966 static inline unsigned int blk_rq_sectors(const struct request *rq)
967 {
968 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
969 }
970
blk_rq_cur_sectors(const struct request * rq)971 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
972 {
973 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
974 }
975
blk_rq_stats_sectors(const struct request * rq)976 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
977 {
978 return rq->stats_sectors;
979 }
980
981 #ifdef CONFIG_BLK_DEV_ZONED
982
983 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
984 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
985
bio_zone_no(struct bio * bio)986 static inline unsigned int bio_zone_no(struct bio *bio)
987 {
988 return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev),
989 bio->bi_iter.bi_sector);
990 }
991
bio_zone_is_seq(struct bio * bio)992 static inline unsigned int bio_zone_is_seq(struct bio *bio)
993 {
994 return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev),
995 bio->bi_iter.bi_sector);
996 }
997
blk_rq_zone_no(struct request * rq)998 static inline unsigned int blk_rq_zone_no(struct request *rq)
999 {
1000 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1001 }
1002
blk_rq_zone_is_seq(struct request * rq)1003 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1004 {
1005 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1006 }
1007 #endif /* CONFIG_BLK_DEV_ZONED */
1008
1009 /*
1010 * Some commands like WRITE SAME have a payload or data transfer size which
1011 * is different from the size of the request. Any driver that supports such
1012 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1013 * calculate the data transfer size.
1014 */
blk_rq_payload_bytes(struct request * rq)1015 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1016 {
1017 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1018 return rq->special_vec.bv_len;
1019 return blk_rq_bytes(rq);
1020 }
1021
1022 /*
1023 * Return the first full biovec in the request. The caller needs to check that
1024 * there are any bvecs before calling this helper.
1025 */
req_bvec(struct request * rq)1026 static inline struct bio_vec req_bvec(struct request *rq)
1027 {
1028 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1029 return rq->special_vec;
1030 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1031 }
1032
blk_queue_get_max_sectors(struct request_queue * q,int op)1033 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1034 int op)
1035 {
1036 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1037 return min(q->limits.max_discard_sectors,
1038 UINT_MAX >> SECTOR_SHIFT);
1039
1040 if (unlikely(op == REQ_OP_WRITE_SAME))
1041 return q->limits.max_write_same_sectors;
1042
1043 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1044 return q->limits.max_write_zeroes_sectors;
1045
1046 return q->limits.max_sectors;
1047 }
1048
1049 /*
1050 * Return maximum size of a request at given offset. Only valid for
1051 * file system requests.
1052 */
blk_max_size_offset(struct request_queue * q,sector_t offset,unsigned int chunk_sectors)1053 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1054 sector_t offset,
1055 unsigned int chunk_sectors)
1056 {
1057 if (!chunk_sectors) {
1058 if (q->limits.chunk_sectors)
1059 chunk_sectors = q->limits.chunk_sectors;
1060 else
1061 return q->limits.max_sectors;
1062 }
1063
1064 if (likely(is_power_of_2(chunk_sectors)))
1065 chunk_sectors -= offset & (chunk_sectors - 1);
1066 else
1067 chunk_sectors -= sector_div(offset, chunk_sectors);
1068
1069 return min(q->limits.max_sectors, chunk_sectors);
1070 }
1071
blk_rq_get_max_sectors(struct request * rq,sector_t offset)1072 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1073 sector_t offset)
1074 {
1075 struct request_queue *q = rq->q;
1076
1077 if (blk_rq_is_passthrough(rq))
1078 return q->limits.max_hw_sectors;
1079
1080 if (!q->limits.chunk_sectors ||
1081 req_op(rq) == REQ_OP_DISCARD ||
1082 req_op(rq) == REQ_OP_SECURE_ERASE)
1083 return blk_queue_get_max_sectors(q, req_op(rq));
1084
1085 return min(blk_max_size_offset(q, offset, 0),
1086 blk_queue_get_max_sectors(q, req_op(rq)));
1087 }
1088
blk_rq_count_bios(struct request * rq)1089 static inline unsigned int blk_rq_count_bios(struct request *rq)
1090 {
1091 unsigned int nr_bios = 0;
1092 struct bio *bio;
1093
1094 __rq_for_each_bio(bio, rq)
1095 nr_bios++;
1096
1097 return nr_bios;
1098 }
1099
1100 void blk_steal_bios(struct bio_list *list, struct request *rq);
1101
1102 /*
1103 * Request completion related functions.
1104 *
1105 * blk_update_request() completes given number of bytes and updates
1106 * the request without completing it.
1107 */
1108 extern bool blk_update_request(struct request *rq, blk_status_t error,
1109 unsigned int nr_bytes);
1110
1111 extern void blk_abort_request(struct request *);
1112
1113 /*
1114 * Access functions for manipulating queue properties
1115 */
1116 extern void blk_cleanup_queue(struct request_queue *);
1117 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit);
1118 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1119 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1120 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1121 extern void blk_queue_max_discard_segments(struct request_queue *,
1122 unsigned short);
1123 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1124 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1125 unsigned int max_discard_sectors);
1126 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1127 unsigned int max_write_same_sectors);
1128 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1129 unsigned int max_write_same_sectors);
1130 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1131 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
1132 unsigned int max_zone_append_sectors);
1133 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1134 void blk_queue_zone_write_granularity(struct request_queue *q,
1135 unsigned int size);
1136 extern void blk_queue_alignment_offset(struct request_queue *q,
1137 unsigned int alignment);
1138 void disk_update_readahead(struct gendisk *disk);
1139 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1140 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1141 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1142 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1143 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1144 extern void blk_set_default_limits(struct queue_limits *lim);
1145 extern void blk_set_stacking_limits(struct queue_limits *lim);
1146 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1147 sector_t offset);
1148 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1149 sector_t offset);
1150 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1151 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1152 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1153 extern void blk_queue_dma_alignment(struct request_queue *, int);
1154 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1155 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1156 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1157 extern void blk_queue_required_elevator_features(struct request_queue *q,
1158 unsigned int features);
1159 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1160 struct device *dev);
1161
1162 /*
1163 * Number of physical segments as sent to the device.
1164 *
1165 * Normally this is the number of discontiguous data segments sent by the
1166 * submitter. But for data-less command like discard we might have no
1167 * actual data segments submitted, but the driver might have to add it's
1168 * own special payload. In that case we still return 1 here so that this
1169 * special payload will be mapped.
1170 */
blk_rq_nr_phys_segments(struct request * rq)1171 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1172 {
1173 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1174 return 1;
1175 return rq->nr_phys_segments;
1176 }
1177
1178 /*
1179 * Number of discard segments (or ranges) the driver needs to fill in.
1180 * Each discard bio merged into a request is counted as one segment.
1181 */
blk_rq_nr_discard_segments(struct request * rq)1182 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1183 {
1184 return max_t(unsigned short, rq->nr_phys_segments, 1);
1185 }
1186
1187 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1188 struct scatterlist *sglist, struct scatterlist **last_sg);
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)1189 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1190 struct scatterlist *sglist)
1191 {
1192 struct scatterlist *last_sg = NULL;
1193
1194 return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1195 }
1196 extern void blk_dump_rq_flags(struct request *, char *);
1197
1198 bool __must_check blk_get_queue(struct request_queue *);
1199 extern void blk_put_queue(struct request_queue *);
1200
1201 void blk_mark_disk_dead(struct gendisk *disk);
1202
1203 #ifdef CONFIG_BLOCK
1204 /*
1205 * blk_plug permits building a queue of related requests by holding the I/O
1206 * fragments for a short period. This allows merging of sequential requests
1207 * into single larger request. As the requests are moved from a per-task list to
1208 * the device's request_queue in a batch, this results in improved scalability
1209 * as the lock contention for request_queue lock is reduced.
1210 *
1211 * It is ok not to disable preemption when adding the request to the plug list
1212 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1213 * the plug list when the task sleeps by itself. For details, please see
1214 * schedule() where blk_schedule_flush_plug() is called.
1215 */
1216 struct blk_plug {
1217 struct list_head mq_list; /* blk-mq requests */
1218 struct list_head cb_list; /* md requires an unplug callback */
1219 unsigned short rq_count;
1220 bool multiple_queues;
1221 bool nowait;
1222 };
1223
1224 struct blk_plug_cb;
1225 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1226 struct blk_plug_cb {
1227 struct list_head list;
1228 blk_plug_cb_fn callback;
1229 void *data;
1230 };
1231 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1232 void *data, int size);
1233 extern void blk_start_plug(struct blk_plug *);
1234 extern void blk_finish_plug(struct blk_plug *);
1235 extern void blk_flush_plug_list(struct blk_plug *, bool);
1236
blk_flush_plug(struct task_struct * tsk)1237 static inline void blk_flush_plug(struct task_struct *tsk)
1238 {
1239 struct blk_plug *plug = tsk->plug;
1240
1241 if (plug)
1242 blk_flush_plug_list(plug, false);
1243 }
1244
blk_schedule_flush_plug(struct task_struct * tsk)1245 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1246 {
1247 struct blk_plug *plug = tsk->plug;
1248
1249 if (plug)
1250 blk_flush_plug_list(plug, true);
1251 }
1252
blk_needs_flush_plug(struct task_struct * tsk)1253 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1254 {
1255 struct blk_plug *plug = tsk->plug;
1256
1257 return plug &&
1258 (!list_empty(&plug->mq_list) ||
1259 !list_empty(&plug->cb_list));
1260 }
1261
1262 int blkdev_issue_flush(struct block_device *bdev);
1263 long nr_blockdev_pages(void);
1264 #else /* CONFIG_BLOCK */
1265 struct blk_plug {
1266 };
1267
blk_start_plug(struct blk_plug * plug)1268 static inline void blk_start_plug(struct blk_plug *plug)
1269 {
1270 }
1271
blk_finish_plug(struct blk_plug * plug)1272 static inline void blk_finish_plug(struct blk_plug *plug)
1273 {
1274 }
1275
blk_flush_plug(struct task_struct * task)1276 static inline void blk_flush_plug(struct task_struct *task)
1277 {
1278 }
1279
blk_schedule_flush_plug(struct task_struct * task)1280 static inline void blk_schedule_flush_plug(struct task_struct *task)
1281 {
1282 }
1283
1284
blk_needs_flush_plug(struct task_struct * tsk)1285 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1286 {
1287 return false;
1288 }
1289
blkdev_issue_flush(struct block_device * bdev)1290 static inline int blkdev_issue_flush(struct block_device *bdev)
1291 {
1292 return 0;
1293 }
1294
nr_blockdev_pages(void)1295 static inline long nr_blockdev_pages(void)
1296 {
1297 return 0;
1298 }
1299 #endif /* CONFIG_BLOCK */
1300
1301 extern void blk_io_schedule(void);
1302
1303 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1304 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1305
1306 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1307
1308 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1309 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1310 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1311 sector_t nr_sects, gfp_t gfp_mask, int flags,
1312 struct bio **biop);
1313
1314 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1315 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1316
1317 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1318 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1319 unsigned flags);
1320 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1321 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1322
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1323 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1324 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1325 {
1326 return blkdev_issue_discard(sb->s_bdev,
1327 block << (sb->s_blocksize_bits -
1328 SECTOR_SHIFT),
1329 nr_blocks << (sb->s_blocksize_bits -
1330 SECTOR_SHIFT),
1331 gfp_mask, flags);
1332 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1333 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1334 sector_t nr_blocks, gfp_t gfp_mask)
1335 {
1336 return blkdev_issue_zeroout(sb->s_bdev,
1337 block << (sb->s_blocksize_bits -
1338 SECTOR_SHIFT),
1339 nr_blocks << (sb->s_blocksize_bits -
1340 SECTOR_SHIFT),
1341 gfp_mask, 0);
1342 }
1343
bdev_is_partition(struct block_device * bdev)1344 static inline bool bdev_is_partition(struct block_device *bdev)
1345 {
1346 return bdev->bd_partno;
1347 }
1348
1349 enum blk_default_limits {
1350 BLK_MAX_SEGMENTS = 128,
1351 BLK_SAFE_MAX_SECTORS = 255,
1352 BLK_MAX_SEGMENT_SIZE = 65536,
1353 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1354 };
1355
1356 #define BLK_DEF_MAX_SECTORS 2560u
1357
queue_segment_boundary(const struct request_queue * q)1358 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1359 {
1360 return q->limits.seg_boundary_mask;
1361 }
1362
queue_virt_boundary(const struct request_queue * q)1363 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1364 {
1365 return q->limits.virt_boundary_mask;
1366 }
1367
queue_max_sectors(const struct request_queue * q)1368 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1369 {
1370 return q->limits.max_sectors;
1371 }
1372
queue_max_bytes(struct request_queue * q)1373 static inline unsigned int queue_max_bytes(struct request_queue *q)
1374 {
1375 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1376 }
1377
queue_max_hw_sectors(const struct request_queue * q)1378 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1379 {
1380 return q->limits.max_hw_sectors;
1381 }
1382
queue_max_segments(const struct request_queue * q)1383 static inline unsigned short queue_max_segments(const struct request_queue *q)
1384 {
1385 return q->limits.max_segments;
1386 }
1387
queue_max_discard_segments(const struct request_queue * q)1388 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1389 {
1390 return q->limits.max_discard_segments;
1391 }
1392
queue_max_segment_size(const struct request_queue * q)1393 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1394 {
1395 return q->limits.max_segment_size;
1396 }
1397
queue_max_zone_append_sectors(const struct request_queue * q)1398 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1399 {
1400
1401 const struct queue_limits *l = &q->limits;
1402
1403 return min(l->max_zone_append_sectors, l->max_sectors);
1404 }
1405
1406 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1407 bdev_max_zone_append_sectors(struct block_device *bdev)
1408 {
1409 return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1410 }
1411
bdev_max_segments(struct block_device * bdev)1412 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1413 {
1414 return queue_max_segments(bdev_get_queue(bdev));
1415 }
1416
queue_logical_block_size(const struct request_queue * q)1417 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1418 {
1419 int retval = 512;
1420
1421 if (q && q->limits.logical_block_size)
1422 retval = q->limits.logical_block_size;
1423
1424 return retval;
1425 }
1426
bdev_logical_block_size(struct block_device * bdev)1427 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1428 {
1429 return queue_logical_block_size(bdev_get_queue(bdev));
1430 }
1431
queue_physical_block_size(const struct request_queue * q)1432 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1433 {
1434 return q->limits.physical_block_size;
1435 }
1436
bdev_physical_block_size(struct block_device * bdev)1437 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1438 {
1439 return queue_physical_block_size(bdev_get_queue(bdev));
1440 }
1441
queue_io_min(const struct request_queue * q)1442 static inline unsigned int queue_io_min(const struct request_queue *q)
1443 {
1444 return q->limits.io_min;
1445 }
1446
bdev_io_min(struct block_device * bdev)1447 static inline int bdev_io_min(struct block_device *bdev)
1448 {
1449 return queue_io_min(bdev_get_queue(bdev));
1450 }
1451
queue_io_opt(const struct request_queue * q)1452 static inline unsigned int queue_io_opt(const struct request_queue *q)
1453 {
1454 return q->limits.io_opt;
1455 }
1456
bdev_io_opt(struct block_device * bdev)1457 static inline int bdev_io_opt(struct block_device *bdev)
1458 {
1459 return queue_io_opt(bdev_get_queue(bdev));
1460 }
1461
1462 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1463 queue_zone_write_granularity(const struct request_queue *q)
1464 {
1465 return q->limits.zone_write_granularity;
1466 }
1467
1468 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1469 bdev_zone_write_granularity(struct block_device *bdev)
1470 {
1471 return queue_zone_write_granularity(bdev_get_queue(bdev));
1472 }
1473
queue_alignment_offset(const struct request_queue * q)1474 static inline int queue_alignment_offset(const struct request_queue *q)
1475 {
1476 if (q->limits.misaligned)
1477 return -1;
1478
1479 return q->limits.alignment_offset;
1480 }
1481
queue_limit_alignment_offset(struct queue_limits * lim,sector_t sector)1482 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1483 {
1484 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1485 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1486 << SECTOR_SHIFT;
1487
1488 return (granularity + lim->alignment_offset - alignment) % granularity;
1489 }
1490
bdev_alignment_offset(struct block_device * bdev)1491 static inline int bdev_alignment_offset(struct block_device *bdev)
1492 {
1493 struct request_queue *q = bdev_get_queue(bdev);
1494
1495 if (q->limits.misaligned)
1496 return -1;
1497 if (bdev_is_partition(bdev))
1498 return queue_limit_alignment_offset(&q->limits,
1499 bdev->bd_start_sect);
1500 return q->limits.alignment_offset;
1501 }
1502
queue_discard_alignment(const struct request_queue * q)1503 static inline int queue_discard_alignment(const struct request_queue *q)
1504 {
1505 if (q->limits.discard_misaligned)
1506 return -1;
1507
1508 return q->limits.discard_alignment;
1509 }
1510
queue_limit_discard_alignment(struct queue_limits * lim,sector_t sector)1511 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1512 {
1513 unsigned int alignment, granularity, offset;
1514
1515 if (!lim->max_discard_sectors)
1516 return 0;
1517
1518 /* Why are these in bytes, not sectors? */
1519 alignment = lim->discard_alignment >> SECTOR_SHIFT;
1520 granularity = lim->discard_granularity >> SECTOR_SHIFT;
1521 if (!granularity)
1522 return 0;
1523
1524 /* Offset of the partition start in 'granularity' sectors */
1525 offset = sector_div(sector, granularity);
1526
1527 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1528 offset = (granularity + alignment - offset) % granularity;
1529
1530 /* Turn it back into bytes, gaah */
1531 return offset << SECTOR_SHIFT;
1532 }
1533
1534 /*
1535 * Two cases of handling DISCARD merge:
1536 * If max_discard_segments > 1, the driver takes every bio
1537 * as a range and send them to controller together. The ranges
1538 * needn't to be contiguous.
1539 * Otherwise, the bios/requests will be handled as same as
1540 * others which should be contiguous.
1541 */
blk_discard_mergable(struct request * req)1542 static inline bool blk_discard_mergable(struct request *req)
1543 {
1544 if (req_op(req) == REQ_OP_DISCARD &&
1545 queue_max_discard_segments(req->q) > 1)
1546 return true;
1547 return false;
1548 }
1549
bdev_discard_alignment(struct block_device * bdev)1550 static inline int bdev_discard_alignment(struct block_device *bdev)
1551 {
1552 struct request_queue *q = bdev_get_queue(bdev);
1553
1554 if (bdev_is_partition(bdev))
1555 return queue_limit_discard_alignment(&q->limits,
1556 bdev->bd_start_sect);
1557 return q->limits.discard_alignment;
1558 }
1559
bdev_write_same(struct block_device * bdev)1560 static inline unsigned int bdev_write_same(struct block_device *bdev)
1561 {
1562 struct request_queue *q = bdev_get_queue(bdev);
1563
1564 if (q)
1565 return q->limits.max_write_same_sectors;
1566
1567 return 0;
1568 }
1569
bdev_write_zeroes_sectors(struct block_device * bdev)1570 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1571 {
1572 struct request_queue *q = bdev_get_queue(bdev);
1573
1574 if (q)
1575 return q->limits.max_write_zeroes_sectors;
1576
1577 return 0;
1578 }
1579
bdev_zoned_model(struct block_device * bdev)1580 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1581 {
1582 struct request_queue *q = bdev_get_queue(bdev);
1583
1584 if (q)
1585 return blk_queue_zoned_model(q);
1586
1587 return BLK_ZONED_NONE;
1588 }
1589
bdev_is_zoned(struct block_device * bdev)1590 static inline bool bdev_is_zoned(struct block_device *bdev)
1591 {
1592 struct request_queue *q = bdev_get_queue(bdev);
1593
1594 if (q)
1595 return blk_queue_is_zoned(q);
1596
1597 return false;
1598 }
1599
bdev_zone_sectors(struct block_device * bdev)1600 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1601 {
1602 struct request_queue *q = bdev_get_queue(bdev);
1603
1604 if (q)
1605 return blk_queue_zone_sectors(q);
1606 return 0;
1607 }
1608
bdev_max_open_zones(struct block_device * bdev)1609 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
1610 {
1611 struct request_queue *q = bdev_get_queue(bdev);
1612
1613 if (q)
1614 return queue_max_open_zones(q);
1615 return 0;
1616 }
1617
bdev_max_active_zones(struct block_device * bdev)1618 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
1619 {
1620 struct request_queue *q = bdev_get_queue(bdev);
1621
1622 if (q)
1623 return queue_max_active_zones(q);
1624 return 0;
1625 }
1626
queue_dma_alignment(const struct request_queue * q)1627 static inline int queue_dma_alignment(const struct request_queue *q)
1628 {
1629 return q ? q->dma_alignment : 511;
1630 }
1631
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1632 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1633 unsigned int len)
1634 {
1635 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1636 return !(addr & alignment) && !(len & alignment);
1637 }
1638
1639 /* assumes size > 256 */
blksize_bits(unsigned int size)1640 static inline unsigned int blksize_bits(unsigned int size)
1641 {
1642 unsigned int bits = 8;
1643 do {
1644 bits++;
1645 size >>= 1;
1646 } while (size > 256);
1647 return bits;
1648 }
1649
block_size(struct block_device * bdev)1650 static inline unsigned int block_size(struct block_device *bdev)
1651 {
1652 return 1 << bdev->bd_inode->i_blkbits;
1653 }
1654
1655 int kblockd_schedule_work(struct work_struct *work);
1656 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1657
1658 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1659 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1660 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1661 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1662
1663 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1664
1665 enum blk_integrity_flags {
1666 BLK_INTEGRITY_VERIFY = 1 << 0,
1667 BLK_INTEGRITY_GENERATE = 1 << 1,
1668 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1669 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1670 };
1671
1672 struct blk_integrity_iter {
1673 void *prot_buf;
1674 void *data_buf;
1675 sector_t seed;
1676 unsigned int data_size;
1677 unsigned short interval;
1678 const char *disk_name;
1679 };
1680
1681 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1682 typedef void (integrity_prepare_fn) (struct request *);
1683 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1684
1685 struct blk_integrity_profile {
1686 integrity_processing_fn *generate_fn;
1687 integrity_processing_fn *verify_fn;
1688 integrity_prepare_fn *prepare_fn;
1689 integrity_complete_fn *complete_fn;
1690 const char *name;
1691 };
1692
1693 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1694 extern void blk_integrity_unregister(struct gendisk *);
1695 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1696 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1697 struct scatterlist *);
1698 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1699
blk_get_integrity(struct gendisk * disk)1700 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1701 {
1702 struct blk_integrity *bi = &disk->queue->integrity;
1703
1704 if (!bi->profile)
1705 return NULL;
1706
1707 return bi;
1708 }
1709
1710 static inline
bdev_get_integrity(struct block_device * bdev)1711 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1712 {
1713 return blk_get_integrity(bdev->bd_disk);
1714 }
1715
1716 static inline bool
blk_integrity_queue_supports_integrity(struct request_queue * q)1717 blk_integrity_queue_supports_integrity(struct request_queue *q)
1718 {
1719 return q->integrity.profile;
1720 }
1721
blk_integrity_rq(struct request * rq)1722 static inline bool blk_integrity_rq(struct request *rq)
1723 {
1724 return rq->cmd_flags & REQ_INTEGRITY;
1725 }
1726
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1727 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1728 unsigned int segs)
1729 {
1730 q->limits.max_integrity_segments = segs;
1731 }
1732
1733 static inline unsigned short
queue_max_integrity_segments(const struct request_queue * q)1734 queue_max_integrity_segments(const struct request_queue *q)
1735 {
1736 return q->limits.max_integrity_segments;
1737 }
1738
1739 /**
1740 * bio_integrity_intervals - Return number of integrity intervals for a bio
1741 * @bi: blk_integrity profile for device
1742 * @sectors: Size of the bio in 512-byte sectors
1743 *
1744 * Description: The block layer calculates everything in 512 byte
1745 * sectors but integrity metadata is done in terms of the data integrity
1746 * interval size of the storage device. Convert the block layer sectors
1747 * to the appropriate number of integrity intervals.
1748 */
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1749 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1750 unsigned int sectors)
1751 {
1752 return sectors >> (bi->interval_exp - 9);
1753 }
1754
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1755 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1756 unsigned int sectors)
1757 {
1758 return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1759 }
1760
1761 /*
1762 * Return the first bvec that contains integrity data. Only drivers that are
1763 * limited to a single integrity segment should use this helper.
1764 */
rq_integrity_vec(struct request * rq)1765 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1766 {
1767 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1768 return NULL;
1769 return rq->bio->bi_integrity->bip_vec;
1770 }
1771
1772 #else /* CONFIG_BLK_DEV_INTEGRITY */
1773
1774 struct bio;
1775 struct block_device;
1776 struct gendisk;
1777 struct blk_integrity;
1778
blk_integrity_rq(struct request * rq)1779 static inline int blk_integrity_rq(struct request *rq)
1780 {
1781 return 0;
1782 }
blk_rq_count_integrity_sg(struct request_queue * q,struct bio * b)1783 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1784 struct bio *b)
1785 {
1786 return 0;
1787 }
blk_rq_map_integrity_sg(struct request_queue * q,struct bio * b,struct scatterlist * s)1788 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1789 struct bio *b,
1790 struct scatterlist *s)
1791 {
1792 return 0;
1793 }
bdev_get_integrity(struct block_device * b)1794 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1795 {
1796 return NULL;
1797 }
blk_get_integrity(struct gendisk * disk)1798 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1799 {
1800 return NULL;
1801 }
1802 static inline bool
blk_integrity_queue_supports_integrity(struct request_queue * q)1803 blk_integrity_queue_supports_integrity(struct request_queue *q)
1804 {
1805 return false;
1806 }
blk_integrity_compare(struct gendisk * a,struct gendisk * b)1807 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1808 {
1809 return 0;
1810 }
blk_integrity_register(struct gendisk * d,struct blk_integrity * b)1811 static inline void blk_integrity_register(struct gendisk *d,
1812 struct blk_integrity *b)
1813 {
1814 }
blk_integrity_unregister(struct gendisk * d)1815 static inline void blk_integrity_unregister(struct gendisk *d)
1816 {
1817 }
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1818 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1819 unsigned int segs)
1820 {
1821 }
queue_max_integrity_segments(const struct request_queue * q)1822 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1823 {
1824 return 0;
1825 }
1826
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1827 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1828 unsigned int sectors)
1829 {
1830 return 0;
1831 }
1832
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1833 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1834 unsigned int sectors)
1835 {
1836 return 0;
1837 }
1838
rq_integrity_vec(struct request * rq)1839 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1840 {
1841 return NULL;
1842 }
1843
1844 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1845
1846 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1847
1848 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q);
1849
1850 void blk_ksm_unregister(struct request_queue *q);
1851
1852 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1853
blk_ksm_register(struct blk_keyslot_manager * ksm,struct request_queue * q)1854 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm,
1855 struct request_queue *q)
1856 {
1857 return true;
1858 }
1859
blk_ksm_unregister(struct request_queue * q)1860 static inline void blk_ksm_unregister(struct request_queue *q) { }
1861
1862 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1863
1864
1865 struct block_device_operations {
1866 blk_qc_t (*submit_bio) (struct bio *bio);
1867 int (*open) (struct block_device *, fmode_t);
1868 void (*release) (struct gendisk *, fmode_t);
1869 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1870 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1871 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1872 unsigned int (*check_events) (struct gendisk *disk,
1873 unsigned int clearing);
1874 void (*unlock_native_capacity) (struct gendisk *);
1875 int (*getgeo)(struct block_device *, struct hd_geometry *);
1876 int (*set_read_only)(struct block_device *bdev, bool ro);
1877 /* this callback is with swap_lock and sometimes page table lock held */
1878 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1879 int (*report_zones)(struct gendisk *, sector_t sector,
1880 unsigned int nr_zones, report_zones_cb cb, void *data);
1881 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1882 struct module *owner;
1883 const struct pr_ops *pr_ops;
1884
1885 /*
1886 * Special callback for probing GPT entry at a given sector.
1887 * Needed by Android devices, used by GPT scanner and MMC blk
1888 * driver.
1889 */
1890 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1891
1892 ANDROID_KABI_RESERVE(1);
1893 ANDROID_KABI_RESERVE(2);
1894 ANDROID_OEM_DATA(1);
1895 };
1896
1897 #ifdef CONFIG_COMPAT
1898 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1899 unsigned int, unsigned long);
1900 #else
1901 #define blkdev_compat_ptr_ioctl NULL
1902 #endif
1903
1904 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1905 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1906 struct writeback_control *);
1907
1908 #ifdef CONFIG_BLK_DEV_ZONED
1909 bool blk_req_needs_zone_write_lock(struct request *rq);
1910 bool blk_req_zone_write_trylock(struct request *rq);
1911 void __blk_req_zone_write_lock(struct request *rq);
1912 void __blk_req_zone_write_unlock(struct request *rq);
1913
blk_req_zone_write_lock(struct request * rq)1914 static inline void blk_req_zone_write_lock(struct request *rq)
1915 {
1916 if (blk_req_needs_zone_write_lock(rq))
1917 __blk_req_zone_write_lock(rq);
1918 }
1919
blk_req_zone_write_unlock(struct request * rq)1920 static inline void blk_req_zone_write_unlock(struct request *rq)
1921 {
1922 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1923 __blk_req_zone_write_unlock(rq);
1924 }
1925
blk_req_zone_is_write_locked(struct request * rq)1926 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1927 {
1928 return rq->q->seq_zones_wlock &&
1929 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1930 }
1931
blk_req_can_dispatch_to_zone(struct request * rq)1932 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1933 {
1934 if (!blk_req_needs_zone_write_lock(rq))
1935 return true;
1936 return !blk_req_zone_is_write_locked(rq);
1937 }
1938 #else
blk_req_needs_zone_write_lock(struct request * rq)1939 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1940 {
1941 return false;
1942 }
1943
blk_req_zone_write_lock(struct request * rq)1944 static inline void blk_req_zone_write_lock(struct request *rq)
1945 {
1946 }
1947
blk_req_zone_write_unlock(struct request * rq)1948 static inline void blk_req_zone_write_unlock(struct request *rq)
1949 {
1950 }
blk_req_zone_is_write_locked(struct request * rq)1951 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1952 {
1953 return false;
1954 }
1955
blk_req_can_dispatch_to_zone(struct request * rq)1956 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1957 {
1958 return true;
1959 }
1960 #endif /* CONFIG_BLK_DEV_ZONED */
1961
blk_wake_io_task(struct task_struct * waiter)1962 static inline void blk_wake_io_task(struct task_struct *waiter)
1963 {
1964 /*
1965 * If we're polling, the task itself is doing the completions. For
1966 * that case, we don't need to signal a wakeup, it's enough to just
1967 * mark us as RUNNING.
1968 */
1969 if (waiter == current)
1970 __set_current_state(TASK_RUNNING);
1971 else
1972 wake_up_process(waiter);
1973 }
1974
1975 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1976 unsigned int op);
1977 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1978 unsigned long start_time);
1979
1980 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time);
1981 unsigned long bio_start_io_acct(struct bio *bio);
1982 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1983 struct block_device *orig_bdev);
1984
1985 /**
1986 * bio_end_io_acct - end I/O accounting for bio based drivers
1987 * @bio: bio to end account for
1988 * @start: start time returned by bio_start_io_acct()
1989 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1990 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1991 {
1992 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1993 }
1994
1995 int bdev_read_only(struct block_device *bdev);
1996 int set_blocksize(struct block_device *bdev, int size);
1997
1998 const char *bdevname(struct block_device *bdev, char *buffer);
1999 int lookup_bdev(const char *pathname, dev_t *dev);
2000
2001 void blkdev_show(struct seq_file *seqf, off_t offset);
2002
2003 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
2004 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
2005 #ifdef CONFIG_BLOCK
2006 #define BLKDEV_MAJOR_MAX 512
2007 #else
2008 #define BLKDEV_MAJOR_MAX 0
2009 #endif
2010
2011 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
2012 void *holder);
2013 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
2014 int bd_prepare_to_claim(struct block_device *bdev, void *holder);
2015 void bd_abort_claiming(struct block_device *bdev, void *holder);
2016 void blkdev_put(struct block_device *bdev, fmode_t mode);
2017
2018 /* just for blk-cgroup, don't use elsewhere */
2019 struct block_device *blkdev_get_no_open(dev_t dev);
2020 void blkdev_put_no_open(struct block_device *bdev);
2021
2022 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
2023 void bdev_add(struct block_device *bdev, dev_t dev);
2024 struct block_device *I_BDEV(struct inode *inode);
2025 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
2026 loff_t lend);
2027
2028 #ifdef CONFIG_BLOCK
2029 void invalidate_bdev(struct block_device *bdev);
2030 int sync_blockdev(struct block_device *bdev);
2031 int sync_blockdev_nowait(struct block_device *bdev);
2032 void sync_bdevs(bool wait);
2033 #else
invalidate_bdev(struct block_device * bdev)2034 static inline void invalidate_bdev(struct block_device *bdev)
2035 {
2036 }
sync_blockdev(struct block_device * bdev)2037 static inline int sync_blockdev(struct block_device *bdev)
2038 {
2039 return 0;
2040 }
sync_blockdev_nowait(struct block_device * bdev)2041 static inline int sync_blockdev_nowait(struct block_device *bdev)
2042 {
2043 return 0;
2044 }
sync_bdevs(bool wait)2045 static inline void sync_bdevs(bool wait)
2046 {
2047 }
2048 #endif
2049 int fsync_bdev(struct block_device *bdev);
2050
2051 int freeze_bdev(struct block_device *bdev);
2052 int thaw_bdev(struct block_device *bdev);
2053
2054 #endif /* _LINUX_BLKDEV_H */
2055