• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/btf.h>
11 #include <linux/filter.h>
12 #include <linux/uaccess.h>
13 #include <linux/ctype.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/syscalls.h>
17 #include <linux/error-injection.h>
18 #include <linux/btf_ids.h>
19 #include <linux/bpf_lsm.h>
20 
21 #include <net/bpf_sk_storage.h>
22 
23 #include <uapi/linux/bpf.h>
24 #include <uapi/linux/btf.h>
25 
26 #include <asm/tlb.h>
27 
28 #include "trace_probe.h"
29 #include "trace.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include "bpf_trace.h"
33 
34 #define bpf_event_rcu_dereference(p)					\
35 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
36 
37 #ifdef CONFIG_MODULES
38 struct bpf_trace_module {
39 	struct module *module;
40 	struct list_head list;
41 };
42 
43 static LIST_HEAD(bpf_trace_modules);
44 static DEFINE_MUTEX(bpf_module_mutex);
45 
bpf_get_raw_tracepoint_module(const char * name)46 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
47 {
48 	struct bpf_raw_event_map *btp, *ret = NULL;
49 	struct bpf_trace_module *btm;
50 	unsigned int i;
51 
52 	mutex_lock(&bpf_module_mutex);
53 	list_for_each_entry(btm, &bpf_trace_modules, list) {
54 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
55 			btp = &btm->module->bpf_raw_events[i];
56 			if (!strcmp(btp->tp->name, name)) {
57 				if (try_module_get(btm->module))
58 					ret = btp;
59 				goto out;
60 			}
61 		}
62 	}
63 out:
64 	mutex_unlock(&bpf_module_mutex);
65 	return ret;
66 }
67 #else
bpf_get_raw_tracepoint_module(const char * name)68 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
69 {
70 	return NULL;
71 }
72 #endif /* CONFIG_MODULES */
73 
74 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
75 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
76 
77 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
78 				  u64 flags, const struct btf **btf,
79 				  s32 *btf_id);
80 
81 /**
82  * trace_call_bpf - invoke BPF program
83  * @call: tracepoint event
84  * @ctx: opaque context pointer
85  *
86  * kprobe handlers execute BPF programs via this helper.
87  * Can be used from static tracepoints in the future.
88  *
89  * Return: BPF programs always return an integer which is interpreted by
90  * kprobe handler as:
91  * 0 - return from kprobe (event is filtered out)
92  * 1 - store kprobe event into ring buffer
93  * Other values are reserved and currently alias to 1
94  */
trace_call_bpf(struct trace_event_call * call,void * ctx)95 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
96 {
97 	unsigned int ret;
98 
99 	cant_sleep();
100 
101 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
102 		/*
103 		 * since some bpf program is already running on this cpu,
104 		 * don't call into another bpf program (same or different)
105 		 * and don't send kprobe event into ring-buffer,
106 		 * so return zero here
107 		 */
108 		ret = 0;
109 		goto out;
110 	}
111 
112 	/*
113 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
114 	 * to all call sites, we did a bpf_prog_array_valid() there to check
115 	 * whether call->prog_array is empty or not, which is
116 	 * a heuristic to speed up execution.
117 	 *
118 	 * If bpf_prog_array_valid() fetched prog_array was
119 	 * non-NULL, we go into trace_call_bpf() and do the actual
120 	 * proper rcu_dereference() under RCU lock.
121 	 * If it turns out that prog_array is NULL then, we bail out.
122 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
123 	 * was NULL, you'll skip the prog_array with the risk of missing
124 	 * out of events when it was updated in between this and the
125 	 * rcu_dereference() which is accepted risk.
126 	 */
127 	ret = BPF_PROG_RUN_ARRAY(call->prog_array, ctx, bpf_prog_run);
128 
129  out:
130 	__this_cpu_dec(bpf_prog_active);
131 
132 	return ret;
133 }
134 
135 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
BPF_CALL_2(bpf_override_return,struct pt_regs *,regs,unsigned long,rc)136 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
137 {
138 	regs_set_return_value(regs, rc);
139 	override_function_with_return(regs);
140 	return 0;
141 }
142 
143 static const struct bpf_func_proto bpf_override_return_proto = {
144 	.func		= bpf_override_return,
145 	.gpl_only	= true,
146 	.ret_type	= RET_INTEGER,
147 	.arg1_type	= ARG_PTR_TO_CTX,
148 	.arg2_type	= ARG_ANYTHING,
149 };
150 #endif
151 
152 static __always_inline int
bpf_probe_read_user_common(void * dst,u32 size,const void __user * unsafe_ptr)153 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
154 {
155 	int ret;
156 
157 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
158 	if (unlikely(ret < 0))
159 		memset(dst, 0, size);
160 	return ret;
161 }
162 
BPF_CALL_3(bpf_probe_read_user,void *,dst,u32,size,const void __user *,unsafe_ptr)163 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
164 	   const void __user *, unsafe_ptr)
165 {
166 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
167 }
168 
169 const struct bpf_func_proto bpf_probe_read_user_proto = {
170 	.func		= bpf_probe_read_user,
171 	.gpl_only	= true,
172 	.ret_type	= RET_INTEGER,
173 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
174 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
175 	.arg3_type	= ARG_ANYTHING,
176 };
177 
178 static __always_inline int
bpf_probe_read_user_str_common(void * dst,u32 size,const void __user * unsafe_ptr)179 bpf_probe_read_user_str_common(void *dst, u32 size,
180 			       const void __user *unsafe_ptr)
181 {
182 	int ret;
183 
184 	/*
185 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
186 	 * terminator into `dst`.
187 	 *
188 	 * strncpy_from_user() does long-sized strides in the fast path. If the
189 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
190 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
191 	 * and keys a hash map with it, then semantically identical strings can
192 	 * occupy multiple entries in the map.
193 	 */
194 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
195 	if (unlikely(ret < 0))
196 		memset(dst, 0, size);
197 	return ret;
198 }
199 
BPF_CALL_3(bpf_probe_read_user_str,void *,dst,u32,size,const void __user *,unsafe_ptr)200 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
201 	   const void __user *, unsafe_ptr)
202 {
203 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
204 }
205 
206 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
207 	.func		= bpf_probe_read_user_str,
208 	.gpl_only	= true,
209 	.ret_type	= RET_INTEGER,
210 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
211 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
212 	.arg3_type	= ARG_ANYTHING,
213 };
214 
215 static __always_inline int
bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)216 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
217 {
218 	int ret;
219 
220 	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
221 	if (unlikely(ret < 0))
222 		memset(dst, 0, size);
223 	return ret;
224 }
225 
BPF_CALL_3(bpf_probe_read_kernel,void *,dst,u32,size,const void *,unsafe_ptr)226 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
227 	   const void *, unsafe_ptr)
228 {
229 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
230 }
231 
232 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
233 	.func		= bpf_probe_read_kernel,
234 	.gpl_only	= true,
235 	.ret_type	= RET_INTEGER,
236 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
237 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
238 	.arg3_type	= ARG_ANYTHING,
239 };
240 
241 static __always_inline int
bpf_probe_read_kernel_str_common(void * dst,u32 size,const void * unsafe_ptr)242 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
243 {
244 	int ret;
245 
246 	/*
247 	 * The strncpy_from_kernel_nofault() call will likely not fill the
248 	 * entire buffer, but that's okay in this circumstance as we're probing
249 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
250 	 * as well probe the stack. Thus, memory is explicitly cleared
251 	 * only in error case, so that improper users ignoring return
252 	 * code altogether don't copy garbage; otherwise length of string
253 	 * is returned that can be used for bpf_perf_event_output() et al.
254 	 */
255 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
256 	if (unlikely(ret < 0))
257 		memset(dst, 0, size);
258 	return ret;
259 }
260 
BPF_CALL_3(bpf_probe_read_kernel_str,void *,dst,u32,size,const void *,unsafe_ptr)261 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
262 	   const void *, unsafe_ptr)
263 {
264 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
265 }
266 
267 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
268 	.func		= bpf_probe_read_kernel_str,
269 	.gpl_only	= true,
270 	.ret_type	= RET_INTEGER,
271 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
272 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
273 	.arg3_type	= ARG_ANYTHING,
274 };
275 
276 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
BPF_CALL_3(bpf_probe_read_compat,void *,dst,u32,size,const void *,unsafe_ptr)277 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
278 	   const void *, unsafe_ptr)
279 {
280 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
281 		return bpf_probe_read_user_common(dst, size,
282 				(__force void __user *)unsafe_ptr);
283 	}
284 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
285 }
286 
287 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
288 	.func		= bpf_probe_read_compat,
289 	.gpl_only	= true,
290 	.ret_type	= RET_INTEGER,
291 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
292 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
293 	.arg3_type	= ARG_ANYTHING,
294 };
295 
BPF_CALL_3(bpf_probe_read_compat_str,void *,dst,u32,size,const void *,unsafe_ptr)296 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
297 	   const void *, unsafe_ptr)
298 {
299 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
300 		return bpf_probe_read_user_str_common(dst, size,
301 				(__force void __user *)unsafe_ptr);
302 	}
303 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
304 }
305 
306 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
307 	.func		= bpf_probe_read_compat_str,
308 	.gpl_only	= true,
309 	.ret_type	= RET_INTEGER,
310 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
311 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
312 	.arg3_type	= ARG_ANYTHING,
313 };
314 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
315 
BPF_CALL_3(bpf_probe_write_user,void __user *,unsafe_ptr,const void *,src,u32,size)316 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
317 	   u32, size)
318 {
319 	/*
320 	 * Ensure we're in user context which is safe for the helper to
321 	 * run. This helper has no business in a kthread.
322 	 *
323 	 * access_ok() should prevent writing to non-user memory, but in
324 	 * some situations (nommu, temporary switch, etc) access_ok() does
325 	 * not provide enough validation, hence the check on KERNEL_DS.
326 	 *
327 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
328 	 * state, when the task or mm are switched. This is specifically
329 	 * required to prevent the use of temporary mm.
330 	 */
331 
332 	if (unlikely(in_interrupt() ||
333 		     current->flags & (PF_KTHREAD | PF_EXITING)))
334 		return -EPERM;
335 	if (unlikely(uaccess_kernel()))
336 		return -EPERM;
337 	if (unlikely(!nmi_uaccess_okay()))
338 		return -EPERM;
339 
340 	return copy_to_user_nofault(unsafe_ptr, src, size);
341 }
342 
343 static const struct bpf_func_proto bpf_probe_write_user_proto = {
344 	.func		= bpf_probe_write_user,
345 	.gpl_only	= true,
346 	.ret_type	= RET_INTEGER,
347 	.arg1_type	= ARG_ANYTHING,
348 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
349 	.arg3_type	= ARG_CONST_SIZE,
350 };
351 
bpf_get_probe_write_proto(void)352 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
353 {
354 	if (!capable(CAP_SYS_ADMIN))
355 		return NULL;
356 
357 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
358 			    current->comm, task_pid_nr(current));
359 
360 	return &bpf_probe_write_user_proto;
361 }
362 
363 static DEFINE_RAW_SPINLOCK(trace_printk_lock);
364 
365 #define MAX_TRACE_PRINTK_VARARGS	3
366 #define BPF_TRACE_PRINTK_SIZE		1024
367 
BPF_CALL_5(bpf_trace_printk,char *,fmt,u32,fmt_size,u64,arg1,u64,arg2,u64,arg3)368 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
369 	   u64, arg2, u64, arg3)
370 {
371 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
372 	u32 *bin_args;
373 	static char buf[BPF_TRACE_PRINTK_SIZE];
374 	unsigned long flags;
375 	int ret;
376 
377 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args,
378 				  MAX_TRACE_PRINTK_VARARGS);
379 	if (ret < 0)
380 		return ret;
381 
382 	raw_spin_lock_irqsave(&trace_printk_lock, flags);
383 	ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
384 
385 	trace_bpf_trace_printk(buf);
386 	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
387 
388 	bpf_bprintf_cleanup();
389 
390 	return ret;
391 }
392 
393 static const struct bpf_func_proto bpf_trace_printk_proto = {
394 	.func		= bpf_trace_printk,
395 	.gpl_only	= true,
396 	.ret_type	= RET_INTEGER,
397 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
398 	.arg2_type	= ARG_CONST_SIZE,
399 };
400 
bpf_get_trace_printk_proto(void)401 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
402 {
403 	/*
404 	 * This program might be calling bpf_trace_printk,
405 	 * so enable the associated bpf_trace/bpf_trace_printk event.
406 	 * Repeat this each time as it is possible a user has
407 	 * disabled bpf_trace_printk events.  By loading a program
408 	 * calling bpf_trace_printk() however the user has expressed
409 	 * the intent to see such events.
410 	 */
411 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
412 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
413 
414 	return &bpf_trace_printk_proto;
415 }
416 
417 #define MAX_SEQ_PRINTF_VARARGS		12
418 
BPF_CALL_5(bpf_seq_printf,struct seq_file *,m,char *,fmt,u32,fmt_size,const void *,data,u32,data_len)419 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
420 	   const void *, data, u32, data_len)
421 {
422 	int err, num_args;
423 	u32 *bin_args;
424 
425 	if (data_len & 7 || data_len > MAX_SEQ_PRINTF_VARARGS * 8 ||
426 	    (data_len && !data))
427 		return -EINVAL;
428 	num_args = data_len / 8;
429 
430 	err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
431 	if (err < 0)
432 		return err;
433 
434 	seq_bprintf(m, fmt, bin_args);
435 
436 	bpf_bprintf_cleanup();
437 
438 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
439 }
440 
441 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
442 
443 static const struct bpf_func_proto bpf_seq_printf_proto = {
444 	.func		= bpf_seq_printf,
445 	.gpl_only	= true,
446 	.ret_type	= RET_INTEGER,
447 	.arg1_type	= ARG_PTR_TO_BTF_ID,
448 	.arg1_btf_id	= &btf_seq_file_ids[0],
449 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
450 	.arg3_type	= ARG_CONST_SIZE,
451 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
452 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
453 };
454 
BPF_CALL_3(bpf_seq_write,struct seq_file *,m,const void *,data,u32,len)455 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
456 {
457 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
458 }
459 
460 static const struct bpf_func_proto bpf_seq_write_proto = {
461 	.func		= bpf_seq_write,
462 	.gpl_only	= true,
463 	.ret_type	= RET_INTEGER,
464 	.arg1_type	= ARG_PTR_TO_BTF_ID,
465 	.arg1_btf_id	= &btf_seq_file_ids[0],
466 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
467 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
468 };
469 
BPF_CALL_4(bpf_seq_printf_btf,struct seq_file *,m,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)470 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
471 	   u32, btf_ptr_size, u64, flags)
472 {
473 	const struct btf *btf;
474 	s32 btf_id;
475 	int ret;
476 
477 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
478 	if (ret)
479 		return ret;
480 
481 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
482 }
483 
484 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
485 	.func		= bpf_seq_printf_btf,
486 	.gpl_only	= true,
487 	.ret_type	= RET_INTEGER,
488 	.arg1_type	= ARG_PTR_TO_BTF_ID,
489 	.arg1_btf_id	= &btf_seq_file_ids[0],
490 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
491 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
492 	.arg4_type	= ARG_ANYTHING,
493 };
494 
495 static __always_inline int
get_map_perf_counter(struct bpf_map * map,u64 flags,u64 * value,u64 * enabled,u64 * running)496 get_map_perf_counter(struct bpf_map *map, u64 flags,
497 		     u64 *value, u64 *enabled, u64 *running)
498 {
499 	struct bpf_array *array = container_of(map, struct bpf_array, map);
500 	unsigned int cpu = smp_processor_id();
501 	u64 index = flags & BPF_F_INDEX_MASK;
502 	struct bpf_event_entry *ee;
503 
504 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
505 		return -EINVAL;
506 	if (index == BPF_F_CURRENT_CPU)
507 		index = cpu;
508 	if (unlikely(index >= array->map.max_entries))
509 		return -E2BIG;
510 
511 	ee = READ_ONCE(array->ptrs[index]);
512 	if (!ee)
513 		return -ENOENT;
514 
515 	return perf_event_read_local(ee->event, value, enabled, running);
516 }
517 
BPF_CALL_2(bpf_perf_event_read,struct bpf_map *,map,u64,flags)518 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
519 {
520 	u64 value = 0;
521 	int err;
522 
523 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
524 	/*
525 	 * this api is ugly since we miss [-22..-2] range of valid
526 	 * counter values, but that's uapi
527 	 */
528 	if (err)
529 		return err;
530 	return value;
531 }
532 
533 static const struct bpf_func_proto bpf_perf_event_read_proto = {
534 	.func		= bpf_perf_event_read,
535 	.gpl_only	= true,
536 	.ret_type	= RET_INTEGER,
537 	.arg1_type	= ARG_CONST_MAP_PTR,
538 	.arg2_type	= ARG_ANYTHING,
539 };
540 
BPF_CALL_4(bpf_perf_event_read_value,struct bpf_map *,map,u64,flags,struct bpf_perf_event_value *,buf,u32,size)541 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
542 	   struct bpf_perf_event_value *, buf, u32, size)
543 {
544 	int err = -EINVAL;
545 
546 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
547 		goto clear;
548 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
549 				   &buf->running);
550 	if (unlikely(err))
551 		goto clear;
552 	return 0;
553 clear:
554 	memset(buf, 0, size);
555 	return err;
556 }
557 
558 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
559 	.func		= bpf_perf_event_read_value,
560 	.gpl_only	= true,
561 	.ret_type	= RET_INTEGER,
562 	.arg1_type	= ARG_CONST_MAP_PTR,
563 	.arg2_type	= ARG_ANYTHING,
564 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
565 	.arg4_type	= ARG_CONST_SIZE,
566 };
567 
568 static __always_inline u64
__bpf_perf_event_output(struct pt_regs * regs,struct bpf_map * map,u64 flags,struct perf_sample_data * sd)569 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
570 			u64 flags, struct perf_sample_data *sd)
571 {
572 	struct bpf_array *array = container_of(map, struct bpf_array, map);
573 	unsigned int cpu = smp_processor_id();
574 	u64 index = flags & BPF_F_INDEX_MASK;
575 	struct bpf_event_entry *ee;
576 	struct perf_event *event;
577 
578 	if (index == BPF_F_CURRENT_CPU)
579 		index = cpu;
580 	if (unlikely(index >= array->map.max_entries))
581 		return -E2BIG;
582 
583 	ee = READ_ONCE(array->ptrs[index]);
584 	if (!ee)
585 		return -ENOENT;
586 
587 	event = ee->event;
588 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
589 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
590 		return -EINVAL;
591 
592 	if (unlikely(event->oncpu != cpu))
593 		return -EOPNOTSUPP;
594 
595 	return perf_event_output(event, sd, regs);
596 }
597 
598 /*
599  * Support executing tracepoints in normal, irq, and nmi context that each call
600  * bpf_perf_event_output
601  */
602 struct bpf_trace_sample_data {
603 	struct perf_sample_data sds[3];
604 };
605 
606 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
607 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
BPF_CALL_5(bpf_perf_event_output,struct pt_regs *,regs,struct bpf_map *,map,u64,flags,void *,data,u64,size)608 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
609 	   u64, flags, void *, data, u64, size)
610 {
611 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
612 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
613 	struct perf_raw_record raw = {
614 		.frag = {
615 			.size = size,
616 			.data = data,
617 		},
618 	};
619 	struct perf_sample_data *sd;
620 	int err;
621 
622 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
623 		err = -EBUSY;
624 		goto out;
625 	}
626 
627 	sd = &sds->sds[nest_level - 1];
628 
629 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
630 		err = -EINVAL;
631 		goto out;
632 	}
633 
634 	perf_sample_data_init(sd, 0, 0);
635 	sd->raw = &raw;
636 
637 	err = __bpf_perf_event_output(regs, map, flags, sd);
638 
639 out:
640 	this_cpu_dec(bpf_trace_nest_level);
641 	return err;
642 }
643 
644 static const struct bpf_func_proto bpf_perf_event_output_proto = {
645 	.func		= bpf_perf_event_output,
646 	.gpl_only	= true,
647 	.ret_type	= RET_INTEGER,
648 	.arg1_type	= ARG_PTR_TO_CTX,
649 	.arg2_type	= ARG_CONST_MAP_PTR,
650 	.arg3_type	= ARG_ANYTHING,
651 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
652 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
653 };
654 
655 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
656 struct bpf_nested_pt_regs {
657 	struct pt_regs regs[3];
658 };
659 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
660 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
661 
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)662 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
663 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
664 {
665 	struct perf_raw_frag frag = {
666 		.copy		= ctx_copy,
667 		.size		= ctx_size,
668 		.data		= ctx,
669 	};
670 	struct perf_raw_record raw = {
671 		.frag = {
672 			{
673 				.next	= ctx_size ? &frag : NULL,
674 			},
675 			.size	= meta_size,
676 			.data	= meta,
677 		},
678 	};
679 	struct perf_sample_data *sd;
680 	struct pt_regs *regs;
681 	int nest_level;
682 	u64 ret;
683 
684 	preempt_disable();
685 	nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
686 
687 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
688 		ret = -EBUSY;
689 		goto out;
690 	}
691 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
692 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
693 
694 	perf_fetch_caller_regs(regs);
695 	perf_sample_data_init(sd, 0, 0);
696 	sd->raw = &raw;
697 
698 	ret = __bpf_perf_event_output(regs, map, flags, sd);
699 out:
700 	this_cpu_dec(bpf_event_output_nest_level);
701 	preempt_enable();
702 	return ret;
703 }
704 
BPF_CALL_0(bpf_get_current_task)705 BPF_CALL_0(bpf_get_current_task)
706 {
707 	return (long) current;
708 }
709 
710 const struct bpf_func_proto bpf_get_current_task_proto = {
711 	.func		= bpf_get_current_task,
712 	.gpl_only	= true,
713 	.ret_type	= RET_INTEGER,
714 };
715 
BPF_CALL_0(bpf_get_current_task_btf)716 BPF_CALL_0(bpf_get_current_task_btf)
717 {
718 	return (unsigned long) current;
719 }
720 
721 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
722 	.func		= bpf_get_current_task_btf,
723 	.gpl_only	= true,
724 	.ret_type	= RET_PTR_TO_BTF_ID,
725 	.ret_btf_id	= &btf_task_struct_ids[0],
726 };
727 
BPF_CALL_1(bpf_task_pt_regs,struct task_struct *,task)728 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
729 {
730 	return (unsigned long) task_pt_regs(task);
731 }
732 
733 BTF_ID_LIST(bpf_task_pt_regs_ids)
734 BTF_ID(struct, pt_regs)
735 
736 const struct bpf_func_proto bpf_task_pt_regs_proto = {
737 	.func		= bpf_task_pt_regs,
738 	.gpl_only	= true,
739 	.arg1_type	= ARG_PTR_TO_BTF_ID,
740 	.arg1_btf_id	= &btf_task_struct_ids[0],
741 	.ret_type	= RET_PTR_TO_BTF_ID,
742 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
743 };
744 
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)745 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
746 {
747 	struct bpf_array *array = container_of(map, struct bpf_array, map);
748 	struct cgroup *cgrp;
749 
750 	if (unlikely(idx >= array->map.max_entries))
751 		return -E2BIG;
752 
753 	cgrp = READ_ONCE(array->ptrs[idx]);
754 	if (unlikely(!cgrp))
755 		return -EAGAIN;
756 
757 	return task_under_cgroup_hierarchy(current, cgrp);
758 }
759 
760 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
761 	.func           = bpf_current_task_under_cgroup,
762 	.gpl_only       = false,
763 	.ret_type       = RET_INTEGER,
764 	.arg1_type      = ARG_CONST_MAP_PTR,
765 	.arg2_type      = ARG_ANYTHING,
766 };
767 
768 struct send_signal_irq_work {
769 	struct irq_work irq_work;
770 	struct task_struct *task;
771 	u32 sig;
772 	enum pid_type type;
773 };
774 
775 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
776 
do_bpf_send_signal(struct irq_work * entry)777 static void do_bpf_send_signal(struct irq_work *entry)
778 {
779 	struct send_signal_irq_work *work;
780 
781 	work = container_of(entry, struct send_signal_irq_work, irq_work);
782 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
783 	put_task_struct(work->task);
784 }
785 
bpf_send_signal_common(u32 sig,enum pid_type type)786 static int bpf_send_signal_common(u32 sig, enum pid_type type)
787 {
788 	struct send_signal_irq_work *work = NULL;
789 
790 	/* Similar to bpf_probe_write_user, task needs to be
791 	 * in a sound condition and kernel memory access be
792 	 * permitted in order to send signal to the current
793 	 * task.
794 	 */
795 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
796 		return -EPERM;
797 	if (unlikely(uaccess_kernel()))
798 		return -EPERM;
799 	if (unlikely(!nmi_uaccess_okay()))
800 		return -EPERM;
801 	/* Task should not be pid=1 to avoid kernel panic. */
802 	if (unlikely(is_global_init(current)))
803 		return -EPERM;
804 
805 	if (irqs_disabled()) {
806 		/* Do an early check on signal validity. Otherwise,
807 		 * the error is lost in deferred irq_work.
808 		 */
809 		if (unlikely(!valid_signal(sig)))
810 			return -EINVAL;
811 
812 		work = this_cpu_ptr(&send_signal_work);
813 		if (irq_work_is_busy(&work->irq_work))
814 			return -EBUSY;
815 
816 		/* Add the current task, which is the target of sending signal,
817 		 * to the irq_work. The current task may change when queued
818 		 * irq works get executed.
819 		 */
820 		work->task = get_task_struct(current);
821 		work->sig = sig;
822 		work->type = type;
823 		irq_work_queue(&work->irq_work);
824 		return 0;
825 	}
826 
827 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
828 }
829 
BPF_CALL_1(bpf_send_signal,u32,sig)830 BPF_CALL_1(bpf_send_signal, u32, sig)
831 {
832 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
833 }
834 
835 static const struct bpf_func_proto bpf_send_signal_proto = {
836 	.func		= bpf_send_signal,
837 	.gpl_only	= false,
838 	.ret_type	= RET_INTEGER,
839 	.arg1_type	= ARG_ANYTHING,
840 };
841 
BPF_CALL_1(bpf_send_signal_thread,u32,sig)842 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
843 {
844 	return bpf_send_signal_common(sig, PIDTYPE_PID);
845 }
846 
847 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
848 	.func		= bpf_send_signal_thread,
849 	.gpl_only	= false,
850 	.ret_type	= RET_INTEGER,
851 	.arg1_type	= ARG_ANYTHING,
852 };
853 
BPF_CALL_3(bpf_d_path,struct path *,path,char *,buf,u32,sz)854 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
855 {
856 	struct path copy;
857 	long len;
858 	char *p;
859 
860 	if (!sz)
861 		return 0;
862 
863 	/*
864 	 * The path pointer is verified as trusted and safe to use,
865 	 * but let's double check it's valid anyway to workaround
866 	 * potentially broken verifier.
867 	 */
868 	len = copy_from_kernel_nofault(&copy, path, sizeof(*path));
869 	if (len < 0)
870 		return len;
871 
872 	p = d_path(&copy, buf, sz);
873 	if (IS_ERR(p)) {
874 		len = PTR_ERR(p);
875 	} else {
876 		len = buf + sz - p;
877 		memmove(buf, p, len);
878 	}
879 
880 	return len;
881 }
882 
883 BTF_SET_START(btf_allowlist_d_path)
884 #ifdef CONFIG_SECURITY
BTF_ID(func,security_file_permission)885 BTF_ID(func, security_file_permission)
886 BTF_ID(func, security_inode_getattr)
887 BTF_ID(func, security_file_open)
888 #endif
889 #ifdef CONFIG_SECURITY_PATH
890 BTF_ID(func, security_path_truncate)
891 #endif
892 BTF_ID(func, vfs_truncate)
893 BTF_ID(func, vfs_fallocate)
894 BTF_ID(func, dentry_open)
895 BTF_ID(func, vfs_getattr)
896 BTF_ID(func, filp_close)
897 BTF_SET_END(btf_allowlist_d_path)
898 
899 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
900 {
901 	if (prog->type == BPF_PROG_TYPE_TRACING &&
902 	    prog->expected_attach_type == BPF_TRACE_ITER)
903 		return true;
904 
905 	if (prog->type == BPF_PROG_TYPE_LSM)
906 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
907 
908 	return btf_id_set_contains(&btf_allowlist_d_path,
909 				   prog->aux->attach_btf_id);
910 }
911 
912 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
913 
914 static const struct bpf_func_proto bpf_d_path_proto = {
915 	.func		= bpf_d_path,
916 	.gpl_only	= false,
917 	.ret_type	= RET_INTEGER,
918 	.arg1_type	= ARG_PTR_TO_BTF_ID,
919 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
920 	.arg2_type	= ARG_PTR_TO_MEM,
921 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
922 	.allowed	= bpf_d_path_allowed,
923 };
924 
925 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
926 			 BTF_F_PTR_RAW | BTF_F_ZERO)
927 
bpf_btf_printf_prepare(struct btf_ptr * ptr,u32 btf_ptr_size,u64 flags,const struct btf ** btf,s32 * btf_id)928 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
929 				  u64 flags, const struct btf **btf,
930 				  s32 *btf_id)
931 {
932 	const struct btf_type *t;
933 
934 	if (unlikely(flags & ~(BTF_F_ALL)))
935 		return -EINVAL;
936 
937 	if (btf_ptr_size != sizeof(struct btf_ptr))
938 		return -EINVAL;
939 
940 	*btf = bpf_get_btf_vmlinux();
941 
942 	if (IS_ERR_OR_NULL(*btf))
943 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
944 
945 	if (ptr->type_id > 0)
946 		*btf_id = ptr->type_id;
947 	else
948 		return -EINVAL;
949 
950 	if (*btf_id > 0)
951 		t = btf_type_by_id(*btf, *btf_id);
952 	if (*btf_id <= 0 || !t)
953 		return -ENOENT;
954 
955 	return 0;
956 }
957 
BPF_CALL_5(bpf_snprintf_btf,char *,str,u32,str_size,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)958 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
959 	   u32, btf_ptr_size, u64, flags)
960 {
961 	const struct btf *btf;
962 	s32 btf_id;
963 	int ret;
964 
965 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
966 	if (ret)
967 		return ret;
968 
969 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
970 				      flags);
971 }
972 
973 const struct bpf_func_proto bpf_snprintf_btf_proto = {
974 	.func		= bpf_snprintf_btf,
975 	.gpl_only	= false,
976 	.ret_type	= RET_INTEGER,
977 	.arg1_type	= ARG_PTR_TO_MEM,
978 	.arg2_type	= ARG_CONST_SIZE,
979 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
980 	.arg4_type	= ARG_CONST_SIZE,
981 	.arg5_type	= ARG_ANYTHING,
982 };
983 
BPF_CALL_1(bpf_get_func_ip_tracing,void *,ctx)984 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
985 {
986 	/* This helper call is inlined by verifier. */
987 	return ((u64 *)ctx)[-1];
988 }
989 
990 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
991 	.func		= bpf_get_func_ip_tracing,
992 	.gpl_only	= true,
993 	.ret_type	= RET_INTEGER,
994 	.arg1_type	= ARG_PTR_TO_CTX,
995 };
996 
BPF_CALL_1(bpf_get_func_ip_kprobe,struct pt_regs *,regs)997 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
998 {
999 	struct kprobe *kp = kprobe_running();
1000 
1001 	return kp ? (uintptr_t)kp->addr : 0;
1002 }
1003 
1004 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1005 	.func		= bpf_get_func_ip_kprobe,
1006 	.gpl_only	= true,
1007 	.ret_type	= RET_INTEGER,
1008 	.arg1_type	= ARG_PTR_TO_CTX,
1009 };
1010 
BPF_CALL_1(bpf_get_attach_cookie_trace,void *,ctx)1011 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1012 {
1013 	struct bpf_trace_run_ctx *run_ctx;
1014 
1015 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1016 	return run_ctx->bpf_cookie;
1017 }
1018 
1019 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1020 	.func		= bpf_get_attach_cookie_trace,
1021 	.gpl_only	= false,
1022 	.ret_type	= RET_INTEGER,
1023 	.arg1_type	= ARG_PTR_TO_CTX,
1024 };
1025 
BPF_CALL_1(bpf_get_attach_cookie_pe,struct bpf_perf_event_data_kern *,ctx)1026 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1027 {
1028 	return ctx->event->bpf_cookie;
1029 }
1030 
1031 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1032 	.func		= bpf_get_attach_cookie_pe,
1033 	.gpl_only	= false,
1034 	.ret_type	= RET_INTEGER,
1035 	.arg1_type	= ARG_PTR_TO_CTX,
1036 };
1037 
1038 static const struct bpf_func_proto *
bpf_tracing_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1039 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1040 {
1041 	switch (func_id) {
1042 	case BPF_FUNC_map_lookup_elem:
1043 		return &bpf_map_lookup_elem_proto;
1044 	case BPF_FUNC_map_update_elem:
1045 		return &bpf_map_update_elem_proto;
1046 	case BPF_FUNC_map_delete_elem:
1047 		return &bpf_map_delete_elem_proto;
1048 	case BPF_FUNC_map_push_elem:
1049 		return &bpf_map_push_elem_proto;
1050 	case BPF_FUNC_map_pop_elem:
1051 		return &bpf_map_pop_elem_proto;
1052 	case BPF_FUNC_map_peek_elem:
1053 		return &bpf_map_peek_elem_proto;
1054 	case BPF_FUNC_ktime_get_ns:
1055 		return &bpf_ktime_get_ns_proto;
1056 	case BPF_FUNC_ktime_get_boot_ns:
1057 		return &bpf_ktime_get_boot_ns_proto;
1058 	case BPF_FUNC_tail_call:
1059 		return &bpf_tail_call_proto;
1060 	case BPF_FUNC_get_current_pid_tgid:
1061 		return &bpf_get_current_pid_tgid_proto;
1062 	case BPF_FUNC_get_current_task:
1063 		return &bpf_get_current_task_proto;
1064 	case BPF_FUNC_get_current_task_btf:
1065 		return &bpf_get_current_task_btf_proto;
1066 	case BPF_FUNC_task_pt_regs:
1067 		return &bpf_task_pt_regs_proto;
1068 	case BPF_FUNC_get_current_uid_gid:
1069 		return &bpf_get_current_uid_gid_proto;
1070 	case BPF_FUNC_get_current_comm:
1071 		return &bpf_get_current_comm_proto;
1072 	case BPF_FUNC_trace_printk:
1073 		return bpf_get_trace_printk_proto();
1074 	case BPF_FUNC_get_smp_processor_id:
1075 		return &bpf_get_smp_processor_id_proto;
1076 	case BPF_FUNC_get_numa_node_id:
1077 		return &bpf_get_numa_node_id_proto;
1078 	case BPF_FUNC_perf_event_read:
1079 		return &bpf_perf_event_read_proto;
1080 	case BPF_FUNC_current_task_under_cgroup:
1081 		return &bpf_current_task_under_cgroup_proto;
1082 	case BPF_FUNC_get_prandom_u32:
1083 		return &bpf_get_prandom_u32_proto;
1084 	case BPF_FUNC_probe_write_user:
1085 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1086 		       NULL : bpf_get_probe_write_proto();
1087 	case BPF_FUNC_probe_read_user:
1088 		return &bpf_probe_read_user_proto;
1089 	case BPF_FUNC_probe_read_kernel:
1090 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1091 		       NULL : &bpf_probe_read_kernel_proto;
1092 	case BPF_FUNC_probe_read_user_str:
1093 		return &bpf_probe_read_user_str_proto;
1094 	case BPF_FUNC_probe_read_kernel_str:
1095 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1096 		       NULL : &bpf_probe_read_kernel_str_proto;
1097 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1098 	case BPF_FUNC_probe_read:
1099 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1100 		       NULL : &bpf_probe_read_compat_proto;
1101 	case BPF_FUNC_probe_read_str:
1102 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1103 		       NULL : &bpf_probe_read_compat_str_proto;
1104 #endif
1105 #ifdef CONFIG_CGROUPS
1106 	case BPF_FUNC_get_current_cgroup_id:
1107 		return &bpf_get_current_cgroup_id_proto;
1108 	case BPF_FUNC_get_current_ancestor_cgroup_id:
1109 		return &bpf_get_current_ancestor_cgroup_id_proto;
1110 #endif
1111 	case BPF_FUNC_send_signal:
1112 		return &bpf_send_signal_proto;
1113 	case BPF_FUNC_send_signal_thread:
1114 		return &bpf_send_signal_thread_proto;
1115 	case BPF_FUNC_perf_event_read_value:
1116 		return &bpf_perf_event_read_value_proto;
1117 	case BPF_FUNC_get_ns_current_pid_tgid:
1118 		return &bpf_get_ns_current_pid_tgid_proto;
1119 	case BPF_FUNC_ringbuf_output:
1120 		return &bpf_ringbuf_output_proto;
1121 	case BPF_FUNC_ringbuf_reserve:
1122 		return &bpf_ringbuf_reserve_proto;
1123 	case BPF_FUNC_ringbuf_submit:
1124 		return &bpf_ringbuf_submit_proto;
1125 	case BPF_FUNC_ringbuf_discard:
1126 		return &bpf_ringbuf_discard_proto;
1127 	case BPF_FUNC_ringbuf_query:
1128 		return &bpf_ringbuf_query_proto;
1129 	case BPF_FUNC_jiffies64:
1130 		return &bpf_jiffies64_proto;
1131 	case BPF_FUNC_get_task_stack:
1132 		return &bpf_get_task_stack_proto;
1133 	case BPF_FUNC_copy_from_user:
1134 		return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1135 	case BPF_FUNC_snprintf_btf:
1136 		return &bpf_snprintf_btf_proto;
1137 	case BPF_FUNC_per_cpu_ptr:
1138 		return &bpf_per_cpu_ptr_proto;
1139 	case BPF_FUNC_this_cpu_ptr:
1140 		return &bpf_this_cpu_ptr_proto;
1141 	case BPF_FUNC_task_storage_get:
1142 		return &bpf_task_storage_get_proto;
1143 	case BPF_FUNC_task_storage_delete:
1144 		return &bpf_task_storage_delete_proto;
1145 	case BPF_FUNC_for_each_map_elem:
1146 		return &bpf_for_each_map_elem_proto;
1147 	case BPF_FUNC_snprintf:
1148 		return &bpf_snprintf_proto;
1149 	case BPF_FUNC_get_func_ip:
1150 		return &bpf_get_func_ip_proto_tracing;
1151 	default:
1152 		return bpf_base_func_proto(func_id);
1153 	}
1154 }
1155 
1156 static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1157 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1158 {
1159 	switch (func_id) {
1160 	case BPF_FUNC_perf_event_output:
1161 		return &bpf_perf_event_output_proto;
1162 	case BPF_FUNC_get_stackid:
1163 		return &bpf_get_stackid_proto;
1164 	case BPF_FUNC_get_stack:
1165 		return &bpf_get_stack_proto;
1166 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1167 	case BPF_FUNC_override_return:
1168 		return &bpf_override_return_proto;
1169 #endif
1170 	case BPF_FUNC_get_func_ip:
1171 		return &bpf_get_func_ip_proto_kprobe;
1172 	case BPF_FUNC_get_attach_cookie:
1173 		return &bpf_get_attach_cookie_proto_trace;
1174 	default:
1175 		return bpf_tracing_func_proto(func_id, prog);
1176 	}
1177 }
1178 
1179 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
kprobe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1180 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1181 					const struct bpf_prog *prog,
1182 					struct bpf_insn_access_aux *info)
1183 {
1184 	if (off < 0 || off >= sizeof(struct pt_regs))
1185 		return false;
1186 	if (type != BPF_READ)
1187 		return false;
1188 	if (off % size != 0)
1189 		return false;
1190 	/*
1191 	 * Assertion for 32 bit to make sure last 8 byte access
1192 	 * (BPF_DW) to the last 4 byte member is disallowed.
1193 	 */
1194 	if (off + size > sizeof(struct pt_regs))
1195 		return false;
1196 
1197 	return true;
1198 }
1199 
1200 const struct bpf_verifier_ops kprobe_verifier_ops = {
1201 	.get_func_proto  = kprobe_prog_func_proto,
1202 	.is_valid_access = kprobe_prog_is_valid_access,
1203 };
1204 
1205 const struct bpf_prog_ops kprobe_prog_ops = {
1206 };
1207 
BPF_CALL_5(bpf_perf_event_output_tp,void *,tp_buff,struct bpf_map *,map,u64,flags,void *,data,u64,size)1208 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1209 	   u64, flags, void *, data, u64, size)
1210 {
1211 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1212 
1213 	/*
1214 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1215 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1216 	 * from there and call the same bpf_perf_event_output() helper inline.
1217 	 */
1218 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1219 }
1220 
1221 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1222 	.func		= bpf_perf_event_output_tp,
1223 	.gpl_only	= true,
1224 	.ret_type	= RET_INTEGER,
1225 	.arg1_type	= ARG_PTR_TO_CTX,
1226 	.arg2_type	= ARG_CONST_MAP_PTR,
1227 	.arg3_type	= ARG_ANYTHING,
1228 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1229 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1230 };
1231 
BPF_CALL_3(bpf_get_stackid_tp,void *,tp_buff,struct bpf_map *,map,u64,flags)1232 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1233 	   u64, flags)
1234 {
1235 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1236 
1237 	/*
1238 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1239 	 * the other helper's function body cannot be inlined due to being
1240 	 * external, thus we need to call raw helper function.
1241 	 */
1242 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1243 			       flags, 0, 0);
1244 }
1245 
1246 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1247 	.func		= bpf_get_stackid_tp,
1248 	.gpl_only	= true,
1249 	.ret_type	= RET_INTEGER,
1250 	.arg1_type	= ARG_PTR_TO_CTX,
1251 	.arg2_type	= ARG_CONST_MAP_PTR,
1252 	.arg3_type	= ARG_ANYTHING,
1253 };
1254 
BPF_CALL_4(bpf_get_stack_tp,void *,tp_buff,void *,buf,u32,size,u64,flags)1255 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1256 	   u64, flags)
1257 {
1258 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1259 
1260 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1261 			     (unsigned long) size, flags, 0);
1262 }
1263 
1264 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1265 	.func		= bpf_get_stack_tp,
1266 	.gpl_only	= true,
1267 	.ret_type	= RET_INTEGER,
1268 	.arg1_type	= ARG_PTR_TO_CTX,
1269 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1270 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1271 	.arg4_type	= ARG_ANYTHING,
1272 };
1273 
1274 static const struct bpf_func_proto *
tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1275 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1276 {
1277 	switch (func_id) {
1278 	case BPF_FUNC_perf_event_output:
1279 		return &bpf_perf_event_output_proto_tp;
1280 	case BPF_FUNC_get_stackid:
1281 		return &bpf_get_stackid_proto_tp;
1282 	case BPF_FUNC_get_stack:
1283 		return &bpf_get_stack_proto_tp;
1284 	case BPF_FUNC_get_attach_cookie:
1285 		return &bpf_get_attach_cookie_proto_trace;
1286 	default:
1287 		return bpf_tracing_func_proto(func_id, prog);
1288 	}
1289 }
1290 
tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1291 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1292 				    const struct bpf_prog *prog,
1293 				    struct bpf_insn_access_aux *info)
1294 {
1295 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1296 		return false;
1297 	if (type != BPF_READ)
1298 		return false;
1299 	if (off % size != 0)
1300 		return false;
1301 
1302 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1303 	return true;
1304 }
1305 
1306 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1307 	.get_func_proto  = tp_prog_func_proto,
1308 	.is_valid_access = tp_prog_is_valid_access,
1309 };
1310 
1311 const struct bpf_prog_ops tracepoint_prog_ops = {
1312 };
1313 
BPF_CALL_3(bpf_perf_prog_read_value,struct bpf_perf_event_data_kern *,ctx,struct bpf_perf_event_value *,buf,u32,size)1314 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1315 	   struct bpf_perf_event_value *, buf, u32, size)
1316 {
1317 	int err = -EINVAL;
1318 
1319 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1320 		goto clear;
1321 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1322 				    &buf->running);
1323 	if (unlikely(err))
1324 		goto clear;
1325 	return 0;
1326 clear:
1327 	memset(buf, 0, size);
1328 	return err;
1329 }
1330 
1331 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1332          .func           = bpf_perf_prog_read_value,
1333          .gpl_only       = true,
1334          .ret_type       = RET_INTEGER,
1335          .arg1_type      = ARG_PTR_TO_CTX,
1336          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1337          .arg3_type      = ARG_CONST_SIZE,
1338 };
1339 
BPF_CALL_4(bpf_read_branch_records,struct bpf_perf_event_data_kern *,ctx,void *,buf,u32,size,u64,flags)1340 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1341 	   void *, buf, u32, size, u64, flags)
1342 {
1343 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1344 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1345 	u32 to_copy;
1346 
1347 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1348 		return -EINVAL;
1349 
1350 	if (unlikely(!br_stack))
1351 		return -ENOENT;
1352 
1353 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1354 		return br_stack->nr * br_entry_size;
1355 
1356 	if (!buf || (size % br_entry_size != 0))
1357 		return -EINVAL;
1358 
1359 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1360 	memcpy(buf, br_stack->entries, to_copy);
1361 
1362 	return to_copy;
1363 }
1364 
1365 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1366 	.func           = bpf_read_branch_records,
1367 	.gpl_only       = true,
1368 	.ret_type       = RET_INTEGER,
1369 	.arg1_type      = ARG_PTR_TO_CTX,
1370 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1371 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1372 	.arg4_type      = ARG_ANYTHING,
1373 };
1374 
1375 static const struct bpf_func_proto *
pe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1376 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1377 {
1378 	switch (func_id) {
1379 	case BPF_FUNC_perf_event_output:
1380 		return &bpf_perf_event_output_proto_tp;
1381 	case BPF_FUNC_get_stackid:
1382 		return &bpf_get_stackid_proto_pe;
1383 	case BPF_FUNC_get_stack:
1384 		return &bpf_get_stack_proto_pe;
1385 	case BPF_FUNC_perf_prog_read_value:
1386 		return &bpf_perf_prog_read_value_proto;
1387 	case BPF_FUNC_read_branch_records:
1388 		return &bpf_read_branch_records_proto;
1389 	case BPF_FUNC_get_attach_cookie:
1390 		return &bpf_get_attach_cookie_proto_pe;
1391 	default:
1392 		return bpf_tracing_func_proto(func_id, prog);
1393 	}
1394 }
1395 
1396 /*
1397  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1398  * to avoid potential recursive reuse issue when/if tracepoints are added
1399  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1400  *
1401  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1402  * in normal, irq, and nmi context.
1403  */
1404 struct bpf_raw_tp_regs {
1405 	struct pt_regs regs[3];
1406 };
1407 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1408 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
get_bpf_raw_tp_regs(void)1409 static struct pt_regs *get_bpf_raw_tp_regs(void)
1410 {
1411 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1412 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1413 
1414 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1415 		this_cpu_dec(bpf_raw_tp_nest_level);
1416 		return ERR_PTR(-EBUSY);
1417 	}
1418 
1419 	return &tp_regs->regs[nest_level - 1];
1420 }
1421 
put_bpf_raw_tp_regs(void)1422 static void put_bpf_raw_tp_regs(void)
1423 {
1424 	this_cpu_dec(bpf_raw_tp_nest_level);
1425 }
1426 
BPF_CALL_5(bpf_perf_event_output_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags,void *,data,u64,size)1427 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1428 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1429 {
1430 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1431 	int ret;
1432 
1433 	if (IS_ERR(regs))
1434 		return PTR_ERR(regs);
1435 
1436 	perf_fetch_caller_regs(regs);
1437 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1438 
1439 	put_bpf_raw_tp_regs();
1440 	return ret;
1441 }
1442 
1443 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1444 	.func		= bpf_perf_event_output_raw_tp,
1445 	.gpl_only	= true,
1446 	.ret_type	= RET_INTEGER,
1447 	.arg1_type	= ARG_PTR_TO_CTX,
1448 	.arg2_type	= ARG_CONST_MAP_PTR,
1449 	.arg3_type	= ARG_ANYTHING,
1450 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1451 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1452 };
1453 
1454 extern const struct bpf_func_proto bpf_skb_output_proto;
1455 extern const struct bpf_func_proto bpf_xdp_output_proto;
1456 
BPF_CALL_3(bpf_get_stackid_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags)1457 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1458 	   struct bpf_map *, map, u64, flags)
1459 {
1460 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1461 	int ret;
1462 
1463 	if (IS_ERR(regs))
1464 		return PTR_ERR(regs);
1465 
1466 	perf_fetch_caller_regs(regs);
1467 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1468 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1469 			      flags, 0, 0);
1470 	put_bpf_raw_tp_regs();
1471 	return ret;
1472 }
1473 
1474 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1475 	.func		= bpf_get_stackid_raw_tp,
1476 	.gpl_only	= true,
1477 	.ret_type	= RET_INTEGER,
1478 	.arg1_type	= ARG_PTR_TO_CTX,
1479 	.arg2_type	= ARG_CONST_MAP_PTR,
1480 	.arg3_type	= ARG_ANYTHING,
1481 };
1482 
BPF_CALL_4(bpf_get_stack_raw_tp,struct bpf_raw_tracepoint_args *,args,void *,buf,u32,size,u64,flags)1483 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1484 	   void *, buf, u32, size, u64, flags)
1485 {
1486 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1487 	int ret;
1488 
1489 	if (IS_ERR(regs))
1490 		return PTR_ERR(regs);
1491 
1492 	perf_fetch_caller_regs(regs);
1493 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1494 			    (unsigned long) size, flags, 0);
1495 	put_bpf_raw_tp_regs();
1496 	return ret;
1497 }
1498 
1499 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1500 	.func		= bpf_get_stack_raw_tp,
1501 	.gpl_only	= true,
1502 	.ret_type	= RET_INTEGER,
1503 	.arg1_type	= ARG_PTR_TO_CTX,
1504 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1505 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1506 	.arg4_type	= ARG_ANYTHING,
1507 };
1508 
1509 static const struct bpf_func_proto *
raw_tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1510 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1511 {
1512 	switch (func_id) {
1513 	case BPF_FUNC_perf_event_output:
1514 		return &bpf_perf_event_output_proto_raw_tp;
1515 	case BPF_FUNC_get_stackid:
1516 		return &bpf_get_stackid_proto_raw_tp;
1517 	case BPF_FUNC_get_stack:
1518 		return &bpf_get_stack_proto_raw_tp;
1519 	default:
1520 		return bpf_tracing_func_proto(func_id, prog);
1521 	}
1522 }
1523 
1524 const struct bpf_func_proto *
tracing_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1525 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1526 {
1527 	const struct bpf_func_proto *fn;
1528 
1529 	switch (func_id) {
1530 #ifdef CONFIG_NET
1531 	case BPF_FUNC_skb_output:
1532 		return &bpf_skb_output_proto;
1533 	case BPF_FUNC_xdp_output:
1534 		return &bpf_xdp_output_proto;
1535 	case BPF_FUNC_skc_to_tcp6_sock:
1536 		return &bpf_skc_to_tcp6_sock_proto;
1537 	case BPF_FUNC_skc_to_tcp_sock:
1538 		return &bpf_skc_to_tcp_sock_proto;
1539 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1540 		return &bpf_skc_to_tcp_timewait_sock_proto;
1541 	case BPF_FUNC_skc_to_tcp_request_sock:
1542 		return &bpf_skc_to_tcp_request_sock_proto;
1543 	case BPF_FUNC_skc_to_udp6_sock:
1544 		return &bpf_skc_to_udp6_sock_proto;
1545 	case BPF_FUNC_sk_storage_get:
1546 		return &bpf_sk_storage_get_tracing_proto;
1547 	case BPF_FUNC_sk_storage_delete:
1548 		return &bpf_sk_storage_delete_tracing_proto;
1549 	case BPF_FUNC_sock_from_file:
1550 		return &bpf_sock_from_file_proto;
1551 	case BPF_FUNC_get_socket_cookie:
1552 		return &bpf_get_socket_ptr_cookie_proto;
1553 #endif
1554 	case BPF_FUNC_seq_printf:
1555 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1556 		       &bpf_seq_printf_proto :
1557 		       NULL;
1558 	case BPF_FUNC_seq_write:
1559 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1560 		       &bpf_seq_write_proto :
1561 		       NULL;
1562 	case BPF_FUNC_seq_printf_btf:
1563 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1564 		       &bpf_seq_printf_btf_proto :
1565 		       NULL;
1566 	case BPF_FUNC_d_path:
1567 		return &bpf_d_path_proto;
1568 	default:
1569 		fn = raw_tp_prog_func_proto(func_id, prog);
1570 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1571 			fn = bpf_iter_get_func_proto(func_id, prog);
1572 		return fn;
1573 	}
1574 }
1575 
raw_tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1576 static bool raw_tp_prog_is_valid_access(int off, int size,
1577 					enum bpf_access_type type,
1578 					const struct bpf_prog *prog,
1579 					struct bpf_insn_access_aux *info)
1580 {
1581 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1582 		return false;
1583 	if (type != BPF_READ)
1584 		return false;
1585 	if (off % size != 0)
1586 		return false;
1587 	return true;
1588 }
1589 
tracing_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1590 static bool tracing_prog_is_valid_access(int off, int size,
1591 					 enum bpf_access_type type,
1592 					 const struct bpf_prog *prog,
1593 					 struct bpf_insn_access_aux *info)
1594 {
1595 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1596 		return false;
1597 	if (type != BPF_READ)
1598 		return false;
1599 	if (off % size != 0)
1600 		return false;
1601 	return btf_ctx_access(off, size, type, prog, info);
1602 }
1603 
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)1604 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1605 				     const union bpf_attr *kattr,
1606 				     union bpf_attr __user *uattr)
1607 {
1608 	return -ENOTSUPP;
1609 }
1610 
1611 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1612 	.get_func_proto  = raw_tp_prog_func_proto,
1613 	.is_valid_access = raw_tp_prog_is_valid_access,
1614 };
1615 
1616 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1617 #ifdef CONFIG_NET
1618 	.test_run = bpf_prog_test_run_raw_tp,
1619 #endif
1620 };
1621 
1622 const struct bpf_verifier_ops tracing_verifier_ops = {
1623 	.get_func_proto  = tracing_prog_func_proto,
1624 	.is_valid_access = tracing_prog_is_valid_access,
1625 };
1626 
1627 const struct bpf_prog_ops tracing_prog_ops = {
1628 	.test_run = bpf_prog_test_run_tracing,
1629 };
1630 
raw_tp_writable_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1631 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1632 						 enum bpf_access_type type,
1633 						 const struct bpf_prog *prog,
1634 						 struct bpf_insn_access_aux *info)
1635 {
1636 	if (off == 0) {
1637 		if (size != sizeof(u64) || type != BPF_READ)
1638 			return false;
1639 		info->reg_type = PTR_TO_TP_BUFFER;
1640 	}
1641 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1642 }
1643 
1644 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1645 	.get_func_proto  = raw_tp_prog_func_proto,
1646 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1647 };
1648 
1649 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1650 };
1651 
pe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1652 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1653 				    const struct bpf_prog *prog,
1654 				    struct bpf_insn_access_aux *info)
1655 {
1656 	const int size_u64 = sizeof(u64);
1657 
1658 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1659 		return false;
1660 	if (type != BPF_READ)
1661 		return false;
1662 	if (off % size != 0) {
1663 		if (sizeof(unsigned long) != 4)
1664 			return false;
1665 		if (size != 8)
1666 			return false;
1667 		if (off % size != 4)
1668 			return false;
1669 	}
1670 
1671 	switch (off) {
1672 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1673 		bpf_ctx_record_field_size(info, size_u64);
1674 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1675 			return false;
1676 		break;
1677 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1678 		bpf_ctx_record_field_size(info, size_u64);
1679 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1680 			return false;
1681 		break;
1682 	default:
1683 		if (size != sizeof(long))
1684 			return false;
1685 	}
1686 
1687 	return true;
1688 }
1689 
pe_prog_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1690 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1691 				      const struct bpf_insn *si,
1692 				      struct bpf_insn *insn_buf,
1693 				      struct bpf_prog *prog, u32 *target_size)
1694 {
1695 	struct bpf_insn *insn = insn_buf;
1696 
1697 	switch (si->off) {
1698 	case offsetof(struct bpf_perf_event_data, sample_period):
1699 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1700 						       data), si->dst_reg, si->src_reg,
1701 				      offsetof(struct bpf_perf_event_data_kern, data));
1702 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1703 				      bpf_target_off(struct perf_sample_data, period, 8,
1704 						     target_size));
1705 		break;
1706 	case offsetof(struct bpf_perf_event_data, addr):
1707 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1708 						       data), si->dst_reg, si->src_reg,
1709 				      offsetof(struct bpf_perf_event_data_kern, data));
1710 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1711 				      bpf_target_off(struct perf_sample_data, addr, 8,
1712 						     target_size));
1713 		break;
1714 	default:
1715 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1716 						       regs), si->dst_reg, si->src_reg,
1717 				      offsetof(struct bpf_perf_event_data_kern, regs));
1718 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1719 				      si->off);
1720 		break;
1721 	}
1722 
1723 	return insn - insn_buf;
1724 }
1725 
1726 const struct bpf_verifier_ops perf_event_verifier_ops = {
1727 	.get_func_proto		= pe_prog_func_proto,
1728 	.is_valid_access	= pe_prog_is_valid_access,
1729 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1730 };
1731 
1732 const struct bpf_prog_ops perf_event_prog_ops = {
1733 };
1734 
1735 static DEFINE_MUTEX(bpf_event_mutex);
1736 
1737 #define BPF_TRACE_MAX_PROGS 64
1738 
perf_event_attach_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)1739 int perf_event_attach_bpf_prog(struct perf_event *event,
1740 			       struct bpf_prog *prog,
1741 			       u64 bpf_cookie)
1742 {
1743 	struct bpf_prog_array *old_array;
1744 	struct bpf_prog_array *new_array;
1745 	int ret = -EEXIST;
1746 
1747 	/*
1748 	 * Kprobe override only works if they are on the function entry,
1749 	 * and only if they are on the opt-in list.
1750 	 */
1751 	if (prog->kprobe_override &&
1752 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1753 	     !trace_kprobe_error_injectable(event->tp_event)))
1754 		return -EINVAL;
1755 
1756 	mutex_lock(&bpf_event_mutex);
1757 
1758 	if (event->prog)
1759 		goto unlock;
1760 
1761 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1762 	if (old_array &&
1763 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1764 		ret = -E2BIG;
1765 		goto unlock;
1766 	}
1767 
1768 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
1769 	if (ret < 0)
1770 		goto unlock;
1771 
1772 	/* set the new array to event->tp_event and set event->prog */
1773 	event->prog = prog;
1774 	event->bpf_cookie = bpf_cookie;
1775 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1776 	bpf_prog_array_free(old_array);
1777 
1778 unlock:
1779 	mutex_unlock(&bpf_event_mutex);
1780 	return ret;
1781 }
1782 
perf_event_detach_bpf_prog(struct perf_event * event)1783 void perf_event_detach_bpf_prog(struct perf_event *event)
1784 {
1785 	struct bpf_prog_array *old_array;
1786 	struct bpf_prog_array *new_array;
1787 	int ret;
1788 
1789 	mutex_lock(&bpf_event_mutex);
1790 
1791 	if (!event->prog)
1792 		goto unlock;
1793 
1794 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1795 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
1796 	if (ret == -ENOENT)
1797 		goto unlock;
1798 	if (ret < 0) {
1799 		bpf_prog_array_delete_safe(old_array, event->prog);
1800 	} else {
1801 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1802 		bpf_prog_array_free(old_array);
1803 	}
1804 
1805 	bpf_prog_put(event->prog);
1806 	event->prog = NULL;
1807 
1808 unlock:
1809 	mutex_unlock(&bpf_event_mutex);
1810 }
1811 
perf_event_query_prog_array(struct perf_event * event,void __user * info)1812 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1813 {
1814 	struct perf_event_query_bpf __user *uquery = info;
1815 	struct perf_event_query_bpf query = {};
1816 	struct bpf_prog_array *progs;
1817 	u32 *ids, prog_cnt, ids_len;
1818 	int ret;
1819 
1820 	if (!perfmon_capable())
1821 		return -EPERM;
1822 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1823 		return -EINVAL;
1824 	if (copy_from_user(&query, uquery, sizeof(query)))
1825 		return -EFAULT;
1826 
1827 	ids_len = query.ids_len;
1828 	if (ids_len > BPF_TRACE_MAX_PROGS)
1829 		return -E2BIG;
1830 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1831 	if (!ids)
1832 		return -ENOMEM;
1833 	/*
1834 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1835 	 * is required when user only wants to check for uquery->prog_cnt.
1836 	 * There is no need to check for it since the case is handled
1837 	 * gracefully in bpf_prog_array_copy_info.
1838 	 */
1839 
1840 	mutex_lock(&bpf_event_mutex);
1841 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1842 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1843 	mutex_unlock(&bpf_event_mutex);
1844 
1845 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1846 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1847 		ret = -EFAULT;
1848 
1849 	kfree(ids);
1850 	return ret;
1851 }
1852 
1853 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1854 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1855 
bpf_get_raw_tracepoint(const char * name)1856 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1857 {
1858 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1859 
1860 	for (; btp < __stop__bpf_raw_tp; btp++) {
1861 		if (!strcmp(btp->tp->name, name))
1862 			return btp;
1863 	}
1864 
1865 	return bpf_get_raw_tracepoint_module(name);
1866 }
1867 
bpf_put_raw_tracepoint(struct bpf_raw_event_map * btp)1868 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1869 {
1870 	struct module *mod;
1871 
1872 	preempt_disable();
1873 	mod = __module_address((unsigned long)btp);
1874 	module_put(mod);
1875 	preempt_enable();
1876 }
1877 
1878 static __always_inline
__bpf_trace_run(struct bpf_prog * prog,u64 * args)1879 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1880 {
1881 	cant_sleep();
1882 	rcu_read_lock();
1883 	(void) bpf_prog_run(prog, args);
1884 	rcu_read_unlock();
1885 }
1886 
1887 #define UNPACK(...)			__VA_ARGS__
1888 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1889 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1890 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1891 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1892 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1893 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1894 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1895 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1896 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1897 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1898 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1899 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1900 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1901 
1902 #define SARG(X)		u64 arg##X
1903 #define COPY(X)		args[X] = arg##X
1904 
1905 #define __DL_COM	(,)
1906 #define __DL_SEM	(;)
1907 
1908 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1909 
1910 #define BPF_TRACE_DEFN_x(x)						\
1911 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1912 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1913 	{								\
1914 		u64 args[x];						\
1915 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1916 		__bpf_trace_run(prog, args);				\
1917 	}								\
1918 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1919 BPF_TRACE_DEFN_x(1);
1920 BPF_TRACE_DEFN_x(2);
1921 BPF_TRACE_DEFN_x(3);
1922 BPF_TRACE_DEFN_x(4);
1923 BPF_TRACE_DEFN_x(5);
1924 BPF_TRACE_DEFN_x(6);
1925 BPF_TRACE_DEFN_x(7);
1926 BPF_TRACE_DEFN_x(8);
1927 BPF_TRACE_DEFN_x(9);
1928 BPF_TRACE_DEFN_x(10);
1929 BPF_TRACE_DEFN_x(11);
1930 BPF_TRACE_DEFN_x(12);
1931 
__bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1932 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1933 {
1934 	struct tracepoint *tp = btp->tp;
1935 
1936 	/*
1937 	 * check that program doesn't access arguments beyond what's
1938 	 * available in this tracepoint
1939 	 */
1940 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1941 		return -EINVAL;
1942 
1943 	if (prog->aux->max_tp_access > btp->writable_size)
1944 		return -EINVAL;
1945 
1946 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
1947 						   prog);
1948 }
1949 
bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1950 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1951 {
1952 	return __bpf_probe_register(btp, prog);
1953 }
1954 
bpf_probe_unregister(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1955 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1956 {
1957 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1958 }
1959 
bpf_get_perf_event_info(const struct perf_event * event,u32 * prog_id,u32 * fd_type,const char ** buf,u64 * probe_offset,u64 * probe_addr)1960 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1961 			    u32 *fd_type, const char **buf,
1962 			    u64 *probe_offset, u64 *probe_addr)
1963 {
1964 	bool is_tracepoint, is_syscall_tp;
1965 	struct bpf_prog *prog;
1966 	int flags, err = 0;
1967 
1968 	prog = event->prog;
1969 	if (!prog)
1970 		return -ENOENT;
1971 
1972 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1973 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1974 		return -EOPNOTSUPP;
1975 
1976 	*prog_id = prog->aux->id;
1977 	flags = event->tp_event->flags;
1978 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1979 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1980 
1981 	if (is_tracepoint || is_syscall_tp) {
1982 		*buf = is_tracepoint ? event->tp_event->tp->name
1983 				     : event->tp_event->name;
1984 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1985 		*probe_offset = 0x0;
1986 		*probe_addr = 0x0;
1987 	} else {
1988 		/* kprobe/uprobe */
1989 		err = -EOPNOTSUPP;
1990 #ifdef CONFIG_KPROBE_EVENTS
1991 		if (flags & TRACE_EVENT_FL_KPROBE)
1992 			err = bpf_get_kprobe_info(event, fd_type, buf,
1993 						  probe_offset, probe_addr,
1994 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1995 #endif
1996 #ifdef CONFIG_UPROBE_EVENTS
1997 		if (flags & TRACE_EVENT_FL_UPROBE)
1998 			err = bpf_get_uprobe_info(event, fd_type, buf,
1999 						  probe_offset, probe_addr,
2000 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2001 #endif
2002 	}
2003 
2004 	return err;
2005 }
2006 
send_signal_irq_work_init(void)2007 static int __init send_signal_irq_work_init(void)
2008 {
2009 	int cpu;
2010 	struct send_signal_irq_work *work;
2011 
2012 	for_each_possible_cpu(cpu) {
2013 		work = per_cpu_ptr(&send_signal_work, cpu);
2014 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2015 	}
2016 	return 0;
2017 }
2018 
2019 subsys_initcall(send_signal_irq_work_init);
2020 
2021 #ifdef CONFIG_MODULES
bpf_event_notify(struct notifier_block * nb,unsigned long op,void * module)2022 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2023 			    void *module)
2024 {
2025 	struct bpf_trace_module *btm, *tmp;
2026 	struct module *mod = module;
2027 	int ret = 0;
2028 
2029 	if (mod->num_bpf_raw_events == 0 ||
2030 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2031 		goto out;
2032 
2033 	mutex_lock(&bpf_module_mutex);
2034 
2035 	switch (op) {
2036 	case MODULE_STATE_COMING:
2037 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2038 		if (btm) {
2039 			btm->module = module;
2040 			list_add(&btm->list, &bpf_trace_modules);
2041 		} else {
2042 			ret = -ENOMEM;
2043 		}
2044 		break;
2045 	case MODULE_STATE_GOING:
2046 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2047 			if (btm->module == module) {
2048 				list_del(&btm->list);
2049 				kfree(btm);
2050 				break;
2051 			}
2052 		}
2053 		break;
2054 	}
2055 
2056 	mutex_unlock(&bpf_module_mutex);
2057 
2058 out:
2059 	return notifier_from_errno(ret);
2060 }
2061 
2062 static struct notifier_block bpf_module_nb = {
2063 	.notifier_call = bpf_event_notify,
2064 };
2065 
bpf_event_init(void)2066 static int __init bpf_event_init(void)
2067 {
2068 	register_module_notifier(&bpf_module_nb);
2069 	return 0;
2070 }
2071 
2072 fs_initcall(bpf_event_init);
2073 #endif /* CONFIG_MODULES */
2074