• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
zonefs_zone_mgmt(struct inode * inode,enum req_opf op)30 static inline int zonefs_zone_mgmt(struct inode *inode,
31 				   enum req_opf op)
32 {
33 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
34 	int ret;
35 
36 	lockdep_assert_held(&zi->i_truncate_mutex);
37 
38 	/*
39 	 * With ZNS drives, closing an explicitly open zone that has not been
40 	 * written will change the zone state to "closed", that is, the zone
41 	 * will remain active. Since this can then cause failure of explicit
42 	 * open operation on other zones if the drive active zone resources
43 	 * are exceeded, make sure that the zone does not remain active by
44 	 * resetting it.
45 	 */
46 	if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset)
47 		op = REQ_OP_ZONE_RESET;
48 
49 	trace_zonefs_zone_mgmt(inode, op);
50 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
51 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
52 	if (ret) {
53 		zonefs_err(inode->i_sb,
54 			   "Zone management operation %s at %llu failed %d\n",
55 			   blk_op_str(op), zi->i_zsector, ret);
56 		return ret;
57 	}
58 
59 	return 0;
60 }
61 
zonefs_i_size_write(struct inode * inode,loff_t isize)62 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
63 {
64 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
65 
66 	i_size_write(inode, isize);
67 	/*
68 	 * A full zone is no longer open/active and does not need
69 	 * explicit closing.
70 	 */
71 	if (isize >= zi->i_max_size)
72 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
73 }
74 
zonefs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)75 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
76 				   loff_t length, unsigned int flags,
77 				   struct iomap *iomap, struct iomap *srcmap)
78 {
79 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
80 	struct super_block *sb = inode->i_sb;
81 	loff_t isize;
82 
83 	/*
84 	 * All blocks are always mapped below EOF. If reading past EOF,
85 	 * act as if there is a hole up to the file maximum size.
86 	 */
87 	mutex_lock(&zi->i_truncate_mutex);
88 	iomap->bdev = inode->i_sb->s_bdev;
89 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
90 	isize = i_size_read(inode);
91 	if (iomap->offset >= isize) {
92 		iomap->type = IOMAP_HOLE;
93 		iomap->addr = IOMAP_NULL_ADDR;
94 		iomap->length = length;
95 	} else {
96 		iomap->type = IOMAP_MAPPED;
97 		iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
98 		iomap->length = isize - iomap->offset;
99 	}
100 	mutex_unlock(&zi->i_truncate_mutex);
101 
102 	trace_zonefs_iomap_begin(inode, iomap);
103 
104 	return 0;
105 }
106 
107 static const struct iomap_ops zonefs_read_iomap_ops = {
108 	.iomap_begin	= zonefs_read_iomap_begin,
109 };
110 
zonefs_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)111 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
112 				    loff_t length, unsigned int flags,
113 				    struct iomap *iomap, struct iomap *srcmap)
114 {
115 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
116 	struct super_block *sb = inode->i_sb;
117 	loff_t isize;
118 
119 	/* All write I/Os should always be within the file maximum size */
120 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
121 		return -EIO;
122 
123 	/*
124 	 * Sequential zones can only accept direct writes. This is already
125 	 * checked when writes are issued, so warn if we see a page writeback
126 	 * operation.
127 	 */
128 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
129 			 !(flags & IOMAP_DIRECT)))
130 		return -EIO;
131 
132 	/*
133 	 * For conventional zones, all blocks are always mapped. For sequential
134 	 * zones, all blocks after always mapped below the inode size (zone
135 	 * write pointer) and unwriten beyond.
136 	 */
137 	mutex_lock(&zi->i_truncate_mutex);
138 	iomap->bdev = inode->i_sb->s_bdev;
139 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
140 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
141 	isize = i_size_read(inode);
142 	if (iomap->offset >= isize) {
143 		iomap->type = IOMAP_UNWRITTEN;
144 		iomap->length = zi->i_max_size - iomap->offset;
145 	} else {
146 		iomap->type = IOMAP_MAPPED;
147 		iomap->length = isize - iomap->offset;
148 	}
149 	mutex_unlock(&zi->i_truncate_mutex);
150 
151 	trace_zonefs_iomap_begin(inode, iomap);
152 
153 	return 0;
154 }
155 
156 static const struct iomap_ops zonefs_write_iomap_ops = {
157 	.iomap_begin	= zonefs_write_iomap_begin,
158 };
159 
zonefs_readpage(struct file * unused,struct page * page)160 static int zonefs_readpage(struct file *unused, struct page *page)
161 {
162 	return iomap_readpage(page, &zonefs_read_iomap_ops);
163 }
164 
zonefs_readahead(struct readahead_control * rac)165 static void zonefs_readahead(struct readahead_control *rac)
166 {
167 	iomap_readahead(rac, &zonefs_read_iomap_ops);
168 }
169 
170 /*
171  * Map blocks for page writeback. This is used only on conventional zone files,
172  * which implies that the page range can only be within the fixed inode size.
173  */
zonefs_write_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)174 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
175 				   struct inode *inode, loff_t offset)
176 {
177 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
178 
179 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
180 		return -EIO;
181 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
182 		return -EIO;
183 
184 	/* If the mapping is already OK, nothing needs to be done */
185 	if (offset >= wpc->iomap.offset &&
186 	    offset < wpc->iomap.offset + wpc->iomap.length)
187 		return 0;
188 
189 	return zonefs_write_iomap_begin(inode, offset, zi->i_max_size - offset,
190 					IOMAP_WRITE, &wpc->iomap, NULL);
191 }
192 
193 static const struct iomap_writeback_ops zonefs_writeback_ops = {
194 	.map_blocks		= zonefs_write_map_blocks,
195 };
196 
zonefs_writepage(struct page * page,struct writeback_control * wbc)197 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
198 {
199 	struct iomap_writepage_ctx wpc = { };
200 
201 	return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
202 }
203 
zonefs_writepages(struct address_space * mapping,struct writeback_control * wbc)204 static int zonefs_writepages(struct address_space *mapping,
205 			     struct writeback_control *wbc)
206 {
207 	struct iomap_writepage_ctx wpc = { };
208 
209 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
210 }
211 
zonefs_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)212 static int zonefs_swap_activate(struct swap_info_struct *sis,
213 				struct file *swap_file, sector_t *span)
214 {
215 	struct inode *inode = file_inode(swap_file);
216 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
217 
218 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
219 		zonefs_err(inode->i_sb,
220 			   "swap file: not a conventional zone file\n");
221 		return -EINVAL;
222 	}
223 
224 	return iomap_swapfile_activate(sis, swap_file, span,
225 				       &zonefs_read_iomap_ops);
226 }
227 
228 static const struct address_space_operations zonefs_file_aops = {
229 	.readpage		= zonefs_readpage,
230 	.readahead		= zonefs_readahead,
231 	.writepage		= zonefs_writepage,
232 	.writepages		= zonefs_writepages,
233 	.set_page_dirty		= __set_page_dirty_nobuffers,
234 	.releasepage		= iomap_releasepage,
235 	.invalidatepage		= iomap_invalidatepage,
236 	.migratepage		= iomap_migrate_page,
237 	.is_partially_uptodate	= iomap_is_partially_uptodate,
238 	.error_remove_page	= generic_error_remove_page,
239 	.direct_IO		= noop_direct_IO,
240 	.swap_activate		= zonefs_swap_activate,
241 };
242 
zonefs_update_stats(struct inode * inode,loff_t new_isize)243 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
244 {
245 	struct super_block *sb = inode->i_sb;
246 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
247 	loff_t old_isize = i_size_read(inode);
248 	loff_t nr_blocks;
249 
250 	if (new_isize == old_isize)
251 		return;
252 
253 	spin_lock(&sbi->s_lock);
254 
255 	/*
256 	 * This may be called for an update after an IO error.
257 	 * So beware of the values seen.
258 	 */
259 	if (new_isize < old_isize) {
260 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
261 		if (sbi->s_used_blocks > nr_blocks)
262 			sbi->s_used_blocks -= nr_blocks;
263 		else
264 			sbi->s_used_blocks = 0;
265 	} else {
266 		sbi->s_used_blocks +=
267 			(new_isize - old_isize) >> sb->s_blocksize_bits;
268 		if (sbi->s_used_blocks > sbi->s_blocks)
269 			sbi->s_used_blocks = sbi->s_blocks;
270 	}
271 
272 	spin_unlock(&sbi->s_lock);
273 }
274 
275 /*
276  * Check a zone condition and adjust its file inode access permissions for
277  * offline and readonly zones. Return the inode size corresponding to the
278  * amount of readable data in the zone.
279  */
zonefs_check_zone_condition(struct inode * inode,struct blk_zone * zone,bool warn,bool mount)280 static loff_t zonefs_check_zone_condition(struct inode *inode,
281 					  struct blk_zone *zone, bool warn,
282 					  bool mount)
283 {
284 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
285 
286 	switch (zone->cond) {
287 	case BLK_ZONE_COND_OFFLINE:
288 		/*
289 		 * Dead zone: make the inode immutable, disable all accesses
290 		 * and set the file size to 0 (zone wp set to zone start).
291 		 */
292 		if (warn)
293 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
294 				    inode->i_ino);
295 		inode->i_flags |= S_IMMUTABLE;
296 		inode->i_mode &= ~0777;
297 		zone->wp = zone->start;
298 		return 0;
299 	case BLK_ZONE_COND_READONLY:
300 		/*
301 		 * The write pointer of read-only zones is invalid. If such a
302 		 * zone is found during mount, the file size cannot be retrieved
303 		 * so we treat the zone as offline (mount == true case).
304 		 * Otherwise, keep the file size as it was when last updated
305 		 * so that the user can recover data. In both cases, writes are
306 		 * always disabled for the zone.
307 		 */
308 		if (warn)
309 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
310 				    inode->i_ino);
311 		inode->i_flags |= S_IMMUTABLE;
312 		if (mount) {
313 			zone->cond = BLK_ZONE_COND_OFFLINE;
314 			inode->i_mode &= ~0777;
315 			zone->wp = zone->start;
316 			return 0;
317 		}
318 		inode->i_mode &= ~0222;
319 		return i_size_read(inode);
320 	case BLK_ZONE_COND_FULL:
321 		/* The write pointer of full zones is invalid. */
322 		return zi->i_max_size;
323 	default:
324 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
325 			return zi->i_max_size;
326 		return (zone->wp - zone->start) << SECTOR_SHIFT;
327 	}
328 }
329 
330 struct zonefs_ioerr_data {
331 	struct inode	*inode;
332 	bool		write;
333 };
334 
zonefs_io_error_cb(struct blk_zone * zone,unsigned int idx,void * data)335 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
336 			      void *data)
337 {
338 	struct zonefs_ioerr_data *err = data;
339 	struct inode *inode = err->inode;
340 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
341 	struct super_block *sb = inode->i_sb;
342 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
343 	loff_t isize, data_size;
344 
345 	/*
346 	 * Check the zone condition: if the zone is not "bad" (offline or
347 	 * read-only), read errors are simply signaled to the IO issuer as long
348 	 * as there is no inconsistency between the inode size and the amount of
349 	 * data writen in the zone (data_size).
350 	 */
351 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
352 	isize = i_size_read(inode);
353 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
354 	    zone->cond != BLK_ZONE_COND_READONLY &&
355 	    !err->write && isize == data_size)
356 		return 0;
357 
358 	/*
359 	 * At this point, we detected either a bad zone or an inconsistency
360 	 * between the inode size and the amount of data written in the zone.
361 	 * For the latter case, the cause may be a write IO error or an external
362 	 * action on the device. Two error patterns exist:
363 	 * 1) The inode size is lower than the amount of data in the zone:
364 	 *    a write operation partially failed and data was writen at the end
365 	 *    of the file. This can happen in the case of a large direct IO
366 	 *    needing several BIOs and/or write requests to be processed.
367 	 * 2) The inode size is larger than the amount of data in the zone:
368 	 *    this can happen with a deferred write error with the use of the
369 	 *    device side write cache after getting successful write IO
370 	 *    completions. Other possibilities are (a) an external corruption,
371 	 *    e.g. an application reset the zone directly, or (b) the device
372 	 *    has a serious problem (e.g. firmware bug).
373 	 *
374 	 * In all cases, warn about inode size inconsistency and handle the
375 	 * IO error according to the zone condition and to the mount options.
376 	 */
377 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
378 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
379 			    inode->i_ino, isize, data_size);
380 
381 	/*
382 	 * First handle bad zones signaled by hardware. The mount options
383 	 * errors=zone-ro and errors=zone-offline result in changing the
384 	 * zone condition to read-only and offline respectively, as if the
385 	 * condition was signaled by the hardware.
386 	 */
387 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
388 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
389 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
390 			    inode->i_ino);
391 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
392 			zone->cond = BLK_ZONE_COND_OFFLINE;
393 			data_size = zonefs_check_zone_condition(inode, zone,
394 								false, false);
395 		}
396 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
397 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
398 		zonefs_warn(sb, "inode %lu: write access disabled\n",
399 			    inode->i_ino);
400 		if (zone->cond != BLK_ZONE_COND_READONLY) {
401 			zone->cond = BLK_ZONE_COND_READONLY;
402 			data_size = zonefs_check_zone_condition(inode, zone,
403 								false, false);
404 		}
405 	} else if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO &&
406 		   data_size > isize) {
407 		/* Do not expose garbage data */
408 		data_size = isize;
409 	}
410 
411 	/*
412 	 * If the filesystem is mounted with the explicit-open mount option, we
413 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
414 	 * the read-only or offline condition, to avoid attempting an explicit
415 	 * close of the zone when the inode file is closed.
416 	 */
417 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
418 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
419 	     zone->cond == BLK_ZONE_COND_READONLY))
420 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
421 
422 	/*
423 	 * If error=remount-ro was specified, any error result in remounting
424 	 * the volume as read-only.
425 	 */
426 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
427 		zonefs_warn(sb, "remounting filesystem read-only\n");
428 		sb->s_flags |= SB_RDONLY;
429 	}
430 
431 	/*
432 	 * Update block usage stats and the inode size  to prevent access to
433 	 * invalid data.
434 	 */
435 	zonefs_update_stats(inode, data_size);
436 	zonefs_i_size_write(inode, data_size);
437 	zi->i_wpoffset = data_size;
438 
439 	return 0;
440 }
441 
442 /*
443  * When an file IO error occurs, check the file zone to see if there is a change
444  * in the zone condition (e.g. offline or read-only). For a failed write to a
445  * sequential zone, the zone write pointer position must also be checked to
446  * eventually correct the file size and zonefs inode write pointer offset
447  * (which can be out of sync with the drive due to partial write failures).
448  */
__zonefs_io_error(struct inode * inode,bool write)449 static void __zonefs_io_error(struct inode *inode, bool write)
450 {
451 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
452 	struct super_block *sb = inode->i_sb;
453 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
454 	unsigned int noio_flag;
455 	unsigned int nr_zones = 1;
456 	struct zonefs_ioerr_data err = {
457 		.inode = inode,
458 		.write = write,
459 	};
460 	int ret;
461 
462 	/*
463 	 * The only files that have more than one zone are conventional zone
464 	 * files with aggregated conventional zones, for which the inode zone
465 	 * size is always larger than the device zone size.
466 	 */
467 	if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev))
468 		nr_zones = zi->i_zone_size >>
469 			(sbi->s_zone_sectors_shift + SECTOR_SHIFT);
470 
471 	/*
472 	 * Memory allocations in blkdev_report_zones() can trigger a memory
473 	 * reclaim which may in turn cause a recursion into zonefs as well as
474 	 * struct request allocations for the same device. The former case may
475 	 * end up in a deadlock on the inode truncate mutex, while the latter
476 	 * may prevent IO forward progress. Executing the report zones under
477 	 * the GFP_NOIO context avoids both problems.
478 	 */
479 	noio_flag = memalloc_noio_save();
480 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
481 				  zonefs_io_error_cb, &err);
482 	if (ret != nr_zones)
483 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
484 			   inode->i_ino, ret);
485 	memalloc_noio_restore(noio_flag);
486 }
487 
zonefs_io_error(struct inode * inode,bool write)488 static void zonefs_io_error(struct inode *inode, bool write)
489 {
490 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
491 
492 	mutex_lock(&zi->i_truncate_mutex);
493 	__zonefs_io_error(inode, write);
494 	mutex_unlock(&zi->i_truncate_mutex);
495 }
496 
zonefs_file_truncate(struct inode * inode,loff_t isize)497 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
498 {
499 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
500 	loff_t old_isize;
501 	enum req_opf op;
502 	int ret = 0;
503 
504 	/*
505 	 * Only sequential zone files can be truncated and truncation is allowed
506 	 * only down to a 0 size, which is equivalent to a zone reset, and to
507 	 * the maximum file size, which is equivalent to a zone finish.
508 	 */
509 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
510 		return -EPERM;
511 
512 	if (!isize)
513 		op = REQ_OP_ZONE_RESET;
514 	else if (isize == zi->i_max_size)
515 		op = REQ_OP_ZONE_FINISH;
516 	else
517 		return -EPERM;
518 
519 	inode_dio_wait(inode);
520 
521 	/* Serialize against page faults */
522 	filemap_invalidate_lock(inode->i_mapping);
523 
524 	/* Serialize against zonefs_iomap_begin() */
525 	mutex_lock(&zi->i_truncate_mutex);
526 
527 	old_isize = i_size_read(inode);
528 	if (isize == old_isize)
529 		goto unlock;
530 
531 	ret = zonefs_zone_mgmt(inode, op);
532 	if (ret)
533 		goto unlock;
534 
535 	/*
536 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
537 	 * take care of open zones.
538 	 */
539 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
540 		/*
541 		 * Truncating a zone to EMPTY or FULL is the equivalent of
542 		 * closing the zone. For a truncation to 0, we need to
543 		 * re-open the zone to ensure new writes can be processed.
544 		 * For a truncation to the maximum file size, the zone is
545 		 * closed and writes cannot be accepted anymore, so clear
546 		 * the open flag.
547 		 */
548 		if (!isize)
549 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
550 		else
551 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
552 	}
553 
554 	zonefs_update_stats(inode, isize);
555 	truncate_setsize(inode, isize);
556 	zi->i_wpoffset = isize;
557 
558 unlock:
559 	mutex_unlock(&zi->i_truncate_mutex);
560 	filemap_invalidate_unlock(inode->i_mapping);
561 
562 	return ret;
563 }
564 
zonefs_inode_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * iattr)565 static int zonefs_inode_setattr(struct user_namespace *mnt_userns,
566 				struct dentry *dentry, struct iattr *iattr)
567 {
568 	struct inode *inode = d_inode(dentry);
569 	int ret;
570 
571 	if (unlikely(IS_IMMUTABLE(inode)))
572 		return -EPERM;
573 
574 	ret = setattr_prepare(&init_user_ns, dentry, iattr);
575 	if (ret)
576 		return ret;
577 
578 	/*
579 	 * Since files and directories cannot be created nor deleted, do not
580 	 * allow setting any write attributes on the sub-directories grouping
581 	 * files by zone type.
582 	 */
583 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
584 	    (iattr->ia_mode & 0222))
585 		return -EPERM;
586 
587 	if (((iattr->ia_valid & ATTR_UID) &&
588 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
589 	    ((iattr->ia_valid & ATTR_GID) &&
590 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
591 		ret = dquot_transfer(inode, iattr);
592 		if (ret)
593 			return ret;
594 	}
595 
596 	if (iattr->ia_valid & ATTR_SIZE) {
597 		ret = zonefs_file_truncate(inode, iattr->ia_size);
598 		if (ret)
599 			return ret;
600 	}
601 
602 	setattr_copy(&init_user_ns, inode, iattr);
603 
604 	return 0;
605 }
606 
607 static const struct inode_operations zonefs_file_inode_operations = {
608 	.setattr	= zonefs_inode_setattr,
609 };
610 
zonefs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)611 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
612 			     int datasync)
613 {
614 	struct inode *inode = file_inode(file);
615 	int ret = 0;
616 
617 	if (unlikely(IS_IMMUTABLE(inode)))
618 		return -EPERM;
619 
620 	/*
621 	 * Since only direct writes are allowed in sequential files, page cache
622 	 * flush is needed only for conventional zone files.
623 	 */
624 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
625 		ret = file_write_and_wait_range(file, start, end);
626 	if (!ret)
627 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
628 
629 	if (ret)
630 		zonefs_io_error(inode, true);
631 
632 	return ret;
633 }
634 
zonefs_filemap_page_mkwrite(struct vm_fault * vmf)635 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
636 {
637 	struct inode *inode = file_inode(vmf->vma->vm_file);
638 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
639 	vm_fault_t ret;
640 
641 	if (unlikely(IS_IMMUTABLE(inode)))
642 		return VM_FAULT_SIGBUS;
643 
644 	/*
645 	 * Sanity check: only conventional zone files can have shared
646 	 * writeable mappings.
647 	 */
648 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
649 		return VM_FAULT_NOPAGE;
650 
651 	sb_start_pagefault(inode->i_sb);
652 	file_update_time(vmf->vma->vm_file);
653 
654 	/* Serialize against truncates */
655 	filemap_invalidate_lock_shared(inode->i_mapping);
656 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
657 	filemap_invalidate_unlock_shared(inode->i_mapping);
658 
659 	sb_end_pagefault(inode->i_sb);
660 	return ret;
661 }
662 
663 static const struct vm_operations_struct zonefs_file_vm_ops = {
664 	.fault		= filemap_fault,
665 	.map_pages	= filemap_map_pages,
666 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
667 };
668 
zonefs_file_mmap(struct file * file,struct vm_area_struct * vma)669 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
670 {
671 	/*
672 	 * Conventional zones accept random writes, so their files can support
673 	 * shared writable mappings. For sequential zone files, only read
674 	 * mappings are possible since there are no guarantees for write
675 	 * ordering between msync() and page cache writeback.
676 	 */
677 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
678 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
679 		return -EINVAL;
680 
681 	file_accessed(file);
682 	vma->vm_ops = &zonefs_file_vm_ops;
683 
684 	return 0;
685 }
686 
zonefs_file_llseek(struct file * file,loff_t offset,int whence)687 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
688 {
689 	loff_t isize = i_size_read(file_inode(file));
690 
691 	/*
692 	 * Seeks are limited to below the zone size for conventional zones
693 	 * and below the zone write pointer for sequential zones. In both
694 	 * cases, this limit is the inode size.
695 	 */
696 	return generic_file_llseek_size(file, offset, whence, isize, isize);
697 }
698 
zonefs_file_write_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)699 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
700 					int error, unsigned int flags)
701 {
702 	struct inode *inode = file_inode(iocb->ki_filp);
703 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
704 
705 	if (error) {
706 		zonefs_io_error(inode, true);
707 		return error;
708 	}
709 
710 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
711 		/*
712 		 * Note that we may be seeing completions out of order,
713 		 * but that is not a problem since a write completed
714 		 * successfully necessarily means that all preceding writes
715 		 * were also successful. So we can safely increase the inode
716 		 * size to the write end location.
717 		 */
718 		mutex_lock(&zi->i_truncate_mutex);
719 		if (i_size_read(inode) < iocb->ki_pos + size) {
720 			zonefs_update_stats(inode, iocb->ki_pos + size);
721 			zonefs_i_size_write(inode, iocb->ki_pos + size);
722 		}
723 		mutex_unlock(&zi->i_truncate_mutex);
724 	}
725 
726 	return 0;
727 }
728 
729 static const struct iomap_dio_ops zonefs_write_dio_ops = {
730 	.end_io			= zonefs_file_write_dio_end_io,
731 };
732 
zonefs_file_dio_append(struct kiocb * iocb,struct iov_iter * from)733 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
734 {
735 	struct inode *inode = file_inode(iocb->ki_filp);
736 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
737 	struct block_device *bdev = inode->i_sb->s_bdev;
738 	unsigned int max = bdev_max_zone_append_sectors(bdev);
739 	pgoff_t start, end;
740 	struct bio *bio;
741 	ssize_t size;
742 	int nr_pages;
743 	ssize_t ret;
744 
745 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
746 	iov_iter_truncate(from, max);
747 
748 	/*
749 	 * If the inode block size (zone write granularity) is smaller than the
750 	 * page size, we may be appending data belonging to the last page of the
751 	 * inode straddling inode->i_size, with that page already cached due to
752 	 * a buffered read or readahead. So make sure to invalidate that page.
753 	 * This will always be a no-op for the case where the block size is
754 	 * equal to the page size.
755 	 */
756 	start = iocb->ki_pos >> PAGE_SHIFT;
757 	end = (iocb->ki_pos + iov_iter_count(from) - 1) >> PAGE_SHIFT;
758 	if (invalidate_inode_pages2_range(inode->i_mapping, start, end))
759 		return -EBUSY;
760 
761 	nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
762 	if (!nr_pages)
763 		return 0;
764 
765 	bio = bio_alloc(GFP_NOFS, nr_pages);
766 	bio_set_dev(bio, bdev);
767 	bio->bi_iter.bi_sector = zi->i_zsector;
768 	bio->bi_write_hint = iocb->ki_hint;
769 	bio->bi_ioprio = iocb->ki_ioprio;
770 	bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE;
771 	if (iocb->ki_flags & IOCB_DSYNC)
772 		bio->bi_opf |= REQ_FUA;
773 
774 	ret = bio_iov_iter_get_pages(bio, from);
775 	if (unlikely(ret))
776 		goto out_release;
777 
778 	size = bio->bi_iter.bi_size;
779 	task_io_account_write(size);
780 
781 	if (iocb->ki_flags & IOCB_HIPRI)
782 		bio_set_polled(bio, iocb);
783 
784 	ret = submit_bio_wait(bio);
785 
786 	/*
787 	 * If the file zone was written underneath the file system, the zone
788 	 * write pointer may not be where we expect it to be, but the zone
789 	 * append write can still succeed. So check manually that we wrote where
790 	 * we intended to, that is, at zi->i_wpoffset.
791 	 */
792 	if (!ret) {
793 		sector_t wpsector =
794 			zi->i_zsector + (zi->i_wpoffset >> SECTOR_SHIFT);
795 
796 		if (bio->bi_iter.bi_sector != wpsector) {
797 			zonefs_warn(inode->i_sb,
798 				"Corrupted write pointer %llu for zone at %llu\n",
799 				bio->bi_iter.bi_sector, zi->i_zsector);
800 			ret = -EIO;
801 		}
802 	}
803 
804 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
805 	trace_zonefs_file_dio_append(inode, size, ret);
806 
807 out_release:
808 	bio_release_pages(bio, false);
809 	bio_put(bio);
810 
811 	if (ret >= 0) {
812 		iocb->ki_pos += size;
813 		return size;
814 	}
815 
816 	return ret;
817 }
818 
819 /*
820  * Do not exceed the LFS limits nor the file zone size. If pos is under the
821  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
822  */
zonefs_write_check_limits(struct file * file,loff_t pos,loff_t count)823 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
824 					loff_t count)
825 {
826 	struct inode *inode = file_inode(file);
827 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
828 	loff_t limit = rlimit(RLIMIT_FSIZE);
829 	loff_t max_size = zi->i_max_size;
830 
831 	if (limit != RLIM_INFINITY) {
832 		if (pos >= limit) {
833 			send_sig(SIGXFSZ, current, 0);
834 			return -EFBIG;
835 		}
836 		count = min(count, limit - pos);
837 	}
838 
839 	if (!(file->f_flags & O_LARGEFILE))
840 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
841 
842 	if (unlikely(pos >= max_size))
843 		return -EFBIG;
844 
845 	return min(count, max_size - pos);
846 }
847 
zonefs_write_checks(struct kiocb * iocb,struct iov_iter * from)848 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
849 {
850 	struct file *file = iocb->ki_filp;
851 	struct inode *inode = file_inode(file);
852 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
853 	loff_t count;
854 
855 	if (IS_SWAPFILE(inode))
856 		return -ETXTBSY;
857 
858 	if (!iov_iter_count(from))
859 		return 0;
860 
861 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
862 		return -EINVAL;
863 
864 	if (iocb->ki_flags & IOCB_APPEND) {
865 		if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
866 			return -EINVAL;
867 		mutex_lock(&zi->i_truncate_mutex);
868 		iocb->ki_pos = zi->i_wpoffset;
869 		mutex_unlock(&zi->i_truncate_mutex);
870 	}
871 
872 	count = zonefs_write_check_limits(file, iocb->ki_pos,
873 					  iov_iter_count(from));
874 	if (count < 0)
875 		return count;
876 
877 	iov_iter_truncate(from, count);
878 	return iov_iter_count(from);
879 }
880 
881 /*
882  * Handle direct writes. For sequential zone files, this is the only possible
883  * write path. For these files, check that the user is issuing writes
884  * sequentially from the end of the file. This code assumes that the block layer
885  * delivers write requests to the device in sequential order. This is always the
886  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
887  * elevator feature is being used (e.g. mq-deadline). The block layer always
888  * automatically select such an elevator for zoned block devices during the
889  * device initialization.
890  */
zonefs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)891 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
892 {
893 	struct inode *inode = file_inode(iocb->ki_filp);
894 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
895 	struct super_block *sb = inode->i_sb;
896 	bool sync = is_sync_kiocb(iocb);
897 	bool append = false;
898 	ssize_t ret, count;
899 
900 	/*
901 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
902 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
903 	 * on the inode lock but the second goes through but is now unaligned).
904 	 */
905 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
906 	    (iocb->ki_flags & IOCB_NOWAIT))
907 		return -EOPNOTSUPP;
908 
909 	if (iocb->ki_flags & IOCB_NOWAIT) {
910 		if (!inode_trylock(inode))
911 			return -EAGAIN;
912 	} else {
913 		inode_lock(inode);
914 	}
915 
916 	count = zonefs_write_checks(iocb, from);
917 	if (count <= 0) {
918 		ret = count;
919 		goto inode_unlock;
920 	}
921 
922 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
923 		ret = -EINVAL;
924 		goto inode_unlock;
925 	}
926 
927 	/* Enforce sequential writes (append only) in sequential zones */
928 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
929 		mutex_lock(&zi->i_truncate_mutex);
930 		if (iocb->ki_pos != zi->i_wpoffset) {
931 			mutex_unlock(&zi->i_truncate_mutex);
932 			ret = -EINVAL;
933 			goto inode_unlock;
934 		}
935 		mutex_unlock(&zi->i_truncate_mutex);
936 		append = sync;
937 	}
938 
939 	if (append)
940 		ret = zonefs_file_dio_append(iocb, from);
941 	else
942 		ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
943 				   &zonefs_write_dio_ops, 0, 0);
944 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
945 	    (ret > 0 || ret == -EIOCBQUEUED)) {
946 		if (ret > 0)
947 			count = ret;
948 		mutex_lock(&zi->i_truncate_mutex);
949 		zi->i_wpoffset += count;
950 		mutex_unlock(&zi->i_truncate_mutex);
951 	}
952 
953 inode_unlock:
954 	inode_unlock(inode);
955 
956 	return ret;
957 }
958 
zonefs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)959 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
960 					  struct iov_iter *from)
961 {
962 	struct inode *inode = file_inode(iocb->ki_filp);
963 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
964 	ssize_t ret;
965 
966 	/*
967 	 * Direct IO writes are mandatory for sequential zone files so that the
968 	 * write IO issuing order is preserved.
969 	 */
970 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
971 		return -EIO;
972 
973 	if (iocb->ki_flags & IOCB_NOWAIT) {
974 		if (!inode_trylock(inode))
975 			return -EAGAIN;
976 	} else {
977 		inode_lock(inode);
978 	}
979 
980 	ret = zonefs_write_checks(iocb, from);
981 	if (ret <= 0)
982 		goto inode_unlock;
983 
984 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
985 	if (ret > 0)
986 		iocb->ki_pos += ret;
987 	else if (ret == -EIO)
988 		zonefs_io_error(inode, true);
989 
990 inode_unlock:
991 	inode_unlock(inode);
992 	if (ret > 0)
993 		ret = generic_write_sync(iocb, ret);
994 
995 	return ret;
996 }
997 
zonefs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)998 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
999 {
1000 	struct inode *inode = file_inode(iocb->ki_filp);
1001 
1002 	if (unlikely(IS_IMMUTABLE(inode)))
1003 		return -EPERM;
1004 
1005 	if (sb_rdonly(inode->i_sb))
1006 		return -EROFS;
1007 
1008 	/* Write operations beyond the zone size are not allowed */
1009 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
1010 		return -EFBIG;
1011 
1012 	if (iocb->ki_flags & IOCB_DIRECT) {
1013 		ssize_t ret = zonefs_file_dio_write(iocb, from);
1014 		if (ret != -ENOTBLK)
1015 			return ret;
1016 	}
1017 
1018 	return zonefs_file_buffered_write(iocb, from);
1019 }
1020 
zonefs_file_read_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)1021 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
1022 				       int error, unsigned int flags)
1023 {
1024 	if (error) {
1025 		zonefs_io_error(file_inode(iocb->ki_filp), false);
1026 		return error;
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 static const struct iomap_dio_ops zonefs_read_dio_ops = {
1033 	.end_io			= zonefs_file_read_dio_end_io,
1034 };
1035 
zonefs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1036 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1037 {
1038 	struct inode *inode = file_inode(iocb->ki_filp);
1039 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1040 	struct super_block *sb = inode->i_sb;
1041 	loff_t isize;
1042 	ssize_t ret;
1043 
1044 	/* Offline zones cannot be read */
1045 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
1046 		return -EPERM;
1047 
1048 	if (iocb->ki_pos >= zi->i_max_size)
1049 		return 0;
1050 
1051 	if (iocb->ki_flags & IOCB_NOWAIT) {
1052 		if (!inode_trylock_shared(inode))
1053 			return -EAGAIN;
1054 	} else {
1055 		inode_lock_shared(inode);
1056 	}
1057 
1058 	/* Limit read operations to written data */
1059 	mutex_lock(&zi->i_truncate_mutex);
1060 	isize = i_size_read(inode);
1061 	if (iocb->ki_pos >= isize) {
1062 		mutex_unlock(&zi->i_truncate_mutex);
1063 		ret = 0;
1064 		goto inode_unlock;
1065 	}
1066 	iov_iter_truncate(to, isize - iocb->ki_pos);
1067 	mutex_unlock(&zi->i_truncate_mutex);
1068 
1069 	if (iocb->ki_flags & IOCB_DIRECT) {
1070 		size_t count = iov_iter_count(to);
1071 
1072 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
1073 			ret = -EINVAL;
1074 			goto inode_unlock;
1075 		}
1076 		file_accessed(iocb->ki_filp);
1077 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
1078 				   &zonefs_read_dio_ops, 0, 0);
1079 	} else {
1080 		ret = generic_file_read_iter(iocb, to);
1081 		if (ret == -EIO)
1082 			zonefs_io_error(inode, false);
1083 	}
1084 
1085 inode_unlock:
1086 	inode_unlock_shared(inode);
1087 
1088 	return ret;
1089 }
1090 
zonefs_file_use_exp_open(struct inode * inode,struct file * file)1091 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file)
1092 {
1093 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1094 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1095 
1096 	if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN))
1097 		return false;
1098 
1099 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1100 		return false;
1101 
1102 	if (!(file->f_mode & FMODE_WRITE))
1103 		return false;
1104 
1105 	return true;
1106 }
1107 
zonefs_open_zone(struct inode * inode)1108 static int zonefs_open_zone(struct inode *inode)
1109 {
1110 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1111 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1112 	int ret = 0;
1113 
1114 	mutex_lock(&zi->i_truncate_mutex);
1115 
1116 	if (!zi->i_wr_refcnt) {
1117 		if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) {
1118 			atomic_dec(&sbi->s_open_zones);
1119 			ret = -EBUSY;
1120 			goto unlock;
1121 		}
1122 
1123 		if (i_size_read(inode) < zi->i_max_size) {
1124 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1125 			if (ret) {
1126 				atomic_dec(&sbi->s_open_zones);
1127 				goto unlock;
1128 			}
1129 			zi->i_flags |= ZONEFS_ZONE_OPEN;
1130 		}
1131 	}
1132 
1133 	zi->i_wr_refcnt++;
1134 
1135 unlock:
1136 	mutex_unlock(&zi->i_truncate_mutex);
1137 
1138 	return ret;
1139 }
1140 
zonefs_file_open(struct inode * inode,struct file * file)1141 static int zonefs_file_open(struct inode *inode, struct file *file)
1142 {
1143 	int ret;
1144 
1145 	ret = generic_file_open(inode, file);
1146 	if (ret)
1147 		return ret;
1148 
1149 	if (zonefs_file_use_exp_open(inode, file))
1150 		return zonefs_open_zone(inode);
1151 
1152 	return 0;
1153 }
1154 
zonefs_close_zone(struct inode * inode)1155 static void zonefs_close_zone(struct inode *inode)
1156 {
1157 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1158 	int ret = 0;
1159 
1160 	mutex_lock(&zi->i_truncate_mutex);
1161 	zi->i_wr_refcnt--;
1162 	if (!zi->i_wr_refcnt) {
1163 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1164 		struct super_block *sb = inode->i_sb;
1165 
1166 		/*
1167 		 * If the file zone is full, it is not open anymore and we only
1168 		 * need to decrement the open count.
1169 		 */
1170 		if (!(zi->i_flags & ZONEFS_ZONE_OPEN))
1171 			goto dec;
1172 
1173 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1174 		if (ret) {
1175 			__zonefs_io_error(inode, false);
1176 			/*
1177 			 * Leaving zones explicitly open may lead to a state
1178 			 * where most zones cannot be written (zone resources
1179 			 * exhausted). So take preventive action by remounting
1180 			 * read-only.
1181 			 */
1182 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1183 			    !(sb->s_flags & SB_RDONLY)) {
1184 				zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n");
1185 				sb->s_flags |= SB_RDONLY;
1186 			}
1187 		}
1188 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1189 dec:
1190 		atomic_dec(&sbi->s_open_zones);
1191 	}
1192 	mutex_unlock(&zi->i_truncate_mutex);
1193 }
1194 
zonefs_file_release(struct inode * inode,struct file * file)1195 static int zonefs_file_release(struct inode *inode, struct file *file)
1196 {
1197 	/*
1198 	 * If we explicitly open a zone we must close it again as well, but the
1199 	 * zone management operation can fail (either due to an IO error or as
1200 	 * the zone has gone offline or read-only). Make sure we don't fail the
1201 	 * close(2) for user-space.
1202 	 */
1203 	if (zonefs_file_use_exp_open(inode, file))
1204 		zonefs_close_zone(inode);
1205 
1206 	return 0;
1207 }
1208 
1209 static const struct file_operations zonefs_file_operations = {
1210 	.open		= zonefs_file_open,
1211 	.release	= zonefs_file_release,
1212 	.fsync		= zonefs_file_fsync,
1213 	.mmap		= zonefs_file_mmap,
1214 	.llseek		= zonefs_file_llseek,
1215 	.read_iter	= zonefs_file_read_iter,
1216 	.write_iter	= zonefs_file_write_iter,
1217 	.splice_read	= generic_file_splice_read,
1218 	.splice_write	= iter_file_splice_write,
1219 	.iopoll		= iomap_dio_iopoll,
1220 };
1221 
1222 static struct kmem_cache *zonefs_inode_cachep;
1223 
zonefs_alloc_inode(struct super_block * sb)1224 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1225 {
1226 	struct zonefs_inode_info *zi;
1227 
1228 	zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL);
1229 	if (!zi)
1230 		return NULL;
1231 
1232 	inode_init_once(&zi->i_vnode);
1233 	mutex_init(&zi->i_truncate_mutex);
1234 	zi->i_wr_refcnt = 0;
1235 	zi->i_flags = 0;
1236 
1237 	return &zi->i_vnode;
1238 }
1239 
zonefs_free_inode(struct inode * inode)1240 static void zonefs_free_inode(struct inode *inode)
1241 {
1242 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1243 }
1244 
1245 /*
1246  * File system stat.
1247  */
zonefs_statfs(struct dentry * dentry,struct kstatfs * buf)1248 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1249 {
1250 	struct super_block *sb = dentry->d_sb;
1251 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1252 	enum zonefs_ztype t;
1253 
1254 	buf->f_type = ZONEFS_MAGIC;
1255 	buf->f_bsize = sb->s_blocksize;
1256 	buf->f_namelen = ZONEFS_NAME_MAX;
1257 
1258 	spin_lock(&sbi->s_lock);
1259 
1260 	buf->f_blocks = sbi->s_blocks;
1261 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1262 		buf->f_bfree = 0;
1263 	else
1264 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1265 	buf->f_bavail = buf->f_bfree;
1266 
1267 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1268 		if (sbi->s_nr_files[t])
1269 			buf->f_files += sbi->s_nr_files[t] + 1;
1270 	}
1271 	buf->f_ffree = 0;
1272 
1273 	spin_unlock(&sbi->s_lock);
1274 
1275 	buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
1276 
1277 	return 0;
1278 }
1279 
1280 enum {
1281 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1282 	Opt_explicit_open, Opt_err,
1283 };
1284 
1285 static const match_table_t tokens = {
1286 	{ Opt_errors_ro,	"errors=remount-ro"},
1287 	{ Opt_errors_zro,	"errors=zone-ro"},
1288 	{ Opt_errors_zol,	"errors=zone-offline"},
1289 	{ Opt_errors_repair,	"errors=repair"},
1290 	{ Opt_explicit_open,	"explicit-open" },
1291 	{ Opt_err,		NULL}
1292 };
1293 
zonefs_parse_options(struct super_block * sb,char * options)1294 static int zonefs_parse_options(struct super_block *sb, char *options)
1295 {
1296 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1297 	substring_t args[MAX_OPT_ARGS];
1298 	char *p;
1299 
1300 	if (!options)
1301 		return 0;
1302 
1303 	while ((p = strsep(&options, ",")) != NULL) {
1304 		int token;
1305 
1306 		if (!*p)
1307 			continue;
1308 
1309 		token = match_token(p, tokens, args);
1310 		switch (token) {
1311 		case Opt_errors_ro:
1312 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1313 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1314 			break;
1315 		case Opt_errors_zro:
1316 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1317 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1318 			break;
1319 		case Opt_errors_zol:
1320 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1321 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1322 			break;
1323 		case Opt_errors_repair:
1324 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1325 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1326 			break;
1327 		case Opt_explicit_open:
1328 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1329 			break;
1330 		default:
1331 			return -EINVAL;
1332 		}
1333 	}
1334 
1335 	return 0;
1336 }
1337 
zonefs_show_options(struct seq_file * seq,struct dentry * root)1338 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1339 {
1340 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1341 
1342 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1343 		seq_puts(seq, ",errors=remount-ro");
1344 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1345 		seq_puts(seq, ",errors=zone-ro");
1346 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1347 		seq_puts(seq, ",errors=zone-offline");
1348 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1349 		seq_puts(seq, ",errors=repair");
1350 
1351 	return 0;
1352 }
1353 
zonefs_remount(struct super_block * sb,int * flags,char * data)1354 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1355 {
1356 	sync_filesystem(sb);
1357 
1358 	return zonefs_parse_options(sb, data);
1359 }
1360 
1361 static const struct super_operations zonefs_sops = {
1362 	.alloc_inode	= zonefs_alloc_inode,
1363 	.free_inode	= zonefs_free_inode,
1364 	.statfs		= zonefs_statfs,
1365 	.remount_fs	= zonefs_remount,
1366 	.show_options	= zonefs_show_options,
1367 };
1368 
1369 static const struct inode_operations zonefs_dir_inode_operations = {
1370 	.lookup		= simple_lookup,
1371 	.setattr	= zonefs_inode_setattr,
1372 };
1373 
zonefs_init_dir_inode(struct inode * parent,struct inode * inode,enum zonefs_ztype type)1374 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1375 				  enum zonefs_ztype type)
1376 {
1377 	struct super_block *sb = parent->i_sb;
1378 
1379 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1380 	inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555);
1381 	inode->i_op = &zonefs_dir_inode_operations;
1382 	inode->i_fop = &simple_dir_operations;
1383 	set_nlink(inode, 2);
1384 	inc_nlink(parent);
1385 }
1386 
zonefs_init_file_inode(struct inode * inode,struct blk_zone * zone,enum zonefs_ztype type)1387 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1388 				  enum zonefs_ztype type)
1389 {
1390 	struct super_block *sb = inode->i_sb;
1391 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1392 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1393 	int ret = 0;
1394 
1395 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1396 	inode->i_mode = S_IFREG | sbi->s_perm;
1397 
1398 	zi->i_ztype = type;
1399 	zi->i_zsector = zone->start;
1400 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1401 	if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT &&
1402 	    !(sbi->s_features & ZONEFS_F_AGGRCNV)) {
1403 		zonefs_err(sb,
1404 			   "zone size %llu doesn't match device's zone sectors %llu\n",
1405 			   zi->i_zone_size,
1406 			   bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT);
1407 		return -EINVAL;
1408 	}
1409 
1410 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1411 			       zone->capacity << SECTOR_SHIFT);
1412 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1413 
1414 	inode->i_uid = sbi->s_uid;
1415 	inode->i_gid = sbi->s_gid;
1416 	inode->i_size = zi->i_wpoffset;
1417 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1418 
1419 	inode->i_op = &zonefs_file_inode_operations;
1420 	inode->i_fop = &zonefs_file_operations;
1421 	inode->i_mapping->a_ops = &zonefs_file_aops;
1422 
1423 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1424 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1425 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1426 
1427 	/*
1428 	 * For sequential zones, make sure that any open zone is closed first
1429 	 * to ensure that the initial number of open zones is 0, in sync with
1430 	 * the open zone accounting done when the mount option
1431 	 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1432 	 */
1433 	if (type == ZONEFS_ZTYPE_SEQ &&
1434 	    (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1435 	     zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1436 		mutex_lock(&zi->i_truncate_mutex);
1437 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1438 		mutex_unlock(&zi->i_truncate_mutex);
1439 	}
1440 
1441 	return ret;
1442 }
1443 
zonefs_create_inode(struct dentry * parent,const char * name,struct blk_zone * zone,enum zonefs_ztype type)1444 static struct dentry *zonefs_create_inode(struct dentry *parent,
1445 					const char *name, struct blk_zone *zone,
1446 					enum zonefs_ztype type)
1447 {
1448 	struct inode *dir = d_inode(parent);
1449 	struct dentry *dentry;
1450 	struct inode *inode;
1451 	int ret = -ENOMEM;
1452 
1453 	dentry = d_alloc_name(parent, name);
1454 	if (!dentry)
1455 		return ERR_PTR(ret);
1456 
1457 	inode = new_inode(parent->d_sb);
1458 	if (!inode)
1459 		goto dput;
1460 
1461 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1462 	if (zone) {
1463 		ret = zonefs_init_file_inode(inode, zone, type);
1464 		if (ret) {
1465 			iput(inode);
1466 			goto dput;
1467 		}
1468 	} else {
1469 		zonefs_init_dir_inode(dir, inode, type);
1470 	}
1471 
1472 	d_add(dentry, inode);
1473 	dir->i_size++;
1474 
1475 	return dentry;
1476 
1477 dput:
1478 	dput(dentry);
1479 
1480 	return ERR_PTR(ret);
1481 }
1482 
1483 struct zonefs_zone_data {
1484 	struct super_block	*sb;
1485 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1486 	struct blk_zone		*zones;
1487 };
1488 
1489 /*
1490  * Create a zone group and populate it with zone files.
1491  */
zonefs_create_zgroup(struct zonefs_zone_data * zd,enum zonefs_ztype type)1492 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1493 				enum zonefs_ztype type)
1494 {
1495 	struct super_block *sb = zd->sb;
1496 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1497 	struct blk_zone *zone, *next, *end;
1498 	const char *zgroup_name;
1499 	char *file_name;
1500 	struct dentry *dir, *dent;
1501 	unsigned int n = 0;
1502 	int ret;
1503 
1504 	/* If the group is empty, there is nothing to do */
1505 	if (!zd->nr_zones[type])
1506 		return 0;
1507 
1508 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1509 	if (!file_name)
1510 		return -ENOMEM;
1511 
1512 	if (type == ZONEFS_ZTYPE_CNV)
1513 		zgroup_name = "cnv";
1514 	else
1515 		zgroup_name = "seq";
1516 
1517 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1518 	if (IS_ERR(dir)) {
1519 		ret = PTR_ERR(dir);
1520 		goto free;
1521 	}
1522 
1523 	/*
1524 	 * The first zone contains the super block: skip it.
1525 	 */
1526 	end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1527 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1528 
1529 		next = zone + 1;
1530 		if (zonefs_zone_type(zone) != type)
1531 			continue;
1532 
1533 		/*
1534 		 * For conventional zones, contiguous zones can be aggregated
1535 		 * together to form larger files. Note that this overwrites the
1536 		 * length of the first zone of the set of contiguous zones
1537 		 * aggregated together. If one offline or read-only zone is
1538 		 * found, assume that all zones aggregated have the same
1539 		 * condition.
1540 		 */
1541 		if (type == ZONEFS_ZTYPE_CNV &&
1542 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1543 			for (; next < end; next++) {
1544 				if (zonefs_zone_type(next) != type)
1545 					break;
1546 				zone->len += next->len;
1547 				zone->capacity += next->capacity;
1548 				if (next->cond == BLK_ZONE_COND_READONLY &&
1549 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1550 					zone->cond = BLK_ZONE_COND_READONLY;
1551 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1552 					zone->cond = BLK_ZONE_COND_OFFLINE;
1553 			}
1554 			if (zone->capacity != zone->len) {
1555 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1556 				ret = -EINVAL;
1557 				goto free;
1558 			}
1559 		}
1560 
1561 		/*
1562 		 * Use the file number within its group as file name.
1563 		 */
1564 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1565 		dent = zonefs_create_inode(dir, file_name, zone, type);
1566 		if (IS_ERR(dent)) {
1567 			ret = PTR_ERR(dent);
1568 			goto free;
1569 		}
1570 
1571 		n++;
1572 	}
1573 
1574 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1575 		    zgroup_name, n, n > 1 ? "s" : "");
1576 
1577 	sbi->s_nr_files[type] = n;
1578 	ret = 0;
1579 
1580 free:
1581 	kfree(file_name);
1582 
1583 	return ret;
1584 }
1585 
zonefs_get_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)1586 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1587 				   void *data)
1588 {
1589 	struct zonefs_zone_data *zd = data;
1590 
1591 	/*
1592 	 * Count the number of usable zones: the first zone at index 0 contains
1593 	 * the super block and is ignored.
1594 	 */
1595 	switch (zone->type) {
1596 	case BLK_ZONE_TYPE_CONVENTIONAL:
1597 		zone->wp = zone->start + zone->len;
1598 		if (idx)
1599 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1600 		break;
1601 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1602 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1603 		if (idx)
1604 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1605 		break;
1606 	default:
1607 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1608 			   zone->type);
1609 		return -EIO;
1610 	}
1611 
1612 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1613 
1614 	return 0;
1615 }
1616 
zonefs_get_zone_info(struct zonefs_zone_data * zd)1617 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1618 {
1619 	struct block_device *bdev = zd->sb->s_bdev;
1620 	int ret;
1621 
1622 	zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1623 			     sizeof(struct blk_zone), GFP_KERNEL);
1624 	if (!zd->zones)
1625 		return -ENOMEM;
1626 
1627 	/* Get zones information from the device */
1628 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1629 				  zonefs_get_zone_info_cb, zd);
1630 	if (ret < 0) {
1631 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1632 		return ret;
1633 	}
1634 
1635 	if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1636 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1637 			   ret, blkdev_nr_zones(bdev->bd_disk));
1638 		return -EIO;
1639 	}
1640 
1641 	return 0;
1642 }
1643 
zonefs_cleanup_zone_info(struct zonefs_zone_data * zd)1644 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1645 {
1646 	kvfree(zd->zones);
1647 }
1648 
1649 /*
1650  * Read super block information from the device.
1651  */
zonefs_read_super(struct super_block * sb)1652 static int zonefs_read_super(struct super_block *sb)
1653 {
1654 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1655 	struct zonefs_super *super;
1656 	u32 crc, stored_crc;
1657 	struct page *page;
1658 	struct bio_vec bio_vec;
1659 	struct bio bio;
1660 	int ret;
1661 
1662 	page = alloc_page(GFP_KERNEL);
1663 	if (!page)
1664 		return -ENOMEM;
1665 
1666 	bio_init(&bio, &bio_vec, 1);
1667 	bio.bi_iter.bi_sector = 0;
1668 	bio.bi_opf = REQ_OP_READ;
1669 	bio_set_dev(&bio, sb->s_bdev);
1670 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1671 
1672 	ret = submit_bio_wait(&bio);
1673 	if (ret)
1674 		goto free_page;
1675 
1676 	super = kmap(page);
1677 
1678 	ret = -EINVAL;
1679 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1680 		goto unmap;
1681 
1682 	stored_crc = le32_to_cpu(super->s_crc);
1683 	super->s_crc = 0;
1684 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1685 	if (crc != stored_crc) {
1686 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1687 			   crc, stored_crc);
1688 		goto unmap;
1689 	}
1690 
1691 	sbi->s_features = le64_to_cpu(super->s_features);
1692 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1693 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1694 			   sbi->s_features);
1695 		goto unmap;
1696 	}
1697 
1698 	if (sbi->s_features & ZONEFS_F_UID) {
1699 		sbi->s_uid = make_kuid(current_user_ns(),
1700 				       le32_to_cpu(super->s_uid));
1701 		if (!uid_valid(sbi->s_uid)) {
1702 			zonefs_err(sb, "Invalid UID feature\n");
1703 			goto unmap;
1704 		}
1705 	}
1706 
1707 	if (sbi->s_features & ZONEFS_F_GID) {
1708 		sbi->s_gid = make_kgid(current_user_ns(),
1709 				       le32_to_cpu(super->s_gid));
1710 		if (!gid_valid(sbi->s_gid)) {
1711 			zonefs_err(sb, "Invalid GID feature\n");
1712 			goto unmap;
1713 		}
1714 	}
1715 
1716 	if (sbi->s_features & ZONEFS_F_PERM)
1717 		sbi->s_perm = le32_to_cpu(super->s_perm);
1718 
1719 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1720 		zonefs_err(sb, "Reserved area is being used\n");
1721 		goto unmap;
1722 	}
1723 
1724 	import_uuid(&sbi->s_uuid, super->s_uuid);
1725 	ret = 0;
1726 
1727 unmap:
1728 	kunmap(page);
1729 free_page:
1730 	__free_page(page);
1731 
1732 	return ret;
1733 }
1734 
1735 /*
1736  * Check that the device is zoned. If it is, get the list of zones and create
1737  * sub-directories and files according to the device zone configuration and
1738  * format options.
1739  */
zonefs_fill_super(struct super_block * sb,void * data,int silent)1740 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1741 {
1742 	struct zonefs_zone_data zd;
1743 	struct zonefs_sb_info *sbi;
1744 	struct inode *inode;
1745 	enum zonefs_ztype t;
1746 	int ret;
1747 
1748 	if (!bdev_is_zoned(sb->s_bdev)) {
1749 		zonefs_err(sb, "Not a zoned block device\n");
1750 		return -EINVAL;
1751 	}
1752 
1753 	/*
1754 	 * Initialize super block information: the maximum file size is updated
1755 	 * when the zone files are created so that the format option
1756 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1757 	 * beyond the zone size is taken into account.
1758 	 */
1759 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1760 	if (!sbi)
1761 		return -ENOMEM;
1762 
1763 	spin_lock_init(&sbi->s_lock);
1764 	sb->s_fs_info = sbi;
1765 	sb->s_magic = ZONEFS_MAGIC;
1766 	sb->s_maxbytes = 0;
1767 	sb->s_op = &zonefs_sops;
1768 	sb->s_time_gran	= 1;
1769 
1770 	/*
1771 	 * The block size is set to the device zone write granularity to ensure
1772 	 * that write operations are always aligned according to the device
1773 	 * interface constraints.
1774 	 */
1775 	sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1776 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1777 	sbi->s_uid = GLOBAL_ROOT_UID;
1778 	sbi->s_gid = GLOBAL_ROOT_GID;
1779 	sbi->s_perm = 0640;
1780 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1781 	sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev);
1782 	atomic_set(&sbi->s_open_zones, 0);
1783 
1784 	ret = zonefs_read_super(sb);
1785 	if (ret)
1786 		return ret;
1787 
1788 	ret = zonefs_parse_options(sb, data);
1789 	if (ret)
1790 		return ret;
1791 
1792 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1793 	zd.sb = sb;
1794 	ret = zonefs_get_zone_info(&zd);
1795 	if (ret)
1796 		goto cleanup;
1797 
1798 	zonefs_info(sb, "Mounting %u zones",
1799 		    blkdev_nr_zones(sb->s_bdev->bd_disk));
1800 
1801 	if (!sbi->s_max_open_zones &&
1802 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1803 		zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1804 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1805 	}
1806 
1807 	/* Create root directory inode */
1808 	ret = -ENOMEM;
1809 	inode = new_inode(sb);
1810 	if (!inode)
1811 		goto cleanup;
1812 
1813 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1814 	inode->i_mode = S_IFDIR | 0555;
1815 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1816 	inode->i_op = &zonefs_dir_inode_operations;
1817 	inode->i_fop = &simple_dir_operations;
1818 	set_nlink(inode, 2);
1819 
1820 	sb->s_root = d_make_root(inode);
1821 	if (!sb->s_root)
1822 		goto cleanup;
1823 
1824 	/* Create and populate files in zone groups directories */
1825 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1826 		ret = zonefs_create_zgroup(&zd, t);
1827 		if (ret)
1828 			break;
1829 	}
1830 
1831 cleanup:
1832 	zonefs_cleanup_zone_info(&zd);
1833 
1834 	return ret;
1835 }
1836 
zonefs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1837 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1838 				   int flags, const char *dev_name, void *data)
1839 {
1840 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1841 }
1842 
zonefs_kill_super(struct super_block * sb)1843 static void zonefs_kill_super(struct super_block *sb)
1844 {
1845 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1846 
1847 	if (sb->s_root)
1848 		d_genocide(sb->s_root);
1849 	kill_block_super(sb);
1850 	kfree(sbi);
1851 }
1852 
1853 /*
1854  * File system definition and registration.
1855  */
1856 static struct file_system_type zonefs_type = {
1857 	.owner		= THIS_MODULE,
1858 	.name		= "zonefs",
1859 	.mount		= zonefs_mount,
1860 	.kill_sb	= zonefs_kill_super,
1861 	.fs_flags	= FS_REQUIRES_DEV,
1862 };
1863 
zonefs_init_inodecache(void)1864 static int __init zonefs_init_inodecache(void)
1865 {
1866 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1867 			sizeof(struct zonefs_inode_info), 0,
1868 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1869 			NULL);
1870 	if (zonefs_inode_cachep == NULL)
1871 		return -ENOMEM;
1872 	return 0;
1873 }
1874 
zonefs_destroy_inodecache(void)1875 static void zonefs_destroy_inodecache(void)
1876 {
1877 	/*
1878 	 * Make sure all delayed rcu free inodes are flushed before we
1879 	 * destroy the inode cache.
1880 	 */
1881 	rcu_barrier();
1882 	kmem_cache_destroy(zonefs_inode_cachep);
1883 }
1884 
zonefs_init(void)1885 static int __init zonefs_init(void)
1886 {
1887 	int ret;
1888 
1889 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1890 
1891 	ret = zonefs_init_inodecache();
1892 	if (ret)
1893 		return ret;
1894 
1895 	ret = register_filesystem(&zonefs_type);
1896 	if (ret) {
1897 		zonefs_destroy_inodecache();
1898 		return ret;
1899 	}
1900 
1901 	return 0;
1902 }
1903 
zonefs_exit(void)1904 static void __exit zonefs_exit(void)
1905 {
1906 	zonefs_destroy_inodecache();
1907 	unregister_filesystem(&zonefs_type);
1908 }
1909 
1910 MODULE_AUTHOR("Damien Le Moal");
1911 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1912 MODULE_LICENSE("GPL");
1913 MODULE_ALIAS_FS("zonefs");
1914 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
1915 module_init(zonefs_init);
1916 module_exit(zonefs_exit);
1917