• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/ptp_clock_kernel.h>
53 #include <linux/timecounter.h>
54 #include <linux/cpu_rmap.h>
55 #include <linux/cpumask.h>
56 #include <net/pkt_cls.h>
57 #include <linux/hwmon.h>
58 #include <linux/hwmon-sysfs.h>
59 #include <net/page_pool.h>
60 
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 enum board_idx {
89 	BCM57301,
90 	BCM57302,
91 	BCM57304,
92 	BCM57417_NPAR,
93 	BCM58700,
94 	BCM57311,
95 	BCM57312,
96 	BCM57402,
97 	BCM57404,
98 	BCM57406,
99 	BCM57402_NPAR,
100 	BCM57407,
101 	BCM57412,
102 	BCM57414,
103 	BCM57416,
104 	BCM57417,
105 	BCM57412_NPAR,
106 	BCM57314,
107 	BCM57417_SFP,
108 	BCM57416_SFP,
109 	BCM57404_NPAR,
110 	BCM57406_NPAR,
111 	BCM57407_SFP,
112 	BCM57407_NPAR,
113 	BCM57414_NPAR,
114 	BCM57416_NPAR,
115 	BCM57452,
116 	BCM57454,
117 	BCM5745x_NPAR,
118 	BCM57508,
119 	BCM57504,
120 	BCM57502,
121 	BCM57508_NPAR,
122 	BCM57504_NPAR,
123 	BCM57502_NPAR,
124 	BCM58802,
125 	BCM58804,
126 	BCM58808,
127 	NETXTREME_E_VF,
128 	NETXTREME_C_VF,
129 	NETXTREME_S_VF,
130 	NETXTREME_C_VF_HV,
131 	NETXTREME_E_VF_HV,
132 	NETXTREME_E_P5_VF,
133 	NETXTREME_E_P5_VF_HV,
134 };
135 
136 /* indexed by enum above */
137 static const struct {
138 	char *name;
139 } board_info[] = {
140 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
141 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
142 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
143 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
144 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
145 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
146 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
147 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
148 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
149 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
150 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
151 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
152 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
153 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
154 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
155 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
156 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
157 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
158 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
159 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
160 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
161 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
162 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
163 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
164 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
165 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
166 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
167 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
168 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
169 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
170 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
171 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
172 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
173 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
174 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
175 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
176 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
177 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
178 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
179 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
180 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
181 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
182 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
183 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
184 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
185 };
186 
187 static const struct pci_device_id bnxt_pci_tbl[] = {
188 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
191 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
194 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
195 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
196 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
197 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
198 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
199 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
200 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
201 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
202 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
203 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
204 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
205 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
206 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
207 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
208 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
209 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
210 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
211 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
212 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
213 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
214 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
215 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
216 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
217 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
218 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
219 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
220 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
221 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
222 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
223 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
224 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
225 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
226 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
227 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
228 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
229 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
230 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
231 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
232 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
233 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
234 #ifdef CONFIG_BNXT_SRIOV
235 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
236 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
237 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
238 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
239 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
240 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
241 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
242 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
243 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
244 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
245 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
246 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
247 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
248 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
249 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
250 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
251 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
252 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
253 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
254 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
255 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
256 #endif
257 	{ 0 }
258 };
259 
260 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
261 
262 static const u16 bnxt_vf_req_snif[] = {
263 	HWRM_FUNC_CFG,
264 	HWRM_FUNC_VF_CFG,
265 	HWRM_PORT_PHY_QCFG,
266 	HWRM_CFA_L2_FILTER_ALLOC,
267 };
268 
269 static const u16 bnxt_async_events_arr[] = {
270 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
271 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
272 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
273 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
274 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
275 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
276 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
277 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
278 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
279 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
280 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
281 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
282 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
283 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
284 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
285 };
286 
287 static struct workqueue_struct *bnxt_pf_wq;
288 
bnxt_vf_pciid(enum board_idx idx)289 static bool bnxt_vf_pciid(enum board_idx idx)
290 {
291 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
292 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
293 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
294 		idx == NETXTREME_E_P5_VF_HV);
295 }
296 
297 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
298 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
299 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
300 
301 #define BNXT_CP_DB_IRQ_DIS(db)						\
302 		writel(DB_CP_IRQ_DIS_FLAGS, db)
303 
304 #define BNXT_DB_CQ(db, idx)						\
305 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
306 
307 #define BNXT_DB_NQ_P5(db, idx)						\
308 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
309 		    (db)->doorbell)
310 
311 #define BNXT_DB_CQ_ARM(db, idx)						\
312 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
313 
314 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
315 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
316 		    (db)->doorbell)
317 
bnxt_db_nq(struct bnxt * bp,struct bnxt_db_info * db,u32 idx)318 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
319 {
320 	if (bp->flags & BNXT_FLAG_CHIP_P5)
321 		BNXT_DB_NQ_P5(db, idx);
322 	else
323 		BNXT_DB_CQ(db, idx);
324 }
325 
bnxt_db_nq_arm(struct bnxt * bp,struct bnxt_db_info * db,u32 idx)326 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
327 {
328 	if (bp->flags & BNXT_FLAG_CHIP_P5)
329 		BNXT_DB_NQ_ARM_P5(db, idx);
330 	else
331 		BNXT_DB_CQ_ARM(db, idx);
332 }
333 
bnxt_db_cq(struct bnxt * bp,struct bnxt_db_info * db,u32 idx)334 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
335 {
336 	if (bp->flags & BNXT_FLAG_CHIP_P5)
337 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
338 			    RING_CMP(idx), db->doorbell);
339 	else
340 		BNXT_DB_CQ(db, idx);
341 }
342 
343 const u16 bnxt_lhint_arr[] = {
344 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
345 	TX_BD_FLAGS_LHINT_512_TO_1023,
346 	TX_BD_FLAGS_LHINT_1024_TO_2047,
347 	TX_BD_FLAGS_LHINT_1024_TO_2047,
348 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
349 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
350 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
351 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
352 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
353 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
354 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
355 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
356 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
357 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
358 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
359 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
360 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
361 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
362 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
363 };
364 
bnxt_xmit_get_cfa_action(struct sk_buff * skb)365 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
366 {
367 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
368 
369 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
370 		return 0;
371 
372 	return md_dst->u.port_info.port_id;
373 }
374 
bnxt_txr_db_kick(struct bnxt * bp,struct bnxt_tx_ring_info * txr,u16 prod)375 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
376 			     u16 prod)
377 {
378 	bnxt_db_write(bp, &txr->tx_db, prod);
379 	txr->kick_pending = 0;
380 }
381 
bnxt_txr_netif_try_stop_queue(struct bnxt * bp,struct bnxt_tx_ring_info * txr,struct netdev_queue * txq)382 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
383 					  struct bnxt_tx_ring_info *txr,
384 					  struct netdev_queue *txq)
385 {
386 	netif_tx_stop_queue(txq);
387 
388 	/* netif_tx_stop_queue() must be done before checking
389 	 * tx index in bnxt_tx_avail() below, because in
390 	 * bnxt_tx_int(), we update tx index before checking for
391 	 * netif_tx_queue_stopped().
392 	 */
393 	smp_mb();
394 	if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
395 		netif_tx_wake_queue(txq);
396 		return false;
397 	}
398 
399 	return true;
400 }
401 
bnxt_start_xmit(struct sk_buff * skb,struct net_device * dev)402 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
403 {
404 	struct bnxt *bp = netdev_priv(dev);
405 	struct tx_bd *txbd;
406 	struct tx_bd_ext *txbd1;
407 	struct netdev_queue *txq;
408 	int i;
409 	dma_addr_t mapping;
410 	unsigned int length, pad = 0;
411 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
412 	u16 prod, last_frag;
413 	struct pci_dev *pdev = bp->pdev;
414 	struct bnxt_tx_ring_info *txr;
415 	struct bnxt_sw_tx_bd *tx_buf;
416 	__le32 lflags = 0;
417 
418 	i = skb_get_queue_mapping(skb);
419 	if (unlikely(i >= bp->tx_nr_rings)) {
420 		dev_kfree_skb_any(skb);
421 		atomic_long_inc(&dev->tx_dropped);
422 		return NETDEV_TX_OK;
423 	}
424 
425 	txq = netdev_get_tx_queue(dev, i);
426 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
427 	prod = txr->tx_prod;
428 
429 	free_size = bnxt_tx_avail(bp, txr);
430 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
431 		/* We must have raced with NAPI cleanup */
432 		if (net_ratelimit() && txr->kick_pending)
433 			netif_warn(bp, tx_err, dev,
434 				   "bnxt: ring busy w/ flush pending!\n");
435 		if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
436 			return NETDEV_TX_BUSY;
437 	}
438 
439 	length = skb->len;
440 	len = skb_headlen(skb);
441 	last_frag = skb_shinfo(skb)->nr_frags;
442 
443 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
444 
445 	txbd->tx_bd_opaque = prod;
446 
447 	tx_buf = &txr->tx_buf_ring[prod];
448 	tx_buf->skb = skb;
449 	tx_buf->nr_frags = last_frag;
450 
451 	vlan_tag_flags = 0;
452 	cfa_action = bnxt_xmit_get_cfa_action(skb);
453 	if (skb_vlan_tag_present(skb)) {
454 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
455 				 skb_vlan_tag_get(skb);
456 		/* Currently supports 8021Q, 8021AD vlan offloads
457 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
458 		 */
459 		if (skb->vlan_proto == htons(ETH_P_8021Q))
460 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
461 	}
462 
463 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
464 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
465 
466 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
467 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
468 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
469 					    &ptp->tx_hdr_off)) {
470 				if (vlan_tag_flags)
471 					ptp->tx_hdr_off += VLAN_HLEN;
472 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
473 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
474 			} else {
475 				atomic_inc(&bp->ptp_cfg->tx_avail);
476 			}
477 		}
478 	}
479 
480 	if (unlikely(skb->no_fcs))
481 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
482 
483 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
484 	    !lflags) {
485 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
486 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
487 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
488 		void __iomem *db = txr->tx_db.doorbell;
489 		void *pdata = tx_push_buf->data;
490 		u64 *end;
491 		int j, push_len;
492 
493 		/* Set COAL_NOW to be ready quickly for the next push */
494 		tx_push->tx_bd_len_flags_type =
495 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
496 					TX_BD_TYPE_LONG_TX_BD |
497 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
498 					TX_BD_FLAGS_COAL_NOW |
499 					TX_BD_FLAGS_PACKET_END |
500 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
501 
502 		if (skb->ip_summed == CHECKSUM_PARTIAL)
503 			tx_push1->tx_bd_hsize_lflags =
504 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
505 		else
506 			tx_push1->tx_bd_hsize_lflags = 0;
507 
508 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
509 		tx_push1->tx_bd_cfa_action =
510 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
511 
512 		end = pdata + length;
513 		end = PTR_ALIGN(end, 8) - 1;
514 		*end = 0;
515 
516 		skb_copy_from_linear_data(skb, pdata, len);
517 		pdata += len;
518 		for (j = 0; j < last_frag; j++) {
519 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
520 			void *fptr;
521 
522 			fptr = skb_frag_address_safe(frag);
523 			if (!fptr)
524 				goto normal_tx;
525 
526 			memcpy(pdata, fptr, skb_frag_size(frag));
527 			pdata += skb_frag_size(frag);
528 		}
529 
530 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
531 		txbd->tx_bd_haddr = txr->data_mapping;
532 		prod = NEXT_TX(prod);
533 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
534 		memcpy(txbd, tx_push1, sizeof(*txbd));
535 		prod = NEXT_TX(prod);
536 		tx_push->doorbell =
537 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
538 		txr->tx_prod = prod;
539 
540 		tx_buf->is_push = 1;
541 		netdev_tx_sent_queue(txq, skb->len);
542 		wmb();	/* Sync is_push and byte queue before pushing data */
543 
544 		push_len = (length + sizeof(*tx_push) + 7) / 8;
545 		if (push_len > 16) {
546 			__iowrite64_copy(db, tx_push_buf, 16);
547 			__iowrite32_copy(db + 4, tx_push_buf + 1,
548 					 (push_len - 16) << 1);
549 		} else {
550 			__iowrite64_copy(db, tx_push_buf, push_len);
551 		}
552 
553 		goto tx_done;
554 	}
555 
556 normal_tx:
557 	if (length < BNXT_MIN_PKT_SIZE) {
558 		pad = BNXT_MIN_PKT_SIZE - length;
559 		if (skb_pad(skb, pad))
560 			/* SKB already freed. */
561 			goto tx_kick_pending;
562 		length = BNXT_MIN_PKT_SIZE;
563 	}
564 
565 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
566 
567 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
568 		goto tx_free;
569 
570 	dma_unmap_addr_set(tx_buf, mapping, mapping);
571 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
572 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
573 
574 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
575 
576 	prod = NEXT_TX(prod);
577 	txbd1 = (struct tx_bd_ext *)
578 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
579 
580 	txbd1->tx_bd_hsize_lflags = lflags;
581 	if (skb_is_gso(skb)) {
582 		u32 hdr_len;
583 
584 		if (skb->encapsulation)
585 			hdr_len = skb_inner_network_offset(skb) +
586 				skb_inner_network_header_len(skb) +
587 				inner_tcp_hdrlen(skb);
588 		else
589 			hdr_len = skb_transport_offset(skb) +
590 				tcp_hdrlen(skb);
591 
592 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
593 					TX_BD_FLAGS_T_IPID |
594 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
595 		length = skb_shinfo(skb)->gso_size;
596 		txbd1->tx_bd_mss = cpu_to_le32(length);
597 		length += hdr_len;
598 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
599 		txbd1->tx_bd_hsize_lflags |=
600 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
601 		txbd1->tx_bd_mss = 0;
602 	}
603 
604 	length >>= 9;
605 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
606 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
607 				     skb->len);
608 		i = 0;
609 		goto tx_dma_error;
610 	}
611 	flags |= bnxt_lhint_arr[length];
612 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
613 
614 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
615 	txbd1->tx_bd_cfa_action =
616 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
617 	for (i = 0; i < last_frag; i++) {
618 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
619 
620 		prod = NEXT_TX(prod);
621 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
622 
623 		len = skb_frag_size(frag);
624 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
625 					   DMA_TO_DEVICE);
626 
627 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
628 			goto tx_dma_error;
629 
630 		tx_buf = &txr->tx_buf_ring[prod];
631 		dma_unmap_addr_set(tx_buf, mapping, mapping);
632 
633 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
634 
635 		flags = len << TX_BD_LEN_SHIFT;
636 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
637 	}
638 
639 	flags &= ~TX_BD_LEN;
640 	txbd->tx_bd_len_flags_type =
641 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
642 			    TX_BD_FLAGS_PACKET_END);
643 
644 	netdev_tx_sent_queue(txq, skb->len);
645 
646 	skb_tx_timestamp(skb);
647 
648 	/* Sync BD data before updating doorbell */
649 	wmb();
650 
651 	prod = NEXT_TX(prod);
652 	txr->tx_prod = prod;
653 
654 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
655 		bnxt_txr_db_kick(bp, txr, prod);
656 	else
657 		txr->kick_pending = 1;
658 
659 tx_done:
660 
661 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
662 		if (netdev_xmit_more() && !tx_buf->is_push)
663 			bnxt_txr_db_kick(bp, txr, prod);
664 
665 		bnxt_txr_netif_try_stop_queue(bp, txr, txq);
666 	}
667 	return NETDEV_TX_OK;
668 
669 tx_dma_error:
670 	if (BNXT_TX_PTP_IS_SET(lflags))
671 		atomic_inc(&bp->ptp_cfg->tx_avail);
672 
673 	last_frag = i;
674 
675 	/* start back at beginning and unmap skb */
676 	prod = txr->tx_prod;
677 	tx_buf = &txr->tx_buf_ring[prod];
678 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
679 			 skb_headlen(skb), DMA_TO_DEVICE);
680 	prod = NEXT_TX(prod);
681 
682 	/* unmap remaining mapped pages */
683 	for (i = 0; i < last_frag; i++) {
684 		prod = NEXT_TX(prod);
685 		tx_buf = &txr->tx_buf_ring[prod];
686 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
687 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
688 			       DMA_TO_DEVICE);
689 	}
690 
691 tx_free:
692 	dev_kfree_skb_any(skb);
693 tx_kick_pending:
694 	if (txr->kick_pending)
695 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
696 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
697 	atomic_long_inc(&dev->tx_dropped);
698 	return NETDEV_TX_OK;
699 }
700 
bnxt_tx_int(struct bnxt * bp,struct bnxt_napi * bnapi,int nr_pkts)701 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
702 {
703 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
704 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
705 	u16 cons = txr->tx_cons;
706 	struct pci_dev *pdev = bp->pdev;
707 	int i;
708 	unsigned int tx_bytes = 0;
709 
710 	for (i = 0; i < nr_pkts; i++) {
711 		struct bnxt_sw_tx_bd *tx_buf;
712 		struct sk_buff *skb;
713 		int j, last;
714 
715 		tx_buf = &txr->tx_buf_ring[cons];
716 		cons = NEXT_TX(cons);
717 		skb = tx_buf->skb;
718 		tx_buf->skb = NULL;
719 
720 		tx_bytes += skb->len;
721 
722 		if (tx_buf->is_push) {
723 			tx_buf->is_push = 0;
724 			goto next_tx_int;
725 		}
726 
727 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
728 				 skb_headlen(skb), DMA_TO_DEVICE);
729 		last = tx_buf->nr_frags;
730 
731 		for (j = 0; j < last; j++) {
732 			cons = NEXT_TX(cons);
733 			tx_buf = &txr->tx_buf_ring[cons];
734 			dma_unmap_page(
735 				&pdev->dev,
736 				dma_unmap_addr(tx_buf, mapping),
737 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
738 				DMA_TO_DEVICE);
739 		}
740 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
741 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
742 				/* PTP worker takes ownership of the skb */
743 				if (!bnxt_get_tx_ts_p5(bp, skb))
744 					skb = NULL;
745 				else
746 					atomic_inc(&bp->ptp_cfg->tx_avail);
747 			}
748 		}
749 
750 next_tx_int:
751 		cons = NEXT_TX(cons);
752 
753 		dev_kfree_skb_any(skb);
754 	}
755 
756 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
757 	txr->tx_cons = cons;
758 
759 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
760 	 * before checking for netif_tx_queue_stopped().  Without the
761 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
762 	 * will miss it and cause the queue to be stopped forever.
763 	 */
764 	smp_mb();
765 
766 	if (unlikely(netif_tx_queue_stopped(txq)) &&
767 	    bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
768 	    READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
769 		netif_tx_wake_queue(txq);
770 }
771 
__bnxt_alloc_rx_page(struct bnxt * bp,dma_addr_t * mapping,struct bnxt_rx_ring_info * rxr,gfp_t gfp)772 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
773 					 struct bnxt_rx_ring_info *rxr,
774 					 gfp_t gfp)
775 {
776 	struct device *dev = &bp->pdev->dev;
777 	struct page *page;
778 
779 	page = page_pool_dev_alloc_pages(rxr->page_pool);
780 	if (!page)
781 		return NULL;
782 
783 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
784 				      DMA_ATTR_WEAK_ORDERING);
785 	if (dma_mapping_error(dev, *mapping)) {
786 		page_pool_recycle_direct(rxr->page_pool, page);
787 		return NULL;
788 	}
789 	*mapping += bp->rx_dma_offset;
790 	return page;
791 }
792 
__bnxt_alloc_rx_data(struct bnxt * bp,dma_addr_t * mapping,gfp_t gfp)793 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
794 				       gfp_t gfp)
795 {
796 	u8 *data;
797 	struct pci_dev *pdev = bp->pdev;
798 
799 	data = kmalloc(bp->rx_buf_size, gfp);
800 	if (!data)
801 		return NULL;
802 
803 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
804 					bp->rx_buf_use_size, bp->rx_dir,
805 					DMA_ATTR_WEAK_ORDERING);
806 
807 	if (dma_mapping_error(&pdev->dev, *mapping)) {
808 		kfree(data);
809 		data = NULL;
810 	}
811 	return data;
812 }
813 
bnxt_alloc_rx_data(struct bnxt * bp,struct bnxt_rx_ring_info * rxr,u16 prod,gfp_t gfp)814 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
815 		       u16 prod, gfp_t gfp)
816 {
817 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
818 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
819 	dma_addr_t mapping;
820 
821 	if (BNXT_RX_PAGE_MODE(bp)) {
822 		struct page *page =
823 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
824 
825 		if (!page)
826 			return -ENOMEM;
827 
828 		rx_buf->data = page;
829 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
830 	} else {
831 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
832 
833 		if (!data)
834 			return -ENOMEM;
835 
836 		rx_buf->data = data;
837 		rx_buf->data_ptr = data + bp->rx_offset;
838 	}
839 	rx_buf->mapping = mapping;
840 
841 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
842 	return 0;
843 }
844 
bnxt_reuse_rx_data(struct bnxt_rx_ring_info * rxr,u16 cons,void * data)845 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
846 {
847 	u16 prod = rxr->rx_prod;
848 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
849 	struct rx_bd *cons_bd, *prod_bd;
850 
851 	prod_rx_buf = &rxr->rx_buf_ring[prod];
852 	cons_rx_buf = &rxr->rx_buf_ring[cons];
853 
854 	prod_rx_buf->data = data;
855 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
856 
857 	prod_rx_buf->mapping = cons_rx_buf->mapping;
858 
859 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
860 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
861 
862 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
863 }
864 
bnxt_find_next_agg_idx(struct bnxt_rx_ring_info * rxr,u16 idx)865 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
866 {
867 	u16 next, max = rxr->rx_agg_bmap_size;
868 
869 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
870 	if (next >= max)
871 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
872 	return next;
873 }
874 
bnxt_alloc_rx_page(struct bnxt * bp,struct bnxt_rx_ring_info * rxr,u16 prod,gfp_t gfp)875 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
876 				     struct bnxt_rx_ring_info *rxr,
877 				     u16 prod, gfp_t gfp)
878 {
879 	struct rx_bd *rxbd =
880 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
881 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
882 	struct pci_dev *pdev = bp->pdev;
883 	struct page *page;
884 	dma_addr_t mapping;
885 	u16 sw_prod = rxr->rx_sw_agg_prod;
886 	unsigned int offset = 0;
887 
888 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
889 		page = rxr->rx_page;
890 		if (!page) {
891 			page = alloc_page(gfp);
892 			if (!page)
893 				return -ENOMEM;
894 			rxr->rx_page = page;
895 			rxr->rx_page_offset = 0;
896 		}
897 		offset = rxr->rx_page_offset;
898 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
899 		if (rxr->rx_page_offset == PAGE_SIZE)
900 			rxr->rx_page = NULL;
901 		else
902 			get_page(page);
903 	} else {
904 		page = alloc_page(gfp);
905 		if (!page)
906 			return -ENOMEM;
907 	}
908 
909 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
910 				     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
911 				     DMA_ATTR_WEAK_ORDERING);
912 	if (dma_mapping_error(&pdev->dev, mapping)) {
913 		__free_page(page);
914 		return -EIO;
915 	}
916 
917 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
918 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
919 
920 	__set_bit(sw_prod, rxr->rx_agg_bmap);
921 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
922 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
923 
924 	rx_agg_buf->page = page;
925 	rx_agg_buf->offset = offset;
926 	rx_agg_buf->mapping = mapping;
927 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
928 	rxbd->rx_bd_opaque = sw_prod;
929 	return 0;
930 }
931 
bnxt_get_agg(struct bnxt * bp,struct bnxt_cp_ring_info * cpr,u16 cp_cons,u16 curr)932 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
933 				       struct bnxt_cp_ring_info *cpr,
934 				       u16 cp_cons, u16 curr)
935 {
936 	struct rx_agg_cmp *agg;
937 
938 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
939 	agg = (struct rx_agg_cmp *)
940 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
941 	return agg;
942 }
943 
bnxt_get_tpa_agg_p5(struct bnxt * bp,struct bnxt_rx_ring_info * rxr,u16 agg_id,u16 curr)944 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
945 					      struct bnxt_rx_ring_info *rxr,
946 					      u16 agg_id, u16 curr)
947 {
948 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
949 
950 	return &tpa_info->agg_arr[curr];
951 }
952 
bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info * cpr,u16 idx,u16 start,u32 agg_bufs,bool tpa)953 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
954 				   u16 start, u32 agg_bufs, bool tpa)
955 {
956 	struct bnxt_napi *bnapi = cpr->bnapi;
957 	struct bnxt *bp = bnapi->bp;
958 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
959 	u16 prod = rxr->rx_agg_prod;
960 	u16 sw_prod = rxr->rx_sw_agg_prod;
961 	bool p5_tpa = false;
962 	u32 i;
963 
964 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
965 		p5_tpa = true;
966 
967 	for (i = 0; i < agg_bufs; i++) {
968 		u16 cons;
969 		struct rx_agg_cmp *agg;
970 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
971 		struct rx_bd *prod_bd;
972 		struct page *page;
973 
974 		if (p5_tpa)
975 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
976 		else
977 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
978 		cons = agg->rx_agg_cmp_opaque;
979 		__clear_bit(cons, rxr->rx_agg_bmap);
980 
981 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
982 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
983 
984 		__set_bit(sw_prod, rxr->rx_agg_bmap);
985 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
986 		cons_rx_buf = &rxr->rx_agg_ring[cons];
987 
988 		/* It is possible for sw_prod to be equal to cons, so
989 		 * set cons_rx_buf->page to NULL first.
990 		 */
991 		page = cons_rx_buf->page;
992 		cons_rx_buf->page = NULL;
993 		prod_rx_buf->page = page;
994 		prod_rx_buf->offset = cons_rx_buf->offset;
995 
996 		prod_rx_buf->mapping = cons_rx_buf->mapping;
997 
998 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
999 
1000 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
1001 		prod_bd->rx_bd_opaque = sw_prod;
1002 
1003 		prod = NEXT_RX_AGG(prod);
1004 		sw_prod = NEXT_RX_AGG(sw_prod);
1005 	}
1006 	rxr->rx_agg_prod = prod;
1007 	rxr->rx_sw_agg_prod = sw_prod;
1008 }
1009 
bnxt_rx_page_skb(struct bnxt * bp,struct bnxt_rx_ring_info * rxr,u16 cons,void * data,u8 * data_ptr,dma_addr_t dma_addr,unsigned int offset_and_len)1010 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1011 					struct bnxt_rx_ring_info *rxr,
1012 					u16 cons, void *data, u8 *data_ptr,
1013 					dma_addr_t dma_addr,
1014 					unsigned int offset_and_len)
1015 {
1016 	unsigned int payload = offset_and_len >> 16;
1017 	unsigned int len = offset_and_len & 0xffff;
1018 	skb_frag_t *frag;
1019 	struct page *page = data;
1020 	u16 prod = rxr->rx_prod;
1021 	struct sk_buff *skb;
1022 	int off, err;
1023 
1024 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1025 	if (unlikely(err)) {
1026 		bnxt_reuse_rx_data(rxr, cons, data);
1027 		return NULL;
1028 	}
1029 	dma_addr -= bp->rx_dma_offset;
1030 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
1031 			     DMA_ATTR_WEAK_ORDERING);
1032 	page_pool_release_page(rxr->page_pool, page);
1033 
1034 	if (unlikely(!payload))
1035 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1036 
1037 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1038 	if (!skb) {
1039 		__free_page(page);
1040 		return NULL;
1041 	}
1042 
1043 	off = (void *)data_ptr - page_address(page);
1044 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1045 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1046 	       payload + NET_IP_ALIGN);
1047 
1048 	frag = &skb_shinfo(skb)->frags[0];
1049 	skb_frag_size_sub(frag, payload);
1050 	skb_frag_off_add(frag, payload);
1051 	skb->data_len -= payload;
1052 	skb->tail += payload;
1053 
1054 	return skb;
1055 }
1056 
bnxt_rx_skb(struct bnxt * bp,struct bnxt_rx_ring_info * rxr,u16 cons,void * data,u8 * data_ptr,dma_addr_t dma_addr,unsigned int offset_and_len)1057 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1058 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1059 				   void *data, u8 *data_ptr,
1060 				   dma_addr_t dma_addr,
1061 				   unsigned int offset_and_len)
1062 {
1063 	u16 prod = rxr->rx_prod;
1064 	struct sk_buff *skb;
1065 	int err;
1066 
1067 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1068 	if (unlikely(err)) {
1069 		bnxt_reuse_rx_data(rxr, cons, data);
1070 		return NULL;
1071 	}
1072 
1073 	skb = build_skb(data, 0);
1074 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1075 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1076 	if (!skb) {
1077 		kfree(data);
1078 		return NULL;
1079 	}
1080 
1081 	skb_reserve(skb, bp->rx_offset);
1082 	skb_put(skb, offset_and_len & 0xffff);
1083 	return skb;
1084 }
1085 
bnxt_rx_pages(struct bnxt * bp,struct bnxt_cp_ring_info * cpr,struct sk_buff * skb,u16 idx,u32 agg_bufs,bool tpa)1086 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
1087 				     struct bnxt_cp_ring_info *cpr,
1088 				     struct sk_buff *skb, u16 idx,
1089 				     u32 agg_bufs, bool tpa)
1090 {
1091 	struct bnxt_napi *bnapi = cpr->bnapi;
1092 	struct pci_dev *pdev = bp->pdev;
1093 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1094 	u16 prod = rxr->rx_agg_prod;
1095 	bool p5_tpa = false;
1096 	u32 i;
1097 
1098 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1099 		p5_tpa = true;
1100 
1101 	for (i = 0; i < agg_bufs; i++) {
1102 		u16 cons, frag_len;
1103 		struct rx_agg_cmp *agg;
1104 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1105 		struct page *page;
1106 		dma_addr_t mapping;
1107 
1108 		if (p5_tpa)
1109 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1110 		else
1111 			agg = bnxt_get_agg(bp, cpr, idx, i);
1112 		cons = agg->rx_agg_cmp_opaque;
1113 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1114 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1115 
1116 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1117 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
1118 				   cons_rx_buf->offset, frag_len);
1119 		__clear_bit(cons, rxr->rx_agg_bmap);
1120 
1121 		/* It is possible for bnxt_alloc_rx_page() to allocate
1122 		 * a sw_prod index that equals the cons index, so we
1123 		 * need to clear the cons entry now.
1124 		 */
1125 		mapping = cons_rx_buf->mapping;
1126 		page = cons_rx_buf->page;
1127 		cons_rx_buf->page = NULL;
1128 
1129 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1130 			struct skb_shared_info *shinfo;
1131 			unsigned int nr_frags;
1132 
1133 			shinfo = skb_shinfo(skb);
1134 			nr_frags = --shinfo->nr_frags;
1135 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1136 
1137 			dev_kfree_skb(skb);
1138 
1139 			cons_rx_buf->page = page;
1140 
1141 			/* Update prod since possibly some pages have been
1142 			 * allocated already.
1143 			 */
1144 			rxr->rx_agg_prod = prod;
1145 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1146 			return NULL;
1147 		}
1148 
1149 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1150 				     DMA_FROM_DEVICE,
1151 				     DMA_ATTR_WEAK_ORDERING);
1152 
1153 		skb->data_len += frag_len;
1154 		skb->len += frag_len;
1155 		skb->truesize += PAGE_SIZE;
1156 
1157 		prod = NEXT_RX_AGG(prod);
1158 	}
1159 	rxr->rx_agg_prod = prod;
1160 	return skb;
1161 }
1162 
bnxt_agg_bufs_valid(struct bnxt * bp,struct bnxt_cp_ring_info * cpr,u8 agg_bufs,u32 * raw_cons)1163 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1164 			       u8 agg_bufs, u32 *raw_cons)
1165 {
1166 	u16 last;
1167 	struct rx_agg_cmp *agg;
1168 
1169 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1170 	last = RING_CMP(*raw_cons);
1171 	agg = (struct rx_agg_cmp *)
1172 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1173 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1174 }
1175 
bnxt_copy_skb(struct bnxt_napi * bnapi,u8 * data,unsigned int len,dma_addr_t mapping)1176 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1177 					    unsigned int len,
1178 					    dma_addr_t mapping)
1179 {
1180 	struct bnxt *bp = bnapi->bp;
1181 	struct pci_dev *pdev = bp->pdev;
1182 	struct sk_buff *skb;
1183 
1184 	skb = napi_alloc_skb(&bnapi->napi, len);
1185 	if (!skb)
1186 		return NULL;
1187 
1188 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1189 				bp->rx_dir);
1190 
1191 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1192 	       len + NET_IP_ALIGN);
1193 
1194 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1195 				   bp->rx_dir);
1196 
1197 	skb_put(skb, len);
1198 	return skb;
1199 }
1200 
bnxt_discard_rx(struct bnxt * bp,struct bnxt_cp_ring_info * cpr,u32 * raw_cons,void * cmp)1201 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1202 			   u32 *raw_cons, void *cmp)
1203 {
1204 	struct rx_cmp *rxcmp = cmp;
1205 	u32 tmp_raw_cons = *raw_cons;
1206 	u8 cmp_type, agg_bufs = 0;
1207 
1208 	cmp_type = RX_CMP_TYPE(rxcmp);
1209 
1210 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1211 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1212 			    RX_CMP_AGG_BUFS) >>
1213 			   RX_CMP_AGG_BUFS_SHIFT;
1214 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1215 		struct rx_tpa_end_cmp *tpa_end = cmp;
1216 
1217 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1218 			return 0;
1219 
1220 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1221 	}
1222 
1223 	if (agg_bufs) {
1224 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1225 			return -EBUSY;
1226 	}
1227 	*raw_cons = tmp_raw_cons;
1228 	return 0;
1229 }
1230 
bnxt_queue_fw_reset_work(struct bnxt * bp,unsigned long delay)1231 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1232 {
1233 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1234 		return;
1235 
1236 	if (BNXT_PF(bp))
1237 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1238 	else
1239 		schedule_delayed_work(&bp->fw_reset_task, delay);
1240 }
1241 
bnxt_queue_sp_work(struct bnxt * bp)1242 static void bnxt_queue_sp_work(struct bnxt *bp)
1243 {
1244 	if (BNXT_PF(bp))
1245 		queue_work(bnxt_pf_wq, &bp->sp_task);
1246 	else
1247 		schedule_work(&bp->sp_task);
1248 }
1249 
bnxt_sched_reset(struct bnxt * bp,struct bnxt_rx_ring_info * rxr)1250 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1251 {
1252 	if (!rxr->bnapi->in_reset) {
1253 		rxr->bnapi->in_reset = true;
1254 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1255 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1256 		else
1257 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1258 		bnxt_queue_sp_work(bp);
1259 	}
1260 	rxr->rx_next_cons = 0xffff;
1261 }
1262 
bnxt_alloc_agg_idx(struct bnxt_rx_ring_info * rxr,u16 agg_id)1263 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1264 {
1265 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1266 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1267 
1268 	if (test_bit(idx, map->agg_idx_bmap))
1269 		idx = find_first_zero_bit(map->agg_idx_bmap,
1270 					  BNXT_AGG_IDX_BMAP_SIZE);
1271 	__set_bit(idx, map->agg_idx_bmap);
1272 	map->agg_id_tbl[agg_id] = idx;
1273 	return idx;
1274 }
1275 
bnxt_free_agg_idx(struct bnxt_rx_ring_info * rxr,u16 idx)1276 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1277 {
1278 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1279 
1280 	__clear_bit(idx, map->agg_idx_bmap);
1281 }
1282 
bnxt_lookup_agg_idx(struct bnxt_rx_ring_info * rxr,u16 agg_id)1283 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1284 {
1285 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1286 
1287 	return map->agg_id_tbl[agg_id];
1288 }
1289 
bnxt_tpa_start(struct bnxt * bp,struct bnxt_rx_ring_info * rxr,struct rx_tpa_start_cmp * tpa_start,struct rx_tpa_start_cmp_ext * tpa_start1)1290 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1291 			   struct rx_tpa_start_cmp *tpa_start,
1292 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1293 {
1294 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1295 	struct bnxt_tpa_info *tpa_info;
1296 	u16 cons, prod, agg_id;
1297 	struct rx_bd *prod_bd;
1298 	dma_addr_t mapping;
1299 
1300 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1301 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1302 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1303 	} else {
1304 		agg_id = TPA_START_AGG_ID(tpa_start);
1305 	}
1306 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1307 	prod = rxr->rx_prod;
1308 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1309 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1310 	tpa_info = &rxr->rx_tpa[agg_id];
1311 
1312 	if (unlikely(cons != rxr->rx_next_cons ||
1313 		     TPA_START_ERROR(tpa_start))) {
1314 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1315 			    cons, rxr->rx_next_cons,
1316 			    TPA_START_ERROR_CODE(tpa_start1));
1317 		bnxt_sched_reset(bp, rxr);
1318 		return;
1319 	}
1320 	/* Store cfa_code in tpa_info to use in tpa_end
1321 	 * completion processing.
1322 	 */
1323 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1324 	prod_rx_buf->data = tpa_info->data;
1325 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1326 
1327 	mapping = tpa_info->mapping;
1328 	prod_rx_buf->mapping = mapping;
1329 
1330 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1331 
1332 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1333 
1334 	tpa_info->data = cons_rx_buf->data;
1335 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1336 	cons_rx_buf->data = NULL;
1337 	tpa_info->mapping = cons_rx_buf->mapping;
1338 
1339 	tpa_info->len =
1340 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1341 				RX_TPA_START_CMP_LEN_SHIFT;
1342 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1343 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1344 
1345 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1346 		tpa_info->gso_type = SKB_GSO_TCPV4;
1347 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1348 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1349 			tpa_info->gso_type = SKB_GSO_TCPV6;
1350 		tpa_info->rss_hash =
1351 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1352 	} else {
1353 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1354 		tpa_info->gso_type = 0;
1355 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1356 	}
1357 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1358 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1359 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1360 	tpa_info->agg_count = 0;
1361 
1362 	rxr->rx_prod = NEXT_RX(prod);
1363 	cons = NEXT_RX(cons);
1364 	rxr->rx_next_cons = NEXT_RX(cons);
1365 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1366 
1367 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1368 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1369 	cons_rx_buf->data = NULL;
1370 }
1371 
bnxt_abort_tpa(struct bnxt_cp_ring_info * cpr,u16 idx,u32 agg_bufs)1372 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1373 {
1374 	if (agg_bufs)
1375 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1376 }
1377 
1378 #ifdef CONFIG_INET
bnxt_gro_tunnel(struct sk_buff * skb,__be16 ip_proto)1379 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1380 {
1381 	struct udphdr *uh = NULL;
1382 
1383 	if (ip_proto == htons(ETH_P_IP)) {
1384 		struct iphdr *iph = (struct iphdr *)skb->data;
1385 
1386 		if (iph->protocol == IPPROTO_UDP)
1387 			uh = (struct udphdr *)(iph + 1);
1388 	} else {
1389 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1390 
1391 		if (iph->nexthdr == IPPROTO_UDP)
1392 			uh = (struct udphdr *)(iph + 1);
1393 	}
1394 	if (uh) {
1395 		if (uh->check)
1396 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1397 		else
1398 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1399 	}
1400 }
1401 #endif
1402 
bnxt_gro_func_5731x(struct bnxt_tpa_info * tpa_info,int payload_off,int tcp_ts,struct sk_buff * skb)1403 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1404 					   int payload_off, int tcp_ts,
1405 					   struct sk_buff *skb)
1406 {
1407 #ifdef CONFIG_INET
1408 	struct tcphdr *th;
1409 	int len, nw_off;
1410 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1411 	u32 hdr_info = tpa_info->hdr_info;
1412 	bool loopback = false;
1413 
1414 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1415 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1416 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1417 
1418 	/* If the packet is an internal loopback packet, the offsets will
1419 	 * have an extra 4 bytes.
1420 	 */
1421 	if (inner_mac_off == 4) {
1422 		loopback = true;
1423 	} else if (inner_mac_off > 4) {
1424 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1425 					    ETH_HLEN - 2));
1426 
1427 		/* We only support inner iPv4/ipv6.  If we don't see the
1428 		 * correct protocol ID, it must be a loopback packet where
1429 		 * the offsets are off by 4.
1430 		 */
1431 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1432 			loopback = true;
1433 	}
1434 	if (loopback) {
1435 		/* internal loopback packet, subtract all offsets by 4 */
1436 		inner_ip_off -= 4;
1437 		inner_mac_off -= 4;
1438 		outer_ip_off -= 4;
1439 	}
1440 
1441 	nw_off = inner_ip_off - ETH_HLEN;
1442 	skb_set_network_header(skb, nw_off);
1443 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1444 		struct ipv6hdr *iph = ipv6_hdr(skb);
1445 
1446 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1447 		len = skb->len - skb_transport_offset(skb);
1448 		th = tcp_hdr(skb);
1449 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1450 	} else {
1451 		struct iphdr *iph = ip_hdr(skb);
1452 
1453 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1454 		len = skb->len - skb_transport_offset(skb);
1455 		th = tcp_hdr(skb);
1456 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1457 	}
1458 
1459 	if (inner_mac_off) { /* tunnel */
1460 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1461 					    ETH_HLEN - 2));
1462 
1463 		bnxt_gro_tunnel(skb, proto);
1464 	}
1465 #endif
1466 	return skb;
1467 }
1468 
bnxt_gro_func_5750x(struct bnxt_tpa_info * tpa_info,int payload_off,int tcp_ts,struct sk_buff * skb)1469 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1470 					   int payload_off, int tcp_ts,
1471 					   struct sk_buff *skb)
1472 {
1473 #ifdef CONFIG_INET
1474 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1475 	u32 hdr_info = tpa_info->hdr_info;
1476 	int iphdr_len, nw_off;
1477 
1478 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1479 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1480 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1481 
1482 	nw_off = inner_ip_off - ETH_HLEN;
1483 	skb_set_network_header(skb, nw_off);
1484 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1485 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1486 	skb_set_transport_header(skb, nw_off + iphdr_len);
1487 
1488 	if (inner_mac_off) { /* tunnel */
1489 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1490 					    ETH_HLEN - 2));
1491 
1492 		bnxt_gro_tunnel(skb, proto);
1493 	}
1494 #endif
1495 	return skb;
1496 }
1497 
1498 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1499 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1500 
bnxt_gro_func_5730x(struct bnxt_tpa_info * tpa_info,int payload_off,int tcp_ts,struct sk_buff * skb)1501 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1502 					   int payload_off, int tcp_ts,
1503 					   struct sk_buff *skb)
1504 {
1505 #ifdef CONFIG_INET
1506 	struct tcphdr *th;
1507 	int len, nw_off, tcp_opt_len = 0;
1508 
1509 	if (tcp_ts)
1510 		tcp_opt_len = 12;
1511 
1512 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1513 		struct iphdr *iph;
1514 
1515 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1516 			 ETH_HLEN;
1517 		skb_set_network_header(skb, nw_off);
1518 		iph = ip_hdr(skb);
1519 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1520 		len = skb->len - skb_transport_offset(skb);
1521 		th = tcp_hdr(skb);
1522 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1523 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1524 		struct ipv6hdr *iph;
1525 
1526 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1527 			 ETH_HLEN;
1528 		skb_set_network_header(skb, nw_off);
1529 		iph = ipv6_hdr(skb);
1530 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1531 		len = skb->len - skb_transport_offset(skb);
1532 		th = tcp_hdr(skb);
1533 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1534 	} else {
1535 		dev_kfree_skb_any(skb);
1536 		return NULL;
1537 	}
1538 
1539 	if (nw_off) /* tunnel */
1540 		bnxt_gro_tunnel(skb, skb->protocol);
1541 #endif
1542 	return skb;
1543 }
1544 
bnxt_gro_skb(struct bnxt * bp,struct bnxt_tpa_info * tpa_info,struct rx_tpa_end_cmp * tpa_end,struct rx_tpa_end_cmp_ext * tpa_end1,struct sk_buff * skb)1545 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1546 					   struct bnxt_tpa_info *tpa_info,
1547 					   struct rx_tpa_end_cmp *tpa_end,
1548 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1549 					   struct sk_buff *skb)
1550 {
1551 #ifdef CONFIG_INET
1552 	int payload_off;
1553 	u16 segs;
1554 
1555 	segs = TPA_END_TPA_SEGS(tpa_end);
1556 	if (segs == 1)
1557 		return skb;
1558 
1559 	NAPI_GRO_CB(skb)->count = segs;
1560 	skb_shinfo(skb)->gso_size =
1561 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1562 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1563 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1564 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1565 	else
1566 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1567 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1568 	if (likely(skb))
1569 		tcp_gro_complete(skb);
1570 #endif
1571 	return skb;
1572 }
1573 
1574 /* Given the cfa_code of a received packet determine which
1575  * netdev (vf-rep or PF) the packet is destined to.
1576  */
bnxt_get_pkt_dev(struct bnxt * bp,u16 cfa_code)1577 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1578 {
1579 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1580 
1581 	/* if vf-rep dev is NULL, the must belongs to the PF */
1582 	return dev ? dev : bp->dev;
1583 }
1584 
bnxt_tpa_end(struct bnxt * bp,struct bnxt_cp_ring_info * cpr,u32 * raw_cons,struct rx_tpa_end_cmp * tpa_end,struct rx_tpa_end_cmp_ext * tpa_end1,u8 * event)1585 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1586 					   struct bnxt_cp_ring_info *cpr,
1587 					   u32 *raw_cons,
1588 					   struct rx_tpa_end_cmp *tpa_end,
1589 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1590 					   u8 *event)
1591 {
1592 	struct bnxt_napi *bnapi = cpr->bnapi;
1593 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1594 	u8 *data_ptr, agg_bufs;
1595 	unsigned int len;
1596 	struct bnxt_tpa_info *tpa_info;
1597 	dma_addr_t mapping;
1598 	struct sk_buff *skb;
1599 	u16 idx = 0, agg_id;
1600 	void *data;
1601 	bool gro;
1602 
1603 	if (unlikely(bnapi->in_reset)) {
1604 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1605 
1606 		if (rc < 0)
1607 			return ERR_PTR(-EBUSY);
1608 		return NULL;
1609 	}
1610 
1611 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1612 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1613 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1614 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1615 		tpa_info = &rxr->rx_tpa[agg_id];
1616 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1617 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1618 				    agg_bufs, tpa_info->agg_count);
1619 			agg_bufs = tpa_info->agg_count;
1620 		}
1621 		tpa_info->agg_count = 0;
1622 		*event |= BNXT_AGG_EVENT;
1623 		bnxt_free_agg_idx(rxr, agg_id);
1624 		idx = agg_id;
1625 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1626 	} else {
1627 		agg_id = TPA_END_AGG_ID(tpa_end);
1628 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1629 		tpa_info = &rxr->rx_tpa[agg_id];
1630 		idx = RING_CMP(*raw_cons);
1631 		if (agg_bufs) {
1632 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1633 				return ERR_PTR(-EBUSY);
1634 
1635 			*event |= BNXT_AGG_EVENT;
1636 			idx = NEXT_CMP(idx);
1637 		}
1638 		gro = !!TPA_END_GRO(tpa_end);
1639 	}
1640 	data = tpa_info->data;
1641 	data_ptr = tpa_info->data_ptr;
1642 	prefetch(data_ptr);
1643 	len = tpa_info->len;
1644 	mapping = tpa_info->mapping;
1645 
1646 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1647 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1648 		if (agg_bufs > MAX_SKB_FRAGS)
1649 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1650 				    agg_bufs, (int)MAX_SKB_FRAGS);
1651 		return NULL;
1652 	}
1653 
1654 	if (len <= bp->rx_copy_thresh) {
1655 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1656 		if (!skb) {
1657 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1658 			cpr->sw_stats.rx.rx_oom_discards += 1;
1659 			return NULL;
1660 		}
1661 	} else {
1662 		u8 *new_data;
1663 		dma_addr_t new_mapping;
1664 
1665 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1666 		if (!new_data) {
1667 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1668 			cpr->sw_stats.rx.rx_oom_discards += 1;
1669 			return NULL;
1670 		}
1671 
1672 		tpa_info->data = new_data;
1673 		tpa_info->data_ptr = new_data + bp->rx_offset;
1674 		tpa_info->mapping = new_mapping;
1675 
1676 		skb = build_skb(data, 0);
1677 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1678 				       bp->rx_buf_use_size, bp->rx_dir,
1679 				       DMA_ATTR_WEAK_ORDERING);
1680 
1681 		if (!skb) {
1682 			kfree(data);
1683 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1684 			cpr->sw_stats.rx.rx_oom_discards += 1;
1685 			return NULL;
1686 		}
1687 		skb_reserve(skb, bp->rx_offset);
1688 		skb_put(skb, len);
1689 	}
1690 
1691 	if (agg_bufs) {
1692 		skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1693 		if (!skb) {
1694 			/* Page reuse already handled by bnxt_rx_pages(). */
1695 			cpr->sw_stats.rx.rx_oom_discards += 1;
1696 			return NULL;
1697 		}
1698 	}
1699 
1700 	skb->protocol =
1701 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1702 
1703 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1704 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1705 
1706 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1707 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1708 		__be16 vlan_proto = htons(tpa_info->metadata >>
1709 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1710 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1711 
1712 		if (eth_type_vlan(vlan_proto)) {
1713 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1714 		} else {
1715 			dev_kfree_skb(skb);
1716 			return NULL;
1717 		}
1718 	}
1719 
1720 	skb_checksum_none_assert(skb);
1721 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1722 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1723 		skb->csum_level =
1724 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1725 	}
1726 
1727 	if (gro)
1728 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1729 
1730 	return skb;
1731 }
1732 
bnxt_tpa_agg(struct bnxt * bp,struct bnxt_rx_ring_info * rxr,struct rx_agg_cmp * rx_agg)1733 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1734 			 struct rx_agg_cmp *rx_agg)
1735 {
1736 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1737 	struct bnxt_tpa_info *tpa_info;
1738 
1739 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1740 	tpa_info = &rxr->rx_tpa[agg_id];
1741 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1742 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1743 }
1744 
bnxt_deliver_skb(struct bnxt * bp,struct bnxt_napi * bnapi,struct sk_buff * skb)1745 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1746 			     struct sk_buff *skb)
1747 {
1748 	if (skb->dev != bp->dev) {
1749 		/* this packet belongs to a vf-rep */
1750 		bnxt_vf_rep_rx(bp, skb);
1751 		return;
1752 	}
1753 	skb_record_rx_queue(skb, bnapi->index);
1754 	napi_gro_receive(&bnapi->napi, skb);
1755 }
1756 
1757 /* returns the following:
1758  * 1       - 1 packet successfully received
1759  * 0       - successful TPA_START, packet not completed yet
1760  * -EBUSY  - completion ring does not have all the agg buffers yet
1761  * -ENOMEM - packet aborted due to out of memory
1762  * -EIO    - packet aborted due to hw error indicated in BD
1763  */
bnxt_rx_pkt(struct bnxt * bp,struct bnxt_cp_ring_info * cpr,u32 * raw_cons,u8 * event)1764 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1765 		       u32 *raw_cons, u8 *event)
1766 {
1767 	struct bnxt_napi *bnapi = cpr->bnapi;
1768 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1769 	struct net_device *dev = bp->dev;
1770 	struct rx_cmp *rxcmp;
1771 	struct rx_cmp_ext *rxcmp1;
1772 	u32 tmp_raw_cons = *raw_cons;
1773 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1774 	struct bnxt_sw_rx_bd *rx_buf;
1775 	unsigned int len;
1776 	u8 *data_ptr, agg_bufs, cmp_type;
1777 	dma_addr_t dma_addr;
1778 	struct sk_buff *skb;
1779 	u32 flags, misc;
1780 	void *data;
1781 	int rc = 0;
1782 
1783 	rxcmp = (struct rx_cmp *)
1784 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1785 
1786 	cmp_type = RX_CMP_TYPE(rxcmp);
1787 
1788 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1789 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1790 		goto next_rx_no_prod_no_len;
1791 	}
1792 
1793 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1794 	cp_cons = RING_CMP(tmp_raw_cons);
1795 	rxcmp1 = (struct rx_cmp_ext *)
1796 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1797 
1798 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1799 		return -EBUSY;
1800 
1801 	/* The valid test of the entry must be done first before
1802 	 * reading any further.
1803 	 */
1804 	dma_rmb();
1805 	prod = rxr->rx_prod;
1806 
1807 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1808 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1809 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1810 
1811 		*event |= BNXT_RX_EVENT;
1812 		goto next_rx_no_prod_no_len;
1813 
1814 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1815 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1816 				   (struct rx_tpa_end_cmp *)rxcmp,
1817 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1818 
1819 		if (IS_ERR(skb))
1820 			return -EBUSY;
1821 
1822 		rc = -ENOMEM;
1823 		if (likely(skb)) {
1824 			bnxt_deliver_skb(bp, bnapi, skb);
1825 			rc = 1;
1826 		}
1827 		*event |= BNXT_RX_EVENT;
1828 		goto next_rx_no_prod_no_len;
1829 	}
1830 
1831 	cons = rxcmp->rx_cmp_opaque;
1832 	if (unlikely(cons != rxr->rx_next_cons)) {
1833 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1834 
1835 		/* 0xffff is forced error, don't print it */
1836 		if (rxr->rx_next_cons != 0xffff)
1837 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1838 				    cons, rxr->rx_next_cons);
1839 		bnxt_sched_reset(bp, rxr);
1840 		if (rc1)
1841 			return rc1;
1842 		goto next_rx_no_prod_no_len;
1843 	}
1844 	rx_buf = &rxr->rx_buf_ring[cons];
1845 	data = rx_buf->data;
1846 	data_ptr = rx_buf->data_ptr;
1847 	prefetch(data_ptr);
1848 
1849 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1850 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1851 
1852 	if (agg_bufs) {
1853 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1854 			return -EBUSY;
1855 
1856 		cp_cons = NEXT_CMP(cp_cons);
1857 		*event |= BNXT_AGG_EVENT;
1858 	}
1859 	*event |= BNXT_RX_EVENT;
1860 
1861 	rx_buf->data = NULL;
1862 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1863 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1864 
1865 		bnxt_reuse_rx_data(rxr, cons, data);
1866 		if (agg_bufs)
1867 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1868 					       false);
1869 
1870 		rc = -EIO;
1871 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1872 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1873 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1874 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1875 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1876 						 rx_err);
1877 				bnxt_sched_reset(bp, rxr);
1878 			}
1879 		}
1880 		goto next_rx_no_len;
1881 	}
1882 
1883 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1884 	len = flags >> RX_CMP_LEN_SHIFT;
1885 	dma_addr = rx_buf->mapping;
1886 
1887 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1888 		rc = 1;
1889 		goto next_rx;
1890 	}
1891 
1892 	if (len <= bp->rx_copy_thresh) {
1893 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1894 		bnxt_reuse_rx_data(rxr, cons, data);
1895 		if (!skb) {
1896 			if (agg_bufs)
1897 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1898 						       agg_bufs, false);
1899 			cpr->sw_stats.rx.rx_oom_discards += 1;
1900 			rc = -ENOMEM;
1901 			goto next_rx;
1902 		}
1903 	} else {
1904 		u32 payload;
1905 
1906 		if (rx_buf->data_ptr == data_ptr)
1907 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1908 		else
1909 			payload = 0;
1910 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1911 				      payload | len);
1912 		if (!skb) {
1913 			cpr->sw_stats.rx.rx_oom_discards += 1;
1914 			rc = -ENOMEM;
1915 			goto next_rx;
1916 		}
1917 	}
1918 
1919 	if (agg_bufs) {
1920 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1921 		if (!skb) {
1922 			cpr->sw_stats.rx.rx_oom_discards += 1;
1923 			rc = -ENOMEM;
1924 			goto next_rx;
1925 		}
1926 	}
1927 
1928 	if (RX_CMP_HASH_VALID(rxcmp)) {
1929 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1930 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1931 
1932 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1933 		if (hash_type != 1 && hash_type != 3)
1934 			type = PKT_HASH_TYPE_L3;
1935 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1936 	}
1937 
1938 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1939 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1940 
1941 	if ((rxcmp1->rx_cmp_flags2 &
1942 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1943 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1944 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1945 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1946 		__be16 vlan_proto = htons(meta_data >>
1947 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1948 
1949 		if (eth_type_vlan(vlan_proto)) {
1950 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1951 		} else {
1952 			dev_kfree_skb(skb);
1953 			goto next_rx;
1954 		}
1955 	}
1956 
1957 	skb_checksum_none_assert(skb);
1958 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1959 		if (dev->features & NETIF_F_RXCSUM) {
1960 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1961 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1962 		}
1963 	} else {
1964 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1965 			if (dev->features & NETIF_F_RXCSUM)
1966 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
1967 		}
1968 	}
1969 
1970 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
1971 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS)) {
1972 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
1973 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1974 			u64 ns, ts;
1975 
1976 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
1977 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
1978 
1979 				spin_lock_bh(&ptp->ptp_lock);
1980 				ns = timecounter_cyc2time(&ptp->tc, ts);
1981 				spin_unlock_bh(&ptp->ptp_lock);
1982 				memset(skb_hwtstamps(skb), 0,
1983 				       sizeof(*skb_hwtstamps(skb)));
1984 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
1985 			}
1986 		}
1987 	}
1988 	bnxt_deliver_skb(bp, bnapi, skb);
1989 	rc = 1;
1990 
1991 next_rx:
1992 	cpr->rx_packets += 1;
1993 	cpr->rx_bytes += len;
1994 
1995 next_rx_no_len:
1996 	rxr->rx_prod = NEXT_RX(prod);
1997 	rxr->rx_next_cons = NEXT_RX(cons);
1998 
1999 next_rx_no_prod_no_len:
2000 	*raw_cons = tmp_raw_cons;
2001 
2002 	return rc;
2003 }
2004 
2005 /* In netpoll mode, if we are using a combined completion ring, we need to
2006  * discard the rx packets and recycle the buffers.
2007  */
bnxt_force_rx_discard(struct bnxt * bp,struct bnxt_cp_ring_info * cpr,u32 * raw_cons,u8 * event)2008 static int bnxt_force_rx_discard(struct bnxt *bp,
2009 				 struct bnxt_cp_ring_info *cpr,
2010 				 u32 *raw_cons, u8 *event)
2011 {
2012 	u32 tmp_raw_cons = *raw_cons;
2013 	struct rx_cmp_ext *rxcmp1;
2014 	struct rx_cmp *rxcmp;
2015 	u16 cp_cons;
2016 	u8 cmp_type;
2017 	int rc;
2018 
2019 	cp_cons = RING_CMP(tmp_raw_cons);
2020 	rxcmp = (struct rx_cmp *)
2021 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2022 
2023 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2024 	cp_cons = RING_CMP(tmp_raw_cons);
2025 	rxcmp1 = (struct rx_cmp_ext *)
2026 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2027 
2028 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2029 		return -EBUSY;
2030 
2031 	/* The valid test of the entry must be done first before
2032 	 * reading any further.
2033 	 */
2034 	dma_rmb();
2035 	cmp_type = RX_CMP_TYPE(rxcmp);
2036 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2037 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2038 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2039 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2040 		struct rx_tpa_end_cmp_ext *tpa_end1;
2041 
2042 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2043 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2044 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2045 	}
2046 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2047 	if (rc && rc != -EBUSY)
2048 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2049 	return rc;
2050 }
2051 
bnxt_fw_health_readl(struct bnxt * bp,int reg_idx)2052 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2053 {
2054 	struct bnxt_fw_health *fw_health = bp->fw_health;
2055 	u32 reg = fw_health->regs[reg_idx];
2056 	u32 reg_type, reg_off, val = 0;
2057 
2058 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2059 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2060 	switch (reg_type) {
2061 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2062 		pci_read_config_dword(bp->pdev, reg_off, &val);
2063 		break;
2064 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2065 		reg_off = fw_health->mapped_regs[reg_idx];
2066 		fallthrough;
2067 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2068 		val = readl(bp->bar0 + reg_off);
2069 		break;
2070 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2071 		val = readl(bp->bar1 + reg_off);
2072 		break;
2073 	}
2074 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2075 		val &= fw_health->fw_reset_inprog_reg_mask;
2076 	return val;
2077 }
2078 
bnxt_agg_ring_id_to_grp_idx(struct bnxt * bp,u16 ring_id)2079 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2080 {
2081 	int i;
2082 
2083 	for (i = 0; i < bp->rx_nr_rings; i++) {
2084 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2085 		struct bnxt_ring_grp_info *grp_info;
2086 
2087 		grp_info = &bp->grp_info[grp_idx];
2088 		if (grp_info->agg_fw_ring_id == ring_id)
2089 			return grp_idx;
2090 	}
2091 	return INVALID_HW_RING_ID;
2092 }
2093 
bnxt_event_error_report(struct bnxt * bp,u32 data1,u32 data2)2094 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2095 {
2096 	switch (BNXT_EVENT_ERROR_REPORT_TYPE(data1)) {
2097 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2098 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2099 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2100 		break;
2101 	default:
2102 		netdev_err(bp->dev, "FW reported unknown error type\n");
2103 		break;
2104 	}
2105 }
2106 
2107 #define BNXT_GET_EVENT_PORT(data)	\
2108 	((data) &			\
2109 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2110 
2111 #define BNXT_EVENT_RING_TYPE(data2)	\
2112 	((data2) &			\
2113 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2114 
2115 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2116 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2117 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2118 
bnxt_async_event_process(struct bnxt * bp,struct hwrm_async_event_cmpl * cmpl)2119 static int bnxt_async_event_process(struct bnxt *bp,
2120 				    struct hwrm_async_event_cmpl *cmpl)
2121 {
2122 	u16 event_id = le16_to_cpu(cmpl->event_id);
2123 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2124 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2125 
2126 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2127 	switch (event_id) {
2128 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2129 		struct bnxt_link_info *link_info = &bp->link_info;
2130 
2131 		if (BNXT_VF(bp))
2132 			goto async_event_process_exit;
2133 
2134 		/* print unsupported speed warning in forced speed mode only */
2135 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2136 		    (data1 & 0x20000)) {
2137 			u16 fw_speed = link_info->force_link_speed;
2138 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2139 
2140 			if (speed != SPEED_UNKNOWN)
2141 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2142 					    speed);
2143 		}
2144 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2145 	}
2146 		fallthrough;
2147 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2148 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2149 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2150 		fallthrough;
2151 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2152 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2153 		break;
2154 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2155 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2156 		break;
2157 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2158 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2159 
2160 		if (BNXT_VF(bp))
2161 			break;
2162 
2163 		if (bp->pf.port_id != port_id)
2164 			break;
2165 
2166 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2167 		break;
2168 	}
2169 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2170 		if (BNXT_PF(bp))
2171 			goto async_event_process_exit;
2172 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2173 		break;
2174 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2175 		char *fatal_str = "non-fatal";
2176 
2177 		if (!bp->fw_health)
2178 			goto async_event_process_exit;
2179 
2180 		bp->fw_reset_timestamp = jiffies;
2181 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2182 		if (!bp->fw_reset_min_dsecs)
2183 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2184 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2185 		if (!bp->fw_reset_max_dsecs)
2186 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2187 		if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2188 			fatal_str = "fatal";
2189 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2190 		}
2191 		netif_warn(bp, hw, bp->dev,
2192 			   "Firmware %s reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2193 			   fatal_str, data1, data2,
2194 			   bp->fw_reset_min_dsecs * 100,
2195 			   bp->fw_reset_max_dsecs * 100);
2196 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2197 		break;
2198 	}
2199 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2200 		struct bnxt_fw_health *fw_health = bp->fw_health;
2201 
2202 		if (!fw_health)
2203 			goto async_event_process_exit;
2204 
2205 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2206 			fw_health->enabled = false;
2207 			netif_info(bp, drv, bp->dev,
2208 				   "Error recovery info: error recovery[0]\n");
2209 			break;
2210 		}
2211 		fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2212 		fw_health->tmr_multiplier =
2213 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2214 				     bp->current_interval * 10);
2215 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2216 		if (!fw_health->enabled)
2217 			fw_health->last_fw_heartbeat =
2218 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2219 		fw_health->last_fw_reset_cnt =
2220 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2221 		netif_info(bp, drv, bp->dev,
2222 			   "Error recovery info: error recovery[1], master[%d], reset count[%u], health status: 0x%x\n",
2223 			   fw_health->master, fw_health->last_fw_reset_cnt,
2224 			   bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG));
2225 		if (!fw_health->enabled) {
2226 			/* Make sure tmr_counter is set and visible to
2227 			 * bnxt_health_check() before setting enabled to true.
2228 			 */
2229 			smp_wmb();
2230 			fw_health->enabled = true;
2231 		}
2232 		goto async_event_process_exit;
2233 	}
2234 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2235 		netif_notice(bp, hw, bp->dev,
2236 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2237 			     data1, data2);
2238 		goto async_event_process_exit;
2239 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2240 		struct bnxt_rx_ring_info *rxr;
2241 		u16 grp_idx;
2242 
2243 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2244 			goto async_event_process_exit;
2245 
2246 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2247 			    BNXT_EVENT_RING_TYPE(data2), data1);
2248 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2249 			goto async_event_process_exit;
2250 
2251 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2252 		if (grp_idx == INVALID_HW_RING_ID) {
2253 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2254 				    data1);
2255 			goto async_event_process_exit;
2256 		}
2257 		rxr = bp->bnapi[grp_idx]->rx_ring;
2258 		bnxt_sched_reset(bp, rxr);
2259 		goto async_event_process_exit;
2260 	}
2261 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2262 		struct bnxt_fw_health *fw_health = bp->fw_health;
2263 
2264 		netif_notice(bp, hw, bp->dev,
2265 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2266 			     data1, data2);
2267 		if (fw_health) {
2268 			fw_health->echo_req_data1 = data1;
2269 			fw_health->echo_req_data2 = data2;
2270 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2271 			break;
2272 		}
2273 		goto async_event_process_exit;
2274 	}
2275 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2276 		bnxt_ptp_pps_event(bp, data1, data2);
2277 		goto async_event_process_exit;
2278 	}
2279 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2280 		bnxt_event_error_report(bp, data1, data2);
2281 		goto async_event_process_exit;
2282 	}
2283 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2284 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2285 
2286 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2287 		goto async_event_process_exit;
2288 	}
2289 	default:
2290 		goto async_event_process_exit;
2291 	}
2292 	bnxt_queue_sp_work(bp);
2293 async_event_process_exit:
2294 	bnxt_ulp_async_events(bp, cmpl);
2295 	return 0;
2296 }
2297 
bnxt_hwrm_handler(struct bnxt * bp,struct tx_cmp * txcmp)2298 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2299 {
2300 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2301 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2302 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2303 				(struct hwrm_fwd_req_cmpl *)txcmp;
2304 
2305 	switch (cmpl_type) {
2306 	case CMPL_BASE_TYPE_HWRM_DONE:
2307 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2308 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2309 		break;
2310 
2311 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2312 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2313 
2314 		if ((vf_id < bp->pf.first_vf_id) ||
2315 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2316 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2317 				   vf_id);
2318 			return -EINVAL;
2319 		}
2320 
2321 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2322 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2323 		bnxt_queue_sp_work(bp);
2324 		break;
2325 
2326 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2327 		bnxt_async_event_process(bp,
2328 					 (struct hwrm_async_event_cmpl *)txcmp);
2329 		break;
2330 
2331 	default:
2332 		break;
2333 	}
2334 
2335 	return 0;
2336 }
2337 
bnxt_msix(int irq,void * dev_instance)2338 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2339 {
2340 	struct bnxt_napi *bnapi = dev_instance;
2341 	struct bnxt *bp = bnapi->bp;
2342 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2343 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2344 
2345 	cpr->event_ctr++;
2346 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2347 	napi_schedule(&bnapi->napi);
2348 	return IRQ_HANDLED;
2349 }
2350 
bnxt_has_work(struct bnxt * bp,struct bnxt_cp_ring_info * cpr)2351 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2352 {
2353 	u32 raw_cons = cpr->cp_raw_cons;
2354 	u16 cons = RING_CMP(raw_cons);
2355 	struct tx_cmp *txcmp;
2356 
2357 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2358 
2359 	return TX_CMP_VALID(txcmp, raw_cons);
2360 }
2361 
bnxt_inta(int irq,void * dev_instance)2362 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2363 {
2364 	struct bnxt_napi *bnapi = dev_instance;
2365 	struct bnxt *bp = bnapi->bp;
2366 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2367 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2368 	u32 int_status;
2369 
2370 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2371 
2372 	if (!bnxt_has_work(bp, cpr)) {
2373 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2374 		/* return if erroneous interrupt */
2375 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2376 			return IRQ_NONE;
2377 	}
2378 
2379 	/* disable ring IRQ */
2380 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2381 
2382 	/* Return here if interrupt is shared and is disabled. */
2383 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2384 		return IRQ_HANDLED;
2385 
2386 	napi_schedule(&bnapi->napi);
2387 	return IRQ_HANDLED;
2388 }
2389 
__bnxt_poll_work(struct bnxt * bp,struct bnxt_cp_ring_info * cpr,int budget)2390 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2391 			    int budget)
2392 {
2393 	struct bnxt_napi *bnapi = cpr->bnapi;
2394 	u32 raw_cons = cpr->cp_raw_cons;
2395 	u32 cons;
2396 	int tx_pkts = 0;
2397 	int rx_pkts = 0;
2398 	u8 event = 0;
2399 	struct tx_cmp *txcmp;
2400 
2401 	cpr->has_more_work = 0;
2402 	cpr->had_work_done = 1;
2403 	while (1) {
2404 		int rc;
2405 
2406 		cons = RING_CMP(raw_cons);
2407 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2408 
2409 		if (!TX_CMP_VALID(txcmp, raw_cons))
2410 			break;
2411 
2412 		/* The valid test of the entry must be done first before
2413 		 * reading any further.
2414 		 */
2415 		dma_rmb();
2416 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2417 			tx_pkts++;
2418 			/* return full budget so NAPI will complete. */
2419 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2420 				rx_pkts = budget;
2421 				raw_cons = NEXT_RAW_CMP(raw_cons);
2422 				if (budget)
2423 					cpr->has_more_work = 1;
2424 				break;
2425 			}
2426 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2427 			if (likely(budget))
2428 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2429 			else
2430 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2431 							   &event);
2432 			if (likely(rc >= 0))
2433 				rx_pkts += rc;
2434 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2435 			 * the NAPI budget.  Otherwise, we may potentially loop
2436 			 * here forever if we consistently cannot allocate
2437 			 * buffers.
2438 			 */
2439 			else if (rc == -ENOMEM && budget)
2440 				rx_pkts++;
2441 			else if (rc == -EBUSY)	/* partial completion */
2442 				break;
2443 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2444 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2445 				    (TX_CMP_TYPE(txcmp) ==
2446 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2447 				    (TX_CMP_TYPE(txcmp) ==
2448 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2449 			bnxt_hwrm_handler(bp, txcmp);
2450 		}
2451 		raw_cons = NEXT_RAW_CMP(raw_cons);
2452 
2453 		if (rx_pkts && rx_pkts == budget) {
2454 			cpr->has_more_work = 1;
2455 			break;
2456 		}
2457 	}
2458 
2459 	if (event & BNXT_REDIRECT_EVENT)
2460 		xdp_do_flush_map();
2461 
2462 	if (event & BNXT_TX_EVENT) {
2463 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2464 		u16 prod = txr->tx_prod;
2465 
2466 		/* Sync BD data before updating doorbell */
2467 		wmb();
2468 
2469 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2470 	}
2471 
2472 	cpr->cp_raw_cons = raw_cons;
2473 	bnapi->tx_pkts += tx_pkts;
2474 	bnapi->events |= event;
2475 	return rx_pkts;
2476 }
2477 
__bnxt_poll_work_done(struct bnxt * bp,struct bnxt_napi * bnapi)2478 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2479 {
2480 	if (bnapi->tx_pkts) {
2481 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2482 		bnapi->tx_pkts = 0;
2483 	}
2484 
2485 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2486 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2487 
2488 		if (bnapi->events & BNXT_AGG_EVENT)
2489 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2490 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2491 	}
2492 	bnapi->events = 0;
2493 }
2494 
bnxt_poll_work(struct bnxt * bp,struct bnxt_cp_ring_info * cpr,int budget)2495 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2496 			  int budget)
2497 {
2498 	struct bnxt_napi *bnapi = cpr->bnapi;
2499 	int rx_pkts;
2500 
2501 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2502 
2503 	/* ACK completion ring before freeing tx ring and producing new
2504 	 * buffers in rx/agg rings to prevent overflowing the completion
2505 	 * ring.
2506 	 */
2507 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2508 
2509 	__bnxt_poll_work_done(bp, bnapi);
2510 	return rx_pkts;
2511 }
2512 
bnxt_poll_nitroa0(struct napi_struct * napi,int budget)2513 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2514 {
2515 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2516 	struct bnxt *bp = bnapi->bp;
2517 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2518 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2519 	struct tx_cmp *txcmp;
2520 	struct rx_cmp_ext *rxcmp1;
2521 	u32 cp_cons, tmp_raw_cons;
2522 	u32 raw_cons = cpr->cp_raw_cons;
2523 	bool flush_xdp = false;
2524 	u32 rx_pkts = 0;
2525 	u8 event = 0;
2526 
2527 	while (1) {
2528 		int rc;
2529 
2530 		cp_cons = RING_CMP(raw_cons);
2531 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2532 
2533 		if (!TX_CMP_VALID(txcmp, raw_cons))
2534 			break;
2535 
2536 		/* The valid test of the entry must be done first before
2537 		 * reading any further.
2538 		 */
2539 		dma_rmb();
2540 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2541 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2542 			cp_cons = RING_CMP(tmp_raw_cons);
2543 			rxcmp1 = (struct rx_cmp_ext *)
2544 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2545 
2546 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2547 				break;
2548 
2549 			/* force an error to recycle the buffer */
2550 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2551 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2552 
2553 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2554 			if (likely(rc == -EIO) && budget)
2555 				rx_pkts++;
2556 			else if (rc == -EBUSY)	/* partial completion */
2557 				break;
2558 			if (event & BNXT_REDIRECT_EVENT)
2559 				flush_xdp = true;
2560 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2561 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2562 			bnxt_hwrm_handler(bp, txcmp);
2563 		} else {
2564 			netdev_err(bp->dev,
2565 				   "Invalid completion received on special ring\n");
2566 		}
2567 		raw_cons = NEXT_RAW_CMP(raw_cons);
2568 
2569 		if (rx_pkts == budget)
2570 			break;
2571 	}
2572 
2573 	cpr->cp_raw_cons = raw_cons;
2574 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2575 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2576 
2577 	if (event & BNXT_AGG_EVENT)
2578 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2579 	if (flush_xdp)
2580 		xdp_do_flush();
2581 
2582 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2583 		napi_complete_done(napi, rx_pkts);
2584 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2585 	}
2586 	return rx_pkts;
2587 }
2588 
bnxt_poll(struct napi_struct * napi,int budget)2589 static int bnxt_poll(struct napi_struct *napi, int budget)
2590 {
2591 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2592 	struct bnxt *bp = bnapi->bp;
2593 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2594 	int work_done = 0;
2595 
2596 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2597 		napi_complete(napi);
2598 		return 0;
2599 	}
2600 	while (1) {
2601 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2602 
2603 		if (work_done >= budget) {
2604 			if (!budget)
2605 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2606 			break;
2607 		}
2608 
2609 		if (!bnxt_has_work(bp, cpr)) {
2610 			if (napi_complete_done(napi, work_done))
2611 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2612 			break;
2613 		}
2614 	}
2615 	if (bp->flags & BNXT_FLAG_DIM) {
2616 		struct dim_sample dim_sample = {};
2617 
2618 		dim_update_sample(cpr->event_ctr,
2619 				  cpr->rx_packets,
2620 				  cpr->rx_bytes,
2621 				  &dim_sample);
2622 		net_dim(&cpr->dim, dim_sample);
2623 	}
2624 	return work_done;
2625 }
2626 
__bnxt_poll_cqs(struct bnxt * bp,struct bnxt_napi * bnapi,int budget)2627 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2628 {
2629 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2630 	int i, work_done = 0;
2631 
2632 	for (i = 0; i < 2; i++) {
2633 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2634 
2635 		if (cpr2) {
2636 			work_done += __bnxt_poll_work(bp, cpr2,
2637 						      budget - work_done);
2638 			cpr->has_more_work |= cpr2->has_more_work;
2639 		}
2640 	}
2641 	return work_done;
2642 }
2643 
__bnxt_poll_cqs_done(struct bnxt * bp,struct bnxt_napi * bnapi,u64 dbr_type)2644 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2645 				 u64 dbr_type)
2646 {
2647 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2648 	int i;
2649 
2650 	for (i = 0; i < 2; i++) {
2651 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2652 		struct bnxt_db_info *db;
2653 
2654 		if (cpr2 && cpr2->had_work_done) {
2655 			db = &cpr2->cp_db;
2656 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2657 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2658 			cpr2->had_work_done = 0;
2659 		}
2660 	}
2661 	__bnxt_poll_work_done(bp, bnapi);
2662 }
2663 
bnxt_poll_p5(struct napi_struct * napi,int budget)2664 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2665 {
2666 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2667 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2668 	u32 raw_cons = cpr->cp_raw_cons;
2669 	struct bnxt *bp = bnapi->bp;
2670 	struct nqe_cn *nqcmp;
2671 	int work_done = 0;
2672 	u32 cons;
2673 
2674 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2675 		napi_complete(napi);
2676 		return 0;
2677 	}
2678 	if (cpr->has_more_work) {
2679 		cpr->has_more_work = 0;
2680 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2681 	}
2682 	while (1) {
2683 		cons = RING_CMP(raw_cons);
2684 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2685 
2686 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2687 			if (cpr->has_more_work)
2688 				break;
2689 
2690 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2691 			cpr->cp_raw_cons = raw_cons;
2692 			if (napi_complete_done(napi, work_done))
2693 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2694 						  cpr->cp_raw_cons);
2695 			return work_done;
2696 		}
2697 
2698 		/* The valid test of the entry must be done first before
2699 		 * reading any further.
2700 		 */
2701 		dma_rmb();
2702 
2703 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2704 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2705 			struct bnxt_cp_ring_info *cpr2;
2706 
2707 			/* No more budget for RX work */
2708 			if (budget && work_done >= budget && idx == BNXT_RX_HDL)
2709 				break;
2710 
2711 			cpr2 = cpr->cp_ring_arr[idx];
2712 			work_done += __bnxt_poll_work(bp, cpr2,
2713 						      budget - work_done);
2714 			cpr->has_more_work |= cpr2->has_more_work;
2715 		} else {
2716 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2717 		}
2718 		raw_cons = NEXT_RAW_CMP(raw_cons);
2719 	}
2720 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2721 	if (raw_cons != cpr->cp_raw_cons) {
2722 		cpr->cp_raw_cons = raw_cons;
2723 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2724 	}
2725 	return work_done;
2726 }
2727 
bnxt_free_tx_skbs(struct bnxt * bp)2728 static void bnxt_free_tx_skbs(struct bnxt *bp)
2729 {
2730 	int i, max_idx;
2731 	struct pci_dev *pdev = bp->pdev;
2732 
2733 	if (!bp->tx_ring)
2734 		return;
2735 
2736 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2737 	for (i = 0; i < bp->tx_nr_rings; i++) {
2738 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2739 		int j;
2740 
2741 		if (!txr->tx_buf_ring)
2742 			continue;
2743 
2744 		for (j = 0; j < max_idx;) {
2745 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2746 			struct sk_buff *skb;
2747 			int k, last;
2748 
2749 			if (i < bp->tx_nr_rings_xdp &&
2750 			    tx_buf->action == XDP_REDIRECT) {
2751 				dma_unmap_single(&pdev->dev,
2752 					dma_unmap_addr(tx_buf, mapping),
2753 					dma_unmap_len(tx_buf, len),
2754 					DMA_TO_DEVICE);
2755 				xdp_return_frame(tx_buf->xdpf);
2756 				tx_buf->action = 0;
2757 				tx_buf->xdpf = NULL;
2758 				j++;
2759 				continue;
2760 			}
2761 
2762 			skb = tx_buf->skb;
2763 			if (!skb) {
2764 				j++;
2765 				continue;
2766 			}
2767 
2768 			tx_buf->skb = NULL;
2769 
2770 			if (tx_buf->is_push) {
2771 				dev_kfree_skb(skb);
2772 				j += 2;
2773 				continue;
2774 			}
2775 
2776 			dma_unmap_single(&pdev->dev,
2777 					 dma_unmap_addr(tx_buf, mapping),
2778 					 skb_headlen(skb),
2779 					 DMA_TO_DEVICE);
2780 
2781 			last = tx_buf->nr_frags;
2782 			j += 2;
2783 			for (k = 0; k < last; k++, j++) {
2784 				int ring_idx = j & bp->tx_ring_mask;
2785 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2786 
2787 				tx_buf = &txr->tx_buf_ring[ring_idx];
2788 				dma_unmap_page(
2789 					&pdev->dev,
2790 					dma_unmap_addr(tx_buf, mapping),
2791 					skb_frag_size(frag), DMA_TO_DEVICE);
2792 			}
2793 			dev_kfree_skb(skb);
2794 		}
2795 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2796 	}
2797 }
2798 
bnxt_free_one_rx_ring_skbs(struct bnxt * bp,int ring_nr)2799 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2800 {
2801 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2802 	struct pci_dev *pdev = bp->pdev;
2803 	struct bnxt_tpa_idx_map *map;
2804 	int i, max_idx, max_agg_idx;
2805 
2806 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2807 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2808 	if (!rxr->rx_tpa)
2809 		goto skip_rx_tpa_free;
2810 
2811 	for (i = 0; i < bp->max_tpa; i++) {
2812 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2813 		u8 *data = tpa_info->data;
2814 
2815 		if (!data)
2816 			continue;
2817 
2818 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2819 				       bp->rx_buf_use_size, bp->rx_dir,
2820 				       DMA_ATTR_WEAK_ORDERING);
2821 
2822 		tpa_info->data = NULL;
2823 
2824 		kfree(data);
2825 	}
2826 
2827 skip_rx_tpa_free:
2828 	if (!rxr->rx_buf_ring)
2829 		goto skip_rx_buf_free;
2830 
2831 	for (i = 0; i < max_idx; i++) {
2832 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2833 		dma_addr_t mapping = rx_buf->mapping;
2834 		void *data = rx_buf->data;
2835 
2836 		if (!data)
2837 			continue;
2838 
2839 		rx_buf->data = NULL;
2840 		if (BNXT_RX_PAGE_MODE(bp)) {
2841 			mapping -= bp->rx_dma_offset;
2842 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2843 					     bp->rx_dir,
2844 					     DMA_ATTR_WEAK_ORDERING);
2845 			page_pool_recycle_direct(rxr->page_pool, data);
2846 		} else {
2847 			dma_unmap_single_attrs(&pdev->dev, mapping,
2848 					       bp->rx_buf_use_size, bp->rx_dir,
2849 					       DMA_ATTR_WEAK_ORDERING);
2850 			kfree(data);
2851 		}
2852 	}
2853 
2854 skip_rx_buf_free:
2855 	if (!rxr->rx_agg_ring)
2856 		goto skip_rx_agg_free;
2857 
2858 	for (i = 0; i < max_agg_idx; i++) {
2859 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2860 		struct page *page = rx_agg_buf->page;
2861 
2862 		if (!page)
2863 			continue;
2864 
2865 		dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2866 				     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
2867 				     DMA_ATTR_WEAK_ORDERING);
2868 
2869 		rx_agg_buf->page = NULL;
2870 		__clear_bit(i, rxr->rx_agg_bmap);
2871 
2872 		__free_page(page);
2873 	}
2874 
2875 skip_rx_agg_free:
2876 	if (rxr->rx_page) {
2877 		__free_page(rxr->rx_page);
2878 		rxr->rx_page = NULL;
2879 	}
2880 	map = rxr->rx_tpa_idx_map;
2881 	if (map)
2882 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2883 }
2884 
bnxt_free_rx_skbs(struct bnxt * bp)2885 static void bnxt_free_rx_skbs(struct bnxt *bp)
2886 {
2887 	int i;
2888 
2889 	if (!bp->rx_ring)
2890 		return;
2891 
2892 	for (i = 0; i < bp->rx_nr_rings; i++)
2893 		bnxt_free_one_rx_ring_skbs(bp, i);
2894 }
2895 
bnxt_free_skbs(struct bnxt * bp)2896 static void bnxt_free_skbs(struct bnxt *bp)
2897 {
2898 	bnxt_free_tx_skbs(bp);
2899 	bnxt_free_rx_skbs(bp);
2900 }
2901 
bnxt_init_ctx_mem(struct bnxt_mem_init * mem_init,void * p,int len)2902 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
2903 {
2904 	u8 init_val = mem_init->init_val;
2905 	u16 offset = mem_init->offset;
2906 	u8 *p2 = p;
2907 	int i;
2908 
2909 	if (!init_val)
2910 		return;
2911 	if (offset == BNXT_MEM_INVALID_OFFSET) {
2912 		memset(p, init_val, len);
2913 		return;
2914 	}
2915 	for (i = 0; i < len; i += mem_init->size)
2916 		*(p2 + i + offset) = init_val;
2917 }
2918 
bnxt_free_ring(struct bnxt * bp,struct bnxt_ring_mem_info * rmem)2919 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2920 {
2921 	struct pci_dev *pdev = bp->pdev;
2922 	int i;
2923 
2924 	if (!rmem->pg_arr)
2925 		goto skip_pages;
2926 
2927 	for (i = 0; i < rmem->nr_pages; i++) {
2928 		if (!rmem->pg_arr[i])
2929 			continue;
2930 
2931 		dma_free_coherent(&pdev->dev, rmem->page_size,
2932 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2933 
2934 		rmem->pg_arr[i] = NULL;
2935 	}
2936 skip_pages:
2937 	if (rmem->pg_tbl) {
2938 		size_t pg_tbl_size = rmem->nr_pages * 8;
2939 
2940 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2941 			pg_tbl_size = rmem->page_size;
2942 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2943 				  rmem->pg_tbl, rmem->pg_tbl_map);
2944 		rmem->pg_tbl = NULL;
2945 	}
2946 	if (rmem->vmem_size && *rmem->vmem) {
2947 		vfree(*rmem->vmem);
2948 		*rmem->vmem = NULL;
2949 	}
2950 }
2951 
bnxt_alloc_ring(struct bnxt * bp,struct bnxt_ring_mem_info * rmem)2952 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2953 {
2954 	struct pci_dev *pdev = bp->pdev;
2955 	u64 valid_bit = 0;
2956 	int i;
2957 
2958 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2959 		valid_bit = PTU_PTE_VALID;
2960 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2961 		size_t pg_tbl_size = rmem->nr_pages * 8;
2962 
2963 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2964 			pg_tbl_size = rmem->page_size;
2965 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2966 						  &rmem->pg_tbl_map,
2967 						  GFP_KERNEL);
2968 		if (!rmem->pg_tbl)
2969 			return -ENOMEM;
2970 	}
2971 
2972 	for (i = 0; i < rmem->nr_pages; i++) {
2973 		u64 extra_bits = valid_bit;
2974 
2975 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2976 						     rmem->page_size,
2977 						     &rmem->dma_arr[i],
2978 						     GFP_KERNEL);
2979 		if (!rmem->pg_arr[i])
2980 			return -ENOMEM;
2981 
2982 		if (rmem->mem_init)
2983 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
2984 					  rmem->page_size);
2985 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2986 			if (i == rmem->nr_pages - 2 &&
2987 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2988 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2989 			else if (i == rmem->nr_pages - 1 &&
2990 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2991 				extra_bits |= PTU_PTE_LAST;
2992 			rmem->pg_tbl[i] =
2993 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2994 		}
2995 	}
2996 
2997 	if (rmem->vmem_size) {
2998 		*rmem->vmem = vzalloc(rmem->vmem_size);
2999 		if (!(*rmem->vmem))
3000 			return -ENOMEM;
3001 	}
3002 	return 0;
3003 }
3004 
bnxt_free_tpa_info(struct bnxt * bp)3005 static void bnxt_free_tpa_info(struct bnxt *bp)
3006 {
3007 	int i, j;
3008 
3009 	for (i = 0; i < bp->rx_nr_rings; i++) {
3010 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3011 
3012 		kfree(rxr->rx_tpa_idx_map);
3013 		rxr->rx_tpa_idx_map = NULL;
3014 		if (rxr->rx_tpa) {
3015 			for (j = 0; j < bp->max_tpa; j++) {
3016 				kfree(rxr->rx_tpa[j].agg_arr);
3017 				rxr->rx_tpa[j].agg_arr = NULL;
3018 			}
3019 		}
3020 		kfree(rxr->rx_tpa);
3021 		rxr->rx_tpa = NULL;
3022 	}
3023 }
3024 
bnxt_alloc_tpa_info(struct bnxt * bp)3025 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3026 {
3027 	int i, j;
3028 
3029 	bp->max_tpa = MAX_TPA;
3030 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3031 		if (!bp->max_tpa_v2)
3032 			return 0;
3033 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3034 	}
3035 
3036 	for (i = 0; i < bp->rx_nr_rings; i++) {
3037 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3038 		struct rx_agg_cmp *agg;
3039 
3040 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3041 				      GFP_KERNEL);
3042 		if (!rxr->rx_tpa)
3043 			return -ENOMEM;
3044 
3045 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3046 			continue;
3047 		for (j = 0; j < bp->max_tpa; j++) {
3048 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3049 			if (!agg)
3050 				return -ENOMEM;
3051 			rxr->rx_tpa[j].agg_arr = agg;
3052 		}
3053 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3054 					      GFP_KERNEL);
3055 		if (!rxr->rx_tpa_idx_map)
3056 			return -ENOMEM;
3057 	}
3058 	return 0;
3059 }
3060 
bnxt_free_rx_rings(struct bnxt * bp)3061 static void bnxt_free_rx_rings(struct bnxt *bp)
3062 {
3063 	int i;
3064 
3065 	if (!bp->rx_ring)
3066 		return;
3067 
3068 	bnxt_free_tpa_info(bp);
3069 	for (i = 0; i < bp->rx_nr_rings; i++) {
3070 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3071 		struct bnxt_ring_struct *ring;
3072 
3073 		if (rxr->xdp_prog)
3074 			bpf_prog_put(rxr->xdp_prog);
3075 
3076 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3077 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3078 
3079 		page_pool_destroy(rxr->page_pool);
3080 		rxr->page_pool = NULL;
3081 
3082 		kfree(rxr->rx_agg_bmap);
3083 		rxr->rx_agg_bmap = NULL;
3084 
3085 		ring = &rxr->rx_ring_struct;
3086 		bnxt_free_ring(bp, &ring->ring_mem);
3087 
3088 		ring = &rxr->rx_agg_ring_struct;
3089 		bnxt_free_ring(bp, &ring->ring_mem);
3090 	}
3091 }
3092 
bnxt_alloc_rx_page_pool(struct bnxt * bp,struct bnxt_rx_ring_info * rxr)3093 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3094 				   struct bnxt_rx_ring_info *rxr)
3095 {
3096 	struct page_pool_params pp = { 0 };
3097 
3098 	pp.pool_size = bp->rx_ring_size;
3099 	pp.nid = dev_to_node(&bp->pdev->dev);
3100 	pp.dev = &bp->pdev->dev;
3101 	pp.dma_dir = DMA_BIDIRECTIONAL;
3102 
3103 	rxr->page_pool = page_pool_create(&pp);
3104 	if (IS_ERR(rxr->page_pool)) {
3105 		int err = PTR_ERR(rxr->page_pool);
3106 
3107 		rxr->page_pool = NULL;
3108 		return err;
3109 	}
3110 	return 0;
3111 }
3112 
bnxt_alloc_rx_rings(struct bnxt * bp)3113 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3114 {
3115 	int i, rc = 0, agg_rings = 0;
3116 
3117 	if (!bp->rx_ring)
3118 		return -ENOMEM;
3119 
3120 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3121 		agg_rings = 1;
3122 
3123 	for (i = 0; i < bp->rx_nr_rings; i++) {
3124 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3125 		struct bnxt_ring_struct *ring;
3126 
3127 		ring = &rxr->rx_ring_struct;
3128 
3129 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3130 		if (rc)
3131 			return rc;
3132 
3133 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3134 		if (rc < 0)
3135 			return rc;
3136 
3137 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3138 						MEM_TYPE_PAGE_POOL,
3139 						rxr->page_pool);
3140 		if (rc) {
3141 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3142 			return rc;
3143 		}
3144 
3145 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3146 		if (rc)
3147 			return rc;
3148 
3149 		ring->grp_idx = i;
3150 		if (agg_rings) {
3151 			u16 mem_size;
3152 
3153 			ring = &rxr->rx_agg_ring_struct;
3154 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3155 			if (rc)
3156 				return rc;
3157 
3158 			ring->grp_idx = i;
3159 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3160 			mem_size = rxr->rx_agg_bmap_size / 8;
3161 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3162 			if (!rxr->rx_agg_bmap)
3163 				return -ENOMEM;
3164 		}
3165 	}
3166 	if (bp->flags & BNXT_FLAG_TPA)
3167 		rc = bnxt_alloc_tpa_info(bp);
3168 	return rc;
3169 }
3170 
bnxt_free_tx_rings(struct bnxt * bp)3171 static void bnxt_free_tx_rings(struct bnxt *bp)
3172 {
3173 	int i;
3174 	struct pci_dev *pdev = bp->pdev;
3175 
3176 	if (!bp->tx_ring)
3177 		return;
3178 
3179 	for (i = 0; i < bp->tx_nr_rings; i++) {
3180 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3181 		struct bnxt_ring_struct *ring;
3182 
3183 		if (txr->tx_push) {
3184 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3185 					  txr->tx_push, txr->tx_push_mapping);
3186 			txr->tx_push = NULL;
3187 		}
3188 
3189 		ring = &txr->tx_ring_struct;
3190 
3191 		bnxt_free_ring(bp, &ring->ring_mem);
3192 	}
3193 }
3194 
bnxt_alloc_tx_rings(struct bnxt * bp)3195 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3196 {
3197 	int i, j, rc;
3198 	struct pci_dev *pdev = bp->pdev;
3199 
3200 	bp->tx_push_size = 0;
3201 	if (bp->tx_push_thresh) {
3202 		int push_size;
3203 
3204 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3205 					bp->tx_push_thresh);
3206 
3207 		if (push_size > 256) {
3208 			push_size = 0;
3209 			bp->tx_push_thresh = 0;
3210 		}
3211 
3212 		bp->tx_push_size = push_size;
3213 	}
3214 
3215 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3216 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3217 		struct bnxt_ring_struct *ring;
3218 		u8 qidx;
3219 
3220 		ring = &txr->tx_ring_struct;
3221 
3222 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3223 		if (rc)
3224 			return rc;
3225 
3226 		ring->grp_idx = txr->bnapi->index;
3227 		if (bp->tx_push_size) {
3228 			dma_addr_t mapping;
3229 
3230 			/* One pre-allocated DMA buffer to backup
3231 			 * TX push operation
3232 			 */
3233 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3234 						bp->tx_push_size,
3235 						&txr->tx_push_mapping,
3236 						GFP_KERNEL);
3237 
3238 			if (!txr->tx_push)
3239 				return -ENOMEM;
3240 
3241 			mapping = txr->tx_push_mapping +
3242 				sizeof(struct tx_push_bd);
3243 			txr->data_mapping = cpu_to_le64(mapping);
3244 		}
3245 		qidx = bp->tc_to_qidx[j];
3246 		ring->queue_id = bp->q_info[qidx].queue_id;
3247 		spin_lock_init(&txr->xdp_tx_lock);
3248 		if (i < bp->tx_nr_rings_xdp)
3249 			continue;
3250 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3251 			j++;
3252 	}
3253 	return 0;
3254 }
3255 
bnxt_free_cp_arrays(struct bnxt_cp_ring_info * cpr)3256 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3257 {
3258 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3259 
3260 	kfree(cpr->cp_desc_ring);
3261 	cpr->cp_desc_ring = NULL;
3262 	ring->ring_mem.pg_arr = NULL;
3263 	kfree(cpr->cp_desc_mapping);
3264 	cpr->cp_desc_mapping = NULL;
3265 	ring->ring_mem.dma_arr = NULL;
3266 }
3267 
bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info * cpr,int n)3268 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3269 {
3270 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3271 	if (!cpr->cp_desc_ring)
3272 		return -ENOMEM;
3273 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3274 				       GFP_KERNEL);
3275 	if (!cpr->cp_desc_mapping)
3276 		return -ENOMEM;
3277 	return 0;
3278 }
3279 
bnxt_free_all_cp_arrays(struct bnxt * bp)3280 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3281 {
3282 	int i;
3283 
3284 	if (!bp->bnapi)
3285 		return;
3286 	for (i = 0; i < bp->cp_nr_rings; i++) {
3287 		struct bnxt_napi *bnapi = bp->bnapi[i];
3288 
3289 		if (!bnapi)
3290 			continue;
3291 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3292 	}
3293 }
3294 
bnxt_alloc_all_cp_arrays(struct bnxt * bp)3295 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3296 {
3297 	int i, n = bp->cp_nr_pages;
3298 
3299 	for (i = 0; i < bp->cp_nr_rings; i++) {
3300 		struct bnxt_napi *bnapi = bp->bnapi[i];
3301 		int rc;
3302 
3303 		if (!bnapi)
3304 			continue;
3305 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3306 		if (rc)
3307 			return rc;
3308 	}
3309 	return 0;
3310 }
3311 
bnxt_free_cp_rings(struct bnxt * bp)3312 static void bnxt_free_cp_rings(struct bnxt *bp)
3313 {
3314 	int i;
3315 
3316 	if (!bp->bnapi)
3317 		return;
3318 
3319 	for (i = 0; i < bp->cp_nr_rings; i++) {
3320 		struct bnxt_napi *bnapi = bp->bnapi[i];
3321 		struct bnxt_cp_ring_info *cpr;
3322 		struct bnxt_ring_struct *ring;
3323 		int j;
3324 
3325 		if (!bnapi)
3326 			continue;
3327 
3328 		cpr = &bnapi->cp_ring;
3329 		ring = &cpr->cp_ring_struct;
3330 
3331 		bnxt_free_ring(bp, &ring->ring_mem);
3332 
3333 		for (j = 0; j < 2; j++) {
3334 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3335 
3336 			if (cpr2) {
3337 				ring = &cpr2->cp_ring_struct;
3338 				bnxt_free_ring(bp, &ring->ring_mem);
3339 				bnxt_free_cp_arrays(cpr2);
3340 				kfree(cpr2);
3341 				cpr->cp_ring_arr[j] = NULL;
3342 			}
3343 		}
3344 	}
3345 }
3346 
bnxt_alloc_cp_sub_ring(struct bnxt * bp)3347 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3348 {
3349 	struct bnxt_ring_mem_info *rmem;
3350 	struct bnxt_ring_struct *ring;
3351 	struct bnxt_cp_ring_info *cpr;
3352 	int rc;
3353 
3354 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3355 	if (!cpr)
3356 		return NULL;
3357 
3358 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3359 	if (rc) {
3360 		bnxt_free_cp_arrays(cpr);
3361 		kfree(cpr);
3362 		return NULL;
3363 	}
3364 	ring = &cpr->cp_ring_struct;
3365 	rmem = &ring->ring_mem;
3366 	rmem->nr_pages = bp->cp_nr_pages;
3367 	rmem->page_size = HW_CMPD_RING_SIZE;
3368 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3369 	rmem->dma_arr = cpr->cp_desc_mapping;
3370 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3371 	rc = bnxt_alloc_ring(bp, rmem);
3372 	if (rc) {
3373 		bnxt_free_ring(bp, rmem);
3374 		bnxt_free_cp_arrays(cpr);
3375 		kfree(cpr);
3376 		cpr = NULL;
3377 	}
3378 	return cpr;
3379 }
3380 
bnxt_alloc_cp_rings(struct bnxt * bp)3381 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3382 {
3383 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3384 	int i, rc, ulp_base_vec, ulp_msix;
3385 
3386 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3387 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3388 	for (i = 0; i < bp->cp_nr_rings; i++) {
3389 		struct bnxt_napi *bnapi = bp->bnapi[i];
3390 		struct bnxt_cp_ring_info *cpr;
3391 		struct bnxt_ring_struct *ring;
3392 
3393 		if (!bnapi)
3394 			continue;
3395 
3396 		cpr = &bnapi->cp_ring;
3397 		cpr->bnapi = bnapi;
3398 		ring = &cpr->cp_ring_struct;
3399 
3400 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3401 		if (rc)
3402 			return rc;
3403 
3404 		if (ulp_msix && i >= ulp_base_vec)
3405 			ring->map_idx = i + ulp_msix;
3406 		else
3407 			ring->map_idx = i;
3408 
3409 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3410 			continue;
3411 
3412 		if (i < bp->rx_nr_rings) {
3413 			struct bnxt_cp_ring_info *cpr2 =
3414 				bnxt_alloc_cp_sub_ring(bp);
3415 
3416 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3417 			if (!cpr2)
3418 				return -ENOMEM;
3419 			cpr2->bnapi = bnapi;
3420 		}
3421 		if ((sh && i < bp->tx_nr_rings) ||
3422 		    (!sh && i >= bp->rx_nr_rings)) {
3423 			struct bnxt_cp_ring_info *cpr2 =
3424 				bnxt_alloc_cp_sub_ring(bp);
3425 
3426 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3427 			if (!cpr2)
3428 				return -ENOMEM;
3429 			cpr2->bnapi = bnapi;
3430 		}
3431 	}
3432 	return 0;
3433 }
3434 
bnxt_init_ring_struct(struct bnxt * bp)3435 static void bnxt_init_ring_struct(struct bnxt *bp)
3436 {
3437 	int i;
3438 
3439 	for (i = 0; i < bp->cp_nr_rings; i++) {
3440 		struct bnxt_napi *bnapi = bp->bnapi[i];
3441 		struct bnxt_ring_mem_info *rmem;
3442 		struct bnxt_cp_ring_info *cpr;
3443 		struct bnxt_rx_ring_info *rxr;
3444 		struct bnxt_tx_ring_info *txr;
3445 		struct bnxt_ring_struct *ring;
3446 
3447 		if (!bnapi)
3448 			continue;
3449 
3450 		cpr = &bnapi->cp_ring;
3451 		ring = &cpr->cp_ring_struct;
3452 		rmem = &ring->ring_mem;
3453 		rmem->nr_pages = bp->cp_nr_pages;
3454 		rmem->page_size = HW_CMPD_RING_SIZE;
3455 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3456 		rmem->dma_arr = cpr->cp_desc_mapping;
3457 		rmem->vmem_size = 0;
3458 
3459 		rxr = bnapi->rx_ring;
3460 		if (!rxr)
3461 			goto skip_rx;
3462 
3463 		ring = &rxr->rx_ring_struct;
3464 		rmem = &ring->ring_mem;
3465 		rmem->nr_pages = bp->rx_nr_pages;
3466 		rmem->page_size = HW_RXBD_RING_SIZE;
3467 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3468 		rmem->dma_arr = rxr->rx_desc_mapping;
3469 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3470 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3471 
3472 		ring = &rxr->rx_agg_ring_struct;
3473 		rmem = &ring->ring_mem;
3474 		rmem->nr_pages = bp->rx_agg_nr_pages;
3475 		rmem->page_size = HW_RXBD_RING_SIZE;
3476 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3477 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3478 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3479 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3480 
3481 skip_rx:
3482 		txr = bnapi->tx_ring;
3483 		if (!txr)
3484 			continue;
3485 
3486 		ring = &txr->tx_ring_struct;
3487 		rmem = &ring->ring_mem;
3488 		rmem->nr_pages = bp->tx_nr_pages;
3489 		rmem->page_size = HW_RXBD_RING_SIZE;
3490 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3491 		rmem->dma_arr = txr->tx_desc_mapping;
3492 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3493 		rmem->vmem = (void **)&txr->tx_buf_ring;
3494 	}
3495 }
3496 
bnxt_init_rxbd_pages(struct bnxt_ring_struct * ring,u32 type)3497 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3498 {
3499 	int i;
3500 	u32 prod;
3501 	struct rx_bd **rx_buf_ring;
3502 
3503 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3504 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3505 		int j;
3506 		struct rx_bd *rxbd;
3507 
3508 		rxbd = rx_buf_ring[i];
3509 		if (!rxbd)
3510 			continue;
3511 
3512 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3513 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3514 			rxbd->rx_bd_opaque = prod;
3515 		}
3516 	}
3517 }
3518 
bnxt_alloc_one_rx_ring(struct bnxt * bp,int ring_nr)3519 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3520 {
3521 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3522 	struct net_device *dev = bp->dev;
3523 	u32 prod;
3524 	int i;
3525 
3526 	prod = rxr->rx_prod;
3527 	for (i = 0; i < bp->rx_ring_size; i++) {
3528 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3529 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3530 				    ring_nr, i, bp->rx_ring_size);
3531 			break;
3532 		}
3533 		prod = NEXT_RX(prod);
3534 	}
3535 	rxr->rx_prod = prod;
3536 
3537 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3538 		return 0;
3539 
3540 	prod = rxr->rx_agg_prod;
3541 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3542 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3543 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3544 				    ring_nr, i, bp->rx_ring_size);
3545 			break;
3546 		}
3547 		prod = NEXT_RX_AGG(prod);
3548 	}
3549 	rxr->rx_agg_prod = prod;
3550 
3551 	if (rxr->rx_tpa) {
3552 		dma_addr_t mapping;
3553 		u8 *data;
3554 
3555 		for (i = 0; i < bp->max_tpa; i++) {
3556 			data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL);
3557 			if (!data)
3558 				return -ENOMEM;
3559 
3560 			rxr->rx_tpa[i].data = data;
3561 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3562 			rxr->rx_tpa[i].mapping = mapping;
3563 		}
3564 	}
3565 	return 0;
3566 }
3567 
bnxt_init_one_rx_ring(struct bnxt * bp,int ring_nr)3568 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3569 {
3570 	struct bnxt_rx_ring_info *rxr;
3571 	struct bnxt_ring_struct *ring;
3572 	u32 type;
3573 
3574 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3575 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3576 
3577 	if (NET_IP_ALIGN == 2)
3578 		type |= RX_BD_FLAGS_SOP;
3579 
3580 	rxr = &bp->rx_ring[ring_nr];
3581 	ring = &rxr->rx_ring_struct;
3582 	bnxt_init_rxbd_pages(ring, type);
3583 
3584 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3585 		bpf_prog_add(bp->xdp_prog, 1);
3586 		rxr->xdp_prog = bp->xdp_prog;
3587 	}
3588 	ring->fw_ring_id = INVALID_HW_RING_ID;
3589 
3590 	ring = &rxr->rx_agg_ring_struct;
3591 	ring->fw_ring_id = INVALID_HW_RING_ID;
3592 
3593 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3594 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3595 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3596 
3597 		bnxt_init_rxbd_pages(ring, type);
3598 	}
3599 
3600 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3601 }
3602 
bnxt_init_cp_rings(struct bnxt * bp)3603 static void bnxt_init_cp_rings(struct bnxt *bp)
3604 {
3605 	int i, j;
3606 
3607 	for (i = 0; i < bp->cp_nr_rings; i++) {
3608 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3609 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3610 
3611 		ring->fw_ring_id = INVALID_HW_RING_ID;
3612 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3613 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3614 		for (j = 0; j < 2; j++) {
3615 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3616 
3617 			if (!cpr2)
3618 				continue;
3619 
3620 			ring = &cpr2->cp_ring_struct;
3621 			ring->fw_ring_id = INVALID_HW_RING_ID;
3622 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3623 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3624 		}
3625 	}
3626 }
3627 
bnxt_init_rx_rings(struct bnxt * bp)3628 static int bnxt_init_rx_rings(struct bnxt *bp)
3629 {
3630 	int i, rc = 0;
3631 
3632 	if (BNXT_RX_PAGE_MODE(bp)) {
3633 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3634 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3635 	} else {
3636 		bp->rx_offset = BNXT_RX_OFFSET;
3637 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3638 	}
3639 
3640 	for (i = 0; i < bp->rx_nr_rings; i++) {
3641 		rc = bnxt_init_one_rx_ring(bp, i);
3642 		if (rc)
3643 			break;
3644 	}
3645 
3646 	return rc;
3647 }
3648 
bnxt_init_tx_rings(struct bnxt * bp)3649 static int bnxt_init_tx_rings(struct bnxt *bp)
3650 {
3651 	u16 i;
3652 
3653 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3654 				   BNXT_MIN_TX_DESC_CNT);
3655 
3656 	for (i = 0; i < bp->tx_nr_rings; i++) {
3657 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3658 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3659 
3660 		ring->fw_ring_id = INVALID_HW_RING_ID;
3661 	}
3662 
3663 	return 0;
3664 }
3665 
bnxt_free_ring_grps(struct bnxt * bp)3666 static void bnxt_free_ring_grps(struct bnxt *bp)
3667 {
3668 	kfree(bp->grp_info);
3669 	bp->grp_info = NULL;
3670 }
3671 
bnxt_init_ring_grps(struct bnxt * bp,bool irq_re_init)3672 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3673 {
3674 	int i;
3675 
3676 	if (irq_re_init) {
3677 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3678 				       sizeof(struct bnxt_ring_grp_info),
3679 				       GFP_KERNEL);
3680 		if (!bp->grp_info)
3681 			return -ENOMEM;
3682 	}
3683 	for (i = 0; i < bp->cp_nr_rings; i++) {
3684 		if (irq_re_init)
3685 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3686 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3687 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3688 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3689 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3690 	}
3691 	return 0;
3692 }
3693 
bnxt_free_vnics(struct bnxt * bp)3694 static void bnxt_free_vnics(struct bnxt *bp)
3695 {
3696 	kfree(bp->vnic_info);
3697 	bp->vnic_info = NULL;
3698 	bp->nr_vnics = 0;
3699 }
3700 
bnxt_alloc_vnics(struct bnxt * bp)3701 static int bnxt_alloc_vnics(struct bnxt *bp)
3702 {
3703 	int num_vnics = 1;
3704 
3705 #ifdef CONFIG_RFS_ACCEL
3706 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3707 		num_vnics += bp->rx_nr_rings;
3708 #endif
3709 
3710 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3711 		num_vnics++;
3712 
3713 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3714 				GFP_KERNEL);
3715 	if (!bp->vnic_info)
3716 		return -ENOMEM;
3717 
3718 	bp->nr_vnics = num_vnics;
3719 	return 0;
3720 }
3721 
bnxt_init_vnics(struct bnxt * bp)3722 static void bnxt_init_vnics(struct bnxt *bp)
3723 {
3724 	int i;
3725 
3726 	for (i = 0; i < bp->nr_vnics; i++) {
3727 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3728 		int j;
3729 
3730 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3731 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3732 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3733 
3734 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3735 
3736 		if (bp->vnic_info[i].rss_hash_key) {
3737 			if (i == 0)
3738 				prandom_bytes(vnic->rss_hash_key,
3739 					      HW_HASH_KEY_SIZE);
3740 			else
3741 				memcpy(vnic->rss_hash_key,
3742 				       bp->vnic_info[0].rss_hash_key,
3743 				       HW_HASH_KEY_SIZE);
3744 		}
3745 	}
3746 }
3747 
bnxt_calc_nr_ring_pages(u32 ring_size,int desc_per_pg)3748 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3749 {
3750 	int pages;
3751 
3752 	pages = ring_size / desc_per_pg;
3753 
3754 	if (!pages)
3755 		return 1;
3756 
3757 	pages++;
3758 
3759 	while (pages & (pages - 1))
3760 		pages++;
3761 
3762 	return pages;
3763 }
3764 
bnxt_set_tpa_flags(struct bnxt * bp)3765 void bnxt_set_tpa_flags(struct bnxt *bp)
3766 {
3767 	bp->flags &= ~BNXT_FLAG_TPA;
3768 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3769 		return;
3770 	if (bp->dev->features & NETIF_F_LRO)
3771 		bp->flags |= BNXT_FLAG_LRO;
3772 	else if (bp->dev->features & NETIF_F_GRO_HW)
3773 		bp->flags |= BNXT_FLAG_GRO;
3774 }
3775 
3776 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3777  * be set on entry.
3778  */
bnxt_set_ring_params(struct bnxt * bp)3779 void bnxt_set_ring_params(struct bnxt *bp)
3780 {
3781 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3782 	u32 agg_factor = 0, agg_ring_size = 0;
3783 
3784 	/* 8 for CRC and VLAN */
3785 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3786 
3787 	rx_space = rx_size + NET_SKB_PAD +
3788 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3789 
3790 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3791 	ring_size = bp->rx_ring_size;
3792 	bp->rx_agg_ring_size = 0;
3793 	bp->rx_agg_nr_pages = 0;
3794 
3795 	if (bp->flags & BNXT_FLAG_TPA)
3796 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3797 
3798 	bp->flags &= ~BNXT_FLAG_JUMBO;
3799 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3800 		u32 jumbo_factor;
3801 
3802 		bp->flags |= BNXT_FLAG_JUMBO;
3803 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3804 		if (jumbo_factor > agg_factor)
3805 			agg_factor = jumbo_factor;
3806 	}
3807 	if (agg_factor) {
3808 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3809 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3810 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3811 				    bp->rx_ring_size, ring_size);
3812 			bp->rx_ring_size = ring_size;
3813 		}
3814 		agg_ring_size = ring_size * agg_factor;
3815 
3816 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3817 							RX_DESC_CNT);
3818 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3819 			u32 tmp = agg_ring_size;
3820 
3821 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3822 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3823 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3824 				    tmp, agg_ring_size);
3825 		}
3826 		bp->rx_agg_ring_size = agg_ring_size;
3827 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3828 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3829 		rx_space = rx_size + NET_SKB_PAD +
3830 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3831 	}
3832 
3833 	bp->rx_buf_use_size = rx_size;
3834 	bp->rx_buf_size = rx_space;
3835 
3836 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3837 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3838 
3839 	ring_size = bp->tx_ring_size;
3840 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3841 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3842 
3843 	max_rx_cmpl = bp->rx_ring_size;
3844 	/* MAX TPA needs to be added because TPA_START completions are
3845 	 * immediately recycled, so the TPA completions are not bound by
3846 	 * the RX ring size.
3847 	 */
3848 	if (bp->flags & BNXT_FLAG_TPA)
3849 		max_rx_cmpl += bp->max_tpa;
3850 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3851 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3852 	bp->cp_ring_size = ring_size;
3853 
3854 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3855 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3856 		bp->cp_nr_pages = MAX_CP_PAGES;
3857 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3858 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3859 			    ring_size, bp->cp_ring_size);
3860 	}
3861 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3862 	bp->cp_ring_mask = bp->cp_bit - 1;
3863 }
3864 
3865 /* Changing allocation mode of RX rings.
3866  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3867  */
bnxt_set_rx_skb_mode(struct bnxt * bp,bool page_mode)3868 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3869 {
3870 	if (page_mode) {
3871 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3872 			return -EOPNOTSUPP;
3873 		bp->dev->max_mtu =
3874 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3875 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3876 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3877 		bp->rx_dir = DMA_BIDIRECTIONAL;
3878 		bp->rx_skb_func = bnxt_rx_page_skb;
3879 		/* Disable LRO or GRO_HW */
3880 		netdev_update_features(bp->dev);
3881 	} else {
3882 		bp->dev->max_mtu = bp->max_mtu;
3883 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3884 		bp->rx_dir = DMA_FROM_DEVICE;
3885 		bp->rx_skb_func = bnxt_rx_skb;
3886 	}
3887 	return 0;
3888 }
3889 
bnxt_free_vnic_attributes(struct bnxt * bp)3890 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3891 {
3892 	int i;
3893 	struct bnxt_vnic_info *vnic;
3894 	struct pci_dev *pdev = bp->pdev;
3895 
3896 	if (!bp->vnic_info)
3897 		return;
3898 
3899 	for (i = 0; i < bp->nr_vnics; i++) {
3900 		vnic = &bp->vnic_info[i];
3901 
3902 		kfree(vnic->fw_grp_ids);
3903 		vnic->fw_grp_ids = NULL;
3904 
3905 		kfree(vnic->uc_list);
3906 		vnic->uc_list = NULL;
3907 
3908 		if (vnic->mc_list) {
3909 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3910 					  vnic->mc_list, vnic->mc_list_mapping);
3911 			vnic->mc_list = NULL;
3912 		}
3913 
3914 		if (vnic->rss_table) {
3915 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
3916 					  vnic->rss_table,
3917 					  vnic->rss_table_dma_addr);
3918 			vnic->rss_table = NULL;
3919 		}
3920 
3921 		vnic->rss_hash_key = NULL;
3922 		vnic->flags = 0;
3923 	}
3924 }
3925 
bnxt_alloc_vnic_attributes(struct bnxt * bp)3926 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3927 {
3928 	int i, rc = 0, size;
3929 	struct bnxt_vnic_info *vnic;
3930 	struct pci_dev *pdev = bp->pdev;
3931 	int max_rings;
3932 
3933 	for (i = 0; i < bp->nr_vnics; i++) {
3934 		vnic = &bp->vnic_info[i];
3935 
3936 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3937 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3938 
3939 			if (mem_size > 0) {
3940 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3941 				if (!vnic->uc_list) {
3942 					rc = -ENOMEM;
3943 					goto out;
3944 				}
3945 			}
3946 		}
3947 
3948 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3949 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3950 			vnic->mc_list =
3951 				dma_alloc_coherent(&pdev->dev,
3952 						   vnic->mc_list_size,
3953 						   &vnic->mc_list_mapping,
3954 						   GFP_KERNEL);
3955 			if (!vnic->mc_list) {
3956 				rc = -ENOMEM;
3957 				goto out;
3958 			}
3959 		}
3960 
3961 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3962 			goto vnic_skip_grps;
3963 
3964 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3965 			max_rings = bp->rx_nr_rings;
3966 		else
3967 			max_rings = 1;
3968 
3969 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3970 		if (!vnic->fw_grp_ids) {
3971 			rc = -ENOMEM;
3972 			goto out;
3973 		}
3974 vnic_skip_grps:
3975 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3976 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3977 			continue;
3978 
3979 		/* Allocate rss table and hash key */
3980 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3981 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3982 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
3983 
3984 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
3985 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
3986 						     vnic->rss_table_size,
3987 						     &vnic->rss_table_dma_addr,
3988 						     GFP_KERNEL);
3989 		if (!vnic->rss_table) {
3990 			rc = -ENOMEM;
3991 			goto out;
3992 		}
3993 
3994 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3995 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3996 	}
3997 	return 0;
3998 
3999 out:
4000 	return rc;
4001 }
4002 
bnxt_free_hwrm_resources(struct bnxt * bp)4003 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4004 {
4005 	struct bnxt_hwrm_wait_token *token;
4006 
4007 	dma_pool_destroy(bp->hwrm_dma_pool);
4008 	bp->hwrm_dma_pool = NULL;
4009 
4010 	rcu_read_lock();
4011 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4012 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4013 	rcu_read_unlock();
4014 }
4015 
bnxt_alloc_hwrm_resources(struct bnxt * bp)4016 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4017 {
4018 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4019 					    BNXT_HWRM_DMA_SIZE,
4020 					    BNXT_HWRM_DMA_ALIGN, 0);
4021 	if (!bp->hwrm_dma_pool)
4022 		return -ENOMEM;
4023 
4024 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4025 
4026 	return 0;
4027 }
4028 
bnxt_free_stats_mem(struct bnxt * bp,struct bnxt_stats_mem * stats)4029 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4030 {
4031 	kfree(stats->hw_masks);
4032 	stats->hw_masks = NULL;
4033 	kfree(stats->sw_stats);
4034 	stats->sw_stats = NULL;
4035 	if (stats->hw_stats) {
4036 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4037 				  stats->hw_stats_map);
4038 		stats->hw_stats = NULL;
4039 	}
4040 }
4041 
bnxt_alloc_stats_mem(struct bnxt * bp,struct bnxt_stats_mem * stats,bool alloc_masks)4042 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4043 				bool alloc_masks)
4044 {
4045 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4046 					     &stats->hw_stats_map, GFP_KERNEL);
4047 	if (!stats->hw_stats)
4048 		return -ENOMEM;
4049 
4050 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4051 	if (!stats->sw_stats)
4052 		goto stats_mem_err;
4053 
4054 	if (alloc_masks) {
4055 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4056 		if (!stats->hw_masks)
4057 			goto stats_mem_err;
4058 	}
4059 	return 0;
4060 
4061 stats_mem_err:
4062 	bnxt_free_stats_mem(bp, stats);
4063 	return -ENOMEM;
4064 }
4065 
bnxt_fill_masks(u64 * mask_arr,u64 mask,int count)4066 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4067 {
4068 	int i;
4069 
4070 	for (i = 0; i < count; i++)
4071 		mask_arr[i] = mask;
4072 }
4073 
bnxt_copy_hw_masks(u64 * mask_arr,__le64 * hw_mask_arr,int count)4074 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4075 {
4076 	int i;
4077 
4078 	for (i = 0; i < count; i++)
4079 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4080 }
4081 
bnxt_hwrm_func_qstat_ext(struct bnxt * bp,struct bnxt_stats_mem * stats)4082 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4083 				    struct bnxt_stats_mem *stats)
4084 {
4085 	struct hwrm_func_qstats_ext_output *resp;
4086 	struct hwrm_func_qstats_ext_input *req;
4087 	__le64 *hw_masks;
4088 	int rc;
4089 
4090 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4091 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4092 		return -EOPNOTSUPP;
4093 
4094 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4095 	if (rc)
4096 		return rc;
4097 
4098 	req->fid = cpu_to_le16(0xffff);
4099 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4100 
4101 	resp = hwrm_req_hold(bp, req);
4102 	rc = hwrm_req_send(bp, req);
4103 	if (!rc) {
4104 		hw_masks = &resp->rx_ucast_pkts;
4105 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4106 	}
4107 	hwrm_req_drop(bp, req);
4108 	return rc;
4109 }
4110 
4111 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4112 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4113 
bnxt_init_stats(struct bnxt * bp)4114 static void bnxt_init_stats(struct bnxt *bp)
4115 {
4116 	struct bnxt_napi *bnapi = bp->bnapi[0];
4117 	struct bnxt_cp_ring_info *cpr;
4118 	struct bnxt_stats_mem *stats;
4119 	__le64 *rx_stats, *tx_stats;
4120 	int rc, rx_count, tx_count;
4121 	u64 *rx_masks, *tx_masks;
4122 	u64 mask;
4123 	u8 flags;
4124 
4125 	cpr = &bnapi->cp_ring;
4126 	stats = &cpr->stats;
4127 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4128 	if (rc) {
4129 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4130 			mask = (1ULL << 48) - 1;
4131 		else
4132 			mask = -1ULL;
4133 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4134 	}
4135 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4136 		stats = &bp->port_stats;
4137 		rx_stats = stats->hw_stats;
4138 		rx_masks = stats->hw_masks;
4139 		rx_count = sizeof(struct rx_port_stats) / 8;
4140 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4141 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4142 		tx_count = sizeof(struct tx_port_stats) / 8;
4143 
4144 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4145 		rc = bnxt_hwrm_port_qstats(bp, flags);
4146 		if (rc) {
4147 			mask = (1ULL << 40) - 1;
4148 
4149 			bnxt_fill_masks(rx_masks, mask, rx_count);
4150 			bnxt_fill_masks(tx_masks, mask, tx_count);
4151 		} else {
4152 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4153 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4154 			bnxt_hwrm_port_qstats(bp, 0);
4155 		}
4156 	}
4157 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4158 		stats = &bp->rx_port_stats_ext;
4159 		rx_stats = stats->hw_stats;
4160 		rx_masks = stats->hw_masks;
4161 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4162 		stats = &bp->tx_port_stats_ext;
4163 		tx_stats = stats->hw_stats;
4164 		tx_masks = stats->hw_masks;
4165 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4166 
4167 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4168 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4169 		if (rc) {
4170 			mask = (1ULL << 40) - 1;
4171 
4172 			bnxt_fill_masks(rx_masks, mask, rx_count);
4173 			if (tx_stats)
4174 				bnxt_fill_masks(tx_masks, mask, tx_count);
4175 		} else {
4176 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4177 			if (tx_stats)
4178 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4179 						   tx_count);
4180 			bnxt_hwrm_port_qstats_ext(bp, 0);
4181 		}
4182 	}
4183 }
4184 
bnxt_free_port_stats(struct bnxt * bp)4185 static void bnxt_free_port_stats(struct bnxt *bp)
4186 {
4187 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4188 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4189 
4190 	bnxt_free_stats_mem(bp, &bp->port_stats);
4191 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4192 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4193 }
4194 
bnxt_free_ring_stats(struct bnxt * bp)4195 static void bnxt_free_ring_stats(struct bnxt *bp)
4196 {
4197 	int i;
4198 
4199 	if (!bp->bnapi)
4200 		return;
4201 
4202 	for (i = 0; i < bp->cp_nr_rings; i++) {
4203 		struct bnxt_napi *bnapi = bp->bnapi[i];
4204 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4205 
4206 		bnxt_free_stats_mem(bp, &cpr->stats);
4207 	}
4208 }
4209 
bnxt_alloc_stats(struct bnxt * bp)4210 static int bnxt_alloc_stats(struct bnxt *bp)
4211 {
4212 	u32 size, i;
4213 	int rc;
4214 
4215 	size = bp->hw_ring_stats_size;
4216 
4217 	for (i = 0; i < bp->cp_nr_rings; i++) {
4218 		struct bnxt_napi *bnapi = bp->bnapi[i];
4219 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4220 
4221 		cpr->stats.len = size;
4222 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4223 		if (rc)
4224 			return rc;
4225 
4226 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4227 	}
4228 
4229 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4230 		return 0;
4231 
4232 	if (bp->port_stats.hw_stats)
4233 		goto alloc_ext_stats;
4234 
4235 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4236 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4237 	if (rc)
4238 		return rc;
4239 
4240 	bp->flags |= BNXT_FLAG_PORT_STATS;
4241 
4242 alloc_ext_stats:
4243 	/* Display extended statistics only if FW supports it */
4244 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4245 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4246 			return 0;
4247 
4248 	if (bp->rx_port_stats_ext.hw_stats)
4249 		goto alloc_tx_ext_stats;
4250 
4251 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4252 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4253 	/* Extended stats are optional */
4254 	if (rc)
4255 		return 0;
4256 
4257 alloc_tx_ext_stats:
4258 	if (bp->tx_port_stats_ext.hw_stats)
4259 		return 0;
4260 
4261 	if (bp->hwrm_spec_code >= 0x10902 ||
4262 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4263 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4264 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4265 		/* Extended stats are optional */
4266 		if (rc)
4267 			return 0;
4268 	}
4269 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4270 	return 0;
4271 }
4272 
bnxt_clear_ring_indices(struct bnxt * bp)4273 static void bnxt_clear_ring_indices(struct bnxt *bp)
4274 {
4275 	int i;
4276 
4277 	if (!bp->bnapi)
4278 		return;
4279 
4280 	for (i = 0; i < bp->cp_nr_rings; i++) {
4281 		struct bnxt_napi *bnapi = bp->bnapi[i];
4282 		struct bnxt_cp_ring_info *cpr;
4283 		struct bnxt_rx_ring_info *rxr;
4284 		struct bnxt_tx_ring_info *txr;
4285 
4286 		if (!bnapi)
4287 			continue;
4288 
4289 		cpr = &bnapi->cp_ring;
4290 		cpr->cp_raw_cons = 0;
4291 
4292 		txr = bnapi->tx_ring;
4293 		if (txr) {
4294 			txr->tx_prod = 0;
4295 			txr->tx_cons = 0;
4296 		}
4297 
4298 		rxr = bnapi->rx_ring;
4299 		if (rxr) {
4300 			rxr->rx_prod = 0;
4301 			rxr->rx_agg_prod = 0;
4302 			rxr->rx_sw_agg_prod = 0;
4303 			rxr->rx_next_cons = 0;
4304 		}
4305 	}
4306 }
4307 
bnxt_free_ntp_fltrs(struct bnxt * bp,bool irq_reinit)4308 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4309 {
4310 #ifdef CONFIG_RFS_ACCEL
4311 	int i;
4312 
4313 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4314 	 * safe to delete the hash table.
4315 	 */
4316 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4317 		struct hlist_head *head;
4318 		struct hlist_node *tmp;
4319 		struct bnxt_ntuple_filter *fltr;
4320 
4321 		head = &bp->ntp_fltr_hash_tbl[i];
4322 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4323 			hlist_del(&fltr->hash);
4324 			kfree(fltr);
4325 		}
4326 	}
4327 	if (irq_reinit) {
4328 		kfree(bp->ntp_fltr_bmap);
4329 		bp->ntp_fltr_bmap = NULL;
4330 	}
4331 	bp->ntp_fltr_count = 0;
4332 #endif
4333 }
4334 
bnxt_alloc_ntp_fltrs(struct bnxt * bp)4335 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4336 {
4337 #ifdef CONFIG_RFS_ACCEL
4338 	int i, rc = 0;
4339 
4340 	if (!(bp->flags & BNXT_FLAG_RFS))
4341 		return 0;
4342 
4343 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4344 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4345 
4346 	bp->ntp_fltr_count = 0;
4347 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4348 				    sizeof(long),
4349 				    GFP_KERNEL);
4350 
4351 	if (!bp->ntp_fltr_bmap)
4352 		rc = -ENOMEM;
4353 
4354 	return rc;
4355 #else
4356 	return 0;
4357 #endif
4358 }
4359 
bnxt_free_mem(struct bnxt * bp,bool irq_re_init)4360 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4361 {
4362 	bnxt_free_vnic_attributes(bp);
4363 	bnxt_free_tx_rings(bp);
4364 	bnxt_free_rx_rings(bp);
4365 	bnxt_free_cp_rings(bp);
4366 	bnxt_free_all_cp_arrays(bp);
4367 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4368 	if (irq_re_init) {
4369 		bnxt_free_ring_stats(bp);
4370 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4371 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4372 			bnxt_free_port_stats(bp);
4373 		bnxt_free_ring_grps(bp);
4374 		bnxt_free_vnics(bp);
4375 		kfree(bp->tx_ring_map);
4376 		bp->tx_ring_map = NULL;
4377 		kfree(bp->tx_ring);
4378 		bp->tx_ring = NULL;
4379 		kfree(bp->rx_ring);
4380 		bp->rx_ring = NULL;
4381 		kfree(bp->bnapi);
4382 		bp->bnapi = NULL;
4383 	} else {
4384 		bnxt_clear_ring_indices(bp);
4385 	}
4386 }
4387 
bnxt_alloc_mem(struct bnxt * bp,bool irq_re_init)4388 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4389 {
4390 	int i, j, rc, size, arr_size;
4391 	void *bnapi;
4392 
4393 	if (irq_re_init) {
4394 		/* Allocate bnapi mem pointer array and mem block for
4395 		 * all queues
4396 		 */
4397 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4398 				bp->cp_nr_rings);
4399 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4400 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4401 		if (!bnapi)
4402 			return -ENOMEM;
4403 
4404 		bp->bnapi = bnapi;
4405 		bnapi += arr_size;
4406 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4407 			bp->bnapi[i] = bnapi;
4408 			bp->bnapi[i]->index = i;
4409 			bp->bnapi[i]->bp = bp;
4410 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4411 				struct bnxt_cp_ring_info *cpr =
4412 					&bp->bnapi[i]->cp_ring;
4413 
4414 				cpr->cp_ring_struct.ring_mem.flags =
4415 					BNXT_RMEM_RING_PTE_FLAG;
4416 			}
4417 		}
4418 
4419 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4420 				      sizeof(struct bnxt_rx_ring_info),
4421 				      GFP_KERNEL);
4422 		if (!bp->rx_ring)
4423 			return -ENOMEM;
4424 
4425 		for (i = 0; i < bp->rx_nr_rings; i++) {
4426 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4427 
4428 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4429 				rxr->rx_ring_struct.ring_mem.flags =
4430 					BNXT_RMEM_RING_PTE_FLAG;
4431 				rxr->rx_agg_ring_struct.ring_mem.flags =
4432 					BNXT_RMEM_RING_PTE_FLAG;
4433 			}
4434 			rxr->bnapi = bp->bnapi[i];
4435 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4436 		}
4437 
4438 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4439 				      sizeof(struct bnxt_tx_ring_info),
4440 				      GFP_KERNEL);
4441 		if (!bp->tx_ring)
4442 			return -ENOMEM;
4443 
4444 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4445 					  GFP_KERNEL);
4446 
4447 		if (!bp->tx_ring_map)
4448 			return -ENOMEM;
4449 
4450 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4451 			j = 0;
4452 		else
4453 			j = bp->rx_nr_rings;
4454 
4455 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4456 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4457 
4458 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4459 				txr->tx_ring_struct.ring_mem.flags =
4460 					BNXT_RMEM_RING_PTE_FLAG;
4461 			txr->bnapi = bp->bnapi[j];
4462 			bp->bnapi[j]->tx_ring = txr;
4463 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4464 			if (i >= bp->tx_nr_rings_xdp) {
4465 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4466 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4467 			} else {
4468 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4469 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4470 			}
4471 		}
4472 
4473 		rc = bnxt_alloc_stats(bp);
4474 		if (rc)
4475 			goto alloc_mem_err;
4476 		bnxt_init_stats(bp);
4477 
4478 		rc = bnxt_alloc_ntp_fltrs(bp);
4479 		if (rc)
4480 			goto alloc_mem_err;
4481 
4482 		rc = bnxt_alloc_vnics(bp);
4483 		if (rc)
4484 			goto alloc_mem_err;
4485 	}
4486 
4487 	rc = bnxt_alloc_all_cp_arrays(bp);
4488 	if (rc)
4489 		goto alloc_mem_err;
4490 
4491 	bnxt_init_ring_struct(bp);
4492 
4493 	rc = bnxt_alloc_rx_rings(bp);
4494 	if (rc)
4495 		goto alloc_mem_err;
4496 
4497 	rc = bnxt_alloc_tx_rings(bp);
4498 	if (rc)
4499 		goto alloc_mem_err;
4500 
4501 	rc = bnxt_alloc_cp_rings(bp);
4502 	if (rc)
4503 		goto alloc_mem_err;
4504 
4505 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4506 				  BNXT_VNIC_UCAST_FLAG;
4507 	rc = bnxt_alloc_vnic_attributes(bp);
4508 	if (rc)
4509 		goto alloc_mem_err;
4510 	return 0;
4511 
4512 alloc_mem_err:
4513 	bnxt_free_mem(bp, true);
4514 	return rc;
4515 }
4516 
bnxt_disable_int(struct bnxt * bp)4517 static void bnxt_disable_int(struct bnxt *bp)
4518 {
4519 	int i;
4520 
4521 	if (!bp->bnapi)
4522 		return;
4523 
4524 	for (i = 0; i < bp->cp_nr_rings; i++) {
4525 		struct bnxt_napi *bnapi = bp->bnapi[i];
4526 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4527 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4528 
4529 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4530 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4531 	}
4532 }
4533 
bnxt_cp_num_to_irq_num(struct bnxt * bp,int n)4534 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4535 {
4536 	struct bnxt_napi *bnapi = bp->bnapi[n];
4537 	struct bnxt_cp_ring_info *cpr;
4538 
4539 	cpr = &bnapi->cp_ring;
4540 	return cpr->cp_ring_struct.map_idx;
4541 }
4542 
bnxt_disable_int_sync(struct bnxt * bp)4543 static void bnxt_disable_int_sync(struct bnxt *bp)
4544 {
4545 	int i;
4546 
4547 	if (!bp->irq_tbl)
4548 		return;
4549 
4550 	atomic_inc(&bp->intr_sem);
4551 
4552 	bnxt_disable_int(bp);
4553 	for (i = 0; i < bp->cp_nr_rings; i++) {
4554 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4555 
4556 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4557 	}
4558 }
4559 
bnxt_enable_int(struct bnxt * bp)4560 static void bnxt_enable_int(struct bnxt *bp)
4561 {
4562 	int i;
4563 
4564 	atomic_set(&bp->intr_sem, 0);
4565 	for (i = 0; i < bp->cp_nr_rings; i++) {
4566 		struct bnxt_napi *bnapi = bp->bnapi[i];
4567 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4568 
4569 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4570 	}
4571 }
4572 
bnxt_hwrm_func_drv_rgtr(struct bnxt * bp,unsigned long * bmap,int bmap_size,bool async_only)4573 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4574 			    bool async_only)
4575 {
4576 	DECLARE_BITMAP(async_events_bmap, 256);
4577 	u32 *events = (u32 *)async_events_bmap;
4578 	struct hwrm_func_drv_rgtr_output *resp;
4579 	struct hwrm_func_drv_rgtr_input *req;
4580 	u32 flags;
4581 	int rc, i;
4582 
4583 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4584 	if (rc)
4585 		return rc;
4586 
4587 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4588 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4589 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4590 
4591 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4592 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4593 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4594 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4595 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4596 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4597 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4598 	req->flags = cpu_to_le32(flags);
4599 	req->ver_maj_8b = DRV_VER_MAJ;
4600 	req->ver_min_8b = DRV_VER_MIN;
4601 	req->ver_upd_8b = DRV_VER_UPD;
4602 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4603 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4604 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4605 
4606 	if (BNXT_PF(bp)) {
4607 		u32 data[8];
4608 		int i;
4609 
4610 		memset(data, 0, sizeof(data));
4611 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4612 			u16 cmd = bnxt_vf_req_snif[i];
4613 			unsigned int bit, idx;
4614 
4615 			idx = cmd / 32;
4616 			bit = cmd % 32;
4617 			data[idx] |= 1 << bit;
4618 		}
4619 
4620 		for (i = 0; i < 8; i++)
4621 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4622 
4623 		req->enables |=
4624 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4625 	}
4626 
4627 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4628 		req->flags |= cpu_to_le32(
4629 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4630 
4631 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4632 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4633 		u16 event_id = bnxt_async_events_arr[i];
4634 
4635 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4636 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4637 			continue;
4638 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4639 	}
4640 	if (bmap && bmap_size) {
4641 		for (i = 0; i < bmap_size; i++) {
4642 			if (test_bit(i, bmap))
4643 				__set_bit(i, async_events_bmap);
4644 		}
4645 	}
4646 	for (i = 0; i < 8; i++)
4647 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4648 
4649 	if (async_only)
4650 		req->enables =
4651 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4652 
4653 	resp = hwrm_req_hold(bp, req);
4654 	rc = hwrm_req_send(bp, req);
4655 	if (!rc) {
4656 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4657 		if (resp->flags &
4658 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4659 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4660 	}
4661 	hwrm_req_drop(bp, req);
4662 	return rc;
4663 }
4664 
bnxt_hwrm_func_drv_unrgtr(struct bnxt * bp)4665 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4666 {
4667 	struct hwrm_func_drv_unrgtr_input *req;
4668 	int rc;
4669 
4670 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4671 		return 0;
4672 
4673 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4674 	if (rc)
4675 		return rc;
4676 	return hwrm_req_send(bp, req);
4677 }
4678 
bnxt_hwrm_tunnel_dst_port_free(struct bnxt * bp,u8 tunnel_type)4679 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4680 {
4681 	struct hwrm_tunnel_dst_port_free_input *req;
4682 	int rc;
4683 
4684 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4685 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4686 		return 0;
4687 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4688 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4689 		return 0;
4690 
4691 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4692 	if (rc)
4693 		return rc;
4694 
4695 	req->tunnel_type = tunnel_type;
4696 
4697 	switch (tunnel_type) {
4698 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4699 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4700 		bp->vxlan_port = 0;
4701 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4702 		break;
4703 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4704 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4705 		bp->nge_port = 0;
4706 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4707 		break;
4708 	default:
4709 		break;
4710 	}
4711 
4712 	rc = hwrm_req_send(bp, req);
4713 	if (rc)
4714 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4715 			   rc);
4716 	return rc;
4717 }
4718 
bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt * bp,__be16 port,u8 tunnel_type)4719 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4720 					   u8 tunnel_type)
4721 {
4722 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4723 	struct hwrm_tunnel_dst_port_alloc_input *req;
4724 	int rc;
4725 
4726 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4727 	if (rc)
4728 		return rc;
4729 
4730 	req->tunnel_type = tunnel_type;
4731 	req->tunnel_dst_port_val = port;
4732 
4733 	resp = hwrm_req_hold(bp, req);
4734 	rc = hwrm_req_send(bp, req);
4735 	if (rc) {
4736 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4737 			   rc);
4738 		goto err_out;
4739 	}
4740 
4741 	switch (tunnel_type) {
4742 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4743 		bp->vxlan_port = port;
4744 		bp->vxlan_fw_dst_port_id =
4745 			le16_to_cpu(resp->tunnel_dst_port_id);
4746 		break;
4747 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4748 		bp->nge_port = port;
4749 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4750 		break;
4751 	default:
4752 		break;
4753 	}
4754 
4755 err_out:
4756 	hwrm_req_drop(bp, req);
4757 	return rc;
4758 }
4759 
bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt * bp,u16 vnic_id)4760 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4761 {
4762 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4763 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4764 	int rc;
4765 
4766 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4767 	if (rc)
4768 		return rc;
4769 
4770 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4771 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4772 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4773 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4774 	}
4775 	req->mask = cpu_to_le32(vnic->rx_mask);
4776 	return hwrm_req_send_silent(bp, req);
4777 }
4778 
4779 #ifdef CONFIG_RFS_ACCEL
bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt * bp,struct bnxt_ntuple_filter * fltr)4780 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4781 					    struct bnxt_ntuple_filter *fltr)
4782 {
4783 	struct hwrm_cfa_ntuple_filter_free_input *req;
4784 	int rc;
4785 
4786 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4787 	if (rc)
4788 		return rc;
4789 
4790 	req->ntuple_filter_id = fltr->filter_id;
4791 	return hwrm_req_send(bp, req);
4792 }
4793 
4794 #define BNXT_NTP_FLTR_FLAGS					\
4795 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4796 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4797 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4798 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4799 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4800 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4801 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4802 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4803 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4804 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4805 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4806 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4807 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4808 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4809 
4810 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4811 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4812 
bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt * bp,struct bnxt_ntuple_filter * fltr)4813 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4814 					     struct bnxt_ntuple_filter *fltr)
4815 {
4816 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4817 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4818 	struct flow_keys *keys = &fltr->fkeys;
4819 	struct bnxt_vnic_info *vnic;
4820 	u32 flags = 0;
4821 	int rc;
4822 
4823 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4824 	if (rc)
4825 		return rc;
4826 
4827 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4828 
4829 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4830 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4831 		req->dst_id = cpu_to_le16(fltr->rxq);
4832 	} else {
4833 		vnic = &bp->vnic_info[fltr->rxq + 1];
4834 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4835 	}
4836 	req->flags = cpu_to_le32(flags);
4837 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4838 
4839 	req->ethertype = htons(ETH_P_IP);
4840 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4841 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4842 	req->ip_protocol = keys->basic.ip_proto;
4843 
4844 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4845 		int i;
4846 
4847 		req->ethertype = htons(ETH_P_IPV6);
4848 		req->ip_addr_type =
4849 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4850 		*(struct in6_addr *)&req->src_ipaddr[0] =
4851 			keys->addrs.v6addrs.src;
4852 		*(struct in6_addr *)&req->dst_ipaddr[0] =
4853 			keys->addrs.v6addrs.dst;
4854 		for (i = 0; i < 4; i++) {
4855 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4856 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4857 		}
4858 	} else {
4859 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
4860 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4861 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4862 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4863 	}
4864 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4865 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4866 		req->tunnel_type =
4867 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4868 	}
4869 
4870 	req->src_port = keys->ports.src;
4871 	req->src_port_mask = cpu_to_be16(0xffff);
4872 	req->dst_port = keys->ports.dst;
4873 	req->dst_port_mask = cpu_to_be16(0xffff);
4874 
4875 	resp = hwrm_req_hold(bp, req);
4876 	rc = hwrm_req_send(bp, req);
4877 	if (!rc)
4878 		fltr->filter_id = resp->ntuple_filter_id;
4879 	hwrm_req_drop(bp, req);
4880 	return rc;
4881 }
4882 #endif
4883 
bnxt_hwrm_set_vnic_filter(struct bnxt * bp,u16 vnic_id,u16 idx,const u8 * mac_addr)4884 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4885 				     const u8 *mac_addr)
4886 {
4887 	struct hwrm_cfa_l2_filter_alloc_output *resp;
4888 	struct hwrm_cfa_l2_filter_alloc_input *req;
4889 	int rc;
4890 
4891 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
4892 	if (rc)
4893 		return rc;
4894 
4895 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4896 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4897 		req->flags |=
4898 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4899 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4900 	req->enables =
4901 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4902 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4903 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4904 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
4905 	req->l2_addr_mask[0] = 0xff;
4906 	req->l2_addr_mask[1] = 0xff;
4907 	req->l2_addr_mask[2] = 0xff;
4908 	req->l2_addr_mask[3] = 0xff;
4909 	req->l2_addr_mask[4] = 0xff;
4910 	req->l2_addr_mask[5] = 0xff;
4911 
4912 	resp = hwrm_req_hold(bp, req);
4913 	rc = hwrm_req_send(bp, req);
4914 	if (!rc)
4915 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4916 							resp->l2_filter_id;
4917 	hwrm_req_drop(bp, req);
4918 	return rc;
4919 }
4920 
bnxt_hwrm_clear_vnic_filter(struct bnxt * bp)4921 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4922 {
4923 	struct hwrm_cfa_l2_filter_free_input *req;
4924 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4925 	int rc;
4926 
4927 	/* Any associated ntuple filters will also be cleared by firmware. */
4928 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
4929 	if (rc)
4930 		return rc;
4931 	hwrm_req_hold(bp, req);
4932 	for (i = 0; i < num_of_vnics; i++) {
4933 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4934 
4935 		for (j = 0; j < vnic->uc_filter_count; j++) {
4936 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
4937 
4938 			rc = hwrm_req_send(bp, req);
4939 		}
4940 		vnic->uc_filter_count = 0;
4941 	}
4942 	hwrm_req_drop(bp, req);
4943 	return rc;
4944 }
4945 
bnxt_hwrm_vnic_set_tpa(struct bnxt * bp,u16 vnic_id,u32 tpa_flags)4946 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4947 {
4948 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4949 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4950 	struct hwrm_vnic_tpa_cfg_input *req;
4951 	int rc;
4952 
4953 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4954 		return 0;
4955 
4956 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
4957 	if (rc)
4958 		return rc;
4959 
4960 	if (tpa_flags) {
4961 		u16 mss = bp->dev->mtu - 40;
4962 		u32 nsegs, n, segs = 0, flags;
4963 
4964 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4965 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4966 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4967 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4968 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4969 		if (tpa_flags & BNXT_FLAG_GRO)
4970 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4971 
4972 		req->flags = cpu_to_le32(flags);
4973 
4974 		req->enables =
4975 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4976 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4977 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4978 
4979 		/* Number of segs are log2 units, and first packet is not
4980 		 * included as part of this units.
4981 		 */
4982 		if (mss <= BNXT_RX_PAGE_SIZE) {
4983 			n = BNXT_RX_PAGE_SIZE / mss;
4984 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4985 		} else {
4986 			n = mss / BNXT_RX_PAGE_SIZE;
4987 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4988 				n++;
4989 			nsegs = (MAX_SKB_FRAGS - n) / n;
4990 		}
4991 
4992 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4993 			segs = MAX_TPA_SEGS_P5;
4994 			max_aggs = bp->max_tpa;
4995 		} else {
4996 			segs = ilog2(nsegs);
4997 		}
4998 		req->max_agg_segs = cpu_to_le16(segs);
4999 		req->max_aggs = cpu_to_le16(max_aggs);
5000 
5001 		req->min_agg_len = cpu_to_le32(512);
5002 	}
5003 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5004 
5005 	return hwrm_req_send(bp, req);
5006 }
5007 
bnxt_cp_ring_from_grp(struct bnxt * bp,struct bnxt_ring_struct * ring)5008 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5009 {
5010 	struct bnxt_ring_grp_info *grp_info;
5011 
5012 	grp_info = &bp->grp_info[ring->grp_idx];
5013 	return grp_info->cp_fw_ring_id;
5014 }
5015 
bnxt_cp_ring_for_rx(struct bnxt * bp,struct bnxt_rx_ring_info * rxr)5016 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5017 {
5018 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5019 		struct bnxt_napi *bnapi = rxr->bnapi;
5020 		struct bnxt_cp_ring_info *cpr;
5021 
5022 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5023 		return cpr->cp_ring_struct.fw_ring_id;
5024 	} else {
5025 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5026 	}
5027 }
5028 
bnxt_cp_ring_for_tx(struct bnxt * bp,struct bnxt_tx_ring_info * txr)5029 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5030 {
5031 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5032 		struct bnxt_napi *bnapi = txr->bnapi;
5033 		struct bnxt_cp_ring_info *cpr;
5034 
5035 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5036 		return cpr->cp_ring_struct.fw_ring_id;
5037 	} else {
5038 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5039 	}
5040 }
5041 
bnxt_alloc_rss_indir_tbl(struct bnxt * bp)5042 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5043 {
5044 	int entries;
5045 
5046 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5047 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5048 	else
5049 		entries = HW_HASH_INDEX_SIZE;
5050 
5051 	bp->rss_indir_tbl_entries = entries;
5052 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5053 					  GFP_KERNEL);
5054 	if (!bp->rss_indir_tbl)
5055 		return -ENOMEM;
5056 	return 0;
5057 }
5058 
bnxt_set_dflt_rss_indir_tbl(struct bnxt * bp)5059 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5060 {
5061 	u16 max_rings, max_entries, pad, i;
5062 
5063 	if (!bp->rx_nr_rings)
5064 		return;
5065 
5066 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5067 		max_rings = bp->rx_nr_rings - 1;
5068 	else
5069 		max_rings = bp->rx_nr_rings;
5070 
5071 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5072 
5073 	for (i = 0; i < max_entries; i++)
5074 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5075 
5076 	pad = bp->rss_indir_tbl_entries - max_entries;
5077 	if (pad)
5078 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5079 }
5080 
bnxt_get_max_rss_ring(struct bnxt * bp)5081 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5082 {
5083 	u16 i, tbl_size, max_ring = 0;
5084 
5085 	if (!bp->rss_indir_tbl)
5086 		return 0;
5087 
5088 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5089 	for (i = 0; i < tbl_size; i++)
5090 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5091 	return max_ring;
5092 }
5093 
bnxt_get_nr_rss_ctxs(struct bnxt * bp,int rx_rings)5094 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5095 {
5096 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5097 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5098 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5099 		return 2;
5100 	return 1;
5101 }
5102 
__bnxt_fill_hw_rss_tbl(struct bnxt * bp,struct bnxt_vnic_info * vnic)5103 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5104 {
5105 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5106 	u16 i, j;
5107 
5108 	/* Fill the RSS indirection table with ring group ids */
5109 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5110 		if (!no_rss)
5111 			j = bp->rss_indir_tbl[i];
5112 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5113 	}
5114 }
5115 
__bnxt_fill_hw_rss_tbl_p5(struct bnxt * bp,struct bnxt_vnic_info * vnic)5116 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5117 				      struct bnxt_vnic_info *vnic)
5118 {
5119 	__le16 *ring_tbl = vnic->rss_table;
5120 	struct bnxt_rx_ring_info *rxr;
5121 	u16 tbl_size, i;
5122 
5123 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5124 
5125 	for (i = 0; i < tbl_size; i++) {
5126 		u16 ring_id, j;
5127 
5128 		j = bp->rss_indir_tbl[i];
5129 		rxr = &bp->rx_ring[j];
5130 
5131 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5132 		*ring_tbl++ = cpu_to_le16(ring_id);
5133 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5134 		*ring_tbl++ = cpu_to_le16(ring_id);
5135 	}
5136 }
5137 
bnxt_fill_hw_rss_tbl(struct bnxt * bp,struct bnxt_vnic_info * vnic)5138 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5139 {
5140 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5141 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5142 	else
5143 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5144 }
5145 
bnxt_hwrm_vnic_set_rss(struct bnxt * bp,u16 vnic_id,bool set_rss)5146 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5147 {
5148 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5149 	struct hwrm_vnic_rss_cfg_input *req;
5150 	int rc;
5151 
5152 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5153 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5154 		return 0;
5155 
5156 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5157 	if (rc)
5158 		return rc;
5159 
5160 	if (set_rss) {
5161 		bnxt_fill_hw_rss_tbl(bp, vnic);
5162 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5163 		req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5164 		req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5165 		req->hash_key_tbl_addr =
5166 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5167 	}
5168 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5169 	return hwrm_req_send(bp, req);
5170 }
5171 
bnxt_hwrm_vnic_set_rss_p5(struct bnxt * bp,u16 vnic_id,bool set_rss)5172 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5173 {
5174 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5175 	struct hwrm_vnic_rss_cfg_input *req;
5176 	dma_addr_t ring_tbl_map;
5177 	u32 i, nr_ctxs;
5178 	int rc;
5179 
5180 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5181 	if (rc)
5182 		return rc;
5183 
5184 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5185 	if (!set_rss)
5186 		return hwrm_req_send(bp, req);
5187 
5188 	bnxt_fill_hw_rss_tbl(bp, vnic);
5189 	req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5190 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5191 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5192 	ring_tbl_map = vnic->rss_table_dma_addr;
5193 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5194 
5195 	hwrm_req_hold(bp, req);
5196 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5197 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5198 		req->ring_table_pair_index = i;
5199 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5200 		rc = hwrm_req_send(bp, req);
5201 		if (rc)
5202 			goto exit;
5203 	}
5204 
5205 exit:
5206 	hwrm_req_drop(bp, req);
5207 	return rc;
5208 }
5209 
bnxt_hwrm_vnic_set_hds(struct bnxt * bp,u16 vnic_id)5210 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5211 {
5212 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5213 	struct hwrm_vnic_plcmodes_cfg_input *req;
5214 	int rc;
5215 
5216 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5217 	if (rc)
5218 		return rc;
5219 
5220 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
5221 				 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5222 				 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5223 	req->enables =
5224 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
5225 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5226 	/* thresholds not implemented in firmware yet */
5227 	req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5228 	req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5229 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5230 	return hwrm_req_send(bp, req);
5231 }
5232 
bnxt_hwrm_vnic_ctx_free_one(struct bnxt * bp,u16 vnic_id,u16 ctx_idx)5233 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5234 					u16 ctx_idx)
5235 {
5236 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5237 
5238 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5239 		return;
5240 
5241 	req->rss_cos_lb_ctx_id =
5242 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5243 
5244 	hwrm_req_send(bp, req);
5245 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5246 }
5247 
bnxt_hwrm_vnic_ctx_free(struct bnxt * bp)5248 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5249 {
5250 	int i, j;
5251 
5252 	for (i = 0; i < bp->nr_vnics; i++) {
5253 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5254 
5255 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5256 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5257 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5258 		}
5259 	}
5260 	bp->rsscos_nr_ctxs = 0;
5261 }
5262 
bnxt_hwrm_vnic_ctx_alloc(struct bnxt * bp,u16 vnic_id,u16 ctx_idx)5263 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5264 {
5265 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5266 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5267 	int rc;
5268 
5269 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5270 	if (rc)
5271 		return rc;
5272 
5273 	resp = hwrm_req_hold(bp, req);
5274 	rc = hwrm_req_send(bp, req);
5275 	if (!rc)
5276 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5277 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5278 	hwrm_req_drop(bp, req);
5279 
5280 	return rc;
5281 }
5282 
bnxt_get_roce_vnic_mode(struct bnxt * bp)5283 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5284 {
5285 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5286 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5287 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5288 }
5289 
bnxt_hwrm_vnic_cfg(struct bnxt * bp,u16 vnic_id)5290 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5291 {
5292 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5293 	struct hwrm_vnic_cfg_input *req;
5294 	unsigned int ring = 0, grp_idx;
5295 	u16 def_vlan = 0;
5296 	int rc;
5297 
5298 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5299 	if (rc)
5300 		return rc;
5301 
5302 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5303 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5304 
5305 		req->default_rx_ring_id =
5306 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5307 		req->default_cmpl_ring_id =
5308 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5309 		req->enables =
5310 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5311 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5312 		goto vnic_mru;
5313 	}
5314 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5315 	/* Only RSS support for now TBD: COS & LB */
5316 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5317 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5318 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5319 					   VNIC_CFG_REQ_ENABLES_MRU);
5320 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5321 		req->rss_rule =
5322 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5323 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5324 					   VNIC_CFG_REQ_ENABLES_MRU);
5325 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5326 	} else {
5327 		req->rss_rule = cpu_to_le16(0xffff);
5328 	}
5329 
5330 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5331 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5332 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5333 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5334 	} else {
5335 		req->cos_rule = cpu_to_le16(0xffff);
5336 	}
5337 
5338 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5339 		ring = 0;
5340 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5341 		ring = vnic_id - 1;
5342 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5343 		ring = bp->rx_nr_rings - 1;
5344 
5345 	grp_idx = bp->rx_ring[ring].bnapi->index;
5346 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5347 	req->lb_rule = cpu_to_le16(0xffff);
5348 vnic_mru:
5349 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5350 
5351 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5352 #ifdef CONFIG_BNXT_SRIOV
5353 	if (BNXT_VF(bp))
5354 		def_vlan = bp->vf.vlan;
5355 #endif
5356 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5357 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5358 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5359 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5360 
5361 	return hwrm_req_send(bp, req);
5362 }
5363 
bnxt_hwrm_vnic_free_one(struct bnxt * bp,u16 vnic_id)5364 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5365 {
5366 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5367 		struct hwrm_vnic_free_input *req;
5368 
5369 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5370 			return;
5371 
5372 		req->vnic_id =
5373 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5374 
5375 		hwrm_req_send(bp, req);
5376 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5377 	}
5378 }
5379 
bnxt_hwrm_vnic_free(struct bnxt * bp)5380 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5381 {
5382 	u16 i;
5383 
5384 	for (i = 0; i < bp->nr_vnics; i++)
5385 		bnxt_hwrm_vnic_free_one(bp, i);
5386 }
5387 
bnxt_hwrm_vnic_alloc(struct bnxt * bp,u16 vnic_id,unsigned int start_rx_ring_idx,unsigned int nr_rings)5388 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5389 				unsigned int start_rx_ring_idx,
5390 				unsigned int nr_rings)
5391 {
5392 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5393 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5394 	struct hwrm_vnic_alloc_output *resp;
5395 	struct hwrm_vnic_alloc_input *req;
5396 	int rc;
5397 
5398 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5399 	if (rc)
5400 		return rc;
5401 
5402 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5403 		goto vnic_no_ring_grps;
5404 
5405 	/* map ring groups to this vnic */
5406 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5407 		grp_idx = bp->rx_ring[i].bnapi->index;
5408 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5409 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5410 				   j, nr_rings);
5411 			break;
5412 		}
5413 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5414 	}
5415 
5416 vnic_no_ring_grps:
5417 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5418 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5419 	if (vnic_id == 0)
5420 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5421 
5422 	resp = hwrm_req_hold(bp, req);
5423 	rc = hwrm_req_send(bp, req);
5424 	if (!rc)
5425 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5426 	hwrm_req_drop(bp, req);
5427 	return rc;
5428 }
5429 
bnxt_hwrm_vnic_qcaps(struct bnxt * bp)5430 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5431 {
5432 	struct hwrm_vnic_qcaps_output *resp;
5433 	struct hwrm_vnic_qcaps_input *req;
5434 	int rc;
5435 
5436 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5437 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5438 	if (bp->hwrm_spec_code < 0x10600)
5439 		return 0;
5440 
5441 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5442 	if (rc)
5443 		return rc;
5444 
5445 	resp = hwrm_req_hold(bp, req);
5446 	rc = hwrm_req_send(bp, req);
5447 	if (!rc) {
5448 		u32 flags = le32_to_cpu(resp->flags);
5449 
5450 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5451 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5452 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5453 		if (flags &
5454 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5455 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5456 
5457 		/* Older P5 fw before EXT_HW_STATS support did not set
5458 		 * VLAN_STRIP_CAP properly.
5459 		 */
5460 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5461 		    (BNXT_CHIP_P5_THOR(bp) &&
5462 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5463 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5464 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5465 		if (bp->max_tpa_v2) {
5466 			if (BNXT_CHIP_P5_THOR(bp))
5467 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5468 			else
5469 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5470 		}
5471 	}
5472 	hwrm_req_drop(bp, req);
5473 	return rc;
5474 }
5475 
bnxt_hwrm_ring_grp_alloc(struct bnxt * bp)5476 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5477 {
5478 	struct hwrm_ring_grp_alloc_output *resp;
5479 	struct hwrm_ring_grp_alloc_input *req;
5480 	int rc;
5481 	u16 i;
5482 
5483 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5484 		return 0;
5485 
5486 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5487 	if (rc)
5488 		return rc;
5489 
5490 	resp = hwrm_req_hold(bp, req);
5491 	for (i = 0; i < bp->rx_nr_rings; i++) {
5492 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5493 
5494 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5495 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5496 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5497 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5498 
5499 		rc = hwrm_req_send(bp, req);
5500 
5501 		if (rc)
5502 			break;
5503 
5504 		bp->grp_info[grp_idx].fw_grp_id =
5505 			le32_to_cpu(resp->ring_group_id);
5506 	}
5507 	hwrm_req_drop(bp, req);
5508 	return rc;
5509 }
5510 
bnxt_hwrm_ring_grp_free(struct bnxt * bp)5511 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5512 {
5513 	struct hwrm_ring_grp_free_input *req;
5514 	u16 i;
5515 
5516 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5517 		return;
5518 
5519 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5520 		return;
5521 
5522 	hwrm_req_hold(bp, req);
5523 	for (i = 0; i < bp->cp_nr_rings; i++) {
5524 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5525 			continue;
5526 		req->ring_group_id =
5527 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5528 
5529 		hwrm_req_send(bp, req);
5530 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5531 	}
5532 	hwrm_req_drop(bp, req);
5533 }
5534 
hwrm_ring_alloc_send_msg(struct bnxt * bp,struct bnxt_ring_struct * ring,u32 ring_type,u32 map_index)5535 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5536 				    struct bnxt_ring_struct *ring,
5537 				    u32 ring_type, u32 map_index)
5538 {
5539 	struct hwrm_ring_alloc_output *resp;
5540 	struct hwrm_ring_alloc_input *req;
5541 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5542 	struct bnxt_ring_grp_info *grp_info;
5543 	int rc, err = 0;
5544 	u16 ring_id;
5545 
5546 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5547 	if (rc)
5548 		goto exit;
5549 
5550 	req->enables = 0;
5551 	if (rmem->nr_pages > 1) {
5552 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5553 		/* Page size is in log2 units */
5554 		req->page_size = BNXT_PAGE_SHIFT;
5555 		req->page_tbl_depth = 1;
5556 	} else {
5557 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5558 	}
5559 	req->fbo = 0;
5560 	/* Association of ring index with doorbell index and MSIX number */
5561 	req->logical_id = cpu_to_le16(map_index);
5562 
5563 	switch (ring_type) {
5564 	case HWRM_RING_ALLOC_TX: {
5565 		struct bnxt_tx_ring_info *txr;
5566 
5567 		txr = container_of(ring, struct bnxt_tx_ring_info,
5568 				   tx_ring_struct);
5569 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5570 		/* Association of transmit ring with completion ring */
5571 		grp_info = &bp->grp_info[ring->grp_idx];
5572 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5573 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5574 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5575 		req->queue_id = cpu_to_le16(ring->queue_id);
5576 		break;
5577 	}
5578 	case HWRM_RING_ALLOC_RX:
5579 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5580 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5581 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5582 			u16 flags = 0;
5583 
5584 			/* Association of rx ring with stats context */
5585 			grp_info = &bp->grp_info[ring->grp_idx];
5586 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5587 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5588 			req->enables |= cpu_to_le32(
5589 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5590 			if (NET_IP_ALIGN == 2)
5591 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5592 			req->flags = cpu_to_le16(flags);
5593 		}
5594 		break;
5595 	case HWRM_RING_ALLOC_AGG:
5596 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5597 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5598 			/* Association of agg ring with rx ring */
5599 			grp_info = &bp->grp_info[ring->grp_idx];
5600 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5601 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5602 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5603 			req->enables |= cpu_to_le32(
5604 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5605 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5606 		} else {
5607 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5608 		}
5609 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5610 		break;
5611 	case HWRM_RING_ALLOC_CMPL:
5612 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5613 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5614 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5615 			/* Association of cp ring with nq */
5616 			grp_info = &bp->grp_info[map_index];
5617 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5618 			req->cq_handle = cpu_to_le64(ring->handle);
5619 			req->enables |= cpu_to_le32(
5620 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5621 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5622 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5623 		}
5624 		break;
5625 	case HWRM_RING_ALLOC_NQ:
5626 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5627 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5628 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5629 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5630 		break;
5631 	default:
5632 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5633 			   ring_type);
5634 		return -1;
5635 	}
5636 
5637 	resp = hwrm_req_hold(bp, req);
5638 	rc = hwrm_req_send(bp, req);
5639 	err = le16_to_cpu(resp->error_code);
5640 	ring_id = le16_to_cpu(resp->ring_id);
5641 	hwrm_req_drop(bp, req);
5642 
5643 exit:
5644 	if (rc || err) {
5645 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5646 			   ring_type, rc, err);
5647 		return -EIO;
5648 	}
5649 	ring->fw_ring_id = ring_id;
5650 	return rc;
5651 }
5652 
bnxt_hwrm_set_async_event_cr(struct bnxt * bp,int idx)5653 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5654 {
5655 	int rc;
5656 
5657 	if (BNXT_PF(bp)) {
5658 		struct hwrm_func_cfg_input *req;
5659 
5660 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5661 		if (rc)
5662 			return rc;
5663 
5664 		req->fid = cpu_to_le16(0xffff);
5665 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5666 		req->async_event_cr = cpu_to_le16(idx);
5667 		return hwrm_req_send(bp, req);
5668 	} else {
5669 		struct hwrm_func_vf_cfg_input *req;
5670 
5671 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5672 		if (rc)
5673 			return rc;
5674 
5675 		req->enables =
5676 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5677 		req->async_event_cr = cpu_to_le16(idx);
5678 		return hwrm_req_send(bp, req);
5679 	}
5680 }
5681 
bnxt_set_db(struct bnxt * bp,struct bnxt_db_info * db,u32 ring_type,u32 map_idx,u32 xid)5682 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5683 			u32 map_idx, u32 xid)
5684 {
5685 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5686 		if (BNXT_PF(bp))
5687 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5688 		else
5689 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5690 		switch (ring_type) {
5691 		case HWRM_RING_ALLOC_TX:
5692 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5693 			break;
5694 		case HWRM_RING_ALLOC_RX:
5695 		case HWRM_RING_ALLOC_AGG:
5696 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5697 			break;
5698 		case HWRM_RING_ALLOC_CMPL:
5699 			db->db_key64 = DBR_PATH_L2;
5700 			break;
5701 		case HWRM_RING_ALLOC_NQ:
5702 			db->db_key64 = DBR_PATH_L2;
5703 			break;
5704 		}
5705 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5706 	} else {
5707 		db->doorbell = bp->bar1 + map_idx * 0x80;
5708 		switch (ring_type) {
5709 		case HWRM_RING_ALLOC_TX:
5710 			db->db_key32 = DB_KEY_TX;
5711 			break;
5712 		case HWRM_RING_ALLOC_RX:
5713 		case HWRM_RING_ALLOC_AGG:
5714 			db->db_key32 = DB_KEY_RX;
5715 			break;
5716 		case HWRM_RING_ALLOC_CMPL:
5717 			db->db_key32 = DB_KEY_CP;
5718 			break;
5719 		}
5720 	}
5721 }
5722 
bnxt_hwrm_ring_alloc(struct bnxt * bp)5723 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5724 {
5725 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5726 	int i, rc = 0;
5727 	u32 type;
5728 
5729 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5730 		type = HWRM_RING_ALLOC_NQ;
5731 	else
5732 		type = HWRM_RING_ALLOC_CMPL;
5733 	for (i = 0; i < bp->cp_nr_rings; i++) {
5734 		struct bnxt_napi *bnapi = bp->bnapi[i];
5735 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5736 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5737 		u32 map_idx = ring->map_idx;
5738 		unsigned int vector;
5739 
5740 		vector = bp->irq_tbl[map_idx].vector;
5741 		disable_irq_nosync(vector);
5742 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5743 		if (rc) {
5744 			enable_irq(vector);
5745 			goto err_out;
5746 		}
5747 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5748 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5749 		enable_irq(vector);
5750 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5751 
5752 		if (!i) {
5753 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5754 			if (rc)
5755 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5756 		}
5757 	}
5758 
5759 	type = HWRM_RING_ALLOC_TX;
5760 	for (i = 0; i < bp->tx_nr_rings; i++) {
5761 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5762 		struct bnxt_ring_struct *ring;
5763 		u32 map_idx;
5764 
5765 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5766 			struct bnxt_napi *bnapi = txr->bnapi;
5767 			struct bnxt_cp_ring_info *cpr, *cpr2;
5768 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5769 
5770 			cpr = &bnapi->cp_ring;
5771 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5772 			ring = &cpr2->cp_ring_struct;
5773 			ring->handle = BNXT_TX_HDL;
5774 			map_idx = bnapi->index;
5775 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5776 			if (rc)
5777 				goto err_out;
5778 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5779 				    ring->fw_ring_id);
5780 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5781 		}
5782 		ring = &txr->tx_ring_struct;
5783 		map_idx = i;
5784 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5785 		if (rc)
5786 			goto err_out;
5787 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5788 	}
5789 
5790 	type = HWRM_RING_ALLOC_RX;
5791 	for (i = 0; i < bp->rx_nr_rings; i++) {
5792 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5793 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5794 		struct bnxt_napi *bnapi = rxr->bnapi;
5795 		u32 map_idx = bnapi->index;
5796 
5797 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5798 		if (rc)
5799 			goto err_out;
5800 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5801 		/* If we have agg rings, post agg buffers first. */
5802 		if (!agg_rings)
5803 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5804 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5805 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5806 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5807 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5808 			struct bnxt_cp_ring_info *cpr2;
5809 
5810 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5811 			ring = &cpr2->cp_ring_struct;
5812 			ring->handle = BNXT_RX_HDL;
5813 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5814 			if (rc)
5815 				goto err_out;
5816 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5817 				    ring->fw_ring_id);
5818 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5819 		}
5820 	}
5821 
5822 	if (agg_rings) {
5823 		type = HWRM_RING_ALLOC_AGG;
5824 		for (i = 0; i < bp->rx_nr_rings; i++) {
5825 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5826 			struct bnxt_ring_struct *ring =
5827 						&rxr->rx_agg_ring_struct;
5828 			u32 grp_idx = ring->grp_idx;
5829 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5830 
5831 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5832 			if (rc)
5833 				goto err_out;
5834 
5835 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5836 				    ring->fw_ring_id);
5837 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5838 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5839 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5840 		}
5841 	}
5842 err_out:
5843 	return rc;
5844 }
5845 
hwrm_ring_free_send_msg(struct bnxt * bp,struct bnxt_ring_struct * ring,u32 ring_type,int cmpl_ring_id)5846 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5847 				   struct bnxt_ring_struct *ring,
5848 				   u32 ring_type, int cmpl_ring_id)
5849 {
5850 	struct hwrm_ring_free_output *resp;
5851 	struct hwrm_ring_free_input *req;
5852 	u16 error_code = 0;
5853 	int rc;
5854 
5855 	if (BNXT_NO_FW_ACCESS(bp))
5856 		return 0;
5857 
5858 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
5859 	if (rc)
5860 		goto exit;
5861 
5862 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
5863 	req->ring_type = ring_type;
5864 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
5865 
5866 	resp = hwrm_req_hold(bp, req);
5867 	rc = hwrm_req_send(bp, req);
5868 	error_code = le16_to_cpu(resp->error_code);
5869 	hwrm_req_drop(bp, req);
5870 exit:
5871 	if (rc || error_code) {
5872 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5873 			   ring_type, rc, error_code);
5874 		return -EIO;
5875 	}
5876 	return 0;
5877 }
5878 
bnxt_hwrm_ring_free(struct bnxt * bp,bool close_path)5879 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5880 {
5881 	u32 type;
5882 	int i;
5883 
5884 	if (!bp->bnapi)
5885 		return;
5886 
5887 	for (i = 0; i < bp->tx_nr_rings; i++) {
5888 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5889 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5890 
5891 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5892 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5893 
5894 			hwrm_ring_free_send_msg(bp, ring,
5895 						RING_FREE_REQ_RING_TYPE_TX,
5896 						close_path ? cmpl_ring_id :
5897 						INVALID_HW_RING_ID);
5898 			ring->fw_ring_id = INVALID_HW_RING_ID;
5899 		}
5900 	}
5901 
5902 	for (i = 0; i < bp->rx_nr_rings; i++) {
5903 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5904 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5905 		u32 grp_idx = rxr->bnapi->index;
5906 
5907 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5908 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5909 
5910 			hwrm_ring_free_send_msg(bp, ring,
5911 						RING_FREE_REQ_RING_TYPE_RX,
5912 						close_path ? cmpl_ring_id :
5913 						INVALID_HW_RING_ID);
5914 			ring->fw_ring_id = INVALID_HW_RING_ID;
5915 			bp->grp_info[grp_idx].rx_fw_ring_id =
5916 				INVALID_HW_RING_ID;
5917 		}
5918 	}
5919 
5920 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5921 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5922 	else
5923 		type = RING_FREE_REQ_RING_TYPE_RX;
5924 	for (i = 0; i < bp->rx_nr_rings; i++) {
5925 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5926 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5927 		u32 grp_idx = rxr->bnapi->index;
5928 
5929 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5930 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5931 
5932 			hwrm_ring_free_send_msg(bp, ring, type,
5933 						close_path ? cmpl_ring_id :
5934 						INVALID_HW_RING_ID);
5935 			ring->fw_ring_id = INVALID_HW_RING_ID;
5936 			bp->grp_info[grp_idx].agg_fw_ring_id =
5937 				INVALID_HW_RING_ID;
5938 		}
5939 	}
5940 
5941 	/* The completion rings are about to be freed.  After that the
5942 	 * IRQ doorbell will not work anymore.  So we need to disable
5943 	 * IRQ here.
5944 	 */
5945 	bnxt_disable_int_sync(bp);
5946 
5947 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5948 		type = RING_FREE_REQ_RING_TYPE_NQ;
5949 	else
5950 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5951 	for (i = 0; i < bp->cp_nr_rings; i++) {
5952 		struct bnxt_napi *bnapi = bp->bnapi[i];
5953 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5954 		struct bnxt_ring_struct *ring;
5955 		int j;
5956 
5957 		for (j = 0; j < 2; j++) {
5958 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5959 
5960 			if (cpr2) {
5961 				ring = &cpr2->cp_ring_struct;
5962 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5963 					continue;
5964 				hwrm_ring_free_send_msg(bp, ring,
5965 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5966 					INVALID_HW_RING_ID);
5967 				ring->fw_ring_id = INVALID_HW_RING_ID;
5968 			}
5969 		}
5970 		ring = &cpr->cp_ring_struct;
5971 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5972 			hwrm_ring_free_send_msg(bp, ring, type,
5973 						INVALID_HW_RING_ID);
5974 			ring->fw_ring_id = INVALID_HW_RING_ID;
5975 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5976 		}
5977 	}
5978 }
5979 
5980 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5981 			   bool shared);
5982 
bnxt_hwrm_get_rings(struct bnxt * bp)5983 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5984 {
5985 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5986 	struct hwrm_func_qcfg_output *resp;
5987 	struct hwrm_func_qcfg_input *req;
5988 	int rc;
5989 
5990 	if (bp->hwrm_spec_code < 0x10601)
5991 		return 0;
5992 
5993 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
5994 	if (rc)
5995 		return rc;
5996 
5997 	req->fid = cpu_to_le16(0xffff);
5998 	resp = hwrm_req_hold(bp, req);
5999 	rc = hwrm_req_send(bp, req);
6000 	if (rc) {
6001 		hwrm_req_drop(bp, req);
6002 		return rc;
6003 	}
6004 
6005 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6006 	if (BNXT_NEW_RM(bp)) {
6007 		u16 cp, stats;
6008 
6009 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6010 		hw_resc->resv_hw_ring_grps =
6011 			le32_to_cpu(resp->alloc_hw_ring_grps);
6012 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6013 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6014 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6015 		hw_resc->resv_irqs = cp;
6016 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6017 			int rx = hw_resc->resv_rx_rings;
6018 			int tx = hw_resc->resv_tx_rings;
6019 
6020 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6021 				rx >>= 1;
6022 			if (cp < (rx + tx)) {
6023 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6024 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6025 					rx <<= 1;
6026 				hw_resc->resv_rx_rings = rx;
6027 				hw_resc->resv_tx_rings = tx;
6028 			}
6029 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6030 			hw_resc->resv_hw_ring_grps = rx;
6031 		}
6032 		hw_resc->resv_cp_rings = cp;
6033 		hw_resc->resv_stat_ctxs = stats;
6034 	}
6035 	hwrm_req_drop(bp, req);
6036 	return 0;
6037 }
6038 
__bnxt_hwrm_get_tx_rings(struct bnxt * bp,u16 fid,int * tx_rings)6039 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6040 {
6041 	struct hwrm_func_qcfg_output *resp;
6042 	struct hwrm_func_qcfg_input *req;
6043 	int rc;
6044 
6045 	if (bp->hwrm_spec_code < 0x10601)
6046 		return 0;
6047 
6048 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6049 	if (rc)
6050 		return rc;
6051 
6052 	req->fid = cpu_to_le16(fid);
6053 	resp = hwrm_req_hold(bp, req);
6054 	rc = hwrm_req_send(bp, req);
6055 	if (!rc)
6056 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6057 
6058 	hwrm_req_drop(bp, req);
6059 	return rc;
6060 }
6061 
6062 static bool bnxt_rfs_supported(struct bnxt *bp);
6063 
6064 static struct hwrm_func_cfg_input *
__bnxt_hwrm_reserve_pf_rings(struct bnxt * bp,int tx_rings,int rx_rings,int ring_grps,int cp_rings,int stats,int vnics)6065 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6066 			     int ring_grps, int cp_rings, int stats, int vnics)
6067 {
6068 	struct hwrm_func_cfg_input *req;
6069 	u32 enables = 0;
6070 
6071 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6072 		return NULL;
6073 
6074 	req->fid = cpu_to_le16(0xffff);
6075 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6076 	req->num_tx_rings = cpu_to_le16(tx_rings);
6077 	if (BNXT_NEW_RM(bp)) {
6078 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6079 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6080 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6081 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6082 			enables |= tx_rings + ring_grps ?
6083 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6084 			enables |= rx_rings ?
6085 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6086 		} else {
6087 			enables |= cp_rings ?
6088 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6089 			enables |= ring_grps ?
6090 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6091 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6092 		}
6093 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6094 
6095 		req->num_rx_rings = cpu_to_le16(rx_rings);
6096 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6097 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6098 			req->num_msix = cpu_to_le16(cp_rings);
6099 			req->num_rsscos_ctxs =
6100 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6101 		} else {
6102 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6103 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6104 			req->num_rsscos_ctxs = cpu_to_le16(1);
6105 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6106 			    bnxt_rfs_supported(bp))
6107 				req->num_rsscos_ctxs =
6108 					cpu_to_le16(ring_grps + 1);
6109 		}
6110 		req->num_stat_ctxs = cpu_to_le16(stats);
6111 		req->num_vnics = cpu_to_le16(vnics);
6112 	}
6113 	req->enables = cpu_to_le32(enables);
6114 	return req;
6115 }
6116 
6117 static struct hwrm_func_vf_cfg_input *
__bnxt_hwrm_reserve_vf_rings(struct bnxt * bp,int tx_rings,int rx_rings,int ring_grps,int cp_rings,int stats,int vnics)6118 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6119 			     int ring_grps, int cp_rings, int stats, int vnics)
6120 {
6121 	struct hwrm_func_vf_cfg_input *req;
6122 	u32 enables = 0;
6123 
6124 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6125 		return NULL;
6126 
6127 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6128 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6129 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6130 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6131 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6132 		enables |= tx_rings + ring_grps ?
6133 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6134 	} else {
6135 		enables |= cp_rings ?
6136 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6137 		enables |= ring_grps ?
6138 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6139 	}
6140 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6141 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6142 
6143 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6144 	req->num_tx_rings = cpu_to_le16(tx_rings);
6145 	req->num_rx_rings = cpu_to_le16(rx_rings);
6146 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6147 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6148 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6149 	} else {
6150 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6151 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6152 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6153 	}
6154 	req->num_stat_ctxs = cpu_to_le16(stats);
6155 	req->num_vnics = cpu_to_le16(vnics);
6156 
6157 	req->enables = cpu_to_le32(enables);
6158 	return req;
6159 }
6160 
6161 static int
bnxt_hwrm_reserve_pf_rings(struct bnxt * bp,int tx_rings,int rx_rings,int ring_grps,int cp_rings,int stats,int vnics)6162 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6163 			   int ring_grps, int cp_rings, int stats, int vnics)
6164 {
6165 	struct hwrm_func_cfg_input *req;
6166 	int rc;
6167 
6168 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6169 					   cp_rings, stats, vnics);
6170 	if (!req)
6171 		return -ENOMEM;
6172 
6173 	if (!req->enables) {
6174 		hwrm_req_drop(bp, req);
6175 		return 0;
6176 	}
6177 
6178 	rc = hwrm_req_send(bp, req);
6179 	if (rc)
6180 		return rc;
6181 
6182 	if (bp->hwrm_spec_code < 0x10601)
6183 		bp->hw_resc.resv_tx_rings = tx_rings;
6184 
6185 	return bnxt_hwrm_get_rings(bp);
6186 }
6187 
6188 static int
bnxt_hwrm_reserve_vf_rings(struct bnxt * bp,int tx_rings,int rx_rings,int ring_grps,int cp_rings,int stats,int vnics)6189 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6190 			   int ring_grps, int cp_rings, int stats, int vnics)
6191 {
6192 	struct hwrm_func_vf_cfg_input *req;
6193 	int rc;
6194 
6195 	if (!BNXT_NEW_RM(bp)) {
6196 		bp->hw_resc.resv_tx_rings = tx_rings;
6197 		return 0;
6198 	}
6199 
6200 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6201 					   cp_rings, stats, vnics);
6202 	if (!req)
6203 		return -ENOMEM;
6204 
6205 	rc = hwrm_req_send(bp, req);
6206 	if (rc)
6207 		return rc;
6208 
6209 	return bnxt_hwrm_get_rings(bp);
6210 }
6211 
bnxt_hwrm_reserve_rings(struct bnxt * bp,int tx,int rx,int grp,int cp,int stat,int vnic)6212 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6213 				   int cp, int stat, int vnic)
6214 {
6215 	if (BNXT_PF(bp))
6216 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6217 						  vnic);
6218 	else
6219 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6220 						  vnic);
6221 }
6222 
bnxt_nq_rings_in_use(struct bnxt * bp)6223 int bnxt_nq_rings_in_use(struct bnxt *bp)
6224 {
6225 	int cp = bp->cp_nr_rings;
6226 	int ulp_msix, ulp_base;
6227 
6228 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6229 	if (ulp_msix) {
6230 		ulp_base = bnxt_get_ulp_msix_base(bp);
6231 		cp += ulp_msix;
6232 		if ((ulp_base + ulp_msix) > cp)
6233 			cp = ulp_base + ulp_msix;
6234 	}
6235 	return cp;
6236 }
6237 
bnxt_cp_rings_in_use(struct bnxt * bp)6238 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6239 {
6240 	int cp;
6241 
6242 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6243 		return bnxt_nq_rings_in_use(bp);
6244 
6245 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6246 	return cp;
6247 }
6248 
bnxt_get_func_stat_ctxs(struct bnxt * bp)6249 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6250 {
6251 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6252 	int cp = bp->cp_nr_rings;
6253 
6254 	if (!ulp_stat)
6255 		return cp;
6256 
6257 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6258 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6259 
6260 	return cp + ulp_stat;
6261 }
6262 
6263 /* Check if a default RSS map needs to be setup.  This function is only
6264  * used on older firmware that does not require reserving RX rings.
6265  */
bnxt_check_rss_tbl_no_rmgr(struct bnxt * bp)6266 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6267 {
6268 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6269 
6270 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6271 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6272 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6273 		if (!netif_is_rxfh_configured(bp->dev))
6274 			bnxt_set_dflt_rss_indir_tbl(bp);
6275 	}
6276 }
6277 
bnxt_need_reserve_rings(struct bnxt * bp)6278 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6279 {
6280 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6281 	int cp = bnxt_cp_rings_in_use(bp);
6282 	int nq = bnxt_nq_rings_in_use(bp);
6283 	int rx = bp->rx_nr_rings, stat;
6284 	int vnic = 1, grp = rx;
6285 
6286 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6287 	    bp->hwrm_spec_code >= 0x10601)
6288 		return true;
6289 
6290 	/* Old firmware does not need RX ring reservations but we still
6291 	 * need to setup a default RSS map when needed.  With new firmware
6292 	 * we go through RX ring reservations first and then set up the
6293 	 * RSS map for the successfully reserved RX rings when needed.
6294 	 */
6295 	if (!BNXT_NEW_RM(bp)) {
6296 		bnxt_check_rss_tbl_no_rmgr(bp);
6297 		return false;
6298 	}
6299 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6300 		vnic = rx + 1;
6301 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6302 		rx <<= 1;
6303 	stat = bnxt_get_func_stat_ctxs(bp);
6304 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6305 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6306 	    (hw_resc->resv_hw_ring_grps != grp &&
6307 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6308 		return true;
6309 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6310 	    hw_resc->resv_irqs != nq)
6311 		return true;
6312 	return false;
6313 }
6314 
__bnxt_reserve_rings(struct bnxt * bp)6315 static int __bnxt_reserve_rings(struct bnxt *bp)
6316 {
6317 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6318 	int cp = bnxt_nq_rings_in_use(bp);
6319 	int tx = bp->tx_nr_rings;
6320 	int rx = bp->rx_nr_rings;
6321 	int grp, rx_rings, rc;
6322 	int vnic = 1, stat;
6323 	bool sh = false;
6324 
6325 	if (!bnxt_need_reserve_rings(bp))
6326 		return 0;
6327 
6328 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6329 		sh = true;
6330 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6331 		vnic = rx + 1;
6332 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6333 		rx <<= 1;
6334 	grp = bp->rx_nr_rings;
6335 	stat = bnxt_get_func_stat_ctxs(bp);
6336 
6337 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6338 	if (rc)
6339 		return rc;
6340 
6341 	tx = hw_resc->resv_tx_rings;
6342 	if (BNXT_NEW_RM(bp)) {
6343 		rx = hw_resc->resv_rx_rings;
6344 		cp = hw_resc->resv_irqs;
6345 		grp = hw_resc->resv_hw_ring_grps;
6346 		vnic = hw_resc->resv_vnics;
6347 		stat = hw_resc->resv_stat_ctxs;
6348 	}
6349 
6350 	rx_rings = rx;
6351 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6352 		if (rx >= 2) {
6353 			rx_rings = rx >> 1;
6354 		} else {
6355 			if (netif_running(bp->dev))
6356 				return -ENOMEM;
6357 
6358 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6359 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6360 			bp->dev->hw_features &= ~NETIF_F_LRO;
6361 			bp->dev->features &= ~NETIF_F_LRO;
6362 			bnxt_set_ring_params(bp);
6363 		}
6364 	}
6365 	rx_rings = min_t(int, rx_rings, grp);
6366 	cp = min_t(int, cp, bp->cp_nr_rings);
6367 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6368 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6369 	cp = min_t(int, cp, stat);
6370 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6371 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6372 		rx = rx_rings << 1;
6373 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6374 	bp->tx_nr_rings = tx;
6375 
6376 	/* If we cannot reserve all the RX rings, reset the RSS map only
6377 	 * if absolutely necessary
6378 	 */
6379 	if (rx_rings != bp->rx_nr_rings) {
6380 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6381 			    rx_rings, bp->rx_nr_rings);
6382 		if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) &&
6383 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6384 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6385 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6386 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6387 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6388 		}
6389 	}
6390 	bp->rx_nr_rings = rx_rings;
6391 	bp->cp_nr_rings = cp;
6392 
6393 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6394 		return -ENOMEM;
6395 
6396 	if (!netif_is_rxfh_configured(bp->dev))
6397 		bnxt_set_dflt_rss_indir_tbl(bp);
6398 
6399 	return rc;
6400 }
6401 
bnxt_hwrm_check_vf_rings(struct bnxt * bp,int tx_rings,int rx_rings,int ring_grps,int cp_rings,int stats,int vnics)6402 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6403 				    int ring_grps, int cp_rings, int stats,
6404 				    int vnics)
6405 {
6406 	struct hwrm_func_vf_cfg_input *req;
6407 	u32 flags;
6408 
6409 	if (!BNXT_NEW_RM(bp))
6410 		return 0;
6411 
6412 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6413 					   cp_rings, stats, vnics);
6414 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6415 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6416 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6417 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6418 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6419 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6420 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6421 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6422 
6423 	req->flags = cpu_to_le32(flags);
6424 	return hwrm_req_send_silent(bp, req);
6425 }
6426 
bnxt_hwrm_check_pf_rings(struct bnxt * bp,int tx_rings,int rx_rings,int ring_grps,int cp_rings,int stats,int vnics)6427 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6428 				    int ring_grps, int cp_rings, int stats,
6429 				    int vnics)
6430 {
6431 	struct hwrm_func_cfg_input *req;
6432 	u32 flags;
6433 
6434 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6435 					   cp_rings, stats, vnics);
6436 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6437 	if (BNXT_NEW_RM(bp)) {
6438 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6439 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6440 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6441 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6442 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6443 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6444 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6445 		else
6446 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6447 	}
6448 
6449 	req->flags = cpu_to_le32(flags);
6450 	return hwrm_req_send_silent(bp, req);
6451 }
6452 
bnxt_hwrm_check_rings(struct bnxt * bp,int tx_rings,int rx_rings,int ring_grps,int cp_rings,int stats,int vnics)6453 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6454 				 int ring_grps, int cp_rings, int stats,
6455 				 int vnics)
6456 {
6457 	if (bp->hwrm_spec_code < 0x10801)
6458 		return 0;
6459 
6460 	if (BNXT_PF(bp))
6461 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6462 						ring_grps, cp_rings, stats,
6463 						vnics);
6464 
6465 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6466 					cp_rings, stats, vnics);
6467 }
6468 
bnxt_hwrm_coal_params_qcaps(struct bnxt * bp)6469 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6470 {
6471 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6472 	struct hwrm_ring_aggint_qcaps_output *resp;
6473 	struct hwrm_ring_aggint_qcaps_input *req;
6474 	int rc;
6475 
6476 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6477 	coal_cap->num_cmpl_dma_aggr_max = 63;
6478 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6479 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6480 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6481 	coal_cap->int_lat_tmr_min_max = 65535;
6482 	coal_cap->int_lat_tmr_max_max = 65535;
6483 	coal_cap->num_cmpl_aggr_int_max = 65535;
6484 	coal_cap->timer_units = 80;
6485 
6486 	if (bp->hwrm_spec_code < 0x10902)
6487 		return;
6488 
6489 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6490 		return;
6491 
6492 	resp = hwrm_req_hold(bp, req);
6493 	rc = hwrm_req_send_silent(bp, req);
6494 	if (!rc) {
6495 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6496 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6497 		coal_cap->num_cmpl_dma_aggr_max =
6498 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6499 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6500 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6501 		coal_cap->cmpl_aggr_dma_tmr_max =
6502 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6503 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6504 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6505 		coal_cap->int_lat_tmr_min_max =
6506 			le16_to_cpu(resp->int_lat_tmr_min_max);
6507 		coal_cap->int_lat_tmr_max_max =
6508 			le16_to_cpu(resp->int_lat_tmr_max_max);
6509 		coal_cap->num_cmpl_aggr_int_max =
6510 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6511 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6512 	}
6513 	hwrm_req_drop(bp, req);
6514 }
6515 
bnxt_usec_to_coal_tmr(struct bnxt * bp,u16 usec)6516 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6517 {
6518 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6519 
6520 	return usec * 1000 / coal_cap->timer_units;
6521 }
6522 
bnxt_hwrm_set_coal_params(struct bnxt * bp,struct bnxt_coal * hw_coal,struct hwrm_ring_cmpl_ring_cfg_aggint_params_input * req)6523 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6524 	struct bnxt_coal *hw_coal,
6525 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6526 {
6527 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6528 	u32 cmpl_params = coal_cap->cmpl_params;
6529 	u16 val, tmr, max, flags = 0;
6530 
6531 	max = hw_coal->bufs_per_record * 128;
6532 	if (hw_coal->budget)
6533 		max = hw_coal->bufs_per_record * hw_coal->budget;
6534 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6535 
6536 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6537 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6538 
6539 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6540 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6541 
6542 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6543 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6544 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6545 
6546 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6547 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6548 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6549 
6550 	/* min timer set to 1/2 of interrupt timer */
6551 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6552 		val = tmr / 2;
6553 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6554 		req->int_lat_tmr_min = cpu_to_le16(val);
6555 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6556 	}
6557 
6558 	/* buf timer set to 1/4 of interrupt timer */
6559 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6560 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6561 
6562 	if (cmpl_params &
6563 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6564 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6565 		val = clamp_t(u16, tmr, 1,
6566 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6567 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6568 		req->enables |=
6569 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6570 	}
6571 
6572 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
6573 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
6574 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6575 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6576 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6577 	req->flags = cpu_to_le16(flags);
6578 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6579 }
6580 
__bnxt_hwrm_set_coal_nq(struct bnxt * bp,struct bnxt_napi * bnapi,struct bnxt_coal * hw_coal)6581 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6582 				   struct bnxt_coal *hw_coal)
6583 {
6584 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6585 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6586 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6587 	u32 nq_params = coal_cap->nq_params;
6588 	u16 tmr;
6589 	int rc;
6590 
6591 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6592 		return 0;
6593 
6594 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6595 	if (rc)
6596 		return rc;
6597 
6598 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6599 	req->flags =
6600 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6601 
6602 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6603 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6604 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6605 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6606 	return hwrm_req_send(bp, req);
6607 }
6608 
bnxt_hwrm_set_ring_coal(struct bnxt * bp,struct bnxt_napi * bnapi)6609 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6610 {
6611 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6612 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6613 	struct bnxt_coal coal;
6614 	int rc;
6615 
6616 	/* Tick values in micro seconds.
6617 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6618 	 */
6619 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6620 
6621 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6622 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6623 
6624 	if (!bnapi->rx_ring)
6625 		return -ENODEV;
6626 
6627 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6628 	if (rc)
6629 		return rc;
6630 
6631 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6632 
6633 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6634 
6635 	return hwrm_req_send(bp, req_rx);
6636 }
6637 
bnxt_hwrm_set_coal(struct bnxt * bp)6638 int bnxt_hwrm_set_coal(struct bnxt *bp)
6639 {
6640 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6641 							   *req;
6642 	int i, rc;
6643 
6644 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6645 	if (rc)
6646 		return rc;
6647 
6648 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6649 	if (rc) {
6650 		hwrm_req_drop(bp, req_rx);
6651 		return rc;
6652 	}
6653 
6654 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6655 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6656 
6657 	hwrm_req_hold(bp, req_rx);
6658 	hwrm_req_hold(bp, req_tx);
6659 	for (i = 0; i < bp->cp_nr_rings; i++) {
6660 		struct bnxt_napi *bnapi = bp->bnapi[i];
6661 		struct bnxt_coal *hw_coal;
6662 		u16 ring_id;
6663 
6664 		req = req_rx;
6665 		if (!bnapi->rx_ring) {
6666 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6667 			req = req_tx;
6668 		} else {
6669 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6670 		}
6671 		req->ring_id = cpu_to_le16(ring_id);
6672 
6673 		rc = hwrm_req_send(bp, req);
6674 		if (rc)
6675 			break;
6676 
6677 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6678 			continue;
6679 
6680 		if (bnapi->rx_ring && bnapi->tx_ring) {
6681 			req = req_tx;
6682 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6683 			req->ring_id = cpu_to_le16(ring_id);
6684 			rc = hwrm_req_send(bp, req);
6685 			if (rc)
6686 				break;
6687 		}
6688 		if (bnapi->rx_ring)
6689 			hw_coal = &bp->rx_coal;
6690 		else
6691 			hw_coal = &bp->tx_coal;
6692 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6693 	}
6694 	hwrm_req_drop(bp, req_rx);
6695 	hwrm_req_drop(bp, req_tx);
6696 	return rc;
6697 }
6698 
bnxt_hwrm_stat_ctx_free(struct bnxt * bp)6699 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6700 {
6701 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6702 	struct hwrm_stat_ctx_free_input *req;
6703 	int i;
6704 
6705 	if (!bp->bnapi)
6706 		return;
6707 
6708 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6709 		return;
6710 
6711 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6712 		return;
6713 	if (BNXT_FW_MAJ(bp) <= 20) {
6714 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6715 			hwrm_req_drop(bp, req);
6716 			return;
6717 		}
6718 		hwrm_req_hold(bp, req0);
6719 	}
6720 	hwrm_req_hold(bp, req);
6721 	for (i = 0; i < bp->cp_nr_rings; i++) {
6722 		struct bnxt_napi *bnapi = bp->bnapi[i];
6723 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6724 
6725 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6726 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6727 			if (req0) {
6728 				req0->stat_ctx_id = req->stat_ctx_id;
6729 				hwrm_req_send(bp, req0);
6730 			}
6731 			hwrm_req_send(bp, req);
6732 
6733 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6734 		}
6735 	}
6736 	hwrm_req_drop(bp, req);
6737 	if (req0)
6738 		hwrm_req_drop(bp, req0);
6739 }
6740 
bnxt_hwrm_stat_ctx_alloc(struct bnxt * bp)6741 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6742 {
6743 	struct hwrm_stat_ctx_alloc_output *resp;
6744 	struct hwrm_stat_ctx_alloc_input *req;
6745 	int rc, i;
6746 
6747 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6748 		return 0;
6749 
6750 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6751 	if (rc)
6752 		return rc;
6753 
6754 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6755 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6756 
6757 	resp = hwrm_req_hold(bp, req);
6758 	for (i = 0; i < bp->cp_nr_rings; i++) {
6759 		struct bnxt_napi *bnapi = bp->bnapi[i];
6760 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6761 
6762 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6763 
6764 		rc = hwrm_req_send(bp, req);
6765 		if (rc)
6766 			break;
6767 
6768 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6769 
6770 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6771 	}
6772 	hwrm_req_drop(bp, req);
6773 	return rc;
6774 }
6775 
bnxt_hwrm_func_qcfg(struct bnxt * bp)6776 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6777 {
6778 	struct hwrm_func_qcfg_output *resp;
6779 	struct hwrm_func_qcfg_input *req;
6780 	u32 min_db_offset = 0;
6781 	u16 flags;
6782 	int rc;
6783 
6784 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6785 	if (rc)
6786 		return rc;
6787 
6788 	req->fid = cpu_to_le16(0xffff);
6789 	resp = hwrm_req_hold(bp, req);
6790 	rc = hwrm_req_send(bp, req);
6791 	if (rc)
6792 		goto func_qcfg_exit;
6793 
6794 #ifdef CONFIG_BNXT_SRIOV
6795 	if (BNXT_VF(bp)) {
6796 		struct bnxt_vf_info *vf = &bp->vf;
6797 
6798 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6799 	} else {
6800 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6801 	}
6802 #endif
6803 	flags = le16_to_cpu(resp->flags);
6804 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6805 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6806 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6807 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6808 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6809 	}
6810 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6811 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6812 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6813 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6814 
6815 	switch (resp->port_partition_type) {
6816 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6817 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6818 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6819 		bp->port_partition_type = resp->port_partition_type;
6820 		break;
6821 	}
6822 	if (bp->hwrm_spec_code < 0x10707 ||
6823 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6824 		bp->br_mode = BRIDGE_MODE_VEB;
6825 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6826 		bp->br_mode = BRIDGE_MODE_VEPA;
6827 	else
6828 		bp->br_mode = BRIDGE_MODE_UNDEF;
6829 
6830 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6831 	if (!bp->max_mtu)
6832 		bp->max_mtu = BNXT_MAX_MTU;
6833 
6834 	if (bp->db_size)
6835 		goto func_qcfg_exit;
6836 
6837 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6838 		if (BNXT_PF(bp))
6839 			min_db_offset = DB_PF_OFFSET_P5;
6840 		else
6841 			min_db_offset = DB_VF_OFFSET_P5;
6842 	}
6843 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6844 				 1024);
6845 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6846 	    bp->db_size <= min_db_offset)
6847 		bp->db_size = pci_resource_len(bp->pdev, 2);
6848 
6849 func_qcfg_exit:
6850 	hwrm_req_drop(bp, req);
6851 	return rc;
6852 }
6853 
bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info * ctx,struct hwrm_func_backing_store_qcaps_output * resp)6854 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
6855 			struct hwrm_func_backing_store_qcaps_output *resp)
6856 {
6857 	struct bnxt_mem_init *mem_init;
6858 	u16 init_mask;
6859 	u8 init_val;
6860 	u8 *offset;
6861 	int i;
6862 
6863 	init_val = resp->ctx_kind_initializer;
6864 	init_mask = le16_to_cpu(resp->ctx_init_mask);
6865 	offset = &resp->qp_init_offset;
6866 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
6867 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
6868 		mem_init->init_val = init_val;
6869 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
6870 		if (!init_mask)
6871 			continue;
6872 		if (i == BNXT_CTX_MEM_INIT_STAT)
6873 			offset = &resp->stat_init_offset;
6874 		if (init_mask & (1 << i))
6875 			mem_init->offset = *offset * 4;
6876 		else
6877 			mem_init->init_val = 0;
6878 	}
6879 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
6880 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
6881 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
6882 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
6883 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
6884 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
6885 }
6886 
bnxt_hwrm_func_backing_store_qcaps(struct bnxt * bp)6887 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6888 {
6889 	struct hwrm_func_backing_store_qcaps_output *resp;
6890 	struct hwrm_func_backing_store_qcaps_input *req;
6891 	int rc;
6892 
6893 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6894 		return 0;
6895 
6896 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
6897 	if (rc)
6898 		return rc;
6899 
6900 	resp = hwrm_req_hold(bp, req);
6901 	rc = hwrm_req_send_silent(bp, req);
6902 	if (!rc) {
6903 		struct bnxt_ctx_pg_info *ctx_pg;
6904 		struct bnxt_ctx_mem_info *ctx;
6905 		int i, tqm_rings;
6906 
6907 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6908 		if (!ctx) {
6909 			rc = -ENOMEM;
6910 			goto ctx_err;
6911 		}
6912 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6913 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6914 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6915 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6916 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6917 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6918 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6919 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6920 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6921 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6922 		ctx->vnic_max_vnic_entries =
6923 			le16_to_cpu(resp->vnic_max_vnic_entries);
6924 		ctx->vnic_max_ring_table_entries =
6925 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6926 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6927 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6928 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6929 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6930 		ctx->tqm_min_entries_per_ring =
6931 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6932 		ctx->tqm_max_entries_per_ring =
6933 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6934 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6935 		if (!ctx->tqm_entries_multiple)
6936 			ctx->tqm_entries_multiple = 1;
6937 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6938 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6939 		ctx->mrav_num_entries_units =
6940 			le16_to_cpu(resp->mrav_num_entries_units);
6941 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6942 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6943 
6944 		bnxt_init_ctx_initializer(ctx, resp);
6945 
6946 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
6947 		if (!ctx->tqm_fp_rings_count)
6948 			ctx->tqm_fp_rings_count = bp->max_q;
6949 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
6950 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
6951 
6952 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
6953 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
6954 		if (!ctx_pg) {
6955 			kfree(ctx);
6956 			rc = -ENOMEM;
6957 			goto ctx_err;
6958 		}
6959 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
6960 			ctx->tqm_mem[i] = ctx_pg;
6961 		bp->ctx = ctx;
6962 	} else {
6963 		rc = 0;
6964 	}
6965 ctx_err:
6966 	hwrm_req_drop(bp, req);
6967 	return rc;
6968 }
6969 
bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info * rmem,u8 * pg_attr,__le64 * pg_dir)6970 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6971 				  __le64 *pg_dir)
6972 {
6973 	if (!rmem->nr_pages)
6974 		return;
6975 
6976 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
6977 	if (rmem->depth >= 1) {
6978 		if (rmem->depth == 2)
6979 			*pg_attr |= 2;
6980 		else
6981 			*pg_attr |= 1;
6982 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6983 	} else {
6984 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6985 	}
6986 }
6987 
6988 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6989 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6990 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6991 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6992 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6993 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6994 
bnxt_hwrm_func_backing_store_cfg(struct bnxt * bp,u32 enables)6995 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6996 {
6997 	struct hwrm_func_backing_store_cfg_input *req;
6998 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6999 	struct bnxt_ctx_pg_info *ctx_pg;
7000 	void **__req = (void **)&req;
7001 	u32 req_len = sizeof(*req);
7002 	__le32 *num_entries;
7003 	__le64 *pg_dir;
7004 	u32 flags = 0;
7005 	u8 *pg_attr;
7006 	u32 ena;
7007 	int rc;
7008 	int i;
7009 
7010 	if (!ctx)
7011 		return 0;
7012 
7013 	if (req_len > bp->hwrm_max_ext_req_len)
7014 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7015 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7016 	if (rc)
7017 		return rc;
7018 
7019 	req->enables = cpu_to_le32(enables);
7020 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7021 		ctx_pg = &ctx->qp_mem;
7022 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7023 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7024 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7025 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7026 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7027 				      &req->qpc_pg_size_qpc_lvl,
7028 				      &req->qpc_page_dir);
7029 	}
7030 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7031 		ctx_pg = &ctx->srq_mem;
7032 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7033 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7034 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7035 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7036 				      &req->srq_pg_size_srq_lvl,
7037 				      &req->srq_page_dir);
7038 	}
7039 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7040 		ctx_pg = &ctx->cq_mem;
7041 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7042 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7043 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7044 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7045 				      &req->cq_pg_size_cq_lvl,
7046 				      &req->cq_page_dir);
7047 	}
7048 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7049 		ctx_pg = &ctx->vnic_mem;
7050 		req->vnic_num_vnic_entries =
7051 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7052 		req->vnic_num_ring_table_entries =
7053 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7054 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7055 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7056 				      &req->vnic_pg_size_vnic_lvl,
7057 				      &req->vnic_page_dir);
7058 	}
7059 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7060 		ctx_pg = &ctx->stat_mem;
7061 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7062 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7063 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7064 				      &req->stat_pg_size_stat_lvl,
7065 				      &req->stat_page_dir);
7066 	}
7067 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7068 		ctx_pg = &ctx->mrav_mem;
7069 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7070 		if (ctx->mrav_num_entries_units)
7071 			flags |=
7072 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7073 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7074 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7075 				      &req->mrav_pg_size_mrav_lvl,
7076 				      &req->mrav_page_dir);
7077 	}
7078 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7079 		ctx_pg = &ctx->tim_mem;
7080 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7081 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7082 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7083 				      &req->tim_pg_size_tim_lvl,
7084 				      &req->tim_page_dir);
7085 	}
7086 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7087 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7088 	     pg_dir = &req->tqm_sp_page_dir,
7089 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7090 	     i < BNXT_MAX_TQM_RINGS;
7091 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7092 		if (!(enables & ena))
7093 			continue;
7094 
7095 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7096 		ctx_pg = ctx->tqm_mem[i];
7097 		*num_entries = cpu_to_le32(ctx_pg->entries);
7098 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7099 	}
7100 	req->flags = cpu_to_le32(flags);
7101 	return hwrm_req_send(bp, req);
7102 }
7103 
bnxt_alloc_ctx_mem_blk(struct bnxt * bp,struct bnxt_ctx_pg_info * ctx_pg)7104 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7105 				  struct bnxt_ctx_pg_info *ctx_pg)
7106 {
7107 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7108 
7109 	rmem->page_size = BNXT_PAGE_SIZE;
7110 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7111 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7112 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7113 	if (rmem->depth >= 1)
7114 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7115 	return bnxt_alloc_ring(bp, rmem);
7116 }
7117 
bnxt_alloc_ctx_pg_tbls(struct bnxt * bp,struct bnxt_ctx_pg_info * ctx_pg,u32 mem_size,u8 depth,struct bnxt_mem_init * mem_init)7118 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7119 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7120 				  u8 depth, struct bnxt_mem_init *mem_init)
7121 {
7122 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7123 	int rc;
7124 
7125 	if (!mem_size)
7126 		return -EINVAL;
7127 
7128 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7129 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7130 		ctx_pg->nr_pages = 0;
7131 		return -EINVAL;
7132 	}
7133 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7134 		int nr_tbls, i;
7135 
7136 		rmem->depth = 2;
7137 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7138 					     GFP_KERNEL);
7139 		if (!ctx_pg->ctx_pg_tbl)
7140 			return -ENOMEM;
7141 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7142 		rmem->nr_pages = nr_tbls;
7143 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7144 		if (rc)
7145 			return rc;
7146 		for (i = 0; i < nr_tbls; i++) {
7147 			struct bnxt_ctx_pg_info *pg_tbl;
7148 
7149 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7150 			if (!pg_tbl)
7151 				return -ENOMEM;
7152 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7153 			rmem = &pg_tbl->ring_mem;
7154 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7155 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7156 			rmem->depth = 1;
7157 			rmem->nr_pages = MAX_CTX_PAGES;
7158 			rmem->mem_init = mem_init;
7159 			if (i == (nr_tbls - 1)) {
7160 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7161 
7162 				if (rem)
7163 					rmem->nr_pages = rem;
7164 			}
7165 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7166 			if (rc)
7167 				break;
7168 		}
7169 	} else {
7170 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7171 		if (rmem->nr_pages > 1 || depth)
7172 			rmem->depth = 1;
7173 		rmem->mem_init = mem_init;
7174 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7175 	}
7176 	return rc;
7177 }
7178 
bnxt_free_ctx_pg_tbls(struct bnxt * bp,struct bnxt_ctx_pg_info * ctx_pg)7179 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7180 				  struct bnxt_ctx_pg_info *ctx_pg)
7181 {
7182 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7183 
7184 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7185 	    ctx_pg->ctx_pg_tbl) {
7186 		int i, nr_tbls = rmem->nr_pages;
7187 
7188 		for (i = 0; i < nr_tbls; i++) {
7189 			struct bnxt_ctx_pg_info *pg_tbl;
7190 			struct bnxt_ring_mem_info *rmem2;
7191 
7192 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7193 			if (!pg_tbl)
7194 				continue;
7195 			rmem2 = &pg_tbl->ring_mem;
7196 			bnxt_free_ring(bp, rmem2);
7197 			ctx_pg->ctx_pg_arr[i] = NULL;
7198 			kfree(pg_tbl);
7199 			ctx_pg->ctx_pg_tbl[i] = NULL;
7200 		}
7201 		kfree(ctx_pg->ctx_pg_tbl);
7202 		ctx_pg->ctx_pg_tbl = NULL;
7203 	}
7204 	bnxt_free_ring(bp, rmem);
7205 	ctx_pg->nr_pages = 0;
7206 }
7207 
bnxt_free_ctx_mem(struct bnxt * bp)7208 static void bnxt_free_ctx_mem(struct bnxt *bp)
7209 {
7210 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7211 	int i;
7212 
7213 	if (!ctx)
7214 		return;
7215 
7216 	if (ctx->tqm_mem[0]) {
7217 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7218 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7219 		kfree(ctx->tqm_mem[0]);
7220 		ctx->tqm_mem[0] = NULL;
7221 	}
7222 
7223 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7224 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7225 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7226 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7227 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7228 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7229 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7230 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7231 }
7232 
bnxt_alloc_ctx_mem(struct bnxt * bp)7233 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7234 {
7235 	struct bnxt_ctx_pg_info *ctx_pg;
7236 	struct bnxt_ctx_mem_info *ctx;
7237 	struct bnxt_mem_init *init;
7238 	u32 mem_size, ena, entries;
7239 	u32 entries_sp, min;
7240 	u32 num_mr, num_ah;
7241 	u32 extra_srqs = 0;
7242 	u32 extra_qps = 0;
7243 	u8 pg_lvl = 1;
7244 	int i, rc;
7245 
7246 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7247 	if (rc) {
7248 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7249 			   rc);
7250 		return rc;
7251 	}
7252 	ctx = bp->ctx;
7253 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7254 		return 0;
7255 
7256 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7257 		pg_lvl = 2;
7258 		extra_qps = 65536;
7259 		extra_srqs = 8192;
7260 	}
7261 
7262 	ctx_pg = &ctx->qp_mem;
7263 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7264 			  extra_qps;
7265 	if (ctx->qp_entry_size) {
7266 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7267 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7268 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7269 		if (rc)
7270 			return rc;
7271 	}
7272 
7273 	ctx_pg = &ctx->srq_mem;
7274 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7275 	if (ctx->srq_entry_size) {
7276 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7277 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7278 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7279 		if (rc)
7280 			return rc;
7281 	}
7282 
7283 	ctx_pg = &ctx->cq_mem;
7284 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7285 	if (ctx->cq_entry_size) {
7286 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7287 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7288 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7289 		if (rc)
7290 			return rc;
7291 	}
7292 
7293 	ctx_pg = &ctx->vnic_mem;
7294 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7295 			  ctx->vnic_max_ring_table_entries;
7296 	if (ctx->vnic_entry_size) {
7297 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7298 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7299 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7300 		if (rc)
7301 			return rc;
7302 	}
7303 
7304 	ctx_pg = &ctx->stat_mem;
7305 	ctx_pg->entries = ctx->stat_max_entries;
7306 	if (ctx->stat_entry_size) {
7307 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7308 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7309 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7310 		if (rc)
7311 			return rc;
7312 	}
7313 
7314 	ena = 0;
7315 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7316 		goto skip_rdma;
7317 
7318 	ctx_pg = &ctx->mrav_mem;
7319 	/* 128K extra is needed to accommodate static AH context
7320 	 * allocation by f/w.
7321 	 */
7322 	num_mr = 1024 * 256;
7323 	num_ah = 1024 * 128;
7324 	ctx_pg->entries = num_mr + num_ah;
7325 	if (ctx->mrav_entry_size) {
7326 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7327 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7328 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7329 		if (rc)
7330 			return rc;
7331 	}
7332 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7333 	if (ctx->mrav_num_entries_units)
7334 		ctx_pg->entries =
7335 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7336 			 (num_ah / ctx->mrav_num_entries_units);
7337 
7338 	ctx_pg = &ctx->tim_mem;
7339 	ctx_pg->entries = ctx->qp_mem.entries;
7340 	if (ctx->tim_entry_size) {
7341 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7342 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7343 		if (rc)
7344 			return rc;
7345 	}
7346 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7347 
7348 skip_rdma:
7349 	min = ctx->tqm_min_entries_per_ring;
7350 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7351 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7352 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7353 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7354 	entries = roundup(entries, ctx->tqm_entries_multiple);
7355 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7356 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7357 		ctx_pg = ctx->tqm_mem[i];
7358 		ctx_pg->entries = i ? entries : entries_sp;
7359 		if (ctx->tqm_entry_size) {
7360 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7361 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7362 						    NULL);
7363 			if (rc)
7364 				return rc;
7365 		}
7366 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7367 	}
7368 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7369 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7370 	if (rc) {
7371 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7372 			   rc);
7373 		return rc;
7374 	}
7375 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7376 	return 0;
7377 }
7378 
bnxt_hwrm_func_resc_qcaps(struct bnxt * bp,bool all)7379 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7380 {
7381 	struct hwrm_func_resource_qcaps_output *resp;
7382 	struct hwrm_func_resource_qcaps_input *req;
7383 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7384 	int rc;
7385 
7386 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7387 	if (rc)
7388 		return rc;
7389 
7390 	req->fid = cpu_to_le16(0xffff);
7391 	resp = hwrm_req_hold(bp, req);
7392 	rc = hwrm_req_send_silent(bp, req);
7393 	if (rc)
7394 		goto hwrm_func_resc_qcaps_exit;
7395 
7396 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7397 	if (!all)
7398 		goto hwrm_func_resc_qcaps_exit;
7399 
7400 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7401 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7402 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7403 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7404 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7405 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7406 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7407 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7408 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7409 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7410 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7411 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7412 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7413 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7414 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7415 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7416 
7417 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7418 		u16 max_msix = le16_to_cpu(resp->max_msix);
7419 
7420 		hw_resc->max_nqs = max_msix;
7421 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7422 	}
7423 
7424 	if (BNXT_PF(bp)) {
7425 		struct bnxt_pf_info *pf = &bp->pf;
7426 
7427 		pf->vf_resv_strategy =
7428 			le16_to_cpu(resp->vf_reservation_strategy);
7429 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7430 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7431 	}
7432 hwrm_func_resc_qcaps_exit:
7433 	hwrm_req_drop(bp, req);
7434 	return rc;
7435 }
7436 
__bnxt_hwrm_ptp_qcfg(struct bnxt * bp)7437 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7438 {
7439 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7440 	struct hwrm_port_mac_ptp_qcfg_input *req;
7441 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7442 	u8 flags;
7443 	int rc;
7444 
7445 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_THOR(bp)) {
7446 		rc = -ENODEV;
7447 		goto no_ptp;
7448 	}
7449 
7450 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7451 	if (rc)
7452 		goto no_ptp;
7453 
7454 	req->port_id = cpu_to_le16(bp->pf.port_id);
7455 	resp = hwrm_req_hold(bp, req);
7456 	rc = hwrm_req_send(bp, req);
7457 	if (rc)
7458 		goto exit;
7459 
7460 	flags = resp->flags;
7461 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7462 		rc = -ENODEV;
7463 		goto exit;
7464 	}
7465 	if (!ptp) {
7466 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7467 		if (!ptp) {
7468 			rc = -ENOMEM;
7469 			goto exit;
7470 		}
7471 		ptp->bp = bp;
7472 		bp->ptp_cfg = ptp;
7473 	}
7474 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7475 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7476 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7477 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7478 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7479 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7480 	} else {
7481 		rc = -ENODEV;
7482 		goto exit;
7483 	}
7484 	rc = bnxt_ptp_init(bp);
7485 	if (rc)
7486 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7487 exit:
7488 	hwrm_req_drop(bp, req);
7489 	if (!rc)
7490 		return 0;
7491 
7492 no_ptp:
7493 	bnxt_ptp_clear(bp);
7494 	kfree(ptp);
7495 	bp->ptp_cfg = NULL;
7496 	return rc;
7497 }
7498 
__bnxt_hwrm_func_qcaps(struct bnxt * bp)7499 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7500 {
7501 	struct hwrm_func_qcaps_output *resp;
7502 	struct hwrm_func_qcaps_input *req;
7503 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7504 	u32 flags, flags_ext;
7505 	int rc;
7506 
7507 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7508 	if (rc)
7509 		return rc;
7510 
7511 	req->fid = cpu_to_le16(0xffff);
7512 	resp = hwrm_req_hold(bp, req);
7513 	rc = hwrm_req_send(bp, req);
7514 	if (rc)
7515 		goto hwrm_func_qcaps_exit;
7516 
7517 	flags = le32_to_cpu(resp->flags);
7518 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7519 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7520 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7521 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7522 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7523 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7524 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7525 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7526 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7527 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7528 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7529 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7530 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7531 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7532 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7533 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7534 
7535 	flags_ext = le32_to_cpu(resp->flags_ext);
7536 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7537 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7538 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7539 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7540 
7541 	bp->tx_push_thresh = 0;
7542 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7543 	    BNXT_FW_MAJ(bp) > 217)
7544 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7545 
7546 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7547 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7548 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7549 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7550 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7551 	if (!hw_resc->max_hw_ring_grps)
7552 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7553 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7554 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7555 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7556 
7557 	if (BNXT_PF(bp)) {
7558 		struct bnxt_pf_info *pf = &bp->pf;
7559 
7560 		pf->fw_fid = le16_to_cpu(resp->fid);
7561 		pf->port_id = le16_to_cpu(resp->port_id);
7562 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7563 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7564 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7565 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7566 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7567 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7568 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7569 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7570 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7571 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7572 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7573 			bp->flags |= BNXT_FLAG_WOL_CAP;
7574 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7575 			__bnxt_hwrm_ptp_qcfg(bp);
7576 		} else {
7577 			bnxt_ptp_clear(bp);
7578 			kfree(bp->ptp_cfg);
7579 			bp->ptp_cfg = NULL;
7580 		}
7581 	} else {
7582 #ifdef CONFIG_BNXT_SRIOV
7583 		struct bnxt_vf_info *vf = &bp->vf;
7584 
7585 		vf->fw_fid = le16_to_cpu(resp->fid);
7586 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7587 #endif
7588 	}
7589 
7590 hwrm_func_qcaps_exit:
7591 	hwrm_req_drop(bp, req);
7592 	return rc;
7593 }
7594 
7595 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7596 
bnxt_hwrm_func_qcaps(struct bnxt * bp)7597 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7598 {
7599 	int rc;
7600 
7601 	rc = __bnxt_hwrm_func_qcaps(bp);
7602 	if (rc)
7603 		return rc;
7604 	rc = bnxt_hwrm_queue_qportcfg(bp);
7605 	if (rc) {
7606 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7607 		return rc;
7608 	}
7609 	if (bp->hwrm_spec_code >= 0x10803) {
7610 		rc = bnxt_alloc_ctx_mem(bp);
7611 		if (rc)
7612 			return rc;
7613 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7614 		if (!rc)
7615 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7616 	}
7617 	return 0;
7618 }
7619 
bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt * bp)7620 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7621 {
7622 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7623 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7624 	u32 flags;
7625 	int rc;
7626 
7627 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7628 		return 0;
7629 
7630 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7631 	if (rc)
7632 		return rc;
7633 
7634 	resp = hwrm_req_hold(bp, req);
7635 	rc = hwrm_req_send(bp, req);
7636 	if (rc)
7637 		goto hwrm_cfa_adv_qcaps_exit;
7638 
7639 	flags = le32_to_cpu(resp->flags);
7640 	if (flags &
7641 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7642 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7643 
7644 hwrm_cfa_adv_qcaps_exit:
7645 	hwrm_req_drop(bp, req);
7646 	return rc;
7647 }
7648 
__bnxt_alloc_fw_health(struct bnxt * bp)7649 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7650 {
7651 	if (bp->fw_health)
7652 		return 0;
7653 
7654 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7655 	if (!bp->fw_health)
7656 		return -ENOMEM;
7657 
7658 	return 0;
7659 }
7660 
bnxt_alloc_fw_health(struct bnxt * bp)7661 static int bnxt_alloc_fw_health(struct bnxt *bp)
7662 {
7663 	int rc;
7664 
7665 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7666 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7667 		return 0;
7668 
7669 	rc = __bnxt_alloc_fw_health(bp);
7670 	if (rc) {
7671 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7672 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7673 		return rc;
7674 	}
7675 
7676 	return 0;
7677 }
7678 
__bnxt_map_fw_health_reg(struct bnxt * bp,u32 reg)7679 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7680 {
7681 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7682 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7683 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7684 }
7685 
bnxt_is_fw_healthy(struct bnxt * bp)7686 bool bnxt_is_fw_healthy(struct bnxt *bp)
7687 {
7688 	if (bp->fw_health && bp->fw_health->status_reliable) {
7689 		u32 fw_status;
7690 
7691 		fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
7692 		if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status))
7693 			return false;
7694 	}
7695 
7696 	return true;
7697 }
7698 
bnxt_inv_fw_health_reg(struct bnxt * bp)7699 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7700 {
7701 	struct bnxt_fw_health *fw_health = bp->fw_health;
7702 	u32 reg_type;
7703 
7704 	if (!fw_health || !fw_health->status_reliable)
7705 		return;
7706 
7707 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7708 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7709 		fw_health->status_reliable = false;
7710 }
7711 
bnxt_try_map_fw_health_reg(struct bnxt * bp)7712 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7713 {
7714 	void __iomem *hs;
7715 	u32 status_loc;
7716 	u32 reg_type;
7717 	u32 sig;
7718 
7719 	if (bp->fw_health)
7720 		bp->fw_health->status_reliable = false;
7721 
7722 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7723 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7724 
7725 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7726 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7727 		if (!bp->chip_num) {
7728 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7729 			bp->chip_num = readl(bp->bar0 +
7730 					     BNXT_FW_HEALTH_WIN_BASE +
7731 					     BNXT_GRC_REG_CHIP_NUM);
7732 		}
7733 		if (!BNXT_CHIP_P5(bp))
7734 			return;
7735 
7736 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7737 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7738 	} else {
7739 		status_loc = readl(hs + offsetof(struct hcomm_status,
7740 						 fw_status_loc));
7741 	}
7742 
7743 	if (__bnxt_alloc_fw_health(bp)) {
7744 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7745 		return;
7746 	}
7747 
7748 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7749 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7750 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7751 		__bnxt_map_fw_health_reg(bp, status_loc);
7752 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7753 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7754 	}
7755 
7756 	bp->fw_health->status_reliable = true;
7757 }
7758 
bnxt_map_fw_health_regs(struct bnxt * bp)7759 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7760 {
7761 	struct bnxt_fw_health *fw_health = bp->fw_health;
7762 	u32 reg_base = 0xffffffff;
7763 	int i;
7764 
7765 	bp->fw_health->status_reliable = false;
7766 	/* Only pre-map the monitoring GRC registers using window 3 */
7767 	for (i = 0; i < 4; i++) {
7768 		u32 reg = fw_health->regs[i];
7769 
7770 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7771 			continue;
7772 		if (reg_base == 0xffffffff)
7773 			reg_base = reg & BNXT_GRC_BASE_MASK;
7774 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7775 			return -ERANGE;
7776 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7777 	}
7778 	bp->fw_health->status_reliable = true;
7779 	if (reg_base == 0xffffffff)
7780 		return 0;
7781 
7782 	__bnxt_map_fw_health_reg(bp, reg_base);
7783 	return 0;
7784 }
7785 
bnxt_hwrm_error_recovery_qcfg(struct bnxt * bp)7786 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7787 {
7788 	struct bnxt_fw_health *fw_health = bp->fw_health;
7789 	struct hwrm_error_recovery_qcfg_output *resp;
7790 	struct hwrm_error_recovery_qcfg_input *req;
7791 	int rc, i;
7792 
7793 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7794 		return 0;
7795 
7796 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
7797 	if (rc)
7798 		return rc;
7799 
7800 	resp = hwrm_req_hold(bp, req);
7801 	rc = hwrm_req_send(bp, req);
7802 	if (rc)
7803 		goto err_recovery_out;
7804 	fw_health->flags = le32_to_cpu(resp->flags);
7805 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7806 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7807 		rc = -EINVAL;
7808 		goto err_recovery_out;
7809 	}
7810 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7811 	fw_health->master_func_wait_dsecs =
7812 		le32_to_cpu(resp->master_func_wait_period);
7813 	fw_health->normal_func_wait_dsecs =
7814 		le32_to_cpu(resp->normal_func_wait_period);
7815 	fw_health->post_reset_wait_dsecs =
7816 		le32_to_cpu(resp->master_func_wait_period_after_reset);
7817 	fw_health->post_reset_max_wait_dsecs =
7818 		le32_to_cpu(resp->max_bailout_time_after_reset);
7819 	fw_health->regs[BNXT_FW_HEALTH_REG] =
7820 		le32_to_cpu(resp->fw_health_status_reg);
7821 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7822 		le32_to_cpu(resp->fw_heartbeat_reg);
7823 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7824 		le32_to_cpu(resp->fw_reset_cnt_reg);
7825 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7826 		le32_to_cpu(resp->reset_inprogress_reg);
7827 	fw_health->fw_reset_inprog_reg_mask =
7828 		le32_to_cpu(resp->reset_inprogress_reg_mask);
7829 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7830 	if (fw_health->fw_reset_seq_cnt >= 16) {
7831 		rc = -EINVAL;
7832 		goto err_recovery_out;
7833 	}
7834 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7835 		fw_health->fw_reset_seq_regs[i] =
7836 			le32_to_cpu(resp->reset_reg[i]);
7837 		fw_health->fw_reset_seq_vals[i] =
7838 			le32_to_cpu(resp->reset_reg_val[i]);
7839 		fw_health->fw_reset_seq_delay_msec[i] =
7840 			resp->delay_after_reset[i];
7841 	}
7842 err_recovery_out:
7843 	hwrm_req_drop(bp, req);
7844 	if (!rc)
7845 		rc = bnxt_map_fw_health_regs(bp);
7846 	if (rc)
7847 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7848 	return rc;
7849 }
7850 
bnxt_hwrm_func_reset(struct bnxt * bp)7851 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7852 {
7853 	struct hwrm_func_reset_input *req;
7854 	int rc;
7855 
7856 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
7857 	if (rc)
7858 		return rc;
7859 
7860 	req->enables = 0;
7861 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
7862 	return hwrm_req_send(bp, req);
7863 }
7864 
bnxt_nvm_cfg_ver_get(struct bnxt * bp)7865 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
7866 {
7867 	struct hwrm_nvm_get_dev_info_output nvm_info;
7868 
7869 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
7870 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
7871 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
7872 			 nvm_info.nvm_cfg_ver_upd);
7873 }
7874 
bnxt_hwrm_queue_qportcfg(struct bnxt * bp)7875 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7876 {
7877 	struct hwrm_queue_qportcfg_output *resp;
7878 	struct hwrm_queue_qportcfg_input *req;
7879 	u8 i, j, *qptr;
7880 	bool no_rdma;
7881 	int rc = 0;
7882 
7883 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
7884 	if (rc)
7885 		return rc;
7886 
7887 	resp = hwrm_req_hold(bp, req);
7888 	rc = hwrm_req_send(bp, req);
7889 	if (rc)
7890 		goto qportcfg_exit;
7891 
7892 	if (!resp->max_configurable_queues) {
7893 		rc = -EINVAL;
7894 		goto qportcfg_exit;
7895 	}
7896 	bp->max_tc = resp->max_configurable_queues;
7897 	bp->max_lltc = resp->max_configurable_lossless_queues;
7898 	if (bp->max_tc > BNXT_MAX_QUEUE)
7899 		bp->max_tc = BNXT_MAX_QUEUE;
7900 
7901 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7902 	qptr = &resp->queue_id0;
7903 	for (i = 0, j = 0; i < bp->max_tc; i++) {
7904 		bp->q_info[j].queue_id = *qptr;
7905 		bp->q_ids[i] = *qptr++;
7906 		bp->q_info[j].queue_profile = *qptr++;
7907 		bp->tc_to_qidx[j] = j;
7908 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7909 		    (no_rdma && BNXT_PF(bp)))
7910 			j++;
7911 	}
7912 	bp->max_q = bp->max_tc;
7913 	bp->max_tc = max_t(u8, j, 1);
7914 
7915 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7916 		bp->max_tc = 1;
7917 
7918 	if (bp->max_lltc > bp->max_tc)
7919 		bp->max_lltc = bp->max_tc;
7920 
7921 qportcfg_exit:
7922 	hwrm_req_drop(bp, req);
7923 	return rc;
7924 }
7925 
bnxt_hwrm_poll(struct bnxt * bp)7926 static int bnxt_hwrm_poll(struct bnxt *bp)
7927 {
7928 	struct hwrm_ver_get_input *req;
7929 	int rc;
7930 
7931 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
7932 	if (rc)
7933 		return rc;
7934 
7935 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
7936 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
7937 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
7938 
7939 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
7940 	rc = hwrm_req_send(bp, req);
7941 	return rc;
7942 }
7943 
bnxt_hwrm_ver_get(struct bnxt * bp)7944 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7945 {
7946 	struct hwrm_ver_get_output *resp;
7947 	struct hwrm_ver_get_input *req;
7948 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
7949 	u32 dev_caps_cfg, hwrm_ver;
7950 	int rc, len;
7951 
7952 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
7953 	if (rc)
7954 		return rc;
7955 
7956 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
7957 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7958 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
7959 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
7960 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
7961 
7962 	resp = hwrm_req_hold(bp, req);
7963 	rc = hwrm_req_send(bp, req);
7964 	if (rc)
7965 		goto hwrm_ver_get_exit;
7966 
7967 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7968 
7969 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7970 			     resp->hwrm_intf_min_8b << 8 |
7971 			     resp->hwrm_intf_upd_8b;
7972 	if (resp->hwrm_intf_maj_8b < 1) {
7973 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7974 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7975 			    resp->hwrm_intf_upd_8b);
7976 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7977 	}
7978 
7979 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
7980 			HWRM_VERSION_UPDATE;
7981 
7982 	if (bp->hwrm_spec_code > hwrm_ver)
7983 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7984 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
7985 			 HWRM_VERSION_UPDATE);
7986 	else
7987 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7988 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7989 			 resp->hwrm_intf_upd_8b);
7990 
7991 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
7992 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
7993 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
7994 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
7995 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
7996 		len = FW_VER_STR_LEN;
7997 	} else {
7998 		fw_maj = resp->hwrm_fw_maj_8b;
7999 		fw_min = resp->hwrm_fw_min_8b;
8000 		fw_bld = resp->hwrm_fw_bld_8b;
8001 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8002 		len = BC_HWRM_STR_LEN;
8003 	}
8004 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8005 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8006 		 fw_rsv);
8007 
8008 	if (strlen(resp->active_pkg_name)) {
8009 		int fw_ver_len = strlen(bp->fw_ver_str);
8010 
8011 		snprintf(bp->fw_ver_str + fw_ver_len,
8012 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8013 			 resp->active_pkg_name);
8014 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8015 	}
8016 
8017 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8018 	if (!bp->hwrm_cmd_timeout)
8019 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8020 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8021 	if (!bp->hwrm_cmd_max_timeout)
8022 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8023 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8024 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8025 			    bp->hwrm_cmd_max_timeout / 1000);
8026 
8027 	if (resp->hwrm_intf_maj_8b >= 1) {
8028 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8029 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8030 	}
8031 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8032 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8033 
8034 	bp->chip_num = le16_to_cpu(resp->chip_num);
8035 	bp->chip_rev = resp->chip_rev;
8036 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8037 	    !resp->chip_metal)
8038 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8039 
8040 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8041 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8042 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8043 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8044 
8045 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8046 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8047 
8048 	if (dev_caps_cfg &
8049 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8050 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8051 
8052 	if (dev_caps_cfg &
8053 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8054 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8055 
8056 	if (dev_caps_cfg &
8057 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8058 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8059 
8060 hwrm_ver_get_exit:
8061 	hwrm_req_drop(bp, req);
8062 	return rc;
8063 }
8064 
bnxt_hwrm_fw_set_time(struct bnxt * bp)8065 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8066 {
8067 	struct hwrm_fw_set_time_input *req;
8068 	struct tm tm;
8069 	time64_t now = ktime_get_real_seconds();
8070 	int rc;
8071 
8072 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8073 	    bp->hwrm_spec_code < 0x10400)
8074 		return -EOPNOTSUPP;
8075 
8076 	time64_to_tm(now, 0, &tm);
8077 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8078 	if (rc)
8079 		return rc;
8080 
8081 	req->year = cpu_to_le16(1900 + tm.tm_year);
8082 	req->month = 1 + tm.tm_mon;
8083 	req->day = tm.tm_mday;
8084 	req->hour = tm.tm_hour;
8085 	req->minute = tm.tm_min;
8086 	req->second = tm.tm_sec;
8087 	return hwrm_req_send(bp, req);
8088 }
8089 
bnxt_add_one_ctr(u64 hw,u64 * sw,u64 mask)8090 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8091 {
8092 	u64 sw_tmp;
8093 
8094 	hw &= mask;
8095 	sw_tmp = (*sw & ~mask) | hw;
8096 	if (hw < (*sw & mask))
8097 		sw_tmp += mask + 1;
8098 	WRITE_ONCE(*sw, sw_tmp);
8099 }
8100 
__bnxt_accumulate_stats(__le64 * hw_stats,u64 * sw_stats,u64 * masks,int count,bool ignore_zero)8101 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8102 				    int count, bool ignore_zero)
8103 {
8104 	int i;
8105 
8106 	for (i = 0; i < count; i++) {
8107 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8108 
8109 		if (ignore_zero && !hw)
8110 			continue;
8111 
8112 		if (masks[i] == -1ULL)
8113 			sw_stats[i] = hw;
8114 		else
8115 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8116 	}
8117 }
8118 
bnxt_accumulate_stats(struct bnxt_stats_mem * stats)8119 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8120 {
8121 	if (!stats->hw_stats)
8122 		return;
8123 
8124 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8125 				stats->hw_masks, stats->len / 8, false);
8126 }
8127 
bnxt_accumulate_all_stats(struct bnxt * bp)8128 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8129 {
8130 	struct bnxt_stats_mem *ring0_stats;
8131 	bool ignore_zero = false;
8132 	int i;
8133 
8134 	/* Chip bug.  Counter intermittently becomes 0. */
8135 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8136 		ignore_zero = true;
8137 
8138 	for (i = 0; i < bp->cp_nr_rings; i++) {
8139 		struct bnxt_napi *bnapi = bp->bnapi[i];
8140 		struct bnxt_cp_ring_info *cpr;
8141 		struct bnxt_stats_mem *stats;
8142 
8143 		cpr = &bnapi->cp_ring;
8144 		stats = &cpr->stats;
8145 		if (!i)
8146 			ring0_stats = stats;
8147 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8148 					ring0_stats->hw_masks,
8149 					ring0_stats->len / 8, ignore_zero);
8150 	}
8151 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8152 		struct bnxt_stats_mem *stats = &bp->port_stats;
8153 		__le64 *hw_stats = stats->hw_stats;
8154 		u64 *sw_stats = stats->sw_stats;
8155 		u64 *masks = stats->hw_masks;
8156 		int cnt;
8157 
8158 		cnt = sizeof(struct rx_port_stats) / 8;
8159 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8160 
8161 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8162 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8163 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8164 		cnt = sizeof(struct tx_port_stats) / 8;
8165 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8166 	}
8167 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8168 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8169 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8170 	}
8171 }
8172 
bnxt_hwrm_port_qstats(struct bnxt * bp,u8 flags)8173 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8174 {
8175 	struct hwrm_port_qstats_input *req;
8176 	struct bnxt_pf_info *pf = &bp->pf;
8177 	int rc;
8178 
8179 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8180 		return 0;
8181 
8182 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8183 		return -EOPNOTSUPP;
8184 
8185 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8186 	if (rc)
8187 		return rc;
8188 
8189 	req->flags = flags;
8190 	req->port_id = cpu_to_le16(pf->port_id);
8191 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8192 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8193 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8194 	return hwrm_req_send(bp, req);
8195 }
8196 
bnxt_hwrm_port_qstats_ext(struct bnxt * bp,u8 flags)8197 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8198 {
8199 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8200 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8201 	struct hwrm_port_qstats_ext_output *resp_qs;
8202 	struct hwrm_port_qstats_ext_input *req_qs;
8203 	struct bnxt_pf_info *pf = &bp->pf;
8204 	u32 tx_stat_size;
8205 	int rc;
8206 
8207 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8208 		return 0;
8209 
8210 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8211 		return -EOPNOTSUPP;
8212 
8213 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8214 	if (rc)
8215 		return rc;
8216 
8217 	req_qs->flags = flags;
8218 	req_qs->port_id = cpu_to_le16(pf->port_id);
8219 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8220 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8221 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8222 		       sizeof(struct tx_port_stats_ext) : 0;
8223 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8224 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8225 	resp_qs = hwrm_req_hold(bp, req_qs);
8226 	rc = hwrm_req_send(bp, req_qs);
8227 	if (!rc) {
8228 		bp->fw_rx_stats_ext_size =
8229 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8230 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8231 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8232 	} else {
8233 		bp->fw_rx_stats_ext_size = 0;
8234 		bp->fw_tx_stats_ext_size = 0;
8235 	}
8236 	hwrm_req_drop(bp, req_qs);
8237 
8238 	if (flags)
8239 		return rc;
8240 
8241 	if (bp->fw_tx_stats_ext_size <=
8242 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8243 		bp->pri2cos_valid = 0;
8244 		return rc;
8245 	}
8246 
8247 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8248 	if (rc)
8249 		return rc;
8250 
8251 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8252 
8253 	resp_qc = hwrm_req_hold(bp, req_qc);
8254 	rc = hwrm_req_send(bp, req_qc);
8255 	if (!rc) {
8256 		u8 *pri2cos;
8257 		int i, j;
8258 
8259 		pri2cos = &resp_qc->pri0_cos_queue_id;
8260 		for (i = 0; i < 8; i++) {
8261 			u8 queue_id = pri2cos[i];
8262 			u8 queue_idx;
8263 
8264 			/* Per port queue IDs start from 0, 10, 20, etc */
8265 			queue_idx = queue_id % 10;
8266 			if (queue_idx > BNXT_MAX_QUEUE) {
8267 				bp->pri2cos_valid = false;
8268 				hwrm_req_drop(bp, req_qc);
8269 				return rc;
8270 			}
8271 			for (j = 0; j < bp->max_q; j++) {
8272 				if (bp->q_ids[j] == queue_id)
8273 					bp->pri2cos_idx[i] = queue_idx;
8274 			}
8275 		}
8276 		bp->pri2cos_valid = true;
8277 	}
8278 	hwrm_req_drop(bp, req_qc);
8279 
8280 	return rc;
8281 }
8282 
bnxt_hwrm_free_tunnel_ports(struct bnxt * bp)8283 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8284 {
8285 	bnxt_hwrm_tunnel_dst_port_free(bp,
8286 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8287 	bnxt_hwrm_tunnel_dst_port_free(bp,
8288 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8289 }
8290 
bnxt_set_tpa(struct bnxt * bp,bool set_tpa)8291 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8292 {
8293 	int rc, i;
8294 	u32 tpa_flags = 0;
8295 
8296 	if (set_tpa)
8297 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8298 	else if (BNXT_NO_FW_ACCESS(bp))
8299 		return 0;
8300 	for (i = 0; i < bp->nr_vnics; i++) {
8301 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8302 		if (rc) {
8303 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8304 				   i, rc);
8305 			return rc;
8306 		}
8307 	}
8308 	return 0;
8309 }
8310 
bnxt_hwrm_clear_vnic_rss(struct bnxt * bp)8311 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8312 {
8313 	int i;
8314 
8315 	for (i = 0; i < bp->nr_vnics; i++)
8316 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8317 }
8318 
bnxt_clear_vnic(struct bnxt * bp)8319 static void bnxt_clear_vnic(struct bnxt *bp)
8320 {
8321 	if (!bp->vnic_info)
8322 		return;
8323 
8324 	bnxt_hwrm_clear_vnic_filter(bp);
8325 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8326 		/* clear all RSS setting before free vnic ctx */
8327 		bnxt_hwrm_clear_vnic_rss(bp);
8328 		bnxt_hwrm_vnic_ctx_free(bp);
8329 	}
8330 	/* before free the vnic, undo the vnic tpa settings */
8331 	if (bp->flags & BNXT_FLAG_TPA)
8332 		bnxt_set_tpa(bp, false);
8333 	bnxt_hwrm_vnic_free(bp);
8334 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8335 		bnxt_hwrm_vnic_ctx_free(bp);
8336 }
8337 
bnxt_hwrm_resource_free(struct bnxt * bp,bool close_path,bool irq_re_init)8338 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8339 				    bool irq_re_init)
8340 {
8341 	bnxt_clear_vnic(bp);
8342 	bnxt_hwrm_ring_free(bp, close_path);
8343 	bnxt_hwrm_ring_grp_free(bp);
8344 	if (irq_re_init) {
8345 		bnxt_hwrm_stat_ctx_free(bp);
8346 		bnxt_hwrm_free_tunnel_ports(bp);
8347 	}
8348 }
8349 
bnxt_hwrm_set_br_mode(struct bnxt * bp,u16 br_mode)8350 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8351 {
8352 	struct hwrm_func_cfg_input *req;
8353 	u8 evb_mode;
8354 	int rc;
8355 
8356 	if (br_mode == BRIDGE_MODE_VEB)
8357 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8358 	else if (br_mode == BRIDGE_MODE_VEPA)
8359 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8360 	else
8361 		return -EINVAL;
8362 
8363 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8364 	if (rc)
8365 		return rc;
8366 
8367 	req->fid = cpu_to_le16(0xffff);
8368 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8369 	req->evb_mode = evb_mode;
8370 	return hwrm_req_send(bp, req);
8371 }
8372 
bnxt_hwrm_set_cache_line_size(struct bnxt * bp,int size)8373 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8374 {
8375 	struct hwrm_func_cfg_input *req;
8376 	int rc;
8377 
8378 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8379 		return 0;
8380 
8381 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8382 	if (rc)
8383 		return rc;
8384 
8385 	req->fid = cpu_to_le16(0xffff);
8386 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8387 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8388 	if (size == 128)
8389 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8390 
8391 	return hwrm_req_send(bp, req);
8392 }
8393 
__bnxt_setup_vnic(struct bnxt * bp,u16 vnic_id)8394 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8395 {
8396 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8397 	int rc;
8398 
8399 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8400 		goto skip_rss_ctx;
8401 
8402 	/* allocate context for vnic */
8403 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8404 	if (rc) {
8405 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8406 			   vnic_id, rc);
8407 		goto vnic_setup_err;
8408 	}
8409 	bp->rsscos_nr_ctxs++;
8410 
8411 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8412 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8413 		if (rc) {
8414 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8415 				   vnic_id, rc);
8416 			goto vnic_setup_err;
8417 		}
8418 		bp->rsscos_nr_ctxs++;
8419 	}
8420 
8421 skip_rss_ctx:
8422 	/* configure default vnic, ring grp */
8423 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8424 	if (rc) {
8425 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8426 			   vnic_id, rc);
8427 		goto vnic_setup_err;
8428 	}
8429 
8430 	/* Enable RSS hashing on vnic */
8431 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8432 	if (rc) {
8433 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8434 			   vnic_id, rc);
8435 		goto vnic_setup_err;
8436 	}
8437 
8438 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8439 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8440 		if (rc) {
8441 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8442 				   vnic_id, rc);
8443 		}
8444 	}
8445 
8446 vnic_setup_err:
8447 	return rc;
8448 }
8449 
__bnxt_setup_vnic_p5(struct bnxt * bp,u16 vnic_id)8450 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8451 {
8452 	int rc, i, nr_ctxs;
8453 
8454 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8455 	for (i = 0; i < nr_ctxs; i++) {
8456 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8457 		if (rc) {
8458 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8459 				   vnic_id, i, rc);
8460 			break;
8461 		}
8462 		bp->rsscos_nr_ctxs++;
8463 	}
8464 	if (i < nr_ctxs)
8465 		return -ENOMEM;
8466 
8467 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8468 	if (rc) {
8469 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8470 			   vnic_id, rc);
8471 		return rc;
8472 	}
8473 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8474 	if (rc) {
8475 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8476 			   vnic_id, rc);
8477 		return rc;
8478 	}
8479 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8480 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8481 		if (rc) {
8482 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8483 				   vnic_id, rc);
8484 		}
8485 	}
8486 	return rc;
8487 }
8488 
bnxt_setup_vnic(struct bnxt * bp,u16 vnic_id)8489 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8490 {
8491 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8492 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8493 	else
8494 		return __bnxt_setup_vnic(bp, vnic_id);
8495 }
8496 
bnxt_alloc_rfs_vnics(struct bnxt * bp)8497 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8498 {
8499 #ifdef CONFIG_RFS_ACCEL
8500 	int i, rc = 0;
8501 
8502 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8503 		return 0;
8504 
8505 	for (i = 0; i < bp->rx_nr_rings; i++) {
8506 		struct bnxt_vnic_info *vnic;
8507 		u16 vnic_id = i + 1;
8508 		u16 ring_id = i;
8509 
8510 		if (vnic_id >= bp->nr_vnics)
8511 			break;
8512 
8513 		vnic = &bp->vnic_info[vnic_id];
8514 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8515 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8516 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8517 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8518 		if (rc) {
8519 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8520 				   vnic_id, rc);
8521 			break;
8522 		}
8523 		rc = bnxt_setup_vnic(bp, vnic_id);
8524 		if (rc)
8525 			break;
8526 	}
8527 	return rc;
8528 #else
8529 	return 0;
8530 #endif
8531 }
8532 
8533 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
bnxt_promisc_ok(struct bnxt * bp)8534 static bool bnxt_promisc_ok(struct bnxt *bp)
8535 {
8536 #ifdef CONFIG_BNXT_SRIOV
8537 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8538 		return false;
8539 #endif
8540 	return true;
8541 }
8542 
bnxt_setup_nitroa0_vnic(struct bnxt * bp)8543 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8544 {
8545 	unsigned int rc = 0;
8546 
8547 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8548 	if (rc) {
8549 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8550 			   rc);
8551 		return rc;
8552 	}
8553 
8554 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8555 	if (rc) {
8556 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8557 			   rc);
8558 		return rc;
8559 	}
8560 	return rc;
8561 }
8562 
8563 static int bnxt_cfg_rx_mode(struct bnxt *);
8564 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8565 
bnxt_init_chip(struct bnxt * bp,bool irq_re_init)8566 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8567 {
8568 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8569 	int rc = 0;
8570 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8571 
8572 	if (irq_re_init) {
8573 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8574 		if (rc) {
8575 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8576 				   rc);
8577 			goto err_out;
8578 		}
8579 	}
8580 
8581 	rc = bnxt_hwrm_ring_alloc(bp);
8582 	if (rc) {
8583 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8584 		goto err_out;
8585 	}
8586 
8587 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8588 	if (rc) {
8589 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8590 		goto err_out;
8591 	}
8592 
8593 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8594 		rx_nr_rings--;
8595 
8596 	/* default vnic 0 */
8597 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8598 	if (rc) {
8599 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8600 		goto err_out;
8601 	}
8602 
8603 	if (BNXT_VF(bp))
8604 		bnxt_hwrm_func_qcfg(bp);
8605 
8606 	rc = bnxt_setup_vnic(bp, 0);
8607 	if (rc)
8608 		goto err_out;
8609 
8610 	if (bp->flags & BNXT_FLAG_RFS) {
8611 		rc = bnxt_alloc_rfs_vnics(bp);
8612 		if (rc)
8613 			goto err_out;
8614 	}
8615 
8616 	if (bp->flags & BNXT_FLAG_TPA) {
8617 		rc = bnxt_set_tpa(bp, true);
8618 		if (rc)
8619 			goto err_out;
8620 	}
8621 
8622 	if (BNXT_VF(bp))
8623 		bnxt_update_vf_mac(bp);
8624 
8625 	/* Filter for default vnic 0 */
8626 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8627 	if (rc) {
8628 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8629 		goto err_out;
8630 	}
8631 	vnic->uc_filter_count = 1;
8632 
8633 	vnic->rx_mask = 0;
8634 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8635 		goto skip_rx_mask;
8636 
8637 	if (bp->dev->flags & IFF_BROADCAST)
8638 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8639 
8640 	if (bp->dev->flags & IFF_PROMISC)
8641 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8642 
8643 	if (bp->dev->flags & IFF_ALLMULTI) {
8644 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8645 		vnic->mc_list_count = 0;
8646 	} else if (bp->dev->flags & IFF_MULTICAST) {
8647 		u32 mask = 0;
8648 
8649 		bnxt_mc_list_updated(bp, &mask);
8650 		vnic->rx_mask |= mask;
8651 	}
8652 
8653 	rc = bnxt_cfg_rx_mode(bp);
8654 	if (rc)
8655 		goto err_out;
8656 
8657 skip_rx_mask:
8658 	rc = bnxt_hwrm_set_coal(bp);
8659 	if (rc)
8660 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8661 				rc);
8662 
8663 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8664 		rc = bnxt_setup_nitroa0_vnic(bp);
8665 		if (rc)
8666 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8667 				   rc);
8668 	}
8669 
8670 	if (BNXT_VF(bp)) {
8671 		bnxt_hwrm_func_qcfg(bp);
8672 		netdev_update_features(bp->dev);
8673 	}
8674 
8675 	return 0;
8676 
8677 err_out:
8678 	bnxt_hwrm_resource_free(bp, 0, true);
8679 
8680 	return rc;
8681 }
8682 
bnxt_shutdown_nic(struct bnxt * bp,bool irq_re_init)8683 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8684 {
8685 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8686 	return 0;
8687 }
8688 
bnxt_init_nic(struct bnxt * bp,bool irq_re_init)8689 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8690 {
8691 	bnxt_init_cp_rings(bp);
8692 	bnxt_init_rx_rings(bp);
8693 	bnxt_init_tx_rings(bp);
8694 	bnxt_init_ring_grps(bp, irq_re_init);
8695 	bnxt_init_vnics(bp);
8696 
8697 	return bnxt_init_chip(bp, irq_re_init);
8698 }
8699 
bnxt_set_real_num_queues(struct bnxt * bp)8700 static int bnxt_set_real_num_queues(struct bnxt *bp)
8701 {
8702 	int rc;
8703 	struct net_device *dev = bp->dev;
8704 
8705 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8706 					  bp->tx_nr_rings_xdp);
8707 	if (rc)
8708 		return rc;
8709 
8710 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8711 	if (rc)
8712 		return rc;
8713 
8714 #ifdef CONFIG_RFS_ACCEL
8715 	if (bp->flags & BNXT_FLAG_RFS)
8716 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8717 #endif
8718 
8719 	return rc;
8720 }
8721 
bnxt_trim_rings(struct bnxt * bp,int * rx,int * tx,int max,bool shared)8722 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8723 			   bool shared)
8724 {
8725 	int _rx = *rx, _tx = *tx;
8726 
8727 	if (shared) {
8728 		*rx = min_t(int, _rx, max);
8729 		*tx = min_t(int, _tx, max);
8730 	} else {
8731 		if (max < 2)
8732 			return -ENOMEM;
8733 
8734 		while (_rx + _tx > max) {
8735 			if (_rx > _tx && _rx > 1)
8736 				_rx--;
8737 			else if (_tx > 1)
8738 				_tx--;
8739 		}
8740 		*rx = _rx;
8741 		*tx = _tx;
8742 	}
8743 	return 0;
8744 }
8745 
bnxt_setup_msix(struct bnxt * bp)8746 static void bnxt_setup_msix(struct bnxt *bp)
8747 {
8748 	const int len = sizeof(bp->irq_tbl[0].name);
8749 	struct net_device *dev = bp->dev;
8750 	int tcs, i;
8751 
8752 	tcs = netdev_get_num_tc(dev);
8753 	if (tcs) {
8754 		int i, off, count;
8755 
8756 		for (i = 0; i < tcs; i++) {
8757 			count = bp->tx_nr_rings_per_tc;
8758 			off = i * count;
8759 			netdev_set_tc_queue(dev, i, count, off);
8760 		}
8761 	}
8762 
8763 	for (i = 0; i < bp->cp_nr_rings; i++) {
8764 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8765 		char *attr;
8766 
8767 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8768 			attr = "TxRx";
8769 		else if (i < bp->rx_nr_rings)
8770 			attr = "rx";
8771 		else
8772 			attr = "tx";
8773 
8774 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8775 			 attr, i);
8776 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8777 	}
8778 }
8779 
bnxt_setup_inta(struct bnxt * bp)8780 static void bnxt_setup_inta(struct bnxt *bp)
8781 {
8782 	const int len = sizeof(bp->irq_tbl[0].name);
8783 
8784 	if (netdev_get_num_tc(bp->dev))
8785 		netdev_reset_tc(bp->dev);
8786 
8787 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8788 		 0);
8789 	bp->irq_tbl[0].handler = bnxt_inta;
8790 }
8791 
8792 static int bnxt_init_int_mode(struct bnxt *bp);
8793 
bnxt_setup_int_mode(struct bnxt * bp)8794 static int bnxt_setup_int_mode(struct bnxt *bp)
8795 {
8796 	int rc;
8797 
8798 	if (!bp->irq_tbl) {
8799 		rc = bnxt_init_int_mode(bp);
8800 		if (rc || !bp->irq_tbl)
8801 			return rc ?: -ENODEV;
8802 	}
8803 
8804 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8805 		bnxt_setup_msix(bp);
8806 	else
8807 		bnxt_setup_inta(bp);
8808 
8809 	rc = bnxt_set_real_num_queues(bp);
8810 	return rc;
8811 }
8812 
8813 #ifdef CONFIG_RFS_ACCEL
bnxt_get_max_func_rss_ctxs(struct bnxt * bp)8814 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
8815 {
8816 	return bp->hw_resc.max_rsscos_ctxs;
8817 }
8818 
bnxt_get_max_func_vnics(struct bnxt * bp)8819 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
8820 {
8821 	return bp->hw_resc.max_vnics;
8822 }
8823 #endif
8824 
bnxt_get_max_func_stat_ctxs(struct bnxt * bp)8825 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
8826 {
8827 	return bp->hw_resc.max_stat_ctxs;
8828 }
8829 
bnxt_get_max_func_cp_rings(struct bnxt * bp)8830 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
8831 {
8832 	return bp->hw_resc.max_cp_rings;
8833 }
8834 
bnxt_get_max_func_cp_rings_for_en(struct bnxt * bp)8835 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
8836 {
8837 	unsigned int cp = bp->hw_resc.max_cp_rings;
8838 
8839 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8840 		cp -= bnxt_get_ulp_msix_num(bp);
8841 
8842 	return cp;
8843 }
8844 
bnxt_get_max_func_irqs(struct bnxt * bp)8845 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
8846 {
8847 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8848 
8849 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8850 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
8851 
8852 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8853 }
8854 
bnxt_set_max_func_irqs(struct bnxt * bp,unsigned int max_irqs)8855 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
8856 {
8857 	bp->hw_resc.max_irqs = max_irqs;
8858 }
8859 
bnxt_get_avail_cp_rings_for_en(struct bnxt * bp)8860 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
8861 {
8862 	unsigned int cp;
8863 
8864 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
8865 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8866 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
8867 	else
8868 		return cp - bp->cp_nr_rings;
8869 }
8870 
bnxt_get_avail_stat_ctxs_for_en(struct bnxt * bp)8871 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8872 {
8873 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8874 }
8875 
bnxt_get_avail_msix(struct bnxt * bp,int num)8876 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8877 {
8878 	int max_cp = bnxt_get_max_func_cp_rings(bp);
8879 	int max_irq = bnxt_get_max_func_irqs(bp);
8880 	int total_req = bp->cp_nr_rings + num;
8881 	int max_idx, avail_msix;
8882 
8883 	max_idx = bp->total_irqs;
8884 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8885 		max_idx = min_t(int, bp->total_irqs, max_cp);
8886 	avail_msix = max_idx - bp->cp_nr_rings;
8887 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8888 		return avail_msix;
8889 
8890 	if (max_irq < total_req) {
8891 		num = max_irq - bp->cp_nr_rings;
8892 		if (num <= 0)
8893 			return 0;
8894 	}
8895 	return num;
8896 }
8897 
bnxt_get_num_msix(struct bnxt * bp)8898 static int bnxt_get_num_msix(struct bnxt *bp)
8899 {
8900 	if (!BNXT_NEW_RM(bp))
8901 		return bnxt_get_max_func_irqs(bp);
8902 
8903 	return bnxt_nq_rings_in_use(bp);
8904 }
8905 
bnxt_init_msix(struct bnxt * bp)8906 static int bnxt_init_msix(struct bnxt *bp)
8907 {
8908 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8909 	struct msix_entry *msix_ent;
8910 
8911 	total_vecs = bnxt_get_num_msix(bp);
8912 	max = bnxt_get_max_func_irqs(bp);
8913 	if (total_vecs > max)
8914 		total_vecs = max;
8915 
8916 	if (!total_vecs)
8917 		return 0;
8918 
8919 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8920 	if (!msix_ent)
8921 		return -ENOMEM;
8922 
8923 	for (i = 0; i < total_vecs; i++) {
8924 		msix_ent[i].entry = i;
8925 		msix_ent[i].vector = 0;
8926 	}
8927 
8928 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8929 		min = 2;
8930 
8931 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8932 	ulp_msix = bnxt_get_ulp_msix_num(bp);
8933 	if (total_vecs < 0 || total_vecs < ulp_msix) {
8934 		rc = -ENODEV;
8935 		goto msix_setup_exit;
8936 	}
8937 
8938 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8939 	if (bp->irq_tbl) {
8940 		for (i = 0; i < total_vecs; i++)
8941 			bp->irq_tbl[i].vector = msix_ent[i].vector;
8942 
8943 		bp->total_irqs = total_vecs;
8944 		/* Trim rings based upon num of vectors allocated */
8945 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8946 				     total_vecs - ulp_msix, min == 1);
8947 		if (rc)
8948 			goto msix_setup_exit;
8949 
8950 		bp->cp_nr_rings = (min == 1) ?
8951 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8952 				  bp->tx_nr_rings + bp->rx_nr_rings;
8953 
8954 	} else {
8955 		rc = -ENOMEM;
8956 		goto msix_setup_exit;
8957 	}
8958 	bp->flags |= BNXT_FLAG_USING_MSIX;
8959 	kfree(msix_ent);
8960 	return 0;
8961 
8962 msix_setup_exit:
8963 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8964 	kfree(bp->irq_tbl);
8965 	bp->irq_tbl = NULL;
8966 	pci_disable_msix(bp->pdev);
8967 	kfree(msix_ent);
8968 	return rc;
8969 }
8970 
bnxt_init_inta(struct bnxt * bp)8971 static int bnxt_init_inta(struct bnxt *bp)
8972 {
8973 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
8974 	if (!bp->irq_tbl)
8975 		return -ENOMEM;
8976 
8977 	bp->total_irqs = 1;
8978 	bp->rx_nr_rings = 1;
8979 	bp->tx_nr_rings = 1;
8980 	bp->cp_nr_rings = 1;
8981 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
8982 	bp->irq_tbl[0].vector = bp->pdev->irq;
8983 	return 0;
8984 }
8985 
bnxt_init_int_mode(struct bnxt * bp)8986 static int bnxt_init_int_mode(struct bnxt *bp)
8987 {
8988 	int rc = -ENODEV;
8989 
8990 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
8991 		rc = bnxt_init_msix(bp);
8992 
8993 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8994 		/* fallback to INTA */
8995 		rc = bnxt_init_inta(bp);
8996 	}
8997 	return rc;
8998 }
8999 
bnxt_clear_int_mode(struct bnxt * bp)9000 static void bnxt_clear_int_mode(struct bnxt *bp)
9001 {
9002 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9003 		pci_disable_msix(bp->pdev);
9004 
9005 	kfree(bp->irq_tbl);
9006 	bp->irq_tbl = NULL;
9007 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9008 }
9009 
bnxt_reserve_rings(struct bnxt * bp,bool irq_re_init)9010 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9011 {
9012 	int tcs = netdev_get_num_tc(bp->dev);
9013 	bool irq_cleared = false;
9014 	int rc;
9015 
9016 	if (!bnxt_need_reserve_rings(bp))
9017 		return 0;
9018 
9019 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9020 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9021 		bnxt_ulp_irq_stop(bp);
9022 		bnxt_clear_int_mode(bp);
9023 		irq_cleared = true;
9024 	}
9025 	rc = __bnxt_reserve_rings(bp);
9026 	if (irq_cleared) {
9027 		if (!rc)
9028 			rc = bnxt_init_int_mode(bp);
9029 		bnxt_ulp_irq_restart(bp, rc);
9030 	}
9031 	if (rc) {
9032 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9033 		return rc;
9034 	}
9035 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
9036 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
9037 		netdev_err(bp->dev, "tx ring reservation failure\n");
9038 		netdev_reset_tc(bp->dev);
9039 		if (bp->tx_nr_rings_xdp)
9040 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
9041 		else
9042 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9043 		return -ENOMEM;
9044 	}
9045 	return 0;
9046 }
9047 
bnxt_free_irq(struct bnxt * bp)9048 static void bnxt_free_irq(struct bnxt *bp)
9049 {
9050 	struct bnxt_irq *irq;
9051 	int i;
9052 
9053 #ifdef CONFIG_RFS_ACCEL
9054 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9055 	bp->dev->rx_cpu_rmap = NULL;
9056 #endif
9057 	if (!bp->irq_tbl || !bp->bnapi)
9058 		return;
9059 
9060 	for (i = 0; i < bp->cp_nr_rings; i++) {
9061 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9062 
9063 		irq = &bp->irq_tbl[map_idx];
9064 		if (irq->requested) {
9065 			if (irq->have_cpumask) {
9066 				irq_set_affinity_hint(irq->vector, NULL);
9067 				free_cpumask_var(irq->cpu_mask);
9068 				irq->have_cpumask = 0;
9069 			}
9070 			free_irq(irq->vector, bp->bnapi[i]);
9071 		}
9072 
9073 		irq->requested = 0;
9074 	}
9075 }
9076 
bnxt_request_irq(struct bnxt * bp)9077 static int bnxt_request_irq(struct bnxt *bp)
9078 {
9079 	int i, j, rc = 0;
9080 	unsigned long flags = 0;
9081 #ifdef CONFIG_RFS_ACCEL
9082 	struct cpu_rmap *rmap;
9083 #endif
9084 
9085 	rc = bnxt_setup_int_mode(bp);
9086 	if (rc) {
9087 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9088 			   rc);
9089 		return rc;
9090 	}
9091 #ifdef CONFIG_RFS_ACCEL
9092 	rmap = bp->dev->rx_cpu_rmap;
9093 #endif
9094 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9095 		flags = IRQF_SHARED;
9096 
9097 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9098 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9099 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9100 
9101 #ifdef CONFIG_RFS_ACCEL
9102 		if (rmap && bp->bnapi[i]->rx_ring) {
9103 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9104 			if (rc)
9105 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9106 					    j);
9107 			j++;
9108 		}
9109 #endif
9110 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9111 				 bp->bnapi[i]);
9112 		if (rc)
9113 			break;
9114 
9115 		irq->requested = 1;
9116 
9117 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9118 			int numa_node = dev_to_node(&bp->pdev->dev);
9119 
9120 			irq->have_cpumask = 1;
9121 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9122 					irq->cpu_mask);
9123 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9124 			if (rc) {
9125 				netdev_warn(bp->dev,
9126 					    "Set affinity failed, IRQ = %d\n",
9127 					    irq->vector);
9128 				break;
9129 			}
9130 		}
9131 	}
9132 	return rc;
9133 }
9134 
bnxt_del_napi(struct bnxt * bp)9135 static void bnxt_del_napi(struct bnxt *bp)
9136 {
9137 	int i;
9138 
9139 	if (!bp->bnapi)
9140 		return;
9141 
9142 	for (i = 0; i < bp->cp_nr_rings; i++) {
9143 		struct bnxt_napi *bnapi = bp->bnapi[i];
9144 
9145 		__netif_napi_del(&bnapi->napi);
9146 	}
9147 	/* We called __netif_napi_del(), we need
9148 	 * to respect an RCU grace period before freeing napi structures.
9149 	 */
9150 	synchronize_net();
9151 }
9152 
bnxt_init_napi(struct bnxt * bp)9153 static void bnxt_init_napi(struct bnxt *bp)
9154 {
9155 	int i;
9156 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9157 	struct bnxt_napi *bnapi;
9158 
9159 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9160 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9161 
9162 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9163 			poll_fn = bnxt_poll_p5;
9164 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9165 			cp_nr_rings--;
9166 		for (i = 0; i < cp_nr_rings; i++) {
9167 			bnapi = bp->bnapi[i];
9168 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
9169 		}
9170 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9171 			bnapi = bp->bnapi[cp_nr_rings];
9172 			netif_napi_add(bp->dev, &bnapi->napi,
9173 				       bnxt_poll_nitroa0, 64);
9174 		}
9175 	} else {
9176 		bnapi = bp->bnapi[0];
9177 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
9178 	}
9179 }
9180 
bnxt_disable_napi(struct bnxt * bp)9181 static void bnxt_disable_napi(struct bnxt *bp)
9182 {
9183 	int i;
9184 
9185 	if (!bp->bnapi ||
9186 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9187 		return;
9188 
9189 	for (i = 0; i < bp->cp_nr_rings; i++) {
9190 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9191 
9192 		napi_disable(&bp->bnapi[i]->napi);
9193 		if (bp->bnapi[i]->rx_ring)
9194 			cancel_work_sync(&cpr->dim.work);
9195 	}
9196 }
9197 
bnxt_enable_napi(struct bnxt * bp)9198 static void bnxt_enable_napi(struct bnxt *bp)
9199 {
9200 	int i;
9201 
9202 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9203 	for (i = 0; i < bp->cp_nr_rings; i++) {
9204 		struct bnxt_napi *bnapi = bp->bnapi[i];
9205 		struct bnxt_cp_ring_info *cpr;
9206 
9207 		cpr = &bnapi->cp_ring;
9208 		if (bnapi->in_reset)
9209 			cpr->sw_stats.rx.rx_resets++;
9210 		bnapi->in_reset = false;
9211 
9212 		if (bnapi->rx_ring) {
9213 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9214 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9215 		}
9216 		napi_enable(&bnapi->napi);
9217 	}
9218 }
9219 
bnxt_tx_disable(struct bnxt * bp)9220 void bnxt_tx_disable(struct bnxt *bp)
9221 {
9222 	int i;
9223 	struct bnxt_tx_ring_info *txr;
9224 
9225 	if (bp->tx_ring) {
9226 		for (i = 0; i < bp->tx_nr_rings; i++) {
9227 			txr = &bp->tx_ring[i];
9228 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9229 		}
9230 	}
9231 	/* Make sure napi polls see @dev_state change */
9232 	synchronize_net();
9233 	/* Drop carrier first to prevent TX timeout */
9234 	netif_carrier_off(bp->dev);
9235 	/* Stop all TX queues */
9236 	netif_tx_disable(bp->dev);
9237 }
9238 
bnxt_tx_enable(struct bnxt * bp)9239 void bnxt_tx_enable(struct bnxt *bp)
9240 {
9241 	int i;
9242 	struct bnxt_tx_ring_info *txr;
9243 
9244 	for (i = 0; i < bp->tx_nr_rings; i++) {
9245 		txr = &bp->tx_ring[i];
9246 		WRITE_ONCE(txr->dev_state, 0);
9247 	}
9248 	/* Make sure napi polls see @dev_state change */
9249 	synchronize_net();
9250 	netif_tx_wake_all_queues(bp->dev);
9251 	if (bp->link_info.link_up)
9252 		netif_carrier_on(bp->dev);
9253 }
9254 
bnxt_report_fec(struct bnxt_link_info * link_info)9255 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9256 {
9257 	u8 active_fec = link_info->active_fec_sig_mode &
9258 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9259 
9260 	switch (active_fec) {
9261 	default:
9262 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9263 		return "None";
9264 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9265 		return "Clause 74 BaseR";
9266 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9267 		return "Clause 91 RS(528,514)";
9268 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9269 		return "Clause 91 RS544_1XN";
9270 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9271 		return "Clause 91 RS(544,514)";
9272 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9273 		return "Clause 91 RS272_1XN";
9274 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9275 		return "Clause 91 RS(272,257)";
9276 	}
9277 }
9278 
bnxt_report_link(struct bnxt * bp)9279 static void bnxt_report_link(struct bnxt *bp)
9280 {
9281 	if (bp->link_info.link_up) {
9282 		const char *signal = "";
9283 		const char *flow_ctrl;
9284 		const char *duplex;
9285 		u32 speed;
9286 		u16 fec;
9287 
9288 		netif_carrier_on(bp->dev);
9289 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9290 		if (speed == SPEED_UNKNOWN) {
9291 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9292 			return;
9293 		}
9294 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9295 			duplex = "full";
9296 		else
9297 			duplex = "half";
9298 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9299 			flow_ctrl = "ON - receive & transmit";
9300 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9301 			flow_ctrl = "ON - transmit";
9302 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9303 			flow_ctrl = "ON - receive";
9304 		else
9305 			flow_ctrl = "none";
9306 		if (bp->link_info.phy_qcfg_resp.option_flags &
9307 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9308 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9309 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9310 			switch (sig_mode) {
9311 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9312 				signal = "(NRZ) ";
9313 				break;
9314 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9315 				signal = "(PAM4) ";
9316 				break;
9317 			default:
9318 				break;
9319 			}
9320 		}
9321 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9322 			    speed, signal, duplex, flow_ctrl);
9323 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9324 			netdev_info(bp->dev, "EEE is %s\n",
9325 				    bp->eee.eee_active ? "active" :
9326 							 "not active");
9327 		fec = bp->link_info.fec_cfg;
9328 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9329 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9330 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9331 				    bnxt_report_fec(&bp->link_info));
9332 	} else {
9333 		netif_carrier_off(bp->dev);
9334 		netdev_err(bp->dev, "NIC Link is Down\n");
9335 	}
9336 }
9337 
bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output * resp)9338 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9339 {
9340 	if (!resp->supported_speeds_auto_mode &&
9341 	    !resp->supported_speeds_force_mode &&
9342 	    !resp->supported_pam4_speeds_auto_mode &&
9343 	    !resp->supported_pam4_speeds_force_mode)
9344 		return true;
9345 	return false;
9346 }
9347 
bnxt_hwrm_phy_qcaps(struct bnxt * bp)9348 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9349 {
9350 	struct bnxt_link_info *link_info = &bp->link_info;
9351 	struct hwrm_port_phy_qcaps_output *resp;
9352 	struct hwrm_port_phy_qcaps_input *req;
9353 	int rc = 0;
9354 
9355 	if (bp->hwrm_spec_code < 0x10201)
9356 		return 0;
9357 
9358 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9359 	if (rc)
9360 		return rc;
9361 
9362 	resp = hwrm_req_hold(bp, req);
9363 	rc = hwrm_req_send(bp, req);
9364 	if (rc)
9365 		goto hwrm_phy_qcaps_exit;
9366 
9367 	bp->phy_flags = resp->flags;
9368 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9369 		struct ethtool_eee *eee = &bp->eee;
9370 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9371 
9372 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9373 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9374 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9375 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9376 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9377 	}
9378 
9379 	if (bp->hwrm_spec_code >= 0x10a01) {
9380 		if (bnxt_phy_qcaps_no_speed(resp)) {
9381 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9382 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9383 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9384 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9385 			netdev_info(bp->dev, "Ethernet link enabled\n");
9386 			/* Phy re-enabled, reprobe the speeds */
9387 			link_info->support_auto_speeds = 0;
9388 			link_info->support_pam4_auto_speeds = 0;
9389 		}
9390 	}
9391 	if (resp->supported_speeds_auto_mode)
9392 		link_info->support_auto_speeds =
9393 			le16_to_cpu(resp->supported_speeds_auto_mode);
9394 	if (resp->supported_pam4_speeds_auto_mode)
9395 		link_info->support_pam4_auto_speeds =
9396 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9397 
9398 	bp->port_count = resp->port_cnt;
9399 
9400 hwrm_phy_qcaps_exit:
9401 	hwrm_req_drop(bp, req);
9402 	return rc;
9403 }
9404 
bnxt_support_dropped(u16 advertising,u16 supported)9405 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9406 {
9407 	u16 diff = advertising ^ supported;
9408 
9409 	return ((supported | diff) != supported);
9410 }
9411 
bnxt_update_link(struct bnxt * bp,bool chng_link_state)9412 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9413 {
9414 	struct bnxt_link_info *link_info = &bp->link_info;
9415 	struct hwrm_port_phy_qcfg_output *resp;
9416 	struct hwrm_port_phy_qcfg_input *req;
9417 	u8 link_up = link_info->link_up;
9418 	bool support_changed = false;
9419 	int rc;
9420 
9421 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9422 	if (rc)
9423 		return rc;
9424 
9425 	resp = hwrm_req_hold(bp, req);
9426 	rc = hwrm_req_send(bp, req);
9427 	if (rc) {
9428 		hwrm_req_drop(bp, req);
9429 		return rc;
9430 	}
9431 
9432 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9433 	link_info->phy_link_status = resp->link;
9434 	link_info->duplex = resp->duplex_cfg;
9435 	if (bp->hwrm_spec_code >= 0x10800)
9436 		link_info->duplex = resp->duplex_state;
9437 	link_info->pause = resp->pause;
9438 	link_info->auto_mode = resp->auto_mode;
9439 	link_info->auto_pause_setting = resp->auto_pause;
9440 	link_info->lp_pause = resp->link_partner_adv_pause;
9441 	link_info->force_pause_setting = resp->force_pause;
9442 	link_info->duplex_setting = resp->duplex_cfg;
9443 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9444 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9445 	else
9446 		link_info->link_speed = 0;
9447 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9448 	link_info->force_pam4_link_speed =
9449 		le16_to_cpu(resp->force_pam4_link_speed);
9450 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9451 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9452 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9453 	link_info->auto_pam4_link_speeds =
9454 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9455 	link_info->lp_auto_link_speeds =
9456 		le16_to_cpu(resp->link_partner_adv_speeds);
9457 	link_info->lp_auto_pam4_link_speeds =
9458 		resp->link_partner_pam4_adv_speeds;
9459 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9460 	link_info->phy_ver[0] = resp->phy_maj;
9461 	link_info->phy_ver[1] = resp->phy_min;
9462 	link_info->phy_ver[2] = resp->phy_bld;
9463 	link_info->media_type = resp->media_type;
9464 	link_info->phy_type = resp->phy_type;
9465 	link_info->transceiver = resp->xcvr_pkg_type;
9466 	link_info->phy_addr = resp->eee_config_phy_addr &
9467 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9468 	link_info->module_status = resp->module_status;
9469 
9470 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9471 		struct ethtool_eee *eee = &bp->eee;
9472 		u16 fw_speeds;
9473 
9474 		eee->eee_active = 0;
9475 		if (resp->eee_config_phy_addr &
9476 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9477 			eee->eee_active = 1;
9478 			fw_speeds = le16_to_cpu(
9479 				resp->link_partner_adv_eee_link_speed_mask);
9480 			eee->lp_advertised =
9481 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9482 		}
9483 
9484 		/* Pull initial EEE config */
9485 		if (!chng_link_state) {
9486 			if (resp->eee_config_phy_addr &
9487 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9488 				eee->eee_enabled = 1;
9489 
9490 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9491 			eee->advertised =
9492 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9493 
9494 			if (resp->eee_config_phy_addr &
9495 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9496 				__le32 tmr;
9497 
9498 				eee->tx_lpi_enabled = 1;
9499 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9500 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9501 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9502 			}
9503 		}
9504 	}
9505 
9506 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9507 	if (bp->hwrm_spec_code >= 0x10504) {
9508 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9509 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9510 	}
9511 	/* TODO: need to add more logic to report VF link */
9512 	if (chng_link_state) {
9513 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9514 			link_info->link_up = 1;
9515 		else
9516 			link_info->link_up = 0;
9517 		if (link_up != link_info->link_up)
9518 			bnxt_report_link(bp);
9519 	} else {
9520 		/* alwasy link down if not require to update link state */
9521 		link_info->link_up = 0;
9522 	}
9523 	hwrm_req_drop(bp, req);
9524 
9525 	if (!BNXT_PHY_CFG_ABLE(bp))
9526 		return 0;
9527 
9528 	/* Check if any advertised speeds are no longer supported. The caller
9529 	 * holds the link_lock mutex, so we can modify link_info settings.
9530 	 */
9531 	if (bnxt_support_dropped(link_info->advertising,
9532 				 link_info->support_auto_speeds)) {
9533 		link_info->advertising = link_info->support_auto_speeds;
9534 		support_changed = true;
9535 	}
9536 	if (bnxt_support_dropped(link_info->advertising_pam4,
9537 				 link_info->support_pam4_auto_speeds)) {
9538 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9539 		support_changed = true;
9540 	}
9541 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9542 		bnxt_hwrm_set_link_setting(bp, true, false);
9543 	return 0;
9544 }
9545 
bnxt_get_port_module_status(struct bnxt * bp)9546 static void bnxt_get_port_module_status(struct bnxt *bp)
9547 {
9548 	struct bnxt_link_info *link_info = &bp->link_info;
9549 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9550 	u8 module_status;
9551 
9552 	if (bnxt_update_link(bp, true))
9553 		return;
9554 
9555 	module_status = link_info->module_status;
9556 	switch (module_status) {
9557 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9558 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9559 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9560 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9561 			    bp->pf.port_id);
9562 		if (bp->hwrm_spec_code >= 0x10201) {
9563 			netdev_warn(bp->dev, "Module part number %s\n",
9564 				    resp->phy_vendor_partnumber);
9565 		}
9566 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9567 			netdev_warn(bp->dev, "TX is disabled\n");
9568 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9569 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9570 	}
9571 }
9572 
9573 static void
bnxt_hwrm_set_pause_common(struct bnxt * bp,struct hwrm_port_phy_cfg_input * req)9574 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9575 {
9576 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9577 		if (bp->hwrm_spec_code >= 0x10201)
9578 			req->auto_pause =
9579 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9580 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9581 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9582 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9583 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9584 		req->enables |=
9585 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9586 	} else {
9587 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9588 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9589 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9590 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9591 		req->enables |=
9592 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9593 		if (bp->hwrm_spec_code >= 0x10201) {
9594 			req->auto_pause = req->force_pause;
9595 			req->enables |= cpu_to_le32(
9596 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9597 		}
9598 	}
9599 }
9600 
bnxt_hwrm_set_link_common(struct bnxt * bp,struct hwrm_port_phy_cfg_input * req)9601 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9602 {
9603 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9604 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9605 		if (bp->link_info.advertising) {
9606 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9607 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9608 		}
9609 		if (bp->link_info.advertising_pam4) {
9610 			req->enables |=
9611 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9612 			req->auto_link_pam4_speed_mask =
9613 				cpu_to_le16(bp->link_info.advertising_pam4);
9614 		}
9615 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9616 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9617 	} else {
9618 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9619 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9620 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9621 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9622 		} else {
9623 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9624 		}
9625 	}
9626 
9627 	/* tell chimp that the setting takes effect immediately */
9628 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9629 }
9630 
bnxt_hwrm_set_pause(struct bnxt * bp)9631 int bnxt_hwrm_set_pause(struct bnxt *bp)
9632 {
9633 	struct hwrm_port_phy_cfg_input *req;
9634 	int rc;
9635 
9636 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9637 	if (rc)
9638 		return rc;
9639 
9640 	bnxt_hwrm_set_pause_common(bp, req);
9641 
9642 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9643 	    bp->link_info.force_link_chng)
9644 		bnxt_hwrm_set_link_common(bp, req);
9645 
9646 	rc = hwrm_req_send(bp, req);
9647 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9648 		/* since changing of pause setting doesn't trigger any link
9649 		 * change event, the driver needs to update the current pause
9650 		 * result upon successfully return of the phy_cfg command
9651 		 */
9652 		bp->link_info.pause =
9653 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9654 		bp->link_info.auto_pause_setting = 0;
9655 		if (!bp->link_info.force_link_chng)
9656 			bnxt_report_link(bp);
9657 	}
9658 	bp->link_info.force_link_chng = false;
9659 	return rc;
9660 }
9661 
bnxt_hwrm_set_eee(struct bnxt * bp,struct hwrm_port_phy_cfg_input * req)9662 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9663 			      struct hwrm_port_phy_cfg_input *req)
9664 {
9665 	struct ethtool_eee *eee = &bp->eee;
9666 
9667 	if (eee->eee_enabled) {
9668 		u16 eee_speeds;
9669 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9670 
9671 		if (eee->tx_lpi_enabled)
9672 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9673 		else
9674 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9675 
9676 		req->flags |= cpu_to_le32(flags);
9677 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9678 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9679 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9680 	} else {
9681 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9682 	}
9683 }
9684 
bnxt_hwrm_set_link_setting(struct bnxt * bp,bool set_pause,bool set_eee)9685 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9686 {
9687 	struct hwrm_port_phy_cfg_input *req;
9688 	int rc;
9689 
9690 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9691 	if (rc)
9692 		return rc;
9693 
9694 	if (set_pause)
9695 		bnxt_hwrm_set_pause_common(bp, req);
9696 
9697 	bnxt_hwrm_set_link_common(bp, req);
9698 
9699 	if (set_eee)
9700 		bnxt_hwrm_set_eee(bp, req);
9701 	return hwrm_req_send(bp, req);
9702 }
9703 
bnxt_hwrm_shutdown_link(struct bnxt * bp)9704 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9705 {
9706 	struct hwrm_port_phy_cfg_input *req;
9707 	int rc;
9708 
9709 	if (!BNXT_SINGLE_PF(bp))
9710 		return 0;
9711 
9712 	if (pci_num_vf(bp->pdev) &&
9713 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9714 		return 0;
9715 
9716 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9717 	if (rc)
9718 		return rc;
9719 
9720 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9721 	return hwrm_req_send(bp, req);
9722 }
9723 
9724 static int bnxt_fw_init_one(struct bnxt *bp);
9725 
bnxt_fw_reset_via_optee(struct bnxt * bp)9726 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9727 {
9728 #ifdef CONFIG_TEE_BNXT_FW
9729 	int rc = tee_bnxt_fw_load();
9730 
9731 	if (rc)
9732 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9733 
9734 	return rc;
9735 #else
9736 	netdev_err(bp->dev, "OP-TEE not supported\n");
9737 	return -ENODEV;
9738 #endif
9739 }
9740 
bnxt_try_recover_fw(struct bnxt * bp)9741 static int bnxt_try_recover_fw(struct bnxt *bp)
9742 {
9743 	if (bp->fw_health && bp->fw_health->status_reliable) {
9744 		int retry = 0, rc;
9745 		u32 sts;
9746 
9747 		do {
9748 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9749 			rc = bnxt_hwrm_poll(bp);
9750 			if (!BNXT_FW_IS_BOOTING(sts) &&
9751 			    !BNXT_FW_IS_RECOVERING(sts))
9752 				break;
9753 			retry++;
9754 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9755 
9756 		if (!BNXT_FW_IS_HEALTHY(sts)) {
9757 			netdev_err(bp->dev,
9758 				   "Firmware not responding, status: 0x%x\n",
9759 				   sts);
9760 			rc = -ENODEV;
9761 		}
9762 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9763 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9764 			return bnxt_fw_reset_via_optee(bp);
9765 		}
9766 		return rc;
9767 	}
9768 
9769 	return -ENODEV;
9770 }
9771 
bnxt_hwrm_if_change(struct bnxt * bp,bool up)9772 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
9773 {
9774 	struct hwrm_func_drv_if_change_output *resp;
9775 	struct hwrm_func_drv_if_change_input *req;
9776 	bool fw_reset = !bp->irq_tbl;
9777 	bool resc_reinit = false;
9778 	int rc, retry = 0;
9779 	u32 flags = 0;
9780 
9781 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
9782 		return 0;
9783 
9784 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
9785 	if (rc)
9786 		return rc;
9787 
9788 	if (up)
9789 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
9790 	resp = hwrm_req_hold(bp, req);
9791 
9792 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
9793 	while (retry < BNXT_FW_IF_RETRY) {
9794 		rc = hwrm_req_send(bp, req);
9795 		if (rc != -EAGAIN)
9796 			break;
9797 
9798 		msleep(50);
9799 		retry++;
9800 	}
9801 
9802 	if (rc == -EAGAIN) {
9803 		hwrm_req_drop(bp, req);
9804 		return rc;
9805 	} else if (!rc) {
9806 		flags = le32_to_cpu(resp->flags);
9807 	} else if (up) {
9808 		rc = bnxt_try_recover_fw(bp);
9809 		fw_reset = true;
9810 	}
9811 	hwrm_req_drop(bp, req);
9812 	if (rc)
9813 		return rc;
9814 
9815 	if (!up) {
9816 		bnxt_inv_fw_health_reg(bp);
9817 		return 0;
9818 	}
9819 
9820 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
9821 		resc_reinit = true;
9822 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
9823 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
9824 		fw_reset = true;
9825 	else if (bp->fw_health && !bp->fw_health->status_reliable)
9826 		bnxt_try_map_fw_health_reg(bp);
9827 
9828 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
9829 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
9830 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9831 		return -ENODEV;
9832 	}
9833 	if (resc_reinit || fw_reset) {
9834 		if (fw_reset) {
9835 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9836 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9837 				bnxt_ulp_stop(bp);
9838 			bnxt_free_ctx_mem(bp);
9839 			kfree(bp->ctx);
9840 			bp->ctx = NULL;
9841 			bnxt_dcb_free(bp);
9842 			rc = bnxt_fw_init_one(bp);
9843 			if (rc) {
9844 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9845 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9846 				return rc;
9847 			}
9848 			bnxt_clear_int_mode(bp);
9849 			rc = bnxt_init_int_mode(bp);
9850 			if (rc) {
9851 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9852 				netdev_err(bp->dev, "init int mode failed\n");
9853 				return rc;
9854 			}
9855 		}
9856 		if (BNXT_NEW_RM(bp)) {
9857 			struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9858 
9859 			rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9860 			if (rc)
9861 				netdev_err(bp->dev, "resc_qcaps failed\n");
9862 
9863 			hw_resc->resv_cp_rings = 0;
9864 			hw_resc->resv_stat_ctxs = 0;
9865 			hw_resc->resv_irqs = 0;
9866 			hw_resc->resv_tx_rings = 0;
9867 			hw_resc->resv_rx_rings = 0;
9868 			hw_resc->resv_hw_ring_grps = 0;
9869 			hw_resc->resv_vnics = 0;
9870 			if (!fw_reset) {
9871 				bp->tx_nr_rings = 0;
9872 				bp->rx_nr_rings = 0;
9873 			}
9874 		}
9875 	}
9876 	return rc;
9877 }
9878 
bnxt_hwrm_port_led_qcaps(struct bnxt * bp)9879 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
9880 {
9881 	struct hwrm_port_led_qcaps_output *resp;
9882 	struct hwrm_port_led_qcaps_input *req;
9883 	struct bnxt_pf_info *pf = &bp->pf;
9884 	int rc;
9885 
9886 	bp->num_leds = 0;
9887 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
9888 		return 0;
9889 
9890 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
9891 	if (rc)
9892 		return rc;
9893 
9894 	req->port_id = cpu_to_le16(pf->port_id);
9895 	resp = hwrm_req_hold(bp, req);
9896 	rc = hwrm_req_send(bp, req);
9897 	if (rc) {
9898 		hwrm_req_drop(bp, req);
9899 		return rc;
9900 	}
9901 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
9902 		int i;
9903 
9904 		bp->num_leds = resp->num_leds;
9905 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
9906 						 bp->num_leds);
9907 		for (i = 0; i < bp->num_leds; i++) {
9908 			struct bnxt_led_info *led = &bp->leds[i];
9909 			__le16 caps = led->led_state_caps;
9910 
9911 			if (!led->led_group_id ||
9912 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
9913 				bp->num_leds = 0;
9914 				break;
9915 			}
9916 		}
9917 	}
9918 	hwrm_req_drop(bp, req);
9919 	return 0;
9920 }
9921 
bnxt_hwrm_alloc_wol_fltr(struct bnxt * bp)9922 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
9923 {
9924 	struct hwrm_wol_filter_alloc_output *resp;
9925 	struct hwrm_wol_filter_alloc_input *req;
9926 	int rc;
9927 
9928 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
9929 	if (rc)
9930 		return rc;
9931 
9932 	req->port_id = cpu_to_le16(bp->pf.port_id);
9933 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
9934 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
9935 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
9936 
9937 	resp = hwrm_req_hold(bp, req);
9938 	rc = hwrm_req_send(bp, req);
9939 	if (!rc)
9940 		bp->wol_filter_id = resp->wol_filter_id;
9941 	hwrm_req_drop(bp, req);
9942 	return rc;
9943 }
9944 
bnxt_hwrm_free_wol_fltr(struct bnxt * bp)9945 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
9946 {
9947 	struct hwrm_wol_filter_free_input *req;
9948 	int rc;
9949 
9950 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
9951 	if (rc)
9952 		return rc;
9953 
9954 	req->port_id = cpu_to_le16(bp->pf.port_id);
9955 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
9956 	req->wol_filter_id = bp->wol_filter_id;
9957 
9958 	return hwrm_req_send(bp, req);
9959 }
9960 
bnxt_hwrm_get_wol_fltrs(struct bnxt * bp,u16 handle)9961 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
9962 {
9963 	struct hwrm_wol_filter_qcfg_output *resp;
9964 	struct hwrm_wol_filter_qcfg_input *req;
9965 	u16 next_handle = 0;
9966 	int rc;
9967 
9968 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
9969 	if (rc)
9970 		return rc;
9971 
9972 	req->port_id = cpu_to_le16(bp->pf.port_id);
9973 	req->handle = cpu_to_le16(handle);
9974 	resp = hwrm_req_hold(bp, req);
9975 	rc = hwrm_req_send(bp, req);
9976 	if (!rc) {
9977 		next_handle = le16_to_cpu(resp->next_handle);
9978 		if (next_handle != 0) {
9979 			if (resp->wol_type ==
9980 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
9981 				bp->wol = 1;
9982 				bp->wol_filter_id = resp->wol_filter_id;
9983 			}
9984 		}
9985 	}
9986 	hwrm_req_drop(bp, req);
9987 	return next_handle;
9988 }
9989 
bnxt_get_wol_settings(struct bnxt * bp)9990 static void bnxt_get_wol_settings(struct bnxt *bp)
9991 {
9992 	u16 handle = 0;
9993 
9994 	bp->wol = 0;
9995 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
9996 		return;
9997 
9998 	do {
9999 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10000 	} while (handle && handle != 0xffff);
10001 }
10002 
10003 #ifdef CONFIG_BNXT_HWMON
bnxt_show_temp(struct device * dev,struct device_attribute * devattr,char * buf)10004 static ssize_t bnxt_show_temp(struct device *dev,
10005 			      struct device_attribute *devattr, char *buf)
10006 {
10007 	struct hwrm_temp_monitor_query_output *resp;
10008 	struct hwrm_temp_monitor_query_input *req;
10009 	struct bnxt *bp = dev_get_drvdata(dev);
10010 	u32 len = 0;
10011 	int rc;
10012 
10013 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10014 	if (rc)
10015 		return rc;
10016 	resp = hwrm_req_hold(bp, req);
10017 	rc = hwrm_req_send(bp, req);
10018 	if (!rc)
10019 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10020 	hwrm_req_drop(bp, req);
10021 	if (rc)
10022 		return rc;
10023 	return len;
10024 }
10025 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10026 
10027 static struct attribute *bnxt_attrs[] = {
10028 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10029 	NULL
10030 };
10031 ATTRIBUTE_GROUPS(bnxt);
10032 
bnxt_hwmon_close(struct bnxt * bp)10033 static void bnxt_hwmon_close(struct bnxt *bp)
10034 {
10035 	if (bp->hwmon_dev) {
10036 		hwmon_device_unregister(bp->hwmon_dev);
10037 		bp->hwmon_dev = NULL;
10038 	}
10039 }
10040 
bnxt_hwmon_open(struct bnxt * bp)10041 static void bnxt_hwmon_open(struct bnxt *bp)
10042 {
10043 	struct hwrm_temp_monitor_query_input *req;
10044 	struct pci_dev *pdev = bp->pdev;
10045 	int rc;
10046 
10047 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10048 	if (!rc)
10049 		rc = hwrm_req_send_silent(bp, req);
10050 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10051 		bnxt_hwmon_close(bp);
10052 		return;
10053 	}
10054 
10055 	if (bp->hwmon_dev)
10056 		return;
10057 
10058 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10059 							  DRV_MODULE_NAME, bp,
10060 							  bnxt_groups);
10061 	if (IS_ERR(bp->hwmon_dev)) {
10062 		bp->hwmon_dev = NULL;
10063 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10064 	}
10065 }
10066 #else
bnxt_hwmon_close(struct bnxt * bp)10067 static void bnxt_hwmon_close(struct bnxt *bp)
10068 {
10069 }
10070 
bnxt_hwmon_open(struct bnxt * bp)10071 static void bnxt_hwmon_open(struct bnxt *bp)
10072 {
10073 }
10074 #endif
10075 
bnxt_eee_config_ok(struct bnxt * bp)10076 static bool bnxt_eee_config_ok(struct bnxt *bp)
10077 {
10078 	struct ethtool_eee *eee = &bp->eee;
10079 	struct bnxt_link_info *link_info = &bp->link_info;
10080 
10081 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10082 		return true;
10083 
10084 	if (eee->eee_enabled) {
10085 		u32 advertising =
10086 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10087 
10088 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10089 			eee->eee_enabled = 0;
10090 			return false;
10091 		}
10092 		if (eee->advertised & ~advertising) {
10093 			eee->advertised = advertising & eee->supported;
10094 			return false;
10095 		}
10096 	}
10097 	return true;
10098 }
10099 
bnxt_update_phy_setting(struct bnxt * bp)10100 static int bnxt_update_phy_setting(struct bnxt *bp)
10101 {
10102 	int rc;
10103 	bool update_link = false;
10104 	bool update_pause = false;
10105 	bool update_eee = false;
10106 	struct bnxt_link_info *link_info = &bp->link_info;
10107 
10108 	rc = bnxt_update_link(bp, true);
10109 	if (rc) {
10110 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10111 			   rc);
10112 		return rc;
10113 	}
10114 	if (!BNXT_SINGLE_PF(bp))
10115 		return 0;
10116 
10117 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10118 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10119 	    link_info->req_flow_ctrl)
10120 		update_pause = true;
10121 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10122 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10123 		update_pause = true;
10124 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10125 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10126 			update_link = true;
10127 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10128 		    link_info->req_link_speed != link_info->force_link_speed)
10129 			update_link = true;
10130 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10131 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10132 			update_link = true;
10133 		if (link_info->req_duplex != link_info->duplex_setting)
10134 			update_link = true;
10135 	} else {
10136 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10137 			update_link = true;
10138 		if (link_info->advertising != link_info->auto_link_speeds ||
10139 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10140 			update_link = true;
10141 	}
10142 
10143 	/* The last close may have shutdown the link, so need to call
10144 	 * PHY_CFG to bring it back up.
10145 	 */
10146 	if (!bp->link_info.link_up)
10147 		update_link = true;
10148 
10149 	if (!bnxt_eee_config_ok(bp))
10150 		update_eee = true;
10151 
10152 	if (update_link)
10153 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10154 	else if (update_pause)
10155 		rc = bnxt_hwrm_set_pause(bp);
10156 	if (rc) {
10157 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10158 			   rc);
10159 		return rc;
10160 	}
10161 
10162 	return rc;
10163 }
10164 
10165 /* Common routine to pre-map certain register block to different GRC window.
10166  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10167  * in PF and 3 windows in VF that can be customized to map in different
10168  * register blocks.
10169  */
bnxt_preset_reg_win(struct bnxt * bp)10170 static void bnxt_preset_reg_win(struct bnxt *bp)
10171 {
10172 	if (BNXT_PF(bp)) {
10173 		/* CAG registers map to GRC window #4 */
10174 		writel(BNXT_CAG_REG_BASE,
10175 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10176 	}
10177 }
10178 
10179 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10180 
bnxt_reinit_after_abort(struct bnxt * bp)10181 static int bnxt_reinit_after_abort(struct bnxt *bp)
10182 {
10183 	int rc;
10184 
10185 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10186 		return -EBUSY;
10187 
10188 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10189 		return -ENODEV;
10190 
10191 	rc = bnxt_fw_init_one(bp);
10192 	if (!rc) {
10193 		bnxt_clear_int_mode(bp);
10194 		rc = bnxt_init_int_mode(bp);
10195 		if (!rc) {
10196 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10197 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10198 		}
10199 	}
10200 	return rc;
10201 }
10202 
__bnxt_open_nic(struct bnxt * bp,bool irq_re_init,bool link_re_init)10203 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10204 {
10205 	int rc = 0;
10206 
10207 	bnxt_preset_reg_win(bp);
10208 	netif_carrier_off(bp->dev);
10209 	if (irq_re_init) {
10210 		/* Reserve rings now if none were reserved at driver probe. */
10211 		rc = bnxt_init_dflt_ring_mode(bp);
10212 		if (rc) {
10213 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10214 			return rc;
10215 		}
10216 	}
10217 	rc = bnxt_reserve_rings(bp, irq_re_init);
10218 	if (rc)
10219 		return rc;
10220 	if ((bp->flags & BNXT_FLAG_RFS) &&
10221 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10222 		/* disable RFS if falling back to INTA */
10223 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10224 		bp->flags &= ~BNXT_FLAG_RFS;
10225 	}
10226 
10227 	rc = bnxt_alloc_mem(bp, irq_re_init);
10228 	if (rc) {
10229 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10230 		goto open_err_free_mem;
10231 	}
10232 
10233 	if (irq_re_init) {
10234 		bnxt_init_napi(bp);
10235 		rc = bnxt_request_irq(bp);
10236 		if (rc) {
10237 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10238 			goto open_err_irq;
10239 		}
10240 	}
10241 
10242 	rc = bnxt_init_nic(bp, irq_re_init);
10243 	if (rc) {
10244 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10245 		goto open_err_irq;
10246 	}
10247 
10248 	bnxt_enable_napi(bp);
10249 	bnxt_debug_dev_init(bp);
10250 
10251 	if (link_re_init) {
10252 		mutex_lock(&bp->link_lock);
10253 		rc = bnxt_update_phy_setting(bp);
10254 		mutex_unlock(&bp->link_lock);
10255 		if (rc) {
10256 			netdev_warn(bp->dev, "failed to update phy settings\n");
10257 			if (BNXT_SINGLE_PF(bp)) {
10258 				bp->link_info.phy_retry = true;
10259 				bp->link_info.phy_retry_expires =
10260 					jiffies + 5 * HZ;
10261 			}
10262 		}
10263 	}
10264 
10265 	if (irq_re_init)
10266 		udp_tunnel_nic_reset_ntf(bp->dev);
10267 
10268 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
10269 		if (!static_key_enabled(&bnxt_xdp_locking_key))
10270 			static_branch_enable(&bnxt_xdp_locking_key);
10271 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
10272 		static_branch_disable(&bnxt_xdp_locking_key);
10273 	}
10274 	set_bit(BNXT_STATE_OPEN, &bp->state);
10275 	bnxt_enable_int(bp);
10276 	/* Enable TX queues */
10277 	bnxt_tx_enable(bp);
10278 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10279 	/* Poll link status and check for SFP+ module status */
10280 	mutex_lock(&bp->link_lock);
10281 	bnxt_get_port_module_status(bp);
10282 	mutex_unlock(&bp->link_lock);
10283 
10284 	/* VF-reps may need to be re-opened after the PF is re-opened */
10285 	if (BNXT_PF(bp))
10286 		bnxt_vf_reps_open(bp);
10287 	return 0;
10288 
10289 open_err_irq:
10290 	bnxt_del_napi(bp);
10291 
10292 open_err_free_mem:
10293 	bnxt_free_skbs(bp);
10294 	bnxt_free_irq(bp);
10295 	bnxt_free_mem(bp, true);
10296 	return rc;
10297 }
10298 
10299 /* rtnl_lock held */
bnxt_open_nic(struct bnxt * bp,bool irq_re_init,bool link_re_init)10300 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10301 {
10302 	int rc = 0;
10303 
10304 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10305 		rc = -EIO;
10306 	if (!rc)
10307 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10308 	if (rc) {
10309 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10310 		dev_close(bp->dev);
10311 	}
10312 	return rc;
10313 }
10314 
10315 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10316  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10317  * self tests.
10318  */
bnxt_half_open_nic(struct bnxt * bp)10319 int bnxt_half_open_nic(struct bnxt *bp)
10320 {
10321 	int rc = 0;
10322 
10323 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10324 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10325 		rc = -ENODEV;
10326 		goto half_open_err;
10327 	}
10328 
10329 	rc = bnxt_alloc_mem(bp, true);
10330 	if (rc) {
10331 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10332 		goto half_open_err;
10333 	}
10334 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10335 	rc = bnxt_init_nic(bp, true);
10336 	if (rc) {
10337 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10338 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10339 		goto half_open_err;
10340 	}
10341 	return 0;
10342 
10343 half_open_err:
10344 	bnxt_free_skbs(bp);
10345 	bnxt_free_mem(bp, true);
10346 	dev_close(bp->dev);
10347 	return rc;
10348 }
10349 
10350 /* rtnl_lock held, this call can only be made after a previous successful
10351  * call to bnxt_half_open_nic().
10352  */
bnxt_half_close_nic(struct bnxt * bp)10353 void bnxt_half_close_nic(struct bnxt *bp)
10354 {
10355 	bnxt_hwrm_resource_free(bp, false, true);
10356 	bnxt_free_skbs(bp);
10357 	bnxt_free_mem(bp, true);
10358 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10359 }
10360 
bnxt_reenable_sriov(struct bnxt * bp)10361 static void bnxt_reenable_sriov(struct bnxt *bp)
10362 {
10363 	if (BNXT_PF(bp)) {
10364 		struct bnxt_pf_info *pf = &bp->pf;
10365 		int n = pf->active_vfs;
10366 
10367 		if (n)
10368 			bnxt_cfg_hw_sriov(bp, &n, true);
10369 	}
10370 }
10371 
bnxt_open(struct net_device * dev)10372 static int bnxt_open(struct net_device *dev)
10373 {
10374 	struct bnxt *bp = netdev_priv(dev);
10375 	int rc;
10376 
10377 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10378 		rc = bnxt_reinit_after_abort(bp);
10379 		if (rc) {
10380 			if (rc == -EBUSY)
10381 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10382 			else
10383 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10384 			return -ENODEV;
10385 		}
10386 	}
10387 
10388 	rc = bnxt_hwrm_if_change(bp, true);
10389 	if (rc)
10390 		return rc;
10391 
10392 	rc = __bnxt_open_nic(bp, true, true);
10393 	if (rc) {
10394 		bnxt_hwrm_if_change(bp, false);
10395 	} else {
10396 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10397 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10398 				bnxt_ulp_start(bp, 0);
10399 				bnxt_reenable_sriov(bp);
10400 			}
10401 		}
10402 		bnxt_hwmon_open(bp);
10403 	}
10404 
10405 	return rc;
10406 }
10407 
bnxt_drv_busy(struct bnxt * bp)10408 static bool bnxt_drv_busy(struct bnxt *bp)
10409 {
10410 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10411 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10412 }
10413 
10414 static void bnxt_get_ring_stats(struct bnxt *bp,
10415 				struct rtnl_link_stats64 *stats);
10416 
__bnxt_close_nic(struct bnxt * bp,bool irq_re_init,bool link_re_init)10417 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10418 			     bool link_re_init)
10419 {
10420 	/* Close the VF-reps before closing PF */
10421 	if (BNXT_PF(bp))
10422 		bnxt_vf_reps_close(bp);
10423 
10424 	/* Change device state to avoid TX queue wake up's */
10425 	bnxt_tx_disable(bp);
10426 
10427 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10428 	smp_mb__after_atomic();
10429 	while (bnxt_drv_busy(bp))
10430 		msleep(20);
10431 
10432 	/* Flush rings and and disable interrupts */
10433 	bnxt_shutdown_nic(bp, irq_re_init);
10434 
10435 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10436 
10437 	bnxt_debug_dev_exit(bp);
10438 	bnxt_disable_napi(bp);
10439 	del_timer_sync(&bp->timer);
10440 	bnxt_free_skbs(bp);
10441 
10442 	/* Save ring stats before shutdown */
10443 	if (bp->bnapi && irq_re_init)
10444 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10445 	if (irq_re_init) {
10446 		bnxt_free_irq(bp);
10447 		bnxt_del_napi(bp);
10448 	}
10449 	bnxt_free_mem(bp, irq_re_init);
10450 }
10451 
bnxt_close_nic(struct bnxt * bp,bool irq_re_init,bool link_re_init)10452 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10453 {
10454 	int rc = 0;
10455 
10456 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10457 		/* If we get here, it means firmware reset is in progress
10458 		 * while we are trying to close.  We can safely proceed with
10459 		 * the close because we are holding rtnl_lock().  Some firmware
10460 		 * messages may fail as we proceed to close.  We set the
10461 		 * ABORT_ERR flag here so that the FW reset thread will later
10462 		 * abort when it gets the rtnl_lock() and sees the flag.
10463 		 */
10464 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10465 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10466 	}
10467 
10468 #ifdef CONFIG_BNXT_SRIOV
10469 	if (bp->sriov_cfg) {
10470 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10471 						      !bp->sriov_cfg,
10472 						      BNXT_SRIOV_CFG_WAIT_TMO);
10473 		if (rc)
10474 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10475 	}
10476 #endif
10477 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10478 	return rc;
10479 }
10480 
bnxt_close(struct net_device * dev)10481 static int bnxt_close(struct net_device *dev)
10482 {
10483 	struct bnxt *bp = netdev_priv(dev);
10484 
10485 	bnxt_hwmon_close(bp);
10486 	bnxt_close_nic(bp, true, true);
10487 	bnxt_hwrm_shutdown_link(bp);
10488 	bnxt_hwrm_if_change(bp, false);
10489 	return 0;
10490 }
10491 
bnxt_hwrm_port_phy_read(struct bnxt * bp,u16 phy_addr,u16 reg,u16 * val)10492 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10493 				   u16 *val)
10494 {
10495 	struct hwrm_port_phy_mdio_read_output *resp;
10496 	struct hwrm_port_phy_mdio_read_input *req;
10497 	int rc;
10498 
10499 	if (bp->hwrm_spec_code < 0x10a00)
10500 		return -EOPNOTSUPP;
10501 
10502 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10503 	if (rc)
10504 		return rc;
10505 
10506 	req->port_id = cpu_to_le16(bp->pf.port_id);
10507 	req->phy_addr = phy_addr;
10508 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10509 	if (mdio_phy_id_is_c45(phy_addr)) {
10510 		req->cl45_mdio = 1;
10511 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10512 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10513 		req->reg_addr = cpu_to_le16(reg);
10514 	}
10515 
10516 	resp = hwrm_req_hold(bp, req);
10517 	rc = hwrm_req_send(bp, req);
10518 	if (!rc)
10519 		*val = le16_to_cpu(resp->reg_data);
10520 	hwrm_req_drop(bp, req);
10521 	return rc;
10522 }
10523 
bnxt_hwrm_port_phy_write(struct bnxt * bp,u16 phy_addr,u16 reg,u16 val)10524 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10525 				    u16 val)
10526 {
10527 	struct hwrm_port_phy_mdio_write_input *req;
10528 	int rc;
10529 
10530 	if (bp->hwrm_spec_code < 0x10a00)
10531 		return -EOPNOTSUPP;
10532 
10533 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10534 	if (rc)
10535 		return rc;
10536 
10537 	req->port_id = cpu_to_le16(bp->pf.port_id);
10538 	req->phy_addr = phy_addr;
10539 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10540 	if (mdio_phy_id_is_c45(phy_addr)) {
10541 		req->cl45_mdio = 1;
10542 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10543 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10544 		req->reg_addr = cpu_to_le16(reg);
10545 	}
10546 	req->reg_data = cpu_to_le16(val);
10547 
10548 	return hwrm_req_send(bp, req);
10549 }
10550 
10551 /* rtnl_lock held */
bnxt_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)10552 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10553 {
10554 	struct mii_ioctl_data *mdio = if_mii(ifr);
10555 	struct bnxt *bp = netdev_priv(dev);
10556 	int rc;
10557 
10558 	switch (cmd) {
10559 	case SIOCGMIIPHY:
10560 		mdio->phy_id = bp->link_info.phy_addr;
10561 
10562 		fallthrough;
10563 	case SIOCGMIIREG: {
10564 		u16 mii_regval = 0;
10565 
10566 		if (!netif_running(dev))
10567 			return -EAGAIN;
10568 
10569 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10570 					     &mii_regval);
10571 		mdio->val_out = mii_regval;
10572 		return rc;
10573 	}
10574 
10575 	case SIOCSMIIREG:
10576 		if (!netif_running(dev))
10577 			return -EAGAIN;
10578 
10579 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10580 						mdio->val_in);
10581 
10582 	case SIOCSHWTSTAMP:
10583 		return bnxt_hwtstamp_set(dev, ifr);
10584 
10585 	case SIOCGHWTSTAMP:
10586 		return bnxt_hwtstamp_get(dev, ifr);
10587 
10588 	default:
10589 		/* do nothing */
10590 		break;
10591 	}
10592 	return -EOPNOTSUPP;
10593 }
10594 
bnxt_get_ring_stats(struct bnxt * bp,struct rtnl_link_stats64 * stats)10595 static void bnxt_get_ring_stats(struct bnxt *bp,
10596 				struct rtnl_link_stats64 *stats)
10597 {
10598 	int i;
10599 
10600 	for (i = 0; i < bp->cp_nr_rings; i++) {
10601 		struct bnxt_napi *bnapi = bp->bnapi[i];
10602 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10603 		u64 *sw = cpr->stats.sw_stats;
10604 
10605 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10606 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10607 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10608 
10609 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10610 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10611 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10612 
10613 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10614 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10615 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10616 
10617 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10618 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10619 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10620 
10621 		stats->rx_missed_errors +=
10622 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10623 
10624 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10625 
10626 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10627 
10628 		stats->rx_dropped +=
10629 			cpr->sw_stats.rx.rx_netpoll_discards +
10630 			cpr->sw_stats.rx.rx_oom_discards;
10631 	}
10632 }
10633 
bnxt_add_prev_stats(struct bnxt * bp,struct rtnl_link_stats64 * stats)10634 static void bnxt_add_prev_stats(struct bnxt *bp,
10635 				struct rtnl_link_stats64 *stats)
10636 {
10637 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10638 
10639 	stats->rx_packets += prev_stats->rx_packets;
10640 	stats->tx_packets += prev_stats->tx_packets;
10641 	stats->rx_bytes += prev_stats->rx_bytes;
10642 	stats->tx_bytes += prev_stats->tx_bytes;
10643 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10644 	stats->multicast += prev_stats->multicast;
10645 	stats->rx_dropped += prev_stats->rx_dropped;
10646 	stats->tx_dropped += prev_stats->tx_dropped;
10647 }
10648 
10649 static void
bnxt_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)10650 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10651 {
10652 	struct bnxt *bp = netdev_priv(dev);
10653 
10654 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10655 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10656 	 * we check the BNXT_STATE_OPEN flag.
10657 	 */
10658 	smp_mb__after_atomic();
10659 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10660 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10661 		*stats = bp->net_stats_prev;
10662 		return;
10663 	}
10664 
10665 	bnxt_get_ring_stats(bp, stats);
10666 	bnxt_add_prev_stats(bp, stats);
10667 
10668 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10669 		u64 *rx = bp->port_stats.sw_stats;
10670 		u64 *tx = bp->port_stats.sw_stats +
10671 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10672 
10673 		stats->rx_crc_errors =
10674 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10675 		stats->rx_frame_errors =
10676 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10677 		stats->rx_length_errors =
10678 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10679 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10680 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10681 		stats->rx_errors =
10682 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10683 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10684 		stats->collisions =
10685 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10686 		stats->tx_fifo_errors =
10687 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10688 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10689 	}
10690 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10691 }
10692 
bnxt_mc_list_updated(struct bnxt * bp,u32 * rx_mask)10693 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10694 {
10695 	struct net_device *dev = bp->dev;
10696 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10697 	struct netdev_hw_addr *ha;
10698 	u8 *haddr;
10699 	int mc_count = 0;
10700 	bool update = false;
10701 	int off = 0;
10702 
10703 	netdev_for_each_mc_addr(ha, dev) {
10704 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10705 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10706 			vnic->mc_list_count = 0;
10707 			return false;
10708 		}
10709 		haddr = ha->addr;
10710 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10711 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10712 			update = true;
10713 		}
10714 		off += ETH_ALEN;
10715 		mc_count++;
10716 	}
10717 	if (mc_count)
10718 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10719 
10720 	if (mc_count != vnic->mc_list_count) {
10721 		vnic->mc_list_count = mc_count;
10722 		update = true;
10723 	}
10724 	return update;
10725 }
10726 
bnxt_uc_list_updated(struct bnxt * bp)10727 static bool bnxt_uc_list_updated(struct bnxt *bp)
10728 {
10729 	struct net_device *dev = bp->dev;
10730 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10731 	struct netdev_hw_addr *ha;
10732 	int off = 0;
10733 
10734 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10735 		return true;
10736 
10737 	netdev_for_each_uc_addr(ha, dev) {
10738 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10739 			return true;
10740 
10741 		off += ETH_ALEN;
10742 	}
10743 	return false;
10744 }
10745 
bnxt_set_rx_mode(struct net_device * dev)10746 static void bnxt_set_rx_mode(struct net_device *dev)
10747 {
10748 	struct bnxt *bp = netdev_priv(dev);
10749 	struct bnxt_vnic_info *vnic;
10750 	bool mc_update = false;
10751 	bool uc_update;
10752 	u32 mask;
10753 
10754 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10755 		return;
10756 
10757 	vnic = &bp->vnic_info[0];
10758 	mask = vnic->rx_mask;
10759 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10760 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10761 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10762 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10763 
10764 	if (dev->flags & IFF_PROMISC)
10765 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10766 
10767 	uc_update = bnxt_uc_list_updated(bp);
10768 
10769 	if (dev->flags & IFF_BROADCAST)
10770 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10771 	if (dev->flags & IFF_ALLMULTI) {
10772 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10773 		vnic->mc_list_count = 0;
10774 	} else if (dev->flags & IFF_MULTICAST) {
10775 		mc_update = bnxt_mc_list_updated(bp, &mask);
10776 	}
10777 
10778 	if (mask != vnic->rx_mask || uc_update || mc_update) {
10779 		vnic->rx_mask = mask;
10780 
10781 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
10782 		bnxt_queue_sp_work(bp);
10783 	}
10784 }
10785 
bnxt_cfg_rx_mode(struct bnxt * bp)10786 static int bnxt_cfg_rx_mode(struct bnxt *bp)
10787 {
10788 	struct net_device *dev = bp->dev;
10789 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10790 	struct hwrm_cfa_l2_filter_free_input *req;
10791 	struct netdev_hw_addr *ha;
10792 	int i, off = 0, rc;
10793 	bool uc_update;
10794 
10795 	netif_addr_lock_bh(dev);
10796 	uc_update = bnxt_uc_list_updated(bp);
10797 	netif_addr_unlock_bh(dev);
10798 
10799 	if (!uc_update)
10800 		goto skip_uc;
10801 
10802 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
10803 	if (rc)
10804 		return rc;
10805 	hwrm_req_hold(bp, req);
10806 	for (i = 1; i < vnic->uc_filter_count; i++) {
10807 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
10808 
10809 		rc = hwrm_req_send(bp, req);
10810 	}
10811 	hwrm_req_drop(bp, req);
10812 
10813 	vnic->uc_filter_count = 1;
10814 
10815 	netif_addr_lock_bh(dev);
10816 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
10817 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10818 	} else {
10819 		netdev_for_each_uc_addr(ha, dev) {
10820 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
10821 			off += ETH_ALEN;
10822 			vnic->uc_filter_count++;
10823 		}
10824 	}
10825 	netif_addr_unlock_bh(dev);
10826 
10827 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
10828 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
10829 		if (rc) {
10830 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
10831 				   rc);
10832 			vnic->uc_filter_count = i;
10833 			return rc;
10834 		}
10835 	}
10836 
10837 skip_uc:
10838 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
10839 	    !bnxt_promisc_ok(bp))
10840 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10841 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10842 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
10843 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
10844 			    rc);
10845 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10846 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10847 		vnic->mc_list_count = 0;
10848 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10849 	}
10850 	if (rc)
10851 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
10852 			   rc);
10853 
10854 	return rc;
10855 }
10856 
bnxt_can_reserve_rings(struct bnxt * bp)10857 static bool bnxt_can_reserve_rings(struct bnxt *bp)
10858 {
10859 #ifdef CONFIG_BNXT_SRIOV
10860 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
10861 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10862 
10863 		/* No minimum rings were provisioned by the PF.  Don't
10864 		 * reserve rings by default when device is down.
10865 		 */
10866 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
10867 			return true;
10868 
10869 		if (!netif_running(bp->dev))
10870 			return false;
10871 	}
10872 #endif
10873 	return true;
10874 }
10875 
10876 /* If the chip and firmware supports RFS */
bnxt_rfs_supported(struct bnxt * bp)10877 static bool bnxt_rfs_supported(struct bnxt *bp)
10878 {
10879 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10880 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
10881 			return true;
10882 		return false;
10883 	}
10884 	/* 212 firmware is broken for aRFS */
10885 	if (BNXT_FW_MAJ(bp) == 212)
10886 		return false;
10887 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
10888 		return true;
10889 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10890 		return true;
10891 	return false;
10892 }
10893 
10894 /* If runtime conditions support RFS */
bnxt_rfs_capable(struct bnxt * bp)10895 static bool bnxt_rfs_capable(struct bnxt *bp)
10896 {
10897 #ifdef CONFIG_RFS_ACCEL
10898 	int vnics, max_vnics, max_rss_ctxs;
10899 
10900 	if (bp->flags & BNXT_FLAG_CHIP_P5)
10901 		return bnxt_rfs_supported(bp);
10902 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
10903 		return false;
10904 
10905 	vnics = 1 + bp->rx_nr_rings;
10906 	max_vnics = bnxt_get_max_func_vnics(bp);
10907 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
10908 
10909 	/* RSS contexts not a limiting factor */
10910 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10911 		max_rss_ctxs = max_vnics;
10912 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
10913 		if (bp->rx_nr_rings > 1)
10914 			netdev_warn(bp->dev,
10915 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
10916 				    min(max_rss_ctxs - 1, max_vnics - 1));
10917 		return false;
10918 	}
10919 
10920 	if (!BNXT_NEW_RM(bp))
10921 		return true;
10922 
10923 	if (vnics == bp->hw_resc.resv_vnics)
10924 		return true;
10925 
10926 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
10927 	if (vnics <= bp->hw_resc.resv_vnics)
10928 		return true;
10929 
10930 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
10931 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
10932 	return false;
10933 #else
10934 	return false;
10935 #endif
10936 }
10937 
bnxt_fix_features(struct net_device * dev,netdev_features_t features)10938 static netdev_features_t bnxt_fix_features(struct net_device *dev,
10939 					   netdev_features_t features)
10940 {
10941 	struct bnxt *bp = netdev_priv(dev);
10942 	netdev_features_t vlan_features;
10943 
10944 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
10945 		features &= ~NETIF_F_NTUPLE;
10946 
10947 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10948 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10949 
10950 	if (!(features & NETIF_F_GRO))
10951 		features &= ~NETIF_F_GRO_HW;
10952 
10953 	if (features & NETIF_F_GRO_HW)
10954 		features &= ~NETIF_F_LRO;
10955 
10956 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
10957 	 * turned on or off together.
10958 	 */
10959 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
10960 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
10961 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10962 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10963 		else if (vlan_features)
10964 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
10965 	}
10966 #ifdef CONFIG_BNXT_SRIOV
10967 	if (BNXT_VF(bp) && bp->vf.vlan)
10968 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10969 #endif
10970 	return features;
10971 }
10972 
bnxt_set_features(struct net_device * dev,netdev_features_t features)10973 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
10974 {
10975 	struct bnxt *bp = netdev_priv(dev);
10976 	u32 flags = bp->flags;
10977 	u32 changes;
10978 	int rc = 0;
10979 	bool re_init = false;
10980 	bool update_tpa = false;
10981 
10982 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
10983 	if (features & NETIF_F_GRO_HW)
10984 		flags |= BNXT_FLAG_GRO;
10985 	else if (features & NETIF_F_LRO)
10986 		flags |= BNXT_FLAG_LRO;
10987 
10988 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10989 		flags &= ~BNXT_FLAG_TPA;
10990 
10991 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10992 		flags |= BNXT_FLAG_STRIP_VLAN;
10993 
10994 	if (features & NETIF_F_NTUPLE)
10995 		flags |= BNXT_FLAG_RFS;
10996 
10997 	changes = flags ^ bp->flags;
10998 	if (changes & BNXT_FLAG_TPA) {
10999 		update_tpa = true;
11000 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11001 		    (flags & BNXT_FLAG_TPA) == 0 ||
11002 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11003 			re_init = true;
11004 	}
11005 
11006 	if (changes & ~BNXT_FLAG_TPA)
11007 		re_init = true;
11008 
11009 	if (flags != bp->flags) {
11010 		u32 old_flags = bp->flags;
11011 
11012 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11013 			bp->flags = flags;
11014 			if (update_tpa)
11015 				bnxt_set_ring_params(bp);
11016 			return rc;
11017 		}
11018 
11019 		if (re_init) {
11020 			bnxt_close_nic(bp, false, false);
11021 			bp->flags = flags;
11022 			if (update_tpa)
11023 				bnxt_set_ring_params(bp);
11024 
11025 			return bnxt_open_nic(bp, false, false);
11026 		}
11027 		if (update_tpa) {
11028 			bp->flags = flags;
11029 			rc = bnxt_set_tpa(bp,
11030 					  (flags & BNXT_FLAG_TPA) ?
11031 					  true : false);
11032 			if (rc)
11033 				bp->flags = old_flags;
11034 		}
11035 	}
11036 	return rc;
11037 }
11038 
bnxt_exthdr_check(struct bnxt * bp,struct sk_buff * skb,int nw_off,u8 ** nextp)11039 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11040 			      u8 **nextp)
11041 {
11042 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11043 	int hdr_count = 0;
11044 	u8 *nexthdr;
11045 	int start;
11046 
11047 	/* Check that there are at most 2 IPv6 extension headers, no
11048 	 * fragment header, and each is <= 64 bytes.
11049 	 */
11050 	start = nw_off + sizeof(*ip6h);
11051 	nexthdr = &ip6h->nexthdr;
11052 	while (ipv6_ext_hdr(*nexthdr)) {
11053 		struct ipv6_opt_hdr *hp;
11054 		int hdrlen;
11055 
11056 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11057 		    *nexthdr == NEXTHDR_FRAGMENT)
11058 			return false;
11059 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11060 					  skb_headlen(skb), NULL);
11061 		if (!hp)
11062 			return false;
11063 		if (*nexthdr == NEXTHDR_AUTH)
11064 			hdrlen = ipv6_authlen(hp);
11065 		else
11066 			hdrlen = ipv6_optlen(hp);
11067 
11068 		if (hdrlen > 64)
11069 			return false;
11070 		nexthdr = &hp->nexthdr;
11071 		start += hdrlen;
11072 		hdr_count++;
11073 	}
11074 	if (nextp) {
11075 		/* Caller will check inner protocol */
11076 		if (skb->encapsulation) {
11077 			*nextp = nexthdr;
11078 			return true;
11079 		}
11080 		*nextp = NULL;
11081 	}
11082 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11083 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11084 }
11085 
11086 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
bnxt_udp_tunl_check(struct bnxt * bp,struct sk_buff * skb)11087 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11088 {
11089 	struct udphdr *uh = udp_hdr(skb);
11090 	__be16 udp_port = uh->dest;
11091 
11092 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11093 		return false;
11094 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11095 		struct ethhdr *eh = inner_eth_hdr(skb);
11096 
11097 		switch (eh->h_proto) {
11098 		case htons(ETH_P_IP):
11099 			return true;
11100 		case htons(ETH_P_IPV6):
11101 			return bnxt_exthdr_check(bp, skb,
11102 						 skb_inner_network_offset(skb),
11103 						 NULL);
11104 		}
11105 	}
11106 	return false;
11107 }
11108 
bnxt_tunl_check(struct bnxt * bp,struct sk_buff * skb,u8 l4_proto)11109 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11110 {
11111 	switch (l4_proto) {
11112 	case IPPROTO_UDP:
11113 		return bnxt_udp_tunl_check(bp, skb);
11114 	case IPPROTO_IPIP:
11115 		return true;
11116 	case IPPROTO_GRE: {
11117 		switch (skb->inner_protocol) {
11118 		default:
11119 			return false;
11120 		case htons(ETH_P_IP):
11121 			return true;
11122 		case htons(ETH_P_IPV6):
11123 			fallthrough;
11124 		}
11125 	}
11126 	case IPPROTO_IPV6:
11127 		/* Check ext headers of inner ipv6 */
11128 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11129 					 NULL);
11130 	}
11131 	return false;
11132 }
11133 
bnxt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)11134 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11135 					     struct net_device *dev,
11136 					     netdev_features_t features)
11137 {
11138 	struct bnxt *bp = netdev_priv(dev);
11139 	u8 *l4_proto;
11140 
11141 	features = vlan_features_check(skb, features);
11142 	switch (vlan_get_protocol(skb)) {
11143 	case htons(ETH_P_IP):
11144 		if (!skb->encapsulation)
11145 			return features;
11146 		l4_proto = &ip_hdr(skb)->protocol;
11147 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11148 			return features;
11149 		break;
11150 	case htons(ETH_P_IPV6):
11151 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11152 				       &l4_proto))
11153 			break;
11154 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11155 			return features;
11156 		break;
11157 	}
11158 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11159 }
11160 
bnxt_dbg_hwrm_rd_reg(struct bnxt * bp,u32 reg_off,u16 num_words,u32 * reg_buf)11161 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11162 			 u32 *reg_buf)
11163 {
11164 	struct hwrm_dbg_read_direct_output *resp;
11165 	struct hwrm_dbg_read_direct_input *req;
11166 	__le32 *dbg_reg_buf;
11167 	dma_addr_t mapping;
11168 	int rc, i;
11169 
11170 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11171 	if (rc)
11172 		return rc;
11173 
11174 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11175 					 &mapping);
11176 	if (!dbg_reg_buf) {
11177 		rc = -ENOMEM;
11178 		goto dbg_rd_reg_exit;
11179 	}
11180 
11181 	req->host_dest_addr = cpu_to_le64(mapping);
11182 
11183 	resp = hwrm_req_hold(bp, req);
11184 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11185 	req->read_len32 = cpu_to_le32(num_words);
11186 
11187 	rc = hwrm_req_send(bp, req);
11188 	if (rc || resp->error_code) {
11189 		rc = -EIO;
11190 		goto dbg_rd_reg_exit;
11191 	}
11192 	for (i = 0; i < num_words; i++)
11193 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11194 
11195 dbg_rd_reg_exit:
11196 	hwrm_req_drop(bp, req);
11197 	return rc;
11198 }
11199 
bnxt_dbg_hwrm_ring_info_get(struct bnxt * bp,u8 ring_type,u32 ring_id,u32 * prod,u32 * cons)11200 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11201 				       u32 ring_id, u32 *prod, u32 *cons)
11202 {
11203 	struct hwrm_dbg_ring_info_get_output *resp;
11204 	struct hwrm_dbg_ring_info_get_input *req;
11205 	int rc;
11206 
11207 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11208 	if (rc)
11209 		return rc;
11210 
11211 	req->ring_type = ring_type;
11212 	req->fw_ring_id = cpu_to_le32(ring_id);
11213 	resp = hwrm_req_hold(bp, req);
11214 	rc = hwrm_req_send(bp, req);
11215 	if (!rc) {
11216 		*prod = le32_to_cpu(resp->producer_index);
11217 		*cons = le32_to_cpu(resp->consumer_index);
11218 	}
11219 	hwrm_req_drop(bp, req);
11220 	return rc;
11221 }
11222 
bnxt_dump_tx_sw_state(struct bnxt_napi * bnapi)11223 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11224 {
11225 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11226 	int i = bnapi->index;
11227 
11228 	if (!txr)
11229 		return;
11230 
11231 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11232 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11233 		    txr->tx_cons);
11234 }
11235 
bnxt_dump_rx_sw_state(struct bnxt_napi * bnapi)11236 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11237 {
11238 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11239 	int i = bnapi->index;
11240 
11241 	if (!rxr)
11242 		return;
11243 
11244 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11245 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11246 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11247 		    rxr->rx_sw_agg_prod);
11248 }
11249 
bnxt_dump_cp_sw_state(struct bnxt_napi * bnapi)11250 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11251 {
11252 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11253 	int i = bnapi->index;
11254 
11255 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11256 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11257 }
11258 
bnxt_dbg_dump_states(struct bnxt * bp)11259 static void bnxt_dbg_dump_states(struct bnxt *bp)
11260 {
11261 	int i;
11262 	struct bnxt_napi *bnapi;
11263 
11264 	for (i = 0; i < bp->cp_nr_rings; i++) {
11265 		bnapi = bp->bnapi[i];
11266 		if (netif_msg_drv(bp)) {
11267 			bnxt_dump_tx_sw_state(bnapi);
11268 			bnxt_dump_rx_sw_state(bnapi);
11269 			bnxt_dump_cp_sw_state(bnapi);
11270 		}
11271 	}
11272 }
11273 
bnxt_hwrm_rx_ring_reset(struct bnxt * bp,int ring_nr)11274 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11275 {
11276 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11277 	struct hwrm_ring_reset_input *req;
11278 	struct bnxt_napi *bnapi = rxr->bnapi;
11279 	struct bnxt_cp_ring_info *cpr;
11280 	u16 cp_ring_id;
11281 	int rc;
11282 
11283 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11284 	if (rc)
11285 		return rc;
11286 
11287 	cpr = &bnapi->cp_ring;
11288 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11289 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11290 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11291 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11292 	return hwrm_req_send_silent(bp, req);
11293 }
11294 
bnxt_reset_task(struct bnxt * bp,bool silent)11295 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11296 {
11297 	if (!silent)
11298 		bnxt_dbg_dump_states(bp);
11299 	if (netif_running(bp->dev)) {
11300 		int rc;
11301 
11302 		if (silent) {
11303 			bnxt_close_nic(bp, false, false);
11304 			bnxt_open_nic(bp, false, false);
11305 		} else {
11306 			bnxt_ulp_stop(bp);
11307 			bnxt_close_nic(bp, true, false);
11308 			rc = bnxt_open_nic(bp, true, false);
11309 			bnxt_ulp_start(bp, rc);
11310 		}
11311 	}
11312 }
11313 
bnxt_tx_timeout(struct net_device * dev,unsigned int txqueue)11314 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11315 {
11316 	struct bnxt *bp = netdev_priv(dev);
11317 
11318 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11319 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11320 	bnxt_queue_sp_work(bp);
11321 }
11322 
bnxt_fw_health_check(struct bnxt * bp)11323 static void bnxt_fw_health_check(struct bnxt *bp)
11324 {
11325 	struct bnxt_fw_health *fw_health = bp->fw_health;
11326 	u32 val;
11327 
11328 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11329 		return;
11330 
11331 	/* Make sure it is enabled before checking the tmr_counter. */
11332 	smp_rmb();
11333 	if (fw_health->tmr_counter) {
11334 		fw_health->tmr_counter--;
11335 		return;
11336 	}
11337 
11338 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11339 	if (val == fw_health->last_fw_heartbeat)
11340 		goto fw_reset;
11341 
11342 	fw_health->last_fw_heartbeat = val;
11343 
11344 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11345 	if (val != fw_health->last_fw_reset_cnt)
11346 		goto fw_reset;
11347 
11348 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11349 	return;
11350 
11351 fw_reset:
11352 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11353 	bnxt_queue_sp_work(bp);
11354 }
11355 
bnxt_timer(struct timer_list * t)11356 static void bnxt_timer(struct timer_list *t)
11357 {
11358 	struct bnxt *bp = from_timer(bp, t, timer);
11359 	struct net_device *dev = bp->dev;
11360 
11361 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11362 		return;
11363 
11364 	if (atomic_read(&bp->intr_sem) != 0)
11365 		goto bnxt_restart_timer;
11366 
11367 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11368 		bnxt_fw_health_check(bp);
11369 
11370 	if (bp->link_info.link_up && bp->stats_coal_ticks) {
11371 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11372 		bnxt_queue_sp_work(bp);
11373 	}
11374 
11375 	if (bnxt_tc_flower_enabled(bp)) {
11376 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11377 		bnxt_queue_sp_work(bp);
11378 	}
11379 
11380 #ifdef CONFIG_RFS_ACCEL
11381 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11382 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11383 		bnxt_queue_sp_work(bp);
11384 	}
11385 #endif /*CONFIG_RFS_ACCEL*/
11386 
11387 	if (bp->link_info.phy_retry) {
11388 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11389 			bp->link_info.phy_retry = false;
11390 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11391 		} else {
11392 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11393 			bnxt_queue_sp_work(bp);
11394 		}
11395 	}
11396 
11397 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11398 	    netif_carrier_ok(dev)) {
11399 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11400 		bnxt_queue_sp_work(bp);
11401 	}
11402 bnxt_restart_timer:
11403 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11404 }
11405 
bnxt_rtnl_lock_sp(struct bnxt * bp)11406 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11407 {
11408 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11409 	 * set.  If the device is being closed, bnxt_close() may be holding
11410 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11411 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11412 	 */
11413 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11414 	rtnl_lock();
11415 }
11416 
bnxt_rtnl_unlock_sp(struct bnxt * bp)11417 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11418 {
11419 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11420 	rtnl_unlock();
11421 }
11422 
11423 /* Only called from bnxt_sp_task() */
bnxt_reset(struct bnxt * bp,bool silent)11424 static void bnxt_reset(struct bnxt *bp, bool silent)
11425 {
11426 	bnxt_rtnl_lock_sp(bp);
11427 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11428 		bnxt_reset_task(bp, silent);
11429 	bnxt_rtnl_unlock_sp(bp);
11430 }
11431 
11432 /* Only called from bnxt_sp_task() */
bnxt_rx_ring_reset(struct bnxt * bp)11433 static void bnxt_rx_ring_reset(struct bnxt *bp)
11434 {
11435 	int i;
11436 
11437 	bnxt_rtnl_lock_sp(bp);
11438 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11439 		bnxt_rtnl_unlock_sp(bp);
11440 		return;
11441 	}
11442 	/* Disable and flush TPA before resetting the RX ring */
11443 	if (bp->flags & BNXT_FLAG_TPA)
11444 		bnxt_set_tpa(bp, false);
11445 	for (i = 0; i < bp->rx_nr_rings; i++) {
11446 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11447 		struct bnxt_cp_ring_info *cpr;
11448 		int rc;
11449 
11450 		if (!rxr->bnapi->in_reset)
11451 			continue;
11452 
11453 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11454 		if (rc) {
11455 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11456 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11457 			else
11458 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11459 					    rc);
11460 			bnxt_reset_task(bp, true);
11461 			break;
11462 		}
11463 		bnxt_free_one_rx_ring_skbs(bp, i);
11464 		rxr->rx_prod = 0;
11465 		rxr->rx_agg_prod = 0;
11466 		rxr->rx_sw_agg_prod = 0;
11467 		rxr->rx_next_cons = 0;
11468 		rxr->bnapi->in_reset = false;
11469 		bnxt_alloc_one_rx_ring(bp, i);
11470 		cpr = &rxr->bnapi->cp_ring;
11471 		cpr->sw_stats.rx.rx_resets++;
11472 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11473 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11474 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11475 	}
11476 	if (bp->flags & BNXT_FLAG_TPA)
11477 		bnxt_set_tpa(bp, true);
11478 	bnxt_rtnl_unlock_sp(bp);
11479 }
11480 
bnxt_fw_reset_close(struct bnxt * bp)11481 static void bnxt_fw_reset_close(struct bnxt *bp)
11482 {
11483 	bnxt_ulp_stop(bp);
11484 	/* When firmware is in fatal state, quiesce device and disable
11485 	 * bus master to prevent any potential bad DMAs before freeing
11486 	 * kernel memory.
11487 	 */
11488 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11489 		u16 val = 0;
11490 
11491 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11492 		if (val == 0xffff)
11493 			bp->fw_reset_min_dsecs = 0;
11494 		bnxt_tx_disable(bp);
11495 		bnxt_disable_napi(bp);
11496 		bnxt_disable_int_sync(bp);
11497 		bnxt_free_irq(bp);
11498 		bnxt_clear_int_mode(bp);
11499 		pci_disable_device(bp->pdev);
11500 	}
11501 	__bnxt_close_nic(bp, true, false);
11502 	bnxt_vf_reps_free(bp);
11503 	bnxt_clear_int_mode(bp);
11504 	bnxt_hwrm_func_drv_unrgtr(bp);
11505 	if (pci_is_enabled(bp->pdev))
11506 		pci_disable_device(bp->pdev);
11507 	bnxt_free_ctx_mem(bp);
11508 	kfree(bp->ctx);
11509 	bp->ctx = NULL;
11510 }
11511 
is_bnxt_fw_ok(struct bnxt * bp)11512 static bool is_bnxt_fw_ok(struct bnxt *bp)
11513 {
11514 	struct bnxt_fw_health *fw_health = bp->fw_health;
11515 	bool no_heartbeat = false, has_reset = false;
11516 	u32 val;
11517 
11518 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11519 	if (val == fw_health->last_fw_heartbeat)
11520 		no_heartbeat = true;
11521 
11522 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11523 	if (val != fw_health->last_fw_reset_cnt)
11524 		has_reset = true;
11525 
11526 	if (!no_heartbeat && has_reset)
11527 		return true;
11528 
11529 	return false;
11530 }
11531 
11532 /* rtnl_lock is acquired before calling this function */
bnxt_force_fw_reset(struct bnxt * bp)11533 static void bnxt_force_fw_reset(struct bnxt *bp)
11534 {
11535 	struct bnxt_fw_health *fw_health = bp->fw_health;
11536 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11537 	u32 wait_dsecs;
11538 
11539 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11540 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11541 		return;
11542 
11543 	if (ptp) {
11544 		spin_lock_bh(&ptp->ptp_lock);
11545 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11546 		spin_unlock_bh(&ptp->ptp_lock);
11547 	} else {
11548 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11549 	}
11550 	bnxt_fw_reset_close(bp);
11551 	wait_dsecs = fw_health->master_func_wait_dsecs;
11552 	if (fw_health->master) {
11553 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11554 			wait_dsecs = 0;
11555 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11556 	} else {
11557 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11558 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11559 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11560 	}
11561 
11562 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11563 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11564 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11565 }
11566 
bnxt_fw_exception(struct bnxt * bp)11567 void bnxt_fw_exception(struct bnxt *bp)
11568 {
11569 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11570 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11571 	bnxt_rtnl_lock_sp(bp);
11572 	bnxt_force_fw_reset(bp);
11573 	bnxt_rtnl_unlock_sp(bp);
11574 }
11575 
11576 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11577  * < 0 on error.
11578  */
bnxt_get_registered_vfs(struct bnxt * bp)11579 static int bnxt_get_registered_vfs(struct bnxt *bp)
11580 {
11581 #ifdef CONFIG_BNXT_SRIOV
11582 	int rc;
11583 
11584 	if (!BNXT_PF(bp))
11585 		return 0;
11586 
11587 	rc = bnxt_hwrm_func_qcfg(bp);
11588 	if (rc) {
11589 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11590 		return rc;
11591 	}
11592 	if (bp->pf.registered_vfs)
11593 		return bp->pf.registered_vfs;
11594 	if (bp->sriov_cfg)
11595 		return 1;
11596 #endif
11597 	return 0;
11598 }
11599 
bnxt_fw_reset(struct bnxt * bp)11600 void bnxt_fw_reset(struct bnxt *bp)
11601 {
11602 	bnxt_rtnl_lock_sp(bp);
11603 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11604 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11605 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11606 		int n = 0, tmo;
11607 
11608 		if (ptp) {
11609 			spin_lock_bh(&ptp->ptp_lock);
11610 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11611 			spin_unlock_bh(&ptp->ptp_lock);
11612 		} else {
11613 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11614 		}
11615 		if (bp->pf.active_vfs &&
11616 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11617 			n = bnxt_get_registered_vfs(bp);
11618 		if (n < 0) {
11619 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11620 				   n);
11621 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11622 			dev_close(bp->dev);
11623 			goto fw_reset_exit;
11624 		} else if (n > 0) {
11625 			u16 vf_tmo_dsecs = n * 10;
11626 
11627 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11628 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11629 			bp->fw_reset_state =
11630 				BNXT_FW_RESET_STATE_POLL_VF;
11631 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11632 			goto fw_reset_exit;
11633 		}
11634 		bnxt_fw_reset_close(bp);
11635 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11636 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11637 			tmo = HZ / 10;
11638 		} else {
11639 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11640 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11641 		}
11642 		bnxt_queue_fw_reset_work(bp, tmo);
11643 	}
11644 fw_reset_exit:
11645 	bnxt_rtnl_unlock_sp(bp);
11646 }
11647 
bnxt_chk_missed_irq(struct bnxt * bp)11648 static void bnxt_chk_missed_irq(struct bnxt *bp)
11649 {
11650 	int i;
11651 
11652 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11653 		return;
11654 
11655 	for (i = 0; i < bp->cp_nr_rings; i++) {
11656 		struct bnxt_napi *bnapi = bp->bnapi[i];
11657 		struct bnxt_cp_ring_info *cpr;
11658 		u32 fw_ring_id;
11659 		int j;
11660 
11661 		if (!bnapi)
11662 			continue;
11663 
11664 		cpr = &bnapi->cp_ring;
11665 		for (j = 0; j < 2; j++) {
11666 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11667 			u32 val[2];
11668 
11669 			if (!cpr2 || cpr2->has_more_work ||
11670 			    !bnxt_has_work(bp, cpr2))
11671 				continue;
11672 
11673 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11674 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11675 				continue;
11676 			}
11677 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11678 			bnxt_dbg_hwrm_ring_info_get(bp,
11679 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11680 				fw_ring_id, &val[0], &val[1]);
11681 			cpr->sw_stats.cmn.missed_irqs++;
11682 		}
11683 	}
11684 }
11685 
11686 static void bnxt_cfg_ntp_filters(struct bnxt *);
11687 
bnxt_init_ethtool_link_settings(struct bnxt * bp)11688 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11689 {
11690 	struct bnxt_link_info *link_info = &bp->link_info;
11691 
11692 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11693 		link_info->autoneg = BNXT_AUTONEG_SPEED;
11694 		if (bp->hwrm_spec_code >= 0x10201) {
11695 			if (link_info->auto_pause_setting &
11696 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11697 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11698 		} else {
11699 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11700 		}
11701 		link_info->advertising = link_info->auto_link_speeds;
11702 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11703 	} else {
11704 		link_info->req_link_speed = link_info->force_link_speed;
11705 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
11706 		if (link_info->force_pam4_link_speed) {
11707 			link_info->req_link_speed =
11708 				link_info->force_pam4_link_speed;
11709 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
11710 		}
11711 		link_info->req_duplex = link_info->duplex_setting;
11712 	}
11713 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
11714 		link_info->req_flow_ctrl =
11715 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
11716 	else
11717 		link_info->req_flow_ctrl = link_info->force_pause_setting;
11718 }
11719 
bnxt_fw_echo_reply(struct bnxt * bp)11720 static void bnxt_fw_echo_reply(struct bnxt *bp)
11721 {
11722 	struct bnxt_fw_health *fw_health = bp->fw_health;
11723 	struct hwrm_func_echo_response_input *req;
11724 	int rc;
11725 
11726 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
11727 	if (rc)
11728 		return;
11729 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
11730 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
11731 	hwrm_req_send(bp, req);
11732 }
11733 
bnxt_sp_task(struct work_struct * work)11734 static void bnxt_sp_task(struct work_struct *work)
11735 {
11736 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11737 
11738 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11739 	smp_mb__after_atomic();
11740 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11741 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11742 		return;
11743 	}
11744 
11745 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11746 		bnxt_cfg_rx_mode(bp);
11747 
11748 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11749 		bnxt_cfg_ntp_filters(bp);
11750 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
11751 		bnxt_hwrm_exec_fwd_req(bp);
11752 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
11753 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
11754 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
11755 		bnxt_hwrm_port_qstats(bp, 0);
11756 		bnxt_hwrm_port_qstats_ext(bp, 0);
11757 		bnxt_accumulate_all_stats(bp);
11758 	}
11759 
11760 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
11761 		int rc;
11762 
11763 		mutex_lock(&bp->link_lock);
11764 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
11765 				       &bp->sp_event))
11766 			bnxt_hwrm_phy_qcaps(bp);
11767 
11768 		rc = bnxt_update_link(bp, true);
11769 		if (rc)
11770 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
11771 				   rc);
11772 
11773 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
11774 				       &bp->sp_event))
11775 			bnxt_init_ethtool_link_settings(bp);
11776 		mutex_unlock(&bp->link_lock);
11777 	}
11778 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
11779 		int rc;
11780 
11781 		mutex_lock(&bp->link_lock);
11782 		rc = bnxt_update_phy_setting(bp);
11783 		mutex_unlock(&bp->link_lock);
11784 		if (rc) {
11785 			netdev_warn(bp->dev, "update phy settings retry failed\n");
11786 		} else {
11787 			bp->link_info.phy_retry = false;
11788 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
11789 		}
11790 	}
11791 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
11792 		mutex_lock(&bp->link_lock);
11793 		bnxt_get_port_module_status(bp);
11794 		mutex_unlock(&bp->link_lock);
11795 	}
11796 
11797 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
11798 		bnxt_tc_flow_stats_work(bp);
11799 
11800 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
11801 		bnxt_chk_missed_irq(bp);
11802 
11803 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
11804 		bnxt_fw_echo_reply(bp);
11805 
11806 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
11807 	 * must be the last functions to be called before exiting.
11808 	 */
11809 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
11810 		bnxt_reset(bp, false);
11811 
11812 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
11813 		bnxt_reset(bp, true);
11814 
11815 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
11816 		bnxt_rx_ring_reset(bp);
11817 
11818 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
11819 		bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
11820 
11821 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
11822 		if (!is_bnxt_fw_ok(bp))
11823 			bnxt_devlink_health_report(bp,
11824 						   BNXT_FW_EXCEPTION_SP_EVENT);
11825 	}
11826 
11827 	smp_mb__before_atomic();
11828 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11829 }
11830 
11831 /* Under rtnl_lock */
bnxt_check_rings(struct bnxt * bp,int tx,int rx,bool sh,int tcs,int tx_xdp)11832 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
11833 		     int tx_xdp)
11834 {
11835 	int max_rx, max_tx, tx_sets = 1;
11836 	int tx_rings_needed, stats;
11837 	int rx_rings = rx;
11838 	int cp, vnics, rc;
11839 
11840 	if (tcs)
11841 		tx_sets = tcs;
11842 
11843 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
11844 	if (rc)
11845 		return rc;
11846 
11847 	if (max_rx < rx)
11848 		return -ENOMEM;
11849 
11850 	tx_rings_needed = tx * tx_sets + tx_xdp;
11851 	if (max_tx < tx_rings_needed)
11852 		return -ENOMEM;
11853 
11854 	vnics = 1;
11855 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
11856 		vnics += rx_rings;
11857 
11858 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
11859 		rx_rings <<= 1;
11860 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
11861 	stats = cp;
11862 	if (BNXT_NEW_RM(bp)) {
11863 		cp += bnxt_get_ulp_msix_num(bp);
11864 		stats += bnxt_get_ulp_stat_ctxs(bp);
11865 	}
11866 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
11867 				     stats, vnics);
11868 }
11869 
bnxt_unmap_bars(struct bnxt * bp,struct pci_dev * pdev)11870 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
11871 {
11872 	if (bp->bar2) {
11873 		pci_iounmap(pdev, bp->bar2);
11874 		bp->bar2 = NULL;
11875 	}
11876 
11877 	if (bp->bar1) {
11878 		pci_iounmap(pdev, bp->bar1);
11879 		bp->bar1 = NULL;
11880 	}
11881 
11882 	if (bp->bar0) {
11883 		pci_iounmap(pdev, bp->bar0);
11884 		bp->bar0 = NULL;
11885 	}
11886 }
11887 
bnxt_cleanup_pci(struct bnxt * bp)11888 static void bnxt_cleanup_pci(struct bnxt *bp)
11889 {
11890 	bnxt_unmap_bars(bp, bp->pdev);
11891 	pci_release_regions(bp->pdev);
11892 	if (pci_is_enabled(bp->pdev))
11893 		pci_disable_device(bp->pdev);
11894 }
11895 
bnxt_init_dflt_coal(struct bnxt * bp)11896 static void bnxt_init_dflt_coal(struct bnxt *bp)
11897 {
11898 	struct bnxt_coal *coal;
11899 
11900 	/* Tick values in micro seconds.
11901 	 * 1 coal_buf x bufs_per_record = 1 completion record.
11902 	 */
11903 	coal = &bp->rx_coal;
11904 	coal->coal_ticks = 10;
11905 	coal->coal_bufs = 30;
11906 	coal->coal_ticks_irq = 1;
11907 	coal->coal_bufs_irq = 2;
11908 	coal->idle_thresh = 50;
11909 	coal->bufs_per_record = 2;
11910 	coal->budget = 64;		/* NAPI budget */
11911 
11912 	coal = &bp->tx_coal;
11913 	coal->coal_ticks = 28;
11914 	coal->coal_bufs = 30;
11915 	coal->coal_ticks_irq = 2;
11916 	coal->coal_bufs_irq = 2;
11917 	coal->bufs_per_record = 1;
11918 
11919 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
11920 }
11921 
bnxt_fw_init_one_p1(struct bnxt * bp)11922 static int bnxt_fw_init_one_p1(struct bnxt *bp)
11923 {
11924 	int rc;
11925 
11926 	bp->fw_cap = 0;
11927 	rc = bnxt_hwrm_ver_get(bp);
11928 	/* FW may be unresponsive after FLR. FLR must complete within 100 msec
11929 	 * so wait before continuing with recovery.
11930 	 */
11931 	if (rc)
11932 		msleep(100);
11933 	bnxt_try_map_fw_health_reg(bp);
11934 	if (rc) {
11935 		rc = bnxt_try_recover_fw(bp);
11936 		if (rc)
11937 			return rc;
11938 		rc = bnxt_hwrm_ver_get(bp);
11939 		if (rc)
11940 			return rc;
11941 	}
11942 
11943 	bnxt_nvm_cfg_ver_get(bp);
11944 
11945 	rc = bnxt_hwrm_func_reset(bp);
11946 	if (rc)
11947 		return -ENODEV;
11948 
11949 	bnxt_hwrm_fw_set_time(bp);
11950 	return 0;
11951 }
11952 
bnxt_fw_init_one_p2(struct bnxt * bp)11953 static int bnxt_fw_init_one_p2(struct bnxt *bp)
11954 {
11955 	int rc;
11956 
11957 	/* Get the MAX capabilities for this function */
11958 	rc = bnxt_hwrm_func_qcaps(bp);
11959 	if (rc) {
11960 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
11961 			   rc);
11962 		return -ENODEV;
11963 	}
11964 
11965 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
11966 	if (rc)
11967 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
11968 			    rc);
11969 
11970 	if (bnxt_alloc_fw_health(bp)) {
11971 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
11972 	} else {
11973 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
11974 		if (rc)
11975 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
11976 				    rc);
11977 	}
11978 
11979 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
11980 	if (rc)
11981 		return -ENODEV;
11982 
11983 	bnxt_hwrm_func_qcfg(bp);
11984 	bnxt_hwrm_vnic_qcaps(bp);
11985 	bnxt_hwrm_port_led_qcaps(bp);
11986 	bnxt_ethtool_init(bp);
11987 	bnxt_dcb_init(bp);
11988 	return 0;
11989 }
11990 
bnxt_set_dflt_rss_hash_type(struct bnxt * bp)11991 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
11992 {
11993 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
11994 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
11995 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
11996 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
11997 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
11998 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
11999 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12000 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12001 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12002 	}
12003 }
12004 
bnxt_set_dflt_rfs(struct bnxt * bp)12005 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12006 {
12007 	struct net_device *dev = bp->dev;
12008 
12009 	dev->hw_features &= ~NETIF_F_NTUPLE;
12010 	dev->features &= ~NETIF_F_NTUPLE;
12011 	bp->flags &= ~BNXT_FLAG_RFS;
12012 	if (bnxt_rfs_supported(bp)) {
12013 		dev->hw_features |= NETIF_F_NTUPLE;
12014 		if (bnxt_rfs_capable(bp)) {
12015 			bp->flags |= BNXT_FLAG_RFS;
12016 			dev->features |= NETIF_F_NTUPLE;
12017 		}
12018 	}
12019 }
12020 
bnxt_fw_init_one_p3(struct bnxt * bp)12021 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12022 {
12023 	struct pci_dev *pdev = bp->pdev;
12024 
12025 	bnxt_set_dflt_rss_hash_type(bp);
12026 	bnxt_set_dflt_rfs(bp);
12027 
12028 	bnxt_get_wol_settings(bp);
12029 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12030 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12031 	else
12032 		device_set_wakeup_capable(&pdev->dev, false);
12033 
12034 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12035 	bnxt_hwrm_coal_params_qcaps(bp);
12036 }
12037 
12038 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12039 
bnxt_fw_init_one(struct bnxt * bp)12040 static int bnxt_fw_init_one(struct bnxt *bp)
12041 {
12042 	int rc;
12043 
12044 	rc = bnxt_fw_init_one_p1(bp);
12045 	if (rc) {
12046 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12047 		return rc;
12048 	}
12049 	rc = bnxt_fw_init_one_p2(bp);
12050 	if (rc) {
12051 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12052 		return rc;
12053 	}
12054 	rc = bnxt_probe_phy(bp, false);
12055 	if (rc)
12056 		return rc;
12057 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12058 	if (rc)
12059 		return rc;
12060 
12061 	/* In case fw capabilities have changed, destroy the unneeded
12062 	 * reporters and create newly capable ones.
12063 	 */
12064 	bnxt_dl_fw_reporters_destroy(bp, false);
12065 	bnxt_dl_fw_reporters_create(bp);
12066 	bnxt_fw_init_one_p3(bp);
12067 	return 0;
12068 }
12069 
bnxt_fw_reset_writel(struct bnxt * bp,int reg_idx)12070 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12071 {
12072 	struct bnxt_fw_health *fw_health = bp->fw_health;
12073 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12074 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12075 	u32 reg_type, reg_off, delay_msecs;
12076 
12077 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12078 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12079 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12080 	switch (reg_type) {
12081 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12082 		pci_write_config_dword(bp->pdev, reg_off, val);
12083 		break;
12084 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12085 		writel(reg_off & BNXT_GRC_BASE_MASK,
12086 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12087 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12088 		fallthrough;
12089 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12090 		writel(val, bp->bar0 + reg_off);
12091 		break;
12092 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12093 		writel(val, bp->bar1 + reg_off);
12094 		break;
12095 	}
12096 	if (delay_msecs) {
12097 		pci_read_config_dword(bp->pdev, 0, &val);
12098 		msleep(delay_msecs);
12099 	}
12100 }
12101 
bnxt_reset_all(struct bnxt * bp)12102 static void bnxt_reset_all(struct bnxt *bp)
12103 {
12104 	struct bnxt_fw_health *fw_health = bp->fw_health;
12105 	int i, rc;
12106 
12107 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12108 		bnxt_fw_reset_via_optee(bp);
12109 		bp->fw_reset_timestamp = jiffies;
12110 		return;
12111 	}
12112 
12113 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12114 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12115 			bnxt_fw_reset_writel(bp, i);
12116 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12117 		struct hwrm_fw_reset_input *req;
12118 
12119 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12120 		if (!rc) {
12121 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12122 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12123 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12124 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12125 			rc = hwrm_req_send(bp, req);
12126 		}
12127 		if (rc != -ENODEV)
12128 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12129 	}
12130 	bp->fw_reset_timestamp = jiffies;
12131 }
12132 
bnxt_fw_reset_timeout(struct bnxt * bp)12133 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12134 {
12135 	return time_after(jiffies, bp->fw_reset_timestamp +
12136 			  (bp->fw_reset_max_dsecs * HZ / 10));
12137 }
12138 
bnxt_fw_reset_abort(struct bnxt * bp,int rc)12139 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12140 {
12141 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12142 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12143 		bnxt_ulp_start(bp, rc);
12144 		bnxt_dl_health_status_update(bp, false);
12145 	}
12146 	bp->fw_reset_state = 0;
12147 	dev_close(bp->dev);
12148 }
12149 
bnxt_fw_reset_task(struct work_struct * work)12150 static void bnxt_fw_reset_task(struct work_struct *work)
12151 {
12152 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12153 	int rc = 0;
12154 
12155 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12156 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12157 		return;
12158 	}
12159 
12160 	switch (bp->fw_reset_state) {
12161 	case BNXT_FW_RESET_STATE_POLL_VF: {
12162 		int n = bnxt_get_registered_vfs(bp);
12163 		int tmo;
12164 
12165 		if (n < 0) {
12166 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12167 				   n, jiffies_to_msecs(jiffies -
12168 				   bp->fw_reset_timestamp));
12169 			goto fw_reset_abort;
12170 		} else if (n > 0) {
12171 			if (bnxt_fw_reset_timeout(bp)) {
12172 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12173 				bp->fw_reset_state = 0;
12174 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12175 					   n);
12176 				return;
12177 			}
12178 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12179 			return;
12180 		}
12181 		bp->fw_reset_timestamp = jiffies;
12182 		rtnl_lock();
12183 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12184 			bnxt_fw_reset_abort(bp, rc);
12185 			rtnl_unlock();
12186 			return;
12187 		}
12188 		bnxt_fw_reset_close(bp);
12189 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12190 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12191 			tmo = HZ / 10;
12192 		} else {
12193 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12194 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12195 		}
12196 		rtnl_unlock();
12197 		bnxt_queue_fw_reset_work(bp, tmo);
12198 		return;
12199 	}
12200 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12201 		u32 val;
12202 
12203 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12204 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12205 		    !bnxt_fw_reset_timeout(bp)) {
12206 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12207 			return;
12208 		}
12209 
12210 		if (!bp->fw_health->master) {
12211 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12212 
12213 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12214 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12215 			return;
12216 		}
12217 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12218 	}
12219 		fallthrough;
12220 	case BNXT_FW_RESET_STATE_RESET_FW:
12221 		bnxt_reset_all(bp);
12222 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12223 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12224 		return;
12225 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12226 		bnxt_inv_fw_health_reg(bp);
12227 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12228 		    !bp->fw_reset_min_dsecs) {
12229 			u16 val;
12230 
12231 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12232 			if (val == 0xffff) {
12233 				if (bnxt_fw_reset_timeout(bp)) {
12234 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12235 					rc = -ETIMEDOUT;
12236 					goto fw_reset_abort;
12237 				}
12238 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12239 				return;
12240 			}
12241 		}
12242 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12243 		if (pci_enable_device(bp->pdev)) {
12244 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12245 			rc = -ENODEV;
12246 			goto fw_reset_abort;
12247 		}
12248 		pci_set_master(bp->pdev);
12249 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12250 		fallthrough;
12251 	case BNXT_FW_RESET_STATE_POLL_FW:
12252 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12253 		rc = bnxt_hwrm_poll(bp);
12254 		if (rc) {
12255 			if (bnxt_fw_reset_timeout(bp)) {
12256 				netdev_err(bp->dev, "Firmware reset aborted\n");
12257 				goto fw_reset_abort_status;
12258 			}
12259 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12260 			return;
12261 		}
12262 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12263 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12264 		fallthrough;
12265 	case BNXT_FW_RESET_STATE_OPENING:
12266 		while (!rtnl_trylock()) {
12267 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12268 			return;
12269 		}
12270 		rc = bnxt_open(bp->dev);
12271 		if (rc) {
12272 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12273 			bnxt_fw_reset_abort(bp, rc);
12274 			rtnl_unlock();
12275 			return;
12276 		}
12277 
12278 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12279 		    bp->fw_health->enabled) {
12280 			bp->fw_health->last_fw_reset_cnt =
12281 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12282 		}
12283 		bp->fw_reset_state = 0;
12284 		/* Make sure fw_reset_state is 0 before clearing the flag */
12285 		smp_mb__before_atomic();
12286 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12287 		bnxt_ulp_start(bp, 0);
12288 		bnxt_reenable_sriov(bp);
12289 		bnxt_vf_reps_alloc(bp);
12290 		bnxt_vf_reps_open(bp);
12291 		bnxt_ptp_reapply_pps(bp);
12292 		bnxt_dl_health_recovery_done(bp);
12293 		bnxt_dl_health_status_update(bp, true);
12294 		rtnl_unlock();
12295 		break;
12296 	}
12297 	return;
12298 
12299 fw_reset_abort_status:
12300 	if (bp->fw_health->status_reliable ||
12301 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12302 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12303 
12304 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12305 	}
12306 fw_reset_abort:
12307 	rtnl_lock();
12308 	bnxt_fw_reset_abort(bp, rc);
12309 	rtnl_unlock();
12310 }
12311 
bnxt_init_board(struct pci_dev * pdev,struct net_device * dev)12312 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12313 {
12314 	int rc;
12315 	struct bnxt *bp = netdev_priv(dev);
12316 
12317 	SET_NETDEV_DEV(dev, &pdev->dev);
12318 
12319 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12320 	rc = pci_enable_device(pdev);
12321 	if (rc) {
12322 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12323 		goto init_err;
12324 	}
12325 
12326 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12327 		dev_err(&pdev->dev,
12328 			"Cannot find PCI device base address, aborting\n");
12329 		rc = -ENODEV;
12330 		goto init_err_disable;
12331 	}
12332 
12333 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12334 	if (rc) {
12335 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12336 		goto init_err_disable;
12337 	}
12338 
12339 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12340 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12341 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12342 		rc = -EIO;
12343 		goto init_err_release;
12344 	}
12345 
12346 	pci_set_master(pdev);
12347 
12348 	bp->dev = dev;
12349 	bp->pdev = pdev;
12350 
12351 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12352 	 * determines the BAR size.
12353 	 */
12354 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12355 	if (!bp->bar0) {
12356 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12357 		rc = -ENOMEM;
12358 		goto init_err_release;
12359 	}
12360 
12361 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12362 	if (!bp->bar2) {
12363 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12364 		rc = -ENOMEM;
12365 		goto init_err_release;
12366 	}
12367 
12368 	pci_enable_pcie_error_reporting(pdev);
12369 
12370 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12371 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12372 
12373 	spin_lock_init(&bp->ntp_fltr_lock);
12374 #if BITS_PER_LONG == 32
12375 	spin_lock_init(&bp->db_lock);
12376 #endif
12377 
12378 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12379 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12380 
12381 	bnxt_init_dflt_coal(bp);
12382 
12383 	timer_setup(&bp->timer, bnxt_timer, 0);
12384 	bp->current_interval = BNXT_TIMER_INTERVAL;
12385 
12386 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12387 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12388 
12389 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12390 	return 0;
12391 
12392 init_err_release:
12393 	bnxt_unmap_bars(bp, pdev);
12394 	pci_release_regions(pdev);
12395 
12396 init_err_disable:
12397 	pci_disable_device(pdev);
12398 
12399 init_err:
12400 	return rc;
12401 }
12402 
12403 /* rtnl_lock held */
bnxt_change_mac_addr(struct net_device * dev,void * p)12404 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12405 {
12406 	struct sockaddr *addr = p;
12407 	struct bnxt *bp = netdev_priv(dev);
12408 	int rc = 0;
12409 
12410 	if (!is_valid_ether_addr(addr->sa_data))
12411 		return -EADDRNOTAVAIL;
12412 
12413 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12414 		return 0;
12415 
12416 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12417 	if (rc)
12418 		return rc;
12419 
12420 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
12421 	if (netif_running(dev)) {
12422 		bnxt_close_nic(bp, false, false);
12423 		rc = bnxt_open_nic(bp, false, false);
12424 	}
12425 
12426 	return rc;
12427 }
12428 
12429 /* rtnl_lock held */
bnxt_change_mtu(struct net_device * dev,int new_mtu)12430 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12431 {
12432 	struct bnxt *bp = netdev_priv(dev);
12433 
12434 	if (netif_running(dev))
12435 		bnxt_close_nic(bp, true, false);
12436 
12437 	dev->mtu = new_mtu;
12438 	bnxt_set_ring_params(bp);
12439 
12440 	if (netif_running(dev))
12441 		return bnxt_open_nic(bp, true, false);
12442 
12443 	return 0;
12444 }
12445 
bnxt_setup_mq_tc(struct net_device * dev,u8 tc)12446 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12447 {
12448 	struct bnxt *bp = netdev_priv(dev);
12449 	bool sh = false;
12450 	int rc;
12451 
12452 	if (tc > bp->max_tc) {
12453 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12454 			   tc, bp->max_tc);
12455 		return -EINVAL;
12456 	}
12457 
12458 	if (netdev_get_num_tc(dev) == tc)
12459 		return 0;
12460 
12461 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12462 		sh = true;
12463 
12464 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12465 			      sh, tc, bp->tx_nr_rings_xdp);
12466 	if (rc)
12467 		return rc;
12468 
12469 	/* Needs to close the device and do hw resource re-allocations */
12470 	if (netif_running(bp->dev))
12471 		bnxt_close_nic(bp, true, false);
12472 
12473 	if (tc) {
12474 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12475 		netdev_set_num_tc(dev, tc);
12476 	} else {
12477 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12478 		netdev_reset_tc(dev);
12479 	}
12480 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12481 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12482 			       bp->tx_nr_rings + bp->rx_nr_rings;
12483 
12484 	if (netif_running(bp->dev))
12485 		return bnxt_open_nic(bp, true, false);
12486 
12487 	return 0;
12488 }
12489 
bnxt_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)12490 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12491 				  void *cb_priv)
12492 {
12493 	struct bnxt *bp = cb_priv;
12494 
12495 	if (!bnxt_tc_flower_enabled(bp) ||
12496 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12497 		return -EOPNOTSUPP;
12498 
12499 	switch (type) {
12500 	case TC_SETUP_CLSFLOWER:
12501 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12502 	default:
12503 		return -EOPNOTSUPP;
12504 	}
12505 }
12506 
12507 LIST_HEAD(bnxt_block_cb_list);
12508 
bnxt_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)12509 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12510 			 void *type_data)
12511 {
12512 	struct bnxt *bp = netdev_priv(dev);
12513 
12514 	switch (type) {
12515 	case TC_SETUP_BLOCK:
12516 		return flow_block_cb_setup_simple(type_data,
12517 						  &bnxt_block_cb_list,
12518 						  bnxt_setup_tc_block_cb,
12519 						  bp, bp, true);
12520 	case TC_SETUP_QDISC_MQPRIO: {
12521 		struct tc_mqprio_qopt *mqprio = type_data;
12522 
12523 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12524 
12525 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12526 	}
12527 	default:
12528 		return -EOPNOTSUPP;
12529 	}
12530 }
12531 
12532 #ifdef CONFIG_RFS_ACCEL
bnxt_fltr_match(struct bnxt_ntuple_filter * f1,struct bnxt_ntuple_filter * f2)12533 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12534 			    struct bnxt_ntuple_filter *f2)
12535 {
12536 	struct flow_keys *keys1 = &f1->fkeys;
12537 	struct flow_keys *keys2 = &f2->fkeys;
12538 
12539 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12540 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12541 		return false;
12542 
12543 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12544 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12545 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12546 			return false;
12547 	} else {
12548 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12549 			   sizeof(keys1->addrs.v6addrs.src)) ||
12550 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12551 			   sizeof(keys1->addrs.v6addrs.dst)))
12552 			return false;
12553 	}
12554 
12555 	if (keys1->ports.ports == keys2->ports.ports &&
12556 	    keys1->control.flags == keys2->control.flags &&
12557 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12558 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12559 		return true;
12560 
12561 	return false;
12562 }
12563 
bnxt_rx_flow_steer(struct net_device * dev,const struct sk_buff * skb,u16 rxq_index,u32 flow_id)12564 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12565 			      u16 rxq_index, u32 flow_id)
12566 {
12567 	struct bnxt *bp = netdev_priv(dev);
12568 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12569 	struct flow_keys *fkeys;
12570 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12571 	int rc = 0, idx, bit_id, l2_idx = 0;
12572 	struct hlist_head *head;
12573 	u32 flags;
12574 
12575 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12576 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12577 		int off = 0, j;
12578 
12579 		netif_addr_lock_bh(dev);
12580 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12581 			if (ether_addr_equal(eth->h_dest,
12582 					     vnic->uc_list + off)) {
12583 				l2_idx = j + 1;
12584 				break;
12585 			}
12586 		}
12587 		netif_addr_unlock_bh(dev);
12588 		if (!l2_idx)
12589 			return -EINVAL;
12590 	}
12591 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12592 	if (!new_fltr)
12593 		return -ENOMEM;
12594 
12595 	fkeys = &new_fltr->fkeys;
12596 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12597 		rc = -EPROTONOSUPPORT;
12598 		goto err_free;
12599 	}
12600 
12601 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12602 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12603 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12604 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12605 		rc = -EPROTONOSUPPORT;
12606 		goto err_free;
12607 	}
12608 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12609 	    bp->hwrm_spec_code < 0x10601) {
12610 		rc = -EPROTONOSUPPORT;
12611 		goto err_free;
12612 	}
12613 	flags = fkeys->control.flags;
12614 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12615 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12616 		rc = -EPROTONOSUPPORT;
12617 		goto err_free;
12618 	}
12619 
12620 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12621 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12622 
12623 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12624 	head = &bp->ntp_fltr_hash_tbl[idx];
12625 	rcu_read_lock();
12626 	hlist_for_each_entry_rcu(fltr, head, hash) {
12627 		if (bnxt_fltr_match(fltr, new_fltr)) {
12628 			rc = fltr->sw_id;
12629 			rcu_read_unlock();
12630 			goto err_free;
12631 		}
12632 	}
12633 	rcu_read_unlock();
12634 
12635 	spin_lock_bh(&bp->ntp_fltr_lock);
12636 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12637 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12638 	if (bit_id < 0) {
12639 		spin_unlock_bh(&bp->ntp_fltr_lock);
12640 		rc = -ENOMEM;
12641 		goto err_free;
12642 	}
12643 
12644 	new_fltr->sw_id = (u16)bit_id;
12645 	new_fltr->flow_id = flow_id;
12646 	new_fltr->l2_fltr_idx = l2_idx;
12647 	new_fltr->rxq = rxq_index;
12648 	hlist_add_head_rcu(&new_fltr->hash, head);
12649 	bp->ntp_fltr_count++;
12650 	spin_unlock_bh(&bp->ntp_fltr_lock);
12651 
12652 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12653 	bnxt_queue_sp_work(bp);
12654 
12655 	return new_fltr->sw_id;
12656 
12657 err_free:
12658 	kfree(new_fltr);
12659 	return rc;
12660 }
12661 
bnxt_cfg_ntp_filters(struct bnxt * bp)12662 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12663 {
12664 	int i;
12665 
12666 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12667 		struct hlist_head *head;
12668 		struct hlist_node *tmp;
12669 		struct bnxt_ntuple_filter *fltr;
12670 		int rc;
12671 
12672 		head = &bp->ntp_fltr_hash_tbl[i];
12673 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12674 			bool del = false;
12675 
12676 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
12677 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
12678 							fltr->flow_id,
12679 							fltr->sw_id)) {
12680 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
12681 									 fltr);
12682 					del = true;
12683 				}
12684 			} else {
12685 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
12686 								       fltr);
12687 				if (rc)
12688 					del = true;
12689 				else
12690 					set_bit(BNXT_FLTR_VALID, &fltr->state);
12691 			}
12692 
12693 			if (del) {
12694 				spin_lock_bh(&bp->ntp_fltr_lock);
12695 				hlist_del_rcu(&fltr->hash);
12696 				bp->ntp_fltr_count--;
12697 				spin_unlock_bh(&bp->ntp_fltr_lock);
12698 				synchronize_rcu();
12699 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
12700 				kfree(fltr);
12701 			}
12702 		}
12703 	}
12704 }
12705 
12706 #else
12707 
bnxt_cfg_ntp_filters(struct bnxt * bp)12708 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12709 {
12710 }
12711 
12712 #endif /* CONFIG_RFS_ACCEL */
12713 
bnxt_udp_tunnel_set_port(struct net_device * netdev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)12714 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
12715 				    unsigned int entry, struct udp_tunnel_info *ti)
12716 {
12717 	struct bnxt *bp = netdev_priv(netdev);
12718 	unsigned int cmd;
12719 
12720 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
12721 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
12722 	else
12723 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
12724 
12725 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
12726 }
12727 
bnxt_udp_tunnel_unset_port(struct net_device * netdev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)12728 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
12729 				      unsigned int entry, struct udp_tunnel_info *ti)
12730 {
12731 	struct bnxt *bp = netdev_priv(netdev);
12732 	unsigned int cmd;
12733 
12734 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
12735 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
12736 	else
12737 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
12738 
12739 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
12740 }
12741 
12742 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
12743 	.set_port	= bnxt_udp_tunnel_set_port,
12744 	.unset_port	= bnxt_udp_tunnel_unset_port,
12745 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
12746 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
12747 	.tables		= {
12748 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
12749 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
12750 	},
12751 };
12752 
bnxt_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)12753 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
12754 			       struct net_device *dev, u32 filter_mask,
12755 			       int nlflags)
12756 {
12757 	struct bnxt *bp = netdev_priv(dev);
12758 
12759 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
12760 				       nlflags, filter_mask, NULL);
12761 }
12762 
bnxt_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 flags,struct netlink_ext_ack * extack)12763 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
12764 			       u16 flags, struct netlink_ext_ack *extack)
12765 {
12766 	struct bnxt *bp = netdev_priv(dev);
12767 	struct nlattr *attr, *br_spec;
12768 	int rem, rc = 0;
12769 
12770 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
12771 		return -EOPNOTSUPP;
12772 
12773 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
12774 	if (!br_spec)
12775 		return -EINVAL;
12776 
12777 	nla_for_each_nested(attr, br_spec, rem) {
12778 		u16 mode;
12779 
12780 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
12781 			continue;
12782 
12783 		if (nla_len(attr) < sizeof(mode))
12784 			return -EINVAL;
12785 
12786 		mode = nla_get_u16(attr);
12787 		if (mode == bp->br_mode)
12788 			break;
12789 
12790 		rc = bnxt_hwrm_set_br_mode(bp, mode);
12791 		if (!rc)
12792 			bp->br_mode = mode;
12793 		break;
12794 	}
12795 	return rc;
12796 }
12797 
bnxt_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid)12798 int bnxt_get_port_parent_id(struct net_device *dev,
12799 			    struct netdev_phys_item_id *ppid)
12800 {
12801 	struct bnxt *bp = netdev_priv(dev);
12802 
12803 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
12804 		return -EOPNOTSUPP;
12805 
12806 	/* The PF and it's VF-reps only support the switchdev framework */
12807 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
12808 		return -EOPNOTSUPP;
12809 
12810 	ppid->id_len = sizeof(bp->dsn);
12811 	memcpy(ppid->id, bp->dsn, ppid->id_len);
12812 
12813 	return 0;
12814 }
12815 
bnxt_get_devlink_port(struct net_device * dev)12816 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
12817 {
12818 	struct bnxt *bp = netdev_priv(dev);
12819 
12820 	return &bp->dl_port;
12821 }
12822 
12823 static const struct net_device_ops bnxt_netdev_ops = {
12824 	.ndo_open		= bnxt_open,
12825 	.ndo_start_xmit		= bnxt_start_xmit,
12826 	.ndo_stop		= bnxt_close,
12827 	.ndo_get_stats64	= bnxt_get_stats64,
12828 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
12829 	.ndo_eth_ioctl		= bnxt_ioctl,
12830 	.ndo_validate_addr	= eth_validate_addr,
12831 	.ndo_set_mac_address	= bnxt_change_mac_addr,
12832 	.ndo_change_mtu		= bnxt_change_mtu,
12833 	.ndo_fix_features	= bnxt_fix_features,
12834 	.ndo_set_features	= bnxt_set_features,
12835 	.ndo_features_check	= bnxt_features_check,
12836 	.ndo_tx_timeout		= bnxt_tx_timeout,
12837 #ifdef CONFIG_BNXT_SRIOV
12838 	.ndo_get_vf_config	= bnxt_get_vf_config,
12839 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
12840 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
12841 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
12842 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
12843 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
12844 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
12845 #endif
12846 	.ndo_setup_tc           = bnxt_setup_tc,
12847 #ifdef CONFIG_RFS_ACCEL
12848 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
12849 #endif
12850 	.ndo_bpf		= bnxt_xdp,
12851 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
12852 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
12853 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
12854 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
12855 };
12856 
bnxt_remove_one(struct pci_dev * pdev)12857 static void bnxt_remove_one(struct pci_dev *pdev)
12858 {
12859 	struct net_device *dev = pci_get_drvdata(pdev);
12860 	struct bnxt *bp = netdev_priv(dev);
12861 
12862 	if (BNXT_PF(bp))
12863 		bnxt_sriov_disable(bp);
12864 
12865 	if (BNXT_PF(bp))
12866 		devlink_port_type_clear(&bp->dl_port);
12867 
12868 	bnxt_ptp_clear(bp);
12869 	pci_disable_pcie_error_reporting(pdev);
12870 	unregister_netdev(dev);
12871 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12872 	/* Flush any pending tasks */
12873 	cancel_work_sync(&bp->sp_task);
12874 	cancel_delayed_work_sync(&bp->fw_reset_task);
12875 	bp->sp_event = 0;
12876 
12877 	bnxt_dl_fw_reporters_destroy(bp, true);
12878 	bnxt_dl_unregister(bp);
12879 	bnxt_shutdown_tc(bp);
12880 
12881 	bnxt_clear_int_mode(bp);
12882 	bnxt_hwrm_func_drv_unrgtr(bp);
12883 	bnxt_free_hwrm_resources(bp);
12884 	bnxt_ethtool_free(bp);
12885 	bnxt_dcb_free(bp);
12886 	kfree(bp->edev);
12887 	bp->edev = NULL;
12888 	kfree(bp->ptp_cfg);
12889 	bp->ptp_cfg = NULL;
12890 	kfree(bp->fw_health);
12891 	bp->fw_health = NULL;
12892 	bnxt_cleanup_pci(bp);
12893 	bnxt_free_ctx_mem(bp);
12894 	kfree(bp->ctx);
12895 	bp->ctx = NULL;
12896 	kfree(bp->rss_indir_tbl);
12897 	bp->rss_indir_tbl = NULL;
12898 	bnxt_free_port_stats(bp);
12899 	free_netdev(dev);
12900 }
12901 
bnxt_probe_phy(struct bnxt * bp,bool fw_dflt)12902 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
12903 {
12904 	int rc = 0;
12905 	struct bnxt_link_info *link_info = &bp->link_info;
12906 
12907 	bp->phy_flags = 0;
12908 	rc = bnxt_hwrm_phy_qcaps(bp);
12909 	if (rc) {
12910 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
12911 			   rc);
12912 		return rc;
12913 	}
12914 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
12915 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
12916 	else
12917 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
12918 	if (!fw_dflt)
12919 		return 0;
12920 
12921 	mutex_lock(&bp->link_lock);
12922 	rc = bnxt_update_link(bp, false);
12923 	if (rc) {
12924 		mutex_unlock(&bp->link_lock);
12925 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
12926 			   rc);
12927 		return rc;
12928 	}
12929 
12930 	/* Older firmware does not have supported_auto_speeds, so assume
12931 	 * that all supported speeds can be autonegotiated.
12932 	 */
12933 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
12934 		link_info->support_auto_speeds = link_info->support_speeds;
12935 
12936 	bnxt_init_ethtool_link_settings(bp);
12937 	mutex_unlock(&bp->link_lock);
12938 	return 0;
12939 }
12940 
bnxt_get_max_irq(struct pci_dev * pdev)12941 static int bnxt_get_max_irq(struct pci_dev *pdev)
12942 {
12943 	u16 ctrl;
12944 
12945 	if (!pdev->msix_cap)
12946 		return 1;
12947 
12948 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
12949 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
12950 }
12951 
_bnxt_get_max_rings(struct bnxt * bp,int * max_rx,int * max_tx,int * max_cp)12952 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12953 				int *max_cp)
12954 {
12955 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12956 	int max_ring_grps = 0, max_irq;
12957 
12958 	*max_tx = hw_resc->max_tx_rings;
12959 	*max_rx = hw_resc->max_rx_rings;
12960 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
12961 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
12962 			bnxt_get_ulp_msix_num(bp),
12963 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
12964 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
12965 		*max_cp = min_t(int, *max_cp, max_irq);
12966 	max_ring_grps = hw_resc->max_hw_ring_grps;
12967 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
12968 		*max_cp -= 1;
12969 		*max_rx -= 2;
12970 	}
12971 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12972 		*max_rx >>= 1;
12973 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
12974 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
12975 		/* On P5 chips, max_cp output param should be available NQs */
12976 		*max_cp = max_irq;
12977 	}
12978 	*max_rx = min_t(int, *max_rx, max_ring_grps);
12979 }
12980 
bnxt_get_max_rings(struct bnxt * bp,int * max_rx,int * max_tx,bool shared)12981 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
12982 {
12983 	int rx, tx, cp;
12984 
12985 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
12986 	*max_rx = rx;
12987 	*max_tx = tx;
12988 	if (!rx || !tx || !cp)
12989 		return -ENOMEM;
12990 
12991 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
12992 }
12993 
bnxt_get_dflt_rings(struct bnxt * bp,int * max_rx,int * max_tx,bool shared)12994 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12995 			       bool shared)
12996 {
12997 	int rc;
12998 
12999 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13000 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13001 		/* Not enough rings, try disabling agg rings. */
13002 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13003 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13004 		if (rc) {
13005 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13006 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13007 			return rc;
13008 		}
13009 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13010 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13011 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13012 		bnxt_set_ring_params(bp);
13013 	}
13014 
13015 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13016 		int max_cp, max_stat, max_irq;
13017 
13018 		/* Reserve minimum resources for RoCE */
13019 		max_cp = bnxt_get_max_func_cp_rings(bp);
13020 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13021 		max_irq = bnxt_get_max_func_irqs(bp);
13022 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13023 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13024 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13025 			return 0;
13026 
13027 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13028 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13029 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13030 		max_cp = min_t(int, max_cp, max_irq);
13031 		max_cp = min_t(int, max_cp, max_stat);
13032 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13033 		if (rc)
13034 			rc = 0;
13035 	}
13036 	return rc;
13037 }
13038 
13039 /* In initial default shared ring setting, each shared ring must have a
13040  * RX/TX ring pair.
13041  */
bnxt_trim_dflt_sh_rings(struct bnxt * bp)13042 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13043 {
13044 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13045 	bp->rx_nr_rings = bp->cp_nr_rings;
13046 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13047 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13048 }
13049 
bnxt_set_dflt_rings(struct bnxt * bp,bool sh)13050 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13051 {
13052 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13053 
13054 	if (!bnxt_can_reserve_rings(bp))
13055 		return 0;
13056 
13057 	if (sh)
13058 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13059 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13060 	/* Reduce default rings on multi-port cards so that total default
13061 	 * rings do not exceed CPU count.
13062 	 */
13063 	if (bp->port_count > 1) {
13064 		int max_rings =
13065 			max_t(int, num_online_cpus() / bp->port_count, 1);
13066 
13067 		dflt_rings = min_t(int, dflt_rings, max_rings);
13068 	}
13069 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13070 	if (rc)
13071 		return rc;
13072 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13073 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13074 	if (sh)
13075 		bnxt_trim_dflt_sh_rings(bp);
13076 	else
13077 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13078 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13079 
13080 	rc = __bnxt_reserve_rings(bp);
13081 	if (rc)
13082 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13083 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13084 	if (sh)
13085 		bnxt_trim_dflt_sh_rings(bp);
13086 
13087 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13088 	if (bnxt_need_reserve_rings(bp)) {
13089 		rc = __bnxt_reserve_rings(bp);
13090 		if (rc)
13091 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13092 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13093 	}
13094 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13095 		bp->rx_nr_rings++;
13096 		bp->cp_nr_rings++;
13097 	}
13098 	if (rc) {
13099 		bp->tx_nr_rings = 0;
13100 		bp->rx_nr_rings = 0;
13101 	}
13102 	return rc;
13103 }
13104 
bnxt_init_dflt_ring_mode(struct bnxt * bp)13105 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13106 {
13107 	int rc;
13108 
13109 	if (bp->tx_nr_rings)
13110 		return 0;
13111 
13112 	bnxt_ulp_irq_stop(bp);
13113 	bnxt_clear_int_mode(bp);
13114 	rc = bnxt_set_dflt_rings(bp, true);
13115 	if (rc) {
13116 		netdev_err(bp->dev, "Not enough rings available.\n");
13117 		goto init_dflt_ring_err;
13118 	}
13119 	rc = bnxt_init_int_mode(bp);
13120 	if (rc)
13121 		goto init_dflt_ring_err;
13122 
13123 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13124 
13125 	bnxt_set_dflt_rfs(bp);
13126 
13127 init_dflt_ring_err:
13128 	bnxt_ulp_irq_restart(bp, rc);
13129 	return rc;
13130 }
13131 
bnxt_restore_pf_fw_resources(struct bnxt * bp)13132 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13133 {
13134 	int rc;
13135 
13136 	ASSERT_RTNL();
13137 	bnxt_hwrm_func_qcaps(bp);
13138 
13139 	if (netif_running(bp->dev))
13140 		__bnxt_close_nic(bp, true, false);
13141 
13142 	bnxt_ulp_irq_stop(bp);
13143 	bnxt_clear_int_mode(bp);
13144 	rc = bnxt_init_int_mode(bp);
13145 	bnxt_ulp_irq_restart(bp, rc);
13146 
13147 	if (netif_running(bp->dev)) {
13148 		if (rc)
13149 			dev_close(bp->dev);
13150 		else
13151 			rc = bnxt_open_nic(bp, true, false);
13152 	}
13153 
13154 	return rc;
13155 }
13156 
bnxt_init_mac_addr(struct bnxt * bp)13157 static int bnxt_init_mac_addr(struct bnxt *bp)
13158 {
13159 	int rc = 0;
13160 
13161 	if (BNXT_PF(bp)) {
13162 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
13163 	} else {
13164 #ifdef CONFIG_BNXT_SRIOV
13165 		struct bnxt_vf_info *vf = &bp->vf;
13166 		bool strict_approval = true;
13167 
13168 		if (is_valid_ether_addr(vf->mac_addr)) {
13169 			/* overwrite netdev dev_addr with admin VF MAC */
13170 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
13171 			/* Older PF driver or firmware may not approve this
13172 			 * correctly.
13173 			 */
13174 			strict_approval = false;
13175 		} else {
13176 			eth_hw_addr_random(bp->dev);
13177 		}
13178 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13179 #endif
13180 	}
13181 	return rc;
13182 }
13183 
bnxt_vpd_read_info(struct bnxt * bp)13184 static void bnxt_vpd_read_info(struct bnxt *bp)
13185 {
13186 	struct pci_dev *pdev = bp->pdev;
13187 	unsigned int vpd_size, kw_len;
13188 	int pos, size;
13189 	u8 *vpd_data;
13190 
13191 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13192 	if (IS_ERR(vpd_data)) {
13193 		pci_warn(pdev, "Unable to read VPD\n");
13194 		return;
13195 	}
13196 
13197 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13198 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13199 	if (pos < 0)
13200 		goto read_sn;
13201 
13202 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13203 	memcpy(bp->board_partno, &vpd_data[pos], size);
13204 
13205 read_sn:
13206 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13207 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13208 					   &kw_len);
13209 	if (pos < 0)
13210 		goto exit;
13211 
13212 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13213 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13214 exit:
13215 	kfree(vpd_data);
13216 }
13217 
bnxt_pcie_dsn_get(struct bnxt * bp,u8 dsn[])13218 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13219 {
13220 	struct pci_dev *pdev = bp->pdev;
13221 	u64 qword;
13222 
13223 	qword = pci_get_dsn(pdev);
13224 	if (!qword) {
13225 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13226 		return -EOPNOTSUPP;
13227 	}
13228 
13229 	put_unaligned_le64(qword, dsn);
13230 
13231 	bp->flags |= BNXT_FLAG_DSN_VALID;
13232 	return 0;
13233 }
13234 
bnxt_map_db_bar(struct bnxt * bp)13235 static int bnxt_map_db_bar(struct bnxt *bp)
13236 {
13237 	if (!bp->db_size)
13238 		return -ENODEV;
13239 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13240 	if (!bp->bar1)
13241 		return -ENOMEM;
13242 	return 0;
13243 }
13244 
bnxt_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)13245 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13246 {
13247 	struct net_device *dev;
13248 	struct bnxt *bp;
13249 	int rc, max_irqs;
13250 
13251 	if (pci_is_bridge(pdev))
13252 		return -ENODEV;
13253 
13254 	/* Clear any pending DMA transactions from crash kernel
13255 	 * while loading driver in capture kernel.
13256 	 */
13257 	if (is_kdump_kernel()) {
13258 		pci_clear_master(pdev);
13259 		pcie_flr(pdev);
13260 	}
13261 
13262 	max_irqs = bnxt_get_max_irq(pdev);
13263 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13264 	if (!dev)
13265 		return -ENOMEM;
13266 
13267 	bp = netdev_priv(dev);
13268 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13269 	bnxt_set_max_func_irqs(bp, max_irqs);
13270 
13271 	if (bnxt_vf_pciid(ent->driver_data))
13272 		bp->flags |= BNXT_FLAG_VF;
13273 
13274 	if (pdev->msix_cap)
13275 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13276 
13277 	rc = bnxt_init_board(pdev, dev);
13278 	if (rc < 0)
13279 		goto init_err_free;
13280 
13281 	dev->netdev_ops = &bnxt_netdev_ops;
13282 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13283 	dev->ethtool_ops = &bnxt_ethtool_ops;
13284 	pci_set_drvdata(pdev, dev);
13285 
13286 	rc = bnxt_alloc_hwrm_resources(bp);
13287 	if (rc)
13288 		goto init_err_pci_clean;
13289 
13290 	mutex_init(&bp->hwrm_cmd_lock);
13291 	mutex_init(&bp->link_lock);
13292 
13293 	rc = bnxt_fw_init_one_p1(bp);
13294 	if (rc)
13295 		goto init_err_pci_clean;
13296 
13297 	if (BNXT_PF(bp))
13298 		bnxt_vpd_read_info(bp);
13299 
13300 	if (BNXT_CHIP_P5(bp)) {
13301 		bp->flags |= BNXT_FLAG_CHIP_P5;
13302 		if (BNXT_CHIP_SR2(bp))
13303 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13304 	}
13305 
13306 	rc = bnxt_alloc_rss_indir_tbl(bp);
13307 	if (rc)
13308 		goto init_err_pci_clean;
13309 
13310 	rc = bnxt_fw_init_one_p2(bp);
13311 	if (rc)
13312 		goto init_err_pci_clean;
13313 
13314 	rc = bnxt_map_db_bar(bp);
13315 	if (rc) {
13316 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13317 			rc);
13318 		goto init_err_pci_clean;
13319 	}
13320 
13321 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13322 			   NETIF_F_TSO | NETIF_F_TSO6 |
13323 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13324 			   NETIF_F_GSO_IPXIP4 |
13325 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13326 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13327 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13328 
13329 	if (BNXT_SUPPORTS_TPA(bp))
13330 		dev->hw_features |= NETIF_F_LRO;
13331 
13332 	dev->hw_enc_features =
13333 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13334 			NETIF_F_TSO | NETIF_F_TSO6 |
13335 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13336 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13337 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13338 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13339 
13340 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13341 				    NETIF_F_GSO_GRE_CSUM;
13342 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13343 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13344 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13345 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13346 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13347 	if (BNXT_SUPPORTS_TPA(bp))
13348 		dev->hw_features |= NETIF_F_GRO_HW;
13349 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13350 	if (dev->features & NETIF_F_GRO_HW)
13351 		dev->features &= ~NETIF_F_LRO;
13352 	dev->priv_flags |= IFF_UNICAST_FLT;
13353 
13354 #ifdef CONFIG_BNXT_SRIOV
13355 	init_waitqueue_head(&bp->sriov_cfg_wait);
13356 	mutex_init(&bp->sriov_lock);
13357 #endif
13358 	if (BNXT_SUPPORTS_TPA(bp)) {
13359 		bp->gro_func = bnxt_gro_func_5730x;
13360 		if (BNXT_CHIP_P4(bp))
13361 			bp->gro_func = bnxt_gro_func_5731x;
13362 		else if (BNXT_CHIP_P5(bp))
13363 			bp->gro_func = bnxt_gro_func_5750x;
13364 	}
13365 	if (!BNXT_CHIP_P4_PLUS(bp))
13366 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13367 
13368 	rc = bnxt_init_mac_addr(bp);
13369 	if (rc) {
13370 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13371 		rc = -EADDRNOTAVAIL;
13372 		goto init_err_pci_clean;
13373 	}
13374 
13375 	if (BNXT_PF(bp)) {
13376 		/* Read the adapter's DSN to use as the eswitch switch_id */
13377 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13378 	}
13379 
13380 	/* MTU range: 60 - FW defined max */
13381 	dev->min_mtu = ETH_ZLEN;
13382 	dev->max_mtu = bp->max_mtu;
13383 
13384 	rc = bnxt_probe_phy(bp, true);
13385 	if (rc)
13386 		goto init_err_pci_clean;
13387 
13388 	bnxt_set_rx_skb_mode(bp, false);
13389 	bnxt_set_tpa_flags(bp);
13390 	bnxt_set_ring_params(bp);
13391 	rc = bnxt_set_dflt_rings(bp, true);
13392 	if (rc) {
13393 		netdev_err(bp->dev, "Not enough rings available.\n");
13394 		rc = -ENOMEM;
13395 		goto init_err_pci_clean;
13396 	}
13397 
13398 	bnxt_fw_init_one_p3(bp);
13399 
13400 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13401 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13402 
13403 	rc = bnxt_init_int_mode(bp);
13404 	if (rc)
13405 		goto init_err_pci_clean;
13406 
13407 	/* No TC has been set yet and rings may have been trimmed due to
13408 	 * limited MSIX, so we re-initialize the TX rings per TC.
13409 	 */
13410 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13411 
13412 	if (BNXT_PF(bp)) {
13413 		if (!bnxt_pf_wq) {
13414 			bnxt_pf_wq =
13415 				create_singlethread_workqueue("bnxt_pf_wq");
13416 			if (!bnxt_pf_wq) {
13417 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13418 				rc = -ENOMEM;
13419 				goto init_err_pci_clean;
13420 			}
13421 		}
13422 		rc = bnxt_init_tc(bp);
13423 		if (rc)
13424 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13425 				   rc);
13426 	}
13427 
13428 	bnxt_inv_fw_health_reg(bp);
13429 	rc = bnxt_dl_register(bp);
13430 	if (rc)
13431 		goto init_err_dl;
13432 
13433 	rc = register_netdev(dev);
13434 	if (rc)
13435 		goto init_err_cleanup;
13436 
13437 	if (BNXT_PF(bp))
13438 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
13439 	bnxt_dl_fw_reporters_create(bp);
13440 
13441 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
13442 		    board_info[ent->driver_data].name,
13443 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
13444 	pcie_print_link_status(pdev);
13445 
13446 	pci_save_state(pdev);
13447 	return 0;
13448 
13449 init_err_cleanup:
13450 	bnxt_dl_unregister(bp);
13451 init_err_dl:
13452 	bnxt_shutdown_tc(bp);
13453 	bnxt_clear_int_mode(bp);
13454 
13455 init_err_pci_clean:
13456 	bnxt_hwrm_func_drv_unrgtr(bp);
13457 	bnxt_free_hwrm_resources(bp);
13458 	bnxt_ethtool_free(bp);
13459 	bnxt_ptp_clear(bp);
13460 	kfree(bp->ptp_cfg);
13461 	bp->ptp_cfg = NULL;
13462 	kfree(bp->fw_health);
13463 	bp->fw_health = NULL;
13464 	bnxt_cleanup_pci(bp);
13465 	bnxt_free_ctx_mem(bp);
13466 	kfree(bp->ctx);
13467 	bp->ctx = NULL;
13468 	kfree(bp->rss_indir_tbl);
13469 	bp->rss_indir_tbl = NULL;
13470 
13471 init_err_free:
13472 	free_netdev(dev);
13473 	return rc;
13474 }
13475 
bnxt_shutdown(struct pci_dev * pdev)13476 static void bnxt_shutdown(struct pci_dev *pdev)
13477 {
13478 	struct net_device *dev = pci_get_drvdata(pdev);
13479 	struct bnxt *bp;
13480 
13481 	if (!dev)
13482 		return;
13483 
13484 	rtnl_lock();
13485 	bp = netdev_priv(dev);
13486 	if (!bp)
13487 		goto shutdown_exit;
13488 
13489 	if (netif_running(dev))
13490 		dev_close(dev);
13491 
13492 	bnxt_ulp_shutdown(bp);
13493 	bnxt_clear_int_mode(bp);
13494 	pci_disable_device(pdev);
13495 
13496 	if (system_state == SYSTEM_POWER_OFF) {
13497 		pci_wake_from_d3(pdev, bp->wol);
13498 		pci_set_power_state(pdev, PCI_D3hot);
13499 	}
13500 
13501 shutdown_exit:
13502 	rtnl_unlock();
13503 }
13504 
13505 #ifdef CONFIG_PM_SLEEP
bnxt_suspend(struct device * device)13506 static int bnxt_suspend(struct device *device)
13507 {
13508 	struct net_device *dev = dev_get_drvdata(device);
13509 	struct bnxt *bp = netdev_priv(dev);
13510 	int rc = 0;
13511 
13512 	rtnl_lock();
13513 	bnxt_ulp_stop(bp);
13514 	if (netif_running(dev)) {
13515 		netif_device_detach(dev);
13516 		rc = bnxt_close(dev);
13517 	}
13518 	bnxt_hwrm_func_drv_unrgtr(bp);
13519 	pci_disable_device(bp->pdev);
13520 	bnxt_free_ctx_mem(bp);
13521 	kfree(bp->ctx);
13522 	bp->ctx = NULL;
13523 	rtnl_unlock();
13524 	return rc;
13525 }
13526 
bnxt_resume(struct device * device)13527 static int bnxt_resume(struct device *device)
13528 {
13529 	struct net_device *dev = dev_get_drvdata(device);
13530 	struct bnxt *bp = netdev_priv(dev);
13531 	int rc = 0;
13532 
13533 	rtnl_lock();
13534 	rc = pci_enable_device(bp->pdev);
13535 	if (rc) {
13536 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13537 			   rc);
13538 		goto resume_exit;
13539 	}
13540 	pci_set_master(bp->pdev);
13541 	if (bnxt_hwrm_ver_get(bp)) {
13542 		rc = -ENODEV;
13543 		goto resume_exit;
13544 	}
13545 	rc = bnxt_hwrm_func_reset(bp);
13546 	if (rc) {
13547 		rc = -EBUSY;
13548 		goto resume_exit;
13549 	}
13550 
13551 	rc = bnxt_hwrm_func_qcaps(bp);
13552 	if (rc)
13553 		goto resume_exit;
13554 
13555 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13556 		rc = -ENODEV;
13557 		goto resume_exit;
13558 	}
13559 
13560 	bnxt_get_wol_settings(bp);
13561 	if (netif_running(dev)) {
13562 		rc = bnxt_open(dev);
13563 		if (!rc)
13564 			netif_device_attach(dev);
13565 	}
13566 
13567 resume_exit:
13568 	bnxt_ulp_start(bp, rc);
13569 	if (!rc)
13570 		bnxt_reenable_sriov(bp);
13571 	rtnl_unlock();
13572 	return rc;
13573 }
13574 
13575 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13576 #define BNXT_PM_OPS (&bnxt_pm_ops)
13577 
13578 #else
13579 
13580 #define BNXT_PM_OPS NULL
13581 
13582 #endif /* CONFIG_PM_SLEEP */
13583 
13584 /**
13585  * bnxt_io_error_detected - called when PCI error is detected
13586  * @pdev: Pointer to PCI device
13587  * @state: The current pci connection state
13588  *
13589  * This function is called after a PCI bus error affecting
13590  * this device has been detected.
13591  */
bnxt_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)13592 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13593 					       pci_channel_state_t state)
13594 {
13595 	struct net_device *netdev = pci_get_drvdata(pdev);
13596 	struct bnxt *bp = netdev_priv(netdev);
13597 
13598 	netdev_info(netdev, "PCI I/O error detected\n");
13599 
13600 	rtnl_lock();
13601 	netif_device_detach(netdev);
13602 
13603 	bnxt_ulp_stop(bp);
13604 
13605 	if (state == pci_channel_io_perm_failure) {
13606 		rtnl_unlock();
13607 		return PCI_ERS_RESULT_DISCONNECT;
13608 	}
13609 
13610 	if (state == pci_channel_io_frozen)
13611 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13612 
13613 	if (netif_running(netdev))
13614 		bnxt_close(netdev);
13615 
13616 	if (pci_is_enabled(pdev))
13617 		pci_disable_device(pdev);
13618 	bnxt_free_ctx_mem(bp);
13619 	kfree(bp->ctx);
13620 	bp->ctx = NULL;
13621 	rtnl_unlock();
13622 
13623 	/* Request a slot slot reset. */
13624 	return PCI_ERS_RESULT_NEED_RESET;
13625 }
13626 
13627 /**
13628  * bnxt_io_slot_reset - called after the pci bus has been reset.
13629  * @pdev: Pointer to PCI device
13630  *
13631  * Restart the card from scratch, as if from a cold-boot.
13632  * At this point, the card has exprienced a hard reset,
13633  * followed by fixups by BIOS, and has its config space
13634  * set up identically to what it was at cold boot.
13635  */
bnxt_io_slot_reset(struct pci_dev * pdev)13636 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13637 {
13638 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13639 	struct net_device *netdev = pci_get_drvdata(pdev);
13640 	struct bnxt *bp = netdev_priv(netdev);
13641 	int err = 0, off;
13642 
13643 	netdev_info(bp->dev, "PCI Slot Reset\n");
13644 
13645 	rtnl_lock();
13646 
13647 	if (pci_enable_device(pdev)) {
13648 		dev_err(&pdev->dev,
13649 			"Cannot re-enable PCI device after reset.\n");
13650 	} else {
13651 		pci_set_master(pdev);
13652 		/* Upon fatal error, our device internal logic that latches to
13653 		 * BAR value is getting reset and will restore only upon
13654 		 * rewritting the BARs.
13655 		 *
13656 		 * As pci_restore_state() does not re-write the BARs if the
13657 		 * value is same as saved value earlier, driver needs to
13658 		 * write the BARs to 0 to force restore, in case of fatal error.
13659 		 */
13660 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13661 				       &bp->state)) {
13662 			for (off = PCI_BASE_ADDRESS_0;
13663 			     off <= PCI_BASE_ADDRESS_5; off += 4)
13664 				pci_write_config_dword(bp->pdev, off, 0);
13665 		}
13666 		pci_restore_state(pdev);
13667 		pci_save_state(pdev);
13668 
13669 		err = bnxt_hwrm_func_reset(bp);
13670 		if (!err)
13671 			result = PCI_ERS_RESULT_RECOVERED;
13672 	}
13673 
13674 	rtnl_unlock();
13675 
13676 	return result;
13677 }
13678 
13679 /**
13680  * bnxt_io_resume - called when traffic can start flowing again.
13681  * @pdev: Pointer to PCI device
13682  *
13683  * This callback is called when the error recovery driver tells
13684  * us that its OK to resume normal operation.
13685  */
bnxt_io_resume(struct pci_dev * pdev)13686 static void bnxt_io_resume(struct pci_dev *pdev)
13687 {
13688 	struct net_device *netdev = pci_get_drvdata(pdev);
13689 	struct bnxt *bp = netdev_priv(netdev);
13690 	int err;
13691 
13692 	netdev_info(bp->dev, "PCI Slot Resume\n");
13693 	rtnl_lock();
13694 
13695 	err = bnxt_hwrm_func_qcaps(bp);
13696 	if (!err && netif_running(netdev))
13697 		err = bnxt_open(netdev);
13698 
13699 	bnxt_ulp_start(bp, err);
13700 	if (!err) {
13701 		bnxt_reenable_sriov(bp);
13702 		netif_device_attach(netdev);
13703 	}
13704 
13705 	rtnl_unlock();
13706 }
13707 
13708 static const struct pci_error_handlers bnxt_err_handler = {
13709 	.error_detected	= bnxt_io_error_detected,
13710 	.slot_reset	= bnxt_io_slot_reset,
13711 	.resume		= bnxt_io_resume
13712 };
13713 
13714 static struct pci_driver bnxt_pci_driver = {
13715 	.name		= DRV_MODULE_NAME,
13716 	.id_table	= bnxt_pci_tbl,
13717 	.probe		= bnxt_init_one,
13718 	.remove		= bnxt_remove_one,
13719 	.shutdown	= bnxt_shutdown,
13720 	.driver.pm	= BNXT_PM_OPS,
13721 	.err_handler	= &bnxt_err_handler,
13722 #if defined(CONFIG_BNXT_SRIOV)
13723 	.sriov_configure = bnxt_sriov_configure,
13724 #endif
13725 };
13726 
bnxt_init(void)13727 static int __init bnxt_init(void)
13728 {
13729 	int err;
13730 
13731 	bnxt_debug_init();
13732 	err = pci_register_driver(&bnxt_pci_driver);
13733 	if (err) {
13734 		bnxt_debug_exit();
13735 		return err;
13736 	}
13737 
13738 	return 0;
13739 }
13740 
bnxt_exit(void)13741 static void __exit bnxt_exit(void)
13742 {
13743 	pci_unregister_driver(&bnxt_pci_driver);
13744 	if (bnxt_pf_wq)
13745 		destroy_workqueue(bnxt_pf_wq);
13746 	bnxt_debug_exit();
13747 }
13748 
13749 module_init(bnxt_init);
13750 module_exit(bnxt_exit);
13751