1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/btf.h>
11 #include <linux/filter.h>
12 #include <linux/uaccess.h>
13 #include <linux/ctype.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/syscalls.h>
17 #include <linux/error-injection.h>
18 #include <linux/btf_ids.h>
19 #include <linux/bpf_lsm.h>
20
21 #include <net/bpf_sk_storage.h>
22
23 #include <uapi/linux/bpf.h>
24 #include <uapi/linux/btf.h>
25
26 #include <asm/tlb.h>
27
28 #include "trace_probe.h"
29 #include "trace.h"
30
31 #define CREATE_TRACE_POINTS
32 #include "bpf_trace.h"
33
34 #define bpf_event_rcu_dereference(p) \
35 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
36
37 #ifdef CONFIG_MODULES
38 struct bpf_trace_module {
39 struct module *module;
40 struct list_head list;
41 };
42
43 static LIST_HEAD(bpf_trace_modules);
44 static DEFINE_MUTEX(bpf_module_mutex);
45
bpf_get_raw_tracepoint_module(const char * name)46 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
47 {
48 struct bpf_raw_event_map *btp, *ret = NULL;
49 struct bpf_trace_module *btm;
50 unsigned int i;
51
52 mutex_lock(&bpf_module_mutex);
53 list_for_each_entry(btm, &bpf_trace_modules, list) {
54 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
55 btp = &btm->module->bpf_raw_events[i];
56 if (!strcmp(btp->tp->name, name)) {
57 if (try_module_get(btm->module))
58 ret = btp;
59 goto out;
60 }
61 }
62 }
63 out:
64 mutex_unlock(&bpf_module_mutex);
65 return ret;
66 }
67 #else
bpf_get_raw_tracepoint_module(const char * name)68 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
69 {
70 return NULL;
71 }
72 #endif /* CONFIG_MODULES */
73
74 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
75 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
76
77 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
78 u64 flags, const struct btf **btf,
79 s32 *btf_id);
80
81 /**
82 * trace_call_bpf - invoke BPF program
83 * @call: tracepoint event
84 * @ctx: opaque context pointer
85 *
86 * kprobe handlers execute BPF programs via this helper.
87 * Can be used from static tracepoints in the future.
88 *
89 * Return: BPF programs always return an integer which is interpreted by
90 * kprobe handler as:
91 * 0 - return from kprobe (event is filtered out)
92 * 1 - store kprobe event into ring buffer
93 * Other values are reserved and currently alias to 1
94 */
trace_call_bpf(struct trace_event_call * call,void * ctx)95 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
96 {
97 unsigned int ret;
98
99 cant_sleep();
100
101 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
102 /*
103 * since some bpf program is already running on this cpu,
104 * don't call into another bpf program (same or different)
105 * and don't send kprobe event into ring-buffer,
106 * so return zero here
107 */
108 ret = 0;
109 goto out;
110 }
111
112 /*
113 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
114 * to all call sites, we did a bpf_prog_array_valid() there to check
115 * whether call->prog_array is empty or not, which is
116 * a heuristic to speed up execution.
117 *
118 * If bpf_prog_array_valid() fetched prog_array was
119 * non-NULL, we go into trace_call_bpf() and do the actual
120 * proper rcu_dereference() under RCU lock.
121 * If it turns out that prog_array is NULL then, we bail out.
122 * For the opposite, if the bpf_prog_array_valid() fetched pointer
123 * was NULL, you'll skip the prog_array with the risk of missing
124 * out of events when it was updated in between this and the
125 * rcu_dereference() which is accepted risk.
126 */
127 ret = BPF_PROG_RUN_ARRAY(call->prog_array, ctx, bpf_prog_run);
128
129 out:
130 __this_cpu_dec(bpf_prog_active);
131
132 return ret;
133 }
134
135 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
BPF_CALL_2(bpf_override_return,struct pt_regs *,regs,unsigned long,rc)136 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
137 {
138 regs_set_return_value(regs, rc);
139 override_function_with_return(regs);
140 return 0;
141 }
142
143 static const struct bpf_func_proto bpf_override_return_proto = {
144 .func = bpf_override_return,
145 .gpl_only = true,
146 .ret_type = RET_INTEGER,
147 .arg1_type = ARG_PTR_TO_CTX,
148 .arg2_type = ARG_ANYTHING,
149 };
150 #endif
151
152 static __always_inline int
bpf_probe_read_user_common(void * dst,u32 size,const void __user * unsafe_ptr)153 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
154 {
155 int ret;
156
157 ret = copy_from_user_nofault(dst, unsafe_ptr, size);
158 if (unlikely(ret < 0))
159 memset(dst, 0, size);
160 return ret;
161 }
162
BPF_CALL_3(bpf_probe_read_user,void *,dst,u32,size,const void __user *,unsafe_ptr)163 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
164 const void __user *, unsafe_ptr)
165 {
166 return bpf_probe_read_user_common(dst, size, unsafe_ptr);
167 }
168
169 const struct bpf_func_proto bpf_probe_read_user_proto = {
170 .func = bpf_probe_read_user,
171 .gpl_only = true,
172 .ret_type = RET_INTEGER,
173 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
174 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
175 .arg3_type = ARG_ANYTHING,
176 };
177
178 static __always_inline int
bpf_probe_read_user_str_common(void * dst,u32 size,const void __user * unsafe_ptr)179 bpf_probe_read_user_str_common(void *dst, u32 size,
180 const void __user *unsafe_ptr)
181 {
182 int ret;
183
184 /*
185 * NB: We rely on strncpy_from_user() not copying junk past the NUL
186 * terminator into `dst`.
187 *
188 * strncpy_from_user() does long-sized strides in the fast path. If the
189 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
190 * then there could be junk after the NUL in `dst`. If user takes `dst`
191 * and keys a hash map with it, then semantically identical strings can
192 * occupy multiple entries in the map.
193 */
194 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
195 if (unlikely(ret < 0))
196 memset(dst, 0, size);
197 return ret;
198 }
199
BPF_CALL_3(bpf_probe_read_user_str,void *,dst,u32,size,const void __user *,unsafe_ptr)200 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
201 const void __user *, unsafe_ptr)
202 {
203 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
204 }
205
206 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
207 .func = bpf_probe_read_user_str,
208 .gpl_only = true,
209 .ret_type = RET_INTEGER,
210 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
211 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
212 .arg3_type = ARG_ANYTHING,
213 };
214
215 static __always_inline int
bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)216 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
217 {
218 int ret;
219
220 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
221 if (unlikely(ret < 0))
222 memset(dst, 0, size);
223 return ret;
224 }
225
BPF_CALL_3(bpf_probe_read_kernel,void *,dst,u32,size,const void *,unsafe_ptr)226 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
227 const void *, unsafe_ptr)
228 {
229 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
230 }
231
232 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
233 .func = bpf_probe_read_kernel,
234 .gpl_only = true,
235 .ret_type = RET_INTEGER,
236 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
237 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
238 .arg3_type = ARG_ANYTHING,
239 };
240
241 static __always_inline int
bpf_probe_read_kernel_str_common(void * dst,u32 size,const void * unsafe_ptr)242 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
243 {
244 int ret;
245
246 /*
247 * The strncpy_from_kernel_nofault() call will likely not fill the
248 * entire buffer, but that's okay in this circumstance as we're probing
249 * arbitrary memory anyway similar to bpf_probe_read_*() and might
250 * as well probe the stack. Thus, memory is explicitly cleared
251 * only in error case, so that improper users ignoring return
252 * code altogether don't copy garbage; otherwise length of string
253 * is returned that can be used for bpf_perf_event_output() et al.
254 */
255 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
256 if (unlikely(ret < 0))
257 memset(dst, 0, size);
258 return ret;
259 }
260
BPF_CALL_3(bpf_probe_read_kernel_str,void *,dst,u32,size,const void *,unsafe_ptr)261 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
262 const void *, unsafe_ptr)
263 {
264 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
265 }
266
267 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
268 .func = bpf_probe_read_kernel_str,
269 .gpl_only = true,
270 .ret_type = RET_INTEGER,
271 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
272 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
273 .arg3_type = ARG_ANYTHING,
274 };
275
276 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
BPF_CALL_3(bpf_probe_read_compat,void *,dst,u32,size,const void *,unsafe_ptr)277 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
278 const void *, unsafe_ptr)
279 {
280 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
281 return bpf_probe_read_user_common(dst, size,
282 (__force void __user *)unsafe_ptr);
283 }
284 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
285 }
286
287 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
288 .func = bpf_probe_read_compat,
289 .gpl_only = true,
290 .ret_type = RET_INTEGER,
291 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
292 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
293 .arg3_type = ARG_ANYTHING,
294 };
295
BPF_CALL_3(bpf_probe_read_compat_str,void *,dst,u32,size,const void *,unsafe_ptr)296 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
297 const void *, unsafe_ptr)
298 {
299 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
300 return bpf_probe_read_user_str_common(dst, size,
301 (__force void __user *)unsafe_ptr);
302 }
303 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
304 }
305
306 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
307 .func = bpf_probe_read_compat_str,
308 .gpl_only = true,
309 .ret_type = RET_INTEGER,
310 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
311 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
312 .arg3_type = ARG_ANYTHING,
313 };
314 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
315
BPF_CALL_3(bpf_probe_write_user,void __user *,unsafe_ptr,const void *,src,u32,size)316 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
317 u32, size)
318 {
319 /*
320 * Ensure we're in user context which is safe for the helper to
321 * run. This helper has no business in a kthread.
322 *
323 * access_ok() should prevent writing to non-user memory, but in
324 * some situations (nommu, temporary switch, etc) access_ok() does
325 * not provide enough validation, hence the check on KERNEL_DS.
326 *
327 * nmi_uaccess_okay() ensures the probe is not run in an interim
328 * state, when the task or mm are switched. This is specifically
329 * required to prevent the use of temporary mm.
330 */
331
332 if (unlikely(in_interrupt() ||
333 current->flags & (PF_KTHREAD | PF_EXITING)))
334 return -EPERM;
335 if (unlikely(uaccess_kernel()))
336 return -EPERM;
337 if (unlikely(!nmi_uaccess_okay()))
338 return -EPERM;
339
340 return copy_to_user_nofault(unsafe_ptr, src, size);
341 }
342
343 static const struct bpf_func_proto bpf_probe_write_user_proto = {
344 .func = bpf_probe_write_user,
345 .gpl_only = true,
346 .ret_type = RET_INTEGER,
347 .arg1_type = ARG_ANYTHING,
348 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
349 .arg3_type = ARG_CONST_SIZE,
350 };
351
bpf_get_probe_write_proto(void)352 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
353 {
354 if (!capable(CAP_SYS_ADMIN))
355 return NULL;
356
357 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
358 current->comm, task_pid_nr(current));
359
360 return &bpf_probe_write_user_proto;
361 }
362
363 static DEFINE_RAW_SPINLOCK(trace_printk_lock);
364
365 #define MAX_TRACE_PRINTK_VARARGS 3
366 #define BPF_TRACE_PRINTK_SIZE 1024
367
BPF_CALL_5(bpf_trace_printk,char *,fmt,u32,fmt_size,u64,arg1,u64,arg2,u64,arg3)368 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
369 u64, arg2, u64, arg3)
370 {
371 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
372 u32 *bin_args;
373 static char buf[BPF_TRACE_PRINTK_SIZE];
374 unsigned long flags;
375 int ret;
376
377 ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args,
378 MAX_TRACE_PRINTK_VARARGS);
379 if (ret < 0)
380 return ret;
381
382 raw_spin_lock_irqsave(&trace_printk_lock, flags);
383 ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
384
385 trace_bpf_trace_printk(buf);
386 raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
387
388 bpf_bprintf_cleanup();
389
390 return ret;
391 }
392
393 static const struct bpf_func_proto bpf_trace_printk_proto = {
394 .func = bpf_trace_printk,
395 .gpl_only = true,
396 .ret_type = RET_INTEGER,
397 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
398 .arg2_type = ARG_CONST_SIZE,
399 };
400
bpf_get_trace_printk_proto(void)401 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
402 {
403 /*
404 * This program might be calling bpf_trace_printk,
405 * so enable the associated bpf_trace/bpf_trace_printk event.
406 * Repeat this each time as it is possible a user has
407 * disabled bpf_trace_printk events. By loading a program
408 * calling bpf_trace_printk() however the user has expressed
409 * the intent to see such events.
410 */
411 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
412 pr_warn_ratelimited("could not enable bpf_trace_printk events");
413
414 return &bpf_trace_printk_proto;
415 }
416
417 #define MAX_SEQ_PRINTF_VARARGS 12
418
BPF_CALL_5(bpf_seq_printf,struct seq_file *,m,char *,fmt,u32,fmt_size,const void *,data,u32,data_len)419 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
420 const void *, data, u32, data_len)
421 {
422 int err, num_args;
423 u32 *bin_args;
424
425 if (data_len & 7 || data_len > MAX_SEQ_PRINTF_VARARGS * 8 ||
426 (data_len && !data))
427 return -EINVAL;
428 num_args = data_len / 8;
429
430 err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
431 if (err < 0)
432 return err;
433
434 seq_bprintf(m, fmt, bin_args);
435
436 bpf_bprintf_cleanup();
437
438 return seq_has_overflowed(m) ? -EOVERFLOW : 0;
439 }
440
441 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
442
443 static const struct bpf_func_proto bpf_seq_printf_proto = {
444 .func = bpf_seq_printf,
445 .gpl_only = true,
446 .ret_type = RET_INTEGER,
447 .arg1_type = ARG_PTR_TO_BTF_ID,
448 .arg1_btf_id = &btf_seq_file_ids[0],
449 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
450 .arg3_type = ARG_CONST_SIZE,
451 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
452 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
453 };
454
BPF_CALL_3(bpf_seq_write,struct seq_file *,m,const void *,data,u32,len)455 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
456 {
457 return seq_write(m, data, len) ? -EOVERFLOW : 0;
458 }
459
460 static const struct bpf_func_proto bpf_seq_write_proto = {
461 .func = bpf_seq_write,
462 .gpl_only = true,
463 .ret_type = RET_INTEGER,
464 .arg1_type = ARG_PTR_TO_BTF_ID,
465 .arg1_btf_id = &btf_seq_file_ids[0],
466 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
467 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
468 };
469
BPF_CALL_4(bpf_seq_printf_btf,struct seq_file *,m,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)470 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
471 u32, btf_ptr_size, u64, flags)
472 {
473 const struct btf *btf;
474 s32 btf_id;
475 int ret;
476
477 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
478 if (ret)
479 return ret;
480
481 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
482 }
483
484 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
485 .func = bpf_seq_printf_btf,
486 .gpl_only = true,
487 .ret_type = RET_INTEGER,
488 .arg1_type = ARG_PTR_TO_BTF_ID,
489 .arg1_btf_id = &btf_seq_file_ids[0],
490 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
491 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
492 .arg4_type = ARG_ANYTHING,
493 };
494
495 static __always_inline int
get_map_perf_counter(struct bpf_map * map,u64 flags,u64 * value,u64 * enabled,u64 * running)496 get_map_perf_counter(struct bpf_map *map, u64 flags,
497 u64 *value, u64 *enabled, u64 *running)
498 {
499 struct bpf_array *array = container_of(map, struct bpf_array, map);
500 unsigned int cpu = smp_processor_id();
501 u64 index = flags & BPF_F_INDEX_MASK;
502 struct bpf_event_entry *ee;
503
504 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
505 return -EINVAL;
506 if (index == BPF_F_CURRENT_CPU)
507 index = cpu;
508 if (unlikely(index >= array->map.max_entries))
509 return -E2BIG;
510
511 ee = READ_ONCE(array->ptrs[index]);
512 if (!ee)
513 return -ENOENT;
514
515 return perf_event_read_local(ee->event, value, enabled, running);
516 }
517
BPF_CALL_2(bpf_perf_event_read,struct bpf_map *,map,u64,flags)518 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
519 {
520 u64 value = 0;
521 int err;
522
523 err = get_map_perf_counter(map, flags, &value, NULL, NULL);
524 /*
525 * this api is ugly since we miss [-22..-2] range of valid
526 * counter values, but that's uapi
527 */
528 if (err)
529 return err;
530 return value;
531 }
532
533 static const struct bpf_func_proto bpf_perf_event_read_proto = {
534 .func = bpf_perf_event_read,
535 .gpl_only = true,
536 .ret_type = RET_INTEGER,
537 .arg1_type = ARG_CONST_MAP_PTR,
538 .arg2_type = ARG_ANYTHING,
539 };
540
BPF_CALL_4(bpf_perf_event_read_value,struct bpf_map *,map,u64,flags,struct bpf_perf_event_value *,buf,u32,size)541 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
542 struct bpf_perf_event_value *, buf, u32, size)
543 {
544 int err = -EINVAL;
545
546 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
547 goto clear;
548 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
549 &buf->running);
550 if (unlikely(err))
551 goto clear;
552 return 0;
553 clear:
554 memset(buf, 0, size);
555 return err;
556 }
557
558 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
559 .func = bpf_perf_event_read_value,
560 .gpl_only = true,
561 .ret_type = RET_INTEGER,
562 .arg1_type = ARG_CONST_MAP_PTR,
563 .arg2_type = ARG_ANYTHING,
564 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
565 .arg4_type = ARG_CONST_SIZE,
566 };
567
568 static __always_inline u64
__bpf_perf_event_output(struct pt_regs * regs,struct bpf_map * map,u64 flags,struct perf_sample_data * sd)569 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
570 u64 flags, struct perf_sample_data *sd)
571 {
572 struct bpf_array *array = container_of(map, struct bpf_array, map);
573 unsigned int cpu = smp_processor_id();
574 u64 index = flags & BPF_F_INDEX_MASK;
575 struct bpf_event_entry *ee;
576 struct perf_event *event;
577
578 if (index == BPF_F_CURRENT_CPU)
579 index = cpu;
580 if (unlikely(index >= array->map.max_entries))
581 return -E2BIG;
582
583 ee = READ_ONCE(array->ptrs[index]);
584 if (!ee)
585 return -ENOENT;
586
587 event = ee->event;
588 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
589 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
590 return -EINVAL;
591
592 if (unlikely(event->oncpu != cpu))
593 return -EOPNOTSUPP;
594
595 return perf_event_output(event, sd, regs);
596 }
597
598 /*
599 * Support executing tracepoints in normal, irq, and nmi context that each call
600 * bpf_perf_event_output
601 */
602 struct bpf_trace_sample_data {
603 struct perf_sample_data sds[3];
604 };
605
606 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
607 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
BPF_CALL_5(bpf_perf_event_output,struct pt_regs *,regs,struct bpf_map *,map,u64,flags,void *,data,u64,size)608 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
609 u64, flags, void *, data, u64, size)
610 {
611 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
612 int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
613 struct perf_raw_record raw = {
614 .frag = {
615 .size = size,
616 .data = data,
617 },
618 };
619 struct perf_sample_data *sd;
620 int err;
621
622 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
623 err = -EBUSY;
624 goto out;
625 }
626
627 sd = &sds->sds[nest_level - 1];
628
629 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
630 err = -EINVAL;
631 goto out;
632 }
633
634 perf_sample_data_init(sd, 0, 0);
635 sd->raw = &raw;
636
637 err = __bpf_perf_event_output(regs, map, flags, sd);
638
639 out:
640 this_cpu_dec(bpf_trace_nest_level);
641 return err;
642 }
643
644 static const struct bpf_func_proto bpf_perf_event_output_proto = {
645 .func = bpf_perf_event_output,
646 .gpl_only = true,
647 .ret_type = RET_INTEGER,
648 .arg1_type = ARG_PTR_TO_CTX,
649 .arg2_type = ARG_CONST_MAP_PTR,
650 .arg3_type = ARG_ANYTHING,
651 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
652 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
653 };
654
655 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
656 struct bpf_nested_pt_regs {
657 struct pt_regs regs[3];
658 };
659 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
660 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
661
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)662 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
663 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
664 {
665 struct perf_raw_frag frag = {
666 .copy = ctx_copy,
667 .size = ctx_size,
668 .data = ctx,
669 };
670 struct perf_raw_record raw = {
671 .frag = {
672 {
673 .next = ctx_size ? &frag : NULL,
674 },
675 .size = meta_size,
676 .data = meta,
677 },
678 };
679 struct perf_sample_data *sd;
680 struct pt_regs *regs;
681 int nest_level;
682 u64 ret;
683
684 preempt_disable();
685 nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
686
687 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
688 ret = -EBUSY;
689 goto out;
690 }
691 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
692 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
693
694 perf_fetch_caller_regs(regs);
695 perf_sample_data_init(sd, 0, 0);
696 sd->raw = &raw;
697
698 ret = __bpf_perf_event_output(regs, map, flags, sd);
699 out:
700 this_cpu_dec(bpf_event_output_nest_level);
701 preempt_enable();
702 return ret;
703 }
704
BPF_CALL_0(bpf_get_current_task)705 BPF_CALL_0(bpf_get_current_task)
706 {
707 return (long) current;
708 }
709
710 const struct bpf_func_proto bpf_get_current_task_proto = {
711 .func = bpf_get_current_task,
712 .gpl_only = true,
713 .ret_type = RET_INTEGER,
714 };
715
BPF_CALL_0(bpf_get_current_task_btf)716 BPF_CALL_0(bpf_get_current_task_btf)
717 {
718 return (unsigned long) current;
719 }
720
721 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
722 .func = bpf_get_current_task_btf,
723 .gpl_only = true,
724 .ret_type = RET_PTR_TO_BTF_ID,
725 .ret_btf_id = &btf_task_struct_ids[0],
726 };
727
BPF_CALL_1(bpf_task_pt_regs,struct task_struct *,task)728 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
729 {
730 return (unsigned long) task_pt_regs(task);
731 }
732
733 BTF_ID_LIST(bpf_task_pt_regs_ids)
734 BTF_ID(struct, pt_regs)
735
736 const struct bpf_func_proto bpf_task_pt_regs_proto = {
737 .func = bpf_task_pt_regs,
738 .gpl_only = true,
739 .arg1_type = ARG_PTR_TO_BTF_ID,
740 .arg1_btf_id = &btf_task_struct_ids[0],
741 .ret_type = RET_PTR_TO_BTF_ID,
742 .ret_btf_id = &bpf_task_pt_regs_ids[0],
743 };
744
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)745 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
746 {
747 struct bpf_array *array = container_of(map, struct bpf_array, map);
748 struct cgroup *cgrp;
749
750 if (unlikely(idx >= array->map.max_entries))
751 return -E2BIG;
752
753 cgrp = READ_ONCE(array->ptrs[idx]);
754 if (unlikely(!cgrp))
755 return -EAGAIN;
756
757 return task_under_cgroup_hierarchy(current, cgrp);
758 }
759
760 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
761 .func = bpf_current_task_under_cgroup,
762 .gpl_only = false,
763 .ret_type = RET_INTEGER,
764 .arg1_type = ARG_CONST_MAP_PTR,
765 .arg2_type = ARG_ANYTHING,
766 };
767
768 struct send_signal_irq_work {
769 struct irq_work irq_work;
770 struct task_struct *task;
771 u32 sig;
772 enum pid_type type;
773 };
774
775 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
776
do_bpf_send_signal(struct irq_work * entry)777 static void do_bpf_send_signal(struct irq_work *entry)
778 {
779 struct send_signal_irq_work *work;
780
781 work = container_of(entry, struct send_signal_irq_work, irq_work);
782 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
783 put_task_struct(work->task);
784 }
785
bpf_send_signal_common(u32 sig,enum pid_type type)786 static int bpf_send_signal_common(u32 sig, enum pid_type type)
787 {
788 struct send_signal_irq_work *work = NULL;
789
790 /* Similar to bpf_probe_write_user, task needs to be
791 * in a sound condition and kernel memory access be
792 * permitted in order to send signal to the current
793 * task.
794 */
795 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
796 return -EPERM;
797 if (unlikely(uaccess_kernel()))
798 return -EPERM;
799 if (unlikely(!nmi_uaccess_okay()))
800 return -EPERM;
801 /* Task should not be pid=1 to avoid kernel panic. */
802 if (unlikely(is_global_init(current)))
803 return -EPERM;
804
805 if (irqs_disabled()) {
806 /* Do an early check on signal validity. Otherwise,
807 * the error is lost in deferred irq_work.
808 */
809 if (unlikely(!valid_signal(sig)))
810 return -EINVAL;
811
812 work = this_cpu_ptr(&send_signal_work);
813 if (irq_work_is_busy(&work->irq_work))
814 return -EBUSY;
815
816 /* Add the current task, which is the target of sending signal,
817 * to the irq_work. The current task may change when queued
818 * irq works get executed.
819 */
820 work->task = get_task_struct(current);
821 work->sig = sig;
822 work->type = type;
823 irq_work_queue(&work->irq_work);
824 return 0;
825 }
826
827 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
828 }
829
BPF_CALL_1(bpf_send_signal,u32,sig)830 BPF_CALL_1(bpf_send_signal, u32, sig)
831 {
832 return bpf_send_signal_common(sig, PIDTYPE_TGID);
833 }
834
835 static const struct bpf_func_proto bpf_send_signal_proto = {
836 .func = bpf_send_signal,
837 .gpl_only = false,
838 .ret_type = RET_INTEGER,
839 .arg1_type = ARG_ANYTHING,
840 };
841
BPF_CALL_1(bpf_send_signal_thread,u32,sig)842 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
843 {
844 return bpf_send_signal_common(sig, PIDTYPE_PID);
845 }
846
847 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
848 .func = bpf_send_signal_thread,
849 .gpl_only = false,
850 .ret_type = RET_INTEGER,
851 .arg1_type = ARG_ANYTHING,
852 };
853
BPF_CALL_3(bpf_d_path,struct path *,path,char *,buf,u32,sz)854 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
855 {
856 struct path copy;
857 long len;
858 char *p;
859
860 if (!sz)
861 return 0;
862
863 /*
864 * The path pointer is verified as trusted and safe to use,
865 * but let's double check it's valid anyway to workaround
866 * potentially broken verifier.
867 */
868 len = copy_from_kernel_nofault(©, path, sizeof(*path));
869 if (len < 0)
870 return len;
871
872 p = d_path(©, buf, sz);
873 if (IS_ERR(p)) {
874 len = PTR_ERR(p);
875 } else {
876 len = buf + sz - p;
877 memmove(buf, p, len);
878 }
879
880 return len;
881 }
882
883 BTF_SET_START(btf_allowlist_d_path)
884 #ifdef CONFIG_SECURITY
BTF_ID(func,security_file_permission)885 BTF_ID(func, security_file_permission)
886 BTF_ID(func, security_inode_getattr)
887 BTF_ID(func, security_file_open)
888 #endif
889 #ifdef CONFIG_SECURITY_PATH
890 BTF_ID(func, security_path_truncate)
891 #endif
892 BTF_ID(func, vfs_truncate)
893 BTF_ID(func, vfs_fallocate)
894 BTF_ID(func, dentry_open)
895 BTF_ID(func, vfs_getattr)
896 BTF_ID(func, filp_close)
897 BTF_SET_END(btf_allowlist_d_path)
898
899 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
900 {
901 if (prog->type == BPF_PROG_TYPE_TRACING &&
902 prog->expected_attach_type == BPF_TRACE_ITER)
903 return true;
904
905 if (prog->type == BPF_PROG_TYPE_LSM)
906 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
907
908 return btf_id_set_contains(&btf_allowlist_d_path,
909 prog->aux->attach_btf_id);
910 }
911
912 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
913
914 static const struct bpf_func_proto bpf_d_path_proto = {
915 .func = bpf_d_path,
916 .gpl_only = false,
917 .ret_type = RET_INTEGER,
918 .arg1_type = ARG_PTR_TO_BTF_ID,
919 .arg1_btf_id = &bpf_d_path_btf_ids[0],
920 .arg2_type = ARG_PTR_TO_MEM,
921 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
922 .allowed = bpf_d_path_allowed,
923 };
924
925 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \
926 BTF_F_PTR_RAW | BTF_F_ZERO)
927
bpf_btf_printf_prepare(struct btf_ptr * ptr,u32 btf_ptr_size,u64 flags,const struct btf ** btf,s32 * btf_id)928 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
929 u64 flags, const struct btf **btf,
930 s32 *btf_id)
931 {
932 const struct btf_type *t;
933
934 if (unlikely(flags & ~(BTF_F_ALL)))
935 return -EINVAL;
936
937 if (btf_ptr_size != sizeof(struct btf_ptr))
938 return -EINVAL;
939
940 *btf = bpf_get_btf_vmlinux();
941
942 if (IS_ERR_OR_NULL(*btf))
943 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
944
945 if (ptr->type_id > 0)
946 *btf_id = ptr->type_id;
947 else
948 return -EINVAL;
949
950 if (*btf_id > 0)
951 t = btf_type_by_id(*btf, *btf_id);
952 if (*btf_id <= 0 || !t)
953 return -ENOENT;
954
955 return 0;
956 }
957
BPF_CALL_5(bpf_snprintf_btf,char *,str,u32,str_size,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)958 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
959 u32, btf_ptr_size, u64, flags)
960 {
961 const struct btf *btf;
962 s32 btf_id;
963 int ret;
964
965 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
966 if (ret)
967 return ret;
968
969 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
970 flags);
971 }
972
973 const struct bpf_func_proto bpf_snprintf_btf_proto = {
974 .func = bpf_snprintf_btf,
975 .gpl_only = false,
976 .ret_type = RET_INTEGER,
977 .arg1_type = ARG_PTR_TO_MEM,
978 .arg2_type = ARG_CONST_SIZE,
979 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
980 .arg4_type = ARG_CONST_SIZE,
981 .arg5_type = ARG_ANYTHING,
982 };
983
BPF_CALL_1(bpf_get_func_ip_tracing,void *,ctx)984 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
985 {
986 /* This helper call is inlined by verifier. */
987 return ((u64 *)ctx)[-1];
988 }
989
990 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
991 .func = bpf_get_func_ip_tracing,
992 .gpl_only = true,
993 .ret_type = RET_INTEGER,
994 .arg1_type = ARG_PTR_TO_CTX,
995 };
996
BPF_CALL_1(bpf_get_func_ip_kprobe,struct pt_regs *,regs)997 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
998 {
999 struct kprobe *kp = kprobe_running();
1000
1001 return kp ? (uintptr_t)kp->addr : 0;
1002 }
1003
1004 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1005 .func = bpf_get_func_ip_kprobe,
1006 .gpl_only = true,
1007 .ret_type = RET_INTEGER,
1008 .arg1_type = ARG_PTR_TO_CTX,
1009 };
1010
BPF_CALL_1(bpf_get_attach_cookie_trace,void *,ctx)1011 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1012 {
1013 struct bpf_trace_run_ctx *run_ctx;
1014
1015 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1016 return run_ctx->bpf_cookie;
1017 }
1018
1019 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1020 .func = bpf_get_attach_cookie_trace,
1021 .gpl_only = false,
1022 .ret_type = RET_INTEGER,
1023 .arg1_type = ARG_PTR_TO_CTX,
1024 };
1025
BPF_CALL_1(bpf_get_attach_cookie_pe,struct bpf_perf_event_data_kern *,ctx)1026 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1027 {
1028 return ctx->event->bpf_cookie;
1029 }
1030
1031 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1032 .func = bpf_get_attach_cookie_pe,
1033 .gpl_only = false,
1034 .ret_type = RET_INTEGER,
1035 .arg1_type = ARG_PTR_TO_CTX,
1036 };
1037
1038 static const struct bpf_func_proto *
bpf_tracing_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1039 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1040 {
1041 switch (func_id) {
1042 case BPF_FUNC_map_lookup_elem:
1043 return &bpf_map_lookup_elem_proto;
1044 case BPF_FUNC_map_update_elem:
1045 return &bpf_map_update_elem_proto;
1046 case BPF_FUNC_map_delete_elem:
1047 return &bpf_map_delete_elem_proto;
1048 case BPF_FUNC_map_push_elem:
1049 return &bpf_map_push_elem_proto;
1050 case BPF_FUNC_map_pop_elem:
1051 return &bpf_map_pop_elem_proto;
1052 case BPF_FUNC_map_peek_elem:
1053 return &bpf_map_peek_elem_proto;
1054 case BPF_FUNC_ktime_get_ns:
1055 return &bpf_ktime_get_ns_proto;
1056 case BPF_FUNC_ktime_get_boot_ns:
1057 return &bpf_ktime_get_boot_ns_proto;
1058 case BPF_FUNC_tail_call:
1059 return &bpf_tail_call_proto;
1060 case BPF_FUNC_get_current_pid_tgid:
1061 return &bpf_get_current_pid_tgid_proto;
1062 case BPF_FUNC_get_current_task:
1063 return &bpf_get_current_task_proto;
1064 case BPF_FUNC_get_current_task_btf:
1065 return &bpf_get_current_task_btf_proto;
1066 case BPF_FUNC_task_pt_regs:
1067 return &bpf_task_pt_regs_proto;
1068 case BPF_FUNC_get_current_uid_gid:
1069 return &bpf_get_current_uid_gid_proto;
1070 case BPF_FUNC_get_current_comm:
1071 return &bpf_get_current_comm_proto;
1072 case BPF_FUNC_trace_printk:
1073 return bpf_get_trace_printk_proto();
1074 case BPF_FUNC_get_smp_processor_id:
1075 return &bpf_get_smp_processor_id_proto;
1076 case BPF_FUNC_get_numa_node_id:
1077 return &bpf_get_numa_node_id_proto;
1078 case BPF_FUNC_perf_event_read:
1079 return &bpf_perf_event_read_proto;
1080 case BPF_FUNC_current_task_under_cgroup:
1081 return &bpf_current_task_under_cgroup_proto;
1082 case BPF_FUNC_get_prandom_u32:
1083 return &bpf_get_prandom_u32_proto;
1084 case BPF_FUNC_probe_write_user:
1085 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1086 NULL : bpf_get_probe_write_proto();
1087 case BPF_FUNC_probe_read_user:
1088 return &bpf_probe_read_user_proto;
1089 case BPF_FUNC_probe_read_kernel:
1090 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1091 NULL : &bpf_probe_read_kernel_proto;
1092 case BPF_FUNC_probe_read_user_str:
1093 return &bpf_probe_read_user_str_proto;
1094 case BPF_FUNC_probe_read_kernel_str:
1095 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1096 NULL : &bpf_probe_read_kernel_str_proto;
1097 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1098 case BPF_FUNC_probe_read:
1099 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1100 NULL : &bpf_probe_read_compat_proto;
1101 case BPF_FUNC_probe_read_str:
1102 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1103 NULL : &bpf_probe_read_compat_str_proto;
1104 #endif
1105 #ifdef CONFIG_CGROUPS
1106 case BPF_FUNC_get_current_cgroup_id:
1107 return &bpf_get_current_cgroup_id_proto;
1108 case BPF_FUNC_get_current_ancestor_cgroup_id:
1109 return &bpf_get_current_ancestor_cgroup_id_proto;
1110 #endif
1111 case BPF_FUNC_send_signal:
1112 return &bpf_send_signal_proto;
1113 case BPF_FUNC_send_signal_thread:
1114 return &bpf_send_signal_thread_proto;
1115 case BPF_FUNC_perf_event_read_value:
1116 return &bpf_perf_event_read_value_proto;
1117 case BPF_FUNC_get_ns_current_pid_tgid:
1118 return &bpf_get_ns_current_pid_tgid_proto;
1119 case BPF_FUNC_ringbuf_output:
1120 return &bpf_ringbuf_output_proto;
1121 case BPF_FUNC_ringbuf_reserve:
1122 return &bpf_ringbuf_reserve_proto;
1123 case BPF_FUNC_ringbuf_submit:
1124 return &bpf_ringbuf_submit_proto;
1125 case BPF_FUNC_ringbuf_discard:
1126 return &bpf_ringbuf_discard_proto;
1127 case BPF_FUNC_ringbuf_query:
1128 return &bpf_ringbuf_query_proto;
1129 case BPF_FUNC_jiffies64:
1130 return &bpf_jiffies64_proto;
1131 case BPF_FUNC_get_task_stack:
1132 return &bpf_get_task_stack_proto;
1133 case BPF_FUNC_copy_from_user:
1134 return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1135 case BPF_FUNC_snprintf_btf:
1136 return &bpf_snprintf_btf_proto;
1137 case BPF_FUNC_per_cpu_ptr:
1138 return &bpf_per_cpu_ptr_proto;
1139 case BPF_FUNC_this_cpu_ptr:
1140 return &bpf_this_cpu_ptr_proto;
1141 case BPF_FUNC_task_storage_get:
1142 return &bpf_task_storage_get_proto;
1143 case BPF_FUNC_task_storage_delete:
1144 return &bpf_task_storage_delete_proto;
1145 case BPF_FUNC_for_each_map_elem:
1146 return &bpf_for_each_map_elem_proto;
1147 case BPF_FUNC_snprintf:
1148 return &bpf_snprintf_proto;
1149 case BPF_FUNC_get_func_ip:
1150 return &bpf_get_func_ip_proto_tracing;
1151 default:
1152 return bpf_base_func_proto(func_id);
1153 }
1154 }
1155
1156 static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1157 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1158 {
1159 switch (func_id) {
1160 case BPF_FUNC_perf_event_output:
1161 return &bpf_perf_event_output_proto;
1162 case BPF_FUNC_get_stackid:
1163 return &bpf_get_stackid_proto;
1164 case BPF_FUNC_get_stack:
1165 return &bpf_get_stack_proto;
1166 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1167 case BPF_FUNC_override_return:
1168 return &bpf_override_return_proto;
1169 #endif
1170 case BPF_FUNC_get_func_ip:
1171 return &bpf_get_func_ip_proto_kprobe;
1172 case BPF_FUNC_get_attach_cookie:
1173 return &bpf_get_attach_cookie_proto_trace;
1174 default:
1175 return bpf_tracing_func_proto(func_id, prog);
1176 }
1177 }
1178
1179 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
kprobe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1180 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1181 const struct bpf_prog *prog,
1182 struct bpf_insn_access_aux *info)
1183 {
1184 if (off < 0 || off >= sizeof(struct pt_regs))
1185 return false;
1186 if (type != BPF_READ)
1187 return false;
1188 if (off % size != 0)
1189 return false;
1190 /*
1191 * Assertion for 32 bit to make sure last 8 byte access
1192 * (BPF_DW) to the last 4 byte member is disallowed.
1193 */
1194 if (off + size > sizeof(struct pt_regs))
1195 return false;
1196
1197 return true;
1198 }
1199
1200 const struct bpf_verifier_ops kprobe_verifier_ops = {
1201 .get_func_proto = kprobe_prog_func_proto,
1202 .is_valid_access = kprobe_prog_is_valid_access,
1203 };
1204
1205 const struct bpf_prog_ops kprobe_prog_ops = {
1206 };
1207
BPF_CALL_5(bpf_perf_event_output_tp,void *,tp_buff,struct bpf_map *,map,u64,flags,void *,data,u64,size)1208 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1209 u64, flags, void *, data, u64, size)
1210 {
1211 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1212
1213 /*
1214 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1215 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1216 * from there and call the same bpf_perf_event_output() helper inline.
1217 */
1218 return ____bpf_perf_event_output(regs, map, flags, data, size);
1219 }
1220
1221 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1222 .func = bpf_perf_event_output_tp,
1223 .gpl_only = true,
1224 .ret_type = RET_INTEGER,
1225 .arg1_type = ARG_PTR_TO_CTX,
1226 .arg2_type = ARG_CONST_MAP_PTR,
1227 .arg3_type = ARG_ANYTHING,
1228 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1229 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1230 };
1231
BPF_CALL_3(bpf_get_stackid_tp,void *,tp_buff,struct bpf_map *,map,u64,flags)1232 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1233 u64, flags)
1234 {
1235 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1236
1237 /*
1238 * Same comment as in bpf_perf_event_output_tp(), only that this time
1239 * the other helper's function body cannot be inlined due to being
1240 * external, thus we need to call raw helper function.
1241 */
1242 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1243 flags, 0, 0);
1244 }
1245
1246 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1247 .func = bpf_get_stackid_tp,
1248 .gpl_only = true,
1249 .ret_type = RET_INTEGER,
1250 .arg1_type = ARG_PTR_TO_CTX,
1251 .arg2_type = ARG_CONST_MAP_PTR,
1252 .arg3_type = ARG_ANYTHING,
1253 };
1254
BPF_CALL_4(bpf_get_stack_tp,void *,tp_buff,void *,buf,u32,size,u64,flags)1255 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1256 u64, flags)
1257 {
1258 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1259
1260 return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1261 (unsigned long) size, flags, 0);
1262 }
1263
1264 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1265 .func = bpf_get_stack_tp,
1266 .gpl_only = true,
1267 .ret_type = RET_INTEGER,
1268 .arg1_type = ARG_PTR_TO_CTX,
1269 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1270 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1271 .arg4_type = ARG_ANYTHING,
1272 };
1273
1274 static const struct bpf_func_proto *
tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1275 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1276 {
1277 switch (func_id) {
1278 case BPF_FUNC_perf_event_output:
1279 return &bpf_perf_event_output_proto_tp;
1280 case BPF_FUNC_get_stackid:
1281 return &bpf_get_stackid_proto_tp;
1282 case BPF_FUNC_get_stack:
1283 return &bpf_get_stack_proto_tp;
1284 case BPF_FUNC_get_attach_cookie:
1285 return &bpf_get_attach_cookie_proto_trace;
1286 default:
1287 return bpf_tracing_func_proto(func_id, prog);
1288 }
1289 }
1290
tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1291 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1292 const struct bpf_prog *prog,
1293 struct bpf_insn_access_aux *info)
1294 {
1295 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1296 return false;
1297 if (type != BPF_READ)
1298 return false;
1299 if (off % size != 0)
1300 return false;
1301
1302 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1303 return true;
1304 }
1305
1306 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1307 .get_func_proto = tp_prog_func_proto,
1308 .is_valid_access = tp_prog_is_valid_access,
1309 };
1310
1311 const struct bpf_prog_ops tracepoint_prog_ops = {
1312 };
1313
BPF_CALL_3(bpf_perf_prog_read_value,struct bpf_perf_event_data_kern *,ctx,struct bpf_perf_event_value *,buf,u32,size)1314 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1315 struct bpf_perf_event_value *, buf, u32, size)
1316 {
1317 int err = -EINVAL;
1318
1319 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1320 goto clear;
1321 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1322 &buf->running);
1323 if (unlikely(err))
1324 goto clear;
1325 return 0;
1326 clear:
1327 memset(buf, 0, size);
1328 return err;
1329 }
1330
1331 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1332 .func = bpf_perf_prog_read_value,
1333 .gpl_only = true,
1334 .ret_type = RET_INTEGER,
1335 .arg1_type = ARG_PTR_TO_CTX,
1336 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1337 .arg3_type = ARG_CONST_SIZE,
1338 };
1339
BPF_CALL_4(bpf_read_branch_records,struct bpf_perf_event_data_kern *,ctx,void *,buf,u32,size,u64,flags)1340 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1341 void *, buf, u32, size, u64, flags)
1342 {
1343 static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1344 struct perf_branch_stack *br_stack = ctx->data->br_stack;
1345 u32 to_copy;
1346
1347 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1348 return -EINVAL;
1349
1350 if (unlikely(!br_stack))
1351 return -ENOENT;
1352
1353 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1354 return br_stack->nr * br_entry_size;
1355
1356 if (!buf || (size % br_entry_size != 0))
1357 return -EINVAL;
1358
1359 to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1360 memcpy(buf, br_stack->entries, to_copy);
1361
1362 return to_copy;
1363 }
1364
1365 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1366 .func = bpf_read_branch_records,
1367 .gpl_only = true,
1368 .ret_type = RET_INTEGER,
1369 .arg1_type = ARG_PTR_TO_CTX,
1370 .arg2_type = ARG_PTR_TO_MEM_OR_NULL,
1371 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1372 .arg4_type = ARG_ANYTHING,
1373 };
1374
1375 static const struct bpf_func_proto *
pe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1376 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1377 {
1378 switch (func_id) {
1379 case BPF_FUNC_perf_event_output:
1380 return &bpf_perf_event_output_proto_tp;
1381 case BPF_FUNC_get_stackid:
1382 return &bpf_get_stackid_proto_pe;
1383 case BPF_FUNC_get_stack:
1384 return &bpf_get_stack_proto_pe;
1385 case BPF_FUNC_perf_prog_read_value:
1386 return &bpf_perf_prog_read_value_proto;
1387 case BPF_FUNC_read_branch_records:
1388 return &bpf_read_branch_records_proto;
1389 case BPF_FUNC_get_attach_cookie:
1390 return &bpf_get_attach_cookie_proto_pe;
1391 default:
1392 return bpf_tracing_func_proto(func_id, prog);
1393 }
1394 }
1395
1396 /*
1397 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1398 * to avoid potential recursive reuse issue when/if tracepoints are added
1399 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1400 *
1401 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1402 * in normal, irq, and nmi context.
1403 */
1404 struct bpf_raw_tp_regs {
1405 struct pt_regs regs[3];
1406 };
1407 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1408 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
get_bpf_raw_tp_regs(void)1409 static struct pt_regs *get_bpf_raw_tp_regs(void)
1410 {
1411 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1412 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1413
1414 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1415 this_cpu_dec(bpf_raw_tp_nest_level);
1416 return ERR_PTR(-EBUSY);
1417 }
1418
1419 return &tp_regs->regs[nest_level - 1];
1420 }
1421
put_bpf_raw_tp_regs(void)1422 static void put_bpf_raw_tp_regs(void)
1423 {
1424 this_cpu_dec(bpf_raw_tp_nest_level);
1425 }
1426
BPF_CALL_5(bpf_perf_event_output_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags,void *,data,u64,size)1427 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1428 struct bpf_map *, map, u64, flags, void *, data, u64, size)
1429 {
1430 struct pt_regs *regs = get_bpf_raw_tp_regs();
1431 int ret;
1432
1433 if (IS_ERR(regs))
1434 return PTR_ERR(regs);
1435
1436 perf_fetch_caller_regs(regs);
1437 ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1438
1439 put_bpf_raw_tp_regs();
1440 return ret;
1441 }
1442
1443 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1444 .func = bpf_perf_event_output_raw_tp,
1445 .gpl_only = true,
1446 .ret_type = RET_INTEGER,
1447 .arg1_type = ARG_PTR_TO_CTX,
1448 .arg2_type = ARG_CONST_MAP_PTR,
1449 .arg3_type = ARG_ANYTHING,
1450 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1451 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1452 };
1453
1454 extern const struct bpf_func_proto bpf_skb_output_proto;
1455 extern const struct bpf_func_proto bpf_xdp_output_proto;
1456
BPF_CALL_3(bpf_get_stackid_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags)1457 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1458 struct bpf_map *, map, u64, flags)
1459 {
1460 struct pt_regs *regs = get_bpf_raw_tp_regs();
1461 int ret;
1462
1463 if (IS_ERR(regs))
1464 return PTR_ERR(regs);
1465
1466 perf_fetch_caller_regs(regs);
1467 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1468 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1469 flags, 0, 0);
1470 put_bpf_raw_tp_regs();
1471 return ret;
1472 }
1473
1474 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1475 .func = bpf_get_stackid_raw_tp,
1476 .gpl_only = true,
1477 .ret_type = RET_INTEGER,
1478 .arg1_type = ARG_PTR_TO_CTX,
1479 .arg2_type = ARG_CONST_MAP_PTR,
1480 .arg3_type = ARG_ANYTHING,
1481 };
1482
BPF_CALL_4(bpf_get_stack_raw_tp,struct bpf_raw_tracepoint_args *,args,void *,buf,u32,size,u64,flags)1483 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1484 void *, buf, u32, size, u64, flags)
1485 {
1486 struct pt_regs *regs = get_bpf_raw_tp_regs();
1487 int ret;
1488
1489 if (IS_ERR(regs))
1490 return PTR_ERR(regs);
1491
1492 perf_fetch_caller_regs(regs);
1493 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1494 (unsigned long) size, flags, 0);
1495 put_bpf_raw_tp_regs();
1496 return ret;
1497 }
1498
1499 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1500 .func = bpf_get_stack_raw_tp,
1501 .gpl_only = true,
1502 .ret_type = RET_INTEGER,
1503 .arg1_type = ARG_PTR_TO_CTX,
1504 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1505 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1506 .arg4_type = ARG_ANYTHING,
1507 };
1508
1509 static const struct bpf_func_proto *
raw_tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1510 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1511 {
1512 switch (func_id) {
1513 case BPF_FUNC_perf_event_output:
1514 return &bpf_perf_event_output_proto_raw_tp;
1515 case BPF_FUNC_get_stackid:
1516 return &bpf_get_stackid_proto_raw_tp;
1517 case BPF_FUNC_get_stack:
1518 return &bpf_get_stack_proto_raw_tp;
1519 default:
1520 return bpf_tracing_func_proto(func_id, prog);
1521 }
1522 }
1523
1524 const struct bpf_func_proto *
tracing_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1525 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1526 {
1527 const struct bpf_func_proto *fn;
1528
1529 switch (func_id) {
1530 #ifdef CONFIG_NET
1531 case BPF_FUNC_skb_output:
1532 return &bpf_skb_output_proto;
1533 case BPF_FUNC_xdp_output:
1534 return &bpf_xdp_output_proto;
1535 case BPF_FUNC_skc_to_tcp6_sock:
1536 return &bpf_skc_to_tcp6_sock_proto;
1537 case BPF_FUNC_skc_to_tcp_sock:
1538 return &bpf_skc_to_tcp_sock_proto;
1539 case BPF_FUNC_skc_to_tcp_timewait_sock:
1540 return &bpf_skc_to_tcp_timewait_sock_proto;
1541 case BPF_FUNC_skc_to_tcp_request_sock:
1542 return &bpf_skc_to_tcp_request_sock_proto;
1543 case BPF_FUNC_skc_to_udp6_sock:
1544 return &bpf_skc_to_udp6_sock_proto;
1545 case BPF_FUNC_sk_storage_get:
1546 return &bpf_sk_storage_get_tracing_proto;
1547 case BPF_FUNC_sk_storage_delete:
1548 return &bpf_sk_storage_delete_tracing_proto;
1549 case BPF_FUNC_sock_from_file:
1550 return &bpf_sock_from_file_proto;
1551 case BPF_FUNC_get_socket_cookie:
1552 return &bpf_get_socket_ptr_cookie_proto;
1553 #endif
1554 case BPF_FUNC_seq_printf:
1555 return prog->expected_attach_type == BPF_TRACE_ITER ?
1556 &bpf_seq_printf_proto :
1557 NULL;
1558 case BPF_FUNC_seq_write:
1559 return prog->expected_attach_type == BPF_TRACE_ITER ?
1560 &bpf_seq_write_proto :
1561 NULL;
1562 case BPF_FUNC_seq_printf_btf:
1563 return prog->expected_attach_type == BPF_TRACE_ITER ?
1564 &bpf_seq_printf_btf_proto :
1565 NULL;
1566 case BPF_FUNC_d_path:
1567 return &bpf_d_path_proto;
1568 default:
1569 fn = raw_tp_prog_func_proto(func_id, prog);
1570 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1571 fn = bpf_iter_get_func_proto(func_id, prog);
1572 return fn;
1573 }
1574 }
1575
raw_tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1576 static bool raw_tp_prog_is_valid_access(int off, int size,
1577 enum bpf_access_type type,
1578 const struct bpf_prog *prog,
1579 struct bpf_insn_access_aux *info)
1580 {
1581 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1582 return false;
1583 if (type != BPF_READ)
1584 return false;
1585 if (off % size != 0)
1586 return false;
1587 return true;
1588 }
1589
tracing_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1590 static bool tracing_prog_is_valid_access(int off, int size,
1591 enum bpf_access_type type,
1592 const struct bpf_prog *prog,
1593 struct bpf_insn_access_aux *info)
1594 {
1595 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1596 return false;
1597 if (type != BPF_READ)
1598 return false;
1599 if (off % size != 0)
1600 return false;
1601 return btf_ctx_access(off, size, type, prog, info);
1602 }
1603
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)1604 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1605 const union bpf_attr *kattr,
1606 union bpf_attr __user *uattr)
1607 {
1608 return -ENOTSUPP;
1609 }
1610
1611 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1612 .get_func_proto = raw_tp_prog_func_proto,
1613 .is_valid_access = raw_tp_prog_is_valid_access,
1614 };
1615
1616 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1617 #ifdef CONFIG_NET
1618 .test_run = bpf_prog_test_run_raw_tp,
1619 #endif
1620 };
1621
1622 const struct bpf_verifier_ops tracing_verifier_ops = {
1623 .get_func_proto = tracing_prog_func_proto,
1624 .is_valid_access = tracing_prog_is_valid_access,
1625 };
1626
1627 const struct bpf_prog_ops tracing_prog_ops = {
1628 .test_run = bpf_prog_test_run_tracing,
1629 };
1630
raw_tp_writable_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1631 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1632 enum bpf_access_type type,
1633 const struct bpf_prog *prog,
1634 struct bpf_insn_access_aux *info)
1635 {
1636 if (off == 0) {
1637 if (size != sizeof(u64) || type != BPF_READ)
1638 return false;
1639 info->reg_type = PTR_TO_TP_BUFFER;
1640 }
1641 return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1642 }
1643
1644 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1645 .get_func_proto = raw_tp_prog_func_proto,
1646 .is_valid_access = raw_tp_writable_prog_is_valid_access,
1647 };
1648
1649 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1650 };
1651
pe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1652 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1653 const struct bpf_prog *prog,
1654 struct bpf_insn_access_aux *info)
1655 {
1656 const int size_u64 = sizeof(u64);
1657
1658 if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1659 return false;
1660 if (type != BPF_READ)
1661 return false;
1662 if (off % size != 0) {
1663 if (sizeof(unsigned long) != 4)
1664 return false;
1665 if (size != 8)
1666 return false;
1667 if (off % size != 4)
1668 return false;
1669 }
1670
1671 switch (off) {
1672 case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1673 bpf_ctx_record_field_size(info, size_u64);
1674 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1675 return false;
1676 break;
1677 case bpf_ctx_range(struct bpf_perf_event_data, addr):
1678 bpf_ctx_record_field_size(info, size_u64);
1679 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1680 return false;
1681 break;
1682 default:
1683 if (size != sizeof(long))
1684 return false;
1685 }
1686
1687 return true;
1688 }
1689
pe_prog_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1690 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1691 const struct bpf_insn *si,
1692 struct bpf_insn *insn_buf,
1693 struct bpf_prog *prog, u32 *target_size)
1694 {
1695 struct bpf_insn *insn = insn_buf;
1696
1697 switch (si->off) {
1698 case offsetof(struct bpf_perf_event_data, sample_period):
1699 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1700 data), si->dst_reg, si->src_reg,
1701 offsetof(struct bpf_perf_event_data_kern, data));
1702 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1703 bpf_target_off(struct perf_sample_data, period, 8,
1704 target_size));
1705 break;
1706 case offsetof(struct bpf_perf_event_data, addr):
1707 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1708 data), si->dst_reg, si->src_reg,
1709 offsetof(struct bpf_perf_event_data_kern, data));
1710 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1711 bpf_target_off(struct perf_sample_data, addr, 8,
1712 target_size));
1713 break;
1714 default:
1715 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1716 regs), si->dst_reg, si->src_reg,
1717 offsetof(struct bpf_perf_event_data_kern, regs));
1718 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1719 si->off);
1720 break;
1721 }
1722
1723 return insn - insn_buf;
1724 }
1725
1726 const struct bpf_verifier_ops perf_event_verifier_ops = {
1727 .get_func_proto = pe_prog_func_proto,
1728 .is_valid_access = pe_prog_is_valid_access,
1729 .convert_ctx_access = pe_prog_convert_ctx_access,
1730 };
1731
1732 const struct bpf_prog_ops perf_event_prog_ops = {
1733 };
1734
1735 static DEFINE_MUTEX(bpf_event_mutex);
1736
1737 #define BPF_TRACE_MAX_PROGS 64
1738
perf_event_attach_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)1739 int perf_event_attach_bpf_prog(struct perf_event *event,
1740 struct bpf_prog *prog,
1741 u64 bpf_cookie)
1742 {
1743 struct bpf_prog_array *old_array;
1744 struct bpf_prog_array *new_array;
1745 int ret = -EEXIST;
1746
1747 /*
1748 * Kprobe override only works if they are on the function entry,
1749 * and only if they are on the opt-in list.
1750 */
1751 if (prog->kprobe_override &&
1752 (!trace_kprobe_on_func_entry(event->tp_event) ||
1753 !trace_kprobe_error_injectable(event->tp_event)))
1754 return -EINVAL;
1755
1756 mutex_lock(&bpf_event_mutex);
1757
1758 if (event->prog)
1759 goto unlock;
1760
1761 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1762 if (old_array &&
1763 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1764 ret = -E2BIG;
1765 goto unlock;
1766 }
1767
1768 ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
1769 if (ret < 0)
1770 goto unlock;
1771
1772 /* set the new array to event->tp_event and set event->prog */
1773 event->prog = prog;
1774 event->bpf_cookie = bpf_cookie;
1775 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1776 bpf_prog_array_free(old_array);
1777
1778 unlock:
1779 mutex_unlock(&bpf_event_mutex);
1780 return ret;
1781 }
1782
perf_event_detach_bpf_prog(struct perf_event * event)1783 void perf_event_detach_bpf_prog(struct perf_event *event)
1784 {
1785 struct bpf_prog_array *old_array;
1786 struct bpf_prog_array *new_array;
1787 int ret;
1788
1789 mutex_lock(&bpf_event_mutex);
1790
1791 if (!event->prog)
1792 goto unlock;
1793
1794 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1795 ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
1796 if (ret == -ENOENT)
1797 goto unlock;
1798 if (ret < 0) {
1799 bpf_prog_array_delete_safe(old_array, event->prog);
1800 } else {
1801 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1802 bpf_prog_array_free(old_array);
1803 }
1804
1805 bpf_prog_put(event->prog);
1806 event->prog = NULL;
1807
1808 unlock:
1809 mutex_unlock(&bpf_event_mutex);
1810 }
1811
perf_event_query_prog_array(struct perf_event * event,void __user * info)1812 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1813 {
1814 struct perf_event_query_bpf __user *uquery = info;
1815 struct perf_event_query_bpf query = {};
1816 struct bpf_prog_array *progs;
1817 u32 *ids, prog_cnt, ids_len;
1818 int ret;
1819
1820 if (!perfmon_capable())
1821 return -EPERM;
1822 if (event->attr.type != PERF_TYPE_TRACEPOINT)
1823 return -EINVAL;
1824 if (copy_from_user(&query, uquery, sizeof(query)))
1825 return -EFAULT;
1826
1827 ids_len = query.ids_len;
1828 if (ids_len > BPF_TRACE_MAX_PROGS)
1829 return -E2BIG;
1830 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1831 if (!ids)
1832 return -ENOMEM;
1833 /*
1834 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1835 * is required when user only wants to check for uquery->prog_cnt.
1836 * There is no need to check for it since the case is handled
1837 * gracefully in bpf_prog_array_copy_info.
1838 */
1839
1840 mutex_lock(&bpf_event_mutex);
1841 progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1842 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1843 mutex_unlock(&bpf_event_mutex);
1844
1845 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1846 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1847 ret = -EFAULT;
1848
1849 kfree(ids);
1850 return ret;
1851 }
1852
1853 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1854 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1855
bpf_get_raw_tracepoint(const char * name)1856 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1857 {
1858 struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1859
1860 for (; btp < __stop__bpf_raw_tp; btp++) {
1861 if (!strcmp(btp->tp->name, name))
1862 return btp;
1863 }
1864
1865 return bpf_get_raw_tracepoint_module(name);
1866 }
1867
bpf_put_raw_tracepoint(struct bpf_raw_event_map * btp)1868 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1869 {
1870 struct module *mod;
1871
1872 preempt_disable();
1873 mod = __module_address((unsigned long)btp);
1874 module_put(mod);
1875 preempt_enable();
1876 }
1877
1878 static __always_inline
__bpf_trace_run(struct bpf_prog * prog,u64 * args)1879 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1880 {
1881 cant_sleep();
1882 rcu_read_lock();
1883 (void) bpf_prog_run(prog, args);
1884 rcu_read_unlock();
1885 }
1886
1887 #define UNPACK(...) __VA_ARGS__
1888 #define REPEAT_1(FN, DL, X, ...) FN(X)
1889 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1890 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1891 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1892 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1893 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1894 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1895 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1896 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1897 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1898 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1899 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1900 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
1901
1902 #define SARG(X) u64 arg##X
1903 #define COPY(X) args[X] = arg##X
1904
1905 #define __DL_COM (,)
1906 #define __DL_SEM (;)
1907
1908 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1909
1910 #define BPF_TRACE_DEFN_x(x) \
1911 void bpf_trace_run##x(struct bpf_prog *prog, \
1912 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
1913 { \
1914 u64 args[x]; \
1915 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
1916 __bpf_trace_run(prog, args); \
1917 } \
1918 EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1919 BPF_TRACE_DEFN_x(1);
1920 BPF_TRACE_DEFN_x(2);
1921 BPF_TRACE_DEFN_x(3);
1922 BPF_TRACE_DEFN_x(4);
1923 BPF_TRACE_DEFN_x(5);
1924 BPF_TRACE_DEFN_x(6);
1925 BPF_TRACE_DEFN_x(7);
1926 BPF_TRACE_DEFN_x(8);
1927 BPF_TRACE_DEFN_x(9);
1928 BPF_TRACE_DEFN_x(10);
1929 BPF_TRACE_DEFN_x(11);
1930 BPF_TRACE_DEFN_x(12);
1931
__bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1932 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1933 {
1934 struct tracepoint *tp = btp->tp;
1935
1936 /*
1937 * check that program doesn't access arguments beyond what's
1938 * available in this tracepoint
1939 */
1940 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1941 return -EINVAL;
1942
1943 if (prog->aux->max_tp_access > btp->writable_size)
1944 return -EINVAL;
1945
1946 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
1947 prog);
1948 }
1949
bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1950 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1951 {
1952 return __bpf_probe_register(btp, prog);
1953 }
1954
bpf_probe_unregister(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1955 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1956 {
1957 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1958 }
1959
bpf_get_perf_event_info(const struct perf_event * event,u32 * prog_id,u32 * fd_type,const char ** buf,u64 * probe_offset,u64 * probe_addr)1960 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1961 u32 *fd_type, const char **buf,
1962 u64 *probe_offset, u64 *probe_addr)
1963 {
1964 bool is_tracepoint, is_syscall_tp;
1965 struct bpf_prog *prog;
1966 int flags, err = 0;
1967
1968 prog = event->prog;
1969 if (!prog)
1970 return -ENOENT;
1971
1972 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1973 if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1974 return -EOPNOTSUPP;
1975
1976 *prog_id = prog->aux->id;
1977 flags = event->tp_event->flags;
1978 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1979 is_syscall_tp = is_syscall_trace_event(event->tp_event);
1980
1981 if (is_tracepoint || is_syscall_tp) {
1982 *buf = is_tracepoint ? event->tp_event->tp->name
1983 : event->tp_event->name;
1984 *fd_type = BPF_FD_TYPE_TRACEPOINT;
1985 *probe_offset = 0x0;
1986 *probe_addr = 0x0;
1987 } else {
1988 /* kprobe/uprobe */
1989 err = -EOPNOTSUPP;
1990 #ifdef CONFIG_KPROBE_EVENTS
1991 if (flags & TRACE_EVENT_FL_KPROBE)
1992 err = bpf_get_kprobe_info(event, fd_type, buf,
1993 probe_offset, probe_addr,
1994 event->attr.type == PERF_TYPE_TRACEPOINT);
1995 #endif
1996 #ifdef CONFIG_UPROBE_EVENTS
1997 if (flags & TRACE_EVENT_FL_UPROBE)
1998 err = bpf_get_uprobe_info(event, fd_type, buf,
1999 probe_offset, probe_addr,
2000 event->attr.type == PERF_TYPE_TRACEPOINT);
2001 #endif
2002 }
2003
2004 return err;
2005 }
2006
send_signal_irq_work_init(void)2007 static int __init send_signal_irq_work_init(void)
2008 {
2009 int cpu;
2010 struct send_signal_irq_work *work;
2011
2012 for_each_possible_cpu(cpu) {
2013 work = per_cpu_ptr(&send_signal_work, cpu);
2014 init_irq_work(&work->irq_work, do_bpf_send_signal);
2015 }
2016 return 0;
2017 }
2018
2019 subsys_initcall(send_signal_irq_work_init);
2020
2021 #ifdef CONFIG_MODULES
bpf_event_notify(struct notifier_block * nb,unsigned long op,void * module)2022 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2023 void *module)
2024 {
2025 struct bpf_trace_module *btm, *tmp;
2026 struct module *mod = module;
2027 int ret = 0;
2028
2029 if (mod->num_bpf_raw_events == 0 ||
2030 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2031 goto out;
2032
2033 mutex_lock(&bpf_module_mutex);
2034
2035 switch (op) {
2036 case MODULE_STATE_COMING:
2037 btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2038 if (btm) {
2039 btm->module = module;
2040 list_add(&btm->list, &bpf_trace_modules);
2041 } else {
2042 ret = -ENOMEM;
2043 }
2044 break;
2045 case MODULE_STATE_GOING:
2046 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2047 if (btm->module == module) {
2048 list_del(&btm->list);
2049 kfree(btm);
2050 break;
2051 }
2052 }
2053 break;
2054 }
2055
2056 mutex_unlock(&bpf_module_mutex);
2057
2058 out:
2059 return notifier_from_errno(ret);
2060 }
2061
2062 static struct notifier_block bpf_module_nb = {
2063 .notifier_call = bpf_event_notify,
2064 };
2065
bpf_event_init(void)2066 static int __init bpf_event_init(void)
2067 {
2068 register_module_notifier(&bpf_module_nb);
2069 return 0;
2070 }
2071
2072 fs_initcall(bpf_event_init);
2073 #endif /* CONFIG_MODULES */
2074