1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25
26 #include "disasm.h"
27
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38
39 /* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all paths through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 *
83 * When verifier sees load or store instructions the type of base register
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns either pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
162 */
163
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
170 struct bpf_verifier_state st;
171 int insn_idx;
172 int prev_insn_idx;
173 struct bpf_verifier_stack_elem *next;
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
176 };
177
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
179 #define BPF_COMPLEXITY_LIMIT_STATES 64
180
181 #define BPF_MAP_KEY_POISON (1ULL << 63)
182 #define BPF_MAP_KEY_SEEN (1ULL << 62)
183
184 #define BPF_MAP_PTR_UNPRIV 1UL
185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201 {
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230
bpf_pseudo_call(const struct bpf_insn * insn)231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 return insn->code == (BPF_JMP | BPF_CALL) &&
234 insn->src_reg == BPF_PSEUDO_CALL;
235 }
236
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 return insn->code == (BPF_JMP | BPF_CALL) &&
240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242
243 struct bpf_call_arg_meta {
244 struct bpf_map *map_ptr;
245 bool raw_mode;
246 bool pkt_access;
247 int regno;
248 int access_size;
249 int mem_size;
250 u64 msize_max_value;
251 int ref_obj_id;
252 int map_uid;
253 int func_id;
254 struct btf *btf;
255 u32 btf_id;
256 struct btf *ret_btf;
257 u32 ret_btf_id;
258 u32 subprogno;
259 };
260
261 struct btf *btf_vmlinux;
262
263 static DEFINE_MUTEX(bpf_verifier_lock);
264
265 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)266 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
267 {
268 const struct bpf_line_info *linfo;
269 const struct bpf_prog *prog;
270 u32 i, nr_linfo;
271
272 prog = env->prog;
273 nr_linfo = prog->aux->nr_linfo;
274
275 if (!nr_linfo || insn_off >= prog->len)
276 return NULL;
277
278 linfo = prog->aux->linfo;
279 for (i = 1; i < nr_linfo; i++)
280 if (insn_off < linfo[i].insn_off)
281 break;
282
283 return &linfo[i - 1];
284 }
285
bpf_verifier_vlog(struct bpf_verifier_log * log,const char * fmt,va_list args)286 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
287 va_list args)
288 {
289 unsigned int n;
290
291 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
292
293 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
294 "verifier log line truncated - local buffer too short\n");
295
296 n = min(log->len_total - log->len_used - 1, n);
297 log->kbuf[n] = '\0';
298
299 if (log->level == BPF_LOG_KERNEL) {
300 pr_err("BPF:%s\n", log->kbuf);
301 return;
302 }
303 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
304 log->len_used += n;
305 else
306 log->ubuf = NULL;
307 }
308
bpf_vlog_reset(struct bpf_verifier_log * log,u32 new_pos)309 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
310 {
311 char zero = 0;
312
313 if (!bpf_verifier_log_needed(log))
314 return;
315
316 log->len_used = new_pos;
317 if (put_user(zero, log->ubuf + new_pos))
318 log->ubuf = NULL;
319 }
320
321 /* log_level controls verbosity level of eBPF verifier.
322 * bpf_verifier_log_write() is used to dump the verification trace to the log,
323 * so the user can figure out what's wrong with the program
324 */
bpf_verifier_log_write(struct bpf_verifier_env * env,const char * fmt,...)325 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
326 const char *fmt, ...)
327 {
328 va_list args;
329
330 if (!bpf_verifier_log_needed(&env->log))
331 return;
332
333 va_start(args, fmt);
334 bpf_verifier_vlog(&env->log, fmt, args);
335 va_end(args);
336 }
337 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
338
verbose(void * private_data,const char * fmt,...)339 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
340 {
341 struct bpf_verifier_env *env = private_data;
342 va_list args;
343
344 if (!bpf_verifier_log_needed(&env->log))
345 return;
346
347 va_start(args, fmt);
348 bpf_verifier_vlog(&env->log, fmt, args);
349 va_end(args);
350 }
351
bpf_log(struct bpf_verifier_log * log,const char * fmt,...)352 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
353 const char *fmt, ...)
354 {
355 va_list args;
356
357 if (!bpf_verifier_log_needed(log))
358 return;
359
360 va_start(args, fmt);
361 bpf_verifier_vlog(log, fmt, args);
362 va_end(args);
363 }
364
ltrim(const char * s)365 static const char *ltrim(const char *s)
366 {
367 while (isspace(*s))
368 s++;
369
370 return s;
371 }
372
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)373 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
374 u32 insn_off,
375 const char *prefix_fmt, ...)
376 {
377 const struct bpf_line_info *linfo;
378
379 if (!bpf_verifier_log_needed(&env->log))
380 return;
381
382 linfo = find_linfo(env, insn_off);
383 if (!linfo || linfo == env->prev_linfo)
384 return;
385
386 if (prefix_fmt) {
387 va_list args;
388
389 va_start(args, prefix_fmt);
390 bpf_verifier_vlog(&env->log, prefix_fmt, args);
391 va_end(args);
392 }
393
394 verbose(env, "%s\n",
395 ltrim(btf_name_by_offset(env->prog->aux->btf,
396 linfo->line_off)));
397
398 env->prev_linfo = linfo;
399 }
400
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct tnum * range,const char * ctx,const char * reg_name)401 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
402 struct bpf_reg_state *reg,
403 struct tnum *range, const char *ctx,
404 const char *reg_name)
405 {
406 char tn_buf[48];
407
408 verbose(env, "At %s the register %s ", ctx, reg_name);
409 if (!tnum_is_unknown(reg->var_off)) {
410 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
411 verbose(env, "has value %s", tn_buf);
412 } else {
413 verbose(env, "has unknown scalar value");
414 }
415 tnum_strn(tn_buf, sizeof(tn_buf), *range);
416 verbose(env, " should have been in %s\n", tn_buf);
417 }
418
type_is_pkt_pointer(enum bpf_reg_type type)419 static bool type_is_pkt_pointer(enum bpf_reg_type type)
420 {
421 return type == PTR_TO_PACKET ||
422 type == PTR_TO_PACKET_META;
423 }
424
type_is_sk_pointer(enum bpf_reg_type type)425 static bool type_is_sk_pointer(enum bpf_reg_type type)
426 {
427 return type == PTR_TO_SOCKET ||
428 type == PTR_TO_SOCK_COMMON ||
429 type == PTR_TO_TCP_SOCK ||
430 type == PTR_TO_XDP_SOCK;
431 }
432
reg_type_not_null(enum bpf_reg_type type)433 static bool reg_type_not_null(enum bpf_reg_type type)
434 {
435 return type == PTR_TO_SOCKET ||
436 type == PTR_TO_TCP_SOCK ||
437 type == PTR_TO_MAP_VALUE ||
438 type == PTR_TO_MAP_KEY ||
439 type == PTR_TO_SOCK_COMMON;
440 }
441
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)442 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
443 {
444 return reg->type == PTR_TO_MAP_VALUE &&
445 map_value_has_spin_lock(reg->map_ptr);
446 }
447
reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)448 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
449 {
450 return base_type(type) == PTR_TO_SOCKET ||
451 base_type(type) == PTR_TO_TCP_SOCK ||
452 base_type(type) == PTR_TO_MEM;
453 }
454
type_is_rdonly_mem(u32 type)455 static bool type_is_rdonly_mem(u32 type)
456 {
457 return type & MEM_RDONLY;
458 }
459
arg_type_may_be_refcounted(enum bpf_arg_type type)460 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
461 {
462 return type == ARG_PTR_TO_SOCK_COMMON;
463 }
464
type_may_be_null(u32 type)465 static bool type_may_be_null(u32 type)
466 {
467 return type & PTR_MAYBE_NULL;
468 }
469
470 /* Determine whether the function releases some resources allocated by another
471 * function call. The first reference type argument will be assumed to be
472 * released by release_reference().
473 */
is_release_function(enum bpf_func_id func_id)474 static bool is_release_function(enum bpf_func_id func_id)
475 {
476 return func_id == BPF_FUNC_sk_release ||
477 func_id == BPF_FUNC_ringbuf_submit ||
478 func_id == BPF_FUNC_ringbuf_discard;
479 }
480
may_be_acquire_function(enum bpf_func_id func_id)481 static bool may_be_acquire_function(enum bpf_func_id func_id)
482 {
483 return func_id == BPF_FUNC_sk_lookup_tcp ||
484 func_id == BPF_FUNC_sk_lookup_udp ||
485 func_id == BPF_FUNC_skc_lookup_tcp ||
486 func_id == BPF_FUNC_map_lookup_elem ||
487 func_id == BPF_FUNC_ringbuf_reserve;
488 }
489
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)490 static bool is_acquire_function(enum bpf_func_id func_id,
491 const struct bpf_map *map)
492 {
493 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
494
495 if (func_id == BPF_FUNC_sk_lookup_tcp ||
496 func_id == BPF_FUNC_sk_lookup_udp ||
497 func_id == BPF_FUNC_skc_lookup_tcp ||
498 func_id == BPF_FUNC_ringbuf_reserve)
499 return true;
500
501 if (func_id == BPF_FUNC_map_lookup_elem &&
502 (map_type == BPF_MAP_TYPE_SOCKMAP ||
503 map_type == BPF_MAP_TYPE_SOCKHASH))
504 return true;
505
506 return false;
507 }
508
is_ptr_cast_function(enum bpf_func_id func_id)509 static bool is_ptr_cast_function(enum bpf_func_id func_id)
510 {
511 return func_id == BPF_FUNC_tcp_sock ||
512 func_id == BPF_FUNC_sk_fullsock ||
513 func_id == BPF_FUNC_skc_to_tcp_sock ||
514 func_id == BPF_FUNC_skc_to_tcp6_sock ||
515 func_id == BPF_FUNC_skc_to_udp6_sock ||
516 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
517 func_id == BPF_FUNC_skc_to_tcp_request_sock;
518 }
519
is_callback_calling_function(enum bpf_func_id func_id)520 static bool is_callback_calling_function(enum bpf_func_id func_id)
521 {
522 return func_id == BPF_FUNC_for_each_map_elem ||
523 func_id == BPF_FUNC_timer_set_callback;
524 }
525
is_cmpxchg_insn(const struct bpf_insn * insn)526 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
527 {
528 return BPF_CLASS(insn->code) == BPF_STX &&
529 BPF_MODE(insn->code) == BPF_ATOMIC &&
530 insn->imm == BPF_CMPXCHG;
531 }
532
533 /* string representation of 'enum bpf_reg_type'
534 *
535 * Note that reg_type_str() can not appear more than once in a single verbose()
536 * statement.
537 */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)538 static const char *reg_type_str(struct bpf_verifier_env *env,
539 enum bpf_reg_type type)
540 {
541 char postfix[16] = {0}, prefix[16] = {0};
542 static const char * const str[] = {
543 [NOT_INIT] = "?",
544 [SCALAR_VALUE] = "inv",
545 [PTR_TO_CTX] = "ctx",
546 [CONST_PTR_TO_MAP] = "map_ptr",
547 [PTR_TO_MAP_VALUE] = "map_value",
548 [PTR_TO_STACK] = "fp",
549 [PTR_TO_PACKET] = "pkt",
550 [PTR_TO_PACKET_META] = "pkt_meta",
551 [PTR_TO_PACKET_END] = "pkt_end",
552 [PTR_TO_FLOW_KEYS] = "flow_keys",
553 [PTR_TO_SOCKET] = "sock",
554 [PTR_TO_SOCK_COMMON] = "sock_common",
555 [PTR_TO_TCP_SOCK] = "tcp_sock",
556 [PTR_TO_TP_BUFFER] = "tp_buffer",
557 [PTR_TO_XDP_SOCK] = "xdp_sock",
558 [PTR_TO_BTF_ID] = "ptr_",
559 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
560 [PTR_TO_MEM] = "mem",
561 [PTR_TO_BUF] = "buf",
562 [PTR_TO_FUNC] = "func",
563 [PTR_TO_MAP_KEY] = "map_key",
564 };
565
566 if (type & PTR_MAYBE_NULL) {
567 if (base_type(type) == PTR_TO_BTF_ID ||
568 base_type(type) == PTR_TO_PERCPU_BTF_ID)
569 strncpy(postfix, "or_null_", 16);
570 else
571 strncpy(postfix, "_or_null", 16);
572 }
573
574 if (type & MEM_RDONLY)
575 strncpy(prefix, "rdonly_", 16);
576
577 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
578 prefix, str[base_type(type)], postfix);
579 return env->type_str_buf;
580 }
581
582 static char slot_type_char[] = {
583 [STACK_INVALID] = '?',
584 [STACK_SPILL] = 'r',
585 [STACK_MISC] = 'm',
586 [STACK_ZERO] = '0',
587 };
588
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)589 static void print_liveness(struct bpf_verifier_env *env,
590 enum bpf_reg_liveness live)
591 {
592 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
593 verbose(env, "_");
594 if (live & REG_LIVE_READ)
595 verbose(env, "r");
596 if (live & REG_LIVE_WRITTEN)
597 verbose(env, "w");
598 if (live & REG_LIVE_DONE)
599 verbose(env, "D");
600 }
601
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)602 static struct bpf_func_state *func(struct bpf_verifier_env *env,
603 const struct bpf_reg_state *reg)
604 {
605 struct bpf_verifier_state *cur = env->cur_state;
606
607 return cur->frame[reg->frameno];
608 }
609
kernel_type_name(const struct btf * btf,u32 id)610 static const char *kernel_type_name(const struct btf* btf, u32 id)
611 {
612 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
613 }
614
615 /* The reg state of a pointer or a bounded scalar was saved when
616 * it was spilled to the stack.
617 */
is_spilled_reg(const struct bpf_stack_state * stack)618 static bool is_spilled_reg(const struct bpf_stack_state *stack)
619 {
620 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
621 }
622
scrub_spilled_slot(u8 * stype)623 static void scrub_spilled_slot(u8 *stype)
624 {
625 if (*stype != STACK_INVALID)
626 *stype = STACK_MISC;
627 }
628
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)629 static void print_verifier_state(struct bpf_verifier_env *env,
630 const struct bpf_func_state *state)
631 {
632 const struct bpf_reg_state *reg;
633 enum bpf_reg_type t;
634 int i;
635
636 if (state->frameno)
637 verbose(env, " frame%d:", state->frameno);
638 for (i = 0; i < MAX_BPF_REG; i++) {
639 reg = &state->regs[i];
640 t = reg->type;
641 if (t == NOT_INIT)
642 continue;
643 verbose(env, " R%d", i);
644 print_liveness(env, reg->live);
645 verbose(env, "=%s", reg_type_str(env, t));
646 if (t == SCALAR_VALUE && reg->precise)
647 verbose(env, "P");
648 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
649 tnum_is_const(reg->var_off)) {
650 /* reg->off should be 0 for SCALAR_VALUE */
651 verbose(env, "%lld", reg->var_off.value + reg->off);
652 } else {
653 if (base_type(t) == PTR_TO_BTF_ID ||
654 base_type(t) == PTR_TO_PERCPU_BTF_ID)
655 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
656 verbose(env, "(id=%d", reg->id);
657 if (reg_type_may_be_refcounted_or_null(t))
658 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
659 if (t != SCALAR_VALUE)
660 verbose(env, ",off=%d", reg->off);
661 if (type_is_pkt_pointer(t))
662 verbose(env, ",r=%d", reg->range);
663 else if (base_type(t) == CONST_PTR_TO_MAP ||
664 base_type(t) == PTR_TO_MAP_KEY ||
665 base_type(t) == PTR_TO_MAP_VALUE)
666 verbose(env, ",ks=%d,vs=%d",
667 reg->map_ptr->key_size,
668 reg->map_ptr->value_size);
669 if (tnum_is_const(reg->var_off)) {
670 /* Typically an immediate SCALAR_VALUE, but
671 * could be a pointer whose offset is too big
672 * for reg->off
673 */
674 verbose(env, ",imm=%llx", reg->var_off.value);
675 } else {
676 if (reg->smin_value != reg->umin_value &&
677 reg->smin_value != S64_MIN)
678 verbose(env, ",smin_value=%lld",
679 (long long)reg->smin_value);
680 if (reg->smax_value != reg->umax_value &&
681 reg->smax_value != S64_MAX)
682 verbose(env, ",smax_value=%lld",
683 (long long)reg->smax_value);
684 if (reg->umin_value != 0)
685 verbose(env, ",umin_value=%llu",
686 (unsigned long long)reg->umin_value);
687 if (reg->umax_value != U64_MAX)
688 verbose(env, ",umax_value=%llu",
689 (unsigned long long)reg->umax_value);
690 if (!tnum_is_unknown(reg->var_off)) {
691 char tn_buf[48];
692
693 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
694 verbose(env, ",var_off=%s", tn_buf);
695 }
696 if (reg->s32_min_value != reg->smin_value &&
697 reg->s32_min_value != S32_MIN)
698 verbose(env, ",s32_min_value=%d",
699 (int)(reg->s32_min_value));
700 if (reg->s32_max_value != reg->smax_value &&
701 reg->s32_max_value != S32_MAX)
702 verbose(env, ",s32_max_value=%d",
703 (int)(reg->s32_max_value));
704 if (reg->u32_min_value != reg->umin_value &&
705 reg->u32_min_value != U32_MIN)
706 verbose(env, ",u32_min_value=%d",
707 (int)(reg->u32_min_value));
708 if (reg->u32_max_value != reg->umax_value &&
709 reg->u32_max_value != U32_MAX)
710 verbose(env, ",u32_max_value=%d",
711 (int)(reg->u32_max_value));
712 }
713 verbose(env, ")");
714 }
715 }
716 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
717 char types_buf[BPF_REG_SIZE + 1];
718 bool valid = false;
719 int j;
720
721 for (j = 0; j < BPF_REG_SIZE; j++) {
722 if (state->stack[i].slot_type[j] != STACK_INVALID)
723 valid = true;
724 types_buf[j] = slot_type_char[
725 state->stack[i].slot_type[j]];
726 }
727 types_buf[BPF_REG_SIZE] = 0;
728 if (!valid)
729 continue;
730 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
731 print_liveness(env, state->stack[i].spilled_ptr.live);
732 if (is_spilled_reg(&state->stack[i])) {
733 reg = &state->stack[i].spilled_ptr;
734 t = reg->type;
735 verbose(env, "=%s", reg_type_str(env, t));
736 if (t == SCALAR_VALUE && reg->precise)
737 verbose(env, "P");
738 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
739 verbose(env, "%lld", reg->var_off.value + reg->off);
740 } else {
741 verbose(env, "=%s", types_buf);
742 }
743 }
744 if (state->acquired_refs && state->refs[0].id) {
745 verbose(env, " refs=%d", state->refs[0].id);
746 for (i = 1; i < state->acquired_refs; i++)
747 if (state->refs[i].id)
748 verbose(env, ",%d", state->refs[i].id);
749 }
750 if (state->in_callback_fn)
751 verbose(env, " cb");
752 if (state->in_async_callback_fn)
753 verbose(env, " async_cb");
754 verbose(env, "\n");
755 }
756
757 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
758 * small to hold src. This is different from krealloc since we don't want to preserve
759 * the contents of dst.
760 *
761 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
762 * not be allocated.
763 */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)764 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
765 {
766 size_t bytes;
767
768 if (ZERO_OR_NULL_PTR(src))
769 goto out;
770
771 if (unlikely(check_mul_overflow(n, size, &bytes)))
772 return NULL;
773
774 if (ksize(dst) < bytes) {
775 kfree(dst);
776 dst = kmalloc_track_caller(bytes, flags);
777 if (!dst)
778 return NULL;
779 }
780
781 memcpy(dst, src, bytes);
782 out:
783 return dst ? dst : ZERO_SIZE_PTR;
784 }
785
786 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
787 * small to hold new_n items. new items are zeroed out if the array grows.
788 *
789 * Contrary to krealloc_array, does not free arr if new_n is zero.
790 */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)791 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
792 {
793 void *new_arr;
794
795 if (!new_n || old_n == new_n)
796 goto out;
797
798 new_arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
799 if (!new_arr) {
800 kfree(arr);
801 return NULL;
802 }
803 arr = new_arr;
804
805 if (new_n > old_n)
806 memset(arr + old_n * size, 0, (new_n - old_n) * size);
807
808 out:
809 return arr ? arr : ZERO_SIZE_PTR;
810 }
811
copy_reference_state(struct bpf_func_state * dst,const struct bpf_func_state * src)812 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
813 {
814 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
815 sizeof(struct bpf_reference_state), GFP_KERNEL);
816 if (!dst->refs)
817 return -ENOMEM;
818
819 dst->acquired_refs = src->acquired_refs;
820 return 0;
821 }
822
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)823 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
824 {
825 size_t n = src->allocated_stack / BPF_REG_SIZE;
826
827 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
828 GFP_KERNEL);
829 if (!dst->stack)
830 return -ENOMEM;
831
832 dst->allocated_stack = src->allocated_stack;
833 return 0;
834 }
835
resize_reference_state(struct bpf_func_state * state,size_t n)836 static int resize_reference_state(struct bpf_func_state *state, size_t n)
837 {
838 state->refs = realloc_array(state->refs, state->acquired_refs, n,
839 sizeof(struct bpf_reference_state));
840 if (!state->refs)
841 return -ENOMEM;
842
843 state->acquired_refs = n;
844 return 0;
845 }
846
grow_stack_state(struct bpf_func_state * state,int size)847 static int grow_stack_state(struct bpf_func_state *state, int size)
848 {
849 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
850
851 if (old_n >= n)
852 return 0;
853
854 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
855 if (!state->stack)
856 return -ENOMEM;
857
858 state->allocated_stack = size;
859 return 0;
860 }
861
862 /* Acquire a pointer id from the env and update the state->refs to include
863 * this new pointer reference.
864 * On success, returns a valid pointer id to associate with the register
865 * On failure, returns a negative errno.
866 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)867 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
868 {
869 struct bpf_func_state *state = cur_func(env);
870 int new_ofs = state->acquired_refs;
871 int id, err;
872
873 err = resize_reference_state(state, state->acquired_refs + 1);
874 if (err)
875 return err;
876 id = ++env->id_gen;
877 state->refs[new_ofs].id = id;
878 state->refs[new_ofs].insn_idx = insn_idx;
879
880 return id;
881 }
882
883 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)884 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
885 {
886 int i, last_idx;
887
888 last_idx = state->acquired_refs - 1;
889 for (i = 0; i < state->acquired_refs; i++) {
890 if (state->refs[i].id == ptr_id) {
891 if (last_idx && i != last_idx)
892 memcpy(&state->refs[i], &state->refs[last_idx],
893 sizeof(*state->refs));
894 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
895 state->acquired_refs--;
896 return 0;
897 }
898 }
899 return -EINVAL;
900 }
901
free_func_state(struct bpf_func_state * state)902 static void free_func_state(struct bpf_func_state *state)
903 {
904 if (!state)
905 return;
906 kfree(state->refs);
907 kfree(state->stack);
908 kfree(state);
909 }
910
clear_jmp_history(struct bpf_verifier_state * state)911 static void clear_jmp_history(struct bpf_verifier_state *state)
912 {
913 kfree(state->jmp_history);
914 state->jmp_history = NULL;
915 state->jmp_history_cnt = 0;
916 }
917
free_verifier_state(struct bpf_verifier_state * state,bool free_self)918 static void free_verifier_state(struct bpf_verifier_state *state,
919 bool free_self)
920 {
921 int i;
922
923 for (i = 0; i <= state->curframe; i++) {
924 free_func_state(state->frame[i]);
925 state->frame[i] = NULL;
926 }
927 clear_jmp_history(state);
928 if (free_self)
929 kfree(state);
930 }
931
932 /* copy verifier state from src to dst growing dst stack space
933 * when necessary to accommodate larger src stack
934 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)935 static int copy_func_state(struct bpf_func_state *dst,
936 const struct bpf_func_state *src)
937 {
938 int err;
939
940 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
941 err = copy_reference_state(dst, src);
942 if (err)
943 return err;
944 return copy_stack_state(dst, src);
945 }
946
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)947 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
948 const struct bpf_verifier_state *src)
949 {
950 struct bpf_func_state *dst;
951 int i, err;
952
953 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
954 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
955 GFP_USER);
956 if (!dst_state->jmp_history)
957 return -ENOMEM;
958 dst_state->jmp_history_cnt = src->jmp_history_cnt;
959
960 /* if dst has more stack frames then src frame, free them */
961 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
962 free_func_state(dst_state->frame[i]);
963 dst_state->frame[i] = NULL;
964 }
965 dst_state->speculative = src->speculative;
966 dst_state->curframe = src->curframe;
967 dst_state->active_spin_lock = src->active_spin_lock;
968 dst_state->branches = src->branches;
969 dst_state->parent = src->parent;
970 dst_state->first_insn_idx = src->first_insn_idx;
971 dst_state->last_insn_idx = src->last_insn_idx;
972 for (i = 0; i <= src->curframe; i++) {
973 dst = dst_state->frame[i];
974 if (!dst) {
975 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
976 if (!dst)
977 return -ENOMEM;
978 dst_state->frame[i] = dst;
979 }
980 err = copy_func_state(dst, src->frame[i]);
981 if (err)
982 return err;
983 }
984 return 0;
985 }
986
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
988 {
989 while (st) {
990 u32 br = --st->branches;
991
992 /* WARN_ON(br > 1) technically makes sense here,
993 * but see comment in push_stack(), hence:
994 */
995 WARN_ONCE((int)br < 0,
996 "BUG update_branch_counts:branches_to_explore=%d\n",
997 br);
998 if (br)
999 break;
1000 st = st->parent;
1001 }
1002 }
1003
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)1004 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1005 int *insn_idx, bool pop_log)
1006 {
1007 struct bpf_verifier_state *cur = env->cur_state;
1008 struct bpf_verifier_stack_elem *elem, *head = env->head;
1009 int err;
1010
1011 if (env->head == NULL)
1012 return -ENOENT;
1013
1014 if (cur) {
1015 err = copy_verifier_state(cur, &head->st);
1016 if (err)
1017 return err;
1018 }
1019 if (pop_log)
1020 bpf_vlog_reset(&env->log, head->log_pos);
1021 if (insn_idx)
1022 *insn_idx = head->insn_idx;
1023 if (prev_insn_idx)
1024 *prev_insn_idx = head->prev_insn_idx;
1025 elem = head->next;
1026 free_verifier_state(&head->st, false);
1027 kfree(head);
1028 env->head = elem;
1029 env->stack_size--;
1030 return 0;
1031 }
1032
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)1033 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1034 int insn_idx, int prev_insn_idx,
1035 bool speculative)
1036 {
1037 struct bpf_verifier_state *cur = env->cur_state;
1038 struct bpf_verifier_stack_elem *elem;
1039 int err;
1040
1041 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1042 if (!elem)
1043 goto err;
1044
1045 elem->insn_idx = insn_idx;
1046 elem->prev_insn_idx = prev_insn_idx;
1047 elem->next = env->head;
1048 elem->log_pos = env->log.len_used;
1049 env->head = elem;
1050 env->stack_size++;
1051 err = copy_verifier_state(&elem->st, cur);
1052 if (err)
1053 goto err;
1054 elem->st.speculative |= speculative;
1055 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1056 verbose(env, "The sequence of %d jumps is too complex.\n",
1057 env->stack_size);
1058 goto err;
1059 }
1060 if (elem->st.parent) {
1061 ++elem->st.parent->branches;
1062 /* WARN_ON(branches > 2) technically makes sense here,
1063 * but
1064 * 1. speculative states will bump 'branches' for non-branch
1065 * instructions
1066 * 2. is_state_visited() heuristics may decide not to create
1067 * a new state for a sequence of branches and all such current
1068 * and cloned states will be pointing to a single parent state
1069 * which might have large 'branches' count.
1070 */
1071 }
1072 return &elem->st;
1073 err:
1074 free_verifier_state(env->cur_state, true);
1075 env->cur_state = NULL;
1076 /* pop all elements and return */
1077 while (!pop_stack(env, NULL, NULL, false));
1078 return NULL;
1079 }
1080
1081 #define CALLER_SAVED_REGS 6
1082 static const int caller_saved[CALLER_SAVED_REGS] = {
1083 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1084 };
1085
1086 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1087 struct bpf_reg_state *reg);
1088
1089 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)1090 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1091 {
1092 reg->var_off = tnum_const(imm);
1093 reg->smin_value = (s64)imm;
1094 reg->smax_value = (s64)imm;
1095 reg->umin_value = imm;
1096 reg->umax_value = imm;
1097
1098 reg->s32_min_value = (s32)imm;
1099 reg->s32_max_value = (s32)imm;
1100 reg->u32_min_value = (u32)imm;
1101 reg->u32_max_value = (u32)imm;
1102 }
1103
1104 /* Mark the unknown part of a register (variable offset or scalar value) as
1105 * known to have the value @imm.
1106 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)1107 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1108 {
1109 /* Clear id, off, and union(map_ptr, range) */
1110 memset(((u8 *)reg) + sizeof(reg->type), 0,
1111 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1112 ___mark_reg_known(reg, imm);
1113 }
1114
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)1115 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1116 {
1117 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1118 reg->s32_min_value = (s32)imm;
1119 reg->s32_max_value = (s32)imm;
1120 reg->u32_min_value = (u32)imm;
1121 reg->u32_max_value = (u32)imm;
1122 }
1123
1124 /* Mark the 'variable offset' part of a register as zero. This should be
1125 * used only on registers holding a pointer type.
1126 */
__mark_reg_known_zero(struct bpf_reg_state * reg)1127 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1128 {
1129 __mark_reg_known(reg, 0);
1130 }
1131
__mark_reg_const_zero(struct bpf_reg_state * reg)1132 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1133 {
1134 __mark_reg_known(reg, 0);
1135 reg->type = SCALAR_VALUE;
1136 }
1137
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1138 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1139 struct bpf_reg_state *regs, u32 regno)
1140 {
1141 if (WARN_ON(regno >= MAX_BPF_REG)) {
1142 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1143 /* Something bad happened, let's kill all regs */
1144 for (regno = 0; regno < MAX_BPF_REG; regno++)
1145 __mark_reg_not_init(env, regs + regno);
1146 return;
1147 }
1148 __mark_reg_known_zero(regs + regno);
1149 }
1150
mark_ptr_not_null_reg(struct bpf_reg_state * reg)1151 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1152 {
1153 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1154 const struct bpf_map *map = reg->map_ptr;
1155
1156 if (map->inner_map_meta) {
1157 reg->type = CONST_PTR_TO_MAP;
1158 reg->map_ptr = map->inner_map_meta;
1159 /* transfer reg's id which is unique for every map_lookup_elem
1160 * as UID of the inner map.
1161 */
1162 if (map_value_has_timer(map->inner_map_meta))
1163 reg->map_uid = reg->id;
1164 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1165 reg->type = PTR_TO_XDP_SOCK;
1166 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1167 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1168 reg->type = PTR_TO_SOCKET;
1169 } else {
1170 reg->type = PTR_TO_MAP_VALUE;
1171 }
1172 return;
1173 }
1174
1175 reg->type &= ~PTR_MAYBE_NULL;
1176 }
1177
reg_is_pkt_pointer(const struct bpf_reg_state * reg)1178 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1179 {
1180 return type_is_pkt_pointer(reg->type);
1181 }
1182
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)1183 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1184 {
1185 return reg_is_pkt_pointer(reg) ||
1186 reg->type == PTR_TO_PACKET_END;
1187 }
1188
1189 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)1190 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1191 enum bpf_reg_type which)
1192 {
1193 /* The register can already have a range from prior markings.
1194 * This is fine as long as it hasn't been advanced from its
1195 * origin.
1196 */
1197 return reg->type == which &&
1198 reg->id == 0 &&
1199 reg->off == 0 &&
1200 tnum_equals_const(reg->var_off, 0);
1201 }
1202
1203 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)1204 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1205 {
1206 reg->smin_value = S64_MIN;
1207 reg->smax_value = S64_MAX;
1208 reg->umin_value = 0;
1209 reg->umax_value = U64_MAX;
1210
1211 reg->s32_min_value = S32_MIN;
1212 reg->s32_max_value = S32_MAX;
1213 reg->u32_min_value = 0;
1214 reg->u32_max_value = U32_MAX;
1215 }
1216
__mark_reg64_unbounded(struct bpf_reg_state * reg)1217 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1218 {
1219 reg->smin_value = S64_MIN;
1220 reg->smax_value = S64_MAX;
1221 reg->umin_value = 0;
1222 reg->umax_value = U64_MAX;
1223 }
1224
__mark_reg32_unbounded(struct bpf_reg_state * reg)1225 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1226 {
1227 reg->s32_min_value = S32_MIN;
1228 reg->s32_max_value = S32_MAX;
1229 reg->u32_min_value = 0;
1230 reg->u32_max_value = U32_MAX;
1231 }
1232
__update_reg32_bounds(struct bpf_reg_state * reg)1233 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1234 {
1235 struct tnum var32_off = tnum_subreg(reg->var_off);
1236
1237 /* min signed is max(sign bit) | min(other bits) */
1238 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1239 var32_off.value | (var32_off.mask & S32_MIN));
1240 /* max signed is min(sign bit) | max(other bits) */
1241 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1242 var32_off.value | (var32_off.mask & S32_MAX));
1243 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1244 reg->u32_max_value = min(reg->u32_max_value,
1245 (u32)(var32_off.value | var32_off.mask));
1246 }
1247
__update_reg64_bounds(struct bpf_reg_state * reg)1248 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1249 {
1250 /* min signed is max(sign bit) | min(other bits) */
1251 reg->smin_value = max_t(s64, reg->smin_value,
1252 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1253 /* max signed is min(sign bit) | max(other bits) */
1254 reg->smax_value = min_t(s64, reg->smax_value,
1255 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1256 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1257 reg->umax_value = min(reg->umax_value,
1258 reg->var_off.value | reg->var_off.mask);
1259 }
1260
__update_reg_bounds(struct bpf_reg_state * reg)1261 static void __update_reg_bounds(struct bpf_reg_state *reg)
1262 {
1263 __update_reg32_bounds(reg);
1264 __update_reg64_bounds(reg);
1265 }
1266
1267 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)1268 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1269 {
1270 /* Learn sign from signed bounds.
1271 * If we cannot cross the sign boundary, then signed and unsigned bounds
1272 * are the same, so combine. This works even in the negative case, e.g.
1273 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1274 */
1275 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1276 reg->s32_min_value = reg->u32_min_value =
1277 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1278 reg->s32_max_value = reg->u32_max_value =
1279 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1280 return;
1281 }
1282 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1283 * boundary, so we must be careful.
1284 */
1285 if ((s32)reg->u32_max_value >= 0) {
1286 /* Positive. We can't learn anything from the smin, but smax
1287 * is positive, hence safe.
1288 */
1289 reg->s32_min_value = reg->u32_min_value;
1290 reg->s32_max_value = reg->u32_max_value =
1291 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1292 } else if ((s32)reg->u32_min_value < 0) {
1293 /* Negative. We can't learn anything from the smax, but smin
1294 * is negative, hence safe.
1295 */
1296 reg->s32_min_value = reg->u32_min_value =
1297 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1298 reg->s32_max_value = reg->u32_max_value;
1299 }
1300 }
1301
__reg64_deduce_bounds(struct bpf_reg_state * reg)1302 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1303 {
1304 /* Learn sign from signed bounds.
1305 * If we cannot cross the sign boundary, then signed and unsigned bounds
1306 * are the same, so combine. This works even in the negative case, e.g.
1307 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1308 */
1309 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1310 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1311 reg->umin_value);
1312 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1313 reg->umax_value);
1314 return;
1315 }
1316 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1317 * boundary, so we must be careful.
1318 */
1319 if ((s64)reg->umax_value >= 0) {
1320 /* Positive. We can't learn anything from the smin, but smax
1321 * is positive, hence safe.
1322 */
1323 reg->smin_value = reg->umin_value;
1324 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1325 reg->umax_value);
1326 } else if ((s64)reg->umin_value < 0) {
1327 /* Negative. We can't learn anything from the smax, but smin
1328 * is negative, hence safe.
1329 */
1330 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1331 reg->umin_value);
1332 reg->smax_value = reg->umax_value;
1333 }
1334 }
1335
__reg_deduce_bounds(struct bpf_reg_state * reg)1336 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1337 {
1338 __reg32_deduce_bounds(reg);
1339 __reg64_deduce_bounds(reg);
1340 }
1341
1342 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)1343 static void __reg_bound_offset(struct bpf_reg_state *reg)
1344 {
1345 struct tnum var64_off = tnum_intersect(reg->var_off,
1346 tnum_range(reg->umin_value,
1347 reg->umax_value));
1348 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1349 tnum_range(reg->u32_min_value,
1350 reg->u32_max_value));
1351
1352 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1353 }
1354
reg_bounds_sync(struct bpf_reg_state * reg)1355 static void reg_bounds_sync(struct bpf_reg_state *reg)
1356 {
1357 /* We might have learned new bounds from the var_off. */
1358 __update_reg_bounds(reg);
1359 /* We might have learned something about the sign bit. */
1360 __reg_deduce_bounds(reg);
1361 /* We might have learned some bits from the bounds. */
1362 __reg_bound_offset(reg);
1363 /* Intersecting with the old var_off might have improved our bounds
1364 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1365 * then new var_off is (0; 0x7f...fc) which improves our umax.
1366 */
1367 __update_reg_bounds(reg);
1368 }
1369
__reg32_bound_s64(s32 a)1370 static bool __reg32_bound_s64(s32 a)
1371 {
1372 return a >= 0 && a <= S32_MAX;
1373 }
1374
__reg_assign_32_into_64(struct bpf_reg_state * reg)1375 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1376 {
1377 reg->umin_value = reg->u32_min_value;
1378 reg->umax_value = reg->u32_max_value;
1379
1380 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1381 * be positive otherwise set to worse case bounds and refine later
1382 * from tnum.
1383 */
1384 if (__reg32_bound_s64(reg->s32_min_value) &&
1385 __reg32_bound_s64(reg->s32_max_value)) {
1386 reg->smin_value = reg->s32_min_value;
1387 reg->smax_value = reg->s32_max_value;
1388 } else {
1389 reg->smin_value = 0;
1390 reg->smax_value = U32_MAX;
1391 }
1392 }
1393
__reg_combine_32_into_64(struct bpf_reg_state * reg)1394 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1395 {
1396 /* special case when 64-bit register has upper 32-bit register
1397 * zeroed. Typically happens after zext or <<32, >>32 sequence
1398 * allowing us to use 32-bit bounds directly,
1399 */
1400 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1401 __reg_assign_32_into_64(reg);
1402 } else {
1403 /* Otherwise the best we can do is push lower 32bit known and
1404 * unknown bits into register (var_off set from jmp logic)
1405 * then learn as much as possible from the 64-bit tnum
1406 * known and unknown bits. The previous smin/smax bounds are
1407 * invalid here because of jmp32 compare so mark them unknown
1408 * so they do not impact tnum bounds calculation.
1409 */
1410 __mark_reg64_unbounded(reg);
1411 }
1412 reg_bounds_sync(reg);
1413 }
1414
__reg64_bound_s32(s64 a)1415 static bool __reg64_bound_s32(s64 a)
1416 {
1417 return a >= S32_MIN && a <= S32_MAX;
1418 }
1419
__reg64_bound_u32(u64 a)1420 static bool __reg64_bound_u32(u64 a)
1421 {
1422 return a >= U32_MIN && a <= U32_MAX;
1423 }
1424
__reg_combine_64_into_32(struct bpf_reg_state * reg)1425 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1426 {
1427 __mark_reg32_unbounded(reg);
1428 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1429 reg->s32_min_value = (s32)reg->smin_value;
1430 reg->s32_max_value = (s32)reg->smax_value;
1431 }
1432 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1433 reg->u32_min_value = (u32)reg->umin_value;
1434 reg->u32_max_value = (u32)reg->umax_value;
1435 }
1436 reg_bounds_sync(reg);
1437 }
1438
1439 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1440 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1441 struct bpf_reg_state *reg)
1442 {
1443 /*
1444 * Clear type, id, off, and union(map_ptr, range) and
1445 * padding between 'type' and union
1446 */
1447 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1448 reg->type = SCALAR_VALUE;
1449 reg->var_off = tnum_unknown;
1450 reg->frameno = 0;
1451 reg->precise = !env->bpf_capable;
1452 __mark_reg_unbounded(reg);
1453 }
1454
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1455 static void mark_reg_unknown(struct bpf_verifier_env *env,
1456 struct bpf_reg_state *regs, u32 regno)
1457 {
1458 if (WARN_ON(regno >= MAX_BPF_REG)) {
1459 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1460 /* Something bad happened, let's kill all regs except FP */
1461 for (regno = 0; regno < BPF_REG_FP; regno++)
1462 __mark_reg_not_init(env, regs + regno);
1463 return;
1464 }
1465 __mark_reg_unknown(env, regs + regno);
1466 }
1467
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1468 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1469 struct bpf_reg_state *reg)
1470 {
1471 __mark_reg_unknown(env, reg);
1472 reg->type = NOT_INIT;
1473 }
1474
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1475 static void mark_reg_not_init(struct bpf_verifier_env *env,
1476 struct bpf_reg_state *regs, u32 regno)
1477 {
1478 if (WARN_ON(regno >= MAX_BPF_REG)) {
1479 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1480 /* Something bad happened, let's kill all regs except FP */
1481 for (regno = 0; regno < BPF_REG_FP; regno++)
1482 __mark_reg_not_init(env, regs + regno);
1483 return;
1484 }
1485 __mark_reg_not_init(env, regs + regno);
1486 }
1487
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id)1488 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1489 struct bpf_reg_state *regs, u32 regno,
1490 enum bpf_reg_type reg_type,
1491 struct btf *btf, u32 btf_id)
1492 {
1493 if (reg_type == SCALAR_VALUE) {
1494 mark_reg_unknown(env, regs, regno);
1495 return;
1496 }
1497 mark_reg_known_zero(env, regs, regno);
1498 regs[regno].type = PTR_TO_BTF_ID;
1499 regs[regno].btf = btf;
1500 regs[regno].btf_id = btf_id;
1501 }
1502
1503 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)1504 static void init_reg_state(struct bpf_verifier_env *env,
1505 struct bpf_func_state *state)
1506 {
1507 struct bpf_reg_state *regs = state->regs;
1508 int i;
1509
1510 for (i = 0; i < MAX_BPF_REG; i++) {
1511 mark_reg_not_init(env, regs, i);
1512 regs[i].live = REG_LIVE_NONE;
1513 regs[i].parent = NULL;
1514 regs[i].subreg_def = DEF_NOT_SUBREG;
1515 }
1516
1517 /* frame pointer */
1518 regs[BPF_REG_FP].type = PTR_TO_STACK;
1519 mark_reg_known_zero(env, regs, BPF_REG_FP);
1520 regs[BPF_REG_FP].frameno = state->frameno;
1521 }
1522
1523 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)1524 static void init_func_state(struct bpf_verifier_env *env,
1525 struct bpf_func_state *state,
1526 int callsite, int frameno, int subprogno)
1527 {
1528 state->callsite = callsite;
1529 state->frameno = frameno;
1530 state->subprogno = subprogno;
1531 init_reg_state(env, state);
1532 }
1533
1534 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog)1535 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1536 int insn_idx, int prev_insn_idx,
1537 int subprog)
1538 {
1539 struct bpf_verifier_stack_elem *elem;
1540 struct bpf_func_state *frame;
1541
1542 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1543 if (!elem)
1544 goto err;
1545
1546 elem->insn_idx = insn_idx;
1547 elem->prev_insn_idx = prev_insn_idx;
1548 elem->next = env->head;
1549 elem->log_pos = env->log.len_used;
1550 env->head = elem;
1551 env->stack_size++;
1552 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1553 verbose(env,
1554 "The sequence of %d jumps is too complex for async cb.\n",
1555 env->stack_size);
1556 goto err;
1557 }
1558 /* Unlike push_stack() do not copy_verifier_state().
1559 * The caller state doesn't matter.
1560 * This is async callback. It starts in a fresh stack.
1561 * Initialize it similar to do_check_common().
1562 */
1563 elem->st.branches = 1;
1564 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1565 if (!frame)
1566 goto err;
1567 init_func_state(env, frame,
1568 BPF_MAIN_FUNC /* callsite */,
1569 0 /* frameno within this callchain */,
1570 subprog /* subprog number within this prog */);
1571 elem->st.frame[0] = frame;
1572 return &elem->st;
1573 err:
1574 free_verifier_state(env->cur_state, true);
1575 env->cur_state = NULL;
1576 /* pop all elements and return */
1577 while (!pop_stack(env, NULL, NULL, false));
1578 return NULL;
1579 }
1580
1581
1582 enum reg_arg_type {
1583 SRC_OP, /* register is used as source operand */
1584 DST_OP, /* register is used as destination operand */
1585 DST_OP_NO_MARK /* same as above, check only, don't mark */
1586 };
1587
cmp_subprogs(const void * a,const void * b)1588 static int cmp_subprogs(const void *a, const void *b)
1589 {
1590 return ((struct bpf_subprog_info *)a)->start -
1591 ((struct bpf_subprog_info *)b)->start;
1592 }
1593
find_subprog(struct bpf_verifier_env * env,int off)1594 static int find_subprog(struct bpf_verifier_env *env, int off)
1595 {
1596 struct bpf_subprog_info *p;
1597
1598 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1599 sizeof(env->subprog_info[0]), cmp_subprogs);
1600 if (!p)
1601 return -ENOENT;
1602 return p - env->subprog_info;
1603
1604 }
1605
add_subprog(struct bpf_verifier_env * env,int off)1606 static int add_subprog(struct bpf_verifier_env *env, int off)
1607 {
1608 int insn_cnt = env->prog->len;
1609 int ret;
1610
1611 if (off >= insn_cnt || off < 0) {
1612 verbose(env, "call to invalid destination\n");
1613 return -EINVAL;
1614 }
1615 ret = find_subprog(env, off);
1616 if (ret >= 0)
1617 return ret;
1618 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1619 verbose(env, "too many subprograms\n");
1620 return -E2BIG;
1621 }
1622 /* determine subprog starts. The end is one before the next starts */
1623 env->subprog_info[env->subprog_cnt++].start = off;
1624 sort(env->subprog_info, env->subprog_cnt,
1625 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1626 return env->subprog_cnt - 1;
1627 }
1628
1629 struct bpf_kfunc_desc {
1630 struct btf_func_model func_model;
1631 u32 func_id;
1632 s32 imm;
1633 };
1634
1635 #define MAX_KFUNC_DESCS 256
1636 struct bpf_kfunc_desc_tab {
1637 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1638 u32 nr_descs;
1639 };
1640
kfunc_desc_cmp_by_id(const void * a,const void * b)1641 static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1642 {
1643 const struct bpf_kfunc_desc *d0 = a;
1644 const struct bpf_kfunc_desc *d1 = b;
1645
1646 /* func_id is not greater than BTF_MAX_TYPE */
1647 return d0->func_id - d1->func_id;
1648 }
1649
1650 static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id)1651 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1652 {
1653 struct bpf_kfunc_desc desc = {
1654 .func_id = func_id,
1655 };
1656 struct bpf_kfunc_desc_tab *tab;
1657
1658 tab = prog->aux->kfunc_tab;
1659 return bsearch(&desc, tab->descs, tab->nr_descs,
1660 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1661 }
1662
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id)1663 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1664 {
1665 const struct btf_type *func, *func_proto;
1666 struct bpf_kfunc_desc_tab *tab;
1667 struct bpf_prog_aux *prog_aux;
1668 struct bpf_kfunc_desc *desc;
1669 const char *func_name;
1670 unsigned long addr;
1671 int err;
1672
1673 prog_aux = env->prog->aux;
1674 tab = prog_aux->kfunc_tab;
1675 if (!tab) {
1676 if (!btf_vmlinux) {
1677 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1678 return -ENOTSUPP;
1679 }
1680
1681 if (!env->prog->jit_requested) {
1682 verbose(env, "JIT is required for calling kernel function\n");
1683 return -ENOTSUPP;
1684 }
1685
1686 if (!bpf_jit_supports_kfunc_call()) {
1687 verbose(env, "JIT does not support calling kernel function\n");
1688 return -ENOTSUPP;
1689 }
1690
1691 if (!env->prog->gpl_compatible) {
1692 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1693 return -EINVAL;
1694 }
1695
1696 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1697 if (!tab)
1698 return -ENOMEM;
1699 prog_aux->kfunc_tab = tab;
1700 }
1701
1702 if (find_kfunc_desc(env->prog, func_id))
1703 return 0;
1704
1705 if (tab->nr_descs == MAX_KFUNC_DESCS) {
1706 verbose(env, "too many different kernel function calls\n");
1707 return -E2BIG;
1708 }
1709
1710 func = btf_type_by_id(btf_vmlinux, func_id);
1711 if (!func || !btf_type_is_func(func)) {
1712 verbose(env, "kernel btf_id %u is not a function\n",
1713 func_id);
1714 return -EINVAL;
1715 }
1716 func_proto = btf_type_by_id(btf_vmlinux, func->type);
1717 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1718 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1719 func_id);
1720 return -EINVAL;
1721 }
1722
1723 func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1724 addr = kallsyms_lookup_name(func_name);
1725 if (!addr) {
1726 verbose(env, "cannot find address for kernel function %s\n",
1727 func_name);
1728 return -EINVAL;
1729 }
1730
1731 desc = &tab->descs[tab->nr_descs++];
1732 desc->func_id = func_id;
1733 desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1734 err = btf_distill_func_proto(&env->log, btf_vmlinux,
1735 func_proto, func_name,
1736 &desc->func_model);
1737 if (!err)
1738 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1739 kfunc_desc_cmp_by_id, NULL);
1740 return err;
1741 }
1742
kfunc_desc_cmp_by_imm(const void * a,const void * b)1743 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1744 {
1745 const struct bpf_kfunc_desc *d0 = a;
1746 const struct bpf_kfunc_desc *d1 = b;
1747
1748 if (d0->imm > d1->imm)
1749 return 1;
1750 else if (d0->imm < d1->imm)
1751 return -1;
1752 return 0;
1753 }
1754
sort_kfunc_descs_by_imm(struct bpf_prog * prog)1755 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1756 {
1757 struct bpf_kfunc_desc_tab *tab;
1758
1759 tab = prog->aux->kfunc_tab;
1760 if (!tab)
1761 return;
1762
1763 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1764 kfunc_desc_cmp_by_imm, NULL);
1765 }
1766
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)1767 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1768 {
1769 return !!prog->aux->kfunc_tab;
1770 }
1771
1772 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)1773 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1774 const struct bpf_insn *insn)
1775 {
1776 const struct bpf_kfunc_desc desc = {
1777 .imm = insn->imm,
1778 };
1779 const struct bpf_kfunc_desc *res;
1780 struct bpf_kfunc_desc_tab *tab;
1781
1782 tab = prog->aux->kfunc_tab;
1783 res = bsearch(&desc, tab->descs, tab->nr_descs,
1784 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1785
1786 return res ? &res->func_model : NULL;
1787 }
1788
add_subprog_and_kfunc(struct bpf_verifier_env * env)1789 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1790 {
1791 struct bpf_subprog_info *subprog = env->subprog_info;
1792 struct bpf_insn *insn = env->prog->insnsi;
1793 int i, ret, insn_cnt = env->prog->len;
1794
1795 /* Add entry function. */
1796 ret = add_subprog(env, 0);
1797 if (ret)
1798 return ret;
1799
1800 for (i = 0; i < insn_cnt; i++, insn++) {
1801 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1802 !bpf_pseudo_kfunc_call(insn))
1803 continue;
1804
1805 if (!env->bpf_capable) {
1806 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1807 return -EPERM;
1808 }
1809
1810 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
1811 ret = add_subprog(env, i + insn->imm + 1);
1812 else
1813 ret = add_kfunc_call(env, insn->imm);
1814
1815 if (ret < 0)
1816 return ret;
1817 }
1818
1819 /* Add a fake 'exit' subprog which could simplify subprog iteration
1820 * logic. 'subprog_cnt' should not be increased.
1821 */
1822 subprog[env->subprog_cnt].start = insn_cnt;
1823
1824 if (env->log.level & BPF_LOG_LEVEL2)
1825 for (i = 0; i < env->subprog_cnt; i++)
1826 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1827
1828 return 0;
1829 }
1830
check_subprogs(struct bpf_verifier_env * env)1831 static int check_subprogs(struct bpf_verifier_env *env)
1832 {
1833 int i, subprog_start, subprog_end, off, cur_subprog = 0;
1834 struct bpf_subprog_info *subprog = env->subprog_info;
1835 struct bpf_insn *insn = env->prog->insnsi;
1836 int insn_cnt = env->prog->len;
1837
1838 /* now check that all jumps are within the same subprog */
1839 subprog_start = subprog[cur_subprog].start;
1840 subprog_end = subprog[cur_subprog + 1].start;
1841 for (i = 0; i < insn_cnt; i++) {
1842 u8 code = insn[i].code;
1843
1844 if (code == (BPF_JMP | BPF_CALL) &&
1845 insn[i].imm == BPF_FUNC_tail_call &&
1846 insn[i].src_reg != BPF_PSEUDO_CALL)
1847 subprog[cur_subprog].has_tail_call = true;
1848 if (BPF_CLASS(code) == BPF_LD &&
1849 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1850 subprog[cur_subprog].has_ld_abs = true;
1851 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1852 goto next;
1853 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1854 goto next;
1855 off = i + insn[i].off + 1;
1856 if (off < subprog_start || off >= subprog_end) {
1857 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1858 return -EINVAL;
1859 }
1860 next:
1861 if (i == subprog_end - 1) {
1862 /* to avoid fall-through from one subprog into another
1863 * the last insn of the subprog should be either exit
1864 * or unconditional jump back
1865 */
1866 if (code != (BPF_JMP | BPF_EXIT) &&
1867 code != (BPF_JMP | BPF_JA)) {
1868 verbose(env, "last insn is not an exit or jmp\n");
1869 return -EINVAL;
1870 }
1871 subprog_start = subprog_end;
1872 cur_subprog++;
1873 if (cur_subprog < env->subprog_cnt)
1874 subprog_end = subprog[cur_subprog + 1].start;
1875 }
1876 }
1877 return 0;
1878 }
1879
1880 /* Parentage chain of this register (or stack slot) should take care of all
1881 * issues like callee-saved registers, stack slot allocation time, etc.
1882 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)1883 static int mark_reg_read(struct bpf_verifier_env *env,
1884 const struct bpf_reg_state *state,
1885 struct bpf_reg_state *parent, u8 flag)
1886 {
1887 bool writes = parent == state->parent; /* Observe write marks */
1888 int cnt = 0;
1889
1890 while (parent) {
1891 /* if read wasn't screened by an earlier write ... */
1892 if (writes && state->live & REG_LIVE_WRITTEN)
1893 break;
1894 if (parent->live & REG_LIVE_DONE) {
1895 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1896 reg_type_str(env, parent->type),
1897 parent->var_off.value, parent->off);
1898 return -EFAULT;
1899 }
1900 /* The first condition is more likely to be true than the
1901 * second, checked it first.
1902 */
1903 if ((parent->live & REG_LIVE_READ) == flag ||
1904 parent->live & REG_LIVE_READ64)
1905 /* The parentage chain never changes and
1906 * this parent was already marked as LIVE_READ.
1907 * There is no need to keep walking the chain again and
1908 * keep re-marking all parents as LIVE_READ.
1909 * This case happens when the same register is read
1910 * multiple times without writes into it in-between.
1911 * Also, if parent has the stronger REG_LIVE_READ64 set,
1912 * then no need to set the weak REG_LIVE_READ32.
1913 */
1914 break;
1915 /* ... then we depend on parent's value */
1916 parent->live |= flag;
1917 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1918 if (flag == REG_LIVE_READ64)
1919 parent->live &= ~REG_LIVE_READ32;
1920 state = parent;
1921 parent = state->parent;
1922 writes = true;
1923 cnt++;
1924 }
1925
1926 if (env->longest_mark_read_walk < cnt)
1927 env->longest_mark_read_walk = cnt;
1928 return 0;
1929 }
1930
1931 /* This function is supposed to be used by the following 32-bit optimization
1932 * code only. It returns TRUE if the source or destination register operates
1933 * on 64-bit, otherwise return FALSE.
1934 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)1935 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1936 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1937 {
1938 u8 code, class, op;
1939
1940 code = insn->code;
1941 class = BPF_CLASS(code);
1942 op = BPF_OP(code);
1943 if (class == BPF_JMP) {
1944 /* BPF_EXIT for "main" will reach here. Return TRUE
1945 * conservatively.
1946 */
1947 if (op == BPF_EXIT)
1948 return true;
1949 if (op == BPF_CALL) {
1950 /* BPF to BPF call will reach here because of marking
1951 * caller saved clobber with DST_OP_NO_MARK for which we
1952 * don't care the register def because they are anyway
1953 * marked as NOT_INIT already.
1954 */
1955 if (insn->src_reg == BPF_PSEUDO_CALL)
1956 return false;
1957 /* Helper call will reach here because of arg type
1958 * check, conservatively return TRUE.
1959 */
1960 if (t == SRC_OP)
1961 return true;
1962
1963 return false;
1964 }
1965 }
1966
1967 if (class == BPF_ALU64 || class == BPF_JMP ||
1968 /* BPF_END always use BPF_ALU class. */
1969 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1970 return true;
1971
1972 if (class == BPF_ALU || class == BPF_JMP32)
1973 return false;
1974
1975 if (class == BPF_LDX) {
1976 if (t != SRC_OP)
1977 return BPF_SIZE(code) == BPF_DW;
1978 /* LDX source must be ptr. */
1979 return true;
1980 }
1981
1982 if (class == BPF_STX) {
1983 /* BPF_STX (including atomic variants) has multiple source
1984 * operands, one of which is a ptr. Check whether the caller is
1985 * asking about it.
1986 */
1987 if (t == SRC_OP && reg->type != SCALAR_VALUE)
1988 return true;
1989 return BPF_SIZE(code) == BPF_DW;
1990 }
1991
1992 if (class == BPF_LD) {
1993 u8 mode = BPF_MODE(code);
1994
1995 /* LD_IMM64 */
1996 if (mode == BPF_IMM)
1997 return true;
1998
1999 /* Both LD_IND and LD_ABS return 32-bit data. */
2000 if (t != SRC_OP)
2001 return false;
2002
2003 /* Implicit ctx ptr. */
2004 if (regno == BPF_REG_6)
2005 return true;
2006
2007 /* Explicit source could be any width. */
2008 return true;
2009 }
2010
2011 if (class == BPF_ST)
2012 /* The only source register for BPF_ST is a ptr. */
2013 return true;
2014
2015 /* Conservatively return true at default. */
2016 return true;
2017 }
2018
2019 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)2020 static int insn_def_regno(const struct bpf_insn *insn)
2021 {
2022 switch (BPF_CLASS(insn->code)) {
2023 case BPF_JMP:
2024 case BPF_JMP32:
2025 case BPF_ST:
2026 return -1;
2027 case BPF_STX:
2028 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2029 (insn->imm & BPF_FETCH)) {
2030 if (insn->imm == BPF_CMPXCHG)
2031 return BPF_REG_0;
2032 else
2033 return insn->src_reg;
2034 } else {
2035 return -1;
2036 }
2037 default:
2038 return insn->dst_reg;
2039 }
2040 }
2041
2042 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)2043 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2044 {
2045 int dst_reg = insn_def_regno(insn);
2046
2047 if (dst_reg == -1)
2048 return false;
2049
2050 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2051 }
2052
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)2053 static void mark_insn_zext(struct bpf_verifier_env *env,
2054 struct bpf_reg_state *reg)
2055 {
2056 s32 def_idx = reg->subreg_def;
2057
2058 if (def_idx == DEF_NOT_SUBREG)
2059 return;
2060
2061 env->insn_aux_data[def_idx - 1].zext_dst = true;
2062 /* The dst will be zero extended, so won't be sub-register anymore. */
2063 reg->subreg_def = DEF_NOT_SUBREG;
2064 }
2065
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)2066 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2067 enum reg_arg_type t)
2068 {
2069 struct bpf_verifier_state *vstate = env->cur_state;
2070 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2071 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2072 struct bpf_reg_state *reg, *regs = state->regs;
2073 bool rw64;
2074
2075 if (regno >= MAX_BPF_REG) {
2076 verbose(env, "R%d is invalid\n", regno);
2077 return -EINVAL;
2078 }
2079
2080 reg = ®s[regno];
2081 rw64 = is_reg64(env, insn, regno, reg, t);
2082 if (t == SRC_OP) {
2083 /* check whether register used as source operand can be read */
2084 if (reg->type == NOT_INIT) {
2085 verbose(env, "R%d !read_ok\n", regno);
2086 return -EACCES;
2087 }
2088 /* We don't need to worry about FP liveness because it's read-only */
2089 if (regno == BPF_REG_FP)
2090 return 0;
2091
2092 if (rw64)
2093 mark_insn_zext(env, reg);
2094
2095 return mark_reg_read(env, reg, reg->parent,
2096 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2097 } else {
2098 /* check whether register used as dest operand can be written to */
2099 if (regno == BPF_REG_FP) {
2100 verbose(env, "frame pointer is read only\n");
2101 return -EACCES;
2102 }
2103 reg->live |= REG_LIVE_WRITTEN;
2104 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2105 if (t == DST_OP)
2106 mark_reg_unknown(env, regs, regno);
2107 }
2108 return 0;
2109 }
2110
2111 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)2112 static int push_jmp_history(struct bpf_verifier_env *env,
2113 struct bpf_verifier_state *cur)
2114 {
2115 u32 cnt = cur->jmp_history_cnt;
2116 struct bpf_idx_pair *p;
2117
2118 cnt++;
2119 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2120 if (!p)
2121 return -ENOMEM;
2122 p[cnt - 1].idx = env->insn_idx;
2123 p[cnt - 1].prev_idx = env->prev_insn_idx;
2124 cur->jmp_history = p;
2125 cur->jmp_history_cnt = cnt;
2126 return 0;
2127 }
2128
2129 /* Backtrack one insn at a time. If idx is not at the top of recorded
2130 * history then previous instruction came from straight line execution.
2131 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)2132 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2133 u32 *history)
2134 {
2135 u32 cnt = *history;
2136
2137 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2138 i = st->jmp_history[cnt - 1].prev_idx;
2139 (*history)--;
2140 } else {
2141 i--;
2142 }
2143 return i;
2144 }
2145
disasm_kfunc_name(void * data,const struct bpf_insn * insn)2146 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2147 {
2148 const struct btf_type *func;
2149
2150 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2151 return NULL;
2152
2153 func = btf_type_by_id(btf_vmlinux, insn->imm);
2154 return btf_name_by_offset(btf_vmlinux, func->name_off);
2155 }
2156
2157 /* For given verifier state backtrack_insn() is called from the last insn to
2158 * the first insn. Its purpose is to compute a bitmask of registers and
2159 * stack slots that needs precision in the parent verifier state.
2160 */
backtrack_insn(struct bpf_verifier_env * env,int idx,u32 * reg_mask,u64 * stack_mask)2161 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2162 u32 *reg_mask, u64 *stack_mask)
2163 {
2164 const struct bpf_insn_cbs cbs = {
2165 .cb_call = disasm_kfunc_name,
2166 .cb_print = verbose,
2167 .private_data = env,
2168 };
2169 struct bpf_insn *insn = env->prog->insnsi + idx;
2170 u8 class = BPF_CLASS(insn->code);
2171 u8 opcode = BPF_OP(insn->code);
2172 u8 mode = BPF_MODE(insn->code);
2173 u32 dreg = 1u << insn->dst_reg;
2174 u32 sreg = 1u << insn->src_reg;
2175 u32 spi;
2176
2177 if (insn->code == 0)
2178 return 0;
2179 if (env->log.level & BPF_LOG_LEVEL) {
2180 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2181 verbose(env, "%d: ", idx);
2182 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2183 }
2184
2185 if (class == BPF_ALU || class == BPF_ALU64) {
2186 if (!(*reg_mask & dreg))
2187 return 0;
2188 if (opcode == BPF_END || opcode == BPF_NEG) {
2189 /* sreg is reserved and unused
2190 * dreg still need precision before this insn
2191 */
2192 return 0;
2193 } else if (opcode == BPF_MOV) {
2194 if (BPF_SRC(insn->code) == BPF_X) {
2195 /* dreg = sreg
2196 * dreg needs precision after this insn
2197 * sreg needs precision before this insn
2198 */
2199 *reg_mask &= ~dreg;
2200 *reg_mask |= sreg;
2201 } else {
2202 /* dreg = K
2203 * dreg needs precision after this insn.
2204 * Corresponding register is already marked
2205 * as precise=true in this verifier state.
2206 * No further markings in parent are necessary
2207 */
2208 *reg_mask &= ~dreg;
2209 }
2210 } else {
2211 if (BPF_SRC(insn->code) == BPF_X) {
2212 /* dreg += sreg
2213 * both dreg and sreg need precision
2214 * before this insn
2215 */
2216 *reg_mask |= sreg;
2217 } /* else dreg += K
2218 * dreg still needs precision before this insn
2219 */
2220 }
2221 } else if (class == BPF_LDX) {
2222 if (!(*reg_mask & dreg))
2223 return 0;
2224 *reg_mask &= ~dreg;
2225
2226 /* scalars can only be spilled into stack w/o losing precision.
2227 * Load from any other memory can be zero extended.
2228 * The desire to keep that precision is already indicated
2229 * by 'precise' mark in corresponding register of this state.
2230 * No further tracking necessary.
2231 */
2232 if (insn->src_reg != BPF_REG_FP)
2233 return 0;
2234
2235 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2236 * that [fp - off] slot contains scalar that needs to be
2237 * tracked with precision
2238 */
2239 spi = (-insn->off - 1) / BPF_REG_SIZE;
2240 if (spi >= 64) {
2241 verbose(env, "BUG spi %d\n", spi);
2242 WARN_ONCE(1, "verifier backtracking bug");
2243 return -EFAULT;
2244 }
2245 *stack_mask |= 1ull << spi;
2246 } else if (class == BPF_STX || class == BPF_ST) {
2247 if (*reg_mask & dreg)
2248 /* stx & st shouldn't be using _scalar_ dst_reg
2249 * to access memory. It means backtracking
2250 * encountered a case of pointer subtraction.
2251 */
2252 return -ENOTSUPP;
2253 /* scalars can only be spilled into stack */
2254 if (insn->dst_reg != BPF_REG_FP)
2255 return 0;
2256 spi = (-insn->off - 1) / BPF_REG_SIZE;
2257 if (spi >= 64) {
2258 verbose(env, "BUG spi %d\n", spi);
2259 WARN_ONCE(1, "verifier backtracking bug");
2260 return -EFAULT;
2261 }
2262 if (!(*stack_mask & (1ull << spi)))
2263 return 0;
2264 *stack_mask &= ~(1ull << spi);
2265 if (class == BPF_STX)
2266 *reg_mask |= sreg;
2267 } else if (class == BPF_JMP || class == BPF_JMP32) {
2268 if (opcode == BPF_CALL) {
2269 if (insn->src_reg == BPF_PSEUDO_CALL)
2270 return -ENOTSUPP;
2271 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
2272 * catch this error later. Make backtracking conservative
2273 * with ENOTSUPP.
2274 */
2275 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
2276 return -ENOTSUPP;
2277 /* BPF helpers that invoke callback subprogs are
2278 * equivalent to BPF_PSEUDO_CALL above
2279 */
2280 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
2281 return -ENOTSUPP;
2282 /* regular helper call sets R0 */
2283 *reg_mask &= ~1;
2284 if (*reg_mask & 0x3f) {
2285 /* if backtracing was looking for registers R1-R5
2286 * they should have been found already.
2287 */
2288 verbose(env, "BUG regs %x\n", *reg_mask);
2289 WARN_ONCE(1, "verifier backtracking bug");
2290 return -EFAULT;
2291 }
2292 } else if (opcode == BPF_EXIT) {
2293 return -ENOTSUPP;
2294 } else if (BPF_SRC(insn->code) == BPF_X) {
2295 if (!(*reg_mask & (dreg | sreg)))
2296 return 0;
2297 /* dreg <cond> sreg
2298 * Both dreg and sreg need precision before
2299 * this insn. If only sreg was marked precise
2300 * before it would be equally necessary to
2301 * propagate it to dreg.
2302 */
2303 *reg_mask |= (sreg | dreg);
2304 /* else dreg <cond> K
2305 * Only dreg still needs precision before
2306 * this insn, so for the K-based conditional
2307 * there is nothing new to be marked.
2308 */
2309 }
2310 } else if (class == BPF_LD) {
2311 if (!(*reg_mask & dreg))
2312 return 0;
2313 *reg_mask &= ~dreg;
2314 /* It's ld_imm64 or ld_abs or ld_ind.
2315 * For ld_imm64 no further tracking of precision
2316 * into parent is necessary
2317 */
2318 if (mode == BPF_IND || mode == BPF_ABS)
2319 /* to be analyzed */
2320 return -ENOTSUPP;
2321 }
2322 return 0;
2323 }
2324
2325 /* the scalar precision tracking algorithm:
2326 * . at the start all registers have precise=false.
2327 * . scalar ranges are tracked as normal through alu and jmp insns.
2328 * . once precise value of the scalar register is used in:
2329 * . ptr + scalar alu
2330 * . if (scalar cond K|scalar)
2331 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2332 * backtrack through the verifier states and mark all registers and
2333 * stack slots with spilled constants that these scalar regisers
2334 * should be precise.
2335 * . during state pruning two registers (or spilled stack slots)
2336 * are equivalent if both are not precise.
2337 *
2338 * Note the verifier cannot simply walk register parentage chain,
2339 * since many different registers and stack slots could have been
2340 * used to compute single precise scalar.
2341 *
2342 * The approach of starting with precise=true for all registers and then
2343 * backtrack to mark a register as not precise when the verifier detects
2344 * that program doesn't care about specific value (e.g., when helper
2345 * takes register as ARG_ANYTHING parameter) is not safe.
2346 *
2347 * It's ok to walk single parentage chain of the verifier states.
2348 * It's possible that this backtracking will go all the way till 1st insn.
2349 * All other branches will be explored for needing precision later.
2350 *
2351 * The backtracking needs to deal with cases like:
2352 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2353 * r9 -= r8
2354 * r5 = r9
2355 * if r5 > 0x79f goto pc+7
2356 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2357 * r5 += 1
2358 * ...
2359 * call bpf_perf_event_output#25
2360 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2361 *
2362 * and this case:
2363 * r6 = 1
2364 * call foo // uses callee's r6 inside to compute r0
2365 * r0 += r6
2366 * if r0 == 0 goto
2367 *
2368 * to track above reg_mask/stack_mask needs to be independent for each frame.
2369 *
2370 * Also if parent's curframe > frame where backtracking started,
2371 * the verifier need to mark registers in both frames, otherwise callees
2372 * may incorrectly prune callers. This is similar to
2373 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2374 *
2375 * For now backtracking falls back into conservative marking.
2376 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2377 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2378 struct bpf_verifier_state *st)
2379 {
2380 struct bpf_func_state *func;
2381 struct bpf_reg_state *reg;
2382 int i, j;
2383
2384 /* big hammer: mark all scalars precise in this path.
2385 * pop_stack may still get !precise scalars.
2386 * We also skip current state and go straight to first parent state,
2387 * because precision markings in current non-checkpointed state are
2388 * not needed. See why in the comment in __mark_chain_precision below.
2389 */
2390 for (st = st->parent; st; st = st->parent) {
2391 for (i = 0; i <= st->curframe; i++) {
2392 func = st->frame[i];
2393 for (j = 0; j < BPF_REG_FP; j++) {
2394 reg = &func->regs[j];
2395 if (reg->type != SCALAR_VALUE)
2396 continue;
2397 reg->precise = true;
2398 }
2399 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2400 if (!is_spilled_reg(&func->stack[j]))
2401 continue;
2402 reg = &func->stack[j].spilled_ptr;
2403 if (reg->type != SCALAR_VALUE)
2404 continue;
2405 reg->precise = true;
2406 }
2407 }
2408 }
2409 }
2410
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2411 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2412 {
2413 struct bpf_func_state *func;
2414 struct bpf_reg_state *reg;
2415 int i, j;
2416
2417 for (i = 0; i <= st->curframe; i++) {
2418 func = st->frame[i];
2419 for (j = 0; j < BPF_REG_FP; j++) {
2420 reg = &func->regs[j];
2421 if (reg->type != SCALAR_VALUE)
2422 continue;
2423 reg->precise = false;
2424 }
2425 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2426 if (!is_spilled_reg(&func->stack[j]))
2427 continue;
2428 reg = &func->stack[j].spilled_ptr;
2429 if (reg->type != SCALAR_VALUE)
2430 continue;
2431 reg->precise = false;
2432 }
2433 }
2434 }
2435
2436 /*
2437 * __mark_chain_precision() backtracks BPF program instruction sequence and
2438 * chain of verifier states making sure that register *regno* (if regno >= 0)
2439 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
2440 * SCALARS, as well as any other registers and slots that contribute to
2441 * a tracked state of given registers/stack slots, depending on specific BPF
2442 * assembly instructions (see backtrack_insns() for exact instruction handling
2443 * logic). This backtracking relies on recorded jmp_history and is able to
2444 * traverse entire chain of parent states. This process ends only when all the
2445 * necessary registers/slots and their transitive dependencies are marked as
2446 * precise.
2447 *
2448 * One important and subtle aspect is that precise marks *do not matter* in
2449 * the currently verified state (current state). It is important to understand
2450 * why this is the case.
2451 *
2452 * First, note that current state is the state that is not yet "checkpointed",
2453 * i.e., it is not yet put into env->explored_states, and it has no children
2454 * states as well. It's ephemeral, and can end up either a) being discarded if
2455 * compatible explored state is found at some point or BPF_EXIT instruction is
2456 * reached or b) checkpointed and put into env->explored_states, branching out
2457 * into one or more children states.
2458 *
2459 * In the former case, precise markings in current state are completely
2460 * ignored by state comparison code (see regsafe() for details). Only
2461 * checkpointed ("old") state precise markings are important, and if old
2462 * state's register/slot is precise, regsafe() assumes current state's
2463 * register/slot as precise and checks value ranges exactly and precisely. If
2464 * states turn out to be compatible, current state's necessary precise
2465 * markings and any required parent states' precise markings are enforced
2466 * after the fact with propagate_precision() logic, after the fact. But it's
2467 * important to realize that in this case, even after marking current state
2468 * registers/slots as precise, we immediately discard current state. So what
2469 * actually matters is any of the precise markings propagated into current
2470 * state's parent states, which are always checkpointed (due to b) case above).
2471 * As such, for scenario a) it doesn't matter if current state has precise
2472 * markings set or not.
2473 *
2474 * Now, for the scenario b), checkpointing and forking into child(ren)
2475 * state(s). Note that before current state gets to checkpointing step, any
2476 * processed instruction always assumes precise SCALAR register/slot
2477 * knowledge: if precise value or range is useful to prune jump branch, BPF
2478 * verifier takes this opportunity enthusiastically. Similarly, when
2479 * register's value is used to calculate offset or memory address, exact
2480 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
2481 * what we mentioned above about state comparison ignoring precise markings
2482 * during state comparison, BPF verifier ignores and also assumes precise
2483 * markings *at will* during instruction verification process. But as verifier
2484 * assumes precision, it also propagates any precision dependencies across
2485 * parent states, which are not yet finalized, so can be further restricted
2486 * based on new knowledge gained from restrictions enforced by their children
2487 * states. This is so that once those parent states are finalized, i.e., when
2488 * they have no more active children state, state comparison logic in
2489 * is_state_visited() would enforce strict and precise SCALAR ranges, if
2490 * required for correctness.
2491 *
2492 * To build a bit more intuition, note also that once a state is checkpointed,
2493 * the path we took to get to that state is not important. This is crucial
2494 * property for state pruning. When state is checkpointed and finalized at
2495 * some instruction index, it can be correctly and safely used to "short
2496 * circuit" any *compatible* state that reaches exactly the same instruction
2497 * index. I.e., if we jumped to that instruction from a completely different
2498 * code path than original finalized state was derived from, it doesn't
2499 * matter, current state can be discarded because from that instruction
2500 * forward having a compatible state will ensure we will safely reach the
2501 * exit. States describe preconditions for further exploration, but completely
2502 * forget the history of how we got here.
2503 *
2504 * This also means that even if we needed precise SCALAR range to get to
2505 * finalized state, but from that point forward *that same* SCALAR register is
2506 * never used in a precise context (i.e., it's precise value is not needed for
2507 * correctness), it's correct and safe to mark such register as "imprecise"
2508 * (i.e., precise marking set to false). This is what we rely on when we do
2509 * not set precise marking in current state. If no child state requires
2510 * precision for any given SCALAR register, it's safe to dictate that it can
2511 * be imprecise. If any child state does require this register to be precise,
2512 * we'll mark it precise later retroactively during precise markings
2513 * propagation from child state to parent states.
2514 *
2515 * Skipping precise marking setting in current state is a mild version of
2516 * relying on the above observation. But we can utilize this property even
2517 * more aggressively by proactively forgetting any precise marking in the
2518 * current state (which we inherited from the parent state), right before we
2519 * checkpoint it and branch off into new child state. This is done by
2520 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
2521 * finalized states which help in short circuiting more future states.
2522 */
__mark_chain_precision(struct bpf_verifier_env * env,int frame,int regno,int spi)2523 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
2524 int spi)
2525 {
2526 struct bpf_verifier_state *st = env->cur_state;
2527 int first_idx = st->first_insn_idx;
2528 int last_idx = env->insn_idx;
2529 struct bpf_func_state *func;
2530 struct bpf_reg_state *reg;
2531 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2532 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2533 bool skip_first = true;
2534 bool new_marks = false;
2535 int i, err;
2536
2537 if (!env->bpf_capable)
2538 return 0;
2539
2540 /* Do sanity checks against current state of register and/or stack
2541 * slot, but don't set precise flag in current state, as precision
2542 * tracking in the current state is unnecessary.
2543 */
2544 func = st->frame[frame];
2545 if (regno >= 0) {
2546 reg = &func->regs[regno];
2547 if (reg->type != SCALAR_VALUE) {
2548 WARN_ONCE(1, "backtracing misuse");
2549 return -EFAULT;
2550 }
2551 new_marks = true;
2552 }
2553
2554 while (spi >= 0) {
2555 if (!is_spilled_reg(&func->stack[spi])) {
2556 stack_mask = 0;
2557 break;
2558 }
2559 reg = &func->stack[spi].spilled_ptr;
2560 if (reg->type != SCALAR_VALUE) {
2561 stack_mask = 0;
2562 break;
2563 }
2564 new_marks = true;
2565 break;
2566 }
2567
2568 if (!new_marks)
2569 return 0;
2570 if (!reg_mask && !stack_mask)
2571 return 0;
2572
2573 for (;;) {
2574 DECLARE_BITMAP(mask, 64);
2575 u32 history = st->jmp_history_cnt;
2576
2577 if (env->log.level & BPF_LOG_LEVEL)
2578 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2579
2580 if (last_idx < 0) {
2581 /* we are at the entry into subprog, which
2582 * is expected for global funcs, but only if
2583 * requested precise registers are R1-R5
2584 * (which are global func's input arguments)
2585 */
2586 if (st->curframe == 0 &&
2587 st->frame[0]->subprogno > 0 &&
2588 st->frame[0]->callsite == BPF_MAIN_FUNC &&
2589 stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
2590 bitmap_from_u64(mask, reg_mask);
2591 for_each_set_bit(i, mask, 32) {
2592 reg = &st->frame[0]->regs[i];
2593 if (reg->type != SCALAR_VALUE) {
2594 reg_mask &= ~(1u << i);
2595 continue;
2596 }
2597 reg->precise = true;
2598 }
2599 return 0;
2600 }
2601
2602 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
2603 st->frame[0]->subprogno, reg_mask, stack_mask);
2604 WARN_ONCE(1, "verifier backtracking bug");
2605 return -EFAULT;
2606 }
2607
2608 for (i = last_idx;;) {
2609 if (skip_first) {
2610 err = 0;
2611 skip_first = false;
2612 } else {
2613 err = backtrack_insn(env, i, ®_mask, &stack_mask);
2614 }
2615 if (err == -ENOTSUPP) {
2616 mark_all_scalars_precise(env, st);
2617 return 0;
2618 } else if (err) {
2619 return err;
2620 }
2621 if (!reg_mask && !stack_mask)
2622 /* Found assignment(s) into tracked register in this state.
2623 * Since this state is already marked, just return.
2624 * Nothing to be tracked further in the parent state.
2625 */
2626 return 0;
2627 if (i == first_idx)
2628 break;
2629 i = get_prev_insn_idx(st, i, &history);
2630 if (i >= env->prog->len) {
2631 /* This can happen if backtracking reached insn 0
2632 * and there are still reg_mask or stack_mask
2633 * to backtrack.
2634 * It means the backtracking missed the spot where
2635 * particular register was initialized with a constant.
2636 */
2637 verbose(env, "BUG backtracking idx %d\n", i);
2638 WARN_ONCE(1, "verifier backtracking bug");
2639 return -EFAULT;
2640 }
2641 }
2642 st = st->parent;
2643 if (!st)
2644 break;
2645
2646 new_marks = false;
2647 func = st->frame[frame];
2648 bitmap_from_u64(mask, reg_mask);
2649 for_each_set_bit(i, mask, 32) {
2650 reg = &func->regs[i];
2651 if (reg->type != SCALAR_VALUE) {
2652 reg_mask &= ~(1u << i);
2653 continue;
2654 }
2655 if (!reg->precise)
2656 new_marks = true;
2657 reg->precise = true;
2658 }
2659
2660 bitmap_from_u64(mask, stack_mask);
2661 for_each_set_bit(i, mask, 64) {
2662 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2663 /* the sequence of instructions:
2664 * 2: (bf) r3 = r10
2665 * 3: (7b) *(u64 *)(r3 -8) = r0
2666 * 4: (79) r4 = *(u64 *)(r10 -8)
2667 * doesn't contain jmps. It's backtracked
2668 * as a single block.
2669 * During backtracking insn 3 is not recognized as
2670 * stack access, so at the end of backtracking
2671 * stack slot fp-8 is still marked in stack_mask.
2672 * However the parent state may not have accessed
2673 * fp-8 and it's "unallocated" stack space.
2674 * In such case fallback to conservative.
2675 */
2676 mark_all_scalars_precise(env, st);
2677 return 0;
2678 }
2679
2680 if (!is_spilled_reg(&func->stack[i])) {
2681 stack_mask &= ~(1ull << i);
2682 continue;
2683 }
2684 reg = &func->stack[i].spilled_ptr;
2685 if (reg->type != SCALAR_VALUE) {
2686 stack_mask &= ~(1ull << i);
2687 continue;
2688 }
2689 if (!reg->precise)
2690 new_marks = true;
2691 reg->precise = true;
2692 }
2693 if (env->log.level & BPF_LOG_LEVEL) {
2694 print_verifier_state(env, func);
2695 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2696 new_marks ? "didn't have" : "already had",
2697 reg_mask, stack_mask);
2698 }
2699
2700 if (!reg_mask && !stack_mask)
2701 break;
2702 if (!new_marks)
2703 break;
2704
2705 last_idx = st->last_insn_idx;
2706 first_idx = st->first_insn_idx;
2707 }
2708 return 0;
2709 }
2710
mark_chain_precision(struct bpf_verifier_env * env,int regno)2711 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2712 {
2713 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
2714 }
2715
mark_chain_precision_frame(struct bpf_verifier_env * env,int frame,int regno)2716 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
2717 {
2718 return __mark_chain_precision(env, frame, regno, -1);
2719 }
2720
mark_chain_precision_stack_frame(struct bpf_verifier_env * env,int frame,int spi)2721 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
2722 {
2723 return __mark_chain_precision(env, frame, -1, spi);
2724 }
2725
is_spillable_regtype(enum bpf_reg_type type)2726 static bool is_spillable_regtype(enum bpf_reg_type type)
2727 {
2728 switch (base_type(type)) {
2729 case PTR_TO_MAP_VALUE:
2730 case PTR_TO_STACK:
2731 case PTR_TO_CTX:
2732 case PTR_TO_PACKET:
2733 case PTR_TO_PACKET_META:
2734 case PTR_TO_PACKET_END:
2735 case PTR_TO_FLOW_KEYS:
2736 case CONST_PTR_TO_MAP:
2737 case PTR_TO_SOCKET:
2738 case PTR_TO_SOCK_COMMON:
2739 case PTR_TO_TCP_SOCK:
2740 case PTR_TO_XDP_SOCK:
2741 case PTR_TO_BTF_ID:
2742 case PTR_TO_BUF:
2743 case PTR_TO_PERCPU_BTF_ID:
2744 case PTR_TO_MEM:
2745 case PTR_TO_FUNC:
2746 case PTR_TO_MAP_KEY:
2747 return true;
2748 default:
2749 return false;
2750 }
2751 }
2752
2753 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)2754 static bool register_is_null(struct bpf_reg_state *reg)
2755 {
2756 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2757 }
2758
register_is_const(struct bpf_reg_state * reg)2759 static bool register_is_const(struct bpf_reg_state *reg)
2760 {
2761 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2762 }
2763
__is_scalar_unbounded(struct bpf_reg_state * reg)2764 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2765 {
2766 return tnum_is_unknown(reg->var_off) &&
2767 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2768 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2769 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2770 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2771 }
2772
register_is_bounded(struct bpf_reg_state * reg)2773 static bool register_is_bounded(struct bpf_reg_state *reg)
2774 {
2775 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2776 }
2777
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)2778 static bool __is_pointer_value(bool allow_ptr_leaks,
2779 const struct bpf_reg_state *reg)
2780 {
2781 if (allow_ptr_leaks)
2782 return false;
2783
2784 return reg->type != SCALAR_VALUE;
2785 }
2786
2787 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)2788 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
2789 {
2790 struct bpf_reg_state *parent = dst->parent;
2791 enum bpf_reg_liveness live = dst->live;
2792
2793 *dst = *src;
2794 dst->parent = parent;
2795 dst->live = live;
2796 }
2797
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)2798 static void save_register_state(struct bpf_func_state *state,
2799 int spi, struct bpf_reg_state *reg,
2800 int size)
2801 {
2802 int i;
2803
2804 copy_register_state(&state->stack[spi].spilled_ptr, reg);
2805 if (size == BPF_REG_SIZE)
2806 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2807
2808 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2809 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2810
2811 /* size < 8 bytes spill */
2812 for (; i; i--)
2813 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2814 }
2815
is_bpf_st_mem(struct bpf_insn * insn)2816 static bool is_bpf_st_mem(struct bpf_insn *insn)
2817 {
2818 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
2819 }
2820
2821 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2822 * stack boundary and alignment are checked in check_mem_access()
2823 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)2824 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2825 /* stack frame we're writing to */
2826 struct bpf_func_state *state,
2827 int off, int size, int value_regno,
2828 int insn_idx)
2829 {
2830 struct bpf_func_state *cur; /* state of the current function */
2831 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2832 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
2833 struct bpf_reg_state *reg = NULL;
2834 u32 dst_reg = insn->dst_reg;
2835
2836 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2837 if (err)
2838 return err;
2839 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2840 * so it's aligned access and [off, off + size) are within stack limits
2841 */
2842 if (!env->allow_ptr_leaks &&
2843 is_spilled_reg(&state->stack[spi]) &&
2844 size != BPF_REG_SIZE) {
2845 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2846 return -EACCES;
2847 }
2848
2849 cur = env->cur_state->frame[env->cur_state->curframe];
2850 if (value_regno >= 0)
2851 reg = &cur->regs[value_regno];
2852 if (!env->bypass_spec_v4) {
2853 bool sanitize = reg && is_spillable_regtype(reg->type);
2854
2855 for (i = 0; i < size; i++) {
2856 u8 type = state->stack[spi].slot_type[i];
2857
2858 if (type != STACK_MISC && type != STACK_ZERO) {
2859 sanitize = true;
2860 break;
2861 }
2862 }
2863
2864 if (sanitize)
2865 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2866 }
2867
2868 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2869 !register_is_null(reg) && env->bpf_capable) {
2870 if (dst_reg != BPF_REG_FP) {
2871 /* The backtracking logic can only recognize explicit
2872 * stack slot address like [fp - 8]. Other spill of
2873 * scalar via different register has to be conservative.
2874 * Backtrack from here and mark all registers as precise
2875 * that contributed into 'reg' being a constant.
2876 */
2877 err = mark_chain_precision(env, value_regno);
2878 if (err)
2879 return err;
2880 }
2881 save_register_state(state, spi, reg, size);
2882 /* Break the relation on a narrowing spill. */
2883 if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
2884 state->stack[spi].spilled_ptr.id = 0;
2885 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
2886 insn->imm != 0 && env->bpf_capable) {
2887 struct bpf_reg_state fake_reg = {};
2888
2889 __mark_reg_known(&fake_reg, insn->imm);
2890 fake_reg.type = SCALAR_VALUE;
2891 save_register_state(state, spi, &fake_reg, size);
2892 } else if (reg && is_spillable_regtype(reg->type)) {
2893 /* register containing pointer is being spilled into stack */
2894 if (size != BPF_REG_SIZE) {
2895 verbose_linfo(env, insn_idx, "; ");
2896 verbose(env, "invalid size of register spill\n");
2897 return -EACCES;
2898 }
2899 if (state != cur && reg->type == PTR_TO_STACK) {
2900 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2901 return -EINVAL;
2902 }
2903 save_register_state(state, spi, reg, size);
2904 } else {
2905 u8 type = STACK_MISC;
2906
2907 /* regular write of data into stack destroys any spilled ptr */
2908 state->stack[spi].spilled_ptr.type = NOT_INIT;
2909 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2910 if (is_spilled_reg(&state->stack[spi]))
2911 for (i = 0; i < BPF_REG_SIZE; i++)
2912 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
2913
2914 /* only mark the slot as written if all 8 bytes were written
2915 * otherwise read propagation may incorrectly stop too soon
2916 * when stack slots are partially written.
2917 * This heuristic means that read propagation will be
2918 * conservative, since it will add reg_live_read marks
2919 * to stack slots all the way to first state when programs
2920 * writes+reads less than 8 bytes
2921 */
2922 if (size == BPF_REG_SIZE)
2923 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2924
2925 /* when we zero initialize stack slots mark them as such */
2926 if ((reg && register_is_null(reg)) ||
2927 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
2928 /* backtracking doesn't work for STACK_ZERO yet. */
2929 err = mark_chain_precision(env, value_regno);
2930 if (err)
2931 return err;
2932 type = STACK_ZERO;
2933 }
2934
2935 /* Mark slots affected by this stack write. */
2936 for (i = 0; i < size; i++)
2937 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2938 type;
2939 }
2940 return 0;
2941 }
2942
2943 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2944 * known to contain a variable offset.
2945 * This function checks whether the write is permitted and conservatively
2946 * tracks the effects of the write, considering that each stack slot in the
2947 * dynamic range is potentially written to.
2948 *
2949 * 'off' includes 'regno->off'.
2950 * 'value_regno' can be -1, meaning that an unknown value is being written to
2951 * the stack.
2952 *
2953 * Spilled pointers in range are not marked as written because we don't know
2954 * what's going to be actually written. This means that read propagation for
2955 * future reads cannot be terminated by this write.
2956 *
2957 * For privileged programs, uninitialized stack slots are considered
2958 * initialized by this write (even though we don't know exactly what offsets
2959 * are going to be written to). The idea is that we don't want the verifier to
2960 * reject future reads that access slots written to through variable offsets.
2961 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)2962 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2963 /* func where register points to */
2964 struct bpf_func_state *state,
2965 int ptr_regno, int off, int size,
2966 int value_regno, int insn_idx)
2967 {
2968 struct bpf_func_state *cur; /* state of the current function */
2969 int min_off, max_off;
2970 int i, err;
2971 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2972 bool writing_zero = false;
2973 /* set if the fact that we're writing a zero is used to let any
2974 * stack slots remain STACK_ZERO
2975 */
2976 bool zero_used = false;
2977
2978 cur = env->cur_state->frame[env->cur_state->curframe];
2979 ptr_reg = &cur->regs[ptr_regno];
2980 min_off = ptr_reg->smin_value + off;
2981 max_off = ptr_reg->smax_value + off + size;
2982 if (value_regno >= 0)
2983 value_reg = &cur->regs[value_regno];
2984 if (value_reg && register_is_null(value_reg))
2985 writing_zero = true;
2986
2987 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2988 if (err)
2989 return err;
2990
2991
2992 /* Variable offset writes destroy any spilled pointers in range. */
2993 for (i = min_off; i < max_off; i++) {
2994 u8 new_type, *stype;
2995 int slot, spi;
2996
2997 slot = -i - 1;
2998 spi = slot / BPF_REG_SIZE;
2999 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3000
3001 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
3002 /* Reject the write if range we may write to has not
3003 * been initialized beforehand. If we didn't reject
3004 * here, the ptr status would be erased below (even
3005 * though not all slots are actually overwritten),
3006 * possibly opening the door to leaks.
3007 *
3008 * We do however catch STACK_INVALID case below, and
3009 * only allow reading possibly uninitialized memory
3010 * later for CAP_PERFMON, as the write may not happen to
3011 * that slot.
3012 */
3013 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3014 insn_idx, i);
3015 return -EINVAL;
3016 }
3017
3018 /* Erase all spilled pointers. */
3019 state->stack[spi].spilled_ptr.type = NOT_INIT;
3020
3021 /* Update the slot type. */
3022 new_type = STACK_MISC;
3023 if (writing_zero && *stype == STACK_ZERO) {
3024 new_type = STACK_ZERO;
3025 zero_used = true;
3026 }
3027 /* If the slot is STACK_INVALID, we check whether it's OK to
3028 * pretend that it will be initialized by this write. The slot
3029 * might not actually be written to, and so if we mark it as
3030 * initialized future reads might leak uninitialized memory.
3031 * For privileged programs, we will accept such reads to slots
3032 * that may or may not be written because, if we're reject
3033 * them, the error would be too confusing.
3034 */
3035 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3036 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3037 insn_idx, i);
3038 return -EINVAL;
3039 }
3040 *stype = new_type;
3041 }
3042 if (zero_used) {
3043 /* backtracking doesn't work for STACK_ZERO yet. */
3044 err = mark_chain_precision(env, value_regno);
3045 if (err)
3046 return err;
3047 }
3048 return 0;
3049 }
3050
3051 /* When register 'dst_regno' is assigned some values from stack[min_off,
3052 * max_off), we set the register's type according to the types of the
3053 * respective stack slots. If all the stack values are known to be zeros, then
3054 * so is the destination reg. Otherwise, the register is considered to be
3055 * SCALAR. This function does not deal with register filling; the caller must
3056 * ensure that all spilled registers in the stack range have been marked as
3057 * read.
3058 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)3059 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3060 /* func where src register points to */
3061 struct bpf_func_state *ptr_state,
3062 int min_off, int max_off, int dst_regno)
3063 {
3064 struct bpf_verifier_state *vstate = env->cur_state;
3065 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3066 int i, slot, spi;
3067 u8 *stype;
3068 int zeros = 0;
3069
3070 for (i = min_off; i < max_off; i++) {
3071 slot = -i - 1;
3072 spi = slot / BPF_REG_SIZE;
3073 stype = ptr_state->stack[spi].slot_type;
3074 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3075 break;
3076 zeros++;
3077 }
3078 if (zeros == max_off - min_off) {
3079 /* any access_size read into register is zero extended,
3080 * so the whole register == const_zero
3081 */
3082 __mark_reg_const_zero(&state->regs[dst_regno]);
3083 /* backtracking doesn't support STACK_ZERO yet,
3084 * so mark it precise here, so that later
3085 * backtracking can stop here.
3086 * Backtracking may not need this if this register
3087 * doesn't participate in pointer adjustment.
3088 * Forward propagation of precise flag is not
3089 * necessary either. This mark is only to stop
3090 * backtracking. Any register that contributed
3091 * to const 0 was marked precise before spill.
3092 */
3093 state->regs[dst_regno].precise = true;
3094 } else {
3095 /* have read misc data from the stack */
3096 mark_reg_unknown(env, state->regs, dst_regno);
3097 }
3098 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3099 }
3100
3101 /* Read the stack at 'off' and put the results into the register indicated by
3102 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3103 * spilled reg.
3104 *
3105 * 'dst_regno' can be -1, meaning that the read value is not going to a
3106 * register.
3107 *
3108 * The access is assumed to be within the current stack bounds.
3109 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)3110 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3111 /* func where src register points to */
3112 struct bpf_func_state *reg_state,
3113 int off, int size, int dst_regno)
3114 {
3115 struct bpf_verifier_state *vstate = env->cur_state;
3116 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3117 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3118 struct bpf_reg_state *reg;
3119 u8 *stype, type;
3120
3121 stype = reg_state->stack[spi].slot_type;
3122 reg = ®_state->stack[spi].spilled_ptr;
3123
3124 if (is_spilled_reg(®_state->stack[spi])) {
3125 u8 spill_size = 1;
3126
3127 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3128 spill_size++;
3129
3130 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3131 if (reg->type != SCALAR_VALUE) {
3132 verbose_linfo(env, env->insn_idx, "; ");
3133 verbose(env, "invalid size of register fill\n");
3134 return -EACCES;
3135 }
3136
3137 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3138 if (dst_regno < 0)
3139 return 0;
3140
3141 if (!(off % BPF_REG_SIZE) && size == spill_size) {
3142 /* The earlier check_reg_arg() has decided the
3143 * subreg_def for this insn. Save it first.
3144 */
3145 s32 subreg_def = state->regs[dst_regno].subreg_def;
3146
3147 copy_register_state(&state->regs[dst_regno], reg);
3148 state->regs[dst_regno].subreg_def = subreg_def;
3149 } else {
3150 for (i = 0; i < size; i++) {
3151 type = stype[(slot - i) % BPF_REG_SIZE];
3152 if (type == STACK_SPILL)
3153 continue;
3154 if (type == STACK_MISC)
3155 continue;
3156 verbose(env, "invalid read from stack off %d+%d size %d\n",
3157 off, i, size);
3158 return -EACCES;
3159 }
3160 mark_reg_unknown(env, state->regs, dst_regno);
3161 }
3162 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3163 return 0;
3164 }
3165
3166 if (dst_regno >= 0) {
3167 /* restore register state from stack */
3168 copy_register_state(&state->regs[dst_regno], reg);
3169 /* mark reg as written since spilled pointer state likely
3170 * has its liveness marks cleared by is_state_visited()
3171 * which resets stack/reg liveness for state transitions
3172 */
3173 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3174 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3175 /* If dst_regno==-1, the caller is asking us whether
3176 * it is acceptable to use this value as a SCALAR_VALUE
3177 * (e.g. for XADD).
3178 * We must not allow unprivileged callers to do that
3179 * with spilled pointers.
3180 */
3181 verbose(env, "leaking pointer from stack off %d\n",
3182 off);
3183 return -EACCES;
3184 }
3185 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3186 } else {
3187 for (i = 0; i < size; i++) {
3188 type = stype[(slot - i) % BPF_REG_SIZE];
3189 if (type == STACK_MISC)
3190 continue;
3191 if (type == STACK_ZERO)
3192 continue;
3193 verbose(env, "invalid read from stack off %d+%d size %d\n",
3194 off, i, size);
3195 return -EACCES;
3196 }
3197 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3198 if (dst_regno >= 0)
3199 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3200 }
3201 return 0;
3202 }
3203
3204 enum stack_access_src {
3205 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
3206 ACCESS_HELPER = 2, /* the access is performed by a helper */
3207 };
3208
3209 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3210 int regno, int off, int access_size,
3211 bool zero_size_allowed,
3212 enum stack_access_src type,
3213 struct bpf_call_arg_meta *meta);
3214
reg_state(struct bpf_verifier_env * env,int regno)3215 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3216 {
3217 return cur_regs(env) + regno;
3218 }
3219
3220 /* Read the stack at 'ptr_regno + off' and put the result into the register
3221 * 'dst_regno'.
3222 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3223 * but not its variable offset.
3224 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3225 *
3226 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3227 * filling registers (i.e. reads of spilled register cannot be detected when
3228 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3229 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3230 * offset; for a fixed offset check_stack_read_fixed_off should be used
3231 * instead.
3232 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)3233 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3234 int ptr_regno, int off, int size, int dst_regno)
3235 {
3236 /* The state of the source register. */
3237 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3238 struct bpf_func_state *ptr_state = func(env, reg);
3239 int err;
3240 int min_off, max_off;
3241
3242 /* Note that we pass a NULL meta, so raw access will not be permitted.
3243 */
3244 err = check_stack_range_initialized(env, ptr_regno, off, size,
3245 false, ACCESS_DIRECT, NULL);
3246 if (err)
3247 return err;
3248
3249 min_off = reg->smin_value + off;
3250 max_off = reg->smax_value + off;
3251 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3252 return 0;
3253 }
3254
3255 /* check_stack_read dispatches to check_stack_read_fixed_off or
3256 * check_stack_read_var_off.
3257 *
3258 * The caller must ensure that the offset falls within the allocated stack
3259 * bounds.
3260 *
3261 * 'dst_regno' is a register which will receive the value from the stack. It
3262 * can be -1, meaning that the read value is not going to a register.
3263 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)3264 static int check_stack_read(struct bpf_verifier_env *env,
3265 int ptr_regno, int off, int size,
3266 int dst_regno)
3267 {
3268 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3269 struct bpf_func_state *state = func(env, reg);
3270 int err;
3271 /* Some accesses are only permitted with a static offset. */
3272 bool var_off = !tnum_is_const(reg->var_off);
3273
3274 /* The offset is required to be static when reads don't go to a
3275 * register, in order to not leak pointers (see
3276 * check_stack_read_fixed_off).
3277 */
3278 if (dst_regno < 0 && var_off) {
3279 char tn_buf[48];
3280
3281 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3282 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3283 tn_buf, off, size);
3284 return -EACCES;
3285 }
3286 /* Variable offset is prohibited for unprivileged mode for simplicity
3287 * since it requires corresponding support in Spectre masking for stack
3288 * ALU. See also retrieve_ptr_limit(). The check in
3289 * check_stack_access_for_ptr_arithmetic() called by
3290 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
3291 * with variable offsets, therefore no check is required here. Further,
3292 * just checking it here would be insufficient as speculative stack
3293 * writes could still lead to unsafe speculative behaviour.
3294 */
3295 if (!var_off) {
3296 off += reg->var_off.value;
3297 err = check_stack_read_fixed_off(env, state, off, size,
3298 dst_regno);
3299 } else {
3300 /* Variable offset stack reads need more conservative handling
3301 * than fixed offset ones. Note that dst_regno >= 0 on this
3302 * branch.
3303 */
3304 err = check_stack_read_var_off(env, ptr_regno, off, size,
3305 dst_regno);
3306 }
3307 return err;
3308 }
3309
3310
3311 /* check_stack_write dispatches to check_stack_write_fixed_off or
3312 * check_stack_write_var_off.
3313 *
3314 * 'ptr_regno' is the register used as a pointer into the stack.
3315 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3316 * 'value_regno' is the register whose value we're writing to the stack. It can
3317 * be -1, meaning that we're not writing from a register.
3318 *
3319 * The caller must ensure that the offset falls within the maximum stack size.
3320 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)3321 static int check_stack_write(struct bpf_verifier_env *env,
3322 int ptr_regno, int off, int size,
3323 int value_regno, int insn_idx)
3324 {
3325 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3326 struct bpf_func_state *state = func(env, reg);
3327 int err;
3328
3329 if (tnum_is_const(reg->var_off)) {
3330 off += reg->var_off.value;
3331 err = check_stack_write_fixed_off(env, state, off, size,
3332 value_regno, insn_idx);
3333 } else {
3334 /* Variable offset stack reads need more conservative handling
3335 * than fixed offset ones.
3336 */
3337 err = check_stack_write_var_off(env, state,
3338 ptr_regno, off, size,
3339 value_regno, insn_idx);
3340 }
3341 return err;
3342 }
3343
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)3344 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3345 int off, int size, enum bpf_access_type type)
3346 {
3347 struct bpf_reg_state *regs = cur_regs(env);
3348 struct bpf_map *map = regs[regno].map_ptr;
3349 u32 cap = bpf_map_flags_to_cap(map);
3350
3351 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3352 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3353 map->value_size, off, size);
3354 return -EACCES;
3355 }
3356
3357 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3358 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3359 map->value_size, off, size);
3360 return -EACCES;
3361 }
3362
3363 return 0;
3364 }
3365
3366 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)3367 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3368 int off, int size, u32 mem_size,
3369 bool zero_size_allowed)
3370 {
3371 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3372 struct bpf_reg_state *reg;
3373
3374 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3375 return 0;
3376
3377 reg = &cur_regs(env)[regno];
3378 switch (reg->type) {
3379 case PTR_TO_MAP_KEY:
3380 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3381 mem_size, off, size);
3382 break;
3383 case PTR_TO_MAP_VALUE:
3384 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3385 mem_size, off, size);
3386 break;
3387 case PTR_TO_PACKET:
3388 case PTR_TO_PACKET_META:
3389 case PTR_TO_PACKET_END:
3390 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3391 off, size, regno, reg->id, off, mem_size);
3392 break;
3393 case PTR_TO_MEM:
3394 default:
3395 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3396 mem_size, off, size);
3397 }
3398
3399 return -EACCES;
3400 }
3401
3402 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)3403 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3404 int off, int size, u32 mem_size,
3405 bool zero_size_allowed)
3406 {
3407 struct bpf_verifier_state *vstate = env->cur_state;
3408 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3409 struct bpf_reg_state *reg = &state->regs[regno];
3410 int err;
3411
3412 /* We may have adjusted the register pointing to memory region, so we
3413 * need to try adding each of min_value and max_value to off
3414 * to make sure our theoretical access will be safe.
3415 */
3416 if (env->log.level & BPF_LOG_LEVEL)
3417 print_verifier_state(env, state);
3418
3419 /* The minimum value is only important with signed
3420 * comparisons where we can't assume the floor of a
3421 * value is 0. If we are using signed variables for our
3422 * index'es we need to make sure that whatever we use
3423 * will have a set floor within our range.
3424 */
3425 if (reg->smin_value < 0 &&
3426 (reg->smin_value == S64_MIN ||
3427 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3428 reg->smin_value + off < 0)) {
3429 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3430 regno);
3431 return -EACCES;
3432 }
3433 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3434 mem_size, zero_size_allowed);
3435 if (err) {
3436 verbose(env, "R%d min value is outside of the allowed memory range\n",
3437 regno);
3438 return err;
3439 }
3440
3441 /* If we haven't set a max value then we need to bail since we can't be
3442 * sure we won't do bad things.
3443 * If reg->umax_value + off could overflow, treat that as unbounded too.
3444 */
3445 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3446 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3447 regno);
3448 return -EACCES;
3449 }
3450 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3451 mem_size, zero_size_allowed);
3452 if (err) {
3453 verbose(env, "R%d max value is outside of the allowed memory range\n",
3454 regno);
3455 return err;
3456 }
3457
3458 return 0;
3459 }
3460
3461 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)3462 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3463 int off, int size, bool zero_size_allowed)
3464 {
3465 struct bpf_verifier_state *vstate = env->cur_state;
3466 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3467 struct bpf_reg_state *reg = &state->regs[regno];
3468 struct bpf_map *map = reg->map_ptr;
3469 int err;
3470
3471 err = check_mem_region_access(env, regno, off, size, map->value_size,
3472 zero_size_allowed);
3473 if (err)
3474 return err;
3475
3476 if (map_value_has_spin_lock(map)) {
3477 u32 lock = map->spin_lock_off;
3478
3479 /* if any part of struct bpf_spin_lock can be touched by
3480 * load/store reject this program.
3481 * To check that [x1, x2) overlaps with [y1, y2)
3482 * it is sufficient to check x1 < y2 && y1 < x2.
3483 */
3484 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3485 lock < reg->umax_value + off + size) {
3486 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3487 return -EACCES;
3488 }
3489 }
3490 if (map_value_has_timer(map)) {
3491 u32 t = map->timer_off;
3492
3493 if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3494 t < reg->umax_value + off + size) {
3495 verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3496 return -EACCES;
3497 }
3498 }
3499 return err;
3500 }
3501
3502 #define MAX_PACKET_OFF 0xffff
3503
resolve_prog_type(struct bpf_prog * prog)3504 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3505 {
3506 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3507 }
3508
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)3509 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3510 const struct bpf_call_arg_meta *meta,
3511 enum bpf_access_type t)
3512 {
3513 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3514
3515 switch (prog_type) {
3516 /* Program types only with direct read access go here! */
3517 case BPF_PROG_TYPE_LWT_IN:
3518 case BPF_PROG_TYPE_LWT_OUT:
3519 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3520 case BPF_PROG_TYPE_SK_REUSEPORT:
3521 case BPF_PROG_TYPE_FLOW_DISSECTOR:
3522 case BPF_PROG_TYPE_CGROUP_SKB:
3523 if (t == BPF_WRITE)
3524 return false;
3525 fallthrough;
3526
3527 /* Program types with direct read + write access go here! */
3528 case BPF_PROG_TYPE_SCHED_CLS:
3529 case BPF_PROG_TYPE_SCHED_ACT:
3530 case BPF_PROG_TYPE_XDP:
3531 case BPF_PROG_TYPE_LWT_XMIT:
3532 case BPF_PROG_TYPE_SK_SKB:
3533 case BPF_PROG_TYPE_SK_MSG:
3534 if (meta)
3535 return meta->pkt_access;
3536
3537 env->seen_direct_write = true;
3538 return true;
3539
3540 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3541 if (t == BPF_WRITE)
3542 env->seen_direct_write = true;
3543
3544 return true;
3545
3546 default:
3547 return false;
3548 }
3549 }
3550
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)3551 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3552 int size, bool zero_size_allowed)
3553 {
3554 struct bpf_reg_state *regs = cur_regs(env);
3555 struct bpf_reg_state *reg = ®s[regno];
3556 int err;
3557
3558 /* We may have added a variable offset to the packet pointer; but any
3559 * reg->range we have comes after that. We are only checking the fixed
3560 * offset.
3561 */
3562
3563 /* We don't allow negative numbers, because we aren't tracking enough
3564 * detail to prove they're safe.
3565 */
3566 if (reg->smin_value < 0) {
3567 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3568 regno);
3569 return -EACCES;
3570 }
3571
3572 err = reg->range < 0 ? -EINVAL :
3573 __check_mem_access(env, regno, off, size, reg->range,
3574 zero_size_allowed);
3575 if (err) {
3576 verbose(env, "R%d offset is outside of the packet\n", regno);
3577 return err;
3578 }
3579
3580 /* __check_mem_access has made sure "off + size - 1" is within u16.
3581 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3582 * otherwise find_good_pkt_pointers would have refused to set range info
3583 * that __check_mem_access would have rejected this pkt access.
3584 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3585 */
3586 env->prog->aux->max_pkt_offset =
3587 max_t(u32, env->prog->aux->max_pkt_offset,
3588 off + reg->umax_value + size - 1);
3589
3590 return err;
3591 }
3592
3593 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,struct btf ** btf,u32 * btf_id)3594 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3595 enum bpf_access_type t, enum bpf_reg_type *reg_type,
3596 struct btf **btf, u32 *btf_id)
3597 {
3598 struct bpf_insn_access_aux info = {
3599 .reg_type = *reg_type,
3600 .log = &env->log,
3601 };
3602
3603 if (env->ops->is_valid_access &&
3604 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3605 /* A non zero info.ctx_field_size indicates that this field is a
3606 * candidate for later verifier transformation to load the whole
3607 * field and then apply a mask when accessed with a narrower
3608 * access than actual ctx access size. A zero info.ctx_field_size
3609 * will only allow for whole field access and rejects any other
3610 * type of narrower access.
3611 */
3612 *reg_type = info.reg_type;
3613
3614 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
3615 *btf = info.btf;
3616 *btf_id = info.btf_id;
3617 } else {
3618 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3619 }
3620 /* remember the offset of last byte accessed in ctx */
3621 if (env->prog->aux->max_ctx_offset < off + size)
3622 env->prog->aux->max_ctx_offset = off + size;
3623 return 0;
3624 }
3625
3626 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3627 return -EACCES;
3628 }
3629
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)3630 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3631 int size)
3632 {
3633 if (size < 0 || off < 0 ||
3634 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3635 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3636 off, size);
3637 return -EACCES;
3638 }
3639 return 0;
3640 }
3641
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)3642 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3643 u32 regno, int off, int size,
3644 enum bpf_access_type t)
3645 {
3646 struct bpf_reg_state *regs = cur_regs(env);
3647 struct bpf_reg_state *reg = ®s[regno];
3648 struct bpf_insn_access_aux info = {};
3649 bool valid;
3650
3651 if (reg->smin_value < 0) {
3652 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3653 regno);
3654 return -EACCES;
3655 }
3656
3657 switch (reg->type) {
3658 case PTR_TO_SOCK_COMMON:
3659 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3660 break;
3661 case PTR_TO_SOCKET:
3662 valid = bpf_sock_is_valid_access(off, size, t, &info);
3663 break;
3664 case PTR_TO_TCP_SOCK:
3665 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3666 break;
3667 case PTR_TO_XDP_SOCK:
3668 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3669 break;
3670 default:
3671 valid = false;
3672 }
3673
3674
3675 if (valid) {
3676 env->insn_aux_data[insn_idx].ctx_field_size =
3677 info.ctx_field_size;
3678 return 0;
3679 }
3680
3681 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3682 regno, reg_type_str(env, reg->type), off, size);
3683
3684 return -EACCES;
3685 }
3686
is_pointer_value(struct bpf_verifier_env * env,int regno)3687 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3688 {
3689 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3690 }
3691
is_ctx_reg(struct bpf_verifier_env * env,int regno)3692 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3693 {
3694 const struct bpf_reg_state *reg = reg_state(env, regno);
3695
3696 return reg->type == PTR_TO_CTX;
3697 }
3698
is_sk_reg(struct bpf_verifier_env * env,int regno)3699 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3700 {
3701 const struct bpf_reg_state *reg = reg_state(env, regno);
3702
3703 return type_is_sk_pointer(reg->type);
3704 }
3705
is_pkt_reg(struct bpf_verifier_env * env,int regno)3706 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3707 {
3708 const struct bpf_reg_state *reg = reg_state(env, regno);
3709
3710 return type_is_pkt_pointer(reg->type);
3711 }
3712
is_flow_key_reg(struct bpf_verifier_env * env,int regno)3713 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3714 {
3715 const struct bpf_reg_state *reg = reg_state(env, regno);
3716
3717 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3718 return reg->type == PTR_TO_FLOW_KEYS;
3719 }
3720
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)3721 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3722 const struct bpf_reg_state *reg,
3723 int off, int size, bool strict)
3724 {
3725 struct tnum reg_off;
3726 int ip_align;
3727
3728 /* Byte size accesses are always allowed. */
3729 if (!strict || size == 1)
3730 return 0;
3731
3732 /* For platforms that do not have a Kconfig enabling
3733 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3734 * NET_IP_ALIGN is universally set to '2'. And on platforms
3735 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3736 * to this code only in strict mode where we want to emulate
3737 * the NET_IP_ALIGN==2 checking. Therefore use an
3738 * unconditional IP align value of '2'.
3739 */
3740 ip_align = 2;
3741
3742 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3743 if (!tnum_is_aligned(reg_off, size)) {
3744 char tn_buf[48];
3745
3746 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3747 verbose(env,
3748 "misaligned packet access off %d+%s+%d+%d size %d\n",
3749 ip_align, tn_buf, reg->off, off, size);
3750 return -EACCES;
3751 }
3752
3753 return 0;
3754 }
3755
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)3756 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3757 const struct bpf_reg_state *reg,
3758 const char *pointer_desc,
3759 int off, int size, bool strict)
3760 {
3761 struct tnum reg_off;
3762
3763 /* Byte size accesses are always allowed. */
3764 if (!strict || size == 1)
3765 return 0;
3766
3767 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3768 if (!tnum_is_aligned(reg_off, size)) {
3769 char tn_buf[48];
3770
3771 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3772 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3773 pointer_desc, tn_buf, reg->off, off, size);
3774 return -EACCES;
3775 }
3776
3777 return 0;
3778 }
3779
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)3780 static int check_ptr_alignment(struct bpf_verifier_env *env,
3781 const struct bpf_reg_state *reg, int off,
3782 int size, bool strict_alignment_once)
3783 {
3784 bool strict = env->strict_alignment || strict_alignment_once;
3785 const char *pointer_desc = "";
3786
3787 switch (reg->type) {
3788 case PTR_TO_PACKET:
3789 case PTR_TO_PACKET_META:
3790 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3791 * right in front, treat it the very same way.
3792 */
3793 return check_pkt_ptr_alignment(env, reg, off, size, strict);
3794 case PTR_TO_FLOW_KEYS:
3795 pointer_desc = "flow keys ";
3796 break;
3797 case PTR_TO_MAP_KEY:
3798 pointer_desc = "key ";
3799 break;
3800 case PTR_TO_MAP_VALUE:
3801 pointer_desc = "value ";
3802 break;
3803 case PTR_TO_CTX:
3804 pointer_desc = "context ";
3805 break;
3806 case PTR_TO_STACK:
3807 pointer_desc = "stack ";
3808 /* The stack spill tracking logic in check_stack_write_fixed_off()
3809 * and check_stack_read_fixed_off() relies on stack accesses being
3810 * aligned.
3811 */
3812 strict = true;
3813 break;
3814 case PTR_TO_SOCKET:
3815 pointer_desc = "sock ";
3816 break;
3817 case PTR_TO_SOCK_COMMON:
3818 pointer_desc = "sock_common ";
3819 break;
3820 case PTR_TO_TCP_SOCK:
3821 pointer_desc = "tcp_sock ";
3822 break;
3823 case PTR_TO_XDP_SOCK:
3824 pointer_desc = "xdp_sock ";
3825 break;
3826 default:
3827 break;
3828 }
3829 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3830 strict);
3831 }
3832
update_stack_depth(struct bpf_verifier_env * env,const struct bpf_func_state * func,int off)3833 static int update_stack_depth(struct bpf_verifier_env *env,
3834 const struct bpf_func_state *func,
3835 int off)
3836 {
3837 u16 stack = env->subprog_info[func->subprogno].stack_depth;
3838
3839 if (stack >= -off)
3840 return 0;
3841
3842 /* update known max for given subprogram */
3843 env->subprog_info[func->subprogno].stack_depth = -off;
3844 return 0;
3845 }
3846
3847 /* starting from main bpf function walk all instructions of the function
3848 * and recursively walk all callees that given function can call.
3849 * Ignore jump and exit insns.
3850 * Since recursion is prevented by check_cfg() this algorithm
3851 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3852 */
check_max_stack_depth(struct bpf_verifier_env * env)3853 static int check_max_stack_depth(struct bpf_verifier_env *env)
3854 {
3855 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3856 struct bpf_subprog_info *subprog = env->subprog_info;
3857 struct bpf_insn *insn = env->prog->insnsi;
3858 bool tail_call_reachable = false;
3859 int ret_insn[MAX_CALL_FRAMES];
3860 int ret_prog[MAX_CALL_FRAMES];
3861 int j;
3862
3863 process_func:
3864 /* protect against potential stack overflow that might happen when
3865 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3866 * depth for such case down to 256 so that the worst case scenario
3867 * would result in 8k stack size (32 which is tailcall limit * 256 =
3868 * 8k).
3869 *
3870 * To get the idea what might happen, see an example:
3871 * func1 -> sub rsp, 128
3872 * subfunc1 -> sub rsp, 256
3873 * tailcall1 -> add rsp, 256
3874 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3875 * subfunc2 -> sub rsp, 64
3876 * subfunc22 -> sub rsp, 128
3877 * tailcall2 -> add rsp, 128
3878 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3879 *
3880 * tailcall will unwind the current stack frame but it will not get rid
3881 * of caller's stack as shown on the example above.
3882 */
3883 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3884 verbose(env,
3885 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3886 depth);
3887 return -EACCES;
3888 }
3889 /* round up to 32-bytes, since this is granularity
3890 * of interpreter stack size
3891 */
3892 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3893 if (depth > MAX_BPF_STACK) {
3894 verbose(env, "combined stack size of %d calls is %d. Too large\n",
3895 frame + 1, depth);
3896 return -EACCES;
3897 }
3898 continue_func:
3899 subprog_end = subprog[idx + 1].start;
3900 for (; i < subprog_end; i++) {
3901 int next_insn, sidx;
3902
3903 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3904 continue;
3905 /* remember insn and function to return to */
3906 ret_insn[frame] = i + 1;
3907 ret_prog[frame] = idx;
3908
3909 /* find the callee */
3910 next_insn = i + insn[i].imm + 1;
3911 sidx = find_subprog(env, next_insn);
3912 if (sidx < 0) {
3913 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3914 next_insn);
3915 return -EFAULT;
3916 }
3917 if (subprog[sidx].is_async_cb) {
3918 if (subprog[sidx].has_tail_call) {
3919 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3920 return -EFAULT;
3921 }
3922 /* async callbacks don't increase bpf prog stack size unless called directly */
3923 if (!bpf_pseudo_call(insn + i))
3924 continue;
3925 }
3926 i = next_insn;
3927 idx = sidx;
3928
3929 if (subprog[idx].has_tail_call)
3930 tail_call_reachable = true;
3931
3932 frame++;
3933 if (frame >= MAX_CALL_FRAMES) {
3934 verbose(env, "the call stack of %d frames is too deep !\n",
3935 frame);
3936 return -E2BIG;
3937 }
3938 goto process_func;
3939 }
3940 /* if tail call got detected across bpf2bpf calls then mark each of the
3941 * currently present subprog frames as tail call reachable subprogs;
3942 * this info will be utilized by JIT so that we will be preserving the
3943 * tail call counter throughout bpf2bpf calls combined with tailcalls
3944 */
3945 if (tail_call_reachable)
3946 for (j = 0; j < frame; j++)
3947 subprog[ret_prog[j]].tail_call_reachable = true;
3948 if (subprog[0].tail_call_reachable)
3949 env->prog->aux->tail_call_reachable = true;
3950
3951 /* end of for() loop means the last insn of the 'subprog'
3952 * was reached. Doesn't matter whether it was JA or EXIT
3953 */
3954 if (frame == 0)
3955 return 0;
3956 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3957 frame--;
3958 i = ret_insn[frame];
3959 idx = ret_prog[frame];
3960 goto continue_func;
3961 }
3962
3963 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)3964 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3965 const struct bpf_insn *insn, int idx)
3966 {
3967 int start = idx + insn->imm + 1, subprog;
3968
3969 subprog = find_subprog(env, start);
3970 if (subprog < 0) {
3971 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3972 start);
3973 return -EFAULT;
3974 }
3975 return env->subprog_info[subprog].stack_depth;
3976 }
3977 #endif
3978
check_ctx_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)3979 int check_ctx_reg(struct bpf_verifier_env *env,
3980 const struct bpf_reg_state *reg, int regno)
3981 {
3982 /* Access to ctx or passing it to a helper is only allowed in
3983 * its original, unmodified form.
3984 */
3985
3986 if (reg->off) {
3987 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3988 regno, reg->off);
3989 return -EACCES;
3990 }
3991
3992 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3993 char tn_buf[48];
3994
3995 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3996 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3997 return -EACCES;
3998 }
3999
4000 return 0;
4001 }
4002
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)4003 static int __check_buffer_access(struct bpf_verifier_env *env,
4004 const char *buf_info,
4005 const struct bpf_reg_state *reg,
4006 int regno, int off, int size)
4007 {
4008 if (off < 0) {
4009 verbose(env,
4010 "R%d invalid %s buffer access: off=%d, size=%d\n",
4011 regno, buf_info, off, size);
4012 return -EACCES;
4013 }
4014 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4015 char tn_buf[48];
4016
4017 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4018 verbose(env,
4019 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4020 regno, off, tn_buf);
4021 return -EACCES;
4022 }
4023
4024 return 0;
4025 }
4026
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)4027 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4028 const struct bpf_reg_state *reg,
4029 int regno, int off, int size)
4030 {
4031 int err;
4032
4033 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4034 if (err)
4035 return err;
4036
4037 if (off + size > env->prog->aux->max_tp_access)
4038 env->prog->aux->max_tp_access = off + size;
4039
4040 return 0;
4041 }
4042
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,const char * buf_info,u32 * max_access)4043 static int check_buffer_access(struct bpf_verifier_env *env,
4044 const struct bpf_reg_state *reg,
4045 int regno, int off, int size,
4046 bool zero_size_allowed,
4047 const char *buf_info,
4048 u32 *max_access)
4049 {
4050 int err;
4051
4052 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4053 if (err)
4054 return err;
4055
4056 if (off + size > *max_access)
4057 *max_access = off + size;
4058
4059 return 0;
4060 }
4061
4062 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)4063 static void zext_32_to_64(struct bpf_reg_state *reg)
4064 {
4065 reg->var_off = tnum_subreg(reg->var_off);
4066 __reg_assign_32_into_64(reg);
4067 }
4068
4069 /* truncate register to smaller size (in bytes)
4070 * must be called with size < BPF_REG_SIZE
4071 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)4072 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4073 {
4074 u64 mask;
4075
4076 /* clear high bits in bit representation */
4077 reg->var_off = tnum_cast(reg->var_off, size);
4078
4079 /* fix arithmetic bounds */
4080 mask = ((u64)1 << (size * 8)) - 1;
4081 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4082 reg->umin_value &= mask;
4083 reg->umax_value &= mask;
4084 } else {
4085 reg->umin_value = 0;
4086 reg->umax_value = mask;
4087 }
4088 reg->smin_value = reg->umin_value;
4089 reg->smax_value = reg->umax_value;
4090
4091 /* If size is smaller than 32bit register the 32bit register
4092 * values are also truncated so we push 64-bit bounds into
4093 * 32-bit bounds. Above were truncated < 32-bits already.
4094 */
4095 if (size >= 4)
4096 return;
4097 __reg_combine_64_into_32(reg);
4098 }
4099
bpf_map_is_rdonly(const struct bpf_map * map)4100 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4101 {
4102 /* A map is considered read-only if the following condition are true:
4103 *
4104 * 1) BPF program side cannot change any of the map content. The
4105 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4106 * and was set at map creation time.
4107 * 2) The map value(s) have been initialized from user space by a
4108 * loader and then "frozen", such that no new map update/delete
4109 * operations from syscall side are possible for the rest of
4110 * the map's lifetime from that point onwards.
4111 * 3) Any parallel/pending map update/delete operations from syscall
4112 * side have been completed. Only after that point, it's safe to
4113 * assume that map value(s) are immutable.
4114 */
4115 return (map->map_flags & BPF_F_RDONLY_PROG) &&
4116 READ_ONCE(map->frozen) &&
4117 !bpf_map_write_active(map);
4118 }
4119
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val)4120 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4121 {
4122 void *ptr;
4123 u64 addr;
4124 int err;
4125
4126 err = map->ops->map_direct_value_addr(map, &addr, off);
4127 if (err)
4128 return err;
4129 ptr = (void *)(long)addr + off;
4130
4131 switch (size) {
4132 case sizeof(u8):
4133 *val = (u64)*(u8 *)ptr;
4134 break;
4135 case sizeof(u16):
4136 *val = (u64)*(u16 *)ptr;
4137 break;
4138 case sizeof(u32):
4139 *val = (u64)*(u32 *)ptr;
4140 break;
4141 case sizeof(u64):
4142 *val = *(u64 *)ptr;
4143 break;
4144 default:
4145 return -EINVAL;
4146 }
4147 return 0;
4148 }
4149
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)4150 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4151 struct bpf_reg_state *regs,
4152 int regno, int off, int size,
4153 enum bpf_access_type atype,
4154 int value_regno)
4155 {
4156 struct bpf_reg_state *reg = regs + regno;
4157 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4158 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4159 u32 btf_id;
4160 int ret;
4161
4162 if (off < 0) {
4163 verbose(env,
4164 "R%d is ptr_%s invalid negative access: off=%d\n",
4165 regno, tname, off);
4166 return -EACCES;
4167 }
4168 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4169 char tn_buf[48];
4170
4171 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4172 verbose(env,
4173 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4174 regno, tname, off, tn_buf);
4175 return -EACCES;
4176 }
4177
4178 if (env->ops->btf_struct_access) {
4179 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4180 off, size, atype, &btf_id);
4181 } else {
4182 if (atype != BPF_READ) {
4183 verbose(env, "only read is supported\n");
4184 return -EACCES;
4185 }
4186
4187 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4188 atype, &btf_id);
4189 }
4190
4191 if (ret < 0)
4192 return ret;
4193
4194 if (atype == BPF_READ && value_regno >= 0)
4195 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
4196
4197 return 0;
4198 }
4199
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)4200 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4201 struct bpf_reg_state *regs,
4202 int regno, int off, int size,
4203 enum bpf_access_type atype,
4204 int value_regno)
4205 {
4206 struct bpf_reg_state *reg = regs + regno;
4207 struct bpf_map *map = reg->map_ptr;
4208 const struct btf_type *t;
4209 const char *tname;
4210 u32 btf_id;
4211 int ret;
4212
4213 if (!btf_vmlinux) {
4214 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4215 return -ENOTSUPP;
4216 }
4217
4218 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4219 verbose(env, "map_ptr access not supported for map type %d\n",
4220 map->map_type);
4221 return -ENOTSUPP;
4222 }
4223
4224 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4225 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4226
4227 if (!env->allow_ptr_to_map_access) {
4228 verbose(env,
4229 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4230 tname);
4231 return -EPERM;
4232 }
4233
4234 if (off < 0) {
4235 verbose(env, "R%d is %s invalid negative access: off=%d\n",
4236 regno, tname, off);
4237 return -EACCES;
4238 }
4239
4240 if (atype != BPF_READ) {
4241 verbose(env, "only read from %s is supported\n", tname);
4242 return -EACCES;
4243 }
4244
4245 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
4246 if (ret < 0)
4247 return ret;
4248
4249 if (value_regno >= 0)
4250 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
4251
4252 return 0;
4253 }
4254
4255 /* Check that the stack access at the given offset is within bounds. The
4256 * maximum valid offset is -1.
4257 *
4258 * The minimum valid offset is -MAX_BPF_STACK for writes, and
4259 * -state->allocated_stack for reads.
4260 */
check_stack_slot_within_bounds(int off,struct bpf_func_state * state,enum bpf_access_type t)4261 static int check_stack_slot_within_bounds(int off,
4262 struct bpf_func_state *state,
4263 enum bpf_access_type t)
4264 {
4265 int min_valid_off;
4266
4267 if (t == BPF_WRITE)
4268 min_valid_off = -MAX_BPF_STACK;
4269 else
4270 min_valid_off = -state->allocated_stack;
4271
4272 if (off < min_valid_off || off > -1)
4273 return -EACCES;
4274 return 0;
4275 }
4276
4277 /* Check that the stack access at 'regno + off' falls within the maximum stack
4278 * bounds.
4279 *
4280 * 'off' includes `regno->offset`, but not its dynamic part (if any).
4281 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum stack_access_src src,enum bpf_access_type type)4282 static int check_stack_access_within_bounds(
4283 struct bpf_verifier_env *env,
4284 int regno, int off, int access_size,
4285 enum stack_access_src src, enum bpf_access_type type)
4286 {
4287 struct bpf_reg_state *regs = cur_regs(env);
4288 struct bpf_reg_state *reg = regs + regno;
4289 struct bpf_func_state *state = func(env, reg);
4290 int min_off, max_off;
4291 int err;
4292 char *err_extra;
4293
4294 if (src == ACCESS_HELPER)
4295 /* We don't know if helpers are reading or writing (or both). */
4296 err_extra = " indirect access to";
4297 else if (type == BPF_READ)
4298 err_extra = " read from";
4299 else
4300 err_extra = " write to";
4301
4302 if (tnum_is_const(reg->var_off)) {
4303 min_off = reg->var_off.value + off;
4304 max_off = min_off + access_size;
4305 } else {
4306 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4307 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4308 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4309 err_extra, regno);
4310 return -EACCES;
4311 }
4312 min_off = reg->smin_value + off;
4313 max_off = reg->smax_value + off + access_size;
4314 }
4315
4316 err = check_stack_slot_within_bounds(min_off, state, type);
4317 if (!err && max_off > 0)
4318 err = -EINVAL; /* out of stack access into non-negative offsets */
4319
4320 if (err) {
4321 if (tnum_is_const(reg->var_off)) {
4322 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4323 err_extra, regno, off, access_size);
4324 } else {
4325 char tn_buf[48];
4326
4327 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4328 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4329 err_extra, regno, tn_buf, access_size);
4330 }
4331 }
4332 return err;
4333 }
4334
4335 /* check whether memory at (regno + off) is accessible for t = (read | write)
4336 * if t==write, value_regno is a register which value is stored into memory
4337 * if t==read, value_regno is a register which will receive the value from memory
4338 * if t==write && value_regno==-1, some unknown value is stored into memory
4339 * if t==read && value_regno==-1, don't care what we read from memory
4340 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once)4341 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4342 int off, int bpf_size, enum bpf_access_type t,
4343 int value_regno, bool strict_alignment_once)
4344 {
4345 struct bpf_reg_state *regs = cur_regs(env);
4346 struct bpf_reg_state *reg = regs + regno;
4347 struct bpf_func_state *state;
4348 int size, err = 0;
4349
4350 size = bpf_size_to_bytes(bpf_size);
4351 if (size < 0)
4352 return size;
4353
4354 /* alignment checks will add in reg->off themselves */
4355 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4356 if (err)
4357 return err;
4358
4359 /* for access checks, reg->off is just part of off */
4360 off += reg->off;
4361
4362 if (reg->type == PTR_TO_MAP_KEY) {
4363 if (t == BPF_WRITE) {
4364 verbose(env, "write to change key R%d not allowed\n", regno);
4365 return -EACCES;
4366 }
4367
4368 err = check_mem_region_access(env, regno, off, size,
4369 reg->map_ptr->key_size, false);
4370 if (err)
4371 return err;
4372 if (value_regno >= 0)
4373 mark_reg_unknown(env, regs, value_regno);
4374 } else if (reg->type == PTR_TO_MAP_VALUE) {
4375 if (t == BPF_WRITE && value_regno >= 0 &&
4376 is_pointer_value(env, value_regno)) {
4377 verbose(env, "R%d leaks addr into map\n", value_regno);
4378 return -EACCES;
4379 }
4380 err = check_map_access_type(env, regno, off, size, t);
4381 if (err)
4382 return err;
4383 err = check_map_access(env, regno, off, size, false);
4384 if (!err && t == BPF_READ && value_regno >= 0) {
4385 struct bpf_map *map = reg->map_ptr;
4386
4387 /* if map is read-only, track its contents as scalars */
4388 if (tnum_is_const(reg->var_off) &&
4389 bpf_map_is_rdonly(map) &&
4390 map->ops->map_direct_value_addr) {
4391 int map_off = off + reg->var_off.value;
4392 u64 val = 0;
4393
4394 err = bpf_map_direct_read(map, map_off, size,
4395 &val);
4396 if (err)
4397 return err;
4398
4399 regs[value_regno].type = SCALAR_VALUE;
4400 __mark_reg_known(®s[value_regno], val);
4401 } else {
4402 mark_reg_unknown(env, regs, value_regno);
4403 }
4404 }
4405 } else if (base_type(reg->type) == PTR_TO_MEM) {
4406 bool rdonly_mem = type_is_rdonly_mem(reg->type);
4407
4408 if (type_may_be_null(reg->type)) {
4409 verbose(env, "R%d invalid mem access '%s'\n", regno,
4410 reg_type_str(env, reg->type));
4411 return -EACCES;
4412 }
4413
4414 if (t == BPF_WRITE && rdonly_mem) {
4415 verbose(env, "R%d cannot write into %s\n",
4416 regno, reg_type_str(env, reg->type));
4417 return -EACCES;
4418 }
4419
4420 if (t == BPF_WRITE && value_regno >= 0 &&
4421 is_pointer_value(env, value_regno)) {
4422 verbose(env, "R%d leaks addr into mem\n", value_regno);
4423 return -EACCES;
4424 }
4425
4426 err = check_mem_region_access(env, regno, off, size,
4427 reg->mem_size, false);
4428 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
4429 mark_reg_unknown(env, regs, value_regno);
4430 } else if (reg->type == PTR_TO_CTX) {
4431 enum bpf_reg_type reg_type = SCALAR_VALUE;
4432 struct btf *btf = NULL;
4433 u32 btf_id = 0;
4434
4435 if (t == BPF_WRITE && value_regno >= 0 &&
4436 is_pointer_value(env, value_regno)) {
4437 verbose(env, "R%d leaks addr into ctx\n", value_regno);
4438 return -EACCES;
4439 }
4440
4441 err = check_ctx_reg(env, reg, regno);
4442 if (err < 0)
4443 return err;
4444
4445 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id);
4446 if (err)
4447 verbose_linfo(env, insn_idx, "; ");
4448 if (!err && t == BPF_READ && value_regno >= 0) {
4449 /* ctx access returns either a scalar, or a
4450 * PTR_TO_PACKET[_META,_END]. In the latter
4451 * case, we know the offset is zero.
4452 */
4453 if (reg_type == SCALAR_VALUE) {
4454 mark_reg_unknown(env, regs, value_regno);
4455 } else {
4456 mark_reg_known_zero(env, regs,
4457 value_regno);
4458 if (type_may_be_null(reg_type))
4459 regs[value_regno].id = ++env->id_gen;
4460 /* A load of ctx field could have different
4461 * actual load size with the one encoded in the
4462 * insn. When the dst is PTR, it is for sure not
4463 * a sub-register.
4464 */
4465 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4466 if (base_type(reg_type) == PTR_TO_BTF_ID) {
4467 regs[value_regno].btf = btf;
4468 regs[value_regno].btf_id = btf_id;
4469 }
4470 }
4471 regs[value_regno].type = reg_type;
4472 }
4473
4474 } else if (reg->type == PTR_TO_STACK) {
4475 /* Basic bounds checks. */
4476 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4477 if (err)
4478 return err;
4479
4480 state = func(env, reg);
4481 err = update_stack_depth(env, state, off);
4482 if (err)
4483 return err;
4484
4485 if (t == BPF_READ)
4486 err = check_stack_read(env, regno, off, size,
4487 value_regno);
4488 else
4489 err = check_stack_write(env, regno, off, size,
4490 value_regno, insn_idx);
4491 } else if (reg_is_pkt_pointer(reg)) {
4492 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4493 verbose(env, "cannot write into packet\n");
4494 return -EACCES;
4495 }
4496 if (t == BPF_WRITE && value_regno >= 0 &&
4497 is_pointer_value(env, value_regno)) {
4498 verbose(env, "R%d leaks addr into packet\n",
4499 value_regno);
4500 return -EACCES;
4501 }
4502 err = check_packet_access(env, regno, off, size, false);
4503 if (!err && t == BPF_READ && value_regno >= 0)
4504 mark_reg_unknown(env, regs, value_regno);
4505 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4506 if (t == BPF_WRITE && value_regno >= 0 &&
4507 is_pointer_value(env, value_regno)) {
4508 verbose(env, "R%d leaks addr into flow keys\n",
4509 value_regno);
4510 return -EACCES;
4511 }
4512
4513 err = check_flow_keys_access(env, off, size);
4514 if (!err && t == BPF_READ && value_regno >= 0)
4515 mark_reg_unknown(env, regs, value_regno);
4516 } else if (type_is_sk_pointer(reg->type)) {
4517 if (t == BPF_WRITE) {
4518 verbose(env, "R%d cannot write into %s\n",
4519 regno, reg_type_str(env, reg->type));
4520 return -EACCES;
4521 }
4522 err = check_sock_access(env, insn_idx, regno, off, size, t);
4523 if (!err && value_regno >= 0)
4524 mark_reg_unknown(env, regs, value_regno);
4525 } else if (reg->type == PTR_TO_TP_BUFFER) {
4526 err = check_tp_buffer_access(env, reg, regno, off, size);
4527 if (!err && t == BPF_READ && value_regno >= 0)
4528 mark_reg_unknown(env, regs, value_regno);
4529 } else if (reg->type == PTR_TO_BTF_ID) {
4530 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4531 value_regno);
4532 } else if (reg->type == CONST_PTR_TO_MAP) {
4533 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4534 value_regno);
4535 } else if (base_type(reg->type) == PTR_TO_BUF) {
4536 bool rdonly_mem = type_is_rdonly_mem(reg->type);
4537 const char *buf_info;
4538 u32 *max_access;
4539
4540 if (rdonly_mem) {
4541 if (t == BPF_WRITE) {
4542 verbose(env, "R%d cannot write into %s\n",
4543 regno, reg_type_str(env, reg->type));
4544 return -EACCES;
4545 }
4546 buf_info = "rdonly";
4547 max_access = &env->prog->aux->max_rdonly_access;
4548 } else {
4549 buf_info = "rdwr";
4550 max_access = &env->prog->aux->max_rdwr_access;
4551 }
4552
4553 err = check_buffer_access(env, reg, regno, off, size, false,
4554 buf_info, max_access);
4555
4556 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
4557 mark_reg_unknown(env, regs, value_regno);
4558 } else {
4559 verbose(env, "R%d invalid mem access '%s'\n", regno,
4560 reg_type_str(env, reg->type));
4561 return -EACCES;
4562 }
4563
4564 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4565 regs[value_regno].type == SCALAR_VALUE) {
4566 /* b/h/w load zero-extends, mark upper bits as known 0 */
4567 coerce_reg_to_size(®s[value_regno], size);
4568 }
4569 return err;
4570 }
4571
check_atomic(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)4572 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4573 {
4574 int load_reg;
4575 int err;
4576
4577 switch (insn->imm) {
4578 case BPF_ADD:
4579 case BPF_ADD | BPF_FETCH:
4580 case BPF_AND:
4581 case BPF_AND | BPF_FETCH:
4582 case BPF_OR:
4583 case BPF_OR | BPF_FETCH:
4584 case BPF_XOR:
4585 case BPF_XOR | BPF_FETCH:
4586 case BPF_XCHG:
4587 case BPF_CMPXCHG:
4588 break;
4589 default:
4590 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4591 return -EINVAL;
4592 }
4593
4594 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4595 verbose(env, "invalid atomic operand size\n");
4596 return -EINVAL;
4597 }
4598
4599 /* check src1 operand */
4600 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4601 if (err)
4602 return err;
4603
4604 /* check src2 operand */
4605 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4606 if (err)
4607 return err;
4608
4609 if (insn->imm == BPF_CMPXCHG) {
4610 /* Check comparison of R0 with memory location */
4611 const u32 aux_reg = BPF_REG_0;
4612
4613 err = check_reg_arg(env, aux_reg, SRC_OP);
4614 if (err)
4615 return err;
4616
4617 if (is_pointer_value(env, aux_reg)) {
4618 verbose(env, "R%d leaks addr into mem\n", aux_reg);
4619 return -EACCES;
4620 }
4621 }
4622
4623 if (is_pointer_value(env, insn->src_reg)) {
4624 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4625 return -EACCES;
4626 }
4627
4628 if (is_ctx_reg(env, insn->dst_reg) ||
4629 is_pkt_reg(env, insn->dst_reg) ||
4630 is_flow_key_reg(env, insn->dst_reg) ||
4631 is_sk_reg(env, insn->dst_reg)) {
4632 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4633 insn->dst_reg,
4634 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
4635 return -EACCES;
4636 }
4637
4638 if (insn->imm & BPF_FETCH) {
4639 if (insn->imm == BPF_CMPXCHG)
4640 load_reg = BPF_REG_0;
4641 else
4642 load_reg = insn->src_reg;
4643
4644 /* check and record load of old value */
4645 err = check_reg_arg(env, load_reg, DST_OP);
4646 if (err)
4647 return err;
4648 } else {
4649 /* This instruction accesses a memory location but doesn't
4650 * actually load it into a register.
4651 */
4652 load_reg = -1;
4653 }
4654
4655 /* Check whether we can read the memory, with second call for fetch
4656 * case to simulate the register fill.
4657 */
4658 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4659 BPF_SIZE(insn->code), BPF_READ, -1, true);
4660 if (!err && load_reg >= 0)
4661 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4662 BPF_SIZE(insn->code), BPF_READ, load_reg,
4663 true);
4664 if (err)
4665 return err;
4666
4667 /* Check whether we can write into the same memory. */
4668 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4669 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4670 if (err)
4671 return err;
4672
4673 return 0;
4674 }
4675
4676 /* When register 'regno' is used to read the stack (either directly or through
4677 * a helper function) make sure that it's within stack boundary and, depending
4678 * on the access type, that all elements of the stack are initialized.
4679 *
4680 * 'off' includes 'regno->off', but not its dynamic part (if any).
4681 *
4682 * All registers that have been spilled on the stack in the slots within the
4683 * read offsets are marked as read.
4684 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum stack_access_src type,struct bpf_call_arg_meta * meta)4685 static int check_stack_range_initialized(
4686 struct bpf_verifier_env *env, int regno, int off,
4687 int access_size, bool zero_size_allowed,
4688 enum stack_access_src type, struct bpf_call_arg_meta *meta)
4689 {
4690 struct bpf_reg_state *reg = reg_state(env, regno);
4691 struct bpf_func_state *state = func(env, reg);
4692 int err, min_off, max_off, i, j, slot, spi;
4693 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4694 enum bpf_access_type bounds_check_type;
4695 /* Some accesses can write anything into the stack, others are
4696 * read-only.
4697 */
4698 bool clobber = false;
4699
4700 if (access_size == 0 && !zero_size_allowed) {
4701 verbose(env, "invalid zero-sized read\n");
4702 return -EACCES;
4703 }
4704
4705 if (type == ACCESS_HELPER) {
4706 /* The bounds checks for writes are more permissive than for
4707 * reads. However, if raw_mode is not set, we'll do extra
4708 * checks below.
4709 */
4710 bounds_check_type = BPF_WRITE;
4711 clobber = true;
4712 } else {
4713 bounds_check_type = BPF_READ;
4714 }
4715 err = check_stack_access_within_bounds(env, regno, off, access_size,
4716 type, bounds_check_type);
4717 if (err)
4718 return err;
4719
4720
4721 if (tnum_is_const(reg->var_off)) {
4722 min_off = max_off = reg->var_off.value + off;
4723 } else {
4724 /* Variable offset is prohibited for unprivileged mode for
4725 * simplicity since it requires corresponding support in
4726 * Spectre masking for stack ALU.
4727 * See also retrieve_ptr_limit().
4728 */
4729 if (!env->bypass_spec_v1) {
4730 char tn_buf[48];
4731
4732 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4733 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4734 regno, err_extra, tn_buf);
4735 return -EACCES;
4736 }
4737 /* Only initialized buffer on stack is allowed to be accessed
4738 * with variable offset. With uninitialized buffer it's hard to
4739 * guarantee that whole memory is marked as initialized on
4740 * helper return since specific bounds are unknown what may
4741 * cause uninitialized stack leaking.
4742 */
4743 if (meta && meta->raw_mode)
4744 meta = NULL;
4745
4746 min_off = reg->smin_value + off;
4747 max_off = reg->smax_value + off;
4748 }
4749
4750 if (meta && meta->raw_mode) {
4751 meta->access_size = access_size;
4752 meta->regno = regno;
4753 return 0;
4754 }
4755
4756 for (i = min_off; i < max_off + access_size; i++) {
4757 u8 *stype;
4758
4759 slot = -i - 1;
4760 spi = slot / BPF_REG_SIZE;
4761 if (state->allocated_stack <= slot)
4762 goto err;
4763 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4764 if (*stype == STACK_MISC)
4765 goto mark;
4766 if (*stype == STACK_ZERO) {
4767 if (clobber) {
4768 /* helper can write anything into the stack */
4769 *stype = STACK_MISC;
4770 }
4771 goto mark;
4772 }
4773
4774 if (is_spilled_reg(&state->stack[spi]) &&
4775 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4776 goto mark;
4777
4778 if (is_spilled_reg(&state->stack[spi]) &&
4779 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4780 env->allow_ptr_leaks)) {
4781 if (clobber) {
4782 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4783 for (j = 0; j < BPF_REG_SIZE; j++)
4784 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
4785 }
4786 goto mark;
4787 }
4788
4789 err:
4790 if (tnum_is_const(reg->var_off)) {
4791 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4792 err_extra, regno, min_off, i - min_off, access_size);
4793 } else {
4794 char tn_buf[48];
4795
4796 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4797 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4798 err_extra, regno, tn_buf, i - min_off, access_size);
4799 }
4800 return -EACCES;
4801 mark:
4802 /* reading any byte out of 8-byte 'spill_slot' will cause
4803 * the whole slot to be marked as 'read'
4804 */
4805 mark_reg_read(env, &state->stack[spi].spilled_ptr,
4806 state->stack[spi].spilled_ptr.parent,
4807 REG_LIVE_READ64);
4808 }
4809 return update_stack_depth(env, state, min_off);
4810 }
4811
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)4812 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4813 int access_size, bool zero_size_allowed,
4814 struct bpf_call_arg_meta *meta)
4815 {
4816 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4817 const char *buf_info;
4818 u32 *max_access;
4819
4820 switch (base_type(reg->type)) {
4821 case PTR_TO_PACKET:
4822 case PTR_TO_PACKET_META:
4823 return check_packet_access(env, regno, reg->off, access_size,
4824 zero_size_allowed);
4825 case PTR_TO_MAP_KEY:
4826 if (meta && meta->raw_mode) {
4827 verbose(env, "R%d cannot write into %s\n", regno,
4828 reg_type_str(env, reg->type));
4829 return -EACCES;
4830 }
4831 return check_mem_region_access(env, regno, reg->off, access_size,
4832 reg->map_ptr->key_size, false);
4833 case PTR_TO_MAP_VALUE:
4834 if (check_map_access_type(env, regno, reg->off, access_size,
4835 meta && meta->raw_mode ? BPF_WRITE :
4836 BPF_READ))
4837 return -EACCES;
4838 return check_map_access(env, regno, reg->off, access_size,
4839 zero_size_allowed);
4840 case PTR_TO_MEM:
4841 if (type_is_rdonly_mem(reg->type)) {
4842 if (meta && meta->raw_mode) {
4843 verbose(env, "R%d cannot write into %s\n", regno,
4844 reg_type_str(env, reg->type));
4845 return -EACCES;
4846 }
4847 }
4848 return check_mem_region_access(env, regno, reg->off,
4849 access_size, reg->mem_size,
4850 zero_size_allowed);
4851 case PTR_TO_BUF:
4852 if (type_is_rdonly_mem(reg->type)) {
4853 if (meta && meta->raw_mode) {
4854 verbose(env, "R%d cannot write into %s\n", regno,
4855 reg_type_str(env, reg->type));
4856 return -EACCES;
4857 }
4858
4859 buf_info = "rdonly";
4860 max_access = &env->prog->aux->max_rdonly_access;
4861 } else {
4862 buf_info = "rdwr";
4863 max_access = &env->prog->aux->max_rdwr_access;
4864 }
4865 return check_buffer_access(env, reg, regno, reg->off,
4866 access_size, zero_size_allowed,
4867 buf_info, max_access);
4868 case PTR_TO_STACK:
4869 return check_stack_range_initialized(
4870 env,
4871 regno, reg->off, access_size,
4872 zero_size_allowed, ACCESS_HELPER, meta);
4873 default: /* scalar_value or invalid ptr */
4874 /* Allow zero-byte read from NULL, regardless of pointer type */
4875 if (zero_size_allowed && access_size == 0 &&
4876 register_is_null(reg))
4877 return 0;
4878
4879 verbose(env, "R%d type=%s ", regno,
4880 reg_type_str(env, reg->type));
4881 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
4882 return -EACCES;
4883 }
4884 }
4885
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)4886 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4887 u32 regno, u32 mem_size)
4888 {
4889 if (register_is_null(reg))
4890 return 0;
4891
4892 if (type_may_be_null(reg->type)) {
4893 /* Assuming that the register contains a value check if the memory
4894 * access is safe. Temporarily save and restore the register's state as
4895 * the conversion shouldn't be visible to a caller.
4896 */
4897 const struct bpf_reg_state saved_reg = *reg;
4898 int rv;
4899
4900 mark_ptr_not_null_reg(reg);
4901 rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4902 *reg = saved_reg;
4903 return rv;
4904 }
4905
4906 return check_helper_mem_access(env, regno, mem_size, true, NULL);
4907 }
4908
4909 /* Implementation details:
4910 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4911 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4912 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4913 * value_or_null->value transition, since the verifier only cares about
4914 * the range of access to valid map value pointer and doesn't care about actual
4915 * address of the map element.
4916 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4917 * reg->id > 0 after value_or_null->value transition. By doing so
4918 * two bpf_map_lookups will be considered two different pointers that
4919 * point to different bpf_spin_locks.
4920 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4921 * dead-locks.
4922 * Since only one bpf_spin_lock is allowed the checks are simpler than
4923 * reg_is_refcounted() logic. The verifier needs to remember only
4924 * one spin_lock instead of array of acquired_refs.
4925 * cur_state->active_spin_lock remembers which map value element got locked
4926 * and clears it after bpf_spin_unlock.
4927 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)4928 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4929 bool is_lock)
4930 {
4931 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4932 struct bpf_verifier_state *cur = env->cur_state;
4933 bool is_const = tnum_is_const(reg->var_off);
4934 struct bpf_map *map = reg->map_ptr;
4935 u64 val = reg->var_off.value;
4936
4937 if (!is_const) {
4938 verbose(env,
4939 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4940 regno);
4941 return -EINVAL;
4942 }
4943 if (!map->btf) {
4944 verbose(env,
4945 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4946 map->name);
4947 return -EINVAL;
4948 }
4949 if (!map_value_has_spin_lock(map)) {
4950 if (map->spin_lock_off == -E2BIG)
4951 verbose(env,
4952 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4953 map->name);
4954 else if (map->spin_lock_off == -ENOENT)
4955 verbose(env,
4956 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4957 map->name);
4958 else
4959 verbose(env,
4960 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4961 map->name);
4962 return -EINVAL;
4963 }
4964 if (map->spin_lock_off != val + reg->off) {
4965 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4966 val + reg->off);
4967 return -EINVAL;
4968 }
4969 if (is_lock) {
4970 if (cur->active_spin_lock) {
4971 verbose(env,
4972 "Locking two bpf_spin_locks are not allowed\n");
4973 return -EINVAL;
4974 }
4975 cur->active_spin_lock = reg->id;
4976 } else {
4977 if (!cur->active_spin_lock) {
4978 verbose(env, "bpf_spin_unlock without taking a lock\n");
4979 return -EINVAL;
4980 }
4981 if (cur->active_spin_lock != reg->id) {
4982 verbose(env, "bpf_spin_unlock of different lock\n");
4983 return -EINVAL;
4984 }
4985 cur->active_spin_lock = 0;
4986 }
4987 return 0;
4988 }
4989
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)4990 static int process_timer_func(struct bpf_verifier_env *env, int regno,
4991 struct bpf_call_arg_meta *meta)
4992 {
4993 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4994 bool is_const = tnum_is_const(reg->var_off);
4995 struct bpf_map *map = reg->map_ptr;
4996 u64 val = reg->var_off.value;
4997
4998 if (!is_const) {
4999 verbose(env,
5000 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5001 regno);
5002 return -EINVAL;
5003 }
5004 if (!map->btf) {
5005 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5006 map->name);
5007 return -EINVAL;
5008 }
5009 if (!map_value_has_timer(map)) {
5010 if (map->timer_off == -E2BIG)
5011 verbose(env,
5012 "map '%s' has more than one 'struct bpf_timer'\n",
5013 map->name);
5014 else if (map->timer_off == -ENOENT)
5015 verbose(env,
5016 "map '%s' doesn't have 'struct bpf_timer'\n",
5017 map->name);
5018 else
5019 verbose(env,
5020 "map '%s' is not a struct type or bpf_timer is mangled\n",
5021 map->name);
5022 return -EINVAL;
5023 }
5024 if (map->timer_off != val + reg->off) {
5025 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5026 val + reg->off, map->timer_off);
5027 return -EINVAL;
5028 }
5029 if (meta->map_ptr) {
5030 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5031 return -EFAULT;
5032 }
5033 meta->map_uid = reg->map_uid;
5034 meta->map_ptr = map;
5035 return 0;
5036 }
5037
arg_type_is_mem_ptr(enum bpf_arg_type type)5038 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
5039 {
5040 return base_type(type) == ARG_PTR_TO_MEM ||
5041 base_type(type) == ARG_PTR_TO_UNINIT_MEM;
5042 }
5043
arg_type_is_mem_size(enum bpf_arg_type type)5044 static bool arg_type_is_mem_size(enum bpf_arg_type type)
5045 {
5046 return type == ARG_CONST_SIZE ||
5047 type == ARG_CONST_SIZE_OR_ZERO;
5048 }
5049
arg_type_is_alloc_size(enum bpf_arg_type type)5050 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
5051 {
5052 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
5053 }
5054
arg_type_is_int_ptr(enum bpf_arg_type type)5055 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
5056 {
5057 return type == ARG_PTR_TO_INT ||
5058 type == ARG_PTR_TO_LONG;
5059 }
5060
int_ptr_type_to_size(enum bpf_arg_type type)5061 static int int_ptr_type_to_size(enum bpf_arg_type type)
5062 {
5063 if (type == ARG_PTR_TO_INT)
5064 return sizeof(u32);
5065 else if (type == ARG_PTR_TO_LONG)
5066 return sizeof(u64);
5067
5068 return -EINVAL;
5069 }
5070
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)5071 static int resolve_map_arg_type(struct bpf_verifier_env *env,
5072 const struct bpf_call_arg_meta *meta,
5073 enum bpf_arg_type *arg_type)
5074 {
5075 if (!meta->map_ptr) {
5076 /* kernel subsystem misconfigured verifier */
5077 verbose(env, "invalid map_ptr to access map->type\n");
5078 return -EACCES;
5079 }
5080
5081 switch (meta->map_ptr->map_type) {
5082 case BPF_MAP_TYPE_SOCKMAP:
5083 case BPF_MAP_TYPE_SOCKHASH:
5084 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
5085 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5086 } else {
5087 verbose(env, "invalid arg_type for sockmap/sockhash\n");
5088 return -EINVAL;
5089 }
5090 break;
5091
5092 default:
5093 break;
5094 }
5095 return 0;
5096 }
5097
5098 struct bpf_reg_types {
5099 const enum bpf_reg_type types[10];
5100 u32 *btf_id;
5101 };
5102
5103 static const struct bpf_reg_types map_key_value_types = {
5104 .types = {
5105 PTR_TO_STACK,
5106 PTR_TO_PACKET,
5107 PTR_TO_PACKET_META,
5108 PTR_TO_MAP_KEY,
5109 PTR_TO_MAP_VALUE,
5110 },
5111 };
5112
5113 static const struct bpf_reg_types sock_types = {
5114 .types = {
5115 PTR_TO_SOCK_COMMON,
5116 PTR_TO_SOCKET,
5117 PTR_TO_TCP_SOCK,
5118 PTR_TO_XDP_SOCK,
5119 },
5120 };
5121
5122 #ifdef CONFIG_NET
5123 static const struct bpf_reg_types btf_id_sock_common_types = {
5124 .types = {
5125 PTR_TO_SOCK_COMMON,
5126 PTR_TO_SOCKET,
5127 PTR_TO_TCP_SOCK,
5128 PTR_TO_XDP_SOCK,
5129 PTR_TO_BTF_ID,
5130 },
5131 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5132 };
5133 #endif
5134
5135 static const struct bpf_reg_types mem_types = {
5136 .types = {
5137 PTR_TO_STACK,
5138 PTR_TO_PACKET,
5139 PTR_TO_PACKET_META,
5140 PTR_TO_MAP_KEY,
5141 PTR_TO_MAP_VALUE,
5142 PTR_TO_MEM,
5143 PTR_TO_BUF,
5144 },
5145 };
5146
5147 static const struct bpf_reg_types int_ptr_types = {
5148 .types = {
5149 PTR_TO_STACK,
5150 PTR_TO_PACKET,
5151 PTR_TO_PACKET_META,
5152 PTR_TO_MAP_KEY,
5153 PTR_TO_MAP_VALUE,
5154 },
5155 };
5156
5157 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5158 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5159 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5160 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
5161 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5162 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5163 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5164 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
5165 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5166 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5167 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5168 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5169
5170 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5171 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
5172 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
5173 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
5174 [ARG_CONST_SIZE] = &scalar_types,
5175 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
5176 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
5177 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
5178 [ARG_PTR_TO_CTX] = &context_types,
5179 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
5180 #ifdef CONFIG_NET
5181 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
5182 #endif
5183 [ARG_PTR_TO_SOCKET] = &fullsock_types,
5184 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
5185 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
5186 [ARG_PTR_TO_MEM] = &mem_types,
5187 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
5188 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
5189 [ARG_PTR_TO_INT] = &int_ptr_types,
5190 [ARG_PTR_TO_LONG] = &int_ptr_types,
5191 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
5192 [ARG_PTR_TO_FUNC] = &func_ptr_types,
5193 [ARG_PTR_TO_STACK] = &stack_ptr_types,
5194 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
5195 [ARG_PTR_TO_TIMER] = &timer_types,
5196 };
5197
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id)5198 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5199 enum bpf_arg_type arg_type,
5200 const u32 *arg_btf_id)
5201 {
5202 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5203 enum bpf_reg_type expected, type = reg->type;
5204 const struct bpf_reg_types *compatible;
5205 int i, j;
5206
5207 compatible = compatible_reg_types[base_type(arg_type)];
5208 if (!compatible) {
5209 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5210 return -EFAULT;
5211 }
5212
5213 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5214 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5215 *
5216 * Same for MAYBE_NULL:
5217 *
5218 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5219 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5220 *
5221 * Therefore we fold these flags depending on the arg_type before comparison.
5222 */
5223 if (arg_type & MEM_RDONLY)
5224 type &= ~MEM_RDONLY;
5225 if (arg_type & PTR_MAYBE_NULL)
5226 type &= ~PTR_MAYBE_NULL;
5227
5228 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5229 expected = compatible->types[i];
5230 if (expected == NOT_INIT)
5231 break;
5232
5233 if (type == expected)
5234 goto found;
5235 }
5236
5237 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
5238 for (j = 0; j + 1 < i; j++)
5239 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5240 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
5241 return -EACCES;
5242
5243 found:
5244 if (reg->type == PTR_TO_BTF_ID) {
5245 if (!arg_btf_id) {
5246 if (!compatible->btf_id) {
5247 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5248 return -EFAULT;
5249 }
5250 arg_btf_id = compatible->btf_id;
5251 }
5252
5253 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5254 btf_vmlinux, *arg_btf_id)) {
5255 verbose(env, "R%d is of type %s but %s is expected\n",
5256 regno, kernel_type_name(reg->btf, reg->btf_id),
5257 kernel_type_name(btf_vmlinux, *arg_btf_id));
5258 return -EACCES;
5259 }
5260
5261 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5262 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
5263 regno);
5264 return -EACCES;
5265 }
5266 }
5267
5268 return 0;
5269 }
5270
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn)5271 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5272 struct bpf_call_arg_meta *meta,
5273 const struct bpf_func_proto *fn)
5274 {
5275 u32 regno = BPF_REG_1 + arg;
5276 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5277 enum bpf_arg_type arg_type = fn->arg_type[arg];
5278 enum bpf_reg_type type = reg->type;
5279 int err = 0;
5280
5281 if (arg_type == ARG_DONTCARE)
5282 return 0;
5283
5284 err = check_reg_arg(env, regno, SRC_OP);
5285 if (err)
5286 return err;
5287
5288 if (arg_type == ARG_ANYTHING) {
5289 if (is_pointer_value(env, regno)) {
5290 verbose(env, "R%d leaks addr into helper function\n",
5291 regno);
5292 return -EACCES;
5293 }
5294 return 0;
5295 }
5296
5297 if (type_is_pkt_pointer(type) &&
5298 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5299 verbose(env, "helper access to the packet is not allowed\n");
5300 return -EACCES;
5301 }
5302
5303 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
5304 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5305 err = resolve_map_arg_type(env, meta, &arg_type);
5306 if (err)
5307 return err;
5308 }
5309
5310 if (register_is_null(reg) && type_may_be_null(arg_type))
5311 /* A NULL register has a SCALAR_VALUE type, so skip
5312 * type checking.
5313 */
5314 goto skip_type_check;
5315
5316 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
5317 if (err)
5318 return err;
5319
5320 if (type == PTR_TO_CTX) {
5321 err = check_ctx_reg(env, reg, regno);
5322 if (err < 0)
5323 return err;
5324 }
5325
5326 skip_type_check:
5327 if (reg->ref_obj_id) {
5328 if (meta->ref_obj_id) {
5329 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5330 regno, reg->ref_obj_id,
5331 meta->ref_obj_id);
5332 return -EFAULT;
5333 }
5334 meta->ref_obj_id = reg->ref_obj_id;
5335 }
5336
5337 if (arg_type == ARG_CONST_MAP_PTR) {
5338 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5339 if (meta->map_ptr) {
5340 /* Use map_uid (which is unique id of inner map) to reject:
5341 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5342 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5343 * if (inner_map1 && inner_map2) {
5344 * timer = bpf_map_lookup_elem(inner_map1);
5345 * if (timer)
5346 * // mismatch would have been allowed
5347 * bpf_timer_init(timer, inner_map2);
5348 * }
5349 *
5350 * Comparing map_ptr is enough to distinguish normal and outer maps.
5351 */
5352 if (meta->map_ptr != reg->map_ptr ||
5353 meta->map_uid != reg->map_uid) {
5354 verbose(env,
5355 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5356 meta->map_uid, reg->map_uid);
5357 return -EINVAL;
5358 }
5359 }
5360 meta->map_ptr = reg->map_ptr;
5361 meta->map_uid = reg->map_uid;
5362 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5363 /* bpf_map_xxx(..., map_ptr, ..., key) call:
5364 * check that [key, key + map->key_size) are within
5365 * stack limits and initialized
5366 */
5367 if (!meta->map_ptr) {
5368 /* in function declaration map_ptr must come before
5369 * map_key, so that it's verified and known before
5370 * we have to check map_key here. Otherwise it means
5371 * that kernel subsystem misconfigured verifier
5372 */
5373 verbose(env, "invalid map_ptr to access map->key\n");
5374 return -EACCES;
5375 }
5376 err = check_helper_mem_access(env, regno,
5377 meta->map_ptr->key_size, false,
5378 NULL);
5379 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
5380 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5381 if (type_may_be_null(arg_type) && register_is_null(reg))
5382 return 0;
5383
5384 /* bpf_map_xxx(..., map_ptr, ..., value) call:
5385 * check [value, value + map->value_size) validity
5386 */
5387 if (!meta->map_ptr) {
5388 /* kernel subsystem misconfigured verifier */
5389 verbose(env, "invalid map_ptr to access map->value\n");
5390 return -EACCES;
5391 }
5392 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
5393 err = check_helper_mem_access(env, regno,
5394 meta->map_ptr->value_size, false,
5395 meta);
5396 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5397 if (!reg->btf_id) {
5398 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5399 return -EACCES;
5400 }
5401 meta->ret_btf = reg->btf;
5402 meta->ret_btf_id = reg->btf_id;
5403 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5404 if (meta->func_id == BPF_FUNC_spin_lock) {
5405 if (process_spin_lock(env, regno, true))
5406 return -EACCES;
5407 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
5408 if (process_spin_lock(env, regno, false))
5409 return -EACCES;
5410 } else {
5411 verbose(env, "verifier internal error\n");
5412 return -EFAULT;
5413 }
5414 } else if (arg_type == ARG_PTR_TO_TIMER) {
5415 if (process_timer_func(env, regno, meta))
5416 return -EACCES;
5417 } else if (arg_type == ARG_PTR_TO_FUNC) {
5418 meta->subprogno = reg->subprogno;
5419 } else if (arg_type_is_mem_ptr(arg_type)) {
5420 /* The access to this pointer is only checked when we hit the
5421 * next is_mem_size argument below.
5422 */
5423 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5424 } else if (arg_type_is_mem_size(arg_type)) {
5425 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5426
5427 /* This is used to refine r0 return value bounds for helpers
5428 * that enforce this value as an upper bound on return values.
5429 * See do_refine_retval_range() for helpers that can refine
5430 * the return value. C type of helper is u32 so we pull register
5431 * bound from umax_value however, if negative verifier errors
5432 * out. Only upper bounds can be learned because retval is an
5433 * int type and negative retvals are allowed.
5434 */
5435 meta->msize_max_value = reg->umax_value;
5436
5437 /* The register is SCALAR_VALUE; the access check
5438 * happens using its boundaries.
5439 */
5440 if (!tnum_is_const(reg->var_off))
5441 /* For unprivileged variable accesses, disable raw
5442 * mode so that the program is required to
5443 * initialize all the memory that the helper could
5444 * just partially fill up.
5445 */
5446 meta = NULL;
5447
5448 if (reg->smin_value < 0) {
5449 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5450 regno);
5451 return -EACCES;
5452 }
5453
5454 if (reg->umin_value == 0) {
5455 err = check_helper_mem_access(env, regno - 1, 0,
5456 zero_size_allowed,
5457 meta);
5458 if (err)
5459 return err;
5460 }
5461
5462 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5463 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5464 regno);
5465 return -EACCES;
5466 }
5467 err = check_helper_mem_access(env, regno - 1,
5468 reg->umax_value,
5469 zero_size_allowed, meta);
5470 if (!err)
5471 err = mark_chain_precision(env, regno);
5472 } else if (arg_type_is_alloc_size(arg_type)) {
5473 if (!tnum_is_const(reg->var_off)) {
5474 verbose(env, "R%d is not a known constant'\n",
5475 regno);
5476 return -EACCES;
5477 }
5478 meta->mem_size = reg->var_off.value;
5479 } else if (arg_type_is_int_ptr(arg_type)) {
5480 int size = int_ptr_type_to_size(arg_type);
5481
5482 err = check_helper_mem_access(env, regno, size, false, meta);
5483 if (err)
5484 return err;
5485 err = check_ptr_alignment(env, reg, 0, size, true);
5486 } else if (arg_type == ARG_PTR_TO_CONST_STR) {
5487 struct bpf_map *map = reg->map_ptr;
5488 int map_off;
5489 u64 map_addr;
5490 char *str_ptr;
5491
5492 if (!bpf_map_is_rdonly(map)) {
5493 verbose(env, "R%d does not point to a readonly map'\n", regno);
5494 return -EACCES;
5495 }
5496
5497 if (!tnum_is_const(reg->var_off)) {
5498 verbose(env, "R%d is not a constant address'\n", regno);
5499 return -EACCES;
5500 }
5501
5502 if (!map->ops->map_direct_value_addr) {
5503 verbose(env, "no direct value access support for this map type\n");
5504 return -EACCES;
5505 }
5506
5507 err = check_map_access(env, regno, reg->off,
5508 map->value_size - reg->off, false);
5509 if (err)
5510 return err;
5511
5512 map_off = reg->off + reg->var_off.value;
5513 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5514 if (err) {
5515 verbose(env, "direct value access on string failed\n");
5516 return err;
5517 }
5518
5519 str_ptr = (char *)(long)(map_addr);
5520 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5521 verbose(env, "string is not zero-terminated\n");
5522 return -EINVAL;
5523 }
5524 }
5525
5526 return err;
5527 }
5528
may_update_sockmap(struct bpf_verifier_env * env,int func_id)5529 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5530 {
5531 enum bpf_attach_type eatype = env->prog->expected_attach_type;
5532 enum bpf_prog_type type = resolve_prog_type(env->prog);
5533
5534 if (func_id != BPF_FUNC_map_update_elem)
5535 return false;
5536
5537 /* It's not possible to get access to a locked struct sock in these
5538 * contexts, so updating is safe.
5539 */
5540 switch (type) {
5541 case BPF_PROG_TYPE_TRACING:
5542 if (eatype == BPF_TRACE_ITER)
5543 return true;
5544 break;
5545 case BPF_PROG_TYPE_SOCKET_FILTER:
5546 case BPF_PROG_TYPE_SCHED_CLS:
5547 case BPF_PROG_TYPE_SCHED_ACT:
5548 case BPF_PROG_TYPE_XDP:
5549 case BPF_PROG_TYPE_SK_REUSEPORT:
5550 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5551 case BPF_PROG_TYPE_SK_LOOKUP:
5552 return true;
5553 default:
5554 break;
5555 }
5556
5557 verbose(env, "cannot update sockmap in this context\n");
5558 return false;
5559 }
5560
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)5561 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5562 {
5563 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5564 }
5565
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)5566 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5567 struct bpf_map *map, int func_id)
5568 {
5569 if (!map)
5570 return 0;
5571
5572 /* We need a two way check, first is from map perspective ... */
5573 switch (map->map_type) {
5574 case BPF_MAP_TYPE_PROG_ARRAY:
5575 if (func_id != BPF_FUNC_tail_call)
5576 goto error;
5577 break;
5578 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5579 if (func_id != BPF_FUNC_perf_event_read &&
5580 func_id != BPF_FUNC_perf_event_output &&
5581 func_id != BPF_FUNC_skb_output &&
5582 func_id != BPF_FUNC_perf_event_read_value &&
5583 func_id != BPF_FUNC_xdp_output)
5584 goto error;
5585 break;
5586 case BPF_MAP_TYPE_RINGBUF:
5587 if (func_id != BPF_FUNC_ringbuf_output &&
5588 func_id != BPF_FUNC_ringbuf_reserve &&
5589 func_id != BPF_FUNC_ringbuf_query)
5590 goto error;
5591 break;
5592 case BPF_MAP_TYPE_STACK_TRACE:
5593 if (func_id != BPF_FUNC_get_stackid)
5594 goto error;
5595 break;
5596 case BPF_MAP_TYPE_CGROUP_ARRAY:
5597 if (func_id != BPF_FUNC_skb_under_cgroup &&
5598 func_id != BPF_FUNC_current_task_under_cgroup)
5599 goto error;
5600 break;
5601 case BPF_MAP_TYPE_CGROUP_STORAGE:
5602 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5603 if (func_id != BPF_FUNC_get_local_storage)
5604 goto error;
5605 break;
5606 case BPF_MAP_TYPE_DEVMAP:
5607 case BPF_MAP_TYPE_DEVMAP_HASH:
5608 if (func_id != BPF_FUNC_redirect_map &&
5609 func_id != BPF_FUNC_map_lookup_elem)
5610 goto error;
5611 break;
5612 /* Restrict bpf side of cpumap and xskmap, open when use-cases
5613 * appear.
5614 */
5615 case BPF_MAP_TYPE_CPUMAP:
5616 if (func_id != BPF_FUNC_redirect_map)
5617 goto error;
5618 break;
5619 case BPF_MAP_TYPE_XSKMAP:
5620 if (func_id != BPF_FUNC_redirect_map &&
5621 func_id != BPF_FUNC_map_lookup_elem)
5622 goto error;
5623 break;
5624 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5625 case BPF_MAP_TYPE_HASH_OF_MAPS:
5626 if (func_id != BPF_FUNC_map_lookup_elem)
5627 goto error;
5628 break;
5629 case BPF_MAP_TYPE_SOCKMAP:
5630 if (func_id != BPF_FUNC_sk_redirect_map &&
5631 func_id != BPF_FUNC_sock_map_update &&
5632 func_id != BPF_FUNC_map_delete_elem &&
5633 func_id != BPF_FUNC_msg_redirect_map &&
5634 func_id != BPF_FUNC_sk_select_reuseport &&
5635 func_id != BPF_FUNC_map_lookup_elem &&
5636 !may_update_sockmap(env, func_id))
5637 goto error;
5638 break;
5639 case BPF_MAP_TYPE_SOCKHASH:
5640 if (func_id != BPF_FUNC_sk_redirect_hash &&
5641 func_id != BPF_FUNC_sock_hash_update &&
5642 func_id != BPF_FUNC_map_delete_elem &&
5643 func_id != BPF_FUNC_msg_redirect_hash &&
5644 func_id != BPF_FUNC_sk_select_reuseport &&
5645 func_id != BPF_FUNC_map_lookup_elem &&
5646 !may_update_sockmap(env, func_id))
5647 goto error;
5648 break;
5649 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5650 if (func_id != BPF_FUNC_sk_select_reuseport)
5651 goto error;
5652 break;
5653 case BPF_MAP_TYPE_QUEUE:
5654 case BPF_MAP_TYPE_STACK:
5655 if (func_id != BPF_FUNC_map_peek_elem &&
5656 func_id != BPF_FUNC_map_pop_elem &&
5657 func_id != BPF_FUNC_map_push_elem)
5658 goto error;
5659 break;
5660 case BPF_MAP_TYPE_SK_STORAGE:
5661 if (func_id != BPF_FUNC_sk_storage_get &&
5662 func_id != BPF_FUNC_sk_storage_delete)
5663 goto error;
5664 break;
5665 case BPF_MAP_TYPE_INODE_STORAGE:
5666 if (func_id != BPF_FUNC_inode_storage_get &&
5667 func_id != BPF_FUNC_inode_storage_delete)
5668 goto error;
5669 break;
5670 case BPF_MAP_TYPE_TASK_STORAGE:
5671 if (func_id != BPF_FUNC_task_storage_get &&
5672 func_id != BPF_FUNC_task_storage_delete)
5673 goto error;
5674 break;
5675 default:
5676 break;
5677 }
5678
5679 /* ... and second from the function itself. */
5680 switch (func_id) {
5681 case BPF_FUNC_tail_call:
5682 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5683 goto error;
5684 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5685 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5686 return -EINVAL;
5687 }
5688 break;
5689 case BPF_FUNC_perf_event_read:
5690 case BPF_FUNC_perf_event_output:
5691 case BPF_FUNC_perf_event_read_value:
5692 case BPF_FUNC_skb_output:
5693 case BPF_FUNC_xdp_output:
5694 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5695 goto error;
5696 break;
5697 case BPF_FUNC_ringbuf_output:
5698 case BPF_FUNC_ringbuf_reserve:
5699 case BPF_FUNC_ringbuf_query:
5700 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5701 goto error;
5702 break;
5703 case BPF_FUNC_get_stackid:
5704 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5705 goto error;
5706 break;
5707 case BPF_FUNC_current_task_under_cgroup:
5708 case BPF_FUNC_skb_under_cgroup:
5709 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5710 goto error;
5711 break;
5712 case BPF_FUNC_redirect_map:
5713 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5714 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5715 map->map_type != BPF_MAP_TYPE_CPUMAP &&
5716 map->map_type != BPF_MAP_TYPE_XSKMAP)
5717 goto error;
5718 break;
5719 case BPF_FUNC_sk_redirect_map:
5720 case BPF_FUNC_msg_redirect_map:
5721 case BPF_FUNC_sock_map_update:
5722 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5723 goto error;
5724 break;
5725 case BPF_FUNC_sk_redirect_hash:
5726 case BPF_FUNC_msg_redirect_hash:
5727 case BPF_FUNC_sock_hash_update:
5728 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5729 goto error;
5730 break;
5731 case BPF_FUNC_get_local_storage:
5732 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5733 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5734 goto error;
5735 break;
5736 case BPF_FUNC_sk_select_reuseport:
5737 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5738 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5739 map->map_type != BPF_MAP_TYPE_SOCKHASH)
5740 goto error;
5741 break;
5742 case BPF_FUNC_map_peek_elem:
5743 case BPF_FUNC_map_pop_elem:
5744 case BPF_FUNC_map_push_elem:
5745 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5746 map->map_type != BPF_MAP_TYPE_STACK)
5747 goto error;
5748 break;
5749 case BPF_FUNC_sk_storage_get:
5750 case BPF_FUNC_sk_storage_delete:
5751 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5752 goto error;
5753 break;
5754 case BPF_FUNC_inode_storage_get:
5755 case BPF_FUNC_inode_storage_delete:
5756 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5757 goto error;
5758 break;
5759 case BPF_FUNC_task_storage_get:
5760 case BPF_FUNC_task_storage_delete:
5761 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5762 goto error;
5763 break;
5764 default:
5765 break;
5766 }
5767
5768 return 0;
5769 error:
5770 verbose(env, "cannot pass map_type %d into func %s#%d\n",
5771 map->map_type, func_id_name(func_id), func_id);
5772 return -EINVAL;
5773 }
5774
check_raw_mode_ok(const struct bpf_func_proto * fn)5775 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5776 {
5777 int count = 0;
5778
5779 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5780 count++;
5781 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5782 count++;
5783 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5784 count++;
5785 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5786 count++;
5787 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5788 count++;
5789
5790 /* We only support one arg being in raw mode at the moment,
5791 * which is sufficient for the helper functions we have
5792 * right now.
5793 */
5794 return count <= 1;
5795 }
5796
check_args_pair_invalid(enum bpf_arg_type arg_curr,enum bpf_arg_type arg_next)5797 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5798 enum bpf_arg_type arg_next)
5799 {
5800 return (arg_type_is_mem_ptr(arg_curr) &&
5801 !arg_type_is_mem_size(arg_next)) ||
5802 (!arg_type_is_mem_ptr(arg_curr) &&
5803 arg_type_is_mem_size(arg_next));
5804 }
5805
check_arg_pair_ok(const struct bpf_func_proto * fn)5806 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5807 {
5808 /* bpf_xxx(..., buf, len) call will access 'len'
5809 * bytes from memory 'buf'. Both arg types need
5810 * to be paired, so make sure there's no buggy
5811 * helper function specification.
5812 */
5813 if (arg_type_is_mem_size(fn->arg1_type) ||
5814 arg_type_is_mem_ptr(fn->arg5_type) ||
5815 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5816 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5817 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5818 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5819 return false;
5820
5821 return true;
5822 }
5823
check_refcount_ok(const struct bpf_func_proto * fn,int func_id)5824 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5825 {
5826 int count = 0;
5827
5828 if (arg_type_may_be_refcounted(fn->arg1_type))
5829 count++;
5830 if (arg_type_may_be_refcounted(fn->arg2_type))
5831 count++;
5832 if (arg_type_may_be_refcounted(fn->arg3_type))
5833 count++;
5834 if (arg_type_may_be_refcounted(fn->arg4_type))
5835 count++;
5836 if (arg_type_may_be_refcounted(fn->arg5_type))
5837 count++;
5838
5839 /* A reference acquiring function cannot acquire
5840 * another refcounted ptr.
5841 */
5842 if (may_be_acquire_function(func_id) && count)
5843 return false;
5844
5845 /* We only support one arg being unreferenced at the moment,
5846 * which is sufficient for the helper functions we have right now.
5847 */
5848 return count <= 1;
5849 }
5850
check_btf_id_ok(const struct bpf_func_proto * fn)5851 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5852 {
5853 int i;
5854
5855 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5856 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5857 return false;
5858
5859 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5860 return false;
5861 }
5862
5863 return true;
5864 }
5865
check_func_proto(const struct bpf_func_proto * fn,int func_id)5866 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5867 {
5868 return check_raw_mode_ok(fn) &&
5869 check_arg_pair_ok(fn) &&
5870 check_btf_id_ok(fn) &&
5871 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5872 }
5873
5874 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5875 * are now invalid, so turn them into unknown SCALAR_VALUE.
5876 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)5877 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5878 {
5879 struct bpf_func_state *state;
5880 struct bpf_reg_state *reg;
5881
5882 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
5883 if (reg_is_pkt_pointer_any(reg))
5884 __mark_reg_unknown(env, reg);
5885 }));
5886 }
5887
5888 enum {
5889 AT_PKT_END = -1,
5890 BEYOND_PKT_END = -2,
5891 };
5892
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)5893 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5894 {
5895 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5896 struct bpf_reg_state *reg = &state->regs[regn];
5897
5898 if (reg->type != PTR_TO_PACKET)
5899 /* PTR_TO_PACKET_META is not supported yet */
5900 return;
5901
5902 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5903 * How far beyond pkt_end it goes is unknown.
5904 * if (!range_open) it's the case of pkt >= pkt_end
5905 * if (range_open) it's the case of pkt > pkt_end
5906 * hence this pointer is at least 1 byte bigger than pkt_end
5907 */
5908 if (range_open)
5909 reg->range = BEYOND_PKT_END;
5910 else
5911 reg->range = AT_PKT_END;
5912 }
5913
5914 /* The pointer with the specified id has released its reference to kernel
5915 * resources. Identify all copies of the same pointer and clear the reference.
5916 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)5917 static int release_reference(struct bpf_verifier_env *env,
5918 int ref_obj_id)
5919 {
5920 struct bpf_func_state *state;
5921 struct bpf_reg_state *reg;
5922 int err;
5923
5924 err = release_reference_state(cur_func(env), ref_obj_id);
5925 if (err)
5926 return err;
5927
5928 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
5929 if (reg->ref_obj_id == ref_obj_id) {
5930 if (!env->allow_ptr_leaks)
5931 __mark_reg_not_init(env, reg);
5932 else
5933 __mark_reg_unknown(env, reg);
5934 }
5935 }));
5936
5937 return 0;
5938 }
5939
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)5940 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5941 struct bpf_reg_state *regs)
5942 {
5943 int i;
5944
5945 /* after the call registers r0 - r5 were scratched */
5946 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5947 mark_reg_not_init(env, regs, caller_saved[i]);
5948 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5949 }
5950 }
5951
5952 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5953 struct bpf_func_state *caller,
5954 struct bpf_func_state *callee,
5955 int insn_idx);
5956
5957 static int set_callee_state(struct bpf_verifier_env *env,
5958 struct bpf_func_state *caller,
5959 struct bpf_func_state *callee, int insn_idx);
5960
__check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)5961 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5962 int *insn_idx, int subprog,
5963 set_callee_state_fn set_callee_state_cb)
5964 {
5965 struct bpf_verifier_state *state = env->cur_state;
5966 struct bpf_func_info_aux *func_info_aux;
5967 struct bpf_func_state *caller, *callee;
5968 int err;
5969 bool is_global = false;
5970
5971 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5972 verbose(env, "the call stack of %d frames is too deep\n",
5973 state->curframe + 2);
5974 return -E2BIG;
5975 }
5976
5977 caller = state->frame[state->curframe];
5978 if (state->frame[state->curframe + 1]) {
5979 verbose(env, "verifier bug. Frame %d already allocated\n",
5980 state->curframe + 1);
5981 return -EFAULT;
5982 }
5983
5984 func_info_aux = env->prog->aux->func_info_aux;
5985 if (func_info_aux)
5986 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5987 err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5988 if (err == -EFAULT)
5989 return err;
5990 if (is_global) {
5991 if (err) {
5992 verbose(env, "Caller passes invalid args into func#%d\n",
5993 subprog);
5994 return err;
5995 } else {
5996 if (env->log.level & BPF_LOG_LEVEL)
5997 verbose(env,
5998 "Func#%d is global and valid. Skipping.\n",
5999 subprog);
6000 clear_caller_saved_regs(env, caller->regs);
6001
6002 /* All global functions return a 64-bit SCALAR_VALUE */
6003 mark_reg_unknown(env, caller->regs, BPF_REG_0);
6004 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6005
6006 /* continue with next insn after call */
6007 return 0;
6008 }
6009 }
6010
6011 /* set_callee_state is used for direct subprog calls, but we are
6012 * interested in validating only BPF helpers that can call subprogs as
6013 * callbacks
6014 */
6015 if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) {
6016 verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n",
6017 func_id_name(insn->imm), insn->imm);
6018 return -EFAULT;
6019 }
6020
6021 if (insn->code == (BPF_JMP | BPF_CALL) &&
6022 insn->src_reg == 0 &&
6023 insn->imm == BPF_FUNC_timer_set_callback) {
6024 struct bpf_verifier_state *async_cb;
6025
6026 /* there is no real recursion here. timer callbacks are async */
6027 env->subprog_info[subprog].is_async_cb = true;
6028 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6029 *insn_idx, subprog);
6030 if (!async_cb)
6031 return -EFAULT;
6032 callee = async_cb->frame[0];
6033 callee->async_entry_cnt = caller->async_entry_cnt + 1;
6034
6035 /* Convert bpf_timer_set_callback() args into timer callback args */
6036 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6037 if (err)
6038 return err;
6039
6040 clear_caller_saved_regs(env, caller->regs);
6041 mark_reg_unknown(env, caller->regs, BPF_REG_0);
6042 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6043 /* continue with next insn after call */
6044 return 0;
6045 }
6046
6047 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6048 if (!callee)
6049 return -ENOMEM;
6050 state->frame[state->curframe + 1] = callee;
6051
6052 /* callee cannot access r0, r6 - r9 for reading and has to write
6053 * into its own stack before reading from it.
6054 * callee can read/write into caller's stack
6055 */
6056 init_func_state(env, callee,
6057 /* remember the callsite, it will be used by bpf_exit */
6058 *insn_idx /* callsite */,
6059 state->curframe + 1 /* frameno within this callchain */,
6060 subprog /* subprog number within this prog */);
6061
6062 /* Transfer references to the callee */
6063 err = copy_reference_state(callee, caller);
6064 if (err)
6065 goto err_out;
6066
6067 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6068 if (err)
6069 goto err_out;
6070
6071 clear_caller_saved_regs(env, caller->regs);
6072
6073 /* only increment it after check_reg_arg() finished */
6074 state->curframe++;
6075
6076 /* and go analyze first insn of the callee */
6077 *insn_idx = env->subprog_info[subprog].start - 1;
6078
6079 if (env->log.level & BPF_LOG_LEVEL) {
6080 verbose(env, "caller:\n");
6081 print_verifier_state(env, caller);
6082 verbose(env, "callee:\n");
6083 print_verifier_state(env, callee);
6084 }
6085 return 0;
6086
6087 err_out:
6088 free_func_state(callee);
6089 state->frame[state->curframe + 1] = NULL;
6090 return err;
6091 }
6092
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)6093 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6094 struct bpf_func_state *caller,
6095 struct bpf_func_state *callee)
6096 {
6097 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6098 * void *callback_ctx, u64 flags);
6099 * callback_fn(struct bpf_map *map, void *key, void *value,
6100 * void *callback_ctx);
6101 */
6102 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6103
6104 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6105 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6106 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6107
6108 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6109 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6110 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6111
6112 /* pointer to stack or null */
6113 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6114
6115 /* unused */
6116 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6117 return 0;
6118 }
6119
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6120 static int set_callee_state(struct bpf_verifier_env *env,
6121 struct bpf_func_state *caller,
6122 struct bpf_func_state *callee, int insn_idx)
6123 {
6124 int i;
6125
6126 /* copy r1 - r5 args that callee can access. The copy includes parent
6127 * pointers, which connects us up to the liveness chain
6128 */
6129 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6130 callee->regs[i] = caller->regs[i];
6131 return 0;
6132 }
6133
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)6134 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6135 int *insn_idx)
6136 {
6137 int subprog, target_insn;
6138
6139 target_insn = *insn_idx + insn->imm + 1;
6140 subprog = find_subprog(env, target_insn);
6141 if (subprog < 0) {
6142 verbose(env, "verifier bug. No program starts at insn %d\n",
6143 target_insn);
6144 return -EFAULT;
6145 }
6146
6147 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6148 }
6149
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6150 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6151 struct bpf_func_state *caller,
6152 struct bpf_func_state *callee,
6153 int insn_idx)
6154 {
6155 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6156 struct bpf_map *map;
6157 int err;
6158
6159 if (bpf_map_ptr_poisoned(insn_aux)) {
6160 verbose(env, "tail_call abusing map_ptr\n");
6161 return -EINVAL;
6162 }
6163
6164 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6165 if (!map->ops->map_set_for_each_callback_args ||
6166 !map->ops->map_for_each_callback) {
6167 verbose(env, "callback function not allowed for map\n");
6168 return -ENOTSUPP;
6169 }
6170
6171 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6172 if (err)
6173 return err;
6174
6175 callee->in_callback_fn = true;
6176 return 0;
6177 }
6178
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6179 static int set_timer_callback_state(struct bpf_verifier_env *env,
6180 struct bpf_func_state *caller,
6181 struct bpf_func_state *callee,
6182 int insn_idx)
6183 {
6184 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6185
6186 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6187 * callback_fn(struct bpf_map *map, void *key, void *value);
6188 */
6189 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6190 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6191 callee->regs[BPF_REG_1].map_ptr = map_ptr;
6192
6193 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6194 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6195 callee->regs[BPF_REG_2].map_ptr = map_ptr;
6196
6197 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6198 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6199 callee->regs[BPF_REG_3].map_ptr = map_ptr;
6200
6201 /* unused */
6202 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6203 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6204 callee->in_async_callback_fn = true;
6205 return 0;
6206 }
6207
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)6208 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6209 {
6210 struct bpf_verifier_state *state = env->cur_state;
6211 struct bpf_func_state *caller, *callee;
6212 struct bpf_reg_state *r0;
6213 int err;
6214
6215 callee = state->frame[state->curframe];
6216 r0 = &callee->regs[BPF_REG_0];
6217 if (r0->type == PTR_TO_STACK) {
6218 /* technically it's ok to return caller's stack pointer
6219 * (or caller's caller's pointer) back to the caller,
6220 * since these pointers are valid. Only current stack
6221 * pointer will be invalid as soon as function exits,
6222 * but let's be conservative
6223 */
6224 verbose(env, "cannot return stack pointer to the caller\n");
6225 return -EINVAL;
6226 }
6227
6228 caller = state->frame[state->curframe - 1];
6229 if (callee->in_callback_fn) {
6230 /* enforce R0 return value range [0, 1]. */
6231 struct tnum range = tnum_range(0, 1);
6232
6233 if (r0->type != SCALAR_VALUE) {
6234 verbose(env, "R0 not a scalar value\n");
6235 return -EACCES;
6236 }
6237
6238 /* we are going to rely on register's precise value */
6239 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
6240 err = err ?: mark_chain_precision(env, BPF_REG_0);
6241 if (err)
6242 return err;
6243
6244 if (!tnum_in(range, r0->var_off)) {
6245 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6246 return -EINVAL;
6247 }
6248 } else {
6249 /* return to the caller whatever r0 had in the callee */
6250 caller->regs[BPF_REG_0] = *r0;
6251 }
6252
6253 /* Transfer references to the caller */
6254 err = copy_reference_state(caller, callee);
6255 if (err)
6256 return err;
6257
6258 *insn_idx = callee->callsite + 1;
6259 if (env->log.level & BPF_LOG_LEVEL) {
6260 verbose(env, "returning from callee:\n");
6261 print_verifier_state(env, callee);
6262 verbose(env, "to caller at %d:\n", *insn_idx);
6263 print_verifier_state(env, caller);
6264 }
6265 /* clear everything in the callee */
6266 free_func_state(callee);
6267 state->frame[state->curframe--] = NULL;
6268 return 0;
6269 }
6270
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)6271 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6272 int func_id,
6273 struct bpf_call_arg_meta *meta)
6274 {
6275 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
6276
6277 if (ret_type != RET_INTEGER ||
6278 (func_id != BPF_FUNC_get_stack &&
6279 func_id != BPF_FUNC_get_task_stack &&
6280 func_id != BPF_FUNC_probe_read_str &&
6281 func_id != BPF_FUNC_probe_read_kernel_str &&
6282 func_id != BPF_FUNC_probe_read_user_str))
6283 return;
6284
6285 ret_reg->smax_value = meta->msize_max_value;
6286 ret_reg->s32_max_value = meta->msize_max_value;
6287 ret_reg->smin_value = -MAX_ERRNO;
6288 ret_reg->s32_min_value = -MAX_ERRNO;
6289 reg_bounds_sync(ret_reg);
6290 }
6291
6292 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)6293 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6294 int func_id, int insn_idx)
6295 {
6296 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6297 struct bpf_map *map = meta->map_ptr;
6298
6299 if (func_id != BPF_FUNC_tail_call &&
6300 func_id != BPF_FUNC_map_lookup_elem &&
6301 func_id != BPF_FUNC_map_update_elem &&
6302 func_id != BPF_FUNC_map_delete_elem &&
6303 func_id != BPF_FUNC_map_push_elem &&
6304 func_id != BPF_FUNC_map_pop_elem &&
6305 func_id != BPF_FUNC_map_peek_elem &&
6306 func_id != BPF_FUNC_for_each_map_elem &&
6307 func_id != BPF_FUNC_redirect_map)
6308 return 0;
6309
6310 if (map == NULL) {
6311 verbose(env, "kernel subsystem misconfigured verifier\n");
6312 return -EINVAL;
6313 }
6314
6315 /* In case of read-only, some additional restrictions
6316 * need to be applied in order to prevent altering the
6317 * state of the map from program side.
6318 */
6319 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6320 (func_id == BPF_FUNC_map_delete_elem ||
6321 func_id == BPF_FUNC_map_update_elem ||
6322 func_id == BPF_FUNC_map_push_elem ||
6323 func_id == BPF_FUNC_map_pop_elem)) {
6324 verbose(env, "write into map forbidden\n");
6325 return -EACCES;
6326 }
6327
6328 if (!BPF_MAP_PTR(aux->map_ptr_state))
6329 bpf_map_ptr_store(aux, meta->map_ptr,
6330 !meta->map_ptr->bypass_spec_v1);
6331 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
6332 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
6333 !meta->map_ptr->bypass_spec_v1);
6334 return 0;
6335 }
6336
6337 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)6338 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6339 int func_id, int insn_idx)
6340 {
6341 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6342 struct bpf_reg_state *regs = cur_regs(env), *reg;
6343 struct bpf_map *map = meta->map_ptr;
6344 u64 val, max;
6345 int err;
6346
6347 if (func_id != BPF_FUNC_tail_call)
6348 return 0;
6349 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6350 verbose(env, "kernel subsystem misconfigured verifier\n");
6351 return -EINVAL;
6352 }
6353
6354 reg = ®s[BPF_REG_3];
6355 val = reg->var_off.value;
6356 max = map->max_entries;
6357
6358 if (!(register_is_const(reg) && val < max)) {
6359 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6360 return 0;
6361 }
6362
6363 err = mark_chain_precision(env, BPF_REG_3);
6364 if (err)
6365 return err;
6366 if (bpf_map_key_unseen(aux))
6367 bpf_map_key_store(aux, val);
6368 else if (!bpf_map_key_poisoned(aux) &&
6369 bpf_map_key_immediate(aux) != val)
6370 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6371 return 0;
6372 }
6373
check_reference_leak(struct bpf_verifier_env * env)6374 static int check_reference_leak(struct bpf_verifier_env *env)
6375 {
6376 struct bpf_func_state *state = cur_func(env);
6377 int i;
6378
6379 for (i = 0; i < state->acquired_refs; i++) {
6380 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6381 state->refs[i].id, state->refs[i].insn_idx);
6382 }
6383 return state->acquired_refs ? -EINVAL : 0;
6384 }
6385
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)6386 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6387 struct bpf_reg_state *regs)
6388 {
6389 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
6390 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
6391 struct bpf_map *fmt_map = fmt_reg->map_ptr;
6392 int err, fmt_map_off, num_args;
6393 u64 fmt_addr;
6394 char *fmt;
6395
6396 /* data must be an array of u64 */
6397 if (data_len_reg->var_off.value % 8)
6398 return -EINVAL;
6399 num_args = data_len_reg->var_off.value / 8;
6400
6401 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6402 * and map_direct_value_addr is set.
6403 */
6404 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6405 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6406 fmt_map_off);
6407 if (err) {
6408 verbose(env, "verifier bug\n");
6409 return -EFAULT;
6410 }
6411 fmt = (char *)(long)fmt_addr + fmt_map_off;
6412
6413 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6414 * can focus on validating the format specifiers.
6415 */
6416 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
6417 if (err < 0)
6418 verbose(env, "Invalid format string\n");
6419
6420 return err;
6421 }
6422
check_get_func_ip(struct bpf_verifier_env * env)6423 static int check_get_func_ip(struct bpf_verifier_env *env)
6424 {
6425 enum bpf_attach_type eatype = env->prog->expected_attach_type;
6426 enum bpf_prog_type type = resolve_prog_type(env->prog);
6427 int func_id = BPF_FUNC_get_func_ip;
6428
6429 if (type == BPF_PROG_TYPE_TRACING) {
6430 if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT &&
6431 eatype != BPF_MODIFY_RETURN) {
6432 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6433 func_id_name(func_id), func_id);
6434 return -ENOTSUPP;
6435 }
6436 return 0;
6437 } else if (type == BPF_PROG_TYPE_KPROBE) {
6438 return 0;
6439 }
6440
6441 verbose(env, "func %s#%d not supported for program type %d\n",
6442 func_id_name(func_id), func_id, type);
6443 return -ENOTSUPP;
6444 }
6445
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)6446 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6447 int *insn_idx_p)
6448 {
6449 const struct bpf_func_proto *fn = NULL;
6450 enum bpf_return_type ret_type;
6451 enum bpf_type_flag ret_flag;
6452 struct bpf_reg_state *regs;
6453 struct bpf_call_arg_meta meta;
6454 int insn_idx = *insn_idx_p;
6455 bool changes_data;
6456 int i, err, func_id;
6457
6458 /* find function prototype */
6459 func_id = insn->imm;
6460 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
6461 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6462 func_id);
6463 return -EINVAL;
6464 }
6465
6466 if (env->ops->get_func_proto)
6467 fn = env->ops->get_func_proto(func_id, env->prog);
6468 if (!fn) {
6469 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6470 func_id);
6471 return -EINVAL;
6472 }
6473
6474 /* eBPF programs must be GPL compatible to use GPL-ed functions */
6475 if (!env->prog->gpl_compatible && fn->gpl_only) {
6476 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
6477 return -EINVAL;
6478 }
6479
6480 if (fn->allowed && !fn->allowed(env->prog)) {
6481 verbose(env, "helper call is not allowed in probe\n");
6482 return -EINVAL;
6483 }
6484
6485 /* With LD_ABS/IND some JITs save/restore skb from r1. */
6486 changes_data = bpf_helper_changes_pkt_data(fn->func);
6487 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6488 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6489 func_id_name(func_id), func_id);
6490 return -EINVAL;
6491 }
6492
6493 memset(&meta, 0, sizeof(meta));
6494 meta.pkt_access = fn->pkt_access;
6495
6496 err = check_func_proto(fn, func_id);
6497 if (err) {
6498 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6499 func_id_name(func_id), func_id);
6500 return err;
6501 }
6502
6503 meta.func_id = func_id;
6504 /* check args */
6505 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6506 err = check_func_arg(env, i, &meta, fn);
6507 if (err)
6508 return err;
6509 }
6510
6511 err = record_func_map(env, &meta, func_id, insn_idx);
6512 if (err)
6513 return err;
6514
6515 err = record_func_key(env, &meta, func_id, insn_idx);
6516 if (err)
6517 return err;
6518
6519 /* Mark slots with STACK_MISC in case of raw mode, stack offset
6520 * is inferred from register state.
6521 */
6522 for (i = 0; i < meta.access_size; i++) {
6523 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6524 BPF_WRITE, -1, false);
6525 if (err)
6526 return err;
6527 }
6528
6529 if (func_id == BPF_FUNC_tail_call) {
6530 err = check_reference_leak(env);
6531 if (err) {
6532 verbose(env, "tail_call would lead to reference leak\n");
6533 return err;
6534 }
6535 } else if (is_release_function(func_id)) {
6536 err = release_reference(env, meta.ref_obj_id);
6537 if (err) {
6538 verbose(env, "func %s#%d reference has not been acquired before\n",
6539 func_id_name(func_id), func_id);
6540 return err;
6541 }
6542 }
6543
6544 regs = cur_regs(env);
6545
6546 /* check that flags argument in get_local_storage(map, flags) is 0,
6547 * this is required because get_local_storage() can't return an error.
6548 */
6549 if (func_id == BPF_FUNC_get_local_storage &&
6550 !register_is_null(®s[BPF_REG_2])) {
6551 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6552 return -EINVAL;
6553 }
6554
6555 if (func_id == BPF_FUNC_for_each_map_elem) {
6556 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6557 set_map_elem_callback_state);
6558 if (err < 0)
6559 return -EINVAL;
6560 }
6561
6562 if (func_id == BPF_FUNC_timer_set_callback) {
6563 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6564 set_timer_callback_state);
6565 if (err < 0)
6566 return -EINVAL;
6567 }
6568
6569 if (func_id == BPF_FUNC_snprintf) {
6570 err = check_bpf_snprintf_call(env, regs);
6571 if (err < 0)
6572 return err;
6573 }
6574
6575 /* reset caller saved regs */
6576 for (i = 0; i < CALLER_SAVED_REGS; i++) {
6577 mark_reg_not_init(env, regs, caller_saved[i]);
6578 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6579 }
6580
6581 /* helper call returns 64-bit value. */
6582 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6583
6584 /* update return register (already marked as written above) */
6585 ret_type = fn->ret_type;
6586 ret_flag = type_flag(fn->ret_type);
6587 if (ret_type == RET_INTEGER) {
6588 /* sets type to SCALAR_VALUE */
6589 mark_reg_unknown(env, regs, BPF_REG_0);
6590 } else if (ret_type == RET_VOID) {
6591 regs[BPF_REG_0].type = NOT_INIT;
6592 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) {
6593 /* There is no offset yet applied, variable or fixed */
6594 mark_reg_known_zero(env, regs, BPF_REG_0);
6595 /* remember map_ptr, so that check_map_access()
6596 * can check 'value_size' boundary of memory access
6597 * to map element returned from bpf_map_lookup_elem()
6598 */
6599 if (meta.map_ptr == NULL) {
6600 verbose(env,
6601 "kernel subsystem misconfigured verifier\n");
6602 return -EINVAL;
6603 }
6604 regs[BPF_REG_0].map_ptr = meta.map_ptr;
6605 regs[BPF_REG_0].map_uid = meta.map_uid;
6606 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
6607 if (!type_may_be_null(ret_type) &&
6608 map_value_has_spin_lock(meta.map_ptr)) {
6609 regs[BPF_REG_0].id = ++env->id_gen;
6610 }
6611 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) {
6612 mark_reg_known_zero(env, regs, BPF_REG_0);
6613 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
6614 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) {
6615 mark_reg_known_zero(env, regs, BPF_REG_0);
6616 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
6617 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) {
6618 mark_reg_known_zero(env, regs, BPF_REG_0);
6619 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
6620 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) {
6621 mark_reg_known_zero(env, regs, BPF_REG_0);
6622 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
6623 regs[BPF_REG_0].mem_size = meta.mem_size;
6624 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) {
6625 const struct btf_type *t;
6626
6627 mark_reg_known_zero(env, regs, BPF_REG_0);
6628 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6629 if (!btf_type_is_struct(t)) {
6630 u32 tsize;
6631 const struct btf_type *ret;
6632 const char *tname;
6633
6634 /* resolve the type size of ksym. */
6635 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6636 if (IS_ERR(ret)) {
6637 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6638 verbose(env, "unable to resolve the size of type '%s': %ld\n",
6639 tname, PTR_ERR(ret));
6640 return -EINVAL;
6641 }
6642 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
6643 regs[BPF_REG_0].mem_size = tsize;
6644 } else {
6645 /* MEM_RDONLY may be carried from ret_flag, but it
6646 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
6647 * it will confuse the check of PTR_TO_BTF_ID in
6648 * check_mem_access().
6649 */
6650 ret_flag &= ~MEM_RDONLY;
6651
6652 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
6653 regs[BPF_REG_0].btf = meta.ret_btf;
6654 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6655 }
6656 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) {
6657 int ret_btf_id;
6658
6659 mark_reg_known_zero(env, regs, BPF_REG_0);
6660 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
6661 ret_btf_id = *fn->ret_btf_id;
6662 if (ret_btf_id == 0) {
6663 verbose(env, "invalid return type %u of func %s#%d\n",
6664 base_type(ret_type), func_id_name(func_id),
6665 func_id);
6666 return -EINVAL;
6667 }
6668 /* current BPF helper definitions are only coming from
6669 * built-in code with type IDs from vmlinux BTF
6670 */
6671 regs[BPF_REG_0].btf = btf_vmlinux;
6672 regs[BPF_REG_0].btf_id = ret_btf_id;
6673 } else {
6674 verbose(env, "unknown return type %u of func %s#%d\n",
6675 base_type(ret_type), func_id_name(func_id), func_id);
6676 return -EINVAL;
6677 }
6678
6679 if (type_may_be_null(regs[BPF_REG_0].type))
6680 regs[BPF_REG_0].id = ++env->id_gen;
6681
6682 if (is_ptr_cast_function(func_id)) {
6683 /* For release_reference() */
6684 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6685 } else if (is_acquire_function(func_id, meta.map_ptr)) {
6686 int id = acquire_reference_state(env, insn_idx);
6687
6688 if (id < 0)
6689 return id;
6690 /* For mark_ptr_or_null_reg() */
6691 regs[BPF_REG_0].id = id;
6692 /* For release_reference() */
6693 regs[BPF_REG_0].ref_obj_id = id;
6694 }
6695
6696 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6697
6698 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6699 if (err)
6700 return err;
6701
6702 if ((func_id == BPF_FUNC_get_stack ||
6703 func_id == BPF_FUNC_get_task_stack) &&
6704 !env->prog->has_callchain_buf) {
6705 const char *err_str;
6706
6707 #ifdef CONFIG_PERF_EVENTS
6708 err = get_callchain_buffers(sysctl_perf_event_max_stack);
6709 err_str = "cannot get callchain buffer for func %s#%d\n";
6710 #else
6711 err = -ENOTSUPP;
6712 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6713 #endif
6714 if (err) {
6715 verbose(env, err_str, func_id_name(func_id), func_id);
6716 return err;
6717 }
6718
6719 env->prog->has_callchain_buf = true;
6720 }
6721
6722 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6723 env->prog->call_get_stack = true;
6724
6725 if (func_id == BPF_FUNC_get_func_ip) {
6726 if (check_get_func_ip(env))
6727 return -ENOTSUPP;
6728 env->prog->call_get_func_ip = true;
6729 }
6730
6731 if (changes_data)
6732 clear_all_pkt_pointers(env);
6733 return 0;
6734 }
6735
6736 /* mark_btf_func_reg_size() is used when the reg size is determined by
6737 * the BTF func_proto's return value size and argument.
6738 */
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)6739 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6740 size_t reg_size)
6741 {
6742 struct bpf_reg_state *reg = &cur_regs(env)[regno];
6743
6744 if (regno == BPF_REG_0) {
6745 /* Function return value */
6746 reg->live |= REG_LIVE_WRITTEN;
6747 reg->subreg_def = reg_size == sizeof(u64) ?
6748 DEF_NOT_SUBREG : env->insn_idx + 1;
6749 } else {
6750 /* Function argument */
6751 if (reg_size == sizeof(u64)) {
6752 mark_insn_zext(env, reg);
6753 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6754 } else {
6755 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6756 }
6757 }
6758 }
6759
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn)6760 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6761 {
6762 const struct btf_type *t, *func, *func_proto, *ptr_type;
6763 struct bpf_reg_state *regs = cur_regs(env);
6764 const char *func_name, *ptr_type_name;
6765 u32 i, nargs, func_id, ptr_type_id;
6766 const struct btf_param *args;
6767 int err;
6768
6769 func_id = insn->imm;
6770 func = btf_type_by_id(btf_vmlinux, func_id);
6771 func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6772 func_proto = btf_type_by_id(btf_vmlinux, func->type);
6773
6774 if (!env->ops->check_kfunc_call ||
6775 !env->ops->check_kfunc_call(func_id)) {
6776 verbose(env, "calling kernel function %s is not allowed\n",
6777 func_name);
6778 return -EACCES;
6779 }
6780
6781 /* Check the arguments */
6782 err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6783 if (err)
6784 return err;
6785
6786 for (i = 0; i < CALLER_SAVED_REGS; i++)
6787 mark_reg_not_init(env, regs, caller_saved[i]);
6788
6789 /* Check return type */
6790 t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6791 if (btf_type_is_scalar(t)) {
6792 mark_reg_unknown(env, regs, BPF_REG_0);
6793 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6794 } else if (btf_type_is_ptr(t)) {
6795 ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6796 &ptr_type_id);
6797 if (!btf_type_is_struct(ptr_type)) {
6798 ptr_type_name = btf_name_by_offset(btf_vmlinux,
6799 ptr_type->name_off);
6800 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6801 func_name, btf_type_str(ptr_type),
6802 ptr_type_name);
6803 return -EINVAL;
6804 }
6805 mark_reg_known_zero(env, regs, BPF_REG_0);
6806 regs[BPF_REG_0].btf = btf_vmlinux;
6807 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6808 regs[BPF_REG_0].btf_id = ptr_type_id;
6809 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6810 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6811
6812 nargs = btf_type_vlen(func_proto);
6813 args = (const struct btf_param *)(func_proto + 1);
6814 for (i = 0; i < nargs; i++) {
6815 u32 regno = i + 1;
6816
6817 t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6818 if (btf_type_is_ptr(t))
6819 mark_btf_func_reg_size(env, regno, sizeof(void *));
6820 else
6821 /* scalar. ensured by btf_check_kfunc_arg_match() */
6822 mark_btf_func_reg_size(env, regno, t->size);
6823 }
6824
6825 return 0;
6826 }
6827
signed_add_overflows(s64 a,s64 b)6828 static bool signed_add_overflows(s64 a, s64 b)
6829 {
6830 /* Do the add in u64, where overflow is well-defined */
6831 s64 res = (s64)((u64)a + (u64)b);
6832
6833 if (b < 0)
6834 return res > a;
6835 return res < a;
6836 }
6837
signed_add32_overflows(s32 a,s32 b)6838 static bool signed_add32_overflows(s32 a, s32 b)
6839 {
6840 /* Do the add in u32, where overflow is well-defined */
6841 s32 res = (s32)((u32)a + (u32)b);
6842
6843 if (b < 0)
6844 return res > a;
6845 return res < a;
6846 }
6847
signed_sub_overflows(s64 a,s64 b)6848 static bool signed_sub_overflows(s64 a, s64 b)
6849 {
6850 /* Do the sub in u64, where overflow is well-defined */
6851 s64 res = (s64)((u64)a - (u64)b);
6852
6853 if (b < 0)
6854 return res < a;
6855 return res > a;
6856 }
6857
signed_sub32_overflows(s32 a,s32 b)6858 static bool signed_sub32_overflows(s32 a, s32 b)
6859 {
6860 /* Do the sub in u32, where overflow is well-defined */
6861 s32 res = (s32)((u32)a - (u32)b);
6862
6863 if (b < 0)
6864 return res < a;
6865 return res > a;
6866 }
6867
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)6868 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6869 const struct bpf_reg_state *reg,
6870 enum bpf_reg_type type)
6871 {
6872 bool known = tnum_is_const(reg->var_off);
6873 s64 val = reg->var_off.value;
6874 s64 smin = reg->smin_value;
6875
6876 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6877 verbose(env, "math between %s pointer and %lld is not allowed\n",
6878 reg_type_str(env, type), val);
6879 return false;
6880 }
6881
6882 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6883 verbose(env, "%s pointer offset %d is not allowed\n",
6884 reg_type_str(env, type), reg->off);
6885 return false;
6886 }
6887
6888 if (smin == S64_MIN) {
6889 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6890 reg_type_str(env, type));
6891 return false;
6892 }
6893
6894 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6895 verbose(env, "value %lld makes %s pointer be out of bounds\n",
6896 smin, reg_type_str(env, type));
6897 return false;
6898 }
6899
6900 return true;
6901 }
6902
cur_aux(struct bpf_verifier_env * env)6903 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6904 {
6905 return &env->insn_aux_data[env->insn_idx];
6906 }
6907
6908 enum {
6909 REASON_BOUNDS = -1,
6910 REASON_TYPE = -2,
6911 REASON_PATHS = -3,
6912 REASON_LIMIT = -4,
6913 REASON_STACK = -5,
6914 };
6915
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)6916 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6917 u32 *alu_limit, bool mask_to_left)
6918 {
6919 u32 max = 0, ptr_limit = 0;
6920
6921 switch (ptr_reg->type) {
6922 case PTR_TO_STACK:
6923 /* Offset 0 is out-of-bounds, but acceptable start for the
6924 * left direction, see BPF_REG_FP. Also, unknown scalar
6925 * offset where we would need to deal with min/max bounds is
6926 * currently prohibited for unprivileged.
6927 */
6928 max = MAX_BPF_STACK + mask_to_left;
6929 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6930 break;
6931 case PTR_TO_MAP_VALUE:
6932 max = ptr_reg->map_ptr->value_size;
6933 ptr_limit = (mask_to_left ?
6934 ptr_reg->smin_value :
6935 ptr_reg->umax_value) + ptr_reg->off;
6936 break;
6937 default:
6938 return REASON_TYPE;
6939 }
6940
6941 if (ptr_limit >= max)
6942 return REASON_LIMIT;
6943 *alu_limit = ptr_limit;
6944 return 0;
6945 }
6946
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)6947 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6948 const struct bpf_insn *insn)
6949 {
6950 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6951 }
6952
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)6953 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6954 u32 alu_state, u32 alu_limit)
6955 {
6956 /* If we arrived here from different branches with different
6957 * state or limits to sanitize, then this won't work.
6958 */
6959 if (aux->alu_state &&
6960 (aux->alu_state != alu_state ||
6961 aux->alu_limit != alu_limit))
6962 return REASON_PATHS;
6963
6964 /* Corresponding fixup done in do_misc_fixups(). */
6965 aux->alu_state = alu_state;
6966 aux->alu_limit = alu_limit;
6967 return 0;
6968 }
6969
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)6970 static int sanitize_val_alu(struct bpf_verifier_env *env,
6971 struct bpf_insn *insn)
6972 {
6973 struct bpf_insn_aux_data *aux = cur_aux(env);
6974
6975 if (can_skip_alu_sanitation(env, insn))
6976 return 0;
6977
6978 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6979 }
6980
sanitize_needed(u8 opcode)6981 static bool sanitize_needed(u8 opcode)
6982 {
6983 return opcode == BPF_ADD || opcode == BPF_SUB;
6984 }
6985
6986 struct bpf_sanitize_info {
6987 struct bpf_insn_aux_data aux;
6988 bool mask_to_left;
6989 };
6990
6991 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)6992 sanitize_speculative_path(struct bpf_verifier_env *env,
6993 const struct bpf_insn *insn,
6994 u32 next_idx, u32 curr_idx)
6995 {
6996 struct bpf_verifier_state *branch;
6997 struct bpf_reg_state *regs;
6998
6999 branch = push_stack(env, next_idx, curr_idx, true);
7000 if (branch && insn) {
7001 regs = branch->frame[branch->curframe]->regs;
7002 if (BPF_SRC(insn->code) == BPF_K) {
7003 mark_reg_unknown(env, regs, insn->dst_reg);
7004 } else if (BPF_SRC(insn->code) == BPF_X) {
7005 mark_reg_unknown(env, regs, insn->dst_reg);
7006 mark_reg_unknown(env, regs, insn->src_reg);
7007 }
7008 }
7009 return branch;
7010 }
7011
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)7012 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
7013 struct bpf_insn *insn,
7014 const struct bpf_reg_state *ptr_reg,
7015 const struct bpf_reg_state *off_reg,
7016 struct bpf_reg_state *dst_reg,
7017 struct bpf_sanitize_info *info,
7018 const bool commit_window)
7019 {
7020 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
7021 struct bpf_verifier_state *vstate = env->cur_state;
7022 bool off_is_imm = tnum_is_const(off_reg->var_off);
7023 bool off_is_neg = off_reg->smin_value < 0;
7024 bool ptr_is_dst_reg = ptr_reg == dst_reg;
7025 u8 opcode = BPF_OP(insn->code);
7026 u32 alu_state, alu_limit;
7027 struct bpf_reg_state tmp;
7028 bool ret;
7029 int err;
7030
7031 if (can_skip_alu_sanitation(env, insn))
7032 return 0;
7033
7034 /* We already marked aux for masking from non-speculative
7035 * paths, thus we got here in the first place. We only care
7036 * to explore bad access from here.
7037 */
7038 if (vstate->speculative)
7039 goto do_sim;
7040
7041 if (!commit_window) {
7042 if (!tnum_is_const(off_reg->var_off) &&
7043 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
7044 return REASON_BOUNDS;
7045
7046 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
7047 (opcode == BPF_SUB && !off_is_neg);
7048 }
7049
7050 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
7051 if (err < 0)
7052 return err;
7053
7054 if (commit_window) {
7055 /* In commit phase we narrow the masking window based on
7056 * the observed pointer move after the simulated operation.
7057 */
7058 alu_state = info->aux.alu_state;
7059 alu_limit = abs(info->aux.alu_limit - alu_limit);
7060 } else {
7061 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
7062 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7063 alu_state |= ptr_is_dst_reg ?
7064 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
7065
7066 /* Limit pruning on unknown scalars to enable deep search for
7067 * potential masking differences from other program paths.
7068 */
7069 if (!off_is_imm)
7070 env->explore_alu_limits = true;
7071 }
7072
7073 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7074 if (err < 0)
7075 return err;
7076 do_sim:
7077 /* If we're in commit phase, we're done here given we already
7078 * pushed the truncated dst_reg into the speculative verification
7079 * stack.
7080 *
7081 * Also, when register is a known constant, we rewrite register-based
7082 * operation to immediate-based, and thus do not need masking (and as
7083 * a consequence, do not need to simulate the zero-truncation either).
7084 */
7085 if (commit_window || off_is_imm)
7086 return 0;
7087
7088 /* Simulate and find potential out-of-bounds access under
7089 * speculative execution from truncation as a result of
7090 * masking when off was not within expected range. If off
7091 * sits in dst, then we temporarily need to move ptr there
7092 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7093 * for cases where we use K-based arithmetic in one direction
7094 * and truncated reg-based in the other in order to explore
7095 * bad access.
7096 */
7097 if (!ptr_is_dst_reg) {
7098 tmp = *dst_reg;
7099 copy_register_state(dst_reg, ptr_reg);
7100 }
7101 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7102 env->insn_idx);
7103 if (!ptr_is_dst_reg && ret)
7104 *dst_reg = tmp;
7105 return !ret ? REASON_STACK : 0;
7106 }
7107
sanitize_mark_insn_seen(struct bpf_verifier_env * env)7108 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7109 {
7110 struct bpf_verifier_state *vstate = env->cur_state;
7111
7112 /* If we simulate paths under speculation, we don't update the
7113 * insn as 'seen' such that when we verify unreachable paths in
7114 * the non-speculative domain, sanitize_dead_code() can still
7115 * rewrite/sanitize them.
7116 */
7117 if (!vstate->speculative)
7118 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7119 }
7120
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)7121 static int sanitize_err(struct bpf_verifier_env *env,
7122 const struct bpf_insn *insn, int reason,
7123 const struct bpf_reg_state *off_reg,
7124 const struct bpf_reg_state *dst_reg)
7125 {
7126 static const char *err = "pointer arithmetic with it prohibited for !root";
7127 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7128 u32 dst = insn->dst_reg, src = insn->src_reg;
7129
7130 switch (reason) {
7131 case REASON_BOUNDS:
7132 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7133 off_reg == dst_reg ? dst : src, err);
7134 break;
7135 case REASON_TYPE:
7136 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7137 off_reg == dst_reg ? src : dst, err);
7138 break;
7139 case REASON_PATHS:
7140 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7141 dst, op, err);
7142 break;
7143 case REASON_LIMIT:
7144 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7145 dst, op, err);
7146 break;
7147 case REASON_STACK:
7148 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7149 dst, err);
7150 break;
7151 default:
7152 verbose(env, "verifier internal error: unknown reason (%d)\n",
7153 reason);
7154 break;
7155 }
7156
7157 return -EACCES;
7158 }
7159
7160 /* check that stack access falls within stack limits and that 'reg' doesn't
7161 * have a variable offset.
7162 *
7163 * Variable offset is prohibited for unprivileged mode for simplicity since it
7164 * requires corresponding support in Spectre masking for stack ALU. See also
7165 * retrieve_ptr_limit().
7166 *
7167 *
7168 * 'off' includes 'reg->off'.
7169 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)7170 static int check_stack_access_for_ptr_arithmetic(
7171 struct bpf_verifier_env *env,
7172 int regno,
7173 const struct bpf_reg_state *reg,
7174 int off)
7175 {
7176 if (!tnum_is_const(reg->var_off)) {
7177 char tn_buf[48];
7178
7179 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7180 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7181 regno, tn_buf, off);
7182 return -EACCES;
7183 }
7184
7185 if (off >= 0 || off < -MAX_BPF_STACK) {
7186 verbose(env, "R%d stack pointer arithmetic goes out of range, "
7187 "prohibited for !root; off=%d\n", regno, off);
7188 return -EACCES;
7189 }
7190
7191 return 0;
7192 }
7193
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)7194 static int sanitize_check_bounds(struct bpf_verifier_env *env,
7195 const struct bpf_insn *insn,
7196 const struct bpf_reg_state *dst_reg)
7197 {
7198 u32 dst = insn->dst_reg;
7199
7200 /* For unprivileged we require that resulting offset must be in bounds
7201 * in order to be able to sanitize access later on.
7202 */
7203 if (env->bypass_spec_v1)
7204 return 0;
7205
7206 switch (dst_reg->type) {
7207 case PTR_TO_STACK:
7208 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7209 dst_reg->off + dst_reg->var_off.value))
7210 return -EACCES;
7211 break;
7212 case PTR_TO_MAP_VALUE:
7213 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
7214 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7215 "prohibited for !root\n", dst);
7216 return -EACCES;
7217 }
7218 break;
7219 default:
7220 break;
7221 }
7222
7223 return 0;
7224 }
7225
7226 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
7227 * Caller should also handle BPF_MOV case separately.
7228 * If we return -EACCES, caller may want to try again treating pointer as a
7229 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
7230 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)7231 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7232 struct bpf_insn *insn,
7233 const struct bpf_reg_state *ptr_reg,
7234 const struct bpf_reg_state *off_reg)
7235 {
7236 struct bpf_verifier_state *vstate = env->cur_state;
7237 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7238 struct bpf_reg_state *regs = state->regs, *dst_reg;
7239 bool known = tnum_is_const(off_reg->var_off);
7240 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7241 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7242 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7243 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
7244 struct bpf_sanitize_info info = {};
7245 u8 opcode = BPF_OP(insn->code);
7246 u32 dst = insn->dst_reg;
7247 int ret;
7248
7249 dst_reg = ®s[dst];
7250
7251 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7252 smin_val > smax_val || umin_val > umax_val) {
7253 /* Taint dst register if offset had invalid bounds derived from
7254 * e.g. dead branches.
7255 */
7256 __mark_reg_unknown(env, dst_reg);
7257 return 0;
7258 }
7259
7260 if (BPF_CLASS(insn->code) != BPF_ALU64) {
7261 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
7262 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7263 __mark_reg_unknown(env, dst_reg);
7264 return 0;
7265 }
7266
7267 verbose(env,
7268 "R%d 32-bit pointer arithmetic prohibited\n",
7269 dst);
7270 return -EACCES;
7271 }
7272
7273 if (ptr_reg->type & PTR_MAYBE_NULL) {
7274 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7275 dst, reg_type_str(env, ptr_reg->type));
7276 return -EACCES;
7277 }
7278
7279 switch (base_type(ptr_reg->type)) {
7280 case PTR_TO_FLOW_KEYS:
7281 if (known)
7282 break;
7283 fallthrough;
7284 case CONST_PTR_TO_MAP:
7285 /* smin_val represents the known value */
7286 if (known && smin_val == 0 && opcode == BPF_ADD)
7287 break;
7288 fallthrough;
7289 case PTR_TO_PACKET_END:
7290 case PTR_TO_SOCKET:
7291 case PTR_TO_SOCK_COMMON:
7292 case PTR_TO_TCP_SOCK:
7293 case PTR_TO_XDP_SOCK:
7294 reject:
7295 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7296 dst, reg_type_str(env, ptr_reg->type));
7297 return -EACCES;
7298 default:
7299 if (type_may_be_null(ptr_reg->type))
7300 goto reject;
7301 break;
7302 }
7303
7304 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7305 * The id may be overwritten later if we create a new variable offset.
7306 */
7307 dst_reg->type = ptr_reg->type;
7308 dst_reg->id = ptr_reg->id;
7309
7310 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7311 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7312 return -EINVAL;
7313
7314 /* pointer types do not carry 32-bit bounds at the moment. */
7315 __mark_reg32_unbounded(dst_reg);
7316
7317 if (sanitize_needed(opcode)) {
7318 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
7319 &info, false);
7320 if (ret < 0)
7321 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7322 }
7323
7324 switch (opcode) {
7325 case BPF_ADD:
7326 /* We can take a fixed offset as long as it doesn't overflow
7327 * the s32 'off' field
7328 */
7329 if (known && (ptr_reg->off + smin_val ==
7330 (s64)(s32)(ptr_reg->off + smin_val))) {
7331 /* pointer += K. Accumulate it into fixed offset */
7332 dst_reg->smin_value = smin_ptr;
7333 dst_reg->smax_value = smax_ptr;
7334 dst_reg->umin_value = umin_ptr;
7335 dst_reg->umax_value = umax_ptr;
7336 dst_reg->var_off = ptr_reg->var_off;
7337 dst_reg->off = ptr_reg->off + smin_val;
7338 dst_reg->raw = ptr_reg->raw;
7339 break;
7340 }
7341 /* A new variable offset is created. Note that off_reg->off
7342 * == 0, since it's a scalar.
7343 * dst_reg gets the pointer type and since some positive
7344 * integer value was added to the pointer, give it a new 'id'
7345 * if it's a PTR_TO_PACKET.
7346 * this creates a new 'base' pointer, off_reg (variable) gets
7347 * added into the variable offset, and we copy the fixed offset
7348 * from ptr_reg.
7349 */
7350 if (signed_add_overflows(smin_ptr, smin_val) ||
7351 signed_add_overflows(smax_ptr, smax_val)) {
7352 dst_reg->smin_value = S64_MIN;
7353 dst_reg->smax_value = S64_MAX;
7354 } else {
7355 dst_reg->smin_value = smin_ptr + smin_val;
7356 dst_reg->smax_value = smax_ptr + smax_val;
7357 }
7358 if (umin_ptr + umin_val < umin_ptr ||
7359 umax_ptr + umax_val < umax_ptr) {
7360 dst_reg->umin_value = 0;
7361 dst_reg->umax_value = U64_MAX;
7362 } else {
7363 dst_reg->umin_value = umin_ptr + umin_val;
7364 dst_reg->umax_value = umax_ptr + umax_val;
7365 }
7366 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7367 dst_reg->off = ptr_reg->off;
7368 dst_reg->raw = ptr_reg->raw;
7369 if (reg_is_pkt_pointer(ptr_reg)) {
7370 dst_reg->id = ++env->id_gen;
7371 /* something was added to pkt_ptr, set range to zero */
7372 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7373 }
7374 break;
7375 case BPF_SUB:
7376 if (dst_reg == off_reg) {
7377 /* scalar -= pointer. Creates an unknown scalar */
7378 verbose(env, "R%d tried to subtract pointer from scalar\n",
7379 dst);
7380 return -EACCES;
7381 }
7382 /* We don't allow subtraction from FP, because (according to
7383 * test_verifier.c test "invalid fp arithmetic", JITs might not
7384 * be able to deal with it.
7385 */
7386 if (ptr_reg->type == PTR_TO_STACK) {
7387 verbose(env, "R%d subtraction from stack pointer prohibited\n",
7388 dst);
7389 return -EACCES;
7390 }
7391 if (known && (ptr_reg->off - smin_val ==
7392 (s64)(s32)(ptr_reg->off - smin_val))) {
7393 /* pointer -= K. Subtract it from fixed offset */
7394 dst_reg->smin_value = smin_ptr;
7395 dst_reg->smax_value = smax_ptr;
7396 dst_reg->umin_value = umin_ptr;
7397 dst_reg->umax_value = umax_ptr;
7398 dst_reg->var_off = ptr_reg->var_off;
7399 dst_reg->id = ptr_reg->id;
7400 dst_reg->off = ptr_reg->off - smin_val;
7401 dst_reg->raw = ptr_reg->raw;
7402 break;
7403 }
7404 /* A new variable offset is created. If the subtrahend is known
7405 * nonnegative, then any reg->range we had before is still good.
7406 */
7407 if (signed_sub_overflows(smin_ptr, smax_val) ||
7408 signed_sub_overflows(smax_ptr, smin_val)) {
7409 /* Overflow possible, we know nothing */
7410 dst_reg->smin_value = S64_MIN;
7411 dst_reg->smax_value = S64_MAX;
7412 } else {
7413 dst_reg->smin_value = smin_ptr - smax_val;
7414 dst_reg->smax_value = smax_ptr - smin_val;
7415 }
7416 if (umin_ptr < umax_val) {
7417 /* Overflow possible, we know nothing */
7418 dst_reg->umin_value = 0;
7419 dst_reg->umax_value = U64_MAX;
7420 } else {
7421 /* Cannot overflow (as long as bounds are consistent) */
7422 dst_reg->umin_value = umin_ptr - umax_val;
7423 dst_reg->umax_value = umax_ptr - umin_val;
7424 }
7425 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7426 dst_reg->off = ptr_reg->off;
7427 dst_reg->raw = ptr_reg->raw;
7428 if (reg_is_pkt_pointer(ptr_reg)) {
7429 dst_reg->id = ++env->id_gen;
7430 /* something was added to pkt_ptr, set range to zero */
7431 if (smin_val < 0)
7432 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7433 }
7434 break;
7435 case BPF_AND:
7436 case BPF_OR:
7437 case BPF_XOR:
7438 /* bitwise ops on pointers are troublesome, prohibit. */
7439 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7440 dst, bpf_alu_string[opcode >> 4]);
7441 return -EACCES;
7442 default:
7443 /* other operators (e.g. MUL,LSH) produce non-pointer results */
7444 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7445 dst, bpf_alu_string[opcode >> 4]);
7446 return -EACCES;
7447 }
7448
7449 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7450 return -EINVAL;
7451 reg_bounds_sync(dst_reg);
7452 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7453 return -EACCES;
7454 if (sanitize_needed(opcode)) {
7455 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
7456 &info, true);
7457 if (ret < 0)
7458 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7459 }
7460
7461 return 0;
7462 }
7463
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7464 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7465 struct bpf_reg_state *src_reg)
7466 {
7467 s32 smin_val = src_reg->s32_min_value;
7468 s32 smax_val = src_reg->s32_max_value;
7469 u32 umin_val = src_reg->u32_min_value;
7470 u32 umax_val = src_reg->u32_max_value;
7471
7472 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7473 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7474 dst_reg->s32_min_value = S32_MIN;
7475 dst_reg->s32_max_value = S32_MAX;
7476 } else {
7477 dst_reg->s32_min_value += smin_val;
7478 dst_reg->s32_max_value += smax_val;
7479 }
7480 if (dst_reg->u32_min_value + umin_val < umin_val ||
7481 dst_reg->u32_max_value + umax_val < umax_val) {
7482 dst_reg->u32_min_value = 0;
7483 dst_reg->u32_max_value = U32_MAX;
7484 } else {
7485 dst_reg->u32_min_value += umin_val;
7486 dst_reg->u32_max_value += umax_val;
7487 }
7488 }
7489
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7490 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7491 struct bpf_reg_state *src_reg)
7492 {
7493 s64 smin_val = src_reg->smin_value;
7494 s64 smax_val = src_reg->smax_value;
7495 u64 umin_val = src_reg->umin_value;
7496 u64 umax_val = src_reg->umax_value;
7497
7498 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7499 signed_add_overflows(dst_reg->smax_value, smax_val)) {
7500 dst_reg->smin_value = S64_MIN;
7501 dst_reg->smax_value = S64_MAX;
7502 } else {
7503 dst_reg->smin_value += smin_val;
7504 dst_reg->smax_value += smax_val;
7505 }
7506 if (dst_reg->umin_value + umin_val < umin_val ||
7507 dst_reg->umax_value + umax_val < umax_val) {
7508 dst_reg->umin_value = 0;
7509 dst_reg->umax_value = U64_MAX;
7510 } else {
7511 dst_reg->umin_value += umin_val;
7512 dst_reg->umax_value += umax_val;
7513 }
7514 }
7515
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7516 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7517 struct bpf_reg_state *src_reg)
7518 {
7519 s32 smin_val = src_reg->s32_min_value;
7520 s32 smax_val = src_reg->s32_max_value;
7521 u32 umin_val = src_reg->u32_min_value;
7522 u32 umax_val = src_reg->u32_max_value;
7523
7524 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7525 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7526 /* Overflow possible, we know nothing */
7527 dst_reg->s32_min_value = S32_MIN;
7528 dst_reg->s32_max_value = S32_MAX;
7529 } else {
7530 dst_reg->s32_min_value -= smax_val;
7531 dst_reg->s32_max_value -= smin_val;
7532 }
7533 if (dst_reg->u32_min_value < umax_val) {
7534 /* Overflow possible, we know nothing */
7535 dst_reg->u32_min_value = 0;
7536 dst_reg->u32_max_value = U32_MAX;
7537 } else {
7538 /* Cannot overflow (as long as bounds are consistent) */
7539 dst_reg->u32_min_value -= umax_val;
7540 dst_reg->u32_max_value -= umin_val;
7541 }
7542 }
7543
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7544 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7545 struct bpf_reg_state *src_reg)
7546 {
7547 s64 smin_val = src_reg->smin_value;
7548 s64 smax_val = src_reg->smax_value;
7549 u64 umin_val = src_reg->umin_value;
7550 u64 umax_val = src_reg->umax_value;
7551
7552 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7553 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7554 /* Overflow possible, we know nothing */
7555 dst_reg->smin_value = S64_MIN;
7556 dst_reg->smax_value = S64_MAX;
7557 } else {
7558 dst_reg->smin_value -= smax_val;
7559 dst_reg->smax_value -= smin_val;
7560 }
7561 if (dst_reg->umin_value < umax_val) {
7562 /* Overflow possible, we know nothing */
7563 dst_reg->umin_value = 0;
7564 dst_reg->umax_value = U64_MAX;
7565 } else {
7566 /* Cannot overflow (as long as bounds are consistent) */
7567 dst_reg->umin_value -= umax_val;
7568 dst_reg->umax_value -= umin_val;
7569 }
7570 }
7571
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7572 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7573 struct bpf_reg_state *src_reg)
7574 {
7575 s32 smin_val = src_reg->s32_min_value;
7576 u32 umin_val = src_reg->u32_min_value;
7577 u32 umax_val = src_reg->u32_max_value;
7578
7579 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7580 /* Ain't nobody got time to multiply that sign */
7581 __mark_reg32_unbounded(dst_reg);
7582 return;
7583 }
7584 /* Both values are positive, so we can work with unsigned and
7585 * copy the result to signed (unless it exceeds S32_MAX).
7586 */
7587 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7588 /* Potential overflow, we know nothing */
7589 __mark_reg32_unbounded(dst_reg);
7590 return;
7591 }
7592 dst_reg->u32_min_value *= umin_val;
7593 dst_reg->u32_max_value *= umax_val;
7594 if (dst_reg->u32_max_value > S32_MAX) {
7595 /* Overflow possible, we know nothing */
7596 dst_reg->s32_min_value = S32_MIN;
7597 dst_reg->s32_max_value = S32_MAX;
7598 } else {
7599 dst_reg->s32_min_value = dst_reg->u32_min_value;
7600 dst_reg->s32_max_value = dst_reg->u32_max_value;
7601 }
7602 }
7603
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7604 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7605 struct bpf_reg_state *src_reg)
7606 {
7607 s64 smin_val = src_reg->smin_value;
7608 u64 umin_val = src_reg->umin_value;
7609 u64 umax_val = src_reg->umax_value;
7610
7611 if (smin_val < 0 || dst_reg->smin_value < 0) {
7612 /* Ain't nobody got time to multiply that sign */
7613 __mark_reg64_unbounded(dst_reg);
7614 return;
7615 }
7616 /* Both values are positive, so we can work with unsigned and
7617 * copy the result to signed (unless it exceeds S64_MAX).
7618 */
7619 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7620 /* Potential overflow, we know nothing */
7621 __mark_reg64_unbounded(dst_reg);
7622 return;
7623 }
7624 dst_reg->umin_value *= umin_val;
7625 dst_reg->umax_value *= umax_val;
7626 if (dst_reg->umax_value > S64_MAX) {
7627 /* Overflow possible, we know nothing */
7628 dst_reg->smin_value = S64_MIN;
7629 dst_reg->smax_value = S64_MAX;
7630 } else {
7631 dst_reg->smin_value = dst_reg->umin_value;
7632 dst_reg->smax_value = dst_reg->umax_value;
7633 }
7634 }
7635
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7636 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7637 struct bpf_reg_state *src_reg)
7638 {
7639 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7640 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7641 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7642 s32 smin_val = src_reg->s32_min_value;
7643 u32 umax_val = src_reg->u32_max_value;
7644
7645 if (src_known && dst_known) {
7646 __mark_reg32_known(dst_reg, var32_off.value);
7647 return;
7648 }
7649
7650 /* We get our minimum from the var_off, since that's inherently
7651 * bitwise. Our maximum is the minimum of the operands' maxima.
7652 */
7653 dst_reg->u32_min_value = var32_off.value;
7654 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7655 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7656 /* Lose signed bounds when ANDing negative numbers,
7657 * ain't nobody got time for that.
7658 */
7659 dst_reg->s32_min_value = S32_MIN;
7660 dst_reg->s32_max_value = S32_MAX;
7661 } else {
7662 /* ANDing two positives gives a positive, so safe to
7663 * cast result into s64.
7664 */
7665 dst_reg->s32_min_value = dst_reg->u32_min_value;
7666 dst_reg->s32_max_value = dst_reg->u32_max_value;
7667 }
7668 }
7669
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7670 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7671 struct bpf_reg_state *src_reg)
7672 {
7673 bool src_known = tnum_is_const(src_reg->var_off);
7674 bool dst_known = tnum_is_const(dst_reg->var_off);
7675 s64 smin_val = src_reg->smin_value;
7676 u64 umax_val = src_reg->umax_value;
7677
7678 if (src_known && dst_known) {
7679 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7680 return;
7681 }
7682
7683 /* We get our minimum from the var_off, since that's inherently
7684 * bitwise. Our maximum is the minimum of the operands' maxima.
7685 */
7686 dst_reg->umin_value = dst_reg->var_off.value;
7687 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7688 if (dst_reg->smin_value < 0 || smin_val < 0) {
7689 /* Lose signed bounds when ANDing negative numbers,
7690 * ain't nobody got time for that.
7691 */
7692 dst_reg->smin_value = S64_MIN;
7693 dst_reg->smax_value = S64_MAX;
7694 } else {
7695 /* ANDing two positives gives a positive, so safe to
7696 * cast result into s64.
7697 */
7698 dst_reg->smin_value = dst_reg->umin_value;
7699 dst_reg->smax_value = dst_reg->umax_value;
7700 }
7701 /* We may learn something more from the var_off */
7702 __update_reg_bounds(dst_reg);
7703 }
7704
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7705 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7706 struct bpf_reg_state *src_reg)
7707 {
7708 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7709 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7710 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7711 s32 smin_val = src_reg->s32_min_value;
7712 u32 umin_val = src_reg->u32_min_value;
7713
7714 if (src_known && dst_known) {
7715 __mark_reg32_known(dst_reg, var32_off.value);
7716 return;
7717 }
7718
7719 /* We get our maximum from the var_off, and our minimum is the
7720 * maximum of the operands' minima
7721 */
7722 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7723 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7724 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7725 /* Lose signed bounds when ORing negative numbers,
7726 * ain't nobody got time for that.
7727 */
7728 dst_reg->s32_min_value = S32_MIN;
7729 dst_reg->s32_max_value = S32_MAX;
7730 } else {
7731 /* ORing two positives gives a positive, so safe to
7732 * cast result into s64.
7733 */
7734 dst_reg->s32_min_value = dst_reg->u32_min_value;
7735 dst_reg->s32_max_value = dst_reg->u32_max_value;
7736 }
7737 }
7738
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7739 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7740 struct bpf_reg_state *src_reg)
7741 {
7742 bool src_known = tnum_is_const(src_reg->var_off);
7743 bool dst_known = tnum_is_const(dst_reg->var_off);
7744 s64 smin_val = src_reg->smin_value;
7745 u64 umin_val = src_reg->umin_value;
7746
7747 if (src_known && dst_known) {
7748 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7749 return;
7750 }
7751
7752 /* We get our maximum from the var_off, and our minimum is the
7753 * maximum of the operands' minima
7754 */
7755 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7756 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7757 if (dst_reg->smin_value < 0 || smin_val < 0) {
7758 /* Lose signed bounds when ORing negative numbers,
7759 * ain't nobody got time for that.
7760 */
7761 dst_reg->smin_value = S64_MIN;
7762 dst_reg->smax_value = S64_MAX;
7763 } else {
7764 /* ORing two positives gives a positive, so safe to
7765 * cast result into s64.
7766 */
7767 dst_reg->smin_value = dst_reg->umin_value;
7768 dst_reg->smax_value = dst_reg->umax_value;
7769 }
7770 /* We may learn something more from the var_off */
7771 __update_reg_bounds(dst_reg);
7772 }
7773
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7774 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7775 struct bpf_reg_state *src_reg)
7776 {
7777 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7778 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7779 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7780 s32 smin_val = src_reg->s32_min_value;
7781
7782 if (src_known && dst_known) {
7783 __mark_reg32_known(dst_reg, var32_off.value);
7784 return;
7785 }
7786
7787 /* We get both minimum and maximum from the var32_off. */
7788 dst_reg->u32_min_value = var32_off.value;
7789 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7790
7791 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7792 /* XORing two positive sign numbers gives a positive,
7793 * so safe to cast u32 result into s32.
7794 */
7795 dst_reg->s32_min_value = dst_reg->u32_min_value;
7796 dst_reg->s32_max_value = dst_reg->u32_max_value;
7797 } else {
7798 dst_reg->s32_min_value = S32_MIN;
7799 dst_reg->s32_max_value = S32_MAX;
7800 }
7801 }
7802
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7803 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7804 struct bpf_reg_state *src_reg)
7805 {
7806 bool src_known = tnum_is_const(src_reg->var_off);
7807 bool dst_known = tnum_is_const(dst_reg->var_off);
7808 s64 smin_val = src_reg->smin_value;
7809
7810 if (src_known && dst_known) {
7811 /* dst_reg->var_off.value has been updated earlier */
7812 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7813 return;
7814 }
7815
7816 /* We get both minimum and maximum from the var_off. */
7817 dst_reg->umin_value = dst_reg->var_off.value;
7818 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7819
7820 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7821 /* XORing two positive sign numbers gives a positive,
7822 * so safe to cast u64 result into s64.
7823 */
7824 dst_reg->smin_value = dst_reg->umin_value;
7825 dst_reg->smax_value = dst_reg->umax_value;
7826 } else {
7827 dst_reg->smin_value = S64_MIN;
7828 dst_reg->smax_value = S64_MAX;
7829 }
7830
7831 __update_reg_bounds(dst_reg);
7832 }
7833
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)7834 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7835 u64 umin_val, u64 umax_val)
7836 {
7837 /* We lose all sign bit information (except what we can pick
7838 * up from var_off)
7839 */
7840 dst_reg->s32_min_value = S32_MIN;
7841 dst_reg->s32_max_value = S32_MAX;
7842 /* If we might shift our top bit out, then we know nothing */
7843 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7844 dst_reg->u32_min_value = 0;
7845 dst_reg->u32_max_value = U32_MAX;
7846 } else {
7847 dst_reg->u32_min_value <<= umin_val;
7848 dst_reg->u32_max_value <<= umax_val;
7849 }
7850 }
7851
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7852 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7853 struct bpf_reg_state *src_reg)
7854 {
7855 u32 umax_val = src_reg->u32_max_value;
7856 u32 umin_val = src_reg->u32_min_value;
7857 /* u32 alu operation will zext upper bits */
7858 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7859
7860 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7861 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7862 /* Not required but being careful mark reg64 bounds as unknown so
7863 * that we are forced to pick them up from tnum and zext later and
7864 * if some path skips this step we are still safe.
7865 */
7866 __mark_reg64_unbounded(dst_reg);
7867 __update_reg32_bounds(dst_reg);
7868 }
7869
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)7870 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7871 u64 umin_val, u64 umax_val)
7872 {
7873 /* Special case <<32 because it is a common compiler pattern to sign
7874 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7875 * positive we know this shift will also be positive so we can track
7876 * bounds correctly. Otherwise we lose all sign bit information except
7877 * what we can pick up from var_off. Perhaps we can generalize this
7878 * later to shifts of any length.
7879 */
7880 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7881 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7882 else
7883 dst_reg->smax_value = S64_MAX;
7884
7885 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7886 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7887 else
7888 dst_reg->smin_value = S64_MIN;
7889
7890 /* If we might shift our top bit out, then we know nothing */
7891 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7892 dst_reg->umin_value = 0;
7893 dst_reg->umax_value = U64_MAX;
7894 } else {
7895 dst_reg->umin_value <<= umin_val;
7896 dst_reg->umax_value <<= umax_val;
7897 }
7898 }
7899
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7900 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7901 struct bpf_reg_state *src_reg)
7902 {
7903 u64 umax_val = src_reg->umax_value;
7904 u64 umin_val = src_reg->umin_value;
7905
7906 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
7907 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7908 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7909
7910 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7911 /* We may learn something more from the var_off */
7912 __update_reg_bounds(dst_reg);
7913 }
7914
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7915 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7916 struct bpf_reg_state *src_reg)
7917 {
7918 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7919 u32 umax_val = src_reg->u32_max_value;
7920 u32 umin_val = src_reg->u32_min_value;
7921
7922 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7923 * be negative, then either:
7924 * 1) src_reg might be zero, so the sign bit of the result is
7925 * unknown, so we lose our signed bounds
7926 * 2) it's known negative, thus the unsigned bounds capture the
7927 * signed bounds
7928 * 3) the signed bounds cross zero, so they tell us nothing
7929 * about the result
7930 * If the value in dst_reg is known nonnegative, then again the
7931 * unsigned bounds capture the signed bounds.
7932 * Thus, in all cases it suffices to blow away our signed bounds
7933 * and rely on inferring new ones from the unsigned bounds and
7934 * var_off of the result.
7935 */
7936 dst_reg->s32_min_value = S32_MIN;
7937 dst_reg->s32_max_value = S32_MAX;
7938
7939 dst_reg->var_off = tnum_rshift(subreg, umin_val);
7940 dst_reg->u32_min_value >>= umax_val;
7941 dst_reg->u32_max_value >>= umin_val;
7942
7943 __mark_reg64_unbounded(dst_reg);
7944 __update_reg32_bounds(dst_reg);
7945 }
7946
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7947 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7948 struct bpf_reg_state *src_reg)
7949 {
7950 u64 umax_val = src_reg->umax_value;
7951 u64 umin_val = src_reg->umin_value;
7952
7953 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7954 * be negative, then either:
7955 * 1) src_reg might be zero, so the sign bit of the result is
7956 * unknown, so we lose our signed bounds
7957 * 2) it's known negative, thus the unsigned bounds capture the
7958 * signed bounds
7959 * 3) the signed bounds cross zero, so they tell us nothing
7960 * about the result
7961 * If the value in dst_reg is known nonnegative, then again the
7962 * unsigned bounds capture the signed bounds.
7963 * Thus, in all cases it suffices to blow away our signed bounds
7964 * and rely on inferring new ones from the unsigned bounds and
7965 * var_off of the result.
7966 */
7967 dst_reg->smin_value = S64_MIN;
7968 dst_reg->smax_value = S64_MAX;
7969 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7970 dst_reg->umin_value >>= umax_val;
7971 dst_reg->umax_value >>= umin_val;
7972
7973 /* Its not easy to operate on alu32 bounds here because it depends
7974 * on bits being shifted in. Take easy way out and mark unbounded
7975 * so we can recalculate later from tnum.
7976 */
7977 __mark_reg32_unbounded(dst_reg);
7978 __update_reg_bounds(dst_reg);
7979 }
7980
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7981 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7982 struct bpf_reg_state *src_reg)
7983 {
7984 u64 umin_val = src_reg->u32_min_value;
7985
7986 /* Upon reaching here, src_known is true and
7987 * umax_val is equal to umin_val.
7988 */
7989 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7990 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7991
7992 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7993
7994 /* blow away the dst_reg umin_value/umax_value and rely on
7995 * dst_reg var_off to refine the result.
7996 */
7997 dst_reg->u32_min_value = 0;
7998 dst_reg->u32_max_value = U32_MAX;
7999
8000 __mark_reg64_unbounded(dst_reg);
8001 __update_reg32_bounds(dst_reg);
8002 }
8003
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8004 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
8005 struct bpf_reg_state *src_reg)
8006 {
8007 u64 umin_val = src_reg->umin_value;
8008
8009 /* Upon reaching here, src_known is true and umax_val is equal
8010 * to umin_val.
8011 */
8012 dst_reg->smin_value >>= umin_val;
8013 dst_reg->smax_value >>= umin_val;
8014
8015 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
8016
8017 /* blow away the dst_reg umin_value/umax_value and rely on
8018 * dst_reg var_off to refine the result.
8019 */
8020 dst_reg->umin_value = 0;
8021 dst_reg->umax_value = U64_MAX;
8022
8023 /* Its not easy to operate on alu32 bounds here because it depends
8024 * on bits being shifted in from upper 32-bits. Take easy way out
8025 * and mark unbounded so we can recalculate later from tnum.
8026 */
8027 __mark_reg32_unbounded(dst_reg);
8028 __update_reg_bounds(dst_reg);
8029 }
8030
8031 /* WARNING: This function does calculations on 64-bit values, but the actual
8032 * execution may occur on 32-bit values. Therefore, things like bitshifts
8033 * need extra checks in the 32-bit case.
8034 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)8035 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
8036 struct bpf_insn *insn,
8037 struct bpf_reg_state *dst_reg,
8038 struct bpf_reg_state src_reg)
8039 {
8040 struct bpf_reg_state *regs = cur_regs(env);
8041 u8 opcode = BPF_OP(insn->code);
8042 bool src_known;
8043 s64 smin_val, smax_val;
8044 u64 umin_val, umax_val;
8045 s32 s32_min_val, s32_max_val;
8046 u32 u32_min_val, u32_max_val;
8047 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
8048 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
8049 int ret;
8050
8051 smin_val = src_reg.smin_value;
8052 smax_val = src_reg.smax_value;
8053 umin_val = src_reg.umin_value;
8054 umax_val = src_reg.umax_value;
8055
8056 s32_min_val = src_reg.s32_min_value;
8057 s32_max_val = src_reg.s32_max_value;
8058 u32_min_val = src_reg.u32_min_value;
8059 u32_max_val = src_reg.u32_max_value;
8060
8061 if (alu32) {
8062 src_known = tnum_subreg_is_const(src_reg.var_off);
8063 if ((src_known &&
8064 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
8065 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
8066 /* Taint dst register if offset had invalid bounds
8067 * derived from e.g. dead branches.
8068 */
8069 __mark_reg_unknown(env, dst_reg);
8070 return 0;
8071 }
8072 } else {
8073 src_known = tnum_is_const(src_reg.var_off);
8074 if ((src_known &&
8075 (smin_val != smax_val || umin_val != umax_val)) ||
8076 smin_val > smax_val || umin_val > umax_val) {
8077 /* Taint dst register if offset had invalid bounds
8078 * derived from e.g. dead branches.
8079 */
8080 __mark_reg_unknown(env, dst_reg);
8081 return 0;
8082 }
8083 }
8084
8085 if (!src_known &&
8086 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
8087 __mark_reg_unknown(env, dst_reg);
8088 return 0;
8089 }
8090
8091 if (sanitize_needed(opcode)) {
8092 ret = sanitize_val_alu(env, insn);
8093 if (ret < 0)
8094 return sanitize_err(env, insn, ret, NULL, NULL);
8095 }
8096
8097 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8098 * There are two classes of instructions: The first class we track both
8099 * alu32 and alu64 sign/unsigned bounds independently this provides the
8100 * greatest amount of precision when alu operations are mixed with jmp32
8101 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8102 * and BPF_OR. This is possible because these ops have fairly easy to
8103 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8104 * See alu32 verifier tests for examples. The second class of
8105 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8106 * with regards to tracking sign/unsigned bounds because the bits may
8107 * cross subreg boundaries in the alu64 case. When this happens we mark
8108 * the reg unbounded in the subreg bound space and use the resulting
8109 * tnum to calculate an approximation of the sign/unsigned bounds.
8110 */
8111 switch (opcode) {
8112 case BPF_ADD:
8113 scalar32_min_max_add(dst_reg, &src_reg);
8114 scalar_min_max_add(dst_reg, &src_reg);
8115 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
8116 break;
8117 case BPF_SUB:
8118 scalar32_min_max_sub(dst_reg, &src_reg);
8119 scalar_min_max_sub(dst_reg, &src_reg);
8120 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
8121 break;
8122 case BPF_MUL:
8123 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8124 scalar32_min_max_mul(dst_reg, &src_reg);
8125 scalar_min_max_mul(dst_reg, &src_reg);
8126 break;
8127 case BPF_AND:
8128 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8129 scalar32_min_max_and(dst_reg, &src_reg);
8130 scalar_min_max_and(dst_reg, &src_reg);
8131 break;
8132 case BPF_OR:
8133 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8134 scalar32_min_max_or(dst_reg, &src_reg);
8135 scalar_min_max_or(dst_reg, &src_reg);
8136 break;
8137 case BPF_XOR:
8138 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8139 scalar32_min_max_xor(dst_reg, &src_reg);
8140 scalar_min_max_xor(dst_reg, &src_reg);
8141 break;
8142 case BPF_LSH:
8143 if (umax_val >= insn_bitness) {
8144 /* Shifts greater than 31 or 63 are undefined.
8145 * This includes shifts by a negative number.
8146 */
8147 mark_reg_unknown(env, regs, insn->dst_reg);
8148 break;
8149 }
8150 if (alu32)
8151 scalar32_min_max_lsh(dst_reg, &src_reg);
8152 else
8153 scalar_min_max_lsh(dst_reg, &src_reg);
8154 break;
8155 case BPF_RSH:
8156 if (umax_val >= insn_bitness) {
8157 /* Shifts greater than 31 or 63 are undefined.
8158 * This includes shifts by a negative number.
8159 */
8160 mark_reg_unknown(env, regs, insn->dst_reg);
8161 break;
8162 }
8163 if (alu32)
8164 scalar32_min_max_rsh(dst_reg, &src_reg);
8165 else
8166 scalar_min_max_rsh(dst_reg, &src_reg);
8167 break;
8168 case BPF_ARSH:
8169 if (umax_val >= insn_bitness) {
8170 /* Shifts greater than 31 or 63 are undefined.
8171 * This includes shifts by a negative number.
8172 */
8173 mark_reg_unknown(env, regs, insn->dst_reg);
8174 break;
8175 }
8176 if (alu32)
8177 scalar32_min_max_arsh(dst_reg, &src_reg);
8178 else
8179 scalar_min_max_arsh(dst_reg, &src_reg);
8180 break;
8181 default:
8182 mark_reg_unknown(env, regs, insn->dst_reg);
8183 break;
8184 }
8185
8186 /* ALU32 ops are zero extended into 64bit register */
8187 if (alu32)
8188 zext_32_to_64(dst_reg);
8189 reg_bounds_sync(dst_reg);
8190 return 0;
8191 }
8192
8193 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8194 * and var_off.
8195 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)8196 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8197 struct bpf_insn *insn)
8198 {
8199 struct bpf_verifier_state *vstate = env->cur_state;
8200 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8201 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
8202 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8203 u8 opcode = BPF_OP(insn->code);
8204 int err;
8205
8206 dst_reg = ®s[insn->dst_reg];
8207 src_reg = NULL;
8208 if (dst_reg->type != SCALAR_VALUE)
8209 ptr_reg = dst_reg;
8210 else
8211 /* Make sure ID is cleared otherwise dst_reg min/max could be
8212 * incorrectly propagated into other registers by find_equal_scalars()
8213 */
8214 dst_reg->id = 0;
8215 if (BPF_SRC(insn->code) == BPF_X) {
8216 src_reg = ®s[insn->src_reg];
8217 if (src_reg->type != SCALAR_VALUE) {
8218 if (dst_reg->type != SCALAR_VALUE) {
8219 /* Combining two pointers by any ALU op yields
8220 * an arbitrary scalar. Disallow all math except
8221 * pointer subtraction
8222 */
8223 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8224 mark_reg_unknown(env, regs, insn->dst_reg);
8225 return 0;
8226 }
8227 verbose(env, "R%d pointer %s pointer prohibited\n",
8228 insn->dst_reg,
8229 bpf_alu_string[opcode >> 4]);
8230 return -EACCES;
8231 } else {
8232 /* scalar += pointer
8233 * This is legal, but we have to reverse our
8234 * src/dest handling in computing the range
8235 */
8236 err = mark_chain_precision(env, insn->dst_reg);
8237 if (err)
8238 return err;
8239 return adjust_ptr_min_max_vals(env, insn,
8240 src_reg, dst_reg);
8241 }
8242 } else if (ptr_reg) {
8243 /* pointer += scalar */
8244 err = mark_chain_precision(env, insn->src_reg);
8245 if (err)
8246 return err;
8247 return adjust_ptr_min_max_vals(env, insn,
8248 dst_reg, src_reg);
8249 } else if (dst_reg->precise) {
8250 /* if dst_reg is precise, src_reg should be precise as well */
8251 err = mark_chain_precision(env, insn->src_reg);
8252 if (err)
8253 return err;
8254 }
8255 } else {
8256 /* Pretend the src is a reg with a known value, since we only
8257 * need to be able to read from this state.
8258 */
8259 off_reg.type = SCALAR_VALUE;
8260 __mark_reg_known(&off_reg, insn->imm);
8261 src_reg = &off_reg;
8262 if (ptr_reg) /* pointer += K */
8263 return adjust_ptr_min_max_vals(env, insn,
8264 ptr_reg, src_reg);
8265 }
8266
8267 /* Got here implies adding two SCALAR_VALUEs */
8268 if (WARN_ON_ONCE(ptr_reg)) {
8269 print_verifier_state(env, state);
8270 verbose(env, "verifier internal error: unexpected ptr_reg\n");
8271 return -EINVAL;
8272 }
8273 if (WARN_ON(!src_reg)) {
8274 print_verifier_state(env, state);
8275 verbose(env, "verifier internal error: no src_reg\n");
8276 return -EINVAL;
8277 }
8278 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
8279 }
8280
8281 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)8282 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
8283 {
8284 struct bpf_reg_state *regs = cur_regs(env);
8285 u8 opcode = BPF_OP(insn->code);
8286 int err;
8287
8288 if (opcode == BPF_END || opcode == BPF_NEG) {
8289 if (opcode == BPF_NEG) {
8290 if (BPF_SRC(insn->code) != 0 ||
8291 insn->src_reg != BPF_REG_0 ||
8292 insn->off != 0 || insn->imm != 0) {
8293 verbose(env, "BPF_NEG uses reserved fields\n");
8294 return -EINVAL;
8295 }
8296 } else {
8297 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
8298 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8299 BPF_CLASS(insn->code) == BPF_ALU64) {
8300 verbose(env, "BPF_END uses reserved fields\n");
8301 return -EINVAL;
8302 }
8303 }
8304
8305 /* check src operand */
8306 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8307 if (err)
8308 return err;
8309
8310 if (is_pointer_value(env, insn->dst_reg)) {
8311 verbose(env, "R%d pointer arithmetic prohibited\n",
8312 insn->dst_reg);
8313 return -EACCES;
8314 }
8315
8316 /* check dest operand */
8317 err = check_reg_arg(env, insn->dst_reg, DST_OP);
8318 if (err)
8319 return err;
8320
8321 } else if (opcode == BPF_MOV) {
8322
8323 if (BPF_SRC(insn->code) == BPF_X) {
8324 if (insn->imm != 0 || insn->off != 0) {
8325 verbose(env, "BPF_MOV uses reserved fields\n");
8326 return -EINVAL;
8327 }
8328
8329 /* check src operand */
8330 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8331 if (err)
8332 return err;
8333 } else {
8334 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8335 verbose(env, "BPF_MOV uses reserved fields\n");
8336 return -EINVAL;
8337 }
8338 }
8339
8340 /* check dest operand, mark as required later */
8341 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8342 if (err)
8343 return err;
8344
8345 if (BPF_SRC(insn->code) == BPF_X) {
8346 struct bpf_reg_state *src_reg = regs + insn->src_reg;
8347 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8348
8349 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8350 /* case: R1 = R2
8351 * copy register state to dest reg
8352 */
8353 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8354 /* Assign src and dst registers the same ID
8355 * that will be used by find_equal_scalars()
8356 * to propagate min/max range.
8357 */
8358 src_reg->id = ++env->id_gen;
8359 copy_register_state(dst_reg, src_reg);
8360 dst_reg->live |= REG_LIVE_WRITTEN;
8361 dst_reg->subreg_def = DEF_NOT_SUBREG;
8362 } else {
8363 /* R1 = (u32) R2 */
8364 if (is_pointer_value(env, insn->src_reg)) {
8365 verbose(env,
8366 "R%d partial copy of pointer\n",
8367 insn->src_reg);
8368 return -EACCES;
8369 } else if (src_reg->type == SCALAR_VALUE) {
8370 copy_register_state(dst_reg, src_reg);
8371 /* Make sure ID is cleared otherwise
8372 * dst_reg min/max could be incorrectly
8373 * propagated into src_reg by find_equal_scalars()
8374 */
8375 dst_reg->id = 0;
8376 dst_reg->live |= REG_LIVE_WRITTEN;
8377 dst_reg->subreg_def = env->insn_idx + 1;
8378 } else {
8379 mark_reg_unknown(env, regs,
8380 insn->dst_reg);
8381 }
8382 zext_32_to_64(dst_reg);
8383 reg_bounds_sync(dst_reg);
8384 }
8385 } else {
8386 /* case: R = imm
8387 * remember the value we stored into this reg
8388 */
8389 /* clear any state __mark_reg_known doesn't set */
8390 mark_reg_unknown(env, regs, insn->dst_reg);
8391 regs[insn->dst_reg].type = SCALAR_VALUE;
8392 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8393 __mark_reg_known(regs + insn->dst_reg,
8394 insn->imm);
8395 } else {
8396 __mark_reg_known(regs + insn->dst_reg,
8397 (u32)insn->imm);
8398 }
8399 }
8400
8401 } else if (opcode > BPF_END) {
8402 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
8403 return -EINVAL;
8404
8405 } else { /* all other ALU ops: and, sub, xor, add, ... */
8406
8407 if (BPF_SRC(insn->code) == BPF_X) {
8408 if (insn->imm != 0 || insn->off != 0) {
8409 verbose(env, "BPF_ALU uses reserved fields\n");
8410 return -EINVAL;
8411 }
8412 /* check src1 operand */
8413 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8414 if (err)
8415 return err;
8416 } else {
8417 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8418 verbose(env, "BPF_ALU uses reserved fields\n");
8419 return -EINVAL;
8420 }
8421 }
8422
8423 /* check src2 operand */
8424 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8425 if (err)
8426 return err;
8427
8428 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8429 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
8430 verbose(env, "div by zero\n");
8431 return -EINVAL;
8432 }
8433
8434 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8435 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8436 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8437
8438 if (insn->imm < 0 || insn->imm >= size) {
8439 verbose(env, "invalid shift %d\n", insn->imm);
8440 return -EINVAL;
8441 }
8442 }
8443
8444 /* check dest operand */
8445 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8446 if (err)
8447 return err;
8448
8449 return adjust_reg_min_max_vals(env, insn);
8450 }
8451
8452 return 0;
8453 }
8454
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)8455 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
8456 struct bpf_reg_state *dst_reg,
8457 enum bpf_reg_type type,
8458 bool range_right_open)
8459 {
8460 struct bpf_func_state *state;
8461 struct bpf_reg_state *reg;
8462 int new_range;
8463
8464 if (dst_reg->off < 0 ||
8465 (dst_reg->off == 0 && range_right_open))
8466 /* This doesn't give us any range */
8467 return;
8468
8469 if (dst_reg->umax_value > MAX_PACKET_OFF ||
8470 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
8471 /* Risk of overflow. For instance, ptr + (1<<63) may be less
8472 * than pkt_end, but that's because it's also less than pkt.
8473 */
8474 return;
8475
8476 new_range = dst_reg->off;
8477 if (range_right_open)
8478 new_range++;
8479
8480 /* Examples for register markings:
8481 *
8482 * pkt_data in dst register:
8483 *
8484 * r2 = r3;
8485 * r2 += 8;
8486 * if (r2 > pkt_end) goto <handle exception>
8487 * <access okay>
8488 *
8489 * r2 = r3;
8490 * r2 += 8;
8491 * if (r2 < pkt_end) goto <access okay>
8492 * <handle exception>
8493 *
8494 * Where:
8495 * r2 == dst_reg, pkt_end == src_reg
8496 * r2=pkt(id=n,off=8,r=0)
8497 * r3=pkt(id=n,off=0,r=0)
8498 *
8499 * pkt_data in src register:
8500 *
8501 * r2 = r3;
8502 * r2 += 8;
8503 * if (pkt_end >= r2) goto <access okay>
8504 * <handle exception>
8505 *
8506 * r2 = r3;
8507 * r2 += 8;
8508 * if (pkt_end <= r2) goto <handle exception>
8509 * <access okay>
8510 *
8511 * Where:
8512 * pkt_end == dst_reg, r2 == src_reg
8513 * r2=pkt(id=n,off=8,r=0)
8514 * r3=pkt(id=n,off=0,r=0)
8515 *
8516 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8517 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8518 * and [r3, r3 + 8-1) respectively is safe to access depending on
8519 * the check.
8520 */
8521
8522 /* If our ids match, then we must have the same max_value. And we
8523 * don't care about the other reg's fixed offset, since if it's too big
8524 * the range won't allow anything.
8525 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8526 */
8527 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
8528 if (reg->type == type && reg->id == dst_reg->id)
8529 /* keep the maximum range already checked */
8530 reg->range = max(reg->range, new_range);
8531 }));
8532 }
8533
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)8534 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8535 {
8536 struct tnum subreg = tnum_subreg(reg->var_off);
8537 s32 sval = (s32)val;
8538
8539 switch (opcode) {
8540 case BPF_JEQ:
8541 if (tnum_is_const(subreg))
8542 return !!tnum_equals_const(subreg, val);
8543 break;
8544 case BPF_JNE:
8545 if (tnum_is_const(subreg))
8546 return !tnum_equals_const(subreg, val);
8547 break;
8548 case BPF_JSET:
8549 if ((~subreg.mask & subreg.value) & val)
8550 return 1;
8551 if (!((subreg.mask | subreg.value) & val))
8552 return 0;
8553 break;
8554 case BPF_JGT:
8555 if (reg->u32_min_value > val)
8556 return 1;
8557 else if (reg->u32_max_value <= val)
8558 return 0;
8559 break;
8560 case BPF_JSGT:
8561 if (reg->s32_min_value > sval)
8562 return 1;
8563 else if (reg->s32_max_value <= sval)
8564 return 0;
8565 break;
8566 case BPF_JLT:
8567 if (reg->u32_max_value < val)
8568 return 1;
8569 else if (reg->u32_min_value >= val)
8570 return 0;
8571 break;
8572 case BPF_JSLT:
8573 if (reg->s32_max_value < sval)
8574 return 1;
8575 else if (reg->s32_min_value >= sval)
8576 return 0;
8577 break;
8578 case BPF_JGE:
8579 if (reg->u32_min_value >= val)
8580 return 1;
8581 else if (reg->u32_max_value < val)
8582 return 0;
8583 break;
8584 case BPF_JSGE:
8585 if (reg->s32_min_value >= sval)
8586 return 1;
8587 else if (reg->s32_max_value < sval)
8588 return 0;
8589 break;
8590 case BPF_JLE:
8591 if (reg->u32_max_value <= val)
8592 return 1;
8593 else if (reg->u32_min_value > val)
8594 return 0;
8595 break;
8596 case BPF_JSLE:
8597 if (reg->s32_max_value <= sval)
8598 return 1;
8599 else if (reg->s32_min_value > sval)
8600 return 0;
8601 break;
8602 }
8603
8604 return -1;
8605 }
8606
8607
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)8608 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8609 {
8610 s64 sval = (s64)val;
8611
8612 switch (opcode) {
8613 case BPF_JEQ:
8614 if (tnum_is_const(reg->var_off))
8615 return !!tnum_equals_const(reg->var_off, val);
8616 break;
8617 case BPF_JNE:
8618 if (tnum_is_const(reg->var_off))
8619 return !tnum_equals_const(reg->var_off, val);
8620 break;
8621 case BPF_JSET:
8622 if ((~reg->var_off.mask & reg->var_off.value) & val)
8623 return 1;
8624 if (!((reg->var_off.mask | reg->var_off.value) & val))
8625 return 0;
8626 break;
8627 case BPF_JGT:
8628 if (reg->umin_value > val)
8629 return 1;
8630 else if (reg->umax_value <= val)
8631 return 0;
8632 break;
8633 case BPF_JSGT:
8634 if (reg->smin_value > sval)
8635 return 1;
8636 else if (reg->smax_value <= sval)
8637 return 0;
8638 break;
8639 case BPF_JLT:
8640 if (reg->umax_value < val)
8641 return 1;
8642 else if (reg->umin_value >= val)
8643 return 0;
8644 break;
8645 case BPF_JSLT:
8646 if (reg->smax_value < sval)
8647 return 1;
8648 else if (reg->smin_value >= sval)
8649 return 0;
8650 break;
8651 case BPF_JGE:
8652 if (reg->umin_value >= val)
8653 return 1;
8654 else if (reg->umax_value < val)
8655 return 0;
8656 break;
8657 case BPF_JSGE:
8658 if (reg->smin_value >= sval)
8659 return 1;
8660 else if (reg->smax_value < sval)
8661 return 0;
8662 break;
8663 case BPF_JLE:
8664 if (reg->umax_value <= val)
8665 return 1;
8666 else if (reg->umin_value > val)
8667 return 0;
8668 break;
8669 case BPF_JSLE:
8670 if (reg->smax_value <= sval)
8671 return 1;
8672 else if (reg->smin_value > sval)
8673 return 0;
8674 break;
8675 }
8676
8677 return -1;
8678 }
8679
8680 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8681 * and return:
8682 * 1 - branch will be taken and "goto target" will be executed
8683 * 0 - branch will not be taken and fall-through to next insn
8684 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8685 * range [0,10]
8686 */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)8687 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8688 bool is_jmp32)
8689 {
8690 if (__is_pointer_value(false, reg)) {
8691 if (!reg_type_not_null(reg->type))
8692 return -1;
8693
8694 /* If pointer is valid tests against zero will fail so we can
8695 * use this to direct branch taken.
8696 */
8697 if (val != 0)
8698 return -1;
8699
8700 switch (opcode) {
8701 case BPF_JEQ:
8702 return 0;
8703 case BPF_JNE:
8704 return 1;
8705 default:
8706 return -1;
8707 }
8708 }
8709
8710 if (is_jmp32)
8711 return is_branch32_taken(reg, val, opcode);
8712 return is_branch64_taken(reg, val, opcode);
8713 }
8714
flip_opcode(u32 opcode)8715 static int flip_opcode(u32 opcode)
8716 {
8717 /* How can we transform "a <op> b" into "b <op> a"? */
8718 static const u8 opcode_flip[16] = {
8719 /* these stay the same */
8720 [BPF_JEQ >> 4] = BPF_JEQ,
8721 [BPF_JNE >> 4] = BPF_JNE,
8722 [BPF_JSET >> 4] = BPF_JSET,
8723 /* these swap "lesser" and "greater" (L and G in the opcodes) */
8724 [BPF_JGE >> 4] = BPF_JLE,
8725 [BPF_JGT >> 4] = BPF_JLT,
8726 [BPF_JLE >> 4] = BPF_JGE,
8727 [BPF_JLT >> 4] = BPF_JGT,
8728 [BPF_JSGE >> 4] = BPF_JSLE,
8729 [BPF_JSGT >> 4] = BPF_JSLT,
8730 [BPF_JSLE >> 4] = BPF_JSGE,
8731 [BPF_JSLT >> 4] = BPF_JSGT
8732 };
8733 return opcode_flip[opcode >> 4];
8734 }
8735
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)8736 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8737 struct bpf_reg_state *src_reg,
8738 u8 opcode)
8739 {
8740 struct bpf_reg_state *pkt;
8741
8742 if (src_reg->type == PTR_TO_PACKET_END) {
8743 pkt = dst_reg;
8744 } else if (dst_reg->type == PTR_TO_PACKET_END) {
8745 pkt = src_reg;
8746 opcode = flip_opcode(opcode);
8747 } else {
8748 return -1;
8749 }
8750
8751 if (pkt->range >= 0)
8752 return -1;
8753
8754 switch (opcode) {
8755 case BPF_JLE:
8756 /* pkt <= pkt_end */
8757 fallthrough;
8758 case BPF_JGT:
8759 /* pkt > pkt_end */
8760 if (pkt->range == BEYOND_PKT_END)
8761 /* pkt has at last one extra byte beyond pkt_end */
8762 return opcode == BPF_JGT;
8763 break;
8764 case BPF_JLT:
8765 /* pkt < pkt_end */
8766 fallthrough;
8767 case BPF_JGE:
8768 /* pkt >= pkt_end */
8769 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8770 return opcode == BPF_JGE;
8771 break;
8772 }
8773 return -1;
8774 }
8775
8776 /* Adjusts the register min/max values in the case that the dst_reg is the
8777 * variable register that we are working on, and src_reg is a constant or we're
8778 * simply doing a BPF_K check.
8779 * In JEQ/JNE cases we also adjust the var_off values.
8780 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)8781 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8782 struct bpf_reg_state *false_reg,
8783 u64 val, u32 val32,
8784 u8 opcode, bool is_jmp32)
8785 {
8786 struct tnum false_32off = tnum_subreg(false_reg->var_off);
8787 struct tnum false_64off = false_reg->var_off;
8788 struct tnum true_32off = tnum_subreg(true_reg->var_off);
8789 struct tnum true_64off = true_reg->var_off;
8790 s64 sval = (s64)val;
8791 s32 sval32 = (s32)val32;
8792
8793 /* If the dst_reg is a pointer, we can't learn anything about its
8794 * variable offset from the compare (unless src_reg were a pointer into
8795 * the same object, but we don't bother with that.
8796 * Since false_reg and true_reg have the same type by construction, we
8797 * only need to check one of them for pointerness.
8798 */
8799 if (__is_pointer_value(false, false_reg))
8800 return;
8801
8802 switch (opcode) {
8803 /* JEQ/JNE comparison doesn't change the register equivalence.
8804 *
8805 * r1 = r2;
8806 * if (r1 == 42) goto label;
8807 * ...
8808 * label: // here both r1 and r2 are known to be 42.
8809 *
8810 * Hence when marking register as known preserve it's ID.
8811 */
8812 case BPF_JEQ:
8813 if (is_jmp32) {
8814 __mark_reg32_known(true_reg, val32);
8815 true_32off = tnum_subreg(true_reg->var_off);
8816 } else {
8817 ___mark_reg_known(true_reg, val);
8818 true_64off = true_reg->var_off;
8819 }
8820 break;
8821 case BPF_JNE:
8822 if (is_jmp32) {
8823 __mark_reg32_known(false_reg, val32);
8824 false_32off = tnum_subreg(false_reg->var_off);
8825 } else {
8826 ___mark_reg_known(false_reg, val);
8827 false_64off = false_reg->var_off;
8828 }
8829 break;
8830 case BPF_JSET:
8831 if (is_jmp32) {
8832 false_32off = tnum_and(false_32off, tnum_const(~val32));
8833 if (is_power_of_2(val32))
8834 true_32off = tnum_or(true_32off,
8835 tnum_const(val32));
8836 } else {
8837 false_64off = tnum_and(false_64off, tnum_const(~val));
8838 if (is_power_of_2(val))
8839 true_64off = tnum_or(true_64off,
8840 tnum_const(val));
8841 }
8842 break;
8843 case BPF_JGE:
8844 case BPF_JGT:
8845 {
8846 if (is_jmp32) {
8847 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
8848 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8849
8850 false_reg->u32_max_value = min(false_reg->u32_max_value,
8851 false_umax);
8852 true_reg->u32_min_value = max(true_reg->u32_min_value,
8853 true_umin);
8854 } else {
8855 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
8856 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8857
8858 false_reg->umax_value = min(false_reg->umax_value, false_umax);
8859 true_reg->umin_value = max(true_reg->umin_value, true_umin);
8860 }
8861 break;
8862 }
8863 case BPF_JSGE:
8864 case BPF_JSGT:
8865 {
8866 if (is_jmp32) {
8867 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
8868 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8869
8870 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8871 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8872 } else {
8873 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
8874 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8875
8876 false_reg->smax_value = min(false_reg->smax_value, false_smax);
8877 true_reg->smin_value = max(true_reg->smin_value, true_smin);
8878 }
8879 break;
8880 }
8881 case BPF_JLE:
8882 case BPF_JLT:
8883 {
8884 if (is_jmp32) {
8885 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
8886 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8887
8888 false_reg->u32_min_value = max(false_reg->u32_min_value,
8889 false_umin);
8890 true_reg->u32_max_value = min(true_reg->u32_max_value,
8891 true_umax);
8892 } else {
8893 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
8894 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8895
8896 false_reg->umin_value = max(false_reg->umin_value, false_umin);
8897 true_reg->umax_value = min(true_reg->umax_value, true_umax);
8898 }
8899 break;
8900 }
8901 case BPF_JSLE:
8902 case BPF_JSLT:
8903 {
8904 if (is_jmp32) {
8905 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
8906 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8907
8908 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8909 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8910 } else {
8911 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
8912 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8913
8914 false_reg->smin_value = max(false_reg->smin_value, false_smin);
8915 true_reg->smax_value = min(true_reg->smax_value, true_smax);
8916 }
8917 break;
8918 }
8919 default:
8920 return;
8921 }
8922
8923 if (is_jmp32) {
8924 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8925 tnum_subreg(false_32off));
8926 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8927 tnum_subreg(true_32off));
8928 __reg_combine_32_into_64(false_reg);
8929 __reg_combine_32_into_64(true_reg);
8930 } else {
8931 false_reg->var_off = false_64off;
8932 true_reg->var_off = true_64off;
8933 __reg_combine_64_into_32(false_reg);
8934 __reg_combine_64_into_32(true_reg);
8935 }
8936 }
8937
8938 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8939 * the variable reg.
8940 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)8941 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8942 struct bpf_reg_state *false_reg,
8943 u64 val, u32 val32,
8944 u8 opcode, bool is_jmp32)
8945 {
8946 opcode = flip_opcode(opcode);
8947 /* This uses zero as "not present in table"; luckily the zero opcode,
8948 * BPF_JA, can't get here.
8949 */
8950 if (opcode)
8951 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8952 }
8953
8954 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)8955 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8956 struct bpf_reg_state *dst_reg)
8957 {
8958 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8959 dst_reg->umin_value);
8960 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8961 dst_reg->umax_value);
8962 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8963 dst_reg->smin_value);
8964 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8965 dst_reg->smax_value);
8966 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8967 dst_reg->var_off);
8968 reg_bounds_sync(src_reg);
8969 reg_bounds_sync(dst_reg);
8970 }
8971
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)8972 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8973 struct bpf_reg_state *true_dst,
8974 struct bpf_reg_state *false_src,
8975 struct bpf_reg_state *false_dst,
8976 u8 opcode)
8977 {
8978 switch (opcode) {
8979 case BPF_JEQ:
8980 __reg_combine_min_max(true_src, true_dst);
8981 break;
8982 case BPF_JNE:
8983 __reg_combine_min_max(false_src, false_dst);
8984 break;
8985 }
8986 }
8987
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)8988 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8989 struct bpf_reg_state *reg, u32 id,
8990 bool is_null)
8991 {
8992 if (type_may_be_null(reg->type) && reg->id == id &&
8993 !WARN_ON_ONCE(!reg->id)) {
8994 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8995 !tnum_equals_const(reg->var_off, 0) ||
8996 reg->off)) {
8997 /* Old offset (both fixed and variable parts) should
8998 * have been known-zero, because we don't allow pointer
8999 * arithmetic on pointers that might be NULL. If we
9000 * see this happening, don't convert the register.
9001 */
9002 return;
9003 }
9004 if (is_null) {
9005 reg->type = SCALAR_VALUE;
9006 /* We don't need id and ref_obj_id from this point
9007 * onwards anymore, thus we should better reset it,
9008 * so that state pruning has chances to take effect.
9009 */
9010 reg->id = 0;
9011 reg->ref_obj_id = 0;
9012
9013 return;
9014 }
9015
9016 mark_ptr_not_null_reg(reg);
9017
9018 if (!reg_may_point_to_spin_lock(reg)) {
9019 /* For not-NULL ptr, reg->ref_obj_id will be reset
9020 * in release_reference().
9021 *
9022 * reg->id is still used by spin_lock ptr. Other
9023 * than spin_lock ptr type, reg->id can be reset.
9024 */
9025 reg->id = 0;
9026 }
9027 }
9028 }
9029
9030 /* The logic is similar to find_good_pkt_pointers(), both could eventually
9031 * be folded together at some point.
9032 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)9033 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9034 bool is_null)
9035 {
9036 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9037 struct bpf_reg_state *regs = state->regs, *reg;
9038 u32 ref_obj_id = regs[regno].ref_obj_id;
9039 u32 id = regs[regno].id;
9040
9041 if (ref_obj_id && ref_obj_id == id && is_null)
9042 /* regs[regno] is in the " == NULL" branch.
9043 * No one could have freed the reference state before
9044 * doing the NULL check.
9045 */
9046 WARN_ON_ONCE(release_reference_state(state, id));
9047
9048 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
9049 mark_ptr_or_null_reg(state, reg, id, is_null);
9050 }));
9051 }
9052
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)9053 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9054 struct bpf_reg_state *dst_reg,
9055 struct bpf_reg_state *src_reg,
9056 struct bpf_verifier_state *this_branch,
9057 struct bpf_verifier_state *other_branch)
9058 {
9059 if (BPF_SRC(insn->code) != BPF_X)
9060 return false;
9061
9062 /* Pointers are always 64-bit. */
9063 if (BPF_CLASS(insn->code) == BPF_JMP32)
9064 return false;
9065
9066 switch (BPF_OP(insn->code)) {
9067 case BPF_JGT:
9068 if ((dst_reg->type == PTR_TO_PACKET &&
9069 src_reg->type == PTR_TO_PACKET_END) ||
9070 (dst_reg->type == PTR_TO_PACKET_META &&
9071 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9072 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9073 find_good_pkt_pointers(this_branch, dst_reg,
9074 dst_reg->type, false);
9075 mark_pkt_end(other_branch, insn->dst_reg, true);
9076 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9077 src_reg->type == PTR_TO_PACKET) ||
9078 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9079 src_reg->type == PTR_TO_PACKET_META)) {
9080 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
9081 find_good_pkt_pointers(other_branch, src_reg,
9082 src_reg->type, true);
9083 mark_pkt_end(this_branch, insn->src_reg, false);
9084 } else {
9085 return false;
9086 }
9087 break;
9088 case BPF_JLT:
9089 if ((dst_reg->type == PTR_TO_PACKET &&
9090 src_reg->type == PTR_TO_PACKET_END) ||
9091 (dst_reg->type == PTR_TO_PACKET_META &&
9092 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9093 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9094 find_good_pkt_pointers(other_branch, dst_reg,
9095 dst_reg->type, true);
9096 mark_pkt_end(this_branch, insn->dst_reg, false);
9097 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9098 src_reg->type == PTR_TO_PACKET) ||
9099 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9100 src_reg->type == PTR_TO_PACKET_META)) {
9101 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
9102 find_good_pkt_pointers(this_branch, src_reg,
9103 src_reg->type, false);
9104 mark_pkt_end(other_branch, insn->src_reg, true);
9105 } else {
9106 return false;
9107 }
9108 break;
9109 case BPF_JGE:
9110 if ((dst_reg->type == PTR_TO_PACKET &&
9111 src_reg->type == PTR_TO_PACKET_END) ||
9112 (dst_reg->type == PTR_TO_PACKET_META &&
9113 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9114 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9115 find_good_pkt_pointers(this_branch, dst_reg,
9116 dst_reg->type, true);
9117 mark_pkt_end(other_branch, insn->dst_reg, false);
9118 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9119 src_reg->type == PTR_TO_PACKET) ||
9120 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9121 src_reg->type == PTR_TO_PACKET_META)) {
9122 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9123 find_good_pkt_pointers(other_branch, src_reg,
9124 src_reg->type, false);
9125 mark_pkt_end(this_branch, insn->src_reg, true);
9126 } else {
9127 return false;
9128 }
9129 break;
9130 case BPF_JLE:
9131 if ((dst_reg->type == PTR_TO_PACKET &&
9132 src_reg->type == PTR_TO_PACKET_END) ||
9133 (dst_reg->type == PTR_TO_PACKET_META &&
9134 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9135 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9136 find_good_pkt_pointers(other_branch, dst_reg,
9137 dst_reg->type, false);
9138 mark_pkt_end(this_branch, insn->dst_reg, true);
9139 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9140 src_reg->type == PTR_TO_PACKET) ||
9141 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9142 src_reg->type == PTR_TO_PACKET_META)) {
9143 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9144 find_good_pkt_pointers(this_branch, src_reg,
9145 src_reg->type, true);
9146 mark_pkt_end(other_branch, insn->src_reg, false);
9147 } else {
9148 return false;
9149 }
9150 break;
9151 default:
9152 return false;
9153 }
9154
9155 return true;
9156 }
9157
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)9158 static void find_equal_scalars(struct bpf_verifier_state *vstate,
9159 struct bpf_reg_state *known_reg)
9160 {
9161 struct bpf_func_state *state;
9162 struct bpf_reg_state *reg;
9163
9164 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
9165 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9166 copy_register_state(reg, known_reg);
9167 }));
9168 }
9169
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)9170 static int check_cond_jmp_op(struct bpf_verifier_env *env,
9171 struct bpf_insn *insn, int *insn_idx)
9172 {
9173 struct bpf_verifier_state *this_branch = env->cur_state;
9174 struct bpf_verifier_state *other_branch;
9175 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
9176 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
9177 u8 opcode = BPF_OP(insn->code);
9178 bool is_jmp32;
9179 int pred = -1;
9180 int err;
9181
9182 /* Only conditional jumps are expected to reach here. */
9183 if (opcode == BPF_JA || opcode > BPF_JSLE) {
9184 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
9185 return -EINVAL;
9186 }
9187
9188 if (BPF_SRC(insn->code) == BPF_X) {
9189 if (insn->imm != 0) {
9190 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9191 return -EINVAL;
9192 }
9193
9194 /* check src1 operand */
9195 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9196 if (err)
9197 return err;
9198
9199 if (is_pointer_value(env, insn->src_reg)) {
9200 verbose(env, "R%d pointer comparison prohibited\n",
9201 insn->src_reg);
9202 return -EACCES;
9203 }
9204 src_reg = ®s[insn->src_reg];
9205 } else {
9206 if (insn->src_reg != BPF_REG_0) {
9207 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9208 return -EINVAL;
9209 }
9210 }
9211
9212 /* check src2 operand */
9213 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9214 if (err)
9215 return err;
9216
9217 dst_reg = ®s[insn->dst_reg];
9218 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
9219
9220 if (BPF_SRC(insn->code) == BPF_K) {
9221 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9222 } else if (src_reg->type == SCALAR_VALUE &&
9223 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9224 pred = is_branch_taken(dst_reg,
9225 tnum_subreg(src_reg->var_off).value,
9226 opcode,
9227 is_jmp32);
9228 } else if (src_reg->type == SCALAR_VALUE &&
9229 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9230 pred = is_branch_taken(dst_reg,
9231 src_reg->var_off.value,
9232 opcode,
9233 is_jmp32);
9234 } else if (reg_is_pkt_pointer_any(dst_reg) &&
9235 reg_is_pkt_pointer_any(src_reg) &&
9236 !is_jmp32) {
9237 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
9238 }
9239
9240 if (pred >= 0) {
9241 /* If we get here with a dst_reg pointer type it is because
9242 * above is_branch_taken() special cased the 0 comparison.
9243 */
9244 if (!__is_pointer_value(false, dst_reg))
9245 err = mark_chain_precision(env, insn->dst_reg);
9246 if (BPF_SRC(insn->code) == BPF_X && !err &&
9247 !__is_pointer_value(false, src_reg))
9248 err = mark_chain_precision(env, insn->src_reg);
9249 if (err)
9250 return err;
9251 }
9252
9253 if (pred == 1) {
9254 /* Only follow the goto, ignore fall-through. If needed, push
9255 * the fall-through branch for simulation under speculative
9256 * execution.
9257 */
9258 if (!env->bypass_spec_v1 &&
9259 !sanitize_speculative_path(env, insn, *insn_idx + 1,
9260 *insn_idx))
9261 return -EFAULT;
9262 *insn_idx += insn->off;
9263 return 0;
9264 } else if (pred == 0) {
9265 /* Only follow the fall-through branch, since that's where the
9266 * program will go. If needed, push the goto branch for
9267 * simulation under speculative execution.
9268 */
9269 if (!env->bypass_spec_v1 &&
9270 !sanitize_speculative_path(env, insn,
9271 *insn_idx + insn->off + 1,
9272 *insn_idx))
9273 return -EFAULT;
9274 return 0;
9275 }
9276
9277 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9278 false);
9279 if (!other_branch)
9280 return -EFAULT;
9281 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
9282
9283 /* detect if we are comparing against a constant value so we can adjust
9284 * our min/max values for our dst register.
9285 * this is only legit if both are scalars (or pointers to the same
9286 * object, I suppose, but we don't support that right now), because
9287 * otherwise the different base pointers mean the offsets aren't
9288 * comparable.
9289 */
9290 if (BPF_SRC(insn->code) == BPF_X) {
9291 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
9292
9293 if (dst_reg->type == SCALAR_VALUE &&
9294 src_reg->type == SCALAR_VALUE) {
9295 if (tnum_is_const(src_reg->var_off) ||
9296 (is_jmp32 &&
9297 tnum_is_const(tnum_subreg(src_reg->var_off))))
9298 reg_set_min_max(&other_branch_regs[insn->dst_reg],
9299 dst_reg,
9300 src_reg->var_off.value,
9301 tnum_subreg(src_reg->var_off).value,
9302 opcode, is_jmp32);
9303 else if (tnum_is_const(dst_reg->var_off) ||
9304 (is_jmp32 &&
9305 tnum_is_const(tnum_subreg(dst_reg->var_off))))
9306 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
9307 src_reg,
9308 dst_reg->var_off.value,
9309 tnum_subreg(dst_reg->var_off).value,
9310 opcode, is_jmp32);
9311 else if (!is_jmp32 &&
9312 (opcode == BPF_JEQ || opcode == BPF_JNE))
9313 /* Comparing for equality, we can combine knowledge */
9314 reg_combine_min_max(&other_branch_regs[insn->src_reg],
9315 &other_branch_regs[insn->dst_reg],
9316 src_reg, dst_reg, opcode);
9317 if (src_reg->id &&
9318 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
9319 find_equal_scalars(this_branch, src_reg);
9320 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9321 }
9322
9323 }
9324 } else if (dst_reg->type == SCALAR_VALUE) {
9325 reg_set_min_max(&other_branch_regs[insn->dst_reg],
9326 dst_reg, insn->imm, (u32)insn->imm,
9327 opcode, is_jmp32);
9328 }
9329
9330 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9331 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
9332 find_equal_scalars(this_branch, dst_reg);
9333 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9334 }
9335
9336 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9337 * NOTE: these optimizations below are related with pointer comparison
9338 * which will never be JMP32.
9339 */
9340 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
9341 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
9342 type_may_be_null(dst_reg->type)) {
9343 /* Mark all identical registers in each branch as either
9344 * safe or unknown depending R == 0 or R != 0 conditional.
9345 */
9346 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9347 opcode == BPF_JNE);
9348 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9349 opcode == BPF_JEQ);
9350 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
9351 this_branch, other_branch) &&
9352 is_pointer_value(env, insn->dst_reg)) {
9353 verbose(env, "R%d pointer comparison prohibited\n",
9354 insn->dst_reg);
9355 return -EACCES;
9356 }
9357 if (env->log.level & BPF_LOG_LEVEL)
9358 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
9359 return 0;
9360 }
9361
9362 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)9363 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
9364 {
9365 struct bpf_insn_aux_data *aux = cur_aux(env);
9366 struct bpf_reg_state *regs = cur_regs(env);
9367 struct bpf_reg_state *dst_reg;
9368 struct bpf_map *map;
9369 int err;
9370
9371 if (BPF_SIZE(insn->code) != BPF_DW) {
9372 verbose(env, "invalid BPF_LD_IMM insn\n");
9373 return -EINVAL;
9374 }
9375 if (insn->off != 0) {
9376 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
9377 return -EINVAL;
9378 }
9379
9380 err = check_reg_arg(env, insn->dst_reg, DST_OP);
9381 if (err)
9382 return err;
9383
9384 dst_reg = ®s[insn->dst_reg];
9385 if (insn->src_reg == 0) {
9386 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9387
9388 dst_reg->type = SCALAR_VALUE;
9389 __mark_reg_known(®s[insn->dst_reg], imm);
9390 return 0;
9391 }
9392
9393 /* All special src_reg cases are listed below. From this point onwards
9394 * we either succeed and assign a corresponding dst_reg->type after
9395 * zeroing the offset, or fail and reject the program.
9396 */
9397 mark_reg_known_zero(env, regs, insn->dst_reg);
9398
9399 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9400 dst_reg->type = aux->btf_var.reg_type;
9401 switch (base_type(dst_reg->type)) {
9402 case PTR_TO_MEM:
9403 dst_reg->mem_size = aux->btf_var.mem_size;
9404 break;
9405 case PTR_TO_BTF_ID:
9406 case PTR_TO_PERCPU_BTF_ID:
9407 dst_reg->btf = aux->btf_var.btf;
9408 dst_reg->btf_id = aux->btf_var.btf_id;
9409 break;
9410 default:
9411 verbose(env, "bpf verifier is misconfigured\n");
9412 return -EFAULT;
9413 }
9414 return 0;
9415 }
9416
9417 if (insn->src_reg == BPF_PSEUDO_FUNC) {
9418 struct bpf_prog_aux *aux = env->prog->aux;
9419 u32 subprogno = find_subprog(env,
9420 env->insn_idx + insn->imm + 1);
9421
9422 if (!aux->func_info) {
9423 verbose(env, "missing btf func_info\n");
9424 return -EINVAL;
9425 }
9426 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9427 verbose(env, "callback function not static\n");
9428 return -EINVAL;
9429 }
9430
9431 dst_reg->type = PTR_TO_FUNC;
9432 dst_reg->subprogno = subprogno;
9433 return 0;
9434 }
9435
9436 map = env->used_maps[aux->map_index];
9437 dst_reg->map_ptr = map;
9438
9439 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9440 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
9441 dst_reg->type = PTR_TO_MAP_VALUE;
9442 dst_reg->off = aux->map_off;
9443 if (map_value_has_spin_lock(map))
9444 dst_reg->id = ++env->id_gen;
9445 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9446 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
9447 dst_reg->type = CONST_PTR_TO_MAP;
9448 } else {
9449 verbose(env, "bpf verifier is misconfigured\n");
9450 return -EINVAL;
9451 }
9452
9453 return 0;
9454 }
9455
may_access_skb(enum bpf_prog_type type)9456 static bool may_access_skb(enum bpf_prog_type type)
9457 {
9458 switch (type) {
9459 case BPF_PROG_TYPE_SOCKET_FILTER:
9460 case BPF_PROG_TYPE_SCHED_CLS:
9461 case BPF_PROG_TYPE_SCHED_ACT:
9462 return true;
9463 default:
9464 return false;
9465 }
9466 }
9467
9468 /* verify safety of LD_ABS|LD_IND instructions:
9469 * - they can only appear in the programs where ctx == skb
9470 * - since they are wrappers of function calls, they scratch R1-R5 registers,
9471 * preserve R6-R9, and store return value into R0
9472 *
9473 * Implicit input:
9474 * ctx == skb == R6 == CTX
9475 *
9476 * Explicit input:
9477 * SRC == any register
9478 * IMM == 32-bit immediate
9479 *
9480 * Output:
9481 * R0 - 8/16/32-bit skb data converted to cpu endianness
9482 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)9483 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9484 {
9485 struct bpf_reg_state *regs = cur_regs(env);
9486 static const int ctx_reg = BPF_REG_6;
9487 u8 mode = BPF_MODE(insn->code);
9488 int i, err;
9489
9490 if (!may_access_skb(resolve_prog_type(env->prog))) {
9491 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9492 return -EINVAL;
9493 }
9494
9495 if (!env->ops->gen_ld_abs) {
9496 verbose(env, "bpf verifier is misconfigured\n");
9497 return -EINVAL;
9498 }
9499
9500 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9501 BPF_SIZE(insn->code) == BPF_DW ||
9502 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9503 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9504 return -EINVAL;
9505 }
9506
9507 /* check whether implicit source operand (register R6) is readable */
9508 err = check_reg_arg(env, ctx_reg, SRC_OP);
9509 if (err)
9510 return err;
9511
9512 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9513 * gen_ld_abs() may terminate the program at runtime, leading to
9514 * reference leak.
9515 */
9516 err = check_reference_leak(env);
9517 if (err) {
9518 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9519 return err;
9520 }
9521
9522 if (env->cur_state->active_spin_lock) {
9523 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9524 return -EINVAL;
9525 }
9526
9527 if (regs[ctx_reg].type != PTR_TO_CTX) {
9528 verbose(env,
9529 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9530 return -EINVAL;
9531 }
9532
9533 if (mode == BPF_IND) {
9534 /* check explicit source operand */
9535 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9536 if (err)
9537 return err;
9538 }
9539
9540 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg);
9541 if (err < 0)
9542 return err;
9543
9544 /* reset caller saved regs to unreadable */
9545 for (i = 0; i < CALLER_SAVED_REGS; i++) {
9546 mark_reg_not_init(env, regs, caller_saved[i]);
9547 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9548 }
9549
9550 /* mark destination R0 register as readable, since it contains
9551 * the value fetched from the packet.
9552 * Already marked as written above.
9553 */
9554 mark_reg_unknown(env, regs, BPF_REG_0);
9555 /* ld_abs load up to 32-bit skb data. */
9556 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9557 return 0;
9558 }
9559
check_return_code(struct bpf_verifier_env * env)9560 static int check_return_code(struct bpf_verifier_env *env)
9561 {
9562 struct tnum enforce_attach_type_range = tnum_unknown;
9563 const struct bpf_prog *prog = env->prog;
9564 struct bpf_reg_state *reg;
9565 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
9566 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9567 int err;
9568 struct bpf_func_state *frame = env->cur_state->frame[0];
9569 const bool is_subprog = frame->subprogno;
9570
9571 /* LSM and struct_ops func-ptr's return type could be "void" */
9572 if (!is_subprog &&
9573 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9574 prog_type == BPF_PROG_TYPE_LSM) &&
9575 !prog->aux->attach_func_proto->type)
9576 return 0;
9577
9578 /* eBPF calling convention is such that R0 is used
9579 * to return the value from eBPF program.
9580 * Make sure that it's readable at this time
9581 * of bpf_exit, which means that program wrote
9582 * something into it earlier
9583 */
9584 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9585 if (err)
9586 return err;
9587
9588 if (is_pointer_value(env, BPF_REG_0)) {
9589 verbose(env, "R0 leaks addr as return value\n");
9590 return -EACCES;
9591 }
9592
9593 reg = cur_regs(env) + BPF_REG_0;
9594
9595 if (frame->in_async_callback_fn) {
9596 /* enforce return zero from async callbacks like timer */
9597 if (reg->type != SCALAR_VALUE) {
9598 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9599 reg_type_str(env, reg->type));
9600 return -EINVAL;
9601 }
9602
9603 if (!tnum_in(const_0, reg->var_off)) {
9604 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
9605 return -EINVAL;
9606 }
9607 return 0;
9608 }
9609
9610 if (is_subprog) {
9611 if (reg->type != SCALAR_VALUE) {
9612 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9613 reg_type_str(env, reg->type));
9614 return -EINVAL;
9615 }
9616 return 0;
9617 }
9618
9619 switch (prog_type) {
9620 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9621 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9622 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9623 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9624 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9625 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9626 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9627 range = tnum_range(1, 1);
9628 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9629 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9630 range = tnum_range(0, 3);
9631 break;
9632 case BPF_PROG_TYPE_CGROUP_SKB:
9633 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9634 range = tnum_range(0, 3);
9635 enforce_attach_type_range = tnum_range(2, 3);
9636 }
9637 break;
9638 case BPF_PROG_TYPE_CGROUP_SOCK:
9639 case BPF_PROG_TYPE_SOCK_OPS:
9640 case BPF_PROG_TYPE_CGROUP_DEVICE:
9641 case BPF_PROG_TYPE_CGROUP_SYSCTL:
9642 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9643 break;
9644 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9645 if (!env->prog->aux->attach_btf_id)
9646 return 0;
9647 range = tnum_const(0);
9648 break;
9649 case BPF_PROG_TYPE_TRACING:
9650 switch (env->prog->expected_attach_type) {
9651 case BPF_TRACE_FENTRY:
9652 case BPF_TRACE_FEXIT:
9653 range = tnum_const(0);
9654 break;
9655 case BPF_TRACE_RAW_TP:
9656 case BPF_MODIFY_RETURN:
9657 return 0;
9658 case BPF_TRACE_ITER:
9659 break;
9660 default:
9661 return -ENOTSUPP;
9662 }
9663 break;
9664 case BPF_PROG_TYPE_SK_LOOKUP:
9665 range = tnum_range(SK_DROP, SK_PASS);
9666 break;
9667 case BPF_PROG_TYPE_EXT:
9668 /* freplace program can return anything as its return value
9669 * depends on the to-be-replaced kernel func or bpf program.
9670 */
9671 default:
9672 return 0;
9673 }
9674
9675 if (reg->type != SCALAR_VALUE) {
9676 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9677 reg_type_str(env, reg->type));
9678 return -EINVAL;
9679 }
9680
9681 if (!tnum_in(range, reg->var_off)) {
9682 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9683 return -EINVAL;
9684 }
9685
9686 if (!tnum_is_unknown(enforce_attach_type_range) &&
9687 tnum_in(enforce_attach_type_range, reg->var_off))
9688 env->prog->enforce_expected_attach_type = 1;
9689 return 0;
9690 }
9691
9692 /* non-recursive DFS pseudo code
9693 * 1 procedure DFS-iterative(G,v):
9694 * 2 label v as discovered
9695 * 3 let S be a stack
9696 * 4 S.push(v)
9697 * 5 while S is not empty
9698 * 6 t <- S.pop()
9699 * 7 if t is what we're looking for:
9700 * 8 return t
9701 * 9 for all edges e in G.adjacentEdges(t) do
9702 * 10 if edge e is already labelled
9703 * 11 continue with the next edge
9704 * 12 w <- G.adjacentVertex(t,e)
9705 * 13 if vertex w is not discovered and not explored
9706 * 14 label e as tree-edge
9707 * 15 label w as discovered
9708 * 16 S.push(w)
9709 * 17 continue at 5
9710 * 18 else if vertex w is discovered
9711 * 19 label e as back-edge
9712 * 20 else
9713 * 21 // vertex w is explored
9714 * 22 label e as forward- or cross-edge
9715 * 23 label t as explored
9716 * 24 S.pop()
9717 *
9718 * convention:
9719 * 0x10 - discovered
9720 * 0x11 - discovered and fall-through edge labelled
9721 * 0x12 - discovered and fall-through and branch edges labelled
9722 * 0x20 - explored
9723 */
9724
9725 enum {
9726 DISCOVERED = 0x10,
9727 EXPLORED = 0x20,
9728 FALLTHROUGH = 1,
9729 BRANCH = 2,
9730 };
9731
state_htab_size(struct bpf_verifier_env * env)9732 static u32 state_htab_size(struct bpf_verifier_env *env)
9733 {
9734 return env->prog->len;
9735 }
9736
explored_state(struct bpf_verifier_env * env,int idx)9737 static struct bpf_verifier_state_list **explored_state(
9738 struct bpf_verifier_env *env,
9739 int idx)
9740 {
9741 struct bpf_verifier_state *cur = env->cur_state;
9742 struct bpf_func_state *state = cur->frame[cur->curframe];
9743
9744 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9745 }
9746
init_explored_state(struct bpf_verifier_env * env,int idx)9747 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9748 {
9749 env->insn_aux_data[idx].prune_point = true;
9750 }
9751
9752 enum {
9753 DONE_EXPLORING = 0,
9754 KEEP_EXPLORING = 1,
9755 };
9756
9757 /* t, w, e - match pseudo-code above:
9758 * t - index of current instruction
9759 * w - next instruction
9760 * e - edge
9761 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env,bool loop_ok)9762 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9763 bool loop_ok)
9764 {
9765 int *insn_stack = env->cfg.insn_stack;
9766 int *insn_state = env->cfg.insn_state;
9767
9768 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9769 return DONE_EXPLORING;
9770
9771 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9772 return DONE_EXPLORING;
9773
9774 if (w < 0 || w >= env->prog->len) {
9775 verbose_linfo(env, t, "%d: ", t);
9776 verbose(env, "jump out of range from insn %d to %d\n", t, w);
9777 return -EINVAL;
9778 }
9779
9780 if (e == BRANCH)
9781 /* mark branch target for state pruning */
9782 init_explored_state(env, w);
9783
9784 if (insn_state[w] == 0) {
9785 /* tree-edge */
9786 insn_state[t] = DISCOVERED | e;
9787 insn_state[w] = DISCOVERED;
9788 if (env->cfg.cur_stack >= env->prog->len)
9789 return -E2BIG;
9790 insn_stack[env->cfg.cur_stack++] = w;
9791 return KEEP_EXPLORING;
9792 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9793 if (loop_ok && env->bpf_capable)
9794 return DONE_EXPLORING;
9795 verbose_linfo(env, t, "%d: ", t);
9796 verbose_linfo(env, w, "%d: ", w);
9797 verbose(env, "back-edge from insn %d to %d\n", t, w);
9798 return -EINVAL;
9799 } else if (insn_state[w] == EXPLORED) {
9800 /* forward- or cross-edge */
9801 insn_state[t] = DISCOVERED | e;
9802 } else {
9803 verbose(env, "insn state internal bug\n");
9804 return -EFAULT;
9805 }
9806 return DONE_EXPLORING;
9807 }
9808
visit_func_call_insn(int t,int insn_cnt,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)9809 static int visit_func_call_insn(int t, int insn_cnt,
9810 struct bpf_insn *insns,
9811 struct bpf_verifier_env *env,
9812 bool visit_callee)
9813 {
9814 int ret;
9815
9816 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9817 if (ret)
9818 return ret;
9819
9820 if (t + 1 < insn_cnt)
9821 init_explored_state(env, t + 1);
9822 if (visit_callee) {
9823 init_explored_state(env, t);
9824 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9825 /* It's ok to allow recursion from CFG point of
9826 * view. __check_func_call() will do the actual
9827 * check.
9828 */
9829 bpf_pseudo_func(insns + t));
9830 }
9831 return ret;
9832 }
9833
9834 /* Visits the instruction at index t and returns one of the following:
9835 * < 0 - an error occurred
9836 * DONE_EXPLORING - the instruction was fully explored
9837 * KEEP_EXPLORING - there is still work to be done before it is fully explored
9838 */
visit_insn(int t,int insn_cnt,struct bpf_verifier_env * env)9839 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9840 {
9841 struct bpf_insn *insns = env->prog->insnsi;
9842 int ret;
9843
9844 if (bpf_pseudo_func(insns + t))
9845 return visit_func_call_insn(t, insn_cnt, insns, env, true);
9846
9847 /* All non-branch instructions have a single fall-through edge. */
9848 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9849 BPF_CLASS(insns[t].code) != BPF_JMP32)
9850 return push_insn(t, t + 1, FALLTHROUGH, env, false);
9851
9852 switch (BPF_OP(insns[t].code)) {
9853 case BPF_EXIT:
9854 return DONE_EXPLORING;
9855
9856 case BPF_CALL:
9857 if (insns[t].imm == BPF_FUNC_timer_set_callback)
9858 /* Mark this call insn to trigger is_state_visited() check
9859 * before call itself is processed by __check_func_call().
9860 * Otherwise new async state will be pushed for further
9861 * exploration.
9862 */
9863 init_explored_state(env, t);
9864 return visit_func_call_insn(t, insn_cnt, insns, env,
9865 insns[t].src_reg == BPF_PSEUDO_CALL);
9866
9867 case BPF_JA:
9868 if (BPF_SRC(insns[t].code) != BPF_K)
9869 return -EINVAL;
9870
9871 /* unconditional jump with single edge */
9872 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9873 true);
9874 if (ret)
9875 return ret;
9876
9877 /* unconditional jmp is not a good pruning point,
9878 * but it's marked, since backtracking needs
9879 * to record jmp history in is_state_visited().
9880 */
9881 init_explored_state(env, t + insns[t].off + 1);
9882 /* tell verifier to check for equivalent states
9883 * after every call and jump
9884 */
9885 if (t + 1 < insn_cnt)
9886 init_explored_state(env, t + 1);
9887
9888 return ret;
9889
9890 default:
9891 /* conditional jump with two edges */
9892 init_explored_state(env, t);
9893 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9894 if (ret)
9895 return ret;
9896
9897 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9898 }
9899 }
9900
9901 /* non-recursive depth-first-search to detect loops in BPF program
9902 * loop == back-edge in directed graph
9903 */
check_cfg(struct bpf_verifier_env * env)9904 static int check_cfg(struct bpf_verifier_env *env)
9905 {
9906 int insn_cnt = env->prog->len;
9907 int *insn_stack, *insn_state;
9908 int ret = 0;
9909 int i;
9910
9911 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9912 if (!insn_state)
9913 return -ENOMEM;
9914
9915 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9916 if (!insn_stack) {
9917 kvfree(insn_state);
9918 return -ENOMEM;
9919 }
9920
9921 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9922 insn_stack[0] = 0; /* 0 is the first instruction */
9923 env->cfg.cur_stack = 1;
9924
9925 while (env->cfg.cur_stack > 0) {
9926 int t = insn_stack[env->cfg.cur_stack - 1];
9927
9928 ret = visit_insn(t, insn_cnt, env);
9929 switch (ret) {
9930 case DONE_EXPLORING:
9931 insn_state[t] = EXPLORED;
9932 env->cfg.cur_stack--;
9933 break;
9934 case KEEP_EXPLORING:
9935 break;
9936 default:
9937 if (ret > 0) {
9938 verbose(env, "visit_insn internal bug\n");
9939 ret = -EFAULT;
9940 }
9941 goto err_free;
9942 }
9943 }
9944
9945 if (env->cfg.cur_stack < 0) {
9946 verbose(env, "pop stack internal bug\n");
9947 ret = -EFAULT;
9948 goto err_free;
9949 }
9950
9951 for (i = 0; i < insn_cnt; i++) {
9952 if (insn_state[i] != EXPLORED) {
9953 verbose(env, "unreachable insn %d\n", i);
9954 ret = -EINVAL;
9955 goto err_free;
9956 }
9957 }
9958 ret = 0; /* cfg looks good */
9959
9960 err_free:
9961 kvfree(insn_state);
9962 kvfree(insn_stack);
9963 env->cfg.insn_state = env->cfg.insn_stack = NULL;
9964 return ret;
9965 }
9966
check_abnormal_return(struct bpf_verifier_env * env)9967 static int check_abnormal_return(struct bpf_verifier_env *env)
9968 {
9969 int i;
9970
9971 for (i = 1; i < env->subprog_cnt; i++) {
9972 if (env->subprog_info[i].has_ld_abs) {
9973 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9974 return -EINVAL;
9975 }
9976 if (env->subprog_info[i].has_tail_call) {
9977 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9978 return -EINVAL;
9979 }
9980 }
9981 return 0;
9982 }
9983
9984 /* The minimum supported BTF func info size */
9985 #define MIN_BPF_FUNCINFO_SIZE 8
9986 #define MAX_FUNCINFO_REC_SIZE 252
9987
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)9988 static int check_btf_func(struct bpf_verifier_env *env,
9989 const union bpf_attr *attr,
9990 bpfptr_t uattr)
9991 {
9992 const struct btf_type *type, *func_proto, *ret_type;
9993 u32 i, nfuncs, urec_size, min_size;
9994 u32 krec_size = sizeof(struct bpf_func_info);
9995 struct bpf_func_info *krecord;
9996 struct bpf_func_info_aux *info_aux = NULL;
9997 struct bpf_prog *prog;
9998 const struct btf *btf;
9999 bpfptr_t urecord;
10000 u32 prev_offset = 0;
10001 bool scalar_return;
10002 int ret = -ENOMEM;
10003
10004 nfuncs = attr->func_info_cnt;
10005 if (!nfuncs) {
10006 if (check_abnormal_return(env))
10007 return -EINVAL;
10008 return 0;
10009 }
10010
10011 if (nfuncs != env->subprog_cnt) {
10012 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
10013 return -EINVAL;
10014 }
10015
10016 urec_size = attr->func_info_rec_size;
10017 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
10018 urec_size > MAX_FUNCINFO_REC_SIZE ||
10019 urec_size % sizeof(u32)) {
10020 verbose(env, "invalid func info rec size %u\n", urec_size);
10021 return -EINVAL;
10022 }
10023
10024 prog = env->prog;
10025 btf = prog->aux->btf;
10026
10027 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
10028 min_size = min_t(u32, krec_size, urec_size);
10029
10030 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
10031 if (!krecord)
10032 return -ENOMEM;
10033 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10034 if (!info_aux)
10035 goto err_free;
10036
10037 for (i = 0; i < nfuncs; i++) {
10038 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10039 if (ret) {
10040 if (ret == -E2BIG) {
10041 verbose(env, "nonzero tailing record in func info");
10042 /* set the size kernel expects so loader can zero
10043 * out the rest of the record.
10044 */
10045 if (copy_to_bpfptr_offset(uattr,
10046 offsetof(union bpf_attr, func_info_rec_size),
10047 &min_size, sizeof(min_size)))
10048 ret = -EFAULT;
10049 }
10050 goto err_free;
10051 }
10052
10053 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
10054 ret = -EFAULT;
10055 goto err_free;
10056 }
10057
10058 /* check insn_off */
10059 ret = -EINVAL;
10060 if (i == 0) {
10061 if (krecord[i].insn_off) {
10062 verbose(env,
10063 "nonzero insn_off %u for the first func info record",
10064 krecord[i].insn_off);
10065 goto err_free;
10066 }
10067 } else if (krecord[i].insn_off <= prev_offset) {
10068 verbose(env,
10069 "same or smaller insn offset (%u) than previous func info record (%u)",
10070 krecord[i].insn_off, prev_offset);
10071 goto err_free;
10072 }
10073
10074 if (env->subprog_info[i].start != krecord[i].insn_off) {
10075 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
10076 goto err_free;
10077 }
10078
10079 /* check type_id */
10080 type = btf_type_by_id(btf, krecord[i].type_id);
10081 if (!type || !btf_type_is_func(type)) {
10082 verbose(env, "invalid type id %d in func info",
10083 krecord[i].type_id);
10084 goto err_free;
10085 }
10086 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
10087
10088 func_proto = btf_type_by_id(btf, type->type);
10089 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10090 /* btf_func_check() already verified it during BTF load */
10091 goto err_free;
10092 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10093 scalar_return =
10094 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10095 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10096 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10097 goto err_free;
10098 }
10099 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10100 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10101 goto err_free;
10102 }
10103
10104 prev_offset = krecord[i].insn_off;
10105 bpfptr_add(&urecord, urec_size);
10106 }
10107
10108 prog->aux->func_info = krecord;
10109 prog->aux->func_info_cnt = nfuncs;
10110 prog->aux->func_info_aux = info_aux;
10111 return 0;
10112
10113 err_free:
10114 kvfree(krecord);
10115 kfree(info_aux);
10116 return ret;
10117 }
10118
adjust_btf_func(struct bpf_verifier_env * env)10119 static void adjust_btf_func(struct bpf_verifier_env *env)
10120 {
10121 struct bpf_prog_aux *aux = env->prog->aux;
10122 int i;
10123
10124 if (!aux->func_info)
10125 return;
10126
10127 for (i = 0; i < env->subprog_cnt; i++)
10128 aux->func_info[i].insn_off = env->subprog_info[i].start;
10129 }
10130
10131 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
10132 sizeof(((struct bpf_line_info *)(0))->line_col))
10133 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
10134
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)10135 static int check_btf_line(struct bpf_verifier_env *env,
10136 const union bpf_attr *attr,
10137 bpfptr_t uattr)
10138 {
10139 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10140 struct bpf_subprog_info *sub;
10141 struct bpf_line_info *linfo;
10142 struct bpf_prog *prog;
10143 const struct btf *btf;
10144 bpfptr_t ulinfo;
10145 int err;
10146
10147 nr_linfo = attr->line_info_cnt;
10148 if (!nr_linfo)
10149 return 0;
10150 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10151 return -EINVAL;
10152
10153 rec_size = attr->line_info_rec_size;
10154 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10155 rec_size > MAX_LINEINFO_REC_SIZE ||
10156 rec_size & (sizeof(u32) - 1))
10157 return -EINVAL;
10158
10159 /* Need to zero it in case the userspace may
10160 * pass in a smaller bpf_line_info object.
10161 */
10162 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10163 GFP_KERNEL | __GFP_NOWARN);
10164 if (!linfo)
10165 return -ENOMEM;
10166
10167 prog = env->prog;
10168 btf = prog->aux->btf;
10169
10170 s = 0;
10171 sub = env->subprog_info;
10172 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
10173 expected_size = sizeof(struct bpf_line_info);
10174 ncopy = min_t(u32, expected_size, rec_size);
10175 for (i = 0; i < nr_linfo; i++) {
10176 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10177 if (err) {
10178 if (err == -E2BIG) {
10179 verbose(env, "nonzero tailing record in line_info");
10180 if (copy_to_bpfptr_offset(uattr,
10181 offsetof(union bpf_attr, line_info_rec_size),
10182 &expected_size, sizeof(expected_size)))
10183 err = -EFAULT;
10184 }
10185 goto err_free;
10186 }
10187
10188 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
10189 err = -EFAULT;
10190 goto err_free;
10191 }
10192
10193 /*
10194 * Check insn_off to ensure
10195 * 1) strictly increasing AND
10196 * 2) bounded by prog->len
10197 *
10198 * The linfo[0].insn_off == 0 check logically falls into
10199 * the later "missing bpf_line_info for func..." case
10200 * because the first linfo[0].insn_off must be the
10201 * first sub also and the first sub must have
10202 * subprog_info[0].start == 0.
10203 */
10204 if ((i && linfo[i].insn_off <= prev_offset) ||
10205 linfo[i].insn_off >= prog->len) {
10206 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10207 i, linfo[i].insn_off, prev_offset,
10208 prog->len);
10209 err = -EINVAL;
10210 goto err_free;
10211 }
10212
10213 if (!prog->insnsi[linfo[i].insn_off].code) {
10214 verbose(env,
10215 "Invalid insn code at line_info[%u].insn_off\n",
10216 i);
10217 err = -EINVAL;
10218 goto err_free;
10219 }
10220
10221 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10222 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
10223 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10224 err = -EINVAL;
10225 goto err_free;
10226 }
10227
10228 if (s != env->subprog_cnt) {
10229 if (linfo[i].insn_off == sub[s].start) {
10230 sub[s].linfo_idx = i;
10231 s++;
10232 } else if (sub[s].start < linfo[i].insn_off) {
10233 verbose(env, "missing bpf_line_info for func#%u\n", s);
10234 err = -EINVAL;
10235 goto err_free;
10236 }
10237 }
10238
10239 prev_offset = linfo[i].insn_off;
10240 bpfptr_add(&ulinfo, rec_size);
10241 }
10242
10243 if (s != env->subprog_cnt) {
10244 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10245 env->subprog_cnt - s, s);
10246 err = -EINVAL;
10247 goto err_free;
10248 }
10249
10250 prog->aux->linfo = linfo;
10251 prog->aux->nr_linfo = nr_linfo;
10252
10253 return 0;
10254
10255 err_free:
10256 kvfree(linfo);
10257 return err;
10258 }
10259
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)10260 static int check_btf_info(struct bpf_verifier_env *env,
10261 const union bpf_attr *attr,
10262 bpfptr_t uattr)
10263 {
10264 struct btf *btf;
10265 int err;
10266
10267 if (!attr->func_info_cnt && !attr->line_info_cnt) {
10268 if (check_abnormal_return(env))
10269 return -EINVAL;
10270 return 0;
10271 }
10272
10273 btf = btf_get_by_fd(attr->prog_btf_fd);
10274 if (IS_ERR(btf))
10275 return PTR_ERR(btf);
10276 if (btf_is_kernel(btf)) {
10277 btf_put(btf);
10278 return -EACCES;
10279 }
10280 env->prog->aux->btf = btf;
10281
10282 err = check_btf_func(env, attr, uattr);
10283 if (err)
10284 return err;
10285
10286 err = check_btf_line(env, attr, uattr);
10287 if (err)
10288 return err;
10289
10290 return 0;
10291 }
10292
10293 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)10294 static bool range_within(struct bpf_reg_state *old,
10295 struct bpf_reg_state *cur)
10296 {
10297 return old->umin_value <= cur->umin_value &&
10298 old->umax_value >= cur->umax_value &&
10299 old->smin_value <= cur->smin_value &&
10300 old->smax_value >= cur->smax_value &&
10301 old->u32_min_value <= cur->u32_min_value &&
10302 old->u32_max_value >= cur->u32_max_value &&
10303 old->s32_min_value <= cur->s32_min_value &&
10304 old->s32_max_value >= cur->s32_max_value;
10305 }
10306
10307 /* If in the old state two registers had the same id, then they need to have
10308 * the same id in the new state as well. But that id could be different from
10309 * the old state, so we need to track the mapping from old to new ids.
10310 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10311 * regs with old id 5 must also have new id 9 for the new state to be safe. But
10312 * regs with a different old id could still have new id 9, we don't care about
10313 * that.
10314 * So we look through our idmap to see if this old id has been seen before. If
10315 * so, we require the new id to match; otherwise, we add the id pair to the map.
10316 */
check_ids(u32 old_id,u32 cur_id,struct bpf_id_pair * idmap)10317 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
10318 {
10319 unsigned int i;
10320
10321 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
10322 if (!idmap[i].old) {
10323 /* Reached an empty slot; haven't seen this id before */
10324 idmap[i].old = old_id;
10325 idmap[i].cur = cur_id;
10326 return true;
10327 }
10328 if (idmap[i].old == old_id)
10329 return idmap[i].cur == cur_id;
10330 }
10331 /* We ran out of idmap slots, which should be impossible */
10332 WARN_ON_ONCE(1);
10333 return false;
10334 }
10335
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)10336 static void clean_func_state(struct bpf_verifier_env *env,
10337 struct bpf_func_state *st)
10338 {
10339 enum bpf_reg_liveness live;
10340 int i, j;
10341
10342 for (i = 0; i < BPF_REG_FP; i++) {
10343 live = st->regs[i].live;
10344 /* liveness must not touch this register anymore */
10345 st->regs[i].live |= REG_LIVE_DONE;
10346 if (!(live & REG_LIVE_READ))
10347 /* since the register is unused, clear its state
10348 * to make further comparison simpler
10349 */
10350 __mark_reg_not_init(env, &st->regs[i]);
10351 }
10352
10353 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10354 live = st->stack[i].spilled_ptr.live;
10355 /* liveness must not touch this stack slot anymore */
10356 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10357 if (!(live & REG_LIVE_READ)) {
10358 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
10359 for (j = 0; j < BPF_REG_SIZE; j++)
10360 st->stack[i].slot_type[j] = STACK_INVALID;
10361 }
10362 }
10363 }
10364
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)10365 static void clean_verifier_state(struct bpf_verifier_env *env,
10366 struct bpf_verifier_state *st)
10367 {
10368 int i;
10369
10370 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10371 /* all regs in this state in all frames were already marked */
10372 return;
10373
10374 for (i = 0; i <= st->curframe; i++)
10375 clean_func_state(env, st->frame[i]);
10376 }
10377
10378 /* the parentage chains form a tree.
10379 * the verifier states are added to state lists at given insn and
10380 * pushed into state stack for future exploration.
10381 * when the verifier reaches bpf_exit insn some of the verifer states
10382 * stored in the state lists have their final liveness state already,
10383 * but a lot of states will get revised from liveness point of view when
10384 * the verifier explores other branches.
10385 * Example:
10386 * 1: r0 = 1
10387 * 2: if r1 == 100 goto pc+1
10388 * 3: r0 = 2
10389 * 4: exit
10390 * when the verifier reaches exit insn the register r0 in the state list of
10391 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10392 * of insn 2 and goes exploring further. At the insn 4 it will walk the
10393 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10394 *
10395 * Since the verifier pushes the branch states as it sees them while exploring
10396 * the program the condition of walking the branch instruction for the second
10397 * time means that all states below this branch were already explored and
10398 * their final liveness marks are already propagated.
10399 * Hence when the verifier completes the search of state list in is_state_visited()
10400 * we can call this clean_live_states() function to mark all liveness states
10401 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10402 * will not be used.
10403 * This function also clears the registers and stack for states that !READ
10404 * to simplify state merging.
10405 *
10406 * Important note here that walking the same branch instruction in the callee
10407 * doesn't meant that the states are DONE. The verifier has to compare
10408 * the callsites
10409 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)10410 static void clean_live_states(struct bpf_verifier_env *env, int insn,
10411 struct bpf_verifier_state *cur)
10412 {
10413 struct bpf_verifier_state_list *sl;
10414 int i;
10415
10416 sl = *explored_state(env, insn);
10417 while (sl) {
10418 if (sl->state.branches)
10419 goto next;
10420 if (sl->state.insn_idx != insn ||
10421 sl->state.curframe != cur->curframe)
10422 goto next;
10423 for (i = 0; i <= cur->curframe; i++)
10424 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10425 goto next;
10426 clean_verifier_state(env, &sl->state);
10427 next:
10428 sl = sl->next;
10429 }
10430 }
10431
10432 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_id_pair * idmap)10433 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10434 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
10435 {
10436 bool equal;
10437
10438 if (!(rold->live & REG_LIVE_READ))
10439 /* explored state didn't use this */
10440 return true;
10441
10442 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
10443
10444 if (rold->type == PTR_TO_STACK)
10445 /* two stack pointers are equal only if they're pointing to
10446 * the same stack frame, since fp-8 in foo != fp-8 in bar
10447 */
10448 return equal && rold->frameno == rcur->frameno;
10449
10450 if (equal)
10451 return true;
10452
10453 if (rold->type == NOT_INIT)
10454 /* explored state can't have used this */
10455 return true;
10456 if (rcur->type == NOT_INIT)
10457 return false;
10458 switch (base_type(rold->type)) {
10459 case SCALAR_VALUE:
10460 if (env->explore_alu_limits)
10461 return false;
10462 if (rcur->type == SCALAR_VALUE) {
10463 if (!rold->precise)
10464 return true;
10465 /* new val must satisfy old val knowledge */
10466 return range_within(rold, rcur) &&
10467 tnum_in(rold->var_off, rcur->var_off);
10468 } else {
10469 /* We're trying to use a pointer in place of a scalar.
10470 * Even if the scalar was unbounded, this could lead to
10471 * pointer leaks because scalars are allowed to leak
10472 * while pointers are not. We could make this safe in
10473 * special cases if root is calling us, but it's
10474 * probably not worth the hassle.
10475 */
10476 return false;
10477 }
10478 case PTR_TO_MAP_KEY:
10479 case PTR_TO_MAP_VALUE:
10480 /* a PTR_TO_MAP_VALUE could be safe to use as a
10481 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10482 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10483 * checked, doing so could have affected others with the same
10484 * id, and we can't check for that because we lost the id when
10485 * we converted to a PTR_TO_MAP_VALUE.
10486 */
10487 if (type_may_be_null(rold->type)) {
10488 if (!type_may_be_null(rcur->type))
10489 return false;
10490 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10491 return false;
10492 /* Check our ids match any regs they're supposed to */
10493 return check_ids(rold->id, rcur->id, idmap);
10494 }
10495
10496 /* If the new min/max/var_off satisfy the old ones and
10497 * everything else matches, we are OK.
10498 * 'id' is not compared, since it's only used for maps with
10499 * bpf_spin_lock inside map element and in such cases if
10500 * the rest of the prog is valid for one map element then
10501 * it's valid for all map elements regardless of the key
10502 * used in bpf_map_lookup()
10503 */
10504 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10505 range_within(rold, rcur) &&
10506 tnum_in(rold->var_off, rcur->var_off);
10507 case PTR_TO_PACKET_META:
10508 case PTR_TO_PACKET:
10509 if (rcur->type != rold->type)
10510 return false;
10511 /* We must have at least as much range as the old ptr
10512 * did, so that any accesses which were safe before are
10513 * still safe. This is true even if old range < old off,
10514 * since someone could have accessed through (ptr - k), or
10515 * even done ptr -= k in a register, to get a safe access.
10516 */
10517 if (rold->range > rcur->range)
10518 return false;
10519 /* If the offsets don't match, we can't trust our alignment;
10520 * nor can we be sure that we won't fall out of range.
10521 */
10522 if (rold->off != rcur->off)
10523 return false;
10524 /* id relations must be preserved */
10525 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10526 return false;
10527 /* new val must satisfy old val knowledge */
10528 return range_within(rold, rcur) &&
10529 tnum_in(rold->var_off, rcur->var_off);
10530 case PTR_TO_CTX:
10531 case CONST_PTR_TO_MAP:
10532 case PTR_TO_PACKET_END:
10533 case PTR_TO_FLOW_KEYS:
10534 case PTR_TO_SOCKET:
10535 case PTR_TO_SOCK_COMMON:
10536 case PTR_TO_TCP_SOCK:
10537 case PTR_TO_XDP_SOCK:
10538 /* Only valid matches are exact, which memcmp() above
10539 * would have accepted
10540 */
10541 default:
10542 /* Don't know what's going on, just say it's not safe */
10543 return false;
10544 }
10545
10546 /* Shouldn't get here; if we do, say it's not safe */
10547 WARN_ON_ONCE(1);
10548 return false;
10549 }
10550
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_id_pair * idmap)10551 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10552 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
10553 {
10554 int i, spi;
10555
10556 /* walk slots of the explored stack and ignore any additional
10557 * slots in the current stack, since explored(safe) state
10558 * didn't use them
10559 */
10560 for (i = 0; i < old->allocated_stack; i++) {
10561 spi = i / BPF_REG_SIZE;
10562
10563 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10564 i += BPF_REG_SIZE - 1;
10565 /* explored state didn't use this */
10566 continue;
10567 }
10568
10569 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10570 continue;
10571
10572 /* explored stack has more populated slots than current stack
10573 * and these slots were used
10574 */
10575 if (i >= cur->allocated_stack)
10576 return false;
10577
10578 /* if old state was safe with misc data in the stack
10579 * it will be safe with zero-initialized stack.
10580 * The opposite is not true
10581 */
10582 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10583 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10584 continue;
10585 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10586 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10587 /* Ex: old explored (safe) state has STACK_SPILL in
10588 * this stack slot, but current has STACK_MISC ->
10589 * this verifier states are not equivalent,
10590 * return false to continue verification of this path
10591 */
10592 return false;
10593 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
10594 continue;
10595 if (!is_spilled_reg(&old->stack[spi]))
10596 continue;
10597 if (!regsafe(env, &old->stack[spi].spilled_ptr,
10598 &cur->stack[spi].spilled_ptr, idmap))
10599 /* when explored and current stack slot are both storing
10600 * spilled registers, check that stored pointers types
10601 * are the same as well.
10602 * Ex: explored safe path could have stored
10603 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10604 * but current path has stored:
10605 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10606 * such verifier states are not equivalent.
10607 * return false to continue verification of this path
10608 */
10609 return false;
10610 }
10611 return true;
10612 }
10613
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur)10614 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10615 {
10616 if (old->acquired_refs != cur->acquired_refs)
10617 return false;
10618 return !memcmp(old->refs, cur->refs,
10619 sizeof(*old->refs) * old->acquired_refs);
10620 }
10621
10622 /* compare two verifier states
10623 *
10624 * all states stored in state_list are known to be valid, since
10625 * verifier reached 'bpf_exit' instruction through them
10626 *
10627 * this function is called when verifier exploring different branches of
10628 * execution popped from the state stack. If it sees an old state that has
10629 * more strict register state and more strict stack state then this execution
10630 * branch doesn't need to be explored further, since verifier already
10631 * concluded that more strict state leads to valid finish.
10632 *
10633 * Therefore two states are equivalent if register state is more conservative
10634 * and explored stack state is more conservative than the current one.
10635 * Example:
10636 * explored current
10637 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10638 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10639 *
10640 * In other words if current stack state (one being explored) has more
10641 * valid slots than old one that already passed validation, it means
10642 * the verifier can stop exploring and conclude that current state is valid too
10643 *
10644 * Similarly with registers. If explored state has register type as invalid
10645 * whereas register type in current state is meaningful, it means that
10646 * the current state will reach 'bpf_exit' instruction safely
10647 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur)10648 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10649 struct bpf_func_state *cur)
10650 {
10651 int i;
10652
10653 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10654 for (i = 0; i < MAX_BPF_REG; i++)
10655 if (!regsafe(env, &old->regs[i], &cur->regs[i],
10656 env->idmap_scratch))
10657 return false;
10658
10659 if (!stacksafe(env, old, cur, env->idmap_scratch))
10660 return false;
10661
10662 if (!refsafe(old, cur))
10663 return false;
10664
10665 return true;
10666 }
10667
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)10668 static bool states_equal(struct bpf_verifier_env *env,
10669 struct bpf_verifier_state *old,
10670 struct bpf_verifier_state *cur)
10671 {
10672 int i;
10673
10674 if (old->curframe != cur->curframe)
10675 return false;
10676
10677 /* Verification state from speculative execution simulation
10678 * must never prune a non-speculative execution one.
10679 */
10680 if (old->speculative && !cur->speculative)
10681 return false;
10682
10683 if (old->active_spin_lock != cur->active_spin_lock)
10684 return false;
10685
10686 /* for states to be equal callsites have to be the same
10687 * and all frame states need to be equivalent
10688 */
10689 for (i = 0; i <= old->curframe; i++) {
10690 if (old->frame[i]->callsite != cur->frame[i]->callsite)
10691 return false;
10692 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10693 return false;
10694 }
10695 return true;
10696 }
10697
10698 /* Return 0 if no propagation happened. Return negative error code if error
10699 * happened. Otherwise, return the propagated bit.
10700 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)10701 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10702 struct bpf_reg_state *reg,
10703 struct bpf_reg_state *parent_reg)
10704 {
10705 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10706 u8 flag = reg->live & REG_LIVE_READ;
10707 int err;
10708
10709 /* When comes here, read flags of PARENT_REG or REG could be any of
10710 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10711 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10712 */
10713 if (parent_flag == REG_LIVE_READ64 ||
10714 /* Or if there is no read flag from REG. */
10715 !flag ||
10716 /* Or if the read flag from REG is the same as PARENT_REG. */
10717 parent_flag == flag)
10718 return 0;
10719
10720 err = mark_reg_read(env, reg, parent_reg, flag);
10721 if (err)
10722 return err;
10723
10724 return flag;
10725 }
10726
10727 /* A write screens off any subsequent reads; but write marks come from the
10728 * straight-line code between a state and its parent. When we arrive at an
10729 * equivalent state (jump target or such) we didn't arrive by the straight-line
10730 * code, so read marks in the state must propagate to the parent regardless
10731 * of the state's write marks. That's what 'parent == state->parent' comparison
10732 * in mark_reg_read() is for.
10733 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)10734 static int propagate_liveness(struct bpf_verifier_env *env,
10735 const struct bpf_verifier_state *vstate,
10736 struct bpf_verifier_state *vparent)
10737 {
10738 struct bpf_reg_state *state_reg, *parent_reg;
10739 struct bpf_func_state *state, *parent;
10740 int i, frame, err = 0;
10741
10742 if (vparent->curframe != vstate->curframe) {
10743 WARN(1, "propagate_live: parent frame %d current frame %d\n",
10744 vparent->curframe, vstate->curframe);
10745 return -EFAULT;
10746 }
10747 /* Propagate read liveness of registers... */
10748 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10749 for (frame = 0; frame <= vstate->curframe; frame++) {
10750 parent = vparent->frame[frame];
10751 state = vstate->frame[frame];
10752 parent_reg = parent->regs;
10753 state_reg = state->regs;
10754 /* We don't need to worry about FP liveness, it's read-only */
10755 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10756 err = propagate_liveness_reg(env, &state_reg[i],
10757 &parent_reg[i]);
10758 if (err < 0)
10759 return err;
10760 if (err == REG_LIVE_READ64)
10761 mark_insn_zext(env, &parent_reg[i]);
10762 }
10763
10764 /* Propagate stack slots. */
10765 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10766 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10767 parent_reg = &parent->stack[i].spilled_ptr;
10768 state_reg = &state->stack[i].spilled_ptr;
10769 err = propagate_liveness_reg(env, state_reg,
10770 parent_reg);
10771 if (err < 0)
10772 return err;
10773 }
10774 }
10775 return 0;
10776 }
10777
10778 /* find precise scalars in the previous equivalent state and
10779 * propagate them into the current state
10780 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)10781 static int propagate_precision(struct bpf_verifier_env *env,
10782 const struct bpf_verifier_state *old)
10783 {
10784 struct bpf_reg_state *state_reg;
10785 struct bpf_func_state *state;
10786 int i, err = 0, fr;
10787
10788 for (fr = old->curframe; fr >= 0; fr--) {
10789 state = old->frame[fr];
10790 state_reg = state->regs;
10791 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10792 if (state_reg->type != SCALAR_VALUE ||
10793 !state_reg->precise ||
10794 !(state_reg->live & REG_LIVE_READ))
10795 continue;
10796 if (env->log.level & BPF_LOG_LEVEL2)
10797 verbose(env, "frame %d: propagating r%d\n", fr, i);
10798 err = mark_chain_precision_frame(env, fr, i);
10799 if (err < 0)
10800 return err;
10801 }
10802
10803 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10804 if (!is_spilled_reg(&state->stack[i]))
10805 continue;
10806 state_reg = &state->stack[i].spilled_ptr;
10807 if (state_reg->type != SCALAR_VALUE ||
10808 !state_reg->precise ||
10809 !(state_reg->live & REG_LIVE_READ))
10810 continue;
10811 if (env->log.level & BPF_LOG_LEVEL2)
10812 verbose(env, "frame %d: propagating fp%d\n",
10813 fr, (-i - 1) * BPF_REG_SIZE);
10814 err = mark_chain_precision_stack_frame(env, fr, i);
10815 if (err < 0)
10816 return err;
10817 }
10818 }
10819 return 0;
10820 }
10821
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)10822 static bool states_maybe_looping(struct bpf_verifier_state *old,
10823 struct bpf_verifier_state *cur)
10824 {
10825 struct bpf_func_state *fold, *fcur;
10826 int i, fr = cur->curframe;
10827
10828 if (old->curframe != fr)
10829 return false;
10830
10831 fold = old->frame[fr];
10832 fcur = cur->frame[fr];
10833 for (i = 0; i < MAX_BPF_REG; i++)
10834 if (memcmp(&fold->regs[i], &fcur->regs[i],
10835 offsetof(struct bpf_reg_state, parent)))
10836 return false;
10837 return true;
10838 }
10839
10840
is_state_visited(struct bpf_verifier_env * env,int insn_idx)10841 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10842 {
10843 struct bpf_verifier_state_list *new_sl;
10844 struct bpf_verifier_state_list *sl, **pprev;
10845 struct bpf_verifier_state *cur = env->cur_state, *new;
10846 int i, j, err, states_cnt = 0;
10847 bool add_new_state = env->test_state_freq ? true : false;
10848
10849 cur->last_insn_idx = env->prev_insn_idx;
10850 if (!env->insn_aux_data[insn_idx].prune_point)
10851 /* this 'insn_idx' instruction wasn't marked, so we will not
10852 * be doing state search here
10853 */
10854 return 0;
10855
10856 /* bpf progs typically have pruning point every 4 instructions
10857 * http://vger.kernel.org/bpfconf2019.html#session-1
10858 * Do not add new state for future pruning if the verifier hasn't seen
10859 * at least 2 jumps and at least 8 instructions.
10860 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10861 * In tests that amounts to up to 50% reduction into total verifier
10862 * memory consumption and 20% verifier time speedup.
10863 */
10864 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10865 env->insn_processed - env->prev_insn_processed >= 8)
10866 add_new_state = true;
10867
10868 pprev = explored_state(env, insn_idx);
10869 sl = *pprev;
10870
10871 clean_live_states(env, insn_idx, cur);
10872
10873 while (sl) {
10874 states_cnt++;
10875 if (sl->state.insn_idx != insn_idx)
10876 goto next;
10877
10878 if (sl->state.branches) {
10879 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
10880
10881 if (frame->in_async_callback_fn &&
10882 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
10883 /* Different async_entry_cnt means that the verifier is
10884 * processing another entry into async callback.
10885 * Seeing the same state is not an indication of infinite
10886 * loop or infinite recursion.
10887 * But finding the same state doesn't mean that it's safe
10888 * to stop processing the current state. The previous state
10889 * hasn't yet reached bpf_exit, since state.branches > 0.
10890 * Checking in_async_callback_fn alone is not enough either.
10891 * Since the verifier still needs to catch infinite loops
10892 * inside async callbacks.
10893 */
10894 } else if (states_maybe_looping(&sl->state, cur) &&
10895 states_equal(env, &sl->state, cur)) {
10896 verbose_linfo(env, insn_idx, "; ");
10897 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10898 return -EINVAL;
10899 }
10900 /* if the verifier is processing a loop, avoid adding new state
10901 * too often, since different loop iterations have distinct
10902 * states and may not help future pruning.
10903 * This threshold shouldn't be too low to make sure that
10904 * a loop with large bound will be rejected quickly.
10905 * The most abusive loop will be:
10906 * r1 += 1
10907 * if r1 < 1000000 goto pc-2
10908 * 1M insn_procssed limit / 100 == 10k peak states.
10909 * This threshold shouldn't be too high either, since states
10910 * at the end of the loop are likely to be useful in pruning.
10911 */
10912 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10913 env->insn_processed - env->prev_insn_processed < 100)
10914 add_new_state = false;
10915 goto miss;
10916 }
10917 if (states_equal(env, &sl->state, cur)) {
10918 sl->hit_cnt++;
10919 /* reached equivalent register/stack state,
10920 * prune the search.
10921 * Registers read by the continuation are read by us.
10922 * If we have any write marks in env->cur_state, they
10923 * will prevent corresponding reads in the continuation
10924 * from reaching our parent (an explored_state). Our
10925 * own state will get the read marks recorded, but
10926 * they'll be immediately forgotten as we're pruning
10927 * this state and will pop a new one.
10928 */
10929 err = propagate_liveness(env, &sl->state, cur);
10930
10931 /* if previous state reached the exit with precision and
10932 * current state is equivalent to it (except precsion marks)
10933 * the precision needs to be propagated back in
10934 * the current state.
10935 */
10936 err = err ? : push_jmp_history(env, cur);
10937 err = err ? : propagate_precision(env, &sl->state);
10938 if (err)
10939 return err;
10940 return 1;
10941 }
10942 miss:
10943 /* when new state is not going to be added do not increase miss count.
10944 * Otherwise several loop iterations will remove the state
10945 * recorded earlier. The goal of these heuristics is to have
10946 * states from some iterations of the loop (some in the beginning
10947 * and some at the end) to help pruning.
10948 */
10949 if (add_new_state)
10950 sl->miss_cnt++;
10951 /* heuristic to determine whether this state is beneficial
10952 * to keep checking from state equivalence point of view.
10953 * Higher numbers increase max_states_per_insn and verification time,
10954 * but do not meaningfully decrease insn_processed.
10955 */
10956 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10957 /* the state is unlikely to be useful. Remove it to
10958 * speed up verification
10959 */
10960 *pprev = sl->next;
10961 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10962 u32 br = sl->state.branches;
10963
10964 WARN_ONCE(br,
10965 "BUG live_done but branches_to_explore %d\n",
10966 br);
10967 free_verifier_state(&sl->state, false);
10968 kfree(sl);
10969 env->peak_states--;
10970 } else {
10971 /* cannot free this state, since parentage chain may
10972 * walk it later. Add it for free_list instead to
10973 * be freed at the end of verification
10974 */
10975 sl->next = env->free_list;
10976 env->free_list = sl;
10977 }
10978 sl = *pprev;
10979 continue;
10980 }
10981 next:
10982 pprev = &sl->next;
10983 sl = *pprev;
10984 }
10985
10986 if (env->max_states_per_insn < states_cnt)
10987 env->max_states_per_insn = states_cnt;
10988
10989 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10990 return push_jmp_history(env, cur);
10991
10992 if (!add_new_state)
10993 return push_jmp_history(env, cur);
10994
10995 /* There were no equivalent states, remember the current one.
10996 * Technically the current state is not proven to be safe yet,
10997 * but it will either reach outer most bpf_exit (which means it's safe)
10998 * or it will be rejected. When there are no loops the verifier won't be
10999 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
11000 * again on the way to bpf_exit.
11001 * When looping the sl->state.branches will be > 0 and this state
11002 * will not be considered for equivalence until branches == 0.
11003 */
11004 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
11005 if (!new_sl)
11006 return -ENOMEM;
11007 env->total_states++;
11008 env->peak_states++;
11009 env->prev_jmps_processed = env->jmps_processed;
11010 env->prev_insn_processed = env->insn_processed;
11011
11012 /* forget precise markings we inherited, see __mark_chain_precision */
11013 if (env->bpf_capable)
11014 mark_all_scalars_imprecise(env, cur);
11015
11016 /* add new state to the head of linked list */
11017 new = &new_sl->state;
11018 err = copy_verifier_state(new, cur);
11019 if (err) {
11020 free_verifier_state(new, false);
11021 kfree(new_sl);
11022 return err;
11023 }
11024 new->insn_idx = insn_idx;
11025 WARN_ONCE(new->branches != 1,
11026 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
11027
11028 cur->parent = new;
11029 cur->first_insn_idx = insn_idx;
11030 clear_jmp_history(cur);
11031 new_sl->next = *explored_state(env, insn_idx);
11032 *explored_state(env, insn_idx) = new_sl;
11033 /* connect new state to parentage chain. Current frame needs all
11034 * registers connected. Only r6 - r9 of the callers are alive (pushed
11035 * to the stack implicitly by JITs) so in callers' frames connect just
11036 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
11037 * the state of the call instruction (with WRITTEN set), and r0 comes
11038 * from callee with its full parentage chain, anyway.
11039 */
11040 /* clear write marks in current state: the writes we did are not writes
11041 * our child did, so they don't screen off its reads from us.
11042 * (There are no read marks in current state, because reads always mark
11043 * their parent and current state never has children yet. Only
11044 * explored_states can get read marks.)
11045 */
11046 for (j = 0; j <= cur->curframe; j++) {
11047 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11048 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11049 for (i = 0; i < BPF_REG_FP; i++)
11050 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11051 }
11052
11053 /* all stack frames are accessible from callee, clear them all */
11054 for (j = 0; j <= cur->curframe; j++) {
11055 struct bpf_func_state *frame = cur->frame[j];
11056 struct bpf_func_state *newframe = new->frame[j];
11057
11058 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
11059 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
11060 frame->stack[i].spilled_ptr.parent =
11061 &newframe->stack[i].spilled_ptr;
11062 }
11063 }
11064 return 0;
11065 }
11066
11067 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)11068 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11069 {
11070 switch (base_type(type)) {
11071 case PTR_TO_CTX:
11072 case PTR_TO_SOCKET:
11073 case PTR_TO_SOCK_COMMON:
11074 case PTR_TO_TCP_SOCK:
11075 case PTR_TO_XDP_SOCK:
11076 case PTR_TO_BTF_ID:
11077 return false;
11078 default:
11079 return true;
11080 }
11081 }
11082
11083 /* If an instruction was previously used with particular pointer types, then we
11084 * need to be careful to avoid cases such as the below, where it may be ok
11085 * for one branch accessing the pointer, but not ok for the other branch:
11086 *
11087 * R1 = sock_ptr
11088 * goto X;
11089 * ...
11090 * R1 = some_other_valid_ptr;
11091 * goto X;
11092 * ...
11093 * R2 = *(u32 *)(R1 + 0);
11094 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)11095 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11096 {
11097 return src != prev && (!reg_type_mismatch_ok(src) ||
11098 !reg_type_mismatch_ok(prev));
11099 }
11100
do_check(struct bpf_verifier_env * env)11101 static int do_check(struct bpf_verifier_env *env)
11102 {
11103 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11104 struct bpf_verifier_state *state = env->cur_state;
11105 struct bpf_insn *insns = env->prog->insnsi;
11106 struct bpf_reg_state *regs;
11107 int insn_cnt = env->prog->len;
11108 bool do_print_state = false;
11109 int prev_insn_idx = -1;
11110
11111 for (;;) {
11112 struct bpf_insn *insn;
11113 u8 class;
11114 int err;
11115
11116 env->prev_insn_idx = prev_insn_idx;
11117 if (env->insn_idx >= insn_cnt) {
11118 verbose(env, "invalid insn idx %d insn_cnt %d\n",
11119 env->insn_idx, insn_cnt);
11120 return -EFAULT;
11121 }
11122
11123 insn = &insns[env->insn_idx];
11124 class = BPF_CLASS(insn->code);
11125
11126 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
11127 verbose(env,
11128 "BPF program is too large. Processed %d insn\n",
11129 env->insn_processed);
11130 return -E2BIG;
11131 }
11132
11133 err = is_state_visited(env, env->insn_idx);
11134 if (err < 0)
11135 return err;
11136 if (err == 1) {
11137 /* found equivalent state, can prune the search */
11138 if (env->log.level & BPF_LOG_LEVEL) {
11139 if (do_print_state)
11140 verbose(env, "\nfrom %d to %d%s: safe\n",
11141 env->prev_insn_idx, env->insn_idx,
11142 env->cur_state->speculative ?
11143 " (speculative execution)" : "");
11144 else
11145 verbose(env, "%d: safe\n", env->insn_idx);
11146 }
11147 goto process_bpf_exit;
11148 }
11149
11150 if (signal_pending(current))
11151 return -EAGAIN;
11152
11153 if (need_resched())
11154 cond_resched();
11155
11156 if (env->log.level & BPF_LOG_LEVEL2 ||
11157 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
11158 if (env->log.level & BPF_LOG_LEVEL2)
11159 verbose(env, "%d:", env->insn_idx);
11160 else
11161 verbose(env, "\nfrom %d to %d%s:",
11162 env->prev_insn_idx, env->insn_idx,
11163 env->cur_state->speculative ?
11164 " (speculative execution)" : "");
11165 print_verifier_state(env, state->frame[state->curframe]);
11166 do_print_state = false;
11167 }
11168
11169 if (env->log.level & BPF_LOG_LEVEL) {
11170 const struct bpf_insn_cbs cbs = {
11171 .cb_call = disasm_kfunc_name,
11172 .cb_print = verbose,
11173 .private_data = env,
11174 };
11175
11176 verbose_linfo(env, env->insn_idx, "; ");
11177 verbose(env, "%d: ", env->insn_idx);
11178 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
11179 }
11180
11181 if (bpf_prog_is_dev_bound(env->prog->aux)) {
11182 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11183 env->prev_insn_idx);
11184 if (err)
11185 return err;
11186 }
11187
11188 regs = cur_regs(env);
11189 sanitize_mark_insn_seen(env);
11190 prev_insn_idx = env->insn_idx;
11191
11192 if (class == BPF_ALU || class == BPF_ALU64) {
11193 err = check_alu_op(env, insn);
11194 if (err)
11195 return err;
11196
11197 } else if (class == BPF_LDX) {
11198 enum bpf_reg_type *prev_src_type, src_reg_type;
11199
11200 /* check for reserved fields is already done */
11201
11202 /* check src operand */
11203 err = check_reg_arg(env, insn->src_reg, SRC_OP);
11204 if (err)
11205 return err;
11206
11207 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
11208 if (err)
11209 return err;
11210
11211 src_reg_type = regs[insn->src_reg].type;
11212
11213 /* check that memory (src_reg + off) is readable,
11214 * the state of dst_reg will be updated by this func
11215 */
11216 err = check_mem_access(env, env->insn_idx, insn->src_reg,
11217 insn->off, BPF_SIZE(insn->code),
11218 BPF_READ, insn->dst_reg, false);
11219 if (err)
11220 return err;
11221
11222 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11223
11224 if (*prev_src_type == NOT_INIT) {
11225 /* saw a valid insn
11226 * dst_reg = *(u32 *)(src_reg + off)
11227 * save type to validate intersecting paths
11228 */
11229 *prev_src_type = src_reg_type;
11230
11231 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
11232 /* ABuser program is trying to use the same insn
11233 * dst_reg = *(u32*) (src_reg + off)
11234 * with different pointer types:
11235 * src_reg == ctx in one branch and
11236 * src_reg == stack|map in some other branch.
11237 * Reject it.
11238 */
11239 verbose(env, "same insn cannot be used with different pointers\n");
11240 return -EINVAL;
11241 }
11242
11243 } else if (class == BPF_STX) {
11244 enum bpf_reg_type *prev_dst_type, dst_reg_type;
11245
11246 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11247 err = check_atomic(env, env->insn_idx, insn);
11248 if (err)
11249 return err;
11250 env->insn_idx++;
11251 continue;
11252 }
11253
11254 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11255 verbose(env, "BPF_STX uses reserved fields\n");
11256 return -EINVAL;
11257 }
11258
11259 /* check src1 operand */
11260 err = check_reg_arg(env, insn->src_reg, SRC_OP);
11261 if (err)
11262 return err;
11263 /* check src2 operand */
11264 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11265 if (err)
11266 return err;
11267
11268 dst_reg_type = regs[insn->dst_reg].type;
11269
11270 /* check that memory (dst_reg + off) is writeable */
11271 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11272 insn->off, BPF_SIZE(insn->code),
11273 BPF_WRITE, insn->src_reg, false);
11274 if (err)
11275 return err;
11276
11277 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11278
11279 if (*prev_dst_type == NOT_INIT) {
11280 *prev_dst_type = dst_reg_type;
11281 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
11282 verbose(env, "same insn cannot be used with different pointers\n");
11283 return -EINVAL;
11284 }
11285
11286 } else if (class == BPF_ST) {
11287 if (BPF_MODE(insn->code) != BPF_MEM ||
11288 insn->src_reg != BPF_REG_0) {
11289 verbose(env, "BPF_ST uses reserved fields\n");
11290 return -EINVAL;
11291 }
11292 /* check src operand */
11293 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11294 if (err)
11295 return err;
11296
11297 if (is_ctx_reg(env, insn->dst_reg)) {
11298 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
11299 insn->dst_reg,
11300 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
11301 return -EACCES;
11302 }
11303
11304 /* check that memory (dst_reg + off) is writeable */
11305 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11306 insn->off, BPF_SIZE(insn->code),
11307 BPF_WRITE, -1, false);
11308 if (err)
11309 return err;
11310
11311 } else if (class == BPF_JMP || class == BPF_JMP32) {
11312 u8 opcode = BPF_OP(insn->code);
11313
11314 env->jmps_processed++;
11315 if (opcode == BPF_CALL) {
11316 if (BPF_SRC(insn->code) != BPF_K ||
11317 insn->off != 0 ||
11318 (insn->src_reg != BPF_REG_0 &&
11319 insn->src_reg != BPF_PSEUDO_CALL &&
11320 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
11321 insn->dst_reg != BPF_REG_0 ||
11322 class == BPF_JMP32) {
11323 verbose(env, "BPF_CALL uses reserved fields\n");
11324 return -EINVAL;
11325 }
11326
11327 if (env->cur_state->active_spin_lock &&
11328 (insn->src_reg == BPF_PSEUDO_CALL ||
11329 insn->imm != BPF_FUNC_spin_unlock)) {
11330 verbose(env, "function calls are not allowed while holding a lock\n");
11331 return -EINVAL;
11332 }
11333 if (insn->src_reg == BPF_PSEUDO_CALL)
11334 err = check_func_call(env, insn, &env->insn_idx);
11335 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11336 err = check_kfunc_call(env, insn);
11337 else
11338 err = check_helper_call(env, insn, &env->insn_idx);
11339 if (err)
11340 return err;
11341 } else if (opcode == BPF_JA) {
11342 if (BPF_SRC(insn->code) != BPF_K ||
11343 insn->imm != 0 ||
11344 insn->src_reg != BPF_REG_0 ||
11345 insn->dst_reg != BPF_REG_0 ||
11346 class == BPF_JMP32) {
11347 verbose(env, "BPF_JA uses reserved fields\n");
11348 return -EINVAL;
11349 }
11350
11351 env->insn_idx += insn->off + 1;
11352 continue;
11353
11354 } else if (opcode == BPF_EXIT) {
11355 if (BPF_SRC(insn->code) != BPF_K ||
11356 insn->imm != 0 ||
11357 insn->src_reg != BPF_REG_0 ||
11358 insn->dst_reg != BPF_REG_0 ||
11359 class == BPF_JMP32) {
11360 verbose(env, "BPF_EXIT uses reserved fields\n");
11361 return -EINVAL;
11362 }
11363
11364 if (env->cur_state->active_spin_lock) {
11365 verbose(env, "bpf_spin_unlock is missing\n");
11366 return -EINVAL;
11367 }
11368
11369 if (state->curframe) {
11370 /* exit from nested function */
11371 err = prepare_func_exit(env, &env->insn_idx);
11372 if (err)
11373 return err;
11374 do_print_state = true;
11375 continue;
11376 }
11377
11378 err = check_reference_leak(env);
11379 if (err)
11380 return err;
11381
11382 err = check_return_code(env);
11383 if (err)
11384 return err;
11385 process_bpf_exit:
11386 update_branch_counts(env, env->cur_state);
11387 err = pop_stack(env, &prev_insn_idx,
11388 &env->insn_idx, pop_log);
11389 if (err < 0) {
11390 if (err != -ENOENT)
11391 return err;
11392 break;
11393 } else {
11394 do_print_state = true;
11395 continue;
11396 }
11397 } else {
11398 err = check_cond_jmp_op(env, insn, &env->insn_idx);
11399 if (err)
11400 return err;
11401 }
11402 } else if (class == BPF_LD) {
11403 u8 mode = BPF_MODE(insn->code);
11404
11405 if (mode == BPF_ABS || mode == BPF_IND) {
11406 err = check_ld_abs(env, insn);
11407 if (err)
11408 return err;
11409
11410 } else if (mode == BPF_IMM) {
11411 err = check_ld_imm(env, insn);
11412 if (err)
11413 return err;
11414
11415 env->insn_idx++;
11416 sanitize_mark_insn_seen(env);
11417 } else {
11418 verbose(env, "invalid BPF_LD mode\n");
11419 return -EINVAL;
11420 }
11421 } else {
11422 verbose(env, "unknown insn class %d\n", class);
11423 return -EINVAL;
11424 }
11425
11426 env->insn_idx++;
11427 }
11428
11429 return 0;
11430 }
11431
find_btf_percpu_datasec(struct btf * btf)11432 static int find_btf_percpu_datasec(struct btf *btf)
11433 {
11434 const struct btf_type *t;
11435 const char *tname;
11436 int i, n;
11437
11438 /*
11439 * Both vmlinux and module each have their own ".data..percpu"
11440 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11441 * types to look at only module's own BTF types.
11442 */
11443 n = btf_nr_types(btf);
11444 if (btf_is_module(btf))
11445 i = btf_nr_types(btf_vmlinux);
11446 else
11447 i = 1;
11448
11449 for(; i < n; i++) {
11450 t = btf_type_by_id(btf, i);
11451 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11452 continue;
11453
11454 tname = btf_name_by_offset(btf, t->name_off);
11455 if (!strcmp(tname, ".data..percpu"))
11456 return i;
11457 }
11458
11459 return -ENOENT;
11460 }
11461
11462 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)11463 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11464 struct bpf_insn *insn,
11465 struct bpf_insn_aux_data *aux)
11466 {
11467 const struct btf_var_secinfo *vsi;
11468 const struct btf_type *datasec;
11469 struct btf_mod_pair *btf_mod;
11470 const struct btf_type *t;
11471 const char *sym_name;
11472 bool percpu = false;
11473 u32 type, id = insn->imm;
11474 struct btf *btf;
11475 s32 datasec_id;
11476 u64 addr;
11477 int i, btf_fd, err;
11478
11479 btf_fd = insn[1].imm;
11480 if (btf_fd) {
11481 btf = btf_get_by_fd(btf_fd);
11482 if (IS_ERR(btf)) {
11483 verbose(env, "invalid module BTF object FD specified.\n");
11484 return -EINVAL;
11485 }
11486 } else {
11487 if (!btf_vmlinux) {
11488 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11489 return -EINVAL;
11490 }
11491 btf = btf_vmlinux;
11492 btf_get(btf);
11493 }
11494
11495 t = btf_type_by_id(btf, id);
11496 if (!t) {
11497 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
11498 err = -ENOENT;
11499 goto err_put;
11500 }
11501
11502 if (!btf_type_is_var(t)) {
11503 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11504 err = -EINVAL;
11505 goto err_put;
11506 }
11507
11508 sym_name = btf_name_by_offset(btf, t->name_off);
11509 addr = kallsyms_lookup_name(sym_name);
11510 if (!addr) {
11511 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11512 sym_name);
11513 err = -ENOENT;
11514 goto err_put;
11515 }
11516
11517 datasec_id = find_btf_percpu_datasec(btf);
11518 if (datasec_id > 0) {
11519 datasec = btf_type_by_id(btf, datasec_id);
11520 for_each_vsi(i, datasec, vsi) {
11521 if (vsi->type == id) {
11522 percpu = true;
11523 break;
11524 }
11525 }
11526 }
11527
11528 insn[0].imm = (u32)addr;
11529 insn[1].imm = addr >> 32;
11530
11531 type = t->type;
11532 t = btf_type_skip_modifiers(btf, type, NULL);
11533 if (percpu) {
11534 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11535 aux->btf_var.btf = btf;
11536 aux->btf_var.btf_id = type;
11537 } else if (!btf_type_is_struct(t)) {
11538 const struct btf_type *ret;
11539 const char *tname;
11540 u32 tsize;
11541
11542 /* resolve the type size of ksym. */
11543 ret = btf_resolve_size(btf, t, &tsize);
11544 if (IS_ERR(ret)) {
11545 tname = btf_name_by_offset(btf, t->name_off);
11546 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11547 tname, PTR_ERR(ret));
11548 err = -EINVAL;
11549 goto err_put;
11550 }
11551 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
11552 aux->btf_var.mem_size = tsize;
11553 } else {
11554 aux->btf_var.reg_type = PTR_TO_BTF_ID;
11555 aux->btf_var.btf = btf;
11556 aux->btf_var.btf_id = type;
11557 }
11558
11559 /* check whether we recorded this BTF (and maybe module) already */
11560 for (i = 0; i < env->used_btf_cnt; i++) {
11561 if (env->used_btfs[i].btf == btf) {
11562 btf_put(btf);
11563 return 0;
11564 }
11565 }
11566
11567 if (env->used_btf_cnt >= MAX_USED_BTFS) {
11568 err = -E2BIG;
11569 goto err_put;
11570 }
11571
11572 btf_mod = &env->used_btfs[env->used_btf_cnt];
11573 btf_mod->btf = btf;
11574 btf_mod->module = NULL;
11575
11576 /* if we reference variables from kernel module, bump its refcount */
11577 if (btf_is_module(btf)) {
11578 btf_mod->module = btf_try_get_module(btf);
11579 if (!btf_mod->module) {
11580 err = -ENXIO;
11581 goto err_put;
11582 }
11583 }
11584
11585 env->used_btf_cnt++;
11586
11587 return 0;
11588 err_put:
11589 btf_put(btf);
11590 return err;
11591 }
11592
check_map_prealloc(struct bpf_map * map)11593 static int check_map_prealloc(struct bpf_map *map)
11594 {
11595 return (map->map_type != BPF_MAP_TYPE_HASH &&
11596 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11597 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11598 !(map->map_flags & BPF_F_NO_PREALLOC);
11599 }
11600
is_tracing_prog_type(enum bpf_prog_type type)11601 static bool is_tracing_prog_type(enum bpf_prog_type type)
11602 {
11603 switch (type) {
11604 case BPF_PROG_TYPE_KPROBE:
11605 case BPF_PROG_TYPE_TRACEPOINT:
11606 case BPF_PROG_TYPE_PERF_EVENT:
11607 case BPF_PROG_TYPE_RAW_TRACEPOINT:
11608 return true;
11609 default:
11610 return false;
11611 }
11612 }
11613
is_preallocated_map(struct bpf_map * map)11614 static bool is_preallocated_map(struct bpf_map *map)
11615 {
11616 if (!check_map_prealloc(map))
11617 return false;
11618 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11619 return false;
11620 return true;
11621 }
11622
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)11623 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11624 struct bpf_map *map,
11625 struct bpf_prog *prog)
11626
11627 {
11628 enum bpf_prog_type prog_type = resolve_prog_type(prog);
11629 /*
11630 * Validate that trace type programs use preallocated hash maps.
11631 *
11632 * For programs attached to PERF events this is mandatory as the
11633 * perf NMI can hit any arbitrary code sequence.
11634 *
11635 * All other trace types using preallocated hash maps are unsafe as
11636 * well because tracepoint or kprobes can be inside locked regions
11637 * of the memory allocator or at a place where a recursion into the
11638 * memory allocator would see inconsistent state.
11639 *
11640 * On RT enabled kernels run-time allocation of all trace type
11641 * programs is strictly prohibited due to lock type constraints. On
11642 * !RT kernels it is allowed for backwards compatibility reasons for
11643 * now, but warnings are emitted so developers are made aware of
11644 * the unsafety and can fix their programs before this is enforced.
11645 */
11646 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11647 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11648 verbose(env, "perf_event programs can only use preallocated hash map\n");
11649 return -EINVAL;
11650 }
11651 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11652 verbose(env, "trace type programs can only use preallocated hash map\n");
11653 return -EINVAL;
11654 }
11655 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11656 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11657 }
11658
11659 if (map_value_has_spin_lock(map)) {
11660 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11661 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11662 return -EINVAL;
11663 }
11664
11665 if (is_tracing_prog_type(prog_type)) {
11666 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11667 return -EINVAL;
11668 }
11669
11670 if (prog->aux->sleepable) {
11671 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11672 return -EINVAL;
11673 }
11674 }
11675
11676 if (map_value_has_timer(map)) {
11677 if (is_tracing_prog_type(prog_type)) {
11678 verbose(env, "tracing progs cannot use bpf_timer yet\n");
11679 return -EINVAL;
11680 }
11681 }
11682
11683 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11684 !bpf_offload_prog_map_match(prog, map)) {
11685 verbose(env, "offload device mismatch between prog and map\n");
11686 return -EINVAL;
11687 }
11688
11689 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11690 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11691 return -EINVAL;
11692 }
11693
11694 if (prog->aux->sleepable)
11695 switch (map->map_type) {
11696 case BPF_MAP_TYPE_HASH:
11697 case BPF_MAP_TYPE_LRU_HASH:
11698 case BPF_MAP_TYPE_ARRAY:
11699 case BPF_MAP_TYPE_PERCPU_HASH:
11700 case BPF_MAP_TYPE_PERCPU_ARRAY:
11701 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11702 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11703 case BPF_MAP_TYPE_HASH_OF_MAPS:
11704 if (!is_preallocated_map(map)) {
11705 verbose(env,
11706 "Sleepable programs can only use preallocated maps\n");
11707 return -EINVAL;
11708 }
11709 break;
11710 case BPF_MAP_TYPE_RINGBUF:
11711 break;
11712 default:
11713 verbose(env,
11714 "Sleepable programs can only use array, hash, and ringbuf maps\n");
11715 return -EINVAL;
11716 }
11717
11718 return 0;
11719 }
11720
bpf_map_is_cgroup_storage(struct bpf_map * map)11721 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11722 {
11723 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11724 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11725 }
11726
11727 /* find and rewrite pseudo imm in ld_imm64 instructions:
11728 *
11729 * 1. if it accesses map FD, replace it with actual map pointer.
11730 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11731 *
11732 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11733 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)11734 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11735 {
11736 struct bpf_insn *insn = env->prog->insnsi;
11737 int insn_cnt = env->prog->len;
11738 int i, j, err;
11739
11740 err = bpf_prog_calc_tag(env->prog);
11741 if (err)
11742 return err;
11743
11744 for (i = 0; i < insn_cnt; i++, insn++) {
11745 if (BPF_CLASS(insn->code) == BPF_LDX &&
11746 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11747 verbose(env, "BPF_LDX uses reserved fields\n");
11748 return -EINVAL;
11749 }
11750
11751 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11752 struct bpf_insn_aux_data *aux;
11753 struct bpf_map *map;
11754 struct fd f;
11755 u64 addr;
11756 u32 fd;
11757
11758 if (i == insn_cnt - 1 || insn[1].code != 0 ||
11759 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11760 insn[1].off != 0) {
11761 verbose(env, "invalid bpf_ld_imm64 insn\n");
11762 return -EINVAL;
11763 }
11764
11765 if (insn[0].src_reg == 0)
11766 /* valid generic load 64-bit imm */
11767 goto next_insn;
11768
11769 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11770 aux = &env->insn_aux_data[i];
11771 err = check_pseudo_btf_id(env, insn, aux);
11772 if (err)
11773 return err;
11774 goto next_insn;
11775 }
11776
11777 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11778 aux = &env->insn_aux_data[i];
11779 aux->ptr_type = PTR_TO_FUNC;
11780 goto next_insn;
11781 }
11782
11783 /* In final convert_pseudo_ld_imm64() step, this is
11784 * converted into regular 64-bit imm load insn.
11785 */
11786 switch (insn[0].src_reg) {
11787 case BPF_PSEUDO_MAP_VALUE:
11788 case BPF_PSEUDO_MAP_IDX_VALUE:
11789 break;
11790 case BPF_PSEUDO_MAP_FD:
11791 case BPF_PSEUDO_MAP_IDX:
11792 if (insn[1].imm == 0)
11793 break;
11794 fallthrough;
11795 default:
11796 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11797 return -EINVAL;
11798 }
11799
11800 switch (insn[0].src_reg) {
11801 case BPF_PSEUDO_MAP_IDX_VALUE:
11802 case BPF_PSEUDO_MAP_IDX:
11803 if (bpfptr_is_null(env->fd_array)) {
11804 verbose(env, "fd_idx without fd_array is invalid\n");
11805 return -EPROTO;
11806 }
11807 if (copy_from_bpfptr_offset(&fd, env->fd_array,
11808 insn[0].imm * sizeof(fd),
11809 sizeof(fd)))
11810 return -EFAULT;
11811 break;
11812 default:
11813 fd = insn[0].imm;
11814 break;
11815 }
11816
11817 f = fdget(fd);
11818 map = __bpf_map_get(f);
11819 if (IS_ERR(map)) {
11820 verbose(env, "fd %d is not pointing to valid bpf_map\n",
11821 insn[0].imm);
11822 return PTR_ERR(map);
11823 }
11824
11825 err = check_map_prog_compatibility(env, map, env->prog);
11826 if (err) {
11827 fdput(f);
11828 return err;
11829 }
11830
11831 aux = &env->insn_aux_data[i];
11832 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11833 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11834 addr = (unsigned long)map;
11835 } else {
11836 u32 off = insn[1].imm;
11837
11838 if (off >= BPF_MAX_VAR_OFF) {
11839 verbose(env, "direct value offset of %u is not allowed\n", off);
11840 fdput(f);
11841 return -EINVAL;
11842 }
11843
11844 if (!map->ops->map_direct_value_addr) {
11845 verbose(env, "no direct value access support for this map type\n");
11846 fdput(f);
11847 return -EINVAL;
11848 }
11849
11850 err = map->ops->map_direct_value_addr(map, &addr, off);
11851 if (err) {
11852 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11853 map->value_size, off);
11854 fdput(f);
11855 return err;
11856 }
11857
11858 aux->map_off = off;
11859 addr += off;
11860 }
11861
11862 insn[0].imm = (u32)addr;
11863 insn[1].imm = addr >> 32;
11864
11865 /* check whether we recorded this map already */
11866 for (j = 0; j < env->used_map_cnt; j++) {
11867 if (env->used_maps[j] == map) {
11868 aux->map_index = j;
11869 fdput(f);
11870 goto next_insn;
11871 }
11872 }
11873
11874 if (env->used_map_cnt >= MAX_USED_MAPS) {
11875 fdput(f);
11876 return -E2BIG;
11877 }
11878
11879 /* hold the map. If the program is rejected by verifier,
11880 * the map will be released by release_maps() or it
11881 * will be used by the valid program until it's unloaded
11882 * and all maps are released in free_used_maps()
11883 */
11884 bpf_map_inc(map);
11885
11886 aux->map_index = env->used_map_cnt;
11887 env->used_maps[env->used_map_cnt++] = map;
11888
11889 if (bpf_map_is_cgroup_storage(map) &&
11890 bpf_cgroup_storage_assign(env->prog->aux, map)) {
11891 verbose(env, "only one cgroup storage of each type is allowed\n");
11892 fdput(f);
11893 return -EBUSY;
11894 }
11895
11896 fdput(f);
11897 next_insn:
11898 insn++;
11899 i++;
11900 continue;
11901 }
11902
11903 /* Basic sanity check before we invest more work here. */
11904 if (!bpf_opcode_in_insntable(insn->code)) {
11905 verbose(env, "unknown opcode %02x\n", insn->code);
11906 return -EINVAL;
11907 }
11908 }
11909
11910 /* now all pseudo BPF_LD_IMM64 instructions load valid
11911 * 'struct bpf_map *' into a register instead of user map_fd.
11912 * These pointers will be used later by verifier to validate map access.
11913 */
11914 return 0;
11915 }
11916
11917 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)11918 static void release_maps(struct bpf_verifier_env *env)
11919 {
11920 __bpf_free_used_maps(env->prog->aux, env->used_maps,
11921 env->used_map_cnt);
11922 }
11923
11924 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)11925 static void release_btfs(struct bpf_verifier_env *env)
11926 {
11927 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11928 env->used_btf_cnt);
11929 }
11930
11931 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)11932 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11933 {
11934 struct bpf_insn *insn = env->prog->insnsi;
11935 int insn_cnt = env->prog->len;
11936 int i;
11937
11938 for (i = 0; i < insn_cnt; i++, insn++) {
11939 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11940 continue;
11941 if (insn->src_reg == BPF_PSEUDO_FUNC)
11942 continue;
11943 insn->src_reg = 0;
11944 }
11945 }
11946
11947 /* single env->prog->insni[off] instruction was replaced with the range
11948 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
11949 * [0, off) and [off, end) to new locations, so the patched range stays zero
11950 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)11951 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
11952 struct bpf_insn_aux_data *new_data,
11953 struct bpf_prog *new_prog, u32 off, u32 cnt)
11954 {
11955 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
11956 struct bpf_insn *insn = new_prog->insnsi;
11957 u32 old_seen = old_data[off].seen;
11958 u32 prog_len;
11959 int i;
11960
11961 /* aux info at OFF always needs adjustment, no matter fast path
11962 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11963 * original insn at old prog.
11964 */
11965 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11966
11967 if (cnt == 1)
11968 return;
11969 prog_len = new_prog->len;
11970
11971 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11972 memcpy(new_data + off + cnt - 1, old_data + off,
11973 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11974 for (i = off; i < off + cnt - 1; i++) {
11975 /* Expand insni[off]'s seen count to the patched range. */
11976 new_data[i].seen = old_seen;
11977 new_data[i].zext_dst = insn_has_def32(env, insn + i);
11978 }
11979 env->insn_aux_data = new_data;
11980 vfree(old_data);
11981 }
11982
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)11983 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11984 {
11985 int i;
11986
11987 if (len == 1)
11988 return;
11989 /* NOTE: fake 'exit' subprog should be updated as well. */
11990 for (i = 0; i <= env->subprog_cnt; i++) {
11991 if (env->subprog_info[i].start <= off)
11992 continue;
11993 env->subprog_info[i].start += len - 1;
11994 }
11995 }
11996
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)11997 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
11998 {
11999 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
12000 int i, sz = prog->aux->size_poke_tab;
12001 struct bpf_jit_poke_descriptor *desc;
12002
12003 for (i = 0; i < sz; i++) {
12004 desc = &tab[i];
12005 if (desc->insn_idx <= off)
12006 continue;
12007 desc->insn_idx += len - 1;
12008 }
12009 }
12010
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)12011 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
12012 const struct bpf_insn *patch, u32 len)
12013 {
12014 struct bpf_prog *new_prog;
12015 struct bpf_insn_aux_data *new_data = NULL;
12016
12017 if (len > 1) {
12018 new_data = vzalloc(array_size(env->prog->len + len - 1,
12019 sizeof(struct bpf_insn_aux_data)));
12020 if (!new_data)
12021 return NULL;
12022 }
12023
12024 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
12025 if (IS_ERR(new_prog)) {
12026 if (PTR_ERR(new_prog) == -ERANGE)
12027 verbose(env,
12028 "insn %d cannot be patched due to 16-bit range\n",
12029 env->insn_aux_data[off].orig_idx);
12030 vfree(new_data);
12031 return NULL;
12032 }
12033 adjust_insn_aux_data(env, new_data, new_prog, off, len);
12034 adjust_subprog_starts(env, off, len);
12035 adjust_poke_descs(new_prog, off, len);
12036 return new_prog;
12037 }
12038
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)12039 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
12040 u32 off, u32 cnt)
12041 {
12042 int i, j;
12043
12044 /* find first prog starting at or after off (first to remove) */
12045 for (i = 0; i < env->subprog_cnt; i++)
12046 if (env->subprog_info[i].start >= off)
12047 break;
12048 /* find first prog starting at or after off + cnt (first to stay) */
12049 for (j = i; j < env->subprog_cnt; j++)
12050 if (env->subprog_info[j].start >= off + cnt)
12051 break;
12052 /* if j doesn't start exactly at off + cnt, we are just removing
12053 * the front of previous prog
12054 */
12055 if (env->subprog_info[j].start != off + cnt)
12056 j--;
12057
12058 if (j > i) {
12059 struct bpf_prog_aux *aux = env->prog->aux;
12060 int move;
12061
12062 /* move fake 'exit' subprog as well */
12063 move = env->subprog_cnt + 1 - j;
12064
12065 memmove(env->subprog_info + i,
12066 env->subprog_info + j,
12067 sizeof(*env->subprog_info) * move);
12068 env->subprog_cnt -= j - i;
12069
12070 /* remove func_info */
12071 if (aux->func_info) {
12072 move = aux->func_info_cnt - j;
12073
12074 memmove(aux->func_info + i,
12075 aux->func_info + j,
12076 sizeof(*aux->func_info) * move);
12077 aux->func_info_cnt -= j - i;
12078 /* func_info->insn_off is set after all code rewrites,
12079 * in adjust_btf_func() - no need to adjust
12080 */
12081 }
12082 } else {
12083 /* convert i from "first prog to remove" to "first to adjust" */
12084 if (env->subprog_info[i].start == off)
12085 i++;
12086 }
12087
12088 /* update fake 'exit' subprog as well */
12089 for (; i <= env->subprog_cnt; i++)
12090 env->subprog_info[i].start -= cnt;
12091
12092 return 0;
12093 }
12094
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)12095 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12096 u32 cnt)
12097 {
12098 struct bpf_prog *prog = env->prog;
12099 u32 i, l_off, l_cnt, nr_linfo;
12100 struct bpf_line_info *linfo;
12101
12102 nr_linfo = prog->aux->nr_linfo;
12103 if (!nr_linfo)
12104 return 0;
12105
12106 linfo = prog->aux->linfo;
12107
12108 /* find first line info to remove, count lines to be removed */
12109 for (i = 0; i < nr_linfo; i++)
12110 if (linfo[i].insn_off >= off)
12111 break;
12112
12113 l_off = i;
12114 l_cnt = 0;
12115 for (; i < nr_linfo; i++)
12116 if (linfo[i].insn_off < off + cnt)
12117 l_cnt++;
12118 else
12119 break;
12120
12121 /* First live insn doesn't match first live linfo, it needs to "inherit"
12122 * last removed linfo. prog is already modified, so prog->len == off
12123 * means no live instructions after (tail of the program was removed).
12124 */
12125 if (prog->len != off && l_cnt &&
12126 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12127 l_cnt--;
12128 linfo[--i].insn_off = off + cnt;
12129 }
12130
12131 /* remove the line info which refer to the removed instructions */
12132 if (l_cnt) {
12133 memmove(linfo + l_off, linfo + i,
12134 sizeof(*linfo) * (nr_linfo - i));
12135
12136 prog->aux->nr_linfo -= l_cnt;
12137 nr_linfo = prog->aux->nr_linfo;
12138 }
12139
12140 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
12141 for (i = l_off; i < nr_linfo; i++)
12142 linfo[i].insn_off -= cnt;
12143
12144 /* fix up all subprogs (incl. 'exit') which start >= off */
12145 for (i = 0; i <= env->subprog_cnt; i++)
12146 if (env->subprog_info[i].linfo_idx > l_off) {
12147 /* program may have started in the removed region but
12148 * may not be fully removed
12149 */
12150 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12151 env->subprog_info[i].linfo_idx -= l_cnt;
12152 else
12153 env->subprog_info[i].linfo_idx = l_off;
12154 }
12155
12156 return 0;
12157 }
12158
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)12159 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12160 {
12161 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12162 unsigned int orig_prog_len = env->prog->len;
12163 int err;
12164
12165 if (bpf_prog_is_dev_bound(env->prog->aux))
12166 bpf_prog_offload_remove_insns(env, off, cnt);
12167
12168 err = bpf_remove_insns(env->prog, off, cnt);
12169 if (err)
12170 return err;
12171
12172 err = adjust_subprog_starts_after_remove(env, off, cnt);
12173 if (err)
12174 return err;
12175
12176 err = bpf_adj_linfo_after_remove(env, off, cnt);
12177 if (err)
12178 return err;
12179
12180 memmove(aux_data + off, aux_data + off + cnt,
12181 sizeof(*aux_data) * (orig_prog_len - off - cnt));
12182
12183 return 0;
12184 }
12185
12186 /* The verifier does more data flow analysis than llvm and will not
12187 * explore branches that are dead at run time. Malicious programs can
12188 * have dead code too. Therefore replace all dead at-run-time code
12189 * with 'ja -1'.
12190 *
12191 * Just nops are not optimal, e.g. if they would sit at the end of the
12192 * program and through another bug we would manage to jump there, then
12193 * we'd execute beyond program memory otherwise. Returning exception
12194 * code also wouldn't work since we can have subprogs where the dead
12195 * code could be located.
12196 */
sanitize_dead_code(struct bpf_verifier_env * env)12197 static void sanitize_dead_code(struct bpf_verifier_env *env)
12198 {
12199 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12200 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
12201 struct bpf_insn *insn = env->prog->insnsi;
12202 const int insn_cnt = env->prog->len;
12203 int i;
12204
12205 for (i = 0; i < insn_cnt; i++) {
12206 if (aux_data[i].seen)
12207 continue;
12208 memcpy(insn + i, &trap, sizeof(trap));
12209 aux_data[i].zext_dst = false;
12210 }
12211 }
12212
insn_is_cond_jump(u8 code)12213 static bool insn_is_cond_jump(u8 code)
12214 {
12215 u8 op;
12216
12217 if (BPF_CLASS(code) == BPF_JMP32)
12218 return true;
12219
12220 if (BPF_CLASS(code) != BPF_JMP)
12221 return false;
12222
12223 op = BPF_OP(code);
12224 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12225 }
12226
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)12227 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12228 {
12229 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12230 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12231 struct bpf_insn *insn = env->prog->insnsi;
12232 const int insn_cnt = env->prog->len;
12233 int i;
12234
12235 for (i = 0; i < insn_cnt; i++, insn++) {
12236 if (!insn_is_cond_jump(insn->code))
12237 continue;
12238
12239 if (!aux_data[i + 1].seen)
12240 ja.off = insn->off;
12241 else if (!aux_data[i + 1 + insn->off].seen)
12242 ja.off = 0;
12243 else
12244 continue;
12245
12246 if (bpf_prog_is_dev_bound(env->prog->aux))
12247 bpf_prog_offload_replace_insn(env, i, &ja);
12248
12249 memcpy(insn, &ja, sizeof(ja));
12250 }
12251 }
12252
opt_remove_dead_code(struct bpf_verifier_env * env)12253 static int opt_remove_dead_code(struct bpf_verifier_env *env)
12254 {
12255 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12256 int insn_cnt = env->prog->len;
12257 int i, err;
12258
12259 for (i = 0; i < insn_cnt; i++) {
12260 int j;
12261
12262 j = 0;
12263 while (i + j < insn_cnt && !aux_data[i + j].seen)
12264 j++;
12265 if (!j)
12266 continue;
12267
12268 err = verifier_remove_insns(env, i, j);
12269 if (err)
12270 return err;
12271 insn_cnt = env->prog->len;
12272 }
12273
12274 return 0;
12275 }
12276
opt_remove_nops(struct bpf_verifier_env * env)12277 static int opt_remove_nops(struct bpf_verifier_env *env)
12278 {
12279 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12280 struct bpf_insn *insn = env->prog->insnsi;
12281 int insn_cnt = env->prog->len;
12282 int i, err;
12283
12284 for (i = 0; i < insn_cnt; i++) {
12285 if (memcmp(&insn[i], &ja, sizeof(ja)))
12286 continue;
12287
12288 err = verifier_remove_insns(env, i, 1);
12289 if (err)
12290 return err;
12291 insn_cnt--;
12292 i--;
12293 }
12294
12295 return 0;
12296 }
12297
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)12298 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12299 const union bpf_attr *attr)
12300 {
12301 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
12302 struct bpf_insn_aux_data *aux = env->insn_aux_data;
12303 int i, patch_len, delta = 0, len = env->prog->len;
12304 struct bpf_insn *insns = env->prog->insnsi;
12305 struct bpf_prog *new_prog;
12306 bool rnd_hi32;
12307
12308 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
12309 zext_patch[1] = BPF_ZEXT_REG(0);
12310 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12311 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12312 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
12313 for (i = 0; i < len; i++) {
12314 int adj_idx = i + delta;
12315 struct bpf_insn insn;
12316 int load_reg;
12317
12318 insn = insns[adj_idx];
12319 load_reg = insn_def_regno(&insn);
12320 if (!aux[adj_idx].zext_dst) {
12321 u8 code, class;
12322 u32 imm_rnd;
12323
12324 if (!rnd_hi32)
12325 continue;
12326
12327 code = insn.code;
12328 class = BPF_CLASS(code);
12329 if (load_reg == -1)
12330 continue;
12331
12332 /* NOTE: arg "reg" (the fourth one) is only used for
12333 * BPF_STX + SRC_OP, so it is safe to pass NULL
12334 * here.
12335 */
12336 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
12337 if (class == BPF_LD &&
12338 BPF_MODE(code) == BPF_IMM)
12339 i++;
12340 continue;
12341 }
12342
12343 /* ctx load could be transformed into wider load. */
12344 if (class == BPF_LDX &&
12345 aux[adj_idx].ptr_type == PTR_TO_CTX)
12346 continue;
12347
12348 imm_rnd = get_random_int();
12349 rnd_hi32_patch[0] = insn;
12350 rnd_hi32_patch[1].imm = imm_rnd;
12351 rnd_hi32_patch[3].dst_reg = load_reg;
12352 patch = rnd_hi32_patch;
12353 patch_len = 4;
12354 goto apply_patch_buffer;
12355 }
12356
12357 /* Add in an zero-extend instruction if a) the JIT has requested
12358 * it or b) it's a CMPXCHG.
12359 *
12360 * The latter is because: BPF_CMPXCHG always loads a value into
12361 * R0, therefore always zero-extends. However some archs'
12362 * equivalent instruction only does this load when the
12363 * comparison is successful. This detail of CMPXCHG is
12364 * orthogonal to the general zero-extension behaviour of the
12365 * CPU, so it's treated independently of bpf_jit_needs_zext.
12366 */
12367 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
12368 continue;
12369
12370 /* Zero-extension is done by the caller. */
12371 if (bpf_pseudo_kfunc_call(&insn))
12372 continue;
12373
12374 if (WARN_ON(load_reg == -1)) {
12375 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12376 return -EFAULT;
12377 }
12378
12379 zext_patch[0] = insn;
12380 zext_patch[1].dst_reg = load_reg;
12381 zext_patch[1].src_reg = load_reg;
12382 patch = zext_patch;
12383 patch_len = 2;
12384 apply_patch_buffer:
12385 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
12386 if (!new_prog)
12387 return -ENOMEM;
12388 env->prog = new_prog;
12389 insns = new_prog->insnsi;
12390 aux = env->insn_aux_data;
12391 delta += patch_len - 1;
12392 }
12393
12394 return 0;
12395 }
12396
12397 /* convert load instructions that access fields of a context type into a
12398 * sequence of instructions that access fields of the underlying structure:
12399 * struct __sk_buff -> struct sk_buff
12400 * struct bpf_sock_ops -> struct sock
12401 */
convert_ctx_accesses(struct bpf_verifier_env * env)12402 static int convert_ctx_accesses(struct bpf_verifier_env *env)
12403 {
12404 const struct bpf_verifier_ops *ops = env->ops;
12405 int i, cnt, size, ctx_field_size, delta = 0;
12406 const int insn_cnt = env->prog->len;
12407 struct bpf_insn insn_buf[16], *insn;
12408 u32 target_size, size_default, off;
12409 struct bpf_prog *new_prog;
12410 enum bpf_access_type type;
12411 bool is_narrower_load;
12412
12413 if (ops->gen_prologue || env->seen_direct_write) {
12414 if (!ops->gen_prologue) {
12415 verbose(env, "bpf verifier is misconfigured\n");
12416 return -EINVAL;
12417 }
12418 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12419 env->prog);
12420 if (cnt >= ARRAY_SIZE(insn_buf)) {
12421 verbose(env, "bpf verifier is misconfigured\n");
12422 return -EINVAL;
12423 } else if (cnt) {
12424 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
12425 if (!new_prog)
12426 return -ENOMEM;
12427
12428 env->prog = new_prog;
12429 delta += cnt - 1;
12430 }
12431 }
12432
12433 if (bpf_prog_is_dev_bound(env->prog->aux))
12434 return 0;
12435
12436 insn = env->prog->insnsi + delta;
12437
12438 for (i = 0; i < insn_cnt; i++, insn++) {
12439 bpf_convert_ctx_access_t convert_ctx_access;
12440 bool ctx_access;
12441
12442 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12443 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12444 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
12445 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
12446 type = BPF_READ;
12447 ctx_access = true;
12448 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12449 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12450 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12451 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12452 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12453 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12454 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12455 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
12456 type = BPF_WRITE;
12457 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12458 } else {
12459 continue;
12460 }
12461
12462 if (type == BPF_WRITE &&
12463 env->insn_aux_data[i + delta].sanitize_stack_spill) {
12464 struct bpf_insn patch[] = {
12465 *insn,
12466 BPF_ST_NOSPEC(),
12467 };
12468
12469 cnt = ARRAY_SIZE(patch);
12470 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12471 if (!new_prog)
12472 return -ENOMEM;
12473
12474 delta += cnt - 1;
12475 env->prog = new_prog;
12476 insn = new_prog->insnsi + i + delta;
12477 continue;
12478 }
12479
12480 if (!ctx_access)
12481 continue;
12482
12483 switch (env->insn_aux_data[i + delta].ptr_type) {
12484 case PTR_TO_CTX:
12485 if (!ops->convert_ctx_access)
12486 continue;
12487 convert_ctx_access = ops->convert_ctx_access;
12488 break;
12489 case PTR_TO_SOCKET:
12490 case PTR_TO_SOCK_COMMON:
12491 convert_ctx_access = bpf_sock_convert_ctx_access;
12492 break;
12493 case PTR_TO_TCP_SOCK:
12494 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12495 break;
12496 case PTR_TO_XDP_SOCK:
12497 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12498 break;
12499 case PTR_TO_BTF_ID:
12500 if (type == BPF_READ) {
12501 insn->code = BPF_LDX | BPF_PROBE_MEM |
12502 BPF_SIZE((insn)->code);
12503 env->prog->aux->num_exentries++;
12504 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
12505 verbose(env, "Writes through BTF pointers are not allowed\n");
12506 return -EINVAL;
12507 }
12508 continue;
12509 default:
12510 continue;
12511 }
12512
12513 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
12514 size = BPF_LDST_BYTES(insn);
12515
12516 /* If the read access is a narrower load of the field,
12517 * convert to a 4/8-byte load, to minimum program type specific
12518 * convert_ctx_access changes. If conversion is successful,
12519 * we will apply proper mask to the result.
12520 */
12521 is_narrower_load = size < ctx_field_size;
12522 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12523 off = insn->off;
12524 if (is_narrower_load) {
12525 u8 size_code;
12526
12527 if (type == BPF_WRITE) {
12528 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
12529 return -EINVAL;
12530 }
12531
12532 size_code = BPF_H;
12533 if (ctx_field_size == 4)
12534 size_code = BPF_W;
12535 else if (ctx_field_size == 8)
12536 size_code = BPF_DW;
12537
12538 insn->off = off & ~(size_default - 1);
12539 insn->code = BPF_LDX | BPF_MEM | size_code;
12540 }
12541
12542 target_size = 0;
12543 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12544 &target_size);
12545 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12546 (ctx_field_size && !target_size)) {
12547 verbose(env, "bpf verifier is misconfigured\n");
12548 return -EINVAL;
12549 }
12550
12551 if (is_narrower_load && size < target_size) {
12552 u8 shift = bpf_ctx_narrow_access_offset(
12553 off, size, size_default) * 8;
12554 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12555 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12556 return -EINVAL;
12557 }
12558 if (ctx_field_size <= 4) {
12559 if (shift)
12560 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12561 insn->dst_reg,
12562 shift);
12563 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12564 (1 << size * 8) - 1);
12565 } else {
12566 if (shift)
12567 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12568 insn->dst_reg,
12569 shift);
12570 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12571 (1ULL << size * 8) - 1);
12572 }
12573 }
12574
12575 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12576 if (!new_prog)
12577 return -ENOMEM;
12578
12579 delta += cnt - 1;
12580
12581 /* keep walking new program and skip insns we just inserted */
12582 env->prog = new_prog;
12583 insn = new_prog->insnsi + i + delta;
12584 }
12585
12586 return 0;
12587 }
12588
jit_subprogs(struct bpf_verifier_env * env)12589 static int jit_subprogs(struct bpf_verifier_env *env)
12590 {
12591 struct bpf_prog *prog = env->prog, **func, *tmp;
12592 int i, j, subprog_start, subprog_end = 0, len, subprog;
12593 struct bpf_map *map_ptr;
12594 struct bpf_insn *insn;
12595 void *old_bpf_func;
12596 int err, num_exentries;
12597
12598 if (env->subprog_cnt <= 1)
12599 return 0;
12600
12601 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12602 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
12603 continue;
12604
12605 /* Upon error here we cannot fall back to interpreter but
12606 * need a hard reject of the program. Thus -EFAULT is
12607 * propagated in any case.
12608 */
12609 subprog = find_subprog(env, i + insn->imm + 1);
12610 if (subprog < 0) {
12611 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12612 i + insn->imm + 1);
12613 return -EFAULT;
12614 }
12615 /* temporarily remember subprog id inside insn instead of
12616 * aux_data, since next loop will split up all insns into funcs
12617 */
12618 insn->off = subprog;
12619 /* remember original imm in case JIT fails and fallback
12620 * to interpreter will be needed
12621 */
12622 env->insn_aux_data[i].call_imm = insn->imm;
12623 /* point imm to __bpf_call_base+1 from JITs point of view */
12624 insn->imm = 1;
12625 if (bpf_pseudo_func(insn))
12626 /* jit (e.g. x86_64) may emit fewer instructions
12627 * if it learns a u32 imm is the same as a u64 imm.
12628 * Force a non zero here.
12629 */
12630 insn[1].imm = 1;
12631 }
12632
12633 err = bpf_prog_alloc_jited_linfo(prog);
12634 if (err)
12635 goto out_undo_insn;
12636
12637 err = -ENOMEM;
12638 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12639 if (!func)
12640 goto out_undo_insn;
12641
12642 for (i = 0; i < env->subprog_cnt; i++) {
12643 subprog_start = subprog_end;
12644 subprog_end = env->subprog_info[i + 1].start;
12645
12646 len = subprog_end - subprog_start;
12647 /* bpf_prog_run() doesn't call subprogs directly,
12648 * hence main prog stats include the runtime of subprogs.
12649 * subprogs don't have IDs and not reachable via prog_get_next_id
12650 * func[i]->stats will never be accessed and stays NULL
12651 */
12652 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12653 if (!func[i])
12654 goto out_free;
12655 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12656 len * sizeof(struct bpf_insn));
12657 func[i]->type = prog->type;
12658 func[i]->len = len;
12659 if (bpf_prog_calc_tag(func[i]))
12660 goto out_free;
12661 func[i]->is_func = 1;
12662 func[i]->aux->func_idx = i;
12663 /* Below members will be freed only at prog->aux */
12664 func[i]->aux->btf = prog->aux->btf;
12665 func[i]->aux->func_info = prog->aux->func_info;
12666 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
12667 func[i]->aux->poke_tab = prog->aux->poke_tab;
12668 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12669
12670 for (j = 0; j < prog->aux->size_poke_tab; j++) {
12671 struct bpf_jit_poke_descriptor *poke;
12672
12673 poke = &prog->aux->poke_tab[j];
12674 if (poke->insn_idx < subprog_end &&
12675 poke->insn_idx >= subprog_start)
12676 poke->aux = func[i]->aux;
12677 }
12678
12679 func[i]->aux->name[0] = 'F';
12680 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12681 func[i]->jit_requested = 1;
12682 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12683 func[i]->aux->linfo = prog->aux->linfo;
12684 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12685 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12686 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12687 num_exentries = 0;
12688 insn = func[i]->insnsi;
12689 for (j = 0; j < func[i]->len; j++, insn++) {
12690 if (BPF_CLASS(insn->code) == BPF_LDX &&
12691 BPF_MODE(insn->code) == BPF_PROBE_MEM)
12692 num_exentries++;
12693 }
12694 func[i]->aux->num_exentries = num_exentries;
12695 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12696 func[i] = bpf_int_jit_compile(func[i]);
12697 if (!func[i]->jited) {
12698 err = -ENOTSUPP;
12699 goto out_free;
12700 }
12701 cond_resched();
12702 }
12703
12704 /* at this point all bpf functions were successfully JITed
12705 * now populate all bpf_calls with correct addresses and
12706 * run last pass of JIT
12707 */
12708 for (i = 0; i < env->subprog_cnt; i++) {
12709 insn = func[i]->insnsi;
12710 for (j = 0; j < func[i]->len; j++, insn++) {
12711 if (bpf_pseudo_func(insn)) {
12712 subprog = insn->off;
12713 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12714 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12715 continue;
12716 }
12717 if (!bpf_pseudo_call(insn))
12718 continue;
12719 subprog = insn->off;
12720 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12721 __bpf_call_base;
12722 }
12723
12724 /* we use the aux data to keep a list of the start addresses
12725 * of the JITed images for each function in the program
12726 *
12727 * for some architectures, such as powerpc64, the imm field
12728 * might not be large enough to hold the offset of the start
12729 * address of the callee's JITed image from __bpf_call_base
12730 *
12731 * in such cases, we can lookup the start address of a callee
12732 * by using its subprog id, available from the off field of
12733 * the call instruction, as an index for this list
12734 */
12735 func[i]->aux->func = func;
12736 func[i]->aux->func_cnt = env->subprog_cnt;
12737 }
12738 for (i = 0; i < env->subprog_cnt; i++) {
12739 old_bpf_func = func[i]->bpf_func;
12740 tmp = bpf_int_jit_compile(func[i]);
12741 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12742 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12743 err = -ENOTSUPP;
12744 goto out_free;
12745 }
12746 cond_resched();
12747 }
12748
12749 /* finally lock prog and jit images for all functions and
12750 * populate kallsysm. Begin at the first subprogram, since
12751 * bpf_prog_load will add the kallsyms for the main program.
12752 */
12753 for (i = 1; i < env->subprog_cnt; i++) {
12754 bpf_prog_lock_ro(func[i]);
12755 bpf_prog_kallsyms_add(func[i]);
12756 }
12757
12758 /* Last step: make now unused interpreter insns from main
12759 * prog consistent for later dump requests, so they can
12760 * later look the same as if they were interpreted only.
12761 */
12762 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12763 if (bpf_pseudo_func(insn)) {
12764 insn[0].imm = env->insn_aux_data[i].call_imm;
12765 insn[1].imm = insn->off;
12766 insn->off = 0;
12767 continue;
12768 }
12769 if (!bpf_pseudo_call(insn))
12770 continue;
12771 insn->off = env->insn_aux_data[i].call_imm;
12772 subprog = find_subprog(env, i + insn->off + 1);
12773 insn->imm = subprog;
12774 }
12775
12776 prog->jited = 1;
12777 prog->bpf_func = func[0]->bpf_func;
12778 prog->aux->extable = func[0]->aux->extable;
12779 prog->aux->num_exentries = func[0]->aux->num_exentries;
12780 prog->aux->func = func;
12781 prog->aux->func_cnt = env->subprog_cnt;
12782 bpf_prog_jit_attempt_done(prog);
12783 return 0;
12784 out_free:
12785 /* We failed JIT'ing, so at this point we need to unregister poke
12786 * descriptors from subprogs, so that kernel is not attempting to
12787 * patch it anymore as we're freeing the subprog JIT memory.
12788 */
12789 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12790 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12791 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12792 }
12793 /* At this point we're guaranteed that poke descriptors are not
12794 * live anymore. We can just unlink its descriptor table as it's
12795 * released with the main prog.
12796 */
12797 for (i = 0; i < env->subprog_cnt; i++) {
12798 if (!func[i])
12799 continue;
12800 func[i]->aux->poke_tab = NULL;
12801 bpf_jit_free(func[i]);
12802 }
12803 kfree(func);
12804 out_undo_insn:
12805 /* cleanup main prog to be interpreted */
12806 prog->jit_requested = 0;
12807 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12808 if (!bpf_pseudo_call(insn))
12809 continue;
12810 insn->off = 0;
12811 insn->imm = env->insn_aux_data[i].call_imm;
12812 }
12813 bpf_prog_jit_attempt_done(prog);
12814 return err;
12815 }
12816
fixup_call_args(struct bpf_verifier_env * env)12817 static int fixup_call_args(struct bpf_verifier_env *env)
12818 {
12819 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12820 struct bpf_prog *prog = env->prog;
12821 struct bpf_insn *insn = prog->insnsi;
12822 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12823 int i, depth;
12824 #endif
12825 int err = 0;
12826
12827 if (env->prog->jit_requested &&
12828 !bpf_prog_is_dev_bound(env->prog->aux)) {
12829 err = jit_subprogs(env);
12830 if (err == 0)
12831 return 0;
12832 if (err == -EFAULT)
12833 return err;
12834 }
12835 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12836 if (has_kfunc_call) {
12837 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12838 return -EINVAL;
12839 }
12840 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12841 /* When JIT fails the progs with bpf2bpf calls and tail_calls
12842 * have to be rejected, since interpreter doesn't support them yet.
12843 */
12844 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12845 return -EINVAL;
12846 }
12847 for (i = 0; i < prog->len; i++, insn++) {
12848 if (bpf_pseudo_func(insn)) {
12849 /* When JIT fails the progs with callback calls
12850 * have to be rejected, since interpreter doesn't support them yet.
12851 */
12852 verbose(env, "callbacks are not allowed in non-JITed programs\n");
12853 return -EINVAL;
12854 }
12855
12856 if (!bpf_pseudo_call(insn))
12857 continue;
12858 depth = get_callee_stack_depth(env, insn, i);
12859 if (depth < 0)
12860 return depth;
12861 bpf_patch_call_args(insn, depth);
12862 }
12863 err = 0;
12864 #endif
12865 return err;
12866 }
12867
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn)12868 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12869 struct bpf_insn *insn)
12870 {
12871 const struct bpf_kfunc_desc *desc;
12872
12873 /* insn->imm has the btf func_id. Replace it with
12874 * an address (relative to __bpf_base_call).
12875 */
12876 desc = find_kfunc_desc(env->prog, insn->imm);
12877 if (!desc) {
12878 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12879 insn->imm);
12880 return -EFAULT;
12881 }
12882
12883 insn->imm = desc->imm;
12884
12885 return 0;
12886 }
12887
12888 /* Do various post-verification rewrites in a single program pass.
12889 * These rewrites simplify JIT and interpreter implementations.
12890 */
do_misc_fixups(struct bpf_verifier_env * env)12891 static int do_misc_fixups(struct bpf_verifier_env *env)
12892 {
12893 struct bpf_prog *prog = env->prog;
12894 bool expect_blinding = bpf_jit_blinding_enabled(prog);
12895 enum bpf_prog_type prog_type = resolve_prog_type(prog);
12896 struct bpf_insn *insn = prog->insnsi;
12897 const struct bpf_func_proto *fn;
12898 const int insn_cnt = prog->len;
12899 const struct bpf_map_ops *ops;
12900 struct bpf_insn_aux_data *aux;
12901 struct bpf_insn insn_buf[16];
12902 struct bpf_prog *new_prog;
12903 struct bpf_map *map_ptr;
12904 int i, ret, cnt, delta = 0;
12905
12906 for (i = 0; i < insn_cnt; i++, insn++) {
12907 /* Make divide-by-zero exceptions impossible. */
12908 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12909 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12910 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12911 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12912 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12913 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12914 struct bpf_insn *patchlet;
12915 struct bpf_insn chk_and_div[] = {
12916 /* [R,W]x div 0 -> 0 */
12917 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12918 BPF_JNE | BPF_K, insn->src_reg,
12919 0, 2, 0),
12920 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12921 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12922 *insn,
12923 };
12924 struct bpf_insn chk_and_mod[] = {
12925 /* [R,W]x mod 0 -> [R,W]x */
12926 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12927 BPF_JEQ | BPF_K, insn->src_reg,
12928 0, 1 + (is64 ? 0 : 1), 0),
12929 *insn,
12930 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12931 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12932 };
12933
12934 patchlet = isdiv ? chk_and_div : chk_and_mod;
12935 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12936 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12937
12938 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12939 if (!new_prog)
12940 return -ENOMEM;
12941
12942 delta += cnt - 1;
12943 env->prog = prog = new_prog;
12944 insn = new_prog->insnsi + i + delta;
12945 continue;
12946 }
12947
12948 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12949 if (BPF_CLASS(insn->code) == BPF_LD &&
12950 (BPF_MODE(insn->code) == BPF_ABS ||
12951 BPF_MODE(insn->code) == BPF_IND)) {
12952 cnt = env->ops->gen_ld_abs(insn, insn_buf);
12953 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12954 verbose(env, "bpf verifier is misconfigured\n");
12955 return -EINVAL;
12956 }
12957
12958 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12959 if (!new_prog)
12960 return -ENOMEM;
12961
12962 delta += cnt - 1;
12963 env->prog = prog = new_prog;
12964 insn = new_prog->insnsi + i + delta;
12965 continue;
12966 }
12967
12968 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
12969 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12970 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12971 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12972 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12973 struct bpf_insn *patch = &insn_buf[0];
12974 bool issrc, isneg, isimm;
12975 u32 off_reg;
12976
12977 aux = &env->insn_aux_data[i + delta];
12978 if (!aux->alu_state ||
12979 aux->alu_state == BPF_ALU_NON_POINTER)
12980 continue;
12981
12982 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12983 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12984 BPF_ALU_SANITIZE_SRC;
12985 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12986
12987 off_reg = issrc ? insn->src_reg : insn->dst_reg;
12988 if (isimm) {
12989 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12990 } else {
12991 if (isneg)
12992 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12993 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12994 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12995 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12996 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12997 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12998 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12999 }
13000 if (!issrc)
13001 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
13002 insn->src_reg = BPF_REG_AX;
13003 if (isneg)
13004 insn->code = insn->code == code_add ?
13005 code_sub : code_add;
13006 *patch++ = *insn;
13007 if (issrc && isneg && !isimm)
13008 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13009 cnt = patch - insn_buf;
13010
13011 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13012 if (!new_prog)
13013 return -ENOMEM;
13014
13015 delta += cnt - 1;
13016 env->prog = prog = new_prog;
13017 insn = new_prog->insnsi + i + delta;
13018 continue;
13019 }
13020
13021 if (insn->code != (BPF_JMP | BPF_CALL))
13022 continue;
13023 if (insn->src_reg == BPF_PSEUDO_CALL)
13024 continue;
13025 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13026 ret = fixup_kfunc_call(env, insn);
13027 if (ret)
13028 return ret;
13029 continue;
13030 }
13031
13032 if (insn->imm == BPF_FUNC_get_route_realm)
13033 prog->dst_needed = 1;
13034 if (insn->imm == BPF_FUNC_get_prandom_u32)
13035 bpf_user_rnd_init_once();
13036 if (insn->imm == BPF_FUNC_override_return)
13037 prog->kprobe_override = 1;
13038 if (insn->imm == BPF_FUNC_tail_call) {
13039 /* If we tail call into other programs, we
13040 * cannot make any assumptions since they can
13041 * be replaced dynamically during runtime in
13042 * the program array.
13043 */
13044 prog->cb_access = 1;
13045 if (!allow_tail_call_in_subprogs(env))
13046 prog->aux->stack_depth = MAX_BPF_STACK;
13047 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
13048
13049 /* mark bpf_tail_call as different opcode to avoid
13050 * conditional branch in the interpreter for every normal
13051 * call and to prevent accidental JITing by JIT compiler
13052 * that doesn't support bpf_tail_call yet
13053 */
13054 insn->imm = 0;
13055 insn->code = BPF_JMP | BPF_TAIL_CALL;
13056
13057 aux = &env->insn_aux_data[i + delta];
13058 if (env->bpf_capable && !expect_blinding &&
13059 prog->jit_requested &&
13060 !bpf_map_key_poisoned(aux) &&
13061 !bpf_map_ptr_poisoned(aux) &&
13062 !bpf_map_ptr_unpriv(aux)) {
13063 struct bpf_jit_poke_descriptor desc = {
13064 .reason = BPF_POKE_REASON_TAIL_CALL,
13065 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13066 .tail_call.key = bpf_map_key_immediate(aux),
13067 .insn_idx = i + delta,
13068 };
13069
13070 ret = bpf_jit_add_poke_descriptor(prog, &desc);
13071 if (ret < 0) {
13072 verbose(env, "adding tail call poke descriptor failed\n");
13073 return ret;
13074 }
13075
13076 insn->imm = ret + 1;
13077 continue;
13078 }
13079
13080 if (!bpf_map_ptr_unpriv(aux))
13081 continue;
13082
13083 /* instead of changing every JIT dealing with tail_call
13084 * emit two extra insns:
13085 * if (index >= max_entries) goto out;
13086 * index &= array->index_mask;
13087 * to avoid out-of-bounds cpu speculation
13088 */
13089 if (bpf_map_ptr_poisoned(aux)) {
13090 verbose(env, "tail_call abusing map_ptr\n");
13091 return -EINVAL;
13092 }
13093
13094 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13095 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13096 map_ptr->max_entries, 2);
13097 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13098 container_of(map_ptr,
13099 struct bpf_array,
13100 map)->index_mask);
13101 insn_buf[2] = *insn;
13102 cnt = 3;
13103 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13104 if (!new_prog)
13105 return -ENOMEM;
13106
13107 delta += cnt - 1;
13108 env->prog = prog = new_prog;
13109 insn = new_prog->insnsi + i + delta;
13110 continue;
13111 }
13112
13113 if (insn->imm == BPF_FUNC_timer_set_callback) {
13114 /* The verifier will process callback_fn as many times as necessary
13115 * with different maps and the register states prepared by
13116 * set_timer_callback_state will be accurate.
13117 *
13118 * The following use case is valid:
13119 * map1 is shared by prog1, prog2, prog3.
13120 * prog1 calls bpf_timer_init for some map1 elements
13121 * prog2 calls bpf_timer_set_callback for some map1 elements.
13122 * Those that were not bpf_timer_init-ed will return -EINVAL.
13123 * prog3 calls bpf_timer_start for some map1 elements.
13124 * Those that were not both bpf_timer_init-ed and
13125 * bpf_timer_set_callback-ed will return -EINVAL.
13126 */
13127 struct bpf_insn ld_addrs[2] = {
13128 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13129 };
13130
13131 insn_buf[0] = ld_addrs[0];
13132 insn_buf[1] = ld_addrs[1];
13133 insn_buf[2] = *insn;
13134 cnt = 3;
13135
13136 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13137 if (!new_prog)
13138 return -ENOMEM;
13139
13140 delta += cnt - 1;
13141 env->prog = prog = new_prog;
13142 insn = new_prog->insnsi + i + delta;
13143 goto patch_call_imm;
13144 }
13145
13146 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
13147 * and other inlining handlers are currently limited to 64 bit
13148 * only.
13149 */
13150 if (prog->jit_requested && BITS_PER_LONG == 64 &&
13151 (insn->imm == BPF_FUNC_map_lookup_elem ||
13152 insn->imm == BPF_FUNC_map_update_elem ||
13153 insn->imm == BPF_FUNC_map_delete_elem ||
13154 insn->imm == BPF_FUNC_map_push_elem ||
13155 insn->imm == BPF_FUNC_map_pop_elem ||
13156 insn->imm == BPF_FUNC_map_peek_elem ||
13157 insn->imm == BPF_FUNC_redirect_map)) {
13158 aux = &env->insn_aux_data[i + delta];
13159 if (bpf_map_ptr_poisoned(aux))
13160 goto patch_call_imm;
13161
13162 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13163 ops = map_ptr->ops;
13164 if (insn->imm == BPF_FUNC_map_lookup_elem &&
13165 ops->map_gen_lookup) {
13166 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
13167 if (cnt == -EOPNOTSUPP)
13168 goto patch_map_ops_generic;
13169 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13170 verbose(env, "bpf verifier is misconfigured\n");
13171 return -EINVAL;
13172 }
13173
13174 new_prog = bpf_patch_insn_data(env, i + delta,
13175 insn_buf, cnt);
13176 if (!new_prog)
13177 return -ENOMEM;
13178
13179 delta += cnt - 1;
13180 env->prog = prog = new_prog;
13181 insn = new_prog->insnsi + i + delta;
13182 continue;
13183 }
13184
13185 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13186 (void *(*)(struct bpf_map *map, void *key))NULL));
13187 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13188 (int (*)(struct bpf_map *map, void *key))NULL));
13189 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13190 (int (*)(struct bpf_map *map, void *key, void *value,
13191 u64 flags))NULL));
13192 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13193 (int (*)(struct bpf_map *map, void *value,
13194 u64 flags))NULL));
13195 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13196 (int (*)(struct bpf_map *map, void *value))NULL));
13197 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13198 (int (*)(struct bpf_map *map, void *value))NULL));
13199 BUILD_BUG_ON(!__same_type(ops->map_redirect,
13200 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
13201
13202 patch_map_ops_generic:
13203 switch (insn->imm) {
13204 case BPF_FUNC_map_lookup_elem:
13205 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
13206 __bpf_call_base;
13207 continue;
13208 case BPF_FUNC_map_update_elem:
13209 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
13210 __bpf_call_base;
13211 continue;
13212 case BPF_FUNC_map_delete_elem:
13213 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
13214 __bpf_call_base;
13215 continue;
13216 case BPF_FUNC_map_push_elem:
13217 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
13218 __bpf_call_base;
13219 continue;
13220 case BPF_FUNC_map_pop_elem:
13221 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
13222 __bpf_call_base;
13223 continue;
13224 case BPF_FUNC_map_peek_elem:
13225 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
13226 __bpf_call_base;
13227 continue;
13228 case BPF_FUNC_redirect_map:
13229 insn->imm = BPF_CAST_CALL(ops->map_redirect) -
13230 __bpf_call_base;
13231 continue;
13232 }
13233
13234 goto patch_call_imm;
13235 }
13236
13237 /* Implement bpf_jiffies64 inline. */
13238 if (prog->jit_requested && BITS_PER_LONG == 64 &&
13239 insn->imm == BPF_FUNC_jiffies64) {
13240 struct bpf_insn ld_jiffies_addr[2] = {
13241 BPF_LD_IMM64(BPF_REG_0,
13242 (unsigned long)&jiffies),
13243 };
13244
13245 insn_buf[0] = ld_jiffies_addr[0];
13246 insn_buf[1] = ld_jiffies_addr[1];
13247 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13248 BPF_REG_0, 0);
13249 cnt = 3;
13250
13251 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13252 cnt);
13253 if (!new_prog)
13254 return -ENOMEM;
13255
13256 delta += cnt - 1;
13257 env->prog = prog = new_prog;
13258 insn = new_prog->insnsi + i + delta;
13259 continue;
13260 }
13261
13262 /* Implement bpf_get_func_ip inline. */
13263 if (prog_type == BPF_PROG_TYPE_TRACING &&
13264 insn->imm == BPF_FUNC_get_func_ip) {
13265 /* Load IP address from ctx - 8 */
13266 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13267
13268 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13269 if (!new_prog)
13270 return -ENOMEM;
13271
13272 env->prog = prog = new_prog;
13273 insn = new_prog->insnsi + i + delta;
13274 continue;
13275 }
13276
13277 patch_call_imm:
13278 fn = env->ops->get_func_proto(insn->imm, env->prog);
13279 /* all functions that have prototype and verifier allowed
13280 * programs to call them, must be real in-kernel functions
13281 */
13282 if (!fn->func) {
13283 verbose(env,
13284 "kernel subsystem misconfigured func %s#%d\n",
13285 func_id_name(insn->imm), insn->imm);
13286 return -EFAULT;
13287 }
13288 insn->imm = fn->func - __bpf_call_base;
13289 }
13290
13291 /* Since poke tab is now finalized, publish aux to tracker. */
13292 for (i = 0; i < prog->aux->size_poke_tab; i++) {
13293 map_ptr = prog->aux->poke_tab[i].tail_call.map;
13294 if (!map_ptr->ops->map_poke_track ||
13295 !map_ptr->ops->map_poke_untrack ||
13296 !map_ptr->ops->map_poke_run) {
13297 verbose(env, "bpf verifier is misconfigured\n");
13298 return -EINVAL;
13299 }
13300
13301 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13302 if (ret < 0) {
13303 verbose(env, "tracking tail call prog failed\n");
13304 return ret;
13305 }
13306 }
13307
13308 sort_kfunc_descs_by_imm(env->prog);
13309
13310 return 0;
13311 }
13312
free_states(struct bpf_verifier_env * env)13313 static void free_states(struct bpf_verifier_env *env)
13314 {
13315 struct bpf_verifier_state_list *sl, *sln;
13316 int i;
13317
13318 sl = env->free_list;
13319 while (sl) {
13320 sln = sl->next;
13321 free_verifier_state(&sl->state, false);
13322 kfree(sl);
13323 sl = sln;
13324 }
13325 env->free_list = NULL;
13326
13327 if (!env->explored_states)
13328 return;
13329
13330 for (i = 0; i < state_htab_size(env); i++) {
13331 sl = env->explored_states[i];
13332
13333 while (sl) {
13334 sln = sl->next;
13335 free_verifier_state(&sl->state, false);
13336 kfree(sl);
13337 sl = sln;
13338 }
13339 env->explored_states[i] = NULL;
13340 }
13341 }
13342
do_check_common(struct bpf_verifier_env * env,int subprog)13343 static int do_check_common(struct bpf_verifier_env *env, int subprog)
13344 {
13345 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
13346 struct bpf_verifier_state *state;
13347 struct bpf_reg_state *regs;
13348 int ret, i;
13349
13350 env->prev_linfo = NULL;
13351 env->pass_cnt++;
13352
13353 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13354 if (!state)
13355 return -ENOMEM;
13356 state->curframe = 0;
13357 state->speculative = false;
13358 state->branches = 1;
13359 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13360 if (!state->frame[0]) {
13361 kfree(state);
13362 return -ENOMEM;
13363 }
13364 env->cur_state = state;
13365 init_func_state(env, state->frame[0],
13366 BPF_MAIN_FUNC /* callsite */,
13367 0 /* frameno */,
13368 subprog);
13369 state->first_insn_idx = env->subprog_info[subprog].start;
13370 state->last_insn_idx = -1;
13371
13372 regs = state->frame[state->curframe]->regs;
13373 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
13374 ret = btf_prepare_func_args(env, subprog, regs);
13375 if (ret)
13376 goto out;
13377 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13378 if (regs[i].type == PTR_TO_CTX)
13379 mark_reg_known_zero(env, regs, i);
13380 else if (regs[i].type == SCALAR_VALUE)
13381 mark_reg_unknown(env, regs, i);
13382 else if (base_type(regs[i].type) == PTR_TO_MEM) {
13383 const u32 mem_size = regs[i].mem_size;
13384
13385 mark_reg_known_zero(env, regs, i);
13386 regs[i].mem_size = mem_size;
13387 regs[i].id = ++env->id_gen;
13388 }
13389 }
13390 } else {
13391 /* 1st arg to a function */
13392 regs[BPF_REG_1].type = PTR_TO_CTX;
13393 mark_reg_known_zero(env, regs, BPF_REG_1);
13394 ret = btf_check_subprog_arg_match(env, subprog, regs);
13395 if (ret == -EFAULT)
13396 /* unlikely verifier bug. abort.
13397 * ret == 0 and ret < 0 are sadly acceptable for
13398 * main() function due to backward compatibility.
13399 * Like socket filter program may be written as:
13400 * int bpf_prog(struct pt_regs *ctx)
13401 * and never dereference that ctx in the program.
13402 * 'struct pt_regs' is a type mismatch for socket
13403 * filter that should be using 'struct __sk_buff'.
13404 */
13405 goto out;
13406 }
13407
13408 ret = do_check(env);
13409 out:
13410 /* check for NULL is necessary, since cur_state can be freed inside
13411 * do_check() under memory pressure.
13412 */
13413 if (env->cur_state) {
13414 free_verifier_state(env->cur_state, true);
13415 env->cur_state = NULL;
13416 }
13417 while (!pop_stack(env, NULL, NULL, false));
13418 if (!ret && pop_log)
13419 bpf_vlog_reset(&env->log, 0);
13420 free_states(env);
13421 return ret;
13422 }
13423
13424 /* Verify all global functions in a BPF program one by one based on their BTF.
13425 * All global functions must pass verification. Otherwise the whole program is rejected.
13426 * Consider:
13427 * int bar(int);
13428 * int foo(int f)
13429 * {
13430 * return bar(f);
13431 * }
13432 * int bar(int b)
13433 * {
13434 * ...
13435 * }
13436 * foo() will be verified first for R1=any_scalar_value. During verification it
13437 * will be assumed that bar() already verified successfully and call to bar()
13438 * from foo() will be checked for type match only. Later bar() will be verified
13439 * independently to check that it's safe for R1=any_scalar_value.
13440 */
do_check_subprogs(struct bpf_verifier_env * env)13441 static int do_check_subprogs(struct bpf_verifier_env *env)
13442 {
13443 struct bpf_prog_aux *aux = env->prog->aux;
13444 int i, ret;
13445
13446 if (!aux->func_info)
13447 return 0;
13448
13449 for (i = 1; i < env->subprog_cnt; i++) {
13450 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13451 continue;
13452 env->insn_idx = env->subprog_info[i].start;
13453 WARN_ON_ONCE(env->insn_idx == 0);
13454 ret = do_check_common(env, i);
13455 if (ret) {
13456 return ret;
13457 } else if (env->log.level & BPF_LOG_LEVEL) {
13458 verbose(env,
13459 "Func#%d is safe for any args that match its prototype\n",
13460 i);
13461 }
13462 }
13463 return 0;
13464 }
13465
do_check_main(struct bpf_verifier_env * env)13466 static int do_check_main(struct bpf_verifier_env *env)
13467 {
13468 int ret;
13469
13470 env->insn_idx = 0;
13471 ret = do_check_common(env, 0);
13472 if (!ret)
13473 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13474 return ret;
13475 }
13476
13477
print_verification_stats(struct bpf_verifier_env * env)13478 static void print_verification_stats(struct bpf_verifier_env *env)
13479 {
13480 int i;
13481
13482 if (env->log.level & BPF_LOG_STATS) {
13483 verbose(env, "verification time %lld usec\n",
13484 div_u64(env->verification_time, 1000));
13485 verbose(env, "stack depth ");
13486 for (i = 0; i < env->subprog_cnt; i++) {
13487 u32 depth = env->subprog_info[i].stack_depth;
13488
13489 verbose(env, "%d", depth);
13490 if (i + 1 < env->subprog_cnt)
13491 verbose(env, "+");
13492 }
13493 verbose(env, "\n");
13494 }
13495 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13496 "total_states %d peak_states %d mark_read %d\n",
13497 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13498 env->max_states_per_insn, env->total_states,
13499 env->peak_states, env->longest_mark_read_walk);
13500 }
13501
check_struct_ops_btf_id(struct bpf_verifier_env * env)13502 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13503 {
13504 const struct btf_type *t, *func_proto;
13505 const struct bpf_struct_ops *st_ops;
13506 const struct btf_member *member;
13507 struct bpf_prog *prog = env->prog;
13508 u32 btf_id, member_idx;
13509 const char *mname;
13510
13511 if (!prog->gpl_compatible) {
13512 verbose(env, "struct ops programs must have a GPL compatible license\n");
13513 return -EINVAL;
13514 }
13515
13516 btf_id = prog->aux->attach_btf_id;
13517 st_ops = bpf_struct_ops_find(btf_id);
13518 if (!st_ops) {
13519 verbose(env, "attach_btf_id %u is not a supported struct\n",
13520 btf_id);
13521 return -ENOTSUPP;
13522 }
13523
13524 t = st_ops->type;
13525 member_idx = prog->expected_attach_type;
13526 if (member_idx >= btf_type_vlen(t)) {
13527 verbose(env, "attach to invalid member idx %u of struct %s\n",
13528 member_idx, st_ops->name);
13529 return -EINVAL;
13530 }
13531
13532 member = &btf_type_member(t)[member_idx];
13533 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13534 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13535 NULL);
13536 if (!func_proto) {
13537 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13538 mname, member_idx, st_ops->name);
13539 return -EINVAL;
13540 }
13541
13542 if (st_ops->check_member) {
13543 int err = st_ops->check_member(t, member);
13544
13545 if (err) {
13546 verbose(env, "attach to unsupported member %s of struct %s\n",
13547 mname, st_ops->name);
13548 return err;
13549 }
13550 }
13551
13552 prog->aux->attach_func_proto = func_proto;
13553 prog->aux->attach_func_name = mname;
13554 env->ops = st_ops->verifier_ops;
13555
13556 return 0;
13557 }
13558 #define SECURITY_PREFIX "security_"
13559
check_attach_modify_return(unsigned long addr,const char * func_name)13560 static int check_attach_modify_return(unsigned long addr, const char *func_name)
13561 {
13562 if (within_error_injection_list(addr) ||
13563 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
13564 return 0;
13565
13566 return -EINVAL;
13567 }
13568
13569 /* list of non-sleepable functions that are otherwise on
13570 * ALLOW_ERROR_INJECTION list
13571 */
13572 BTF_SET_START(btf_non_sleepable_error_inject)
13573 /* Three functions below can be called from sleepable and non-sleepable context.
13574 * Assume non-sleepable from bpf safety point of view.
13575 */
BTF_ID(func,__add_to_page_cache_locked)13576 BTF_ID(func, __add_to_page_cache_locked)
13577 BTF_ID(func, should_fail_alloc_page)
13578 BTF_ID(func, should_failslab)
13579 BTF_SET_END(btf_non_sleepable_error_inject)
13580
13581 static int check_non_sleepable_error_inject(u32 btf_id)
13582 {
13583 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13584 }
13585
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)13586 int bpf_check_attach_target(struct bpf_verifier_log *log,
13587 const struct bpf_prog *prog,
13588 const struct bpf_prog *tgt_prog,
13589 u32 btf_id,
13590 struct bpf_attach_target_info *tgt_info)
13591 {
13592 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13593 const char prefix[] = "btf_trace_";
13594 int ret = 0, subprog = -1, i;
13595 const struct btf_type *t;
13596 bool conservative = true;
13597 const char *tname;
13598 struct btf *btf;
13599 long addr = 0;
13600
13601 if (!btf_id) {
13602 bpf_log(log, "Tracing programs must provide btf_id\n");
13603 return -EINVAL;
13604 }
13605 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13606 if (!btf) {
13607 bpf_log(log,
13608 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13609 return -EINVAL;
13610 }
13611 t = btf_type_by_id(btf, btf_id);
13612 if (!t) {
13613 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13614 return -EINVAL;
13615 }
13616 tname = btf_name_by_offset(btf, t->name_off);
13617 if (!tname) {
13618 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13619 return -EINVAL;
13620 }
13621 if (tgt_prog) {
13622 struct bpf_prog_aux *aux = tgt_prog->aux;
13623
13624 for (i = 0; i < aux->func_info_cnt; i++)
13625 if (aux->func_info[i].type_id == btf_id) {
13626 subprog = i;
13627 break;
13628 }
13629 if (subprog == -1) {
13630 bpf_log(log, "Subprog %s doesn't exist\n", tname);
13631 return -EINVAL;
13632 }
13633 conservative = aux->func_info_aux[subprog].unreliable;
13634 if (prog_extension) {
13635 if (conservative) {
13636 bpf_log(log,
13637 "Cannot replace static functions\n");
13638 return -EINVAL;
13639 }
13640 if (!prog->jit_requested) {
13641 bpf_log(log,
13642 "Extension programs should be JITed\n");
13643 return -EINVAL;
13644 }
13645 }
13646 if (!tgt_prog->jited) {
13647 bpf_log(log, "Can attach to only JITed progs\n");
13648 return -EINVAL;
13649 }
13650 if (tgt_prog->type == prog->type) {
13651 /* Cannot fentry/fexit another fentry/fexit program.
13652 * Cannot attach program extension to another extension.
13653 * It's ok to attach fentry/fexit to extension program.
13654 */
13655 bpf_log(log, "Cannot recursively attach\n");
13656 return -EINVAL;
13657 }
13658 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13659 prog_extension &&
13660 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13661 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13662 /* Program extensions can extend all program types
13663 * except fentry/fexit. The reason is the following.
13664 * The fentry/fexit programs are used for performance
13665 * analysis, stats and can be attached to any program
13666 * type except themselves. When extension program is
13667 * replacing XDP function it is necessary to allow
13668 * performance analysis of all functions. Both original
13669 * XDP program and its program extension. Hence
13670 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13671 * allowed. If extending of fentry/fexit was allowed it
13672 * would be possible to create long call chain
13673 * fentry->extension->fentry->extension beyond
13674 * reasonable stack size. Hence extending fentry is not
13675 * allowed.
13676 */
13677 bpf_log(log, "Cannot extend fentry/fexit\n");
13678 return -EINVAL;
13679 }
13680 } else {
13681 if (prog_extension) {
13682 bpf_log(log, "Cannot replace kernel functions\n");
13683 return -EINVAL;
13684 }
13685 }
13686
13687 switch (prog->expected_attach_type) {
13688 case BPF_TRACE_RAW_TP:
13689 if (tgt_prog) {
13690 bpf_log(log,
13691 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13692 return -EINVAL;
13693 }
13694 if (!btf_type_is_typedef(t)) {
13695 bpf_log(log, "attach_btf_id %u is not a typedef\n",
13696 btf_id);
13697 return -EINVAL;
13698 }
13699 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13700 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13701 btf_id, tname);
13702 return -EINVAL;
13703 }
13704 tname += sizeof(prefix) - 1;
13705 t = btf_type_by_id(btf, t->type);
13706 if (!btf_type_is_ptr(t))
13707 /* should never happen in valid vmlinux build */
13708 return -EINVAL;
13709 t = btf_type_by_id(btf, t->type);
13710 if (!btf_type_is_func_proto(t))
13711 /* should never happen in valid vmlinux build */
13712 return -EINVAL;
13713
13714 break;
13715 case BPF_TRACE_ITER:
13716 if (!btf_type_is_func(t)) {
13717 bpf_log(log, "attach_btf_id %u is not a function\n",
13718 btf_id);
13719 return -EINVAL;
13720 }
13721 t = btf_type_by_id(btf, t->type);
13722 if (!btf_type_is_func_proto(t))
13723 return -EINVAL;
13724 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13725 if (ret)
13726 return ret;
13727 break;
13728 default:
13729 if (!prog_extension)
13730 return -EINVAL;
13731 fallthrough;
13732 case BPF_MODIFY_RETURN:
13733 case BPF_LSM_MAC:
13734 case BPF_TRACE_FENTRY:
13735 case BPF_TRACE_FEXIT:
13736 if (!btf_type_is_func(t)) {
13737 bpf_log(log, "attach_btf_id %u is not a function\n",
13738 btf_id);
13739 return -EINVAL;
13740 }
13741 if (prog_extension &&
13742 btf_check_type_match(log, prog, btf, t))
13743 return -EINVAL;
13744 t = btf_type_by_id(btf, t->type);
13745 if (!btf_type_is_func_proto(t))
13746 return -EINVAL;
13747
13748 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13749 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13750 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13751 return -EINVAL;
13752
13753 if (tgt_prog && conservative)
13754 t = NULL;
13755
13756 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13757 if (ret < 0)
13758 return ret;
13759
13760 if (tgt_prog) {
13761 if (subprog == 0)
13762 addr = (long) tgt_prog->bpf_func;
13763 else
13764 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13765 } else {
13766 addr = kallsyms_lookup_name(tname);
13767 if (!addr) {
13768 bpf_log(log,
13769 "The address of function %s cannot be found\n",
13770 tname);
13771 return -ENOENT;
13772 }
13773 }
13774
13775 if (prog->aux->sleepable) {
13776 ret = -EINVAL;
13777 switch (prog->type) {
13778 case BPF_PROG_TYPE_TRACING:
13779 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
13780 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13781 */
13782 if (!check_non_sleepable_error_inject(btf_id) &&
13783 within_error_injection_list(addr))
13784 ret = 0;
13785 break;
13786 case BPF_PROG_TYPE_LSM:
13787 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
13788 * Only some of them are sleepable.
13789 */
13790 if (bpf_lsm_is_sleepable_hook(btf_id))
13791 ret = 0;
13792 break;
13793 default:
13794 break;
13795 }
13796 if (ret) {
13797 bpf_log(log, "%s is not sleepable\n", tname);
13798 return ret;
13799 }
13800 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13801 if (tgt_prog) {
13802 bpf_log(log, "can't modify return codes of BPF programs\n");
13803 return -EINVAL;
13804 }
13805 ret = check_attach_modify_return(addr, tname);
13806 if (ret) {
13807 bpf_log(log, "%s() is not modifiable\n", tname);
13808 return ret;
13809 }
13810 }
13811
13812 break;
13813 }
13814 tgt_info->tgt_addr = addr;
13815 tgt_info->tgt_name = tname;
13816 tgt_info->tgt_type = t;
13817 return 0;
13818 }
13819
BTF_SET_START(btf_id_deny)13820 BTF_SET_START(btf_id_deny)
13821 BTF_ID_UNUSED
13822 #ifdef CONFIG_SMP
13823 BTF_ID(func, migrate_disable)
13824 BTF_ID(func, migrate_enable)
13825 #endif
13826 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13827 BTF_ID(func, rcu_read_unlock_strict)
13828 #endif
13829 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
13830 BTF_ID(func, preempt_count_add)
13831 BTF_ID(func, preempt_count_sub)
13832 #endif
13833 BTF_SET_END(btf_id_deny)
13834
13835 static int check_attach_btf_id(struct bpf_verifier_env *env)
13836 {
13837 struct bpf_prog *prog = env->prog;
13838 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13839 struct bpf_attach_target_info tgt_info = {};
13840 u32 btf_id = prog->aux->attach_btf_id;
13841 struct bpf_trampoline *tr;
13842 int ret;
13843 u64 key;
13844
13845 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13846 if (prog->aux->sleepable)
13847 /* attach_btf_id checked to be zero already */
13848 return 0;
13849 verbose(env, "Syscall programs can only be sleepable\n");
13850 return -EINVAL;
13851 }
13852
13853 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13854 prog->type != BPF_PROG_TYPE_LSM) {
13855 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13856 return -EINVAL;
13857 }
13858
13859 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13860 return check_struct_ops_btf_id(env);
13861
13862 if (prog->type != BPF_PROG_TYPE_TRACING &&
13863 prog->type != BPF_PROG_TYPE_LSM &&
13864 prog->type != BPF_PROG_TYPE_EXT)
13865 return 0;
13866
13867 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13868 if (ret)
13869 return ret;
13870
13871 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13872 /* to make freplace equivalent to their targets, they need to
13873 * inherit env->ops and expected_attach_type for the rest of the
13874 * verification
13875 */
13876 env->ops = bpf_verifier_ops[tgt_prog->type];
13877 prog->expected_attach_type = tgt_prog->expected_attach_type;
13878 }
13879
13880 /* store info about the attachment target that will be used later */
13881 prog->aux->attach_func_proto = tgt_info.tgt_type;
13882 prog->aux->attach_func_name = tgt_info.tgt_name;
13883
13884 if (tgt_prog) {
13885 prog->aux->saved_dst_prog_type = tgt_prog->type;
13886 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13887 }
13888
13889 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13890 prog->aux->attach_btf_trace = true;
13891 return 0;
13892 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13893 if (!bpf_iter_prog_supported(prog))
13894 return -EINVAL;
13895 return 0;
13896 }
13897
13898 if (prog->type == BPF_PROG_TYPE_LSM) {
13899 ret = bpf_lsm_verify_prog(&env->log, prog);
13900 if (ret < 0)
13901 return ret;
13902 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
13903 btf_id_set_contains(&btf_id_deny, btf_id)) {
13904 return -EINVAL;
13905 }
13906
13907 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13908 tr = bpf_trampoline_get(key, &tgt_info);
13909 if (!tr)
13910 return -ENOMEM;
13911
13912 prog->aux->dst_trampoline = tr;
13913 return 0;
13914 }
13915
bpf_get_btf_vmlinux(void)13916 struct btf *bpf_get_btf_vmlinux(void)
13917 {
13918 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13919 mutex_lock(&bpf_verifier_lock);
13920 if (!btf_vmlinux)
13921 btf_vmlinux = btf_parse_vmlinux();
13922 mutex_unlock(&bpf_verifier_lock);
13923 }
13924 return btf_vmlinux;
13925 }
13926
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr)13927 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
13928 {
13929 u64 start_time = ktime_get_ns();
13930 struct bpf_verifier_env *env;
13931 struct bpf_verifier_log *log;
13932 int i, len, ret = -EINVAL;
13933 bool is_priv;
13934
13935 /* no program is valid */
13936 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13937 return -EINVAL;
13938
13939 /* 'struct bpf_verifier_env' can be global, but since it's not small,
13940 * allocate/free it every time bpf_check() is called
13941 */
13942 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13943 if (!env)
13944 return -ENOMEM;
13945 log = &env->log;
13946
13947 len = (*prog)->len;
13948 env->insn_aux_data =
13949 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13950 ret = -ENOMEM;
13951 if (!env->insn_aux_data)
13952 goto err_free_env;
13953 for (i = 0; i < len; i++)
13954 env->insn_aux_data[i].orig_idx = i;
13955 env->prog = *prog;
13956 env->ops = bpf_verifier_ops[env->prog->type];
13957 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
13958 is_priv = bpf_capable();
13959
13960 bpf_get_btf_vmlinux();
13961
13962 /* grab the mutex to protect few globals used by verifier */
13963 if (!is_priv)
13964 mutex_lock(&bpf_verifier_lock);
13965
13966 if (attr->log_level || attr->log_buf || attr->log_size) {
13967 /* user requested verbose verifier output
13968 * and supplied buffer to store the verification trace
13969 */
13970 log->level = attr->log_level;
13971 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13972 log->len_total = attr->log_size;
13973
13974 /* log attributes have to be sane */
13975 if (!bpf_verifier_log_attr_valid(log)) {
13976 ret = -EINVAL;
13977 goto err_unlock;
13978 }
13979 }
13980
13981 if (IS_ERR(btf_vmlinux)) {
13982 /* Either gcc or pahole or kernel are broken. */
13983 verbose(env, "in-kernel BTF is malformed\n");
13984 ret = PTR_ERR(btf_vmlinux);
13985 goto skip_full_check;
13986 }
13987
13988 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13989 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13990 env->strict_alignment = true;
13991 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13992 env->strict_alignment = false;
13993
13994 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13995 env->allow_uninit_stack = bpf_allow_uninit_stack();
13996 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13997 env->bypass_spec_v1 = bpf_bypass_spec_v1();
13998 env->bypass_spec_v4 = bpf_bypass_spec_v4();
13999 env->bpf_capable = bpf_capable();
14000
14001 if (is_priv)
14002 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
14003
14004 env->explored_states = kvcalloc(state_htab_size(env),
14005 sizeof(struct bpf_verifier_state_list *),
14006 GFP_USER);
14007 ret = -ENOMEM;
14008 if (!env->explored_states)
14009 goto skip_full_check;
14010
14011 ret = add_subprog_and_kfunc(env);
14012 if (ret < 0)
14013 goto skip_full_check;
14014
14015 ret = check_subprogs(env);
14016 if (ret < 0)
14017 goto skip_full_check;
14018
14019 ret = check_btf_info(env, attr, uattr);
14020 if (ret < 0)
14021 goto skip_full_check;
14022
14023 ret = check_attach_btf_id(env);
14024 if (ret)
14025 goto skip_full_check;
14026
14027 ret = resolve_pseudo_ldimm64(env);
14028 if (ret < 0)
14029 goto skip_full_check;
14030
14031 if (bpf_prog_is_dev_bound(env->prog->aux)) {
14032 ret = bpf_prog_offload_verifier_prep(env->prog);
14033 if (ret)
14034 goto skip_full_check;
14035 }
14036
14037 ret = check_cfg(env);
14038 if (ret < 0)
14039 goto skip_full_check;
14040
14041 ret = do_check_subprogs(env);
14042 ret = ret ?: do_check_main(env);
14043
14044 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
14045 ret = bpf_prog_offload_finalize(env);
14046
14047 skip_full_check:
14048 kvfree(env->explored_states);
14049
14050 if (ret == 0)
14051 ret = check_max_stack_depth(env);
14052
14053 /* instruction rewrites happen after this point */
14054 if (is_priv) {
14055 if (ret == 0)
14056 opt_hard_wire_dead_code_branches(env);
14057 if (ret == 0)
14058 ret = opt_remove_dead_code(env);
14059 if (ret == 0)
14060 ret = opt_remove_nops(env);
14061 } else {
14062 if (ret == 0)
14063 sanitize_dead_code(env);
14064 }
14065
14066 if (ret == 0)
14067 /* program is valid, convert *(u32*)(ctx + off) accesses */
14068 ret = convert_ctx_accesses(env);
14069
14070 if (ret == 0)
14071 ret = do_misc_fixups(env);
14072
14073 /* do 32-bit optimization after insn patching has done so those patched
14074 * insns could be handled correctly.
14075 */
14076 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14077 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14078 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14079 : false;
14080 }
14081
14082 if (ret == 0)
14083 ret = fixup_call_args(env);
14084
14085 env->verification_time = ktime_get_ns() - start_time;
14086 print_verification_stats(env);
14087
14088 if (log->level && bpf_verifier_log_full(log))
14089 ret = -ENOSPC;
14090 if (log->level && !log->ubuf) {
14091 ret = -EFAULT;
14092 goto err_release_maps;
14093 }
14094
14095 if (ret)
14096 goto err_release_maps;
14097
14098 if (env->used_map_cnt) {
14099 /* if program passed verifier, update used_maps in bpf_prog_info */
14100 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14101 sizeof(env->used_maps[0]),
14102 GFP_KERNEL);
14103
14104 if (!env->prog->aux->used_maps) {
14105 ret = -ENOMEM;
14106 goto err_release_maps;
14107 }
14108
14109 memcpy(env->prog->aux->used_maps, env->used_maps,
14110 sizeof(env->used_maps[0]) * env->used_map_cnt);
14111 env->prog->aux->used_map_cnt = env->used_map_cnt;
14112 }
14113 if (env->used_btf_cnt) {
14114 /* if program passed verifier, update used_btfs in bpf_prog_aux */
14115 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14116 sizeof(env->used_btfs[0]),
14117 GFP_KERNEL);
14118 if (!env->prog->aux->used_btfs) {
14119 ret = -ENOMEM;
14120 goto err_release_maps;
14121 }
14122
14123 memcpy(env->prog->aux->used_btfs, env->used_btfs,
14124 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14125 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14126 }
14127 if (env->used_map_cnt || env->used_btf_cnt) {
14128 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
14129 * bpf_ld_imm64 instructions
14130 */
14131 convert_pseudo_ld_imm64(env);
14132 }
14133
14134 adjust_btf_func(env);
14135
14136 err_release_maps:
14137 if (!env->prog->aux->used_maps)
14138 /* if we didn't copy map pointers into bpf_prog_info, release
14139 * them now. Otherwise free_used_maps() will release them.
14140 */
14141 release_maps(env);
14142 if (!env->prog->aux->used_btfs)
14143 release_btfs(env);
14144
14145 /* extension progs temporarily inherit the attach_type of their targets
14146 for verification purposes, so set it back to zero before returning
14147 */
14148 if (env->prog->type == BPF_PROG_TYPE_EXT)
14149 env->prog->expected_attach_type = 0;
14150
14151 *prog = env->prog;
14152 err_unlock:
14153 if (!is_priv)
14154 mutex_unlock(&bpf_verifier_lock);
14155 vfree(env->insn_aux_data);
14156 err_free_env:
14157 kfree(env);
14158 return ret;
14159 }
14160