• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/blk-pm.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47 #undef CREATE_TRACE_POINTS
48 #include <trace/hooks/block.h>
49 
50 #include "blk.h"
51 #include "blk-mq.h"
52 #include "blk-mq-sched.h"
53 #include "blk-pm.h"
54 #ifndef __GENKSYMS__
55 #include "blk-rq-qos.h"
56 #endif
57 #include "blk-ioprio.h"
58 
59 struct dentry *blk_debugfs_root;
60 
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
63 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
64 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
65 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
66 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
67 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_queue);
68 EXPORT_TRACEPOINT_SYMBOL_GPL(block_getrq);
69 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_issue);
70 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_merge);
71 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_requeue);
72 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_complete);
73 
74 DEFINE_IDA(blk_queue_ida);
75 
76 /*
77  * For queue allocation
78  */
79 struct kmem_cache *blk_requestq_cachep;
80 
81 /*
82  * Controlling structure to kblockd
83  */
84 static struct workqueue_struct *kblockd_workqueue;
85 
86 /**
87  * blk_queue_flag_set - atomically set a queue flag
88  * @flag: flag to be set
89  * @q: request queue
90  */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)91 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
92 {
93 	set_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_set);
96 
97 /**
98  * blk_queue_flag_clear - atomically clear a queue flag
99  * @flag: flag to be cleared
100  * @q: request queue
101  */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)102 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
103 {
104 	clear_bit(flag, &q->queue_flags);
105 }
106 EXPORT_SYMBOL(blk_queue_flag_clear);
107 
108 /**
109  * blk_queue_flag_test_and_set - atomically test and set a queue flag
110  * @flag: flag to be set
111  * @q: request queue
112  *
113  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
114  * the flag was already set.
115  */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)116 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
117 {
118 	return test_and_set_bit(flag, &q->queue_flags);
119 }
120 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
121 
blk_rq_init(struct request_queue * q,struct request * rq)122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 	memset(rq, 0, sizeof(*rq));
125 
126 	INIT_LIST_HEAD(&rq->queuelist);
127 	rq->q = q;
128 	rq->__sector = (sector_t) -1;
129 	INIT_HLIST_NODE(&rq->hash);
130 	RB_CLEAR_NODE(&rq->rb_node);
131 	rq->tag = BLK_MQ_NO_TAG;
132 	rq->internal_tag = BLK_MQ_NO_TAG;
133 	rq->start_time_ns = ktime_get_ns();
134 	rq->part = NULL;
135 	blk_crypto_rq_set_defaults(rq);
136 }
137 EXPORT_SYMBOL(blk_rq_init);
138 
139 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
140 static const char *const blk_op_name[] = {
141 	REQ_OP_NAME(READ),
142 	REQ_OP_NAME(WRITE),
143 	REQ_OP_NAME(FLUSH),
144 	REQ_OP_NAME(DISCARD),
145 	REQ_OP_NAME(SECURE_ERASE),
146 	REQ_OP_NAME(ZONE_RESET),
147 	REQ_OP_NAME(ZONE_RESET_ALL),
148 	REQ_OP_NAME(ZONE_OPEN),
149 	REQ_OP_NAME(ZONE_CLOSE),
150 	REQ_OP_NAME(ZONE_FINISH),
151 	REQ_OP_NAME(ZONE_APPEND),
152 	REQ_OP_NAME(WRITE_SAME),
153 	REQ_OP_NAME(WRITE_ZEROES),
154 	REQ_OP_NAME(DRV_IN),
155 	REQ_OP_NAME(DRV_OUT),
156 };
157 #undef REQ_OP_NAME
158 
159 /**
160  * blk_op_str - Return string XXX in the REQ_OP_XXX.
161  * @op: REQ_OP_XXX.
162  *
163  * Description: Centralize block layer function to convert REQ_OP_XXX into
164  * string format. Useful in the debugging and tracing bio or request. For
165  * invalid REQ_OP_XXX it returns string "UNKNOWN".
166  */
blk_op_str(unsigned int op)167 inline const char *blk_op_str(unsigned int op)
168 {
169 	const char *op_str = "UNKNOWN";
170 
171 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
172 		op_str = blk_op_name[op];
173 
174 	return op_str;
175 }
176 EXPORT_SYMBOL_GPL(blk_op_str);
177 
178 static const struct {
179 	int		errno;
180 	const char	*name;
181 } blk_errors[] = {
182 	[BLK_STS_OK]		= { 0,		"" },
183 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
184 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
185 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
186 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
187 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
188 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
189 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
190 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
191 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
192 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
193 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
194 
195 	/* device mapper special case, should not leak out: */
196 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
197 
198 	/* zone device specific errors */
199 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
200 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
201 
202 	/* everything else not covered above: */
203 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
204 };
205 
errno_to_blk_status(int errno)206 blk_status_t errno_to_blk_status(int errno)
207 {
208 	int i;
209 
210 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
211 		if (blk_errors[i].errno == errno)
212 			return (__force blk_status_t)i;
213 	}
214 
215 	return BLK_STS_IOERR;
216 }
217 EXPORT_SYMBOL_GPL(errno_to_blk_status);
218 
blk_status_to_errno(blk_status_t status)219 int blk_status_to_errno(blk_status_t status)
220 {
221 	int idx = (__force int)status;
222 
223 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
224 		return -EIO;
225 	return blk_errors[idx].errno;
226 }
227 EXPORT_SYMBOL_GPL(blk_status_to_errno);
228 
print_req_error(struct request * req,blk_status_t status,const char * caller)229 static void print_req_error(struct request *req, blk_status_t status,
230 		const char *caller)
231 {
232 	int idx = (__force int)status;
233 
234 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
235 		return;
236 
237 	printk_ratelimited(KERN_ERR
238 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
239 		"phys_seg %u prio class %u\n",
240 		caller, blk_errors[idx].name,
241 		req->rq_disk ? req->rq_disk->disk_name : "?",
242 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
243 		req->cmd_flags & ~REQ_OP_MASK,
244 		req->nr_phys_segments,
245 		IOPRIO_PRIO_CLASS(req->ioprio));
246 }
247 
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)248 static void req_bio_endio(struct request *rq, struct bio *bio,
249 			  unsigned int nbytes, blk_status_t error)
250 {
251 	if (error)
252 		bio->bi_status = error;
253 
254 	if (unlikely(rq->rq_flags & RQF_QUIET))
255 		bio_set_flag(bio, BIO_QUIET);
256 
257 	bio_advance(bio, nbytes);
258 
259 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
260 		/*
261 		 * Partial zone append completions cannot be supported as the
262 		 * BIO fragments may end up not being written sequentially.
263 		 */
264 		if (bio->bi_iter.bi_size)
265 			bio->bi_status = BLK_STS_IOERR;
266 		else
267 			bio->bi_iter.bi_sector = rq->__sector;
268 	}
269 
270 	/* don't actually finish bio if it's part of flush sequence */
271 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
272 		bio_endio(bio);
273 }
274 
blk_dump_rq_flags(struct request * rq,char * msg)275 void blk_dump_rq_flags(struct request *rq, char *msg)
276 {
277 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
278 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
279 		(unsigned long long) rq->cmd_flags);
280 
281 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
282 	       (unsigned long long)blk_rq_pos(rq),
283 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
284 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
285 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
286 }
287 EXPORT_SYMBOL(blk_dump_rq_flags);
288 
289 /**
290  * blk_sync_queue - cancel any pending callbacks on a queue
291  * @q: the queue
292  *
293  * Description:
294  *     The block layer may perform asynchronous callback activity
295  *     on a queue, such as calling the unplug function after a timeout.
296  *     A block device may call blk_sync_queue to ensure that any
297  *     such activity is cancelled, thus allowing it to release resources
298  *     that the callbacks might use. The caller must already have made sure
299  *     that its ->submit_bio will not re-add plugging prior to calling
300  *     this function.
301  *
302  *     This function does not cancel any asynchronous activity arising
303  *     out of elevator or throttling code. That would require elevator_exit()
304  *     and blkcg_exit_queue() to be called with queue lock initialized.
305  *
306  */
blk_sync_queue(struct request_queue * q)307 void blk_sync_queue(struct request_queue *q)
308 {
309 	del_timer_sync(&q->timeout);
310 	cancel_work_sync(&q->timeout_work);
311 }
312 EXPORT_SYMBOL(blk_sync_queue);
313 
314 /**
315  * blk_set_pm_only - increment pm_only counter
316  * @q: request queue pointer
317  */
blk_set_pm_only(struct request_queue * q)318 void blk_set_pm_only(struct request_queue *q)
319 {
320 	atomic_inc(&q->pm_only);
321 }
322 EXPORT_SYMBOL_GPL(blk_set_pm_only);
323 
blk_clear_pm_only(struct request_queue * q)324 void blk_clear_pm_only(struct request_queue *q)
325 {
326 	int pm_only;
327 
328 	pm_only = atomic_dec_return(&q->pm_only);
329 	WARN_ON_ONCE(pm_only < 0);
330 	if (pm_only == 0)
331 		wake_up_all(&q->mq_freeze_wq);
332 }
333 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
334 
335 /**
336  * blk_put_queue - decrement the request_queue refcount
337  * @q: the request_queue structure to decrement the refcount for
338  *
339  * Decrements the refcount of the request_queue kobject. When this reaches 0
340  * we'll have blk_release_queue() called.
341  *
342  * Context: Any context, but the last reference must not be dropped from
343  *          atomic context.
344  */
blk_put_queue(struct request_queue * q)345 void blk_put_queue(struct request_queue *q)
346 {
347 	kobject_put(&q->kobj);
348 }
349 EXPORT_SYMBOL(blk_put_queue);
350 
blk_queue_start_drain(struct request_queue * q)351 void blk_queue_start_drain(struct request_queue *q)
352 {
353 	/*
354 	 * When queue DYING flag is set, we need to block new req
355 	 * entering queue, so we call blk_freeze_queue_start() to
356 	 * prevent I/O from crossing blk_queue_enter().
357 	 */
358 	blk_freeze_queue_start(q);
359 	if (queue_is_mq(q))
360 		blk_mq_wake_waiters(q);
361 	/* Make blk_queue_enter() reexamine the DYING flag. */
362 	wake_up_all(&q->mq_freeze_wq);
363 }
364 
365 /**
366  * blk_cleanup_queue - shutdown a request queue
367  * @q: request queue to shutdown
368  *
369  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
370  * put it.  All future requests will be failed immediately with -ENODEV.
371  *
372  * Context: can sleep
373  */
blk_cleanup_queue(struct request_queue * q)374 void blk_cleanup_queue(struct request_queue *q)
375 {
376 	/* cannot be called from atomic context */
377 	might_sleep();
378 
379 	WARN_ON_ONCE(blk_queue_registered(q));
380 
381 	/* mark @q DYING, no new request or merges will be allowed afterwards */
382 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
383 	blk_queue_start_drain(q);
384 
385 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
386 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
387 
388 	/*
389 	 * Drain all requests queued before DYING marking. Set DEAD flag to
390 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
391 	 * after draining finished.
392 	 */
393 	blk_freeze_queue(q);
394 
395 	/* cleanup rq qos structures for queue without disk */
396 	rq_qos_exit(q);
397 
398 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
399 
400 	blk_sync_queue(q);
401 	if (queue_is_mq(q)) {
402 		blk_mq_cancel_work_sync(q);
403 		blk_mq_exit_queue(q);
404 	}
405 
406 	/*
407 	 * In theory, request pool of sched_tags belongs to request queue.
408 	 * However, the current implementation requires tag_set for freeing
409 	 * requests, so free the pool now.
410 	 *
411 	 * Queue has become frozen, there can't be any in-queue requests, so
412 	 * it is safe to free requests now.
413 	 */
414 	mutex_lock(&q->sysfs_lock);
415 	if (q->elevator)
416 		blk_mq_sched_free_requests(q);
417 	mutex_unlock(&q->sysfs_lock);
418 
419 	/* @q is and will stay empty, shutdown and put */
420 	blk_put_queue(q);
421 }
422 EXPORT_SYMBOL(blk_cleanup_queue);
423 
blk_try_enter_queue(struct request_queue * q,bool pm)424 static bool blk_try_enter_queue(struct request_queue *q, bool pm)
425 {
426 	rcu_read_lock();
427 	if (!percpu_ref_tryget_live(&q->q_usage_counter))
428 		goto fail;
429 
430 	/*
431 	 * The code that increments the pm_only counter must ensure that the
432 	 * counter is globally visible before the queue is unfrozen.
433 	 */
434 	if (blk_queue_pm_only(q) &&
435 	    (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
436 		goto fail_put;
437 
438 	rcu_read_unlock();
439 	return true;
440 
441 fail_put:
442 	percpu_ref_put(&q->q_usage_counter);
443 fail:
444 	rcu_read_unlock();
445 	return false;
446 }
447 
448 /**
449  * blk_queue_enter() - try to increase q->q_usage_counter
450  * @q: request queue pointer
451  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
452  */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)453 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
454 {
455 	const bool pm = flags & BLK_MQ_REQ_PM;
456 
457 	while (!blk_try_enter_queue(q, pm)) {
458 		if (flags & BLK_MQ_REQ_NOWAIT)
459 			return -EAGAIN;
460 
461 		/*
462 		 * read pair of barrier in blk_freeze_queue_start(), we need to
463 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
464 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
465 		 * following wait may never return if the two reads are
466 		 * reordered.
467 		 */
468 		smp_rmb();
469 		wait_event(q->mq_freeze_wq,
470 			   (!q->mq_freeze_depth &&
471 			    blk_pm_resume_queue(pm, q)) ||
472 			   blk_queue_dying(q));
473 		if (blk_queue_dying(q))
474 			return -ENODEV;
475 	}
476 
477 	return 0;
478 }
479 
bio_queue_enter(struct bio * bio)480 static inline int bio_queue_enter(struct bio *bio)
481 {
482 	struct gendisk *disk = bio->bi_bdev->bd_disk;
483 	struct request_queue *q = disk->queue;
484 
485 	while (!blk_try_enter_queue(q, false)) {
486 		if (bio->bi_opf & REQ_NOWAIT) {
487 			if (test_bit(GD_DEAD, &disk->state))
488 				goto dead;
489 			bio_wouldblock_error(bio);
490 			return -EAGAIN;
491 		}
492 
493 		/*
494 		 * read pair of barrier in blk_freeze_queue_start(), we need to
495 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
496 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
497 		 * following wait may never return if the two reads are
498 		 * reordered.
499 		 */
500 		smp_rmb();
501 		wait_event(q->mq_freeze_wq,
502 			   (!q->mq_freeze_depth &&
503 			    blk_pm_resume_queue(false, q)) ||
504 			   test_bit(GD_DEAD, &disk->state));
505 		if (test_bit(GD_DEAD, &disk->state))
506 			goto dead;
507 	}
508 
509 	return 0;
510 dead:
511 	bio_io_error(bio);
512 	return -ENODEV;
513 }
514 
blk_queue_exit(struct request_queue * q)515 void blk_queue_exit(struct request_queue *q)
516 {
517 	percpu_ref_put(&q->q_usage_counter);
518 }
519 
blk_queue_usage_counter_release(struct percpu_ref * ref)520 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
521 {
522 	struct request_queue *q =
523 		container_of(ref, struct request_queue, q_usage_counter);
524 
525 	wake_up_all(&q->mq_freeze_wq);
526 }
527 
blk_rq_timed_out_timer(struct timer_list * t)528 static void blk_rq_timed_out_timer(struct timer_list *t)
529 {
530 	struct request_queue *q = from_timer(q, t, timeout);
531 
532 	kblockd_schedule_work(&q->timeout_work);
533 }
534 
blk_timeout_work(struct work_struct * work)535 static void blk_timeout_work(struct work_struct *work)
536 {
537 }
538 
blk_alloc_queue(int node_id)539 struct request_queue *blk_alloc_queue(int node_id)
540 {
541 	struct request_queue *q;
542 	int ret;
543 
544 	q = kmem_cache_alloc_node(blk_requestq_cachep,
545 				GFP_KERNEL | __GFP_ZERO, node_id);
546 	if (!q)
547 		return NULL;
548 
549 	q->last_merge = NULL;
550 
551 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
552 	if (q->id < 0)
553 		goto fail_q;
554 
555 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
556 	if (ret)
557 		goto fail_id;
558 
559 	q->stats = blk_alloc_queue_stats();
560 	if (!q->stats)
561 		goto fail_split;
562 
563 	q->node = node_id;
564 
565 	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
566 
567 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
568 	INIT_WORK(&q->timeout_work, blk_timeout_work);
569 	INIT_LIST_HEAD(&q->icq_list);
570 #ifdef CONFIG_BLK_CGROUP
571 	INIT_LIST_HEAD(&q->blkg_list);
572 #endif
573 
574 	kobject_init(&q->kobj, &blk_queue_ktype);
575 
576 	mutex_init(&q->debugfs_mutex);
577 	mutex_init(&q->sysfs_lock);
578 	mutex_init(&q->sysfs_dir_lock);
579 	spin_lock_init(&q->queue_lock);
580 
581 	init_waitqueue_head(&q->mq_freeze_wq);
582 	mutex_init(&q->mq_freeze_lock);
583 
584 	/*
585 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
586 	 * See blk_register_queue() for details.
587 	 */
588 	if (percpu_ref_init(&q->q_usage_counter,
589 				blk_queue_usage_counter_release,
590 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
591 		goto fail_stats;
592 
593 	if (blkcg_init_queue(q))
594 		goto fail_ref;
595 
596 	blk_queue_dma_alignment(q, 511);
597 	blk_set_default_limits(&q->limits);
598 	q->nr_requests = BLKDEV_MAX_RQ;
599 
600 	return q;
601 
602 fail_ref:
603 	percpu_ref_exit(&q->q_usage_counter);
604 fail_stats:
605 	blk_free_queue_stats(q->stats);
606 fail_split:
607 	bioset_exit(&q->bio_split);
608 fail_id:
609 	ida_simple_remove(&blk_queue_ida, q->id);
610 fail_q:
611 	kmem_cache_free(blk_requestq_cachep, q);
612 	return NULL;
613 }
614 
615 /**
616  * blk_get_queue - increment the request_queue refcount
617  * @q: the request_queue structure to increment the refcount for
618  *
619  * Increment the refcount of the request_queue kobject.
620  *
621  * Context: Any context.
622  */
blk_get_queue(struct request_queue * q)623 bool blk_get_queue(struct request_queue *q)
624 {
625 	if (likely(!blk_queue_dying(q))) {
626 		__blk_get_queue(q);
627 		return true;
628 	}
629 
630 	return false;
631 }
632 EXPORT_SYMBOL(blk_get_queue);
633 
634 /**
635  * blk_get_request - allocate a request
636  * @q: request queue to allocate a request for
637  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
638  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
639  */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)640 struct request *blk_get_request(struct request_queue *q, unsigned int op,
641 				blk_mq_req_flags_t flags)
642 {
643 	struct request *req;
644 
645 	WARN_ON_ONCE(op & REQ_NOWAIT);
646 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
647 
648 	req = blk_mq_alloc_request(q, op, flags);
649 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
650 		q->mq_ops->initialize_rq_fn(req);
651 
652 	return req;
653 }
654 EXPORT_SYMBOL(blk_get_request);
655 
blk_put_request(struct request * req)656 void blk_put_request(struct request *req)
657 {
658 	blk_mq_free_request(req);
659 }
660 EXPORT_SYMBOL(blk_put_request);
661 
handle_bad_sector(struct bio * bio,sector_t maxsector)662 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
663 {
664 	char b[BDEVNAME_SIZE];
665 
666 	pr_info_ratelimited("attempt to access beyond end of device\n"
667 			    "%s: rw=%d, want=%llu, limit=%llu\n",
668 			    bio_devname(bio, b), bio->bi_opf,
669 			    bio_end_sector(bio), maxsector);
670 }
671 
672 #ifdef CONFIG_FAIL_MAKE_REQUEST
673 
674 static DECLARE_FAULT_ATTR(fail_make_request);
675 
setup_fail_make_request(char * str)676 static int __init setup_fail_make_request(char *str)
677 {
678 	return setup_fault_attr(&fail_make_request, str);
679 }
680 __setup("fail_make_request=", setup_fail_make_request);
681 
should_fail_request(struct block_device * part,unsigned int bytes)682 static bool should_fail_request(struct block_device *part, unsigned int bytes)
683 {
684 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
685 }
686 
fail_make_request_debugfs(void)687 static int __init fail_make_request_debugfs(void)
688 {
689 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
690 						NULL, &fail_make_request);
691 
692 	return PTR_ERR_OR_ZERO(dir);
693 }
694 
695 late_initcall(fail_make_request_debugfs);
696 
697 #else /* CONFIG_FAIL_MAKE_REQUEST */
698 
should_fail_request(struct block_device * part,unsigned int bytes)699 static inline bool should_fail_request(struct block_device *part,
700 					unsigned int bytes)
701 {
702 	return false;
703 }
704 
705 #endif /* CONFIG_FAIL_MAKE_REQUEST */
706 
bio_check_ro(struct bio * bio)707 static inline void bio_check_ro(struct bio *bio)
708 {
709 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
710 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
711 			return;
712 		pr_warn_ratelimited("Trying to write to read-only block-device %pg\n",
713 				    bio->bi_bdev);
714 		/* Older lvm-tools actually trigger this */
715 	}
716 }
717 
should_fail_bio(struct bio * bio)718 static noinline int should_fail_bio(struct bio *bio)
719 {
720 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
721 		return -EIO;
722 	return 0;
723 }
724 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
725 
726 /*
727  * Check whether this bio extends beyond the end of the device or partition.
728  * This may well happen - the kernel calls bread() without checking the size of
729  * the device, e.g., when mounting a file system.
730  */
bio_check_eod(struct bio * bio)731 static inline int bio_check_eod(struct bio *bio)
732 {
733 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
734 	unsigned int nr_sectors = bio_sectors(bio);
735 
736 	if (nr_sectors && maxsector &&
737 	    (nr_sectors > maxsector ||
738 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
739 		handle_bad_sector(bio, maxsector);
740 		return -EIO;
741 	}
742 	return 0;
743 }
744 
745 /*
746  * Remap block n of partition p to block n+start(p) of the disk.
747  */
blk_partition_remap(struct bio * bio)748 static int blk_partition_remap(struct bio *bio)
749 {
750 	struct block_device *p = bio->bi_bdev;
751 
752 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
753 		return -EIO;
754 	if (bio_sectors(bio)) {
755 		bio->bi_iter.bi_sector += p->bd_start_sect;
756 		trace_block_bio_remap(bio, p->bd_dev,
757 				      bio->bi_iter.bi_sector -
758 				      p->bd_start_sect);
759 	}
760 	bio_set_flag(bio, BIO_REMAPPED);
761 	return 0;
762 }
763 
764 /*
765  * Check write append to a zoned block device.
766  */
blk_check_zone_append(struct request_queue * q,struct bio * bio)767 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
768 						 struct bio *bio)
769 {
770 	sector_t pos = bio->bi_iter.bi_sector;
771 	int nr_sectors = bio_sectors(bio);
772 
773 	/* Only applicable to zoned block devices */
774 	if (!blk_queue_is_zoned(q))
775 		return BLK_STS_NOTSUPP;
776 
777 	/* The bio sector must point to the start of a sequential zone */
778 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
779 	    !blk_queue_zone_is_seq(q, pos))
780 		return BLK_STS_IOERR;
781 
782 	/*
783 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
784 	 * split and could result in non-contiguous sectors being written in
785 	 * different zones.
786 	 */
787 	if (nr_sectors > q->limits.chunk_sectors)
788 		return BLK_STS_IOERR;
789 
790 	/* Make sure the BIO is small enough and will not get split */
791 	if (nr_sectors > q->limits.max_zone_append_sectors)
792 		return BLK_STS_IOERR;
793 
794 	bio->bi_opf |= REQ_NOMERGE;
795 
796 	return BLK_STS_OK;
797 }
798 
submit_bio_checks(struct bio * bio)799 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
800 {
801 	struct block_device *bdev = bio->bi_bdev;
802 	struct request_queue *q = bdev->bd_disk->queue;
803 	blk_status_t status = BLK_STS_IOERR;
804 	struct blk_plug *plug;
805 
806 	might_sleep();
807 
808 	plug = blk_mq_plug(q, bio);
809 	if (plug && plug->nowait)
810 		bio->bi_opf |= REQ_NOWAIT;
811 
812 	/*
813 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
814 	 * if queue does not support NOWAIT.
815 	 */
816 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
817 		goto not_supported;
818 
819 	if (should_fail_bio(bio))
820 		goto end_io;
821 	bio_check_ro(bio);
822 	if (!bio_flagged(bio, BIO_REMAPPED)) {
823 		if (unlikely(bio_check_eod(bio)))
824 			goto end_io;
825 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
826 			goto end_io;
827 	}
828 
829 	/*
830 	 * Filter flush bio's early so that bio based drivers without flush
831 	 * support don't have to worry about them.
832 	 */
833 	if (op_is_flush(bio->bi_opf) &&
834 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
835 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
836 		if (!bio_sectors(bio)) {
837 			status = BLK_STS_OK;
838 			goto end_io;
839 		}
840 	}
841 
842 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
843 		bio_clear_hipri(bio);
844 
845 	switch (bio_op(bio)) {
846 	case REQ_OP_DISCARD:
847 		if (!blk_queue_discard(q))
848 			goto not_supported;
849 		break;
850 	case REQ_OP_SECURE_ERASE:
851 		if (!blk_queue_secure_erase(q))
852 			goto not_supported;
853 		break;
854 	case REQ_OP_WRITE_SAME:
855 		if (!q->limits.max_write_same_sectors)
856 			goto not_supported;
857 		break;
858 	case REQ_OP_ZONE_APPEND:
859 		status = blk_check_zone_append(q, bio);
860 		if (status != BLK_STS_OK)
861 			goto end_io;
862 		break;
863 	case REQ_OP_ZONE_RESET:
864 	case REQ_OP_ZONE_OPEN:
865 	case REQ_OP_ZONE_CLOSE:
866 	case REQ_OP_ZONE_FINISH:
867 		if (!blk_queue_is_zoned(q))
868 			goto not_supported;
869 		break;
870 	case REQ_OP_ZONE_RESET_ALL:
871 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
872 			goto not_supported;
873 		break;
874 	case REQ_OP_WRITE_ZEROES:
875 		if (!q->limits.max_write_zeroes_sectors)
876 			goto not_supported;
877 		break;
878 	default:
879 		break;
880 	}
881 
882 	/*
883 	 * Various block parts want %current->io_context, so allocate it up
884 	 * front rather than dealing with lots of pain to allocate it only
885 	 * where needed. This may fail and the block layer knows how to live
886 	 * with it.
887 	 */
888 	if (unlikely(!current->io_context))
889 		create_task_io_context(current, GFP_ATOMIC, q->node);
890 
891 	if (blk_throtl_bio(bio))
892 		return false;
893 
894 	blk_cgroup_bio_start(bio);
895 	blkcg_bio_issue_init(bio);
896 
897 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
898 		trace_block_bio_queue(bio);
899 		/* Now that enqueuing has been traced, we need to trace
900 		 * completion as well.
901 		 */
902 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
903 	}
904 	return true;
905 
906 not_supported:
907 	status = BLK_STS_NOTSUPP;
908 end_io:
909 	bio->bi_status = status;
910 	bio_endio(bio);
911 	return false;
912 }
913 
__submit_bio(struct bio * bio)914 static blk_qc_t __submit_bio(struct bio *bio)
915 {
916 	struct gendisk *disk = bio->bi_bdev->bd_disk;
917 	blk_qc_t ret = BLK_QC_T_NONE;
918 
919 	if (unlikely(bio_queue_enter(bio) != 0))
920 		return BLK_QC_T_NONE;
921 
922 	if (!submit_bio_checks(bio) || !blk_crypto_bio_prep(&bio))
923 		goto queue_exit;
924 	if (disk->fops->submit_bio) {
925 		ret = disk->fops->submit_bio(bio);
926 		goto queue_exit;
927 	}
928 	return blk_mq_submit_bio(bio);
929 
930 queue_exit:
931 	blk_queue_exit(disk->queue);
932 	return ret;
933 }
934 
935 /*
936  * The loop in this function may be a bit non-obvious, and so deserves some
937  * explanation:
938  *
939  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
940  *    that), so we have a list with a single bio.
941  *  - We pretend that we have just taken it off a longer list, so we assign
942  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
943  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
944  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
945  *    non-NULL value in bio_list and re-enter the loop from the top.
946  *  - In this case we really did just take the bio of the top of the list (no
947  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
948  *    again.
949  *
950  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
951  * bio_list_on_stack[1] contains bios that were submitted before the current
952  *	->submit_bio_bio, but that haven't been processed yet.
953  */
__submit_bio_noacct(struct bio * bio)954 static blk_qc_t __submit_bio_noacct(struct bio *bio)
955 {
956 	struct bio_list bio_list_on_stack[2];
957 	blk_qc_t ret = BLK_QC_T_NONE;
958 
959 	BUG_ON(bio->bi_next);
960 
961 	bio_list_init(&bio_list_on_stack[0]);
962 	current->bio_list = bio_list_on_stack;
963 
964 	do {
965 		struct request_queue *q = bio->bi_bdev->bd_disk->queue;
966 		struct bio_list lower, same;
967 
968 		/*
969 		 * Create a fresh bio_list for all subordinate requests.
970 		 */
971 		bio_list_on_stack[1] = bio_list_on_stack[0];
972 		bio_list_init(&bio_list_on_stack[0]);
973 
974 		ret = __submit_bio(bio);
975 
976 		/*
977 		 * Sort new bios into those for a lower level and those for the
978 		 * same level.
979 		 */
980 		bio_list_init(&lower);
981 		bio_list_init(&same);
982 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
983 			if (q == bio->bi_bdev->bd_disk->queue)
984 				bio_list_add(&same, bio);
985 			else
986 				bio_list_add(&lower, bio);
987 
988 		/*
989 		 * Now assemble so we handle the lowest level first.
990 		 */
991 		bio_list_merge(&bio_list_on_stack[0], &lower);
992 		bio_list_merge(&bio_list_on_stack[0], &same);
993 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
994 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
995 
996 	current->bio_list = NULL;
997 	return ret;
998 }
999 
__submit_bio_noacct_mq(struct bio * bio)1000 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1001 {
1002 	struct bio_list bio_list[2] = { };
1003 	blk_qc_t ret;
1004 
1005 	current->bio_list = bio_list;
1006 
1007 	do {
1008 		ret = __submit_bio(bio);
1009 	} while ((bio = bio_list_pop(&bio_list[0])));
1010 
1011 	current->bio_list = NULL;
1012 	return ret;
1013 }
1014 
1015 /**
1016  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1017  * @bio:  The bio describing the location in memory and on the device.
1018  *
1019  * This is a version of submit_bio() that shall only be used for I/O that is
1020  * resubmitted to lower level drivers by stacking block drivers.  All file
1021  * systems and other upper level users of the block layer should use
1022  * submit_bio() instead.
1023  */
submit_bio_noacct(struct bio * bio)1024 blk_qc_t submit_bio_noacct(struct bio *bio)
1025 {
1026 	/*
1027 	 * We only want one ->submit_bio to be active at a time, else stack
1028 	 * usage with stacked devices could be a problem.  Use current->bio_list
1029 	 * to collect a list of requests submited by a ->submit_bio method while
1030 	 * it is active, and then process them after it returned.
1031 	 */
1032 	if (current->bio_list) {
1033 		bio_list_add(&current->bio_list[0], bio);
1034 		return BLK_QC_T_NONE;
1035 	}
1036 
1037 	if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1038 		return __submit_bio_noacct_mq(bio);
1039 	return __submit_bio_noacct(bio);
1040 }
1041 EXPORT_SYMBOL(submit_bio_noacct);
1042 
bio_set_ioprio(struct bio * bio)1043 static void bio_set_ioprio(struct bio *bio)
1044 {
1045 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
1046 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
1047 		bio->bi_ioprio = get_current_ioprio();
1048 	blkcg_set_ioprio(bio);
1049 }
1050 
1051 /**
1052  * submit_bio - submit a bio to the block device layer for I/O
1053  * @bio: The &struct bio which describes the I/O
1054  *
1055  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1056  * fully set up &struct bio that describes the I/O that needs to be done.  The
1057  * bio will be send to the device described by the bi_bdev field.
1058  *
1059  * The success/failure status of the request, along with notification of
1060  * completion, is delivered asynchronously through the ->bi_end_io() callback
1061  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1062  * been called.
1063  */
submit_bio(struct bio * bio)1064 blk_qc_t submit_bio(struct bio *bio)
1065 {
1066 	if (blkcg_punt_bio_submit(bio))
1067 		return BLK_QC_T_NONE;
1068 
1069 	/*
1070 	 * If it's a regular read/write or a barrier with data attached,
1071 	 * go through the normal accounting stuff before submission.
1072 	 */
1073 	if (bio_has_data(bio)) {
1074 		unsigned int count;
1075 
1076 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1077 			count = queue_logical_block_size(
1078 					bio->bi_bdev->bd_disk->queue) >> 9;
1079 		else
1080 			count = bio_sectors(bio);
1081 
1082 		if (op_is_write(bio_op(bio))) {
1083 			count_vm_events(PGPGOUT, count);
1084 		} else {
1085 			task_io_account_read(bio->bi_iter.bi_size);
1086 			count_vm_events(PGPGIN, count);
1087 		}
1088 	}
1089 
1090 	bio_set_ioprio(bio);
1091 
1092 	/*
1093 	 * If we're reading data that is part of the userspace workingset, count
1094 	 * submission time as memory stall.  When the device is congested, or
1095 	 * the submitting cgroup IO-throttled, submission can be a significant
1096 	 * part of overall IO time.
1097 	 */
1098 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1099 	    bio_flagged(bio, BIO_WORKINGSET))) {
1100 		unsigned long pflags;
1101 		blk_qc_t ret;
1102 
1103 		psi_memstall_enter(&pflags);
1104 		ret = submit_bio_noacct(bio);
1105 		psi_memstall_leave(&pflags);
1106 
1107 		return ret;
1108 	}
1109 
1110 	return submit_bio_noacct(bio);
1111 }
1112 EXPORT_SYMBOL(submit_bio);
1113 
1114 /**
1115  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1116  *                              for the new queue limits
1117  * @q:  the queue
1118  * @rq: the request being checked
1119  *
1120  * Description:
1121  *    @rq may have been made based on weaker limitations of upper-level queues
1122  *    in request stacking drivers, and it may violate the limitation of @q.
1123  *    Since the block layer and the underlying device driver trust @rq
1124  *    after it is inserted to @q, it should be checked against @q before
1125  *    the insertion using this generic function.
1126  *
1127  *    Request stacking drivers like request-based dm may change the queue
1128  *    limits when retrying requests on other queues. Those requests need
1129  *    to be checked against the new queue limits again during dispatch.
1130  */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)1131 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1132 				      struct request *rq)
1133 {
1134 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1135 
1136 	if (blk_rq_sectors(rq) > max_sectors) {
1137 		/*
1138 		 * SCSI device does not have a good way to return if
1139 		 * Write Same/Zero is actually supported. If a device rejects
1140 		 * a non-read/write command (discard, write same,etc.) the
1141 		 * low-level device driver will set the relevant queue limit to
1142 		 * 0 to prevent blk-lib from issuing more of the offending
1143 		 * operations. Commands queued prior to the queue limit being
1144 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1145 		 * errors being propagated to upper layers.
1146 		 */
1147 		if (max_sectors == 0)
1148 			return BLK_STS_NOTSUPP;
1149 
1150 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1151 			__func__, blk_rq_sectors(rq), max_sectors);
1152 		return BLK_STS_IOERR;
1153 	}
1154 
1155 	/*
1156 	 * The queue settings related to segment counting may differ from the
1157 	 * original queue.
1158 	 */
1159 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1160 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1161 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1162 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1163 		return BLK_STS_IOERR;
1164 	}
1165 
1166 	return BLK_STS_OK;
1167 }
1168 
1169 /**
1170  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1171  * @q:  the queue to submit the request
1172  * @rq: the request being queued
1173  */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1174 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1175 {
1176 	blk_status_t ret;
1177 
1178 	ret = blk_cloned_rq_check_limits(q, rq);
1179 	if (ret != BLK_STS_OK)
1180 		return ret;
1181 
1182 	if (rq->rq_disk &&
1183 	    should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1184 		return BLK_STS_IOERR;
1185 
1186 	if (blk_crypto_insert_cloned_request(rq))
1187 		return BLK_STS_IOERR;
1188 
1189 	if (blk_queue_io_stat(q))
1190 		blk_account_io_start(rq);
1191 
1192 	/*
1193 	 * Since we have a scheduler attached on the top device,
1194 	 * bypass a potential scheduler on the bottom device for
1195 	 * insert.
1196 	 */
1197 	return blk_mq_request_issue_directly(rq, true);
1198 }
1199 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1200 
1201 /**
1202  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1203  * @rq: request to examine
1204  *
1205  * Description:
1206  *     A request could be merge of IOs which require different failure
1207  *     handling.  This function determines the number of bytes which
1208  *     can be failed from the beginning of the request without
1209  *     crossing into area which need to be retried further.
1210  *
1211  * Return:
1212  *     The number of bytes to fail.
1213  */
blk_rq_err_bytes(const struct request * rq)1214 unsigned int blk_rq_err_bytes(const struct request *rq)
1215 {
1216 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1217 	unsigned int bytes = 0;
1218 	struct bio *bio;
1219 
1220 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1221 		return blk_rq_bytes(rq);
1222 
1223 	/*
1224 	 * Currently the only 'mixing' which can happen is between
1225 	 * different fastfail types.  We can safely fail portions
1226 	 * which have all the failfast bits that the first one has -
1227 	 * the ones which are at least as eager to fail as the first
1228 	 * one.
1229 	 */
1230 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1231 		if ((bio->bi_opf & ff) != ff)
1232 			break;
1233 		bytes += bio->bi_iter.bi_size;
1234 	}
1235 
1236 	/* this could lead to infinite loop */
1237 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1238 	return bytes;
1239 }
1240 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1241 
update_io_ticks(struct block_device * part,unsigned long now,bool end)1242 static void update_io_ticks(struct block_device *part, unsigned long now,
1243 		bool end)
1244 {
1245 	unsigned long stamp;
1246 again:
1247 	stamp = READ_ONCE(part->bd_stamp);
1248 	if (unlikely(time_after(now, stamp))) {
1249 		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1250 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1251 	}
1252 	if (part->bd_partno) {
1253 		part = bdev_whole(part);
1254 		goto again;
1255 	}
1256 }
1257 
blk_account_io_completion(struct request * req,unsigned int bytes)1258 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1259 {
1260 	if (req->part && blk_do_io_stat(req)) {
1261 		const int sgrp = op_stat_group(req_op(req));
1262 
1263 		part_stat_lock();
1264 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1265 		part_stat_unlock();
1266 	}
1267 }
1268 
blk_account_io_done(struct request * req,u64 now)1269 void blk_account_io_done(struct request *req, u64 now)
1270 {
1271 	/*
1272 	 * Account IO completion.  flush_rq isn't accounted as a
1273 	 * normal IO on queueing nor completion.  Accounting the
1274 	 * containing request is enough.
1275 	 */
1276 	trace_android_vh_blk_account_io_done(req);
1277 	if (req->part && blk_do_io_stat(req) &&
1278 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1279 		const int sgrp = op_stat_group(req_op(req));
1280 
1281 		part_stat_lock();
1282 		update_io_ticks(req->part, jiffies, true);
1283 		part_stat_inc(req->part, ios[sgrp]);
1284 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1285 		part_stat_unlock();
1286 	}
1287 }
1288 
blk_account_io_start(struct request * rq)1289 void blk_account_io_start(struct request *rq)
1290 {
1291 	if (!blk_do_io_stat(rq))
1292 		return;
1293 
1294 	/* passthrough requests can hold bios that do not have ->bi_bdev set */
1295 	if (rq->bio && rq->bio->bi_bdev)
1296 		rq->part = rq->bio->bi_bdev;
1297 	else
1298 		rq->part = rq->rq_disk->part0;
1299 
1300 	part_stat_lock();
1301 	update_io_ticks(rq->part, jiffies, false);
1302 	part_stat_unlock();
1303 }
1304 
__part_start_io_acct(struct block_device * part,unsigned int sectors,unsigned int op,unsigned long start_time)1305 static unsigned long __part_start_io_acct(struct block_device *part,
1306 					  unsigned int sectors, unsigned int op,
1307 					  unsigned long start_time)
1308 {
1309 	const int sgrp = op_stat_group(op);
1310 
1311 	part_stat_lock();
1312 	update_io_ticks(part, start_time, false);
1313 	part_stat_inc(part, ios[sgrp]);
1314 	part_stat_add(part, sectors[sgrp], sectors);
1315 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1316 	part_stat_unlock();
1317 
1318 	return start_time;
1319 }
1320 
1321 /**
1322  * bio_start_io_acct_time - start I/O accounting for bio based drivers
1323  * @bio:	bio to start account for
1324  * @start_time:	start time that should be passed back to bio_end_io_acct().
1325  */
bio_start_io_acct_time(struct bio * bio,unsigned long start_time)1326 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1327 {
1328 	__part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1329 			     bio_op(bio), start_time);
1330 }
1331 EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
1332 
1333 /**
1334  * bio_start_io_acct - start I/O accounting for bio based drivers
1335  * @bio:	bio to start account for
1336  *
1337  * Returns the start time that should be passed back to bio_end_io_acct().
1338  */
bio_start_io_acct(struct bio * bio)1339 unsigned long bio_start_io_acct(struct bio *bio)
1340 {
1341 	return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1342 				    bio_op(bio), jiffies);
1343 }
1344 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1345 
disk_start_io_acct(struct gendisk * disk,unsigned int sectors,unsigned int op)1346 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1347 				 unsigned int op)
1348 {
1349 	return __part_start_io_acct(disk->part0, sectors, op, jiffies);
1350 }
1351 EXPORT_SYMBOL(disk_start_io_acct);
1352 
__part_end_io_acct(struct block_device * part,unsigned int op,unsigned long start_time)1353 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1354 			       unsigned long start_time)
1355 {
1356 	const int sgrp = op_stat_group(op);
1357 	unsigned long now = READ_ONCE(jiffies);
1358 	unsigned long duration = now - start_time;
1359 
1360 	part_stat_lock();
1361 	update_io_ticks(part, now, true);
1362 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1363 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1364 	part_stat_unlock();
1365 }
1366 
bio_end_io_acct_remapped(struct bio * bio,unsigned long start_time,struct block_device * orig_bdev)1367 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1368 		struct block_device *orig_bdev)
1369 {
1370 	__part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1371 }
1372 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1373 
disk_end_io_acct(struct gendisk * disk,unsigned int op,unsigned long start_time)1374 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1375 		      unsigned long start_time)
1376 {
1377 	__part_end_io_acct(disk->part0, op, start_time);
1378 }
1379 EXPORT_SYMBOL(disk_end_io_acct);
1380 
1381 /*
1382  * Steal bios from a request and add them to a bio list.
1383  * The request must not have been partially completed before.
1384  */
blk_steal_bios(struct bio_list * list,struct request * rq)1385 void blk_steal_bios(struct bio_list *list, struct request *rq)
1386 {
1387 	if (rq->bio) {
1388 		if (list->tail)
1389 			list->tail->bi_next = rq->bio;
1390 		else
1391 			list->head = rq->bio;
1392 		list->tail = rq->biotail;
1393 
1394 		rq->bio = NULL;
1395 		rq->biotail = NULL;
1396 	}
1397 
1398 	rq->__data_len = 0;
1399 }
1400 EXPORT_SYMBOL_GPL(blk_steal_bios);
1401 
1402 /**
1403  * blk_update_request - Complete multiple bytes without completing the request
1404  * @req:      the request being processed
1405  * @error:    block status code
1406  * @nr_bytes: number of bytes to complete for @req
1407  *
1408  * Description:
1409  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1410  *     the request structure even if @req doesn't have leftover.
1411  *     If @req has leftover, sets it up for the next range of segments.
1412  *
1413  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1414  *     %false return from this function.
1415  *
1416  * Note:
1417  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
1418  *      except in the consistency check at the end of this function.
1419  *
1420  * Return:
1421  *     %false - this request doesn't have any more data
1422  *     %true  - this request has more data
1423  **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)1424 bool blk_update_request(struct request *req, blk_status_t error,
1425 		unsigned int nr_bytes)
1426 {
1427 	int total_bytes;
1428 
1429 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1430 
1431 	if (!req->bio)
1432 		return false;
1433 
1434 #ifdef CONFIG_BLK_DEV_INTEGRITY
1435 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1436 	    error == BLK_STS_OK)
1437 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1438 #endif
1439 
1440 	/*
1441 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
1442 	 * bio_endio().  Therefore, the keyslot must be released before that.
1443 	 */
1444 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
1445 		__blk_crypto_rq_put_keyslot(req);
1446 
1447 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1448 		     !(req->rq_flags & RQF_QUIET)))
1449 		print_req_error(req, error, __func__);
1450 
1451 	blk_account_io_completion(req, nr_bytes);
1452 
1453 	total_bytes = 0;
1454 	while (req->bio) {
1455 		struct bio *bio = req->bio;
1456 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1457 
1458 		if (bio_bytes == bio->bi_iter.bi_size)
1459 			req->bio = bio->bi_next;
1460 
1461 		/* Completion has already been traced */
1462 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1463 		req_bio_endio(req, bio, bio_bytes, error);
1464 
1465 		total_bytes += bio_bytes;
1466 		nr_bytes -= bio_bytes;
1467 
1468 		if (!nr_bytes)
1469 			break;
1470 	}
1471 
1472 	/*
1473 	 * completely done
1474 	 */
1475 	if (!req->bio) {
1476 		/*
1477 		 * Reset counters so that the request stacking driver
1478 		 * can find how many bytes remain in the request
1479 		 * later.
1480 		 */
1481 		req->__data_len = 0;
1482 		return false;
1483 	}
1484 
1485 	req->__data_len -= total_bytes;
1486 
1487 	/* update sector only for requests with clear definition of sector */
1488 	if (!blk_rq_is_passthrough(req))
1489 		req->__sector += total_bytes >> 9;
1490 
1491 	/* mixed attributes always follow the first bio */
1492 	if (req->rq_flags & RQF_MIXED_MERGE) {
1493 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1494 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1495 	}
1496 
1497 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1498 		/*
1499 		 * If total number of sectors is less than the first segment
1500 		 * size, something has gone terribly wrong.
1501 		 */
1502 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1503 			blk_dump_rq_flags(req, "request botched");
1504 			req->__data_len = blk_rq_cur_bytes(req);
1505 		}
1506 
1507 		/* recalculate the number of segments */
1508 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1509 	}
1510 
1511 	return true;
1512 }
1513 EXPORT_SYMBOL_GPL(blk_update_request);
1514 
1515 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1516 /**
1517  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1518  * @rq: the request to be flushed
1519  *
1520  * Description:
1521  *     Flush all pages in @rq.
1522  */
rq_flush_dcache_pages(struct request * rq)1523 void rq_flush_dcache_pages(struct request *rq)
1524 {
1525 	struct req_iterator iter;
1526 	struct bio_vec bvec;
1527 
1528 	rq_for_each_segment(bvec, rq, iter)
1529 		flush_dcache_page(bvec.bv_page);
1530 }
1531 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1532 #endif
1533 
1534 /**
1535  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1536  * @q : the queue of the device being checked
1537  *
1538  * Description:
1539  *    Check if underlying low-level drivers of a device are busy.
1540  *    If the drivers want to export their busy state, they must set own
1541  *    exporting function using blk_queue_lld_busy() first.
1542  *
1543  *    Basically, this function is used only by request stacking drivers
1544  *    to stop dispatching requests to underlying devices when underlying
1545  *    devices are busy.  This behavior helps more I/O merging on the queue
1546  *    of the request stacking driver and prevents I/O throughput regression
1547  *    on burst I/O load.
1548  *
1549  * Return:
1550  *    0 - Not busy (The request stacking driver should dispatch request)
1551  *    1 - Busy (The request stacking driver should stop dispatching request)
1552  */
blk_lld_busy(struct request_queue * q)1553 int blk_lld_busy(struct request_queue *q)
1554 {
1555 	if (queue_is_mq(q) && q->mq_ops->busy)
1556 		return q->mq_ops->busy(q);
1557 
1558 	return 0;
1559 }
1560 EXPORT_SYMBOL_GPL(blk_lld_busy);
1561 
1562 /**
1563  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1564  * @rq: the clone request to be cleaned up
1565  *
1566  * Description:
1567  *     Free all bios in @rq for a cloned request.
1568  */
blk_rq_unprep_clone(struct request * rq)1569 void blk_rq_unprep_clone(struct request *rq)
1570 {
1571 	struct bio *bio;
1572 
1573 	while ((bio = rq->bio) != NULL) {
1574 		rq->bio = bio->bi_next;
1575 
1576 		bio_put(bio);
1577 	}
1578 }
1579 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1580 
1581 /**
1582  * blk_rq_prep_clone - Helper function to setup clone request
1583  * @rq: the request to be setup
1584  * @rq_src: original request to be cloned
1585  * @bs: bio_set that bios for clone are allocated from
1586  * @gfp_mask: memory allocation mask for bio
1587  * @bio_ctr: setup function to be called for each clone bio.
1588  *           Returns %0 for success, non %0 for failure.
1589  * @data: private data to be passed to @bio_ctr
1590  *
1591  * Description:
1592  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1593  *     Also, pages which the original bios are pointing to are not copied
1594  *     and the cloned bios just point same pages.
1595  *     So cloned bios must be completed before original bios, which means
1596  *     the caller must complete @rq before @rq_src.
1597  */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)1598 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1599 		      struct bio_set *bs, gfp_t gfp_mask,
1600 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1601 		      void *data)
1602 {
1603 	struct bio *bio, *bio_src;
1604 
1605 	if (!bs)
1606 		bs = &fs_bio_set;
1607 
1608 	__rq_for_each_bio(bio_src, rq_src) {
1609 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1610 		if (!bio)
1611 			goto free_and_out;
1612 
1613 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1614 			goto free_and_out;
1615 
1616 		if (rq->bio) {
1617 			rq->biotail->bi_next = bio;
1618 			rq->biotail = bio;
1619 		} else {
1620 			rq->bio = rq->biotail = bio;
1621 		}
1622 		bio = NULL;
1623 	}
1624 
1625 	/* Copy attributes of the original request to the clone request. */
1626 	rq->__sector = blk_rq_pos(rq_src);
1627 	rq->__data_len = blk_rq_bytes(rq_src);
1628 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1629 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1630 		rq->special_vec = rq_src->special_vec;
1631 	}
1632 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1633 	rq->ioprio = rq_src->ioprio;
1634 
1635 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1636 		goto free_and_out;
1637 
1638 	return 0;
1639 
1640 free_and_out:
1641 	if (bio)
1642 		bio_put(bio);
1643 	blk_rq_unprep_clone(rq);
1644 
1645 	return -ENOMEM;
1646 }
1647 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1648 
kblockd_schedule_work(struct work_struct * work)1649 int kblockd_schedule_work(struct work_struct *work)
1650 {
1651 	return queue_work(kblockd_workqueue, work);
1652 }
1653 EXPORT_SYMBOL(kblockd_schedule_work);
1654 
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1655 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1656 				unsigned long delay)
1657 {
1658 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1659 }
1660 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1661 
1662 /**
1663  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1664  * @plug:	The &struct blk_plug that needs to be initialized
1665  *
1666  * Description:
1667  *   blk_start_plug() indicates to the block layer an intent by the caller
1668  *   to submit multiple I/O requests in a batch.  The block layer may use
1669  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1670  *   is called.  However, the block layer may choose to submit requests
1671  *   before a call to blk_finish_plug() if the number of queued I/Os
1672  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1673  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1674  *   the task schedules (see below).
1675  *
1676  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1677  *   pending I/O should the task end up blocking between blk_start_plug() and
1678  *   blk_finish_plug(). This is important from a performance perspective, but
1679  *   also ensures that we don't deadlock. For instance, if the task is blocking
1680  *   for a memory allocation, memory reclaim could end up wanting to free a
1681  *   page belonging to that request that is currently residing in our private
1682  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1683  *   this kind of deadlock.
1684  */
blk_start_plug(struct blk_plug * plug)1685 void blk_start_plug(struct blk_plug *plug)
1686 {
1687 	struct task_struct *tsk = current;
1688 
1689 	/*
1690 	 * If this is a nested plug, don't actually assign it.
1691 	 */
1692 	if (tsk->plug)
1693 		return;
1694 
1695 	INIT_LIST_HEAD(&plug->mq_list);
1696 	INIT_LIST_HEAD(&plug->cb_list);
1697 	plug->rq_count = 0;
1698 	plug->multiple_queues = false;
1699 	plug->nowait = false;
1700 
1701 	/*
1702 	 * Store ordering should not be needed here, since a potential
1703 	 * preempt will imply a full memory barrier
1704 	 */
1705 	tsk->plug = plug;
1706 }
1707 EXPORT_SYMBOL(blk_start_plug);
1708 
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1709 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1710 {
1711 	LIST_HEAD(callbacks);
1712 
1713 	while (!list_empty(&plug->cb_list)) {
1714 		list_splice_init(&plug->cb_list, &callbacks);
1715 
1716 		while (!list_empty(&callbacks)) {
1717 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1718 							  struct blk_plug_cb,
1719 							  list);
1720 			list_del(&cb->list);
1721 			cb->callback(cb, from_schedule);
1722 		}
1723 	}
1724 }
1725 
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1726 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1727 				      int size)
1728 {
1729 	struct blk_plug *plug = current->plug;
1730 	struct blk_plug_cb *cb;
1731 
1732 	if (!plug)
1733 		return NULL;
1734 
1735 	list_for_each_entry(cb, &plug->cb_list, list)
1736 		if (cb->callback == unplug && cb->data == data)
1737 			return cb;
1738 
1739 	/* Not currently on the callback list */
1740 	BUG_ON(size < sizeof(*cb));
1741 	cb = kzalloc(size, GFP_ATOMIC);
1742 	if (cb) {
1743 		cb->data = data;
1744 		cb->callback = unplug;
1745 		list_add(&cb->list, &plug->cb_list);
1746 	}
1747 	return cb;
1748 }
1749 EXPORT_SYMBOL(blk_check_plugged);
1750 
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)1751 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1752 {
1753 	flush_plug_callbacks(plug, from_schedule);
1754 
1755 	if (!list_empty(&plug->mq_list))
1756 		blk_mq_flush_plug_list(plug, from_schedule);
1757 }
1758 
1759 /**
1760  * blk_finish_plug - mark the end of a batch of submitted I/O
1761  * @plug:	The &struct blk_plug passed to blk_start_plug()
1762  *
1763  * Description:
1764  * Indicate that a batch of I/O submissions is complete.  This function
1765  * must be paired with an initial call to blk_start_plug().  The intent
1766  * is to allow the block layer to optimize I/O submission.  See the
1767  * documentation for blk_start_plug() for more information.
1768  */
blk_finish_plug(struct blk_plug * plug)1769 void blk_finish_plug(struct blk_plug *plug)
1770 {
1771 	if (plug != current->plug)
1772 		return;
1773 	blk_flush_plug_list(plug, false);
1774 
1775 	current->plug = NULL;
1776 }
1777 EXPORT_SYMBOL(blk_finish_plug);
1778 
blk_io_schedule(void)1779 void blk_io_schedule(void)
1780 {
1781 	/* Prevent hang_check timer from firing at us during very long I/O */
1782 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1783 
1784 	if (timeout)
1785 		io_schedule_timeout(timeout);
1786 	else
1787 		io_schedule();
1788 }
1789 EXPORT_SYMBOL_GPL(blk_io_schedule);
1790 
blk_dev_init(void)1791 int __init blk_dev_init(void)
1792 {
1793 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1794 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1795 			sizeof_field(struct request, cmd_flags));
1796 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1797 			sizeof_field(struct bio, bi_opf));
1798 
1799 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1800 	kblockd_workqueue = alloc_workqueue("kblockd",
1801 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1802 	if (!kblockd_workqueue)
1803 		panic("Failed to create kblockd\n");
1804 
1805 	blk_requestq_cachep = kmem_cache_create("request_queue",
1806 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1807 
1808 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1809 
1810 	return 0;
1811 }
1812