• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81 
82 static const struct bpf_func_proto *
83 bpf_sk_base_func_proto(enum bpf_func_id func_id);
84 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)85 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
86 {
87 	if (in_compat_syscall()) {
88 		struct compat_sock_fprog f32;
89 
90 		if (len != sizeof(f32))
91 			return -EINVAL;
92 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
93 			return -EFAULT;
94 		memset(dst, 0, sizeof(*dst));
95 		dst->len = f32.len;
96 		dst->filter = compat_ptr(f32.filter);
97 	} else {
98 		if (len != sizeof(*dst))
99 			return -EINVAL;
100 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
101 			return -EFAULT;
102 	}
103 
104 	return 0;
105 }
106 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
107 
108 /**
109  *	sk_filter_trim_cap - run a packet through a socket filter
110  *	@sk: sock associated with &sk_buff
111  *	@skb: buffer to filter
112  *	@cap: limit on how short the eBPF program may trim the packet
113  *
114  * Run the eBPF program and then cut skb->data to correct size returned by
115  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
116  * than pkt_len we keep whole skb->data. This is the socket level
117  * wrapper to bpf_prog_run. It returns 0 if the packet should
118  * be accepted or -EPERM if the packet should be tossed.
119  *
120  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)121 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
122 {
123 	int err;
124 	struct sk_filter *filter;
125 
126 	/*
127 	 * If the skb was allocated from pfmemalloc reserves, only
128 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
129 	 * helping free memory
130 	 */
131 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
132 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
133 		return -ENOMEM;
134 	}
135 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
136 	if (err)
137 		return err;
138 
139 	err = security_sock_rcv_skb(sk, skb);
140 	if (err)
141 		return err;
142 
143 	rcu_read_lock();
144 	filter = rcu_dereference(sk->sk_filter);
145 	if (filter) {
146 		struct sock *save_sk = skb->sk;
147 		unsigned int pkt_len;
148 
149 		skb->sk = sk;
150 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
151 		skb->sk = save_sk;
152 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
153 	}
154 	rcu_read_unlock();
155 
156 	return err;
157 }
158 EXPORT_SYMBOL(sk_filter_trim_cap);
159 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)160 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
161 {
162 	return skb_get_poff(skb);
163 }
164 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)165 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
166 {
167 	struct nlattr *nla;
168 
169 	if (skb_is_nonlinear(skb))
170 		return 0;
171 
172 	if (skb->len < sizeof(struct nlattr))
173 		return 0;
174 
175 	if (a > skb->len - sizeof(struct nlattr))
176 		return 0;
177 
178 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
179 	if (nla)
180 		return (void *) nla - (void *) skb->data;
181 
182 	return 0;
183 }
184 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)185 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
186 {
187 	struct nlattr *nla;
188 
189 	if (skb_is_nonlinear(skb))
190 		return 0;
191 
192 	if (skb->len < sizeof(struct nlattr))
193 		return 0;
194 
195 	if (a > skb->len - sizeof(struct nlattr))
196 		return 0;
197 
198 	nla = (struct nlattr *) &skb->data[a];
199 	if (nla->nla_len > skb->len - a)
200 		return 0;
201 
202 	nla = nla_find_nested(nla, x);
203 	if (nla)
204 		return (void *) nla - (void *) skb->data;
205 
206 	return 0;
207 }
208 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)209 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
210 	   data, int, headlen, int, offset)
211 {
212 	u8 tmp, *ptr;
213 	const int len = sizeof(tmp);
214 
215 	if (offset >= 0) {
216 		if (headlen - offset >= len)
217 			return *(u8 *)(data + offset);
218 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
219 			return tmp;
220 	} else {
221 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
222 		if (likely(ptr))
223 			return *(u8 *)ptr;
224 	}
225 
226 	return -EFAULT;
227 }
228 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)229 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
230 	   int, offset)
231 {
232 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
233 					 offset);
234 }
235 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)236 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
237 	   data, int, headlen, int, offset)
238 {
239 	u16 tmp, *ptr;
240 	const int len = sizeof(tmp);
241 
242 	if (offset >= 0) {
243 		if (headlen - offset >= len)
244 			return get_unaligned_be16(data + offset);
245 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
246 			return be16_to_cpu(tmp);
247 	} else {
248 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
249 		if (likely(ptr))
250 			return get_unaligned_be16(ptr);
251 	}
252 
253 	return -EFAULT;
254 }
255 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)256 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
257 	   int, offset)
258 {
259 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
260 					  offset);
261 }
262 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)263 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
264 	   data, int, headlen, int, offset)
265 {
266 	u32 tmp, *ptr;
267 	const int len = sizeof(tmp);
268 
269 	if (likely(offset >= 0)) {
270 		if (headlen - offset >= len)
271 			return get_unaligned_be32(data + offset);
272 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273 			return be32_to_cpu(tmp);
274 	} else {
275 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
276 		if (likely(ptr))
277 			return get_unaligned_be32(ptr);
278 	}
279 
280 	return -EFAULT;
281 }
282 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)283 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
284 	   int, offset)
285 {
286 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
287 					  offset);
288 }
289 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)290 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
291 			      struct bpf_insn *insn_buf)
292 {
293 	struct bpf_insn *insn = insn_buf;
294 
295 	switch (skb_field) {
296 	case SKF_AD_MARK:
297 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
298 
299 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
300 				      offsetof(struct sk_buff, mark));
301 		break;
302 
303 	case SKF_AD_PKTTYPE:
304 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
305 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
306 #ifdef __BIG_ENDIAN_BITFIELD
307 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
308 #endif
309 		break;
310 
311 	case SKF_AD_QUEUE:
312 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
313 
314 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
315 				      offsetof(struct sk_buff, queue_mapping));
316 		break;
317 
318 	case SKF_AD_VLAN_TAG:
319 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
320 
321 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
322 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323 				      offsetof(struct sk_buff, vlan_tci));
324 		break;
325 	case SKF_AD_VLAN_TAG_PRESENT:
326 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
327 		if (PKT_VLAN_PRESENT_BIT)
328 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
329 		if (PKT_VLAN_PRESENT_BIT < 7)
330 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
331 		break;
332 	}
333 
334 	return insn - insn_buf;
335 }
336 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)337 static bool convert_bpf_extensions(struct sock_filter *fp,
338 				   struct bpf_insn **insnp)
339 {
340 	struct bpf_insn *insn = *insnp;
341 	u32 cnt;
342 
343 	switch (fp->k) {
344 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
345 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
346 
347 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
348 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
349 				      offsetof(struct sk_buff, protocol));
350 		/* A = ntohs(A) [emitting a nop or swap16] */
351 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
352 		break;
353 
354 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
355 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
356 		insn += cnt - 1;
357 		break;
358 
359 	case SKF_AD_OFF + SKF_AD_IFINDEX:
360 	case SKF_AD_OFF + SKF_AD_HATYPE:
361 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
362 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
363 
364 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
365 				      BPF_REG_TMP, BPF_REG_CTX,
366 				      offsetof(struct sk_buff, dev));
367 		/* if (tmp != 0) goto pc + 1 */
368 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
369 		*insn++ = BPF_EXIT_INSN();
370 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
371 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
372 					    offsetof(struct net_device, ifindex));
373 		else
374 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
375 					    offsetof(struct net_device, type));
376 		break;
377 
378 	case SKF_AD_OFF + SKF_AD_MARK:
379 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
380 		insn += cnt - 1;
381 		break;
382 
383 	case SKF_AD_OFF + SKF_AD_RXHASH:
384 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
385 
386 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
387 				    offsetof(struct sk_buff, hash));
388 		break;
389 
390 	case SKF_AD_OFF + SKF_AD_QUEUE:
391 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
392 		insn += cnt - 1;
393 		break;
394 
395 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
396 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
397 					 BPF_REG_A, BPF_REG_CTX, insn);
398 		insn += cnt - 1;
399 		break;
400 
401 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
402 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
403 					 BPF_REG_A, BPF_REG_CTX, insn);
404 		insn += cnt - 1;
405 		break;
406 
407 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
408 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
409 
410 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
411 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
412 				      offsetof(struct sk_buff, vlan_proto));
413 		/* A = ntohs(A) [emitting a nop or swap16] */
414 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
415 		break;
416 
417 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
418 	case SKF_AD_OFF + SKF_AD_NLATTR:
419 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
420 	case SKF_AD_OFF + SKF_AD_CPU:
421 	case SKF_AD_OFF + SKF_AD_RANDOM:
422 		/* arg1 = CTX */
423 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
424 		/* arg2 = A */
425 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
426 		/* arg3 = X */
427 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
428 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
429 		switch (fp->k) {
430 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
431 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
432 			break;
433 		case SKF_AD_OFF + SKF_AD_NLATTR:
434 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
435 			break;
436 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
437 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
438 			break;
439 		case SKF_AD_OFF + SKF_AD_CPU:
440 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
441 			break;
442 		case SKF_AD_OFF + SKF_AD_RANDOM:
443 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
444 			bpf_user_rnd_init_once();
445 			break;
446 		}
447 		break;
448 
449 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
450 		/* A ^= X */
451 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
452 		break;
453 
454 	default:
455 		/* This is just a dummy call to avoid letting the compiler
456 		 * evict __bpf_call_base() as an optimization. Placed here
457 		 * where no-one bothers.
458 		 */
459 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
460 		return false;
461 	}
462 
463 	*insnp = insn;
464 	return true;
465 }
466 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)467 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
468 {
469 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
470 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
471 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
472 		      BPF_SIZE(fp->code) == BPF_W;
473 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
474 	const int ip_align = NET_IP_ALIGN;
475 	struct bpf_insn *insn = *insnp;
476 	int offset = fp->k;
477 
478 	if (!indirect &&
479 	    ((unaligned_ok && offset >= 0) ||
480 	     (!unaligned_ok && offset >= 0 &&
481 	      offset + ip_align >= 0 &&
482 	      offset + ip_align % size == 0))) {
483 		bool ldx_off_ok = offset <= S16_MAX;
484 
485 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
486 		if (offset)
487 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
488 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
489 				      size, 2 + endian + (!ldx_off_ok * 2));
490 		if (ldx_off_ok) {
491 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492 					      BPF_REG_D, offset);
493 		} else {
494 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
495 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
496 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497 					      BPF_REG_TMP, 0);
498 		}
499 		if (endian)
500 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
501 		*insn++ = BPF_JMP_A(8);
502 	}
503 
504 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
506 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
507 	if (!indirect) {
508 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
509 	} else {
510 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
511 		if (fp->k)
512 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
513 	}
514 
515 	switch (BPF_SIZE(fp->code)) {
516 	case BPF_B:
517 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
518 		break;
519 	case BPF_H:
520 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
521 		break;
522 	case BPF_W:
523 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
524 		break;
525 	default:
526 		return false;
527 	}
528 
529 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
530 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
531 	*insn   = BPF_EXIT_INSN();
532 
533 	*insnp = insn;
534 	return true;
535 }
536 
537 /**
538  *	bpf_convert_filter - convert filter program
539  *	@prog: the user passed filter program
540  *	@len: the length of the user passed filter program
541  *	@new_prog: allocated 'struct bpf_prog' or NULL
542  *	@new_len: pointer to store length of converted program
543  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
544  *
545  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
546  * style extended BPF (eBPF).
547  * Conversion workflow:
548  *
549  * 1) First pass for calculating the new program length:
550  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
551  *
552  * 2) 2nd pass to remap in two passes: 1st pass finds new
553  *    jump offsets, 2nd pass remapping:
554  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
555  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)556 static int bpf_convert_filter(struct sock_filter *prog, int len,
557 			      struct bpf_prog *new_prog, int *new_len,
558 			      bool *seen_ld_abs)
559 {
560 	int new_flen = 0, pass = 0, target, i, stack_off;
561 	struct bpf_insn *new_insn, *first_insn = NULL;
562 	struct sock_filter *fp;
563 	int *addrs = NULL;
564 	u8 bpf_src;
565 
566 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
567 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
568 
569 	if (len <= 0 || len > BPF_MAXINSNS)
570 		return -EINVAL;
571 
572 	if (new_prog) {
573 		first_insn = new_prog->insnsi;
574 		addrs = kcalloc(len, sizeof(*addrs),
575 				GFP_KERNEL | __GFP_NOWARN);
576 		if (!addrs)
577 			return -ENOMEM;
578 	}
579 
580 do_pass:
581 	new_insn = first_insn;
582 	fp = prog;
583 
584 	/* Classic BPF related prologue emission. */
585 	if (new_prog) {
586 		/* Classic BPF expects A and X to be reset first. These need
587 		 * to be guaranteed to be the first two instructions.
588 		 */
589 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
590 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
591 
592 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
593 		 * In eBPF case it's done by the compiler, here we need to
594 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
595 		 */
596 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
597 		if (*seen_ld_abs) {
598 			/* For packet access in classic BPF, cache skb->data
599 			 * in callee-saved BPF R8 and skb->len - skb->data_len
600 			 * (headlen) in BPF R9. Since classic BPF is read-only
601 			 * on CTX, we only need to cache it once.
602 			 */
603 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
604 						  BPF_REG_D, BPF_REG_CTX,
605 						  offsetof(struct sk_buff, data));
606 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
607 						  offsetof(struct sk_buff, len));
608 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
609 						  offsetof(struct sk_buff, data_len));
610 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
611 		}
612 	} else {
613 		new_insn += 3;
614 	}
615 
616 	for (i = 0; i < len; fp++, i++) {
617 		struct bpf_insn tmp_insns[32] = { };
618 		struct bpf_insn *insn = tmp_insns;
619 
620 		if (addrs)
621 			addrs[i] = new_insn - first_insn;
622 
623 		switch (fp->code) {
624 		/* All arithmetic insns and skb loads map as-is. */
625 		case BPF_ALU | BPF_ADD | BPF_X:
626 		case BPF_ALU | BPF_ADD | BPF_K:
627 		case BPF_ALU | BPF_SUB | BPF_X:
628 		case BPF_ALU | BPF_SUB | BPF_K:
629 		case BPF_ALU | BPF_AND | BPF_X:
630 		case BPF_ALU | BPF_AND | BPF_K:
631 		case BPF_ALU | BPF_OR | BPF_X:
632 		case BPF_ALU | BPF_OR | BPF_K:
633 		case BPF_ALU | BPF_LSH | BPF_X:
634 		case BPF_ALU | BPF_LSH | BPF_K:
635 		case BPF_ALU | BPF_RSH | BPF_X:
636 		case BPF_ALU | BPF_RSH | BPF_K:
637 		case BPF_ALU | BPF_XOR | BPF_X:
638 		case BPF_ALU | BPF_XOR | BPF_K:
639 		case BPF_ALU | BPF_MUL | BPF_X:
640 		case BPF_ALU | BPF_MUL | BPF_K:
641 		case BPF_ALU | BPF_DIV | BPF_X:
642 		case BPF_ALU | BPF_DIV | BPF_K:
643 		case BPF_ALU | BPF_MOD | BPF_X:
644 		case BPF_ALU | BPF_MOD | BPF_K:
645 		case BPF_ALU | BPF_NEG:
646 		case BPF_LD | BPF_ABS | BPF_W:
647 		case BPF_LD | BPF_ABS | BPF_H:
648 		case BPF_LD | BPF_ABS | BPF_B:
649 		case BPF_LD | BPF_IND | BPF_W:
650 		case BPF_LD | BPF_IND | BPF_H:
651 		case BPF_LD | BPF_IND | BPF_B:
652 			/* Check for overloaded BPF extension and
653 			 * directly convert it if found, otherwise
654 			 * just move on with mapping.
655 			 */
656 			if (BPF_CLASS(fp->code) == BPF_LD &&
657 			    BPF_MODE(fp->code) == BPF_ABS &&
658 			    convert_bpf_extensions(fp, &insn))
659 				break;
660 			if (BPF_CLASS(fp->code) == BPF_LD &&
661 			    convert_bpf_ld_abs(fp, &insn)) {
662 				*seen_ld_abs = true;
663 				break;
664 			}
665 
666 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
667 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
668 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
669 				/* Error with exception code on div/mod by 0.
670 				 * For cBPF programs, this was always return 0.
671 				 */
672 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
673 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
674 				*insn++ = BPF_EXIT_INSN();
675 			}
676 
677 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
678 			break;
679 
680 		/* Jump transformation cannot use BPF block macros
681 		 * everywhere as offset calculation and target updates
682 		 * require a bit more work than the rest, i.e. jump
683 		 * opcodes map as-is, but offsets need adjustment.
684 		 */
685 
686 #define BPF_EMIT_JMP							\
687 	do {								\
688 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
689 		s32 off;						\
690 									\
691 		if (target >= len || target < 0)			\
692 			goto err;					\
693 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
694 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
695 		off -= insn - tmp_insns;				\
696 		/* Reject anything not fitting into insn->off. */	\
697 		if (off < off_min || off > off_max)			\
698 			goto err;					\
699 		insn->off = off;					\
700 	} while (0)
701 
702 		case BPF_JMP | BPF_JA:
703 			target = i + fp->k + 1;
704 			insn->code = fp->code;
705 			BPF_EMIT_JMP;
706 			break;
707 
708 		case BPF_JMP | BPF_JEQ | BPF_K:
709 		case BPF_JMP | BPF_JEQ | BPF_X:
710 		case BPF_JMP | BPF_JSET | BPF_K:
711 		case BPF_JMP | BPF_JSET | BPF_X:
712 		case BPF_JMP | BPF_JGT | BPF_K:
713 		case BPF_JMP | BPF_JGT | BPF_X:
714 		case BPF_JMP | BPF_JGE | BPF_K:
715 		case BPF_JMP | BPF_JGE | BPF_X:
716 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
717 				/* BPF immediates are signed, zero extend
718 				 * immediate into tmp register and use it
719 				 * in compare insn.
720 				 */
721 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
722 
723 				insn->dst_reg = BPF_REG_A;
724 				insn->src_reg = BPF_REG_TMP;
725 				bpf_src = BPF_X;
726 			} else {
727 				insn->dst_reg = BPF_REG_A;
728 				insn->imm = fp->k;
729 				bpf_src = BPF_SRC(fp->code);
730 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
731 			}
732 
733 			/* Common case where 'jump_false' is next insn. */
734 			if (fp->jf == 0) {
735 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
736 				target = i + fp->jt + 1;
737 				BPF_EMIT_JMP;
738 				break;
739 			}
740 
741 			/* Convert some jumps when 'jump_true' is next insn. */
742 			if (fp->jt == 0) {
743 				switch (BPF_OP(fp->code)) {
744 				case BPF_JEQ:
745 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
746 					break;
747 				case BPF_JGT:
748 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
749 					break;
750 				case BPF_JGE:
751 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
752 					break;
753 				default:
754 					goto jmp_rest;
755 				}
756 
757 				target = i + fp->jf + 1;
758 				BPF_EMIT_JMP;
759 				break;
760 			}
761 jmp_rest:
762 			/* Other jumps are mapped into two insns: Jxx and JA. */
763 			target = i + fp->jt + 1;
764 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765 			BPF_EMIT_JMP;
766 			insn++;
767 
768 			insn->code = BPF_JMP | BPF_JA;
769 			target = i + fp->jf + 1;
770 			BPF_EMIT_JMP;
771 			break;
772 
773 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
774 		case BPF_LDX | BPF_MSH | BPF_B: {
775 			struct sock_filter tmp = {
776 				.code	= BPF_LD | BPF_ABS | BPF_B,
777 				.k	= fp->k,
778 			};
779 
780 			*seen_ld_abs = true;
781 
782 			/* X = A */
783 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
784 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
785 			convert_bpf_ld_abs(&tmp, &insn);
786 			insn++;
787 			/* A &= 0xf */
788 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
789 			/* A <<= 2 */
790 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
791 			/* tmp = X */
792 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
793 			/* X = A */
794 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
795 			/* A = tmp */
796 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
797 			break;
798 		}
799 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
800 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
801 		 */
802 		case BPF_RET | BPF_A:
803 		case BPF_RET | BPF_K:
804 			if (BPF_RVAL(fp->code) == BPF_K)
805 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
806 							0, fp->k);
807 			*insn = BPF_EXIT_INSN();
808 			break;
809 
810 		/* Store to stack. */
811 		case BPF_ST:
812 		case BPF_STX:
813 			stack_off = fp->k * 4  + 4;
814 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
815 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
816 					    -stack_off);
817 			/* check_load_and_stores() verifies that classic BPF can
818 			 * load from stack only after write, so tracking
819 			 * stack_depth for ST|STX insns is enough
820 			 */
821 			if (new_prog && new_prog->aux->stack_depth < stack_off)
822 				new_prog->aux->stack_depth = stack_off;
823 			break;
824 
825 		/* Load from stack. */
826 		case BPF_LD | BPF_MEM:
827 		case BPF_LDX | BPF_MEM:
828 			stack_off = fp->k * 4  + 4;
829 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
830 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
831 					    -stack_off);
832 			break;
833 
834 		/* A = K or X = K */
835 		case BPF_LD | BPF_IMM:
836 		case BPF_LDX | BPF_IMM:
837 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
838 					      BPF_REG_A : BPF_REG_X, fp->k);
839 			break;
840 
841 		/* X = A */
842 		case BPF_MISC | BPF_TAX:
843 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
844 			break;
845 
846 		/* A = X */
847 		case BPF_MISC | BPF_TXA:
848 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
849 			break;
850 
851 		/* A = skb->len or X = skb->len */
852 		case BPF_LD | BPF_W | BPF_LEN:
853 		case BPF_LDX | BPF_W | BPF_LEN:
854 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
855 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
856 					    offsetof(struct sk_buff, len));
857 			break;
858 
859 		/* Access seccomp_data fields. */
860 		case BPF_LDX | BPF_ABS | BPF_W:
861 			/* A = *(u32 *) (ctx + K) */
862 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
863 			break;
864 
865 		/* Unknown instruction. */
866 		default:
867 			goto err;
868 		}
869 
870 		insn++;
871 		if (new_prog)
872 			memcpy(new_insn, tmp_insns,
873 			       sizeof(*insn) * (insn - tmp_insns));
874 		new_insn += insn - tmp_insns;
875 	}
876 
877 	if (!new_prog) {
878 		/* Only calculating new length. */
879 		*new_len = new_insn - first_insn;
880 		if (*seen_ld_abs)
881 			*new_len += 4; /* Prologue bits. */
882 		return 0;
883 	}
884 
885 	pass++;
886 	if (new_flen != new_insn - first_insn) {
887 		new_flen = new_insn - first_insn;
888 		if (pass > 2)
889 			goto err;
890 		goto do_pass;
891 	}
892 
893 	kfree(addrs);
894 	BUG_ON(*new_len != new_flen);
895 	return 0;
896 err:
897 	kfree(addrs);
898 	return -EINVAL;
899 }
900 
901 /* Security:
902  *
903  * As we dont want to clear mem[] array for each packet going through
904  * __bpf_prog_run(), we check that filter loaded by user never try to read
905  * a cell if not previously written, and we check all branches to be sure
906  * a malicious user doesn't try to abuse us.
907  */
check_load_and_stores(const struct sock_filter * filter,int flen)908 static int check_load_and_stores(const struct sock_filter *filter, int flen)
909 {
910 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
911 	int pc, ret = 0;
912 
913 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
914 
915 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
916 	if (!masks)
917 		return -ENOMEM;
918 
919 	memset(masks, 0xff, flen * sizeof(*masks));
920 
921 	for (pc = 0; pc < flen; pc++) {
922 		memvalid &= masks[pc];
923 
924 		switch (filter[pc].code) {
925 		case BPF_ST:
926 		case BPF_STX:
927 			memvalid |= (1 << filter[pc].k);
928 			break;
929 		case BPF_LD | BPF_MEM:
930 		case BPF_LDX | BPF_MEM:
931 			if (!(memvalid & (1 << filter[pc].k))) {
932 				ret = -EINVAL;
933 				goto error;
934 			}
935 			break;
936 		case BPF_JMP | BPF_JA:
937 			/* A jump must set masks on target */
938 			masks[pc + 1 + filter[pc].k] &= memvalid;
939 			memvalid = ~0;
940 			break;
941 		case BPF_JMP | BPF_JEQ | BPF_K:
942 		case BPF_JMP | BPF_JEQ | BPF_X:
943 		case BPF_JMP | BPF_JGE | BPF_K:
944 		case BPF_JMP | BPF_JGE | BPF_X:
945 		case BPF_JMP | BPF_JGT | BPF_K:
946 		case BPF_JMP | BPF_JGT | BPF_X:
947 		case BPF_JMP | BPF_JSET | BPF_K:
948 		case BPF_JMP | BPF_JSET | BPF_X:
949 			/* A jump must set masks on targets */
950 			masks[pc + 1 + filter[pc].jt] &= memvalid;
951 			masks[pc + 1 + filter[pc].jf] &= memvalid;
952 			memvalid = ~0;
953 			break;
954 		}
955 	}
956 error:
957 	kfree(masks);
958 	return ret;
959 }
960 
chk_code_allowed(u16 code_to_probe)961 static bool chk_code_allowed(u16 code_to_probe)
962 {
963 	static const bool codes[] = {
964 		/* 32 bit ALU operations */
965 		[BPF_ALU | BPF_ADD | BPF_K] = true,
966 		[BPF_ALU | BPF_ADD | BPF_X] = true,
967 		[BPF_ALU | BPF_SUB | BPF_K] = true,
968 		[BPF_ALU | BPF_SUB | BPF_X] = true,
969 		[BPF_ALU | BPF_MUL | BPF_K] = true,
970 		[BPF_ALU | BPF_MUL | BPF_X] = true,
971 		[BPF_ALU | BPF_DIV | BPF_K] = true,
972 		[BPF_ALU | BPF_DIV | BPF_X] = true,
973 		[BPF_ALU | BPF_MOD | BPF_K] = true,
974 		[BPF_ALU | BPF_MOD | BPF_X] = true,
975 		[BPF_ALU | BPF_AND | BPF_K] = true,
976 		[BPF_ALU | BPF_AND | BPF_X] = true,
977 		[BPF_ALU | BPF_OR | BPF_K] = true,
978 		[BPF_ALU | BPF_OR | BPF_X] = true,
979 		[BPF_ALU | BPF_XOR | BPF_K] = true,
980 		[BPF_ALU | BPF_XOR | BPF_X] = true,
981 		[BPF_ALU | BPF_LSH | BPF_K] = true,
982 		[BPF_ALU | BPF_LSH | BPF_X] = true,
983 		[BPF_ALU | BPF_RSH | BPF_K] = true,
984 		[BPF_ALU | BPF_RSH | BPF_X] = true,
985 		[BPF_ALU | BPF_NEG] = true,
986 		/* Load instructions */
987 		[BPF_LD | BPF_W | BPF_ABS] = true,
988 		[BPF_LD | BPF_H | BPF_ABS] = true,
989 		[BPF_LD | BPF_B | BPF_ABS] = true,
990 		[BPF_LD | BPF_W | BPF_LEN] = true,
991 		[BPF_LD | BPF_W | BPF_IND] = true,
992 		[BPF_LD | BPF_H | BPF_IND] = true,
993 		[BPF_LD | BPF_B | BPF_IND] = true,
994 		[BPF_LD | BPF_IMM] = true,
995 		[BPF_LD | BPF_MEM] = true,
996 		[BPF_LDX | BPF_W | BPF_LEN] = true,
997 		[BPF_LDX | BPF_B | BPF_MSH] = true,
998 		[BPF_LDX | BPF_IMM] = true,
999 		[BPF_LDX | BPF_MEM] = true,
1000 		/* Store instructions */
1001 		[BPF_ST] = true,
1002 		[BPF_STX] = true,
1003 		/* Misc instructions */
1004 		[BPF_MISC | BPF_TAX] = true,
1005 		[BPF_MISC | BPF_TXA] = true,
1006 		/* Return instructions */
1007 		[BPF_RET | BPF_K] = true,
1008 		[BPF_RET | BPF_A] = true,
1009 		/* Jump instructions */
1010 		[BPF_JMP | BPF_JA] = true,
1011 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1012 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1013 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1014 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1015 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1016 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1017 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1018 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1019 	};
1020 
1021 	if (code_to_probe >= ARRAY_SIZE(codes))
1022 		return false;
1023 
1024 	return codes[code_to_probe];
1025 }
1026 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1027 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1028 				unsigned int flen)
1029 {
1030 	if (filter == NULL)
1031 		return false;
1032 	if (flen == 0 || flen > BPF_MAXINSNS)
1033 		return false;
1034 
1035 	return true;
1036 }
1037 
1038 /**
1039  *	bpf_check_classic - verify socket filter code
1040  *	@filter: filter to verify
1041  *	@flen: length of filter
1042  *
1043  * Check the user's filter code. If we let some ugly
1044  * filter code slip through kaboom! The filter must contain
1045  * no references or jumps that are out of range, no illegal
1046  * instructions, and must end with a RET instruction.
1047  *
1048  * All jumps are forward as they are not signed.
1049  *
1050  * Returns 0 if the rule set is legal or -EINVAL if not.
1051  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1052 static int bpf_check_classic(const struct sock_filter *filter,
1053 			     unsigned int flen)
1054 {
1055 	bool anc_found;
1056 	int pc;
1057 
1058 	/* Check the filter code now */
1059 	for (pc = 0; pc < flen; pc++) {
1060 		const struct sock_filter *ftest = &filter[pc];
1061 
1062 		/* May we actually operate on this code? */
1063 		if (!chk_code_allowed(ftest->code))
1064 			return -EINVAL;
1065 
1066 		/* Some instructions need special checks */
1067 		switch (ftest->code) {
1068 		case BPF_ALU | BPF_DIV | BPF_K:
1069 		case BPF_ALU | BPF_MOD | BPF_K:
1070 			/* Check for division by zero */
1071 			if (ftest->k == 0)
1072 				return -EINVAL;
1073 			break;
1074 		case BPF_ALU | BPF_LSH | BPF_K:
1075 		case BPF_ALU | BPF_RSH | BPF_K:
1076 			if (ftest->k >= 32)
1077 				return -EINVAL;
1078 			break;
1079 		case BPF_LD | BPF_MEM:
1080 		case BPF_LDX | BPF_MEM:
1081 		case BPF_ST:
1082 		case BPF_STX:
1083 			/* Check for invalid memory addresses */
1084 			if (ftest->k >= BPF_MEMWORDS)
1085 				return -EINVAL;
1086 			break;
1087 		case BPF_JMP | BPF_JA:
1088 			/* Note, the large ftest->k might cause loops.
1089 			 * Compare this with conditional jumps below,
1090 			 * where offsets are limited. --ANK (981016)
1091 			 */
1092 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1093 				return -EINVAL;
1094 			break;
1095 		case BPF_JMP | BPF_JEQ | BPF_K:
1096 		case BPF_JMP | BPF_JEQ | BPF_X:
1097 		case BPF_JMP | BPF_JGE | BPF_K:
1098 		case BPF_JMP | BPF_JGE | BPF_X:
1099 		case BPF_JMP | BPF_JGT | BPF_K:
1100 		case BPF_JMP | BPF_JGT | BPF_X:
1101 		case BPF_JMP | BPF_JSET | BPF_K:
1102 		case BPF_JMP | BPF_JSET | BPF_X:
1103 			/* Both conditionals must be safe */
1104 			if (pc + ftest->jt + 1 >= flen ||
1105 			    pc + ftest->jf + 1 >= flen)
1106 				return -EINVAL;
1107 			break;
1108 		case BPF_LD | BPF_W | BPF_ABS:
1109 		case BPF_LD | BPF_H | BPF_ABS:
1110 		case BPF_LD | BPF_B | BPF_ABS:
1111 			anc_found = false;
1112 			if (bpf_anc_helper(ftest) & BPF_ANC)
1113 				anc_found = true;
1114 			/* Ancillary operation unknown or unsupported */
1115 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1116 				return -EINVAL;
1117 		}
1118 	}
1119 
1120 	/* Last instruction must be a RET code */
1121 	switch (filter[flen - 1].code) {
1122 	case BPF_RET | BPF_K:
1123 	case BPF_RET | BPF_A:
1124 		return check_load_and_stores(filter, flen);
1125 	}
1126 
1127 	return -EINVAL;
1128 }
1129 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1130 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1131 				      const struct sock_fprog *fprog)
1132 {
1133 	unsigned int fsize = bpf_classic_proglen(fprog);
1134 	struct sock_fprog_kern *fkprog;
1135 
1136 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1137 	if (!fp->orig_prog)
1138 		return -ENOMEM;
1139 
1140 	fkprog = fp->orig_prog;
1141 	fkprog->len = fprog->len;
1142 
1143 	fkprog->filter = kmemdup(fp->insns, fsize,
1144 				 GFP_KERNEL | __GFP_NOWARN);
1145 	if (!fkprog->filter) {
1146 		kfree(fp->orig_prog);
1147 		return -ENOMEM;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
bpf_release_orig_filter(struct bpf_prog * fp)1153 static void bpf_release_orig_filter(struct bpf_prog *fp)
1154 {
1155 	struct sock_fprog_kern *fprog = fp->orig_prog;
1156 
1157 	if (fprog) {
1158 		kfree(fprog->filter);
1159 		kfree(fprog);
1160 	}
1161 }
1162 
__bpf_prog_release(struct bpf_prog * prog)1163 static void __bpf_prog_release(struct bpf_prog *prog)
1164 {
1165 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1166 		bpf_prog_put(prog);
1167 	} else {
1168 		bpf_release_orig_filter(prog);
1169 		bpf_prog_free(prog);
1170 	}
1171 }
1172 
__sk_filter_release(struct sk_filter * fp)1173 static void __sk_filter_release(struct sk_filter *fp)
1174 {
1175 	__bpf_prog_release(fp->prog);
1176 	kfree(fp);
1177 }
1178 
1179 /**
1180  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1181  *	@rcu: rcu_head that contains the sk_filter to free
1182  */
sk_filter_release_rcu(struct rcu_head * rcu)1183 static void sk_filter_release_rcu(struct rcu_head *rcu)
1184 {
1185 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1186 
1187 	__sk_filter_release(fp);
1188 }
1189 
1190 /**
1191  *	sk_filter_release - release a socket filter
1192  *	@fp: filter to remove
1193  *
1194  *	Remove a filter from a socket and release its resources.
1195  */
sk_filter_release(struct sk_filter * fp)1196 static void sk_filter_release(struct sk_filter *fp)
1197 {
1198 	if (refcount_dec_and_test(&fp->refcnt))
1199 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1200 }
1201 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1202 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1203 {
1204 	u32 filter_size = bpf_prog_size(fp->prog->len);
1205 
1206 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1207 	sk_filter_release(fp);
1208 }
1209 
1210 /* try to charge the socket memory if there is space available
1211  * return true on success
1212  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1213 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1214 {
1215 	u32 filter_size = bpf_prog_size(fp->prog->len);
1216 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1217 
1218 	/* same check as in sock_kmalloc() */
1219 	if (filter_size <= optmem_max &&
1220 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1221 		atomic_add(filter_size, &sk->sk_omem_alloc);
1222 		return true;
1223 	}
1224 	return false;
1225 }
1226 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1227 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1228 {
1229 	if (!refcount_inc_not_zero(&fp->refcnt))
1230 		return false;
1231 
1232 	if (!__sk_filter_charge(sk, fp)) {
1233 		sk_filter_release(fp);
1234 		return false;
1235 	}
1236 	return true;
1237 }
1238 
bpf_migrate_filter(struct bpf_prog * fp)1239 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1240 {
1241 	struct sock_filter *old_prog;
1242 	struct bpf_prog *old_fp;
1243 	int err, new_len, old_len = fp->len;
1244 	bool seen_ld_abs = false;
1245 
1246 	/* We are free to overwrite insns et al right here as it
1247 	 * won't be used at this point in time anymore internally
1248 	 * after the migration to the internal BPF instruction
1249 	 * representation.
1250 	 */
1251 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1252 		     sizeof(struct bpf_insn));
1253 
1254 	/* Conversion cannot happen on overlapping memory areas,
1255 	 * so we need to keep the user BPF around until the 2nd
1256 	 * pass. At this time, the user BPF is stored in fp->insns.
1257 	 */
1258 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1259 			   GFP_KERNEL | __GFP_NOWARN);
1260 	if (!old_prog) {
1261 		err = -ENOMEM;
1262 		goto out_err;
1263 	}
1264 
1265 	/* 1st pass: calculate the new program length. */
1266 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1267 				 &seen_ld_abs);
1268 	if (err)
1269 		goto out_err_free;
1270 
1271 	/* Expand fp for appending the new filter representation. */
1272 	old_fp = fp;
1273 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1274 	if (!fp) {
1275 		/* The old_fp is still around in case we couldn't
1276 		 * allocate new memory, so uncharge on that one.
1277 		 */
1278 		fp = old_fp;
1279 		err = -ENOMEM;
1280 		goto out_err_free;
1281 	}
1282 
1283 	fp->len = new_len;
1284 
1285 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1286 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1287 				 &seen_ld_abs);
1288 	if (err)
1289 		/* 2nd bpf_convert_filter() can fail only if it fails
1290 		 * to allocate memory, remapping must succeed. Note,
1291 		 * that at this time old_fp has already been released
1292 		 * by krealloc().
1293 		 */
1294 		goto out_err_free;
1295 
1296 	fp = bpf_prog_select_runtime(fp, &err);
1297 	if (err)
1298 		goto out_err_free;
1299 
1300 	kfree(old_prog);
1301 	return fp;
1302 
1303 out_err_free:
1304 	kfree(old_prog);
1305 out_err:
1306 	__bpf_prog_release(fp);
1307 	return ERR_PTR(err);
1308 }
1309 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1310 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1311 					   bpf_aux_classic_check_t trans)
1312 {
1313 	int err;
1314 
1315 	fp->bpf_func = NULL;
1316 	fp->jited = 0;
1317 
1318 	err = bpf_check_classic(fp->insns, fp->len);
1319 	if (err) {
1320 		__bpf_prog_release(fp);
1321 		return ERR_PTR(err);
1322 	}
1323 
1324 	/* There might be additional checks and transformations
1325 	 * needed on classic filters, f.e. in case of seccomp.
1326 	 */
1327 	if (trans) {
1328 		err = trans(fp->insns, fp->len);
1329 		if (err) {
1330 			__bpf_prog_release(fp);
1331 			return ERR_PTR(err);
1332 		}
1333 	}
1334 
1335 	/* Probe if we can JIT compile the filter and if so, do
1336 	 * the compilation of the filter.
1337 	 */
1338 	bpf_jit_compile(fp);
1339 
1340 	/* JIT compiler couldn't process this filter, so do the
1341 	 * internal BPF translation for the optimized interpreter.
1342 	 */
1343 	if (!fp->jited)
1344 		fp = bpf_migrate_filter(fp);
1345 
1346 	return fp;
1347 }
1348 
1349 /**
1350  *	bpf_prog_create - create an unattached filter
1351  *	@pfp: the unattached filter that is created
1352  *	@fprog: the filter program
1353  *
1354  * Create a filter independent of any socket. We first run some
1355  * sanity checks on it to make sure it does not explode on us later.
1356  * If an error occurs or there is insufficient memory for the filter
1357  * a negative errno code is returned. On success the return is zero.
1358  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1359 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1360 {
1361 	unsigned int fsize = bpf_classic_proglen(fprog);
1362 	struct bpf_prog *fp;
1363 
1364 	/* Make sure new filter is there and in the right amounts. */
1365 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1366 		return -EINVAL;
1367 
1368 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1369 	if (!fp)
1370 		return -ENOMEM;
1371 
1372 	memcpy(fp->insns, fprog->filter, fsize);
1373 
1374 	fp->len = fprog->len;
1375 	/* Since unattached filters are not copied back to user
1376 	 * space through sk_get_filter(), we do not need to hold
1377 	 * a copy here, and can spare us the work.
1378 	 */
1379 	fp->orig_prog = NULL;
1380 
1381 	/* bpf_prepare_filter() already takes care of freeing
1382 	 * memory in case something goes wrong.
1383 	 */
1384 	fp = bpf_prepare_filter(fp, NULL);
1385 	if (IS_ERR(fp))
1386 		return PTR_ERR(fp);
1387 
1388 	*pfp = fp;
1389 	return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(bpf_prog_create);
1392 
1393 /**
1394  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1395  *	@pfp: the unattached filter that is created
1396  *	@fprog: the filter program
1397  *	@trans: post-classic verifier transformation handler
1398  *	@save_orig: save classic BPF program
1399  *
1400  * This function effectively does the same as bpf_prog_create(), only
1401  * that it builds up its insns buffer from user space provided buffer.
1402  * It also allows for passing a bpf_aux_classic_check_t handler.
1403  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1404 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1405 			      bpf_aux_classic_check_t trans, bool save_orig)
1406 {
1407 	unsigned int fsize = bpf_classic_proglen(fprog);
1408 	struct bpf_prog *fp;
1409 	int err;
1410 
1411 	/* Make sure new filter is there and in the right amounts. */
1412 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1413 		return -EINVAL;
1414 
1415 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1416 	if (!fp)
1417 		return -ENOMEM;
1418 
1419 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1420 		__bpf_prog_free(fp);
1421 		return -EFAULT;
1422 	}
1423 
1424 	fp->len = fprog->len;
1425 	fp->orig_prog = NULL;
1426 
1427 	if (save_orig) {
1428 		err = bpf_prog_store_orig_filter(fp, fprog);
1429 		if (err) {
1430 			__bpf_prog_free(fp);
1431 			return -ENOMEM;
1432 		}
1433 	}
1434 
1435 	/* bpf_prepare_filter() already takes care of freeing
1436 	 * memory in case something goes wrong.
1437 	 */
1438 	fp = bpf_prepare_filter(fp, trans);
1439 	if (IS_ERR(fp))
1440 		return PTR_ERR(fp);
1441 
1442 	*pfp = fp;
1443 	return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1446 
bpf_prog_destroy(struct bpf_prog * fp)1447 void bpf_prog_destroy(struct bpf_prog *fp)
1448 {
1449 	__bpf_prog_release(fp);
1450 }
1451 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1452 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1453 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1454 {
1455 	struct sk_filter *fp, *old_fp;
1456 
1457 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1458 	if (!fp)
1459 		return -ENOMEM;
1460 
1461 	fp->prog = prog;
1462 
1463 	if (!__sk_filter_charge(sk, fp)) {
1464 		kfree(fp);
1465 		return -ENOMEM;
1466 	}
1467 	refcount_set(&fp->refcnt, 1);
1468 
1469 	old_fp = rcu_dereference_protected(sk->sk_filter,
1470 					   lockdep_sock_is_held(sk));
1471 	rcu_assign_pointer(sk->sk_filter, fp);
1472 
1473 	if (old_fp)
1474 		sk_filter_uncharge(sk, old_fp);
1475 
1476 	return 0;
1477 }
1478 
1479 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1480 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1481 {
1482 	unsigned int fsize = bpf_classic_proglen(fprog);
1483 	struct bpf_prog *prog;
1484 	int err;
1485 
1486 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1487 		return ERR_PTR(-EPERM);
1488 
1489 	/* Make sure new filter is there and in the right amounts. */
1490 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1491 		return ERR_PTR(-EINVAL);
1492 
1493 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1494 	if (!prog)
1495 		return ERR_PTR(-ENOMEM);
1496 
1497 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1498 		__bpf_prog_free(prog);
1499 		return ERR_PTR(-EFAULT);
1500 	}
1501 
1502 	prog->len = fprog->len;
1503 
1504 	err = bpf_prog_store_orig_filter(prog, fprog);
1505 	if (err) {
1506 		__bpf_prog_free(prog);
1507 		return ERR_PTR(-ENOMEM);
1508 	}
1509 
1510 	/* bpf_prepare_filter() already takes care of freeing
1511 	 * memory in case something goes wrong.
1512 	 */
1513 	return bpf_prepare_filter(prog, NULL);
1514 }
1515 
1516 /**
1517  *	sk_attach_filter - attach a socket filter
1518  *	@fprog: the filter program
1519  *	@sk: the socket to use
1520  *
1521  * Attach the user's filter code. We first run some sanity checks on
1522  * it to make sure it does not explode on us later. If an error
1523  * occurs or there is insufficient memory for the filter a negative
1524  * errno code is returned. On success the return is zero.
1525  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1526 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1527 {
1528 	struct bpf_prog *prog = __get_filter(fprog, sk);
1529 	int err;
1530 
1531 	if (IS_ERR(prog))
1532 		return PTR_ERR(prog);
1533 
1534 	err = __sk_attach_prog(prog, sk);
1535 	if (err < 0) {
1536 		__bpf_prog_release(prog);
1537 		return err;
1538 	}
1539 
1540 	return 0;
1541 }
1542 EXPORT_SYMBOL_GPL(sk_attach_filter);
1543 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1544 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1545 {
1546 	struct bpf_prog *prog = __get_filter(fprog, sk);
1547 	int err;
1548 
1549 	if (IS_ERR(prog))
1550 		return PTR_ERR(prog);
1551 
1552 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1553 		err = -ENOMEM;
1554 	else
1555 		err = reuseport_attach_prog(sk, prog);
1556 
1557 	if (err)
1558 		__bpf_prog_release(prog);
1559 
1560 	return err;
1561 }
1562 
__get_bpf(u32 ufd,struct sock * sk)1563 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1564 {
1565 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1566 		return ERR_PTR(-EPERM);
1567 
1568 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1569 }
1570 
sk_attach_bpf(u32 ufd,struct sock * sk)1571 int sk_attach_bpf(u32 ufd, struct sock *sk)
1572 {
1573 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1574 	int err;
1575 
1576 	if (IS_ERR(prog))
1577 		return PTR_ERR(prog);
1578 
1579 	err = __sk_attach_prog(prog, sk);
1580 	if (err < 0) {
1581 		bpf_prog_put(prog);
1582 		return err;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1588 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1589 {
1590 	struct bpf_prog *prog;
1591 	int err;
1592 
1593 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1594 		return -EPERM;
1595 
1596 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1597 	if (PTR_ERR(prog) == -EINVAL)
1598 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1599 	if (IS_ERR(prog))
1600 		return PTR_ERR(prog);
1601 
1602 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1603 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1604 		 * bpf prog (e.g. sockmap).  It depends on the
1605 		 * limitation imposed by bpf_prog_load().
1606 		 * Hence, sysctl_optmem_max is not checked.
1607 		 */
1608 		if ((sk->sk_type != SOCK_STREAM &&
1609 		     sk->sk_type != SOCK_DGRAM) ||
1610 		    (sk->sk_protocol != IPPROTO_UDP &&
1611 		     sk->sk_protocol != IPPROTO_TCP) ||
1612 		    (sk->sk_family != AF_INET &&
1613 		     sk->sk_family != AF_INET6)) {
1614 			err = -ENOTSUPP;
1615 			goto err_prog_put;
1616 		}
1617 	} else {
1618 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1619 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1620 			err = -ENOMEM;
1621 			goto err_prog_put;
1622 		}
1623 	}
1624 
1625 	err = reuseport_attach_prog(sk, prog);
1626 err_prog_put:
1627 	if (err)
1628 		bpf_prog_put(prog);
1629 
1630 	return err;
1631 }
1632 
sk_reuseport_prog_free(struct bpf_prog * prog)1633 void sk_reuseport_prog_free(struct bpf_prog *prog)
1634 {
1635 	if (!prog)
1636 		return;
1637 
1638 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1639 		bpf_prog_put(prog);
1640 	else
1641 		bpf_prog_destroy(prog);
1642 }
1643 
1644 struct bpf_scratchpad {
1645 	union {
1646 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1647 		u8     buff[MAX_BPF_STACK];
1648 	};
1649 };
1650 
1651 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1652 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1653 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1654 					  unsigned int write_len)
1655 {
1656 	return skb_ensure_writable(skb, write_len);
1657 }
1658 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1659 static inline int bpf_try_make_writable(struct sk_buff *skb,
1660 					unsigned int write_len)
1661 {
1662 	int err = __bpf_try_make_writable(skb, write_len);
1663 
1664 	bpf_compute_data_pointers(skb);
1665 	return err;
1666 }
1667 
bpf_try_make_head_writable(struct sk_buff * skb)1668 static int bpf_try_make_head_writable(struct sk_buff *skb)
1669 {
1670 	return bpf_try_make_writable(skb, skb_headlen(skb));
1671 }
1672 
bpf_push_mac_rcsum(struct sk_buff * skb)1673 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1674 {
1675 	if (skb_at_tc_ingress(skb))
1676 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1677 }
1678 
bpf_pull_mac_rcsum(struct sk_buff * skb)1679 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1680 {
1681 	if (skb_at_tc_ingress(skb))
1682 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1683 }
1684 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1685 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1686 	   const void *, from, u32, len, u64, flags)
1687 {
1688 	void *ptr;
1689 
1690 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1691 		return -EINVAL;
1692 	if (unlikely(offset > INT_MAX))
1693 		return -EFAULT;
1694 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1695 		return -EFAULT;
1696 
1697 	ptr = skb->data + offset;
1698 	if (flags & BPF_F_RECOMPUTE_CSUM)
1699 		__skb_postpull_rcsum(skb, ptr, len, offset);
1700 
1701 	memcpy(ptr, from, len);
1702 
1703 	if (flags & BPF_F_RECOMPUTE_CSUM)
1704 		__skb_postpush_rcsum(skb, ptr, len, offset);
1705 	if (flags & BPF_F_INVALIDATE_HASH)
1706 		skb_clear_hash(skb);
1707 
1708 	return 0;
1709 }
1710 
1711 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1712 	.func		= bpf_skb_store_bytes,
1713 	.gpl_only	= false,
1714 	.ret_type	= RET_INTEGER,
1715 	.arg1_type	= ARG_PTR_TO_CTX,
1716 	.arg2_type	= ARG_ANYTHING,
1717 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1718 	.arg4_type	= ARG_CONST_SIZE,
1719 	.arg5_type	= ARG_ANYTHING,
1720 };
1721 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1722 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1723 	   void *, to, u32, len)
1724 {
1725 	void *ptr;
1726 
1727 	if (unlikely(offset > INT_MAX))
1728 		goto err_clear;
1729 
1730 	ptr = skb_header_pointer(skb, offset, len, to);
1731 	if (unlikely(!ptr))
1732 		goto err_clear;
1733 	if (ptr != to)
1734 		memcpy(to, ptr, len);
1735 
1736 	return 0;
1737 err_clear:
1738 	memset(to, 0, len);
1739 	return -EFAULT;
1740 }
1741 
1742 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1743 	.func		= bpf_skb_load_bytes,
1744 	.gpl_only	= false,
1745 	.ret_type	= RET_INTEGER,
1746 	.arg1_type	= ARG_PTR_TO_CTX,
1747 	.arg2_type	= ARG_ANYTHING,
1748 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1749 	.arg4_type	= ARG_CONST_SIZE,
1750 };
1751 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1752 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1753 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1754 	   void *, to, u32, len)
1755 {
1756 	void *ptr;
1757 
1758 	if (unlikely(offset > 0xffff))
1759 		goto err_clear;
1760 
1761 	if (unlikely(!ctx->skb))
1762 		goto err_clear;
1763 
1764 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1765 	if (unlikely(!ptr))
1766 		goto err_clear;
1767 	if (ptr != to)
1768 		memcpy(to, ptr, len);
1769 
1770 	return 0;
1771 err_clear:
1772 	memset(to, 0, len);
1773 	return -EFAULT;
1774 }
1775 
1776 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1777 	.func		= bpf_flow_dissector_load_bytes,
1778 	.gpl_only	= false,
1779 	.ret_type	= RET_INTEGER,
1780 	.arg1_type	= ARG_PTR_TO_CTX,
1781 	.arg2_type	= ARG_ANYTHING,
1782 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1783 	.arg4_type	= ARG_CONST_SIZE,
1784 };
1785 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1786 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1787 	   u32, offset, void *, to, u32, len, u32, start_header)
1788 {
1789 	u8 *end = skb_tail_pointer(skb);
1790 	u8 *start, *ptr;
1791 
1792 	if (unlikely(offset > 0xffff))
1793 		goto err_clear;
1794 
1795 	switch (start_header) {
1796 	case BPF_HDR_START_MAC:
1797 		if (unlikely(!skb_mac_header_was_set(skb)))
1798 			goto err_clear;
1799 		start = skb_mac_header(skb);
1800 		break;
1801 	case BPF_HDR_START_NET:
1802 		start = skb_network_header(skb);
1803 		break;
1804 	default:
1805 		goto err_clear;
1806 	}
1807 
1808 	ptr = start + offset;
1809 
1810 	if (likely(ptr + len <= end)) {
1811 		memcpy(to, ptr, len);
1812 		return 0;
1813 	}
1814 
1815 err_clear:
1816 	memset(to, 0, len);
1817 	return -EFAULT;
1818 }
1819 
1820 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1821 	.func		= bpf_skb_load_bytes_relative,
1822 	.gpl_only	= false,
1823 	.ret_type	= RET_INTEGER,
1824 	.arg1_type	= ARG_PTR_TO_CTX,
1825 	.arg2_type	= ARG_ANYTHING,
1826 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1827 	.arg4_type	= ARG_CONST_SIZE,
1828 	.arg5_type	= ARG_ANYTHING,
1829 };
1830 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1831 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1832 {
1833 	/* Idea is the following: should the needed direct read/write
1834 	 * test fail during runtime, we can pull in more data and redo
1835 	 * again, since implicitly, we invalidate previous checks here.
1836 	 *
1837 	 * Or, since we know how much we need to make read/writeable,
1838 	 * this can be done once at the program beginning for direct
1839 	 * access case. By this we overcome limitations of only current
1840 	 * headroom being accessible.
1841 	 */
1842 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1843 }
1844 
1845 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1846 	.func		= bpf_skb_pull_data,
1847 	.gpl_only	= false,
1848 	.ret_type	= RET_INTEGER,
1849 	.arg1_type	= ARG_PTR_TO_CTX,
1850 	.arg2_type	= ARG_ANYTHING,
1851 };
1852 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1853 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1854 {
1855 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1856 }
1857 
1858 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1859 	.func		= bpf_sk_fullsock,
1860 	.gpl_only	= false,
1861 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1862 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1863 };
1864 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1865 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1866 					   unsigned int write_len)
1867 {
1868 	return __bpf_try_make_writable(skb, write_len);
1869 }
1870 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1871 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1872 {
1873 	/* Idea is the following: should the needed direct read/write
1874 	 * test fail during runtime, we can pull in more data and redo
1875 	 * again, since implicitly, we invalidate previous checks here.
1876 	 *
1877 	 * Or, since we know how much we need to make read/writeable,
1878 	 * this can be done once at the program beginning for direct
1879 	 * access case. By this we overcome limitations of only current
1880 	 * headroom being accessible.
1881 	 */
1882 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1883 }
1884 
1885 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1886 	.func		= sk_skb_pull_data,
1887 	.gpl_only	= false,
1888 	.ret_type	= RET_INTEGER,
1889 	.arg1_type	= ARG_PTR_TO_CTX,
1890 	.arg2_type	= ARG_ANYTHING,
1891 };
1892 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1893 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1894 	   u64, from, u64, to, u64, flags)
1895 {
1896 	__sum16 *ptr;
1897 
1898 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1899 		return -EINVAL;
1900 	if (unlikely(offset > 0xffff || offset & 1))
1901 		return -EFAULT;
1902 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1903 		return -EFAULT;
1904 
1905 	ptr = (__sum16 *)(skb->data + offset);
1906 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1907 	case 0:
1908 		if (unlikely(from != 0))
1909 			return -EINVAL;
1910 
1911 		csum_replace_by_diff(ptr, to);
1912 		break;
1913 	case 2:
1914 		csum_replace2(ptr, from, to);
1915 		break;
1916 	case 4:
1917 		csum_replace4(ptr, from, to);
1918 		break;
1919 	default:
1920 		return -EINVAL;
1921 	}
1922 
1923 	return 0;
1924 }
1925 
1926 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1927 	.func		= bpf_l3_csum_replace,
1928 	.gpl_only	= false,
1929 	.ret_type	= RET_INTEGER,
1930 	.arg1_type	= ARG_PTR_TO_CTX,
1931 	.arg2_type	= ARG_ANYTHING,
1932 	.arg3_type	= ARG_ANYTHING,
1933 	.arg4_type	= ARG_ANYTHING,
1934 	.arg5_type	= ARG_ANYTHING,
1935 };
1936 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1937 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1938 	   u64, from, u64, to, u64, flags)
1939 {
1940 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1941 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1942 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1943 	__sum16 *ptr;
1944 
1945 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1946 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1947 		return -EINVAL;
1948 	if (unlikely(offset > 0xffff || offset & 1))
1949 		return -EFAULT;
1950 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1951 		return -EFAULT;
1952 
1953 	ptr = (__sum16 *)(skb->data + offset);
1954 	if (is_mmzero && !do_mforce && !*ptr)
1955 		return 0;
1956 
1957 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1958 	case 0:
1959 		if (unlikely(from != 0))
1960 			return -EINVAL;
1961 
1962 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1963 		break;
1964 	case 2:
1965 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1966 		break;
1967 	case 4:
1968 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1969 		break;
1970 	default:
1971 		return -EINVAL;
1972 	}
1973 
1974 	if (is_mmzero && !*ptr)
1975 		*ptr = CSUM_MANGLED_0;
1976 	return 0;
1977 }
1978 
1979 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1980 	.func		= bpf_l4_csum_replace,
1981 	.gpl_only	= false,
1982 	.ret_type	= RET_INTEGER,
1983 	.arg1_type	= ARG_PTR_TO_CTX,
1984 	.arg2_type	= ARG_ANYTHING,
1985 	.arg3_type	= ARG_ANYTHING,
1986 	.arg4_type	= ARG_ANYTHING,
1987 	.arg5_type	= ARG_ANYTHING,
1988 };
1989 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1990 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1991 	   __be32 *, to, u32, to_size, __wsum, seed)
1992 {
1993 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1994 	u32 diff_size = from_size + to_size;
1995 	int i, j = 0;
1996 
1997 	/* This is quite flexible, some examples:
1998 	 *
1999 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2000 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2001 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2002 	 *
2003 	 * Even for diffing, from_size and to_size don't need to be equal.
2004 	 */
2005 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2006 		     diff_size > sizeof(sp->diff)))
2007 		return -EINVAL;
2008 
2009 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2010 		sp->diff[j] = ~from[i];
2011 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2012 		sp->diff[j] = to[i];
2013 
2014 	return csum_partial(sp->diff, diff_size, seed);
2015 }
2016 
2017 static const struct bpf_func_proto bpf_csum_diff_proto = {
2018 	.func		= bpf_csum_diff,
2019 	.gpl_only	= false,
2020 	.pkt_access	= true,
2021 	.ret_type	= RET_INTEGER,
2022 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2023 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2024 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2026 	.arg5_type	= ARG_ANYTHING,
2027 };
2028 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2029 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2030 {
2031 	/* The interface is to be used in combination with bpf_csum_diff()
2032 	 * for direct packet writes. csum rotation for alignment as well
2033 	 * as emulating csum_sub() can be done from the eBPF program.
2034 	 */
2035 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2036 		return (skb->csum = csum_add(skb->csum, csum));
2037 
2038 	return -ENOTSUPP;
2039 }
2040 
2041 static const struct bpf_func_proto bpf_csum_update_proto = {
2042 	.func		= bpf_csum_update,
2043 	.gpl_only	= false,
2044 	.ret_type	= RET_INTEGER,
2045 	.arg1_type	= ARG_PTR_TO_CTX,
2046 	.arg2_type	= ARG_ANYTHING,
2047 };
2048 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2049 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2050 {
2051 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2052 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2053 	 * is passed as flags, for example.
2054 	 */
2055 	switch (level) {
2056 	case BPF_CSUM_LEVEL_INC:
2057 		__skb_incr_checksum_unnecessary(skb);
2058 		break;
2059 	case BPF_CSUM_LEVEL_DEC:
2060 		__skb_decr_checksum_unnecessary(skb);
2061 		break;
2062 	case BPF_CSUM_LEVEL_RESET:
2063 		__skb_reset_checksum_unnecessary(skb);
2064 		break;
2065 	case BPF_CSUM_LEVEL_QUERY:
2066 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2067 		       skb->csum_level : -EACCES;
2068 	default:
2069 		return -EINVAL;
2070 	}
2071 
2072 	return 0;
2073 }
2074 
2075 static const struct bpf_func_proto bpf_csum_level_proto = {
2076 	.func		= bpf_csum_level,
2077 	.gpl_only	= false,
2078 	.ret_type	= RET_INTEGER,
2079 	.arg1_type	= ARG_PTR_TO_CTX,
2080 	.arg2_type	= ARG_ANYTHING,
2081 };
2082 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2083 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2084 {
2085 	return dev_forward_skb_nomtu(dev, skb);
2086 }
2087 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2088 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2089 				      struct sk_buff *skb)
2090 {
2091 	int ret = ____dev_forward_skb(dev, skb, false);
2092 
2093 	if (likely(!ret)) {
2094 		skb->dev = dev;
2095 		ret = netif_rx(skb);
2096 	}
2097 
2098 	return ret;
2099 }
2100 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2101 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2102 {
2103 	int ret;
2104 
2105 	if (dev_xmit_recursion()) {
2106 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2107 		kfree_skb(skb);
2108 		return -ENETDOWN;
2109 	}
2110 
2111 	skb->dev = dev;
2112 	skb->tstamp = 0;
2113 
2114 	dev_xmit_recursion_inc();
2115 	ret = dev_queue_xmit(skb);
2116 	dev_xmit_recursion_dec();
2117 
2118 	return ret;
2119 }
2120 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2121 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2122 				 u32 flags)
2123 {
2124 	unsigned int mlen = skb_network_offset(skb);
2125 
2126 	if (unlikely(skb->len <= mlen)) {
2127 		kfree_skb(skb);
2128 		return -ERANGE;
2129 	}
2130 
2131 	if (mlen) {
2132 		__skb_pull(skb, mlen);
2133 		if (unlikely(!skb->len)) {
2134 			kfree_skb(skb);
2135 			return -ERANGE;
2136 		}
2137 
2138 		/* At ingress, the mac header has already been pulled once.
2139 		 * At egress, skb_pospull_rcsum has to be done in case that
2140 		 * the skb is originated from ingress (i.e. a forwarded skb)
2141 		 * to ensure that rcsum starts at net header.
2142 		 */
2143 		if (!skb_at_tc_ingress(skb))
2144 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2145 	}
2146 	skb_pop_mac_header(skb);
2147 	skb_reset_mac_len(skb);
2148 	return flags & BPF_F_INGRESS ?
2149 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2150 }
2151 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2152 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2153 				 u32 flags)
2154 {
2155 	/* Verify that a link layer header is carried */
2156 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2157 		kfree_skb(skb);
2158 		return -ERANGE;
2159 	}
2160 
2161 	bpf_push_mac_rcsum(skb);
2162 	return flags & BPF_F_INGRESS ?
2163 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2164 }
2165 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2166 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2167 			  u32 flags)
2168 {
2169 	if (dev_is_mac_header_xmit(dev))
2170 		return __bpf_redirect_common(skb, dev, flags);
2171 	else
2172 		return __bpf_redirect_no_mac(skb, dev, flags);
2173 }
2174 
2175 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2176 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2177 			    struct net_device *dev, struct bpf_nh_params *nh)
2178 {
2179 	u32 hh_len = LL_RESERVED_SPACE(dev);
2180 	const struct in6_addr *nexthop;
2181 	struct dst_entry *dst = NULL;
2182 	struct neighbour *neigh;
2183 
2184 	if (dev_xmit_recursion()) {
2185 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2186 		goto out_drop;
2187 	}
2188 
2189 	skb->dev = dev;
2190 	skb->tstamp = 0;
2191 
2192 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2193 		skb = skb_expand_head(skb, hh_len);
2194 		if (!skb)
2195 			return -ENOMEM;
2196 	}
2197 
2198 	rcu_read_lock_bh();
2199 	if (!nh) {
2200 		dst = skb_dst(skb);
2201 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2202 				      &ipv6_hdr(skb)->daddr);
2203 	} else {
2204 		nexthop = &nh->ipv6_nh;
2205 	}
2206 	neigh = ip_neigh_gw6(dev, nexthop);
2207 	if (likely(!IS_ERR(neigh))) {
2208 		int ret;
2209 
2210 		sock_confirm_neigh(skb, neigh);
2211 		dev_xmit_recursion_inc();
2212 		ret = neigh_output(neigh, skb, false);
2213 		dev_xmit_recursion_dec();
2214 		rcu_read_unlock_bh();
2215 		return ret;
2216 	}
2217 	rcu_read_unlock_bh();
2218 	if (dst)
2219 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2220 out_drop:
2221 	kfree_skb(skb);
2222 	return -ENETDOWN;
2223 }
2224 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2225 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2226 				   struct bpf_nh_params *nh)
2227 {
2228 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2229 	struct net *net = dev_net(dev);
2230 	int err, ret = NET_XMIT_DROP;
2231 
2232 	if (!nh) {
2233 		struct dst_entry *dst;
2234 		struct flowi6 fl6 = {
2235 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2236 			.flowi6_mark  = skb->mark,
2237 			.flowlabel    = ip6_flowinfo(ip6h),
2238 			.flowi6_oif   = dev->ifindex,
2239 			.flowi6_proto = ip6h->nexthdr,
2240 			.daddr	      = ip6h->daddr,
2241 			.saddr	      = ip6h->saddr,
2242 		};
2243 
2244 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2245 		if (IS_ERR(dst))
2246 			goto out_drop;
2247 
2248 		skb_dst_set(skb, dst);
2249 	} else if (nh->nh_family != AF_INET6) {
2250 		goto out_drop;
2251 	}
2252 
2253 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2254 	if (unlikely(net_xmit_eval(err)))
2255 		dev->stats.tx_errors++;
2256 	else
2257 		ret = NET_XMIT_SUCCESS;
2258 	goto out_xmit;
2259 out_drop:
2260 	dev->stats.tx_errors++;
2261 	kfree_skb(skb);
2262 out_xmit:
2263 	return ret;
2264 }
2265 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2266 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2267 				   struct bpf_nh_params *nh)
2268 {
2269 	kfree_skb(skb);
2270 	return NET_XMIT_DROP;
2271 }
2272 #endif /* CONFIG_IPV6 */
2273 
2274 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2275 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2276 			    struct net_device *dev, struct bpf_nh_params *nh)
2277 {
2278 	u32 hh_len = LL_RESERVED_SPACE(dev);
2279 	struct neighbour *neigh;
2280 	bool is_v6gw = false;
2281 
2282 	if (dev_xmit_recursion()) {
2283 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2284 		goto out_drop;
2285 	}
2286 
2287 	skb->dev = dev;
2288 	skb->tstamp = 0;
2289 
2290 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2291 		skb = skb_expand_head(skb, hh_len);
2292 		if (!skb)
2293 			return -ENOMEM;
2294 	}
2295 
2296 	rcu_read_lock_bh();
2297 	if (!nh) {
2298 		struct dst_entry *dst = skb_dst(skb);
2299 		struct rtable *rt = container_of(dst, struct rtable, dst);
2300 
2301 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2302 	} else if (nh->nh_family == AF_INET6) {
2303 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2304 		is_v6gw = true;
2305 	} else if (nh->nh_family == AF_INET) {
2306 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2307 	} else {
2308 		rcu_read_unlock_bh();
2309 		goto out_drop;
2310 	}
2311 
2312 	if (likely(!IS_ERR(neigh))) {
2313 		int ret;
2314 
2315 		sock_confirm_neigh(skb, neigh);
2316 		dev_xmit_recursion_inc();
2317 		ret = neigh_output(neigh, skb, is_v6gw);
2318 		dev_xmit_recursion_dec();
2319 		rcu_read_unlock_bh();
2320 		return ret;
2321 	}
2322 	rcu_read_unlock_bh();
2323 out_drop:
2324 	kfree_skb(skb);
2325 	return -ENETDOWN;
2326 }
2327 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2328 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2329 				   struct bpf_nh_params *nh)
2330 {
2331 	const struct iphdr *ip4h = ip_hdr(skb);
2332 	struct net *net = dev_net(dev);
2333 	int err, ret = NET_XMIT_DROP;
2334 
2335 	if (!nh) {
2336 		struct flowi4 fl4 = {
2337 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2338 			.flowi4_mark  = skb->mark,
2339 			.flowi4_tos   = RT_TOS(ip4h->tos),
2340 			.flowi4_oif   = dev->ifindex,
2341 			.flowi4_proto = ip4h->protocol,
2342 			.daddr	      = ip4h->daddr,
2343 			.saddr	      = ip4h->saddr,
2344 		};
2345 		struct rtable *rt;
2346 
2347 		rt = ip_route_output_flow(net, &fl4, NULL);
2348 		if (IS_ERR(rt))
2349 			goto out_drop;
2350 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2351 			ip_rt_put(rt);
2352 			goto out_drop;
2353 		}
2354 
2355 		skb_dst_set(skb, &rt->dst);
2356 	}
2357 
2358 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2359 	if (unlikely(net_xmit_eval(err)))
2360 		dev->stats.tx_errors++;
2361 	else
2362 		ret = NET_XMIT_SUCCESS;
2363 	goto out_xmit;
2364 out_drop:
2365 	dev->stats.tx_errors++;
2366 	kfree_skb(skb);
2367 out_xmit:
2368 	return ret;
2369 }
2370 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2371 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2372 				   struct bpf_nh_params *nh)
2373 {
2374 	kfree_skb(skb);
2375 	return NET_XMIT_DROP;
2376 }
2377 #endif /* CONFIG_INET */
2378 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2379 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2380 				struct bpf_nh_params *nh)
2381 {
2382 	struct ethhdr *ethh = eth_hdr(skb);
2383 
2384 	if (unlikely(skb->mac_header >= skb->network_header))
2385 		goto out;
2386 	bpf_push_mac_rcsum(skb);
2387 	if (is_multicast_ether_addr(ethh->h_dest))
2388 		goto out;
2389 
2390 	skb_pull(skb, sizeof(*ethh));
2391 	skb_unset_mac_header(skb);
2392 	skb_reset_network_header(skb);
2393 
2394 	if (skb->protocol == htons(ETH_P_IP))
2395 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2396 	else if (skb->protocol == htons(ETH_P_IPV6))
2397 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2398 out:
2399 	kfree_skb(skb);
2400 	return -ENOTSUPP;
2401 }
2402 
2403 /* Internal, non-exposed redirect flags. */
2404 enum {
2405 	BPF_F_NEIGH	= (1ULL << 1),
2406 	BPF_F_PEER	= (1ULL << 2),
2407 	BPF_F_NEXTHOP	= (1ULL << 3),
2408 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2409 };
2410 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2411 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2412 {
2413 	struct net_device *dev;
2414 	struct sk_buff *clone;
2415 	int ret;
2416 
2417 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2418 		return -EINVAL;
2419 
2420 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2421 	if (unlikely(!dev))
2422 		return -EINVAL;
2423 
2424 	clone = skb_clone(skb, GFP_ATOMIC);
2425 	if (unlikely(!clone))
2426 		return -ENOMEM;
2427 
2428 	/* For direct write, we need to keep the invariant that the skbs
2429 	 * we're dealing with need to be uncloned. Should uncloning fail
2430 	 * here, we need to free the just generated clone to unclone once
2431 	 * again.
2432 	 */
2433 	ret = bpf_try_make_head_writable(skb);
2434 	if (unlikely(ret)) {
2435 		kfree_skb(clone);
2436 		return -ENOMEM;
2437 	}
2438 
2439 	return __bpf_redirect(clone, dev, flags);
2440 }
2441 
2442 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2443 	.func           = bpf_clone_redirect,
2444 	.gpl_only       = false,
2445 	.ret_type       = RET_INTEGER,
2446 	.arg1_type      = ARG_PTR_TO_CTX,
2447 	.arg2_type      = ARG_ANYTHING,
2448 	.arg3_type      = ARG_ANYTHING,
2449 };
2450 
2451 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2452 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2453 
skb_do_redirect(struct sk_buff * skb)2454 int skb_do_redirect(struct sk_buff *skb)
2455 {
2456 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2457 	struct net *net = dev_net(skb->dev);
2458 	struct net_device *dev;
2459 	u32 flags = ri->flags;
2460 
2461 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2462 	ri->tgt_index = 0;
2463 	ri->flags = 0;
2464 	if (unlikely(!dev))
2465 		goto out_drop;
2466 	if (flags & BPF_F_PEER) {
2467 		const struct net_device_ops *ops = dev->netdev_ops;
2468 
2469 		if (unlikely(!ops->ndo_get_peer_dev ||
2470 			     !skb_at_tc_ingress(skb)))
2471 			goto out_drop;
2472 		dev = ops->ndo_get_peer_dev(dev);
2473 		if (unlikely(!dev ||
2474 			     !(dev->flags & IFF_UP) ||
2475 			     net_eq(net, dev_net(dev))))
2476 			goto out_drop;
2477 		skb->dev = dev;
2478 		return -EAGAIN;
2479 	}
2480 	return flags & BPF_F_NEIGH ?
2481 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2482 				    &ri->nh : NULL) :
2483 	       __bpf_redirect(skb, dev, flags);
2484 out_drop:
2485 	kfree_skb(skb);
2486 	return -EINVAL;
2487 }
2488 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2489 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2490 {
2491 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2492 
2493 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2494 		return TC_ACT_SHOT;
2495 
2496 	ri->flags = flags;
2497 	ri->tgt_index = ifindex;
2498 
2499 	return TC_ACT_REDIRECT;
2500 }
2501 
2502 static const struct bpf_func_proto bpf_redirect_proto = {
2503 	.func           = bpf_redirect,
2504 	.gpl_only       = false,
2505 	.ret_type       = RET_INTEGER,
2506 	.arg1_type      = ARG_ANYTHING,
2507 	.arg2_type      = ARG_ANYTHING,
2508 };
2509 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2510 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2511 {
2512 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2513 
2514 	if (unlikely(flags))
2515 		return TC_ACT_SHOT;
2516 
2517 	ri->flags = BPF_F_PEER;
2518 	ri->tgt_index = ifindex;
2519 
2520 	return TC_ACT_REDIRECT;
2521 }
2522 
2523 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2524 	.func           = bpf_redirect_peer,
2525 	.gpl_only       = false,
2526 	.ret_type       = RET_INTEGER,
2527 	.arg1_type      = ARG_ANYTHING,
2528 	.arg2_type      = ARG_ANYTHING,
2529 };
2530 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2531 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2532 	   int, plen, u64, flags)
2533 {
2534 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2535 
2536 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2537 		return TC_ACT_SHOT;
2538 
2539 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2540 	ri->tgt_index = ifindex;
2541 
2542 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2543 	if (plen)
2544 		memcpy(&ri->nh, params, sizeof(ri->nh));
2545 
2546 	return TC_ACT_REDIRECT;
2547 }
2548 
2549 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2550 	.func		= bpf_redirect_neigh,
2551 	.gpl_only	= false,
2552 	.ret_type	= RET_INTEGER,
2553 	.arg1_type	= ARG_ANYTHING,
2554 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2555 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2556 	.arg4_type	= ARG_ANYTHING,
2557 };
2558 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2559 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2560 {
2561 	msg->apply_bytes = bytes;
2562 	return 0;
2563 }
2564 
2565 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2566 	.func           = bpf_msg_apply_bytes,
2567 	.gpl_only       = false,
2568 	.ret_type       = RET_INTEGER,
2569 	.arg1_type	= ARG_PTR_TO_CTX,
2570 	.arg2_type      = ARG_ANYTHING,
2571 };
2572 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2573 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2574 {
2575 	msg->cork_bytes = bytes;
2576 	return 0;
2577 }
2578 
sk_msg_reset_curr(struct sk_msg * msg)2579 static void sk_msg_reset_curr(struct sk_msg *msg)
2580 {
2581 	u32 i = msg->sg.start;
2582 	u32 len = 0;
2583 
2584 	do {
2585 		len += sk_msg_elem(msg, i)->length;
2586 		sk_msg_iter_var_next(i);
2587 		if (len >= msg->sg.size)
2588 			break;
2589 	} while (i != msg->sg.end);
2590 
2591 	msg->sg.curr = i;
2592 	msg->sg.copybreak = 0;
2593 }
2594 
2595 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2596 	.func           = bpf_msg_cork_bytes,
2597 	.gpl_only       = false,
2598 	.ret_type       = RET_INTEGER,
2599 	.arg1_type	= ARG_PTR_TO_CTX,
2600 	.arg2_type      = ARG_ANYTHING,
2601 };
2602 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2603 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2604 	   u32, end, u64, flags)
2605 {
2606 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2607 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2608 	struct scatterlist *sge;
2609 	u8 *raw, *to, *from;
2610 	struct page *page;
2611 
2612 	if (unlikely(flags || end <= start))
2613 		return -EINVAL;
2614 
2615 	/* First find the starting scatterlist element */
2616 	i = msg->sg.start;
2617 	do {
2618 		offset += len;
2619 		len = sk_msg_elem(msg, i)->length;
2620 		if (start < offset + len)
2621 			break;
2622 		sk_msg_iter_var_next(i);
2623 	} while (i != msg->sg.end);
2624 
2625 	if (unlikely(start >= offset + len))
2626 		return -EINVAL;
2627 
2628 	first_sge = i;
2629 	/* The start may point into the sg element so we need to also
2630 	 * account for the headroom.
2631 	 */
2632 	bytes_sg_total = start - offset + bytes;
2633 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2634 		goto out;
2635 
2636 	/* At this point we need to linearize multiple scatterlist
2637 	 * elements or a single shared page. Either way we need to
2638 	 * copy into a linear buffer exclusively owned by BPF. Then
2639 	 * place the buffer in the scatterlist and fixup the original
2640 	 * entries by removing the entries now in the linear buffer
2641 	 * and shifting the remaining entries. For now we do not try
2642 	 * to copy partial entries to avoid complexity of running out
2643 	 * of sg_entry slots. The downside is reading a single byte
2644 	 * will copy the entire sg entry.
2645 	 */
2646 	do {
2647 		copy += sk_msg_elem(msg, i)->length;
2648 		sk_msg_iter_var_next(i);
2649 		if (bytes_sg_total <= copy)
2650 			break;
2651 	} while (i != msg->sg.end);
2652 	last_sge = i;
2653 
2654 	if (unlikely(bytes_sg_total > copy))
2655 		return -EINVAL;
2656 
2657 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2658 			   get_order(copy));
2659 	if (unlikely(!page))
2660 		return -ENOMEM;
2661 
2662 	raw = page_address(page);
2663 	i = first_sge;
2664 	do {
2665 		sge = sk_msg_elem(msg, i);
2666 		from = sg_virt(sge);
2667 		len = sge->length;
2668 		to = raw + poffset;
2669 
2670 		memcpy(to, from, len);
2671 		poffset += len;
2672 		sge->length = 0;
2673 		put_page(sg_page(sge));
2674 
2675 		sk_msg_iter_var_next(i);
2676 	} while (i != last_sge);
2677 
2678 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2679 
2680 	/* To repair sg ring we need to shift entries. If we only
2681 	 * had a single entry though we can just replace it and
2682 	 * be done. Otherwise walk the ring and shift the entries.
2683 	 */
2684 	WARN_ON_ONCE(last_sge == first_sge);
2685 	shift = last_sge > first_sge ?
2686 		last_sge - first_sge - 1 :
2687 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2688 	if (!shift)
2689 		goto out;
2690 
2691 	i = first_sge;
2692 	sk_msg_iter_var_next(i);
2693 	do {
2694 		u32 move_from;
2695 
2696 		if (i + shift >= NR_MSG_FRAG_IDS)
2697 			move_from = i + shift - NR_MSG_FRAG_IDS;
2698 		else
2699 			move_from = i + shift;
2700 		if (move_from == msg->sg.end)
2701 			break;
2702 
2703 		msg->sg.data[i] = msg->sg.data[move_from];
2704 		msg->sg.data[move_from].length = 0;
2705 		msg->sg.data[move_from].page_link = 0;
2706 		msg->sg.data[move_from].offset = 0;
2707 		sk_msg_iter_var_next(i);
2708 	} while (1);
2709 
2710 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2711 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2712 		      msg->sg.end - shift;
2713 out:
2714 	sk_msg_reset_curr(msg);
2715 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2716 	msg->data_end = msg->data + bytes;
2717 	return 0;
2718 }
2719 
2720 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2721 	.func		= bpf_msg_pull_data,
2722 	.gpl_only	= false,
2723 	.ret_type	= RET_INTEGER,
2724 	.arg1_type	= ARG_PTR_TO_CTX,
2725 	.arg2_type	= ARG_ANYTHING,
2726 	.arg3_type	= ARG_ANYTHING,
2727 	.arg4_type	= ARG_ANYTHING,
2728 };
2729 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2730 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2731 	   u32, len, u64, flags)
2732 {
2733 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2734 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2735 	u8 *raw, *to, *from;
2736 	struct page *page;
2737 
2738 	if (unlikely(flags))
2739 		return -EINVAL;
2740 
2741 	if (unlikely(len == 0))
2742 		return 0;
2743 
2744 	/* First find the starting scatterlist element */
2745 	i = msg->sg.start;
2746 	do {
2747 		offset += l;
2748 		l = sk_msg_elem(msg, i)->length;
2749 
2750 		if (start < offset + l)
2751 			break;
2752 		sk_msg_iter_var_next(i);
2753 	} while (i != msg->sg.end);
2754 
2755 	if (start >= offset + l)
2756 		return -EINVAL;
2757 
2758 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2759 
2760 	/* If no space available will fallback to copy, we need at
2761 	 * least one scatterlist elem available to push data into
2762 	 * when start aligns to the beginning of an element or two
2763 	 * when it falls inside an element. We handle the start equals
2764 	 * offset case because its the common case for inserting a
2765 	 * header.
2766 	 */
2767 	if (!space || (space == 1 && start != offset))
2768 		copy = msg->sg.data[i].length;
2769 
2770 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2771 			   get_order(copy + len));
2772 	if (unlikely(!page))
2773 		return -ENOMEM;
2774 
2775 	if (copy) {
2776 		int front, back;
2777 
2778 		raw = page_address(page);
2779 
2780 		psge = sk_msg_elem(msg, i);
2781 		front = start - offset;
2782 		back = psge->length - front;
2783 		from = sg_virt(psge);
2784 
2785 		if (front)
2786 			memcpy(raw, from, front);
2787 
2788 		if (back) {
2789 			from += front;
2790 			to = raw + front + len;
2791 
2792 			memcpy(to, from, back);
2793 		}
2794 
2795 		put_page(sg_page(psge));
2796 	} else if (start - offset) {
2797 		psge = sk_msg_elem(msg, i);
2798 		rsge = sk_msg_elem_cpy(msg, i);
2799 
2800 		psge->length = start - offset;
2801 		rsge.length -= psge->length;
2802 		rsge.offset += start;
2803 
2804 		sk_msg_iter_var_next(i);
2805 		sg_unmark_end(psge);
2806 		sg_unmark_end(&rsge);
2807 		sk_msg_iter_next(msg, end);
2808 	}
2809 
2810 	/* Slot(s) to place newly allocated data */
2811 	new = i;
2812 
2813 	/* Shift one or two slots as needed */
2814 	if (!copy) {
2815 		sge = sk_msg_elem_cpy(msg, i);
2816 
2817 		sk_msg_iter_var_next(i);
2818 		sg_unmark_end(&sge);
2819 		sk_msg_iter_next(msg, end);
2820 
2821 		nsge = sk_msg_elem_cpy(msg, i);
2822 		if (rsge.length) {
2823 			sk_msg_iter_var_next(i);
2824 			nnsge = sk_msg_elem_cpy(msg, i);
2825 		}
2826 
2827 		while (i != msg->sg.end) {
2828 			msg->sg.data[i] = sge;
2829 			sge = nsge;
2830 			sk_msg_iter_var_next(i);
2831 			if (rsge.length) {
2832 				nsge = nnsge;
2833 				nnsge = sk_msg_elem_cpy(msg, i);
2834 			} else {
2835 				nsge = sk_msg_elem_cpy(msg, i);
2836 			}
2837 		}
2838 	}
2839 
2840 	/* Place newly allocated data buffer */
2841 	sk_mem_charge(msg->sk, len);
2842 	msg->sg.size += len;
2843 	__clear_bit(new, &msg->sg.copy);
2844 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2845 	if (rsge.length) {
2846 		get_page(sg_page(&rsge));
2847 		sk_msg_iter_var_next(new);
2848 		msg->sg.data[new] = rsge;
2849 	}
2850 
2851 	sk_msg_reset_curr(msg);
2852 	sk_msg_compute_data_pointers(msg);
2853 	return 0;
2854 }
2855 
2856 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2857 	.func		= bpf_msg_push_data,
2858 	.gpl_only	= false,
2859 	.ret_type	= RET_INTEGER,
2860 	.arg1_type	= ARG_PTR_TO_CTX,
2861 	.arg2_type	= ARG_ANYTHING,
2862 	.arg3_type	= ARG_ANYTHING,
2863 	.arg4_type	= ARG_ANYTHING,
2864 };
2865 
sk_msg_shift_left(struct sk_msg * msg,int i)2866 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2867 {
2868 	int prev;
2869 
2870 	do {
2871 		prev = i;
2872 		sk_msg_iter_var_next(i);
2873 		msg->sg.data[prev] = msg->sg.data[i];
2874 	} while (i != msg->sg.end);
2875 
2876 	sk_msg_iter_prev(msg, end);
2877 }
2878 
sk_msg_shift_right(struct sk_msg * msg,int i)2879 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2880 {
2881 	struct scatterlist tmp, sge;
2882 
2883 	sk_msg_iter_next(msg, end);
2884 	sge = sk_msg_elem_cpy(msg, i);
2885 	sk_msg_iter_var_next(i);
2886 	tmp = sk_msg_elem_cpy(msg, i);
2887 
2888 	while (i != msg->sg.end) {
2889 		msg->sg.data[i] = sge;
2890 		sk_msg_iter_var_next(i);
2891 		sge = tmp;
2892 		tmp = sk_msg_elem_cpy(msg, i);
2893 	}
2894 }
2895 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2896 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2897 	   u32, len, u64, flags)
2898 {
2899 	u32 i = 0, l = 0, space, offset = 0;
2900 	u64 last = start + len;
2901 	int pop;
2902 
2903 	if (unlikely(flags))
2904 		return -EINVAL;
2905 
2906 	/* First find the starting scatterlist element */
2907 	i = msg->sg.start;
2908 	do {
2909 		offset += l;
2910 		l = sk_msg_elem(msg, i)->length;
2911 
2912 		if (start < offset + l)
2913 			break;
2914 		sk_msg_iter_var_next(i);
2915 	} while (i != msg->sg.end);
2916 
2917 	/* Bounds checks: start and pop must be inside message */
2918 	if (start >= offset + l || last >= msg->sg.size)
2919 		return -EINVAL;
2920 
2921 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2922 
2923 	pop = len;
2924 	/* --------------| offset
2925 	 * -| start      |-------- len -------|
2926 	 *
2927 	 *  |----- a ----|-------- pop -------|----- b ----|
2928 	 *  |______________________________________________| length
2929 	 *
2930 	 *
2931 	 * a:   region at front of scatter element to save
2932 	 * b:   region at back of scatter element to save when length > A + pop
2933 	 * pop: region to pop from element, same as input 'pop' here will be
2934 	 *      decremented below per iteration.
2935 	 *
2936 	 * Two top-level cases to handle when start != offset, first B is non
2937 	 * zero and second B is zero corresponding to when a pop includes more
2938 	 * than one element.
2939 	 *
2940 	 * Then if B is non-zero AND there is no space allocate space and
2941 	 * compact A, B regions into page. If there is space shift ring to
2942 	 * the rigth free'ing the next element in ring to place B, leaving
2943 	 * A untouched except to reduce length.
2944 	 */
2945 	if (start != offset) {
2946 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2947 		int a = start;
2948 		int b = sge->length - pop - a;
2949 
2950 		sk_msg_iter_var_next(i);
2951 
2952 		if (pop < sge->length - a) {
2953 			if (space) {
2954 				sge->length = a;
2955 				sk_msg_shift_right(msg, i);
2956 				nsge = sk_msg_elem(msg, i);
2957 				get_page(sg_page(sge));
2958 				sg_set_page(nsge,
2959 					    sg_page(sge),
2960 					    b, sge->offset + pop + a);
2961 			} else {
2962 				struct page *page, *orig;
2963 				u8 *to, *from;
2964 
2965 				page = alloc_pages(__GFP_NOWARN |
2966 						   __GFP_COMP   | GFP_ATOMIC,
2967 						   get_order(a + b));
2968 				if (unlikely(!page))
2969 					return -ENOMEM;
2970 
2971 				sge->length = a;
2972 				orig = sg_page(sge);
2973 				from = sg_virt(sge);
2974 				to = page_address(page);
2975 				memcpy(to, from, a);
2976 				memcpy(to + a, from + a + pop, b);
2977 				sg_set_page(sge, page, a + b, 0);
2978 				put_page(orig);
2979 			}
2980 			pop = 0;
2981 		} else if (pop >= sge->length - a) {
2982 			pop -= (sge->length - a);
2983 			sge->length = a;
2984 		}
2985 	}
2986 
2987 	/* From above the current layout _must_ be as follows,
2988 	 *
2989 	 * -| offset
2990 	 * -| start
2991 	 *
2992 	 *  |---- pop ---|---------------- b ------------|
2993 	 *  |____________________________________________| length
2994 	 *
2995 	 * Offset and start of the current msg elem are equal because in the
2996 	 * previous case we handled offset != start and either consumed the
2997 	 * entire element and advanced to the next element OR pop == 0.
2998 	 *
2999 	 * Two cases to handle here are first pop is less than the length
3000 	 * leaving some remainder b above. Simply adjust the element's layout
3001 	 * in this case. Or pop >= length of the element so that b = 0. In this
3002 	 * case advance to next element decrementing pop.
3003 	 */
3004 	while (pop) {
3005 		struct scatterlist *sge = sk_msg_elem(msg, i);
3006 
3007 		if (pop < sge->length) {
3008 			sge->length -= pop;
3009 			sge->offset += pop;
3010 			pop = 0;
3011 		} else {
3012 			pop -= sge->length;
3013 			sk_msg_shift_left(msg, i);
3014 		}
3015 		sk_msg_iter_var_next(i);
3016 	}
3017 
3018 	sk_mem_uncharge(msg->sk, len - pop);
3019 	msg->sg.size -= (len - pop);
3020 	sk_msg_reset_curr(msg);
3021 	sk_msg_compute_data_pointers(msg);
3022 	return 0;
3023 }
3024 
3025 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3026 	.func		= bpf_msg_pop_data,
3027 	.gpl_only	= false,
3028 	.ret_type	= RET_INTEGER,
3029 	.arg1_type	= ARG_PTR_TO_CTX,
3030 	.arg2_type	= ARG_ANYTHING,
3031 	.arg3_type	= ARG_ANYTHING,
3032 	.arg4_type	= ARG_ANYTHING,
3033 };
3034 
3035 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3036 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3037 {
3038 	return __task_get_classid(current);
3039 }
3040 
3041 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3042 	.func		= bpf_get_cgroup_classid_curr,
3043 	.gpl_only	= false,
3044 	.ret_type	= RET_INTEGER,
3045 };
3046 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3047 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3048 {
3049 	struct sock *sk = skb_to_full_sk(skb);
3050 
3051 	if (!sk || !sk_fullsock(sk))
3052 		return 0;
3053 
3054 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3055 }
3056 
3057 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3058 	.func		= bpf_skb_cgroup_classid,
3059 	.gpl_only	= false,
3060 	.ret_type	= RET_INTEGER,
3061 	.arg1_type	= ARG_PTR_TO_CTX,
3062 };
3063 #endif
3064 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3065 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3066 {
3067 	return task_get_classid(skb);
3068 }
3069 
3070 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3071 	.func           = bpf_get_cgroup_classid,
3072 	.gpl_only       = false,
3073 	.ret_type       = RET_INTEGER,
3074 	.arg1_type      = ARG_PTR_TO_CTX,
3075 };
3076 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3077 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3078 {
3079 	return dst_tclassid(skb);
3080 }
3081 
3082 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3083 	.func           = bpf_get_route_realm,
3084 	.gpl_only       = false,
3085 	.ret_type       = RET_INTEGER,
3086 	.arg1_type      = ARG_PTR_TO_CTX,
3087 };
3088 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3089 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3090 {
3091 	/* If skb_clear_hash() was called due to mangling, we can
3092 	 * trigger SW recalculation here. Later access to hash
3093 	 * can then use the inline skb->hash via context directly
3094 	 * instead of calling this helper again.
3095 	 */
3096 	return skb_get_hash(skb);
3097 }
3098 
3099 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3100 	.func		= bpf_get_hash_recalc,
3101 	.gpl_only	= false,
3102 	.ret_type	= RET_INTEGER,
3103 	.arg1_type	= ARG_PTR_TO_CTX,
3104 };
3105 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3106 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3107 {
3108 	/* After all direct packet write, this can be used once for
3109 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3110 	 */
3111 	skb_clear_hash(skb);
3112 	return 0;
3113 }
3114 
3115 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3116 	.func		= bpf_set_hash_invalid,
3117 	.gpl_only	= false,
3118 	.ret_type	= RET_INTEGER,
3119 	.arg1_type	= ARG_PTR_TO_CTX,
3120 };
3121 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3122 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3123 {
3124 	/* Set user specified hash as L4(+), so that it gets returned
3125 	 * on skb_get_hash() call unless BPF prog later on triggers a
3126 	 * skb_clear_hash().
3127 	 */
3128 	__skb_set_sw_hash(skb, hash, true);
3129 	return 0;
3130 }
3131 
3132 static const struct bpf_func_proto bpf_set_hash_proto = {
3133 	.func		= bpf_set_hash,
3134 	.gpl_only	= false,
3135 	.ret_type	= RET_INTEGER,
3136 	.arg1_type	= ARG_PTR_TO_CTX,
3137 	.arg2_type	= ARG_ANYTHING,
3138 };
3139 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3140 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3141 	   u16, vlan_tci)
3142 {
3143 	int ret;
3144 
3145 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3146 		     vlan_proto != htons(ETH_P_8021AD)))
3147 		vlan_proto = htons(ETH_P_8021Q);
3148 
3149 	bpf_push_mac_rcsum(skb);
3150 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3151 	bpf_pull_mac_rcsum(skb);
3152 
3153 	bpf_compute_data_pointers(skb);
3154 	return ret;
3155 }
3156 
3157 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3158 	.func           = bpf_skb_vlan_push,
3159 	.gpl_only       = false,
3160 	.ret_type       = RET_INTEGER,
3161 	.arg1_type      = ARG_PTR_TO_CTX,
3162 	.arg2_type      = ARG_ANYTHING,
3163 	.arg3_type      = ARG_ANYTHING,
3164 };
3165 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3166 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3167 {
3168 	int ret;
3169 
3170 	bpf_push_mac_rcsum(skb);
3171 	ret = skb_vlan_pop(skb);
3172 	bpf_pull_mac_rcsum(skb);
3173 
3174 	bpf_compute_data_pointers(skb);
3175 	return ret;
3176 }
3177 
3178 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3179 	.func           = bpf_skb_vlan_pop,
3180 	.gpl_only       = false,
3181 	.ret_type       = RET_INTEGER,
3182 	.arg1_type      = ARG_PTR_TO_CTX,
3183 };
3184 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3185 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3186 {
3187 	/* Caller already did skb_cow() with len as headroom,
3188 	 * so no need to do it here.
3189 	 */
3190 	skb_push(skb, len);
3191 	memmove(skb->data, skb->data + len, off);
3192 	memset(skb->data + off, 0, len);
3193 
3194 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3195 	 * needed here as it does not change the skb->csum
3196 	 * result for checksum complete when summing over
3197 	 * zeroed blocks.
3198 	 */
3199 	return 0;
3200 }
3201 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3202 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3203 {
3204 	void *old_data;
3205 
3206 	/* skb_ensure_writable() is not needed here, as we're
3207 	 * already working on an uncloned skb.
3208 	 */
3209 	if (unlikely(!pskb_may_pull(skb, off + len)))
3210 		return -ENOMEM;
3211 
3212 	old_data = skb->data;
3213 	__skb_pull(skb, len);
3214 	skb_postpull_rcsum(skb, old_data + off, len);
3215 	memmove(skb->data, old_data, off);
3216 
3217 	return 0;
3218 }
3219 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3220 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3221 {
3222 	bool trans_same = skb->transport_header == skb->network_header;
3223 	int ret;
3224 
3225 	/* There's no need for __skb_push()/__skb_pull() pair to
3226 	 * get to the start of the mac header as we're guaranteed
3227 	 * to always start from here under eBPF.
3228 	 */
3229 	ret = bpf_skb_generic_push(skb, off, len);
3230 	if (likely(!ret)) {
3231 		skb->mac_header -= len;
3232 		skb->network_header -= len;
3233 		if (trans_same)
3234 			skb->transport_header = skb->network_header;
3235 	}
3236 
3237 	return ret;
3238 }
3239 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3240 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3241 {
3242 	bool trans_same = skb->transport_header == skb->network_header;
3243 	int ret;
3244 
3245 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3246 	ret = bpf_skb_generic_pop(skb, off, len);
3247 	if (likely(!ret)) {
3248 		skb->mac_header += len;
3249 		skb->network_header += len;
3250 		if (trans_same)
3251 			skb->transport_header = skb->network_header;
3252 	}
3253 
3254 	return ret;
3255 }
3256 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3257 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3258 {
3259 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3260 	u32 off = skb_mac_header_len(skb);
3261 	int ret;
3262 
3263 	ret = skb_cow(skb, len_diff);
3264 	if (unlikely(ret < 0))
3265 		return ret;
3266 
3267 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3268 	if (unlikely(ret < 0))
3269 		return ret;
3270 
3271 	if (skb_is_gso(skb)) {
3272 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3273 
3274 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3275 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3276 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3277 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3278 		}
3279 	}
3280 
3281 	skb->protocol = htons(ETH_P_IPV6);
3282 	skb_clear_hash(skb);
3283 
3284 	return 0;
3285 }
3286 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3287 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3288 {
3289 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3290 	u32 off = skb_mac_header_len(skb);
3291 	int ret;
3292 
3293 	ret = skb_unclone(skb, GFP_ATOMIC);
3294 	if (unlikely(ret < 0))
3295 		return ret;
3296 
3297 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3298 	if (unlikely(ret < 0))
3299 		return ret;
3300 
3301 	if (skb_is_gso(skb)) {
3302 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3303 
3304 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3305 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3306 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3307 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3308 		}
3309 	}
3310 
3311 	skb->protocol = htons(ETH_P_IP);
3312 	skb_clear_hash(skb);
3313 
3314 	return 0;
3315 }
3316 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3317 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3318 {
3319 	__be16 from_proto = skb->protocol;
3320 
3321 	if (from_proto == htons(ETH_P_IP) &&
3322 	      to_proto == htons(ETH_P_IPV6))
3323 		return bpf_skb_proto_4_to_6(skb);
3324 
3325 	if (from_proto == htons(ETH_P_IPV6) &&
3326 	      to_proto == htons(ETH_P_IP))
3327 		return bpf_skb_proto_6_to_4(skb);
3328 
3329 	return -ENOTSUPP;
3330 }
3331 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3332 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3333 	   u64, flags)
3334 {
3335 	int ret;
3336 
3337 	if (unlikely(flags))
3338 		return -EINVAL;
3339 
3340 	/* General idea is that this helper does the basic groundwork
3341 	 * needed for changing the protocol, and eBPF program fills the
3342 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3343 	 * and other helpers, rather than passing a raw buffer here.
3344 	 *
3345 	 * The rationale is to keep this minimal and without a need to
3346 	 * deal with raw packet data. F.e. even if we would pass buffers
3347 	 * here, the program still needs to call the bpf_lX_csum_replace()
3348 	 * helpers anyway. Plus, this way we keep also separation of
3349 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3350 	 * care of stores.
3351 	 *
3352 	 * Currently, additional options and extension header space are
3353 	 * not supported, but flags register is reserved so we can adapt
3354 	 * that. For offloads, we mark packet as dodgy, so that headers
3355 	 * need to be verified first.
3356 	 */
3357 	ret = bpf_skb_proto_xlat(skb, proto);
3358 	bpf_compute_data_pointers(skb);
3359 	return ret;
3360 }
3361 
3362 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3363 	.func		= bpf_skb_change_proto,
3364 	.gpl_only	= false,
3365 	.ret_type	= RET_INTEGER,
3366 	.arg1_type	= ARG_PTR_TO_CTX,
3367 	.arg2_type	= ARG_ANYTHING,
3368 	.arg3_type	= ARG_ANYTHING,
3369 };
3370 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3371 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3372 {
3373 	/* We only allow a restricted subset to be changed for now. */
3374 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3375 		     !skb_pkt_type_ok(pkt_type)))
3376 		return -EINVAL;
3377 
3378 	skb->pkt_type = pkt_type;
3379 	return 0;
3380 }
3381 
3382 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3383 	.func		= bpf_skb_change_type,
3384 	.gpl_only	= false,
3385 	.ret_type	= RET_INTEGER,
3386 	.arg1_type	= ARG_PTR_TO_CTX,
3387 	.arg2_type	= ARG_ANYTHING,
3388 };
3389 
bpf_skb_net_base_len(const struct sk_buff * skb)3390 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3391 {
3392 	switch (skb->protocol) {
3393 	case htons(ETH_P_IP):
3394 		return sizeof(struct iphdr);
3395 	case htons(ETH_P_IPV6):
3396 		return sizeof(struct ipv6hdr);
3397 	default:
3398 		return ~0U;
3399 	}
3400 }
3401 
3402 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3403 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3404 
3405 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3406 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3407 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3408 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3409 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3410 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3411 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3412 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3413 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3414 			    u64 flags)
3415 {
3416 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3417 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3418 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3419 	unsigned int gso_type = SKB_GSO_DODGY;
3420 	int ret;
3421 
3422 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3423 		/* udp gso_size delineates datagrams, only allow if fixed */
3424 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3425 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3426 			return -ENOTSUPP;
3427 	}
3428 
3429 	ret = skb_cow_head(skb, len_diff);
3430 	if (unlikely(ret < 0))
3431 		return ret;
3432 
3433 	if (encap) {
3434 		if (skb->protocol != htons(ETH_P_IP) &&
3435 		    skb->protocol != htons(ETH_P_IPV6))
3436 			return -ENOTSUPP;
3437 
3438 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3439 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3440 			return -EINVAL;
3441 
3442 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3443 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3444 			return -EINVAL;
3445 
3446 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3447 		    inner_mac_len < ETH_HLEN)
3448 			return -EINVAL;
3449 
3450 		if (skb->encapsulation)
3451 			return -EALREADY;
3452 
3453 		mac_len = skb->network_header - skb->mac_header;
3454 		inner_net = skb->network_header;
3455 		if (inner_mac_len > len_diff)
3456 			return -EINVAL;
3457 		inner_trans = skb->transport_header;
3458 	}
3459 
3460 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3461 	if (unlikely(ret < 0))
3462 		return ret;
3463 
3464 	if (encap) {
3465 		skb->inner_mac_header = inner_net - inner_mac_len;
3466 		skb->inner_network_header = inner_net;
3467 		skb->inner_transport_header = inner_trans;
3468 
3469 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3470 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3471 		else
3472 			skb_set_inner_protocol(skb, skb->protocol);
3473 
3474 		skb->encapsulation = 1;
3475 		skb_set_network_header(skb, mac_len);
3476 
3477 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3478 			gso_type |= SKB_GSO_UDP_TUNNEL;
3479 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3480 			gso_type |= SKB_GSO_GRE;
3481 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3482 			gso_type |= SKB_GSO_IPXIP6;
3483 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3484 			gso_type |= SKB_GSO_IPXIP4;
3485 
3486 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3487 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3488 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3489 					sizeof(struct ipv6hdr) :
3490 					sizeof(struct iphdr);
3491 
3492 			skb_set_transport_header(skb, mac_len + nh_len);
3493 		}
3494 
3495 		/* Match skb->protocol to new outer l3 protocol */
3496 		if (skb->protocol == htons(ETH_P_IP) &&
3497 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3498 			skb->protocol = htons(ETH_P_IPV6);
3499 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3500 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3501 			skb->protocol = htons(ETH_P_IP);
3502 	}
3503 
3504 	if (skb_is_gso(skb)) {
3505 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3506 
3507 		/* Due to header grow, MSS needs to be downgraded. */
3508 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3509 			skb_decrease_gso_size(shinfo, len_diff);
3510 
3511 		/* Header must be checked, and gso_segs recomputed. */
3512 		shinfo->gso_type |= gso_type;
3513 		shinfo->gso_segs = 0;
3514 	}
3515 
3516 	return 0;
3517 }
3518 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3519 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3520 			      u64 flags)
3521 {
3522 	int ret;
3523 
3524 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3525 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3526 		return -EINVAL;
3527 
3528 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3529 		/* udp gso_size delineates datagrams, only allow if fixed */
3530 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3531 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3532 			return -ENOTSUPP;
3533 	}
3534 
3535 	ret = skb_unclone(skb, GFP_ATOMIC);
3536 	if (unlikely(ret < 0))
3537 		return ret;
3538 
3539 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3540 	if (unlikely(ret < 0))
3541 		return ret;
3542 
3543 	if (skb_is_gso(skb)) {
3544 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3545 
3546 		/* Due to header shrink, MSS can be upgraded. */
3547 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3548 			skb_increase_gso_size(shinfo, len_diff);
3549 
3550 		/* Header must be checked, and gso_segs recomputed. */
3551 		shinfo->gso_type |= SKB_GSO_DODGY;
3552 		shinfo->gso_segs = 0;
3553 	}
3554 
3555 	return 0;
3556 }
3557 
3558 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3559 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3560 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3561 	   u32, mode, u64, flags)
3562 {
3563 	u32 len_diff_abs = abs(len_diff);
3564 	bool shrink = len_diff < 0;
3565 	int ret = 0;
3566 
3567 	if (unlikely(flags || mode))
3568 		return -EINVAL;
3569 	if (unlikely(len_diff_abs > 0xfffU))
3570 		return -EFAULT;
3571 
3572 	if (!shrink) {
3573 		ret = skb_cow(skb, len_diff);
3574 		if (unlikely(ret < 0))
3575 			return ret;
3576 		__skb_push(skb, len_diff_abs);
3577 		memset(skb->data, 0, len_diff_abs);
3578 	} else {
3579 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3580 			return -ENOMEM;
3581 		__skb_pull(skb, len_diff_abs);
3582 	}
3583 	if (tls_sw_has_ctx_rx(skb->sk)) {
3584 		struct strp_msg *rxm = strp_msg(skb);
3585 
3586 		rxm->full_len += len_diff;
3587 	}
3588 	return ret;
3589 }
3590 
3591 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3592 	.func		= sk_skb_adjust_room,
3593 	.gpl_only	= false,
3594 	.ret_type	= RET_INTEGER,
3595 	.arg1_type	= ARG_PTR_TO_CTX,
3596 	.arg2_type	= ARG_ANYTHING,
3597 	.arg3_type	= ARG_ANYTHING,
3598 	.arg4_type	= ARG_ANYTHING,
3599 };
3600 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3601 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3602 	   u32, mode, u64, flags)
3603 {
3604 	u32 len_cur, len_diff_abs = abs(len_diff);
3605 	u32 len_min = bpf_skb_net_base_len(skb);
3606 	u32 len_max = BPF_SKB_MAX_LEN;
3607 	__be16 proto = skb->protocol;
3608 	bool shrink = len_diff < 0;
3609 	u32 off;
3610 	int ret;
3611 
3612 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3613 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3614 		return -EINVAL;
3615 	if (unlikely(len_diff_abs > 0xfffU))
3616 		return -EFAULT;
3617 	if (unlikely(proto != htons(ETH_P_IP) &&
3618 		     proto != htons(ETH_P_IPV6)))
3619 		return -ENOTSUPP;
3620 
3621 	off = skb_mac_header_len(skb);
3622 	switch (mode) {
3623 	case BPF_ADJ_ROOM_NET:
3624 		off += bpf_skb_net_base_len(skb);
3625 		break;
3626 	case BPF_ADJ_ROOM_MAC:
3627 		break;
3628 	default:
3629 		return -ENOTSUPP;
3630 	}
3631 
3632 	len_cur = skb->len - skb_network_offset(skb);
3633 	if ((shrink && (len_diff_abs >= len_cur ||
3634 			len_cur - len_diff_abs < len_min)) ||
3635 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3636 			 !skb_is_gso(skb))))
3637 		return -ENOTSUPP;
3638 
3639 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3640 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3641 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3642 		__skb_reset_checksum_unnecessary(skb);
3643 
3644 	bpf_compute_data_pointers(skb);
3645 	return ret;
3646 }
3647 
3648 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3649 	.func		= bpf_skb_adjust_room,
3650 	.gpl_only	= false,
3651 	.ret_type	= RET_INTEGER,
3652 	.arg1_type	= ARG_PTR_TO_CTX,
3653 	.arg2_type	= ARG_ANYTHING,
3654 	.arg3_type	= ARG_ANYTHING,
3655 	.arg4_type	= ARG_ANYTHING,
3656 };
3657 
__bpf_skb_min_len(const struct sk_buff * skb)3658 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3659 {
3660 	u32 min_len = skb_network_offset(skb);
3661 
3662 	if (skb_transport_header_was_set(skb))
3663 		min_len = skb_transport_offset(skb);
3664 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3665 		min_len = skb_checksum_start_offset(skb) +
3666 			  skb->csum_offset + sizeof(__sum16);
3667 	return min_len;
3668 }
3669 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3670 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3671 {
3672 	unsigned int old_len = skb->len;
3673 	int ret;
3674 
3675 	ret = __skb_grow_rcsum(skb, new_len);
3676 	if (!ret)
3677 		memset(skb->data + old_len, 0, new_len - old_len);
3678 	return ret;
3679 }
3680 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3681 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3682 {
3683 	return __skb_trim_rcsum(skb, new_len);
3684 }
3685 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3686 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3687 					u64 flags)
3688 {
3689 	u32 max_len = BPF_SKB_MAX_LEN;
3690 	u32 min_len = __bpf_skb_min_len(skb);
3691 	int ret;
3692 
3693 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3694 		return -EINVAL;
3695 	if (skb->encapsulation)
3696 		return -ENOTSUPP;
3697 
3698 	/* The basic idea of this helper is that it's performing the
3699 	 * needed work to either grow or trim an skb, and eBPF program
3700 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3701 	 * bpf_lX_csum_replace() and others rather than passing a raw
3702 	 * buffer here. This one is a slow path helper and intended
3703 	 * for replies with control messages.
3704 	 *
3705 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3706 	 * minimal and without protocol specifics so that we are able
3707 	 * to separate concerns as in bpf_skb_store_bytes() should only
3708 	 * be the one responsible for writing buffers.
3709 	 *
3710 	 * It's really expected to be a slow path operation here for
3711 	 * control message replies, so we're implicitly linearizing,
3712 	 * uncloning and drop offloads from the skb by this.
3713 	 */
3714 	ret = __bpf_try_make_writable(skb, skb->len);
3715 	if (!ret) {
3716 		if (new_len > skb->len)
3717 			ret = bpf_skb_grow_rcsum(skb, new_len);
3718 		else if (new_len < skb->len)
3719 			ret = bpf_skb_trim_rcsum(skb, new_len);
3720 		if (!ret && skb_is_gso(skb))
3721 			skb_gso_reset(skb);
3722 	}
3723 	return ret;
3724 }
3725 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3726 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3727 	   u64, flags)
3728 {
3729 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3730 
3731 	bpf_compute_data_pointers(skb);
3732 	return ret;
3733 }
3734 
3735 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3736 	.func		= bpf_skb_change_tail,
3737 	.gpl_only	= false,
3738 	.ret_type	= RET_INTEGER,
3739 	.arg1_type	= ARG_PTR_TO_CTX,
3740 	.arg2_type	= ARG_ANYTHING,
3741 	.arg3_type	= ARG_ANYTHING,
3742 };
3743 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3744 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3745 	   u64, flags)
3746 {
3747 	return __bpf_skb_change_tail(skb, new_len, flags);
3748 }
3749 
3750 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3751 	.func		= sk_skb_change_tail,
3752 	.gpl_only	= false,
3753 	.ret_type	= RET_INTEGER,
3754 	.arg1_type	= ARG_PTR_TO_CTX,
3755 	.arg2_type	= ARG_ANYTHING,
3756 	.arg3_type	= ARG_ANYTHING,
3757 };
3758 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3759 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3760 					u64 flags)
3761 {
3762 	u32 max_len = BPF_SKB_MAX_LEN;
3763 	u32 new_len = skb->len + head_room;
3764 	int ret;
3765 
3766 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3767 		     new_len < skb->len))
3768 		return -EINVAL;
3769 
3770 	ret = skb_cow(skb, head_room);
3771 	if (likely(!ret)) {
3772 		/* Idea for this helper is that we currently only
3773 		 * allow to expand on mac header. This means that
3774 		 * skb->protocol network header, etc, stay as is.
3775 		 * Compared to bpf_skb_change_tail(), we're more
3776 		 * flexible due to not needing to linearize or
3777 		 * reset GSO. Intention for this helper is to be
3778 		 * used by an L3 skb that needs to push mac header
3779 		 * for redirection into L2 device.
3780 		 */
3781 		__skb_push(skb, head_room);
3782 		memset(skb->data, 0, head_room);
3783 		skb_reset_mac_header(skb);
3784 		skb_reset_mac_len(skb);
3785 	}
3786 
3787 	return ret;
3788 }
3789 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3790 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3791 	   u64, flags)
3792 {
3793 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3794 
3795 	bpf_compute_data_pointers(skb);
3796 	return ret;
3797 }
3798 
3799 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3800 	.func		= bpf_skb_change_head,
3801 	.gpl_only	= false,
3802 	.ret_type	= RET_INTEGER,
3803 	.arg1_type	= ARG_PTR_TO_CTX,
3804 	.arg2_type	= ARG_ANYTHING,
3805 	.arg3_type	= ARG_ANYTHING,
3806 };
3807 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3808 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3809 	   u64, flags)
3810 {
3811 	return __bpf_skb_change_head(skb, head_room, flags);
3812 }
3813 
3814 static const struct bpf_func_proto sk_skb_change_head_proto = {
3815 	.func		= sk_skb_change_head,
3816 	.gpl_only	= false,
3817 	.ret_type	= RET_INTEGER,
3818 	.arg1_type	= ARG_PTR_TO_CTX,
3819 	.arg2_type	= ARG_ANYTHING,
3820 	.arg3_type	= ARG_ANYTHING,
3821 };
xdp_get_metalen(const struct xdp_buff * xdp)3822 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3823 {
3824 	return xdp_data_meta_unsupported(xdp) ? 0 :
3825 	       xdp->data - xdp->data_meta;
3826 }
3827 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3828 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3829 {
3830 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3831 	unsigned long metalen = xdp_get_metalen(xdp);
3832 	void *data_start = xdp_frame_end + metalen;
3833 	void *data = xdp->data + offset;
3834 
3835 	if (unlikely(data < data_start ||
3836 		     data > xdp->data_end - ETH_HLEN))
3837 		return -EINVAL;
3838 
3839 	if (metalen)
3840 		memmove(xdp->data_meta + offset,
3841 			xdp->data_meta, metalen);
3842 	xdp->data_meta += offset;
3843 	xdp->data = data;
3844 
3845 	return 0;
3846 }
3847 
3848 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3849 	.func		= bpf_xdp_adjust_head,
3850 	.gpl_only	= false,
3851 	.ret_type	= RET_INTEGER,
3852 	.arg1_type	= ARG_PTR_TO_CTX,
3853 	.arg2_type	= ARG_ANYTHING,
3854 };
3855 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)3856 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3857 {
3858 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3859 	void *data_end = xdp->data_end + offset;
3860 
3861 	/* Notice that xdp_data_hard_end have reserved some tailroom */
3862 	if (unlikely(data_end > data_hard_end))
3863 		return -EINVAL;
3864 
3865 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3866 		return -EINVAL;
3867 
3868 	/* Clear memory area on grow, can contain uninit kernel memory */
3869 	if (offset > 0)
3870 		memset(xdp->data_end, 0, offset);
3871 
3872 	xdp->data_end = data_end;
3873 
3874 	return 0;
3875 }
3876 
3877 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3878 	.func		= bpf_xdp_adjust_tail,
3879 	.gpl_only	= false,
3880 	.ret_type	= RET_INTEGER,
3881 	.arg1_type	= ARG_PTR_TO_CTX,
3882 	.arg2_type	= ARG_ANYTHING,
3883 };
3884 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)3885 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3886 {
3887 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3888 	void *meta = xdp->data_meta + offset;
3889 	unsigned long metalen = xdp->data - meta;
3890 
3891 	if (xdp_data_meta_unsupported(xdp))
3892 		return -ENOTSUPP;
3893 	if (unlikely(meta < xdp_frame_end ||
3894 		     meta > xdp->data))
3895 		return -EINVAL;
3896 	if (unlikely(xdp_metalen_invalid(metalen)))
3897 		return -EACCES;
3898 
3899 	xdp->data_meta = meta;
3900 
3901 	return 0;
3902 }
3903 
3904 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3905 	.func		= bpf_xdp_adjust_meta,
3906 	.gpl_only	= false,
3907 	.ret_type	= RET_INTEGER,
3908 	.arg1_type	= ARG_PTR_TO_CTX,
3909 	.arg2_type	= ARG_ANYTHING,
3910 };
3911 
3912 /* XDP_REDIRECT works by a three-step process, implemented in the functions
3913  * below:
3914  *
3915  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
3916  *    of the redirect and store it (along with some other metadata) in a per-CPU
3917  *    struct bpf_redirect_info.
3918  *
3919  * 2. When the program returns the XDP_REDIRECT return code, the driver will
3920  *    call xdp_do_redirect() which will use the information in struct
3921  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
3922  *    bulk queue structure.
3923  *
3924  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
3925  *    which will flush all the different bulk queues, thus completing the
3926  *    redirect.
3927  *
3928  * Pointers to the map entries will be kept around for this whole sequence of
3929  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
3930  * the core code; instead, the RCU protection relies on everything happening
3931  * inside a single NAPI poll sequence, which means it's between a pair of calls
3932  * to local_bh_disable()/local_bh_enable().
3933  *
3934  * The map entries are marked as __rcu and the map code makes sure to
3935  * dereference those pointers with rcu_dereference_check() in a way that works
3936  * for both sections that to hold an rcu_read_lock() and sections that are
3937  * called from NAPI without a separate rcu_read_lock(). The code below does not
3938  * use RCU annotations, but relies on those in the map code.
3939  */
xdp_do_flush(void)3940 void xdp_do_flush(void)
3941 {
3942 	__dev_flush();
3943 	__cpu_map_flush();
3944 	__xsk_map_flush();
3945 }
3946 EXPORT_SYMBOL_GPL(xdp_do_flush);
3947 
bpf_clear_redirect_map(struct bpf_map * map)3948 void bpf_clear_redirect_map(struct bpf_map *map)
3949 {
3950 	struct bpf_redirect_info *ri;
3951 	int cpu;
3952 
3953 	for_each_possible_cpu(cpu) {
3954 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3955 		/* Avoid polluting remote cacheline due to writes if
3956 		 * not needed. Once we pass this test, we need the
3957 		 * cmpxchg() to make sure it hasn't been changed in
3958 		 * the meantime by remote CPU.
3959 		 */
3960 		if (unlikely(READ_ONCE(ri->map) == map))
3961 			cmpxchg(&ri->map, map, NULL);
3962 	}
3963 }
3964 
3965 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
3966 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
3967 
xdp_master_redirect(struct xdp_buff * xdp)3968 u32 xdp_master_redirect(struct xdp_buff *xdp)
3969 {
3970 	struct net_device *master, *slave;
3971 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3972 
3973 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
3974 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
3975 	if (slave && slave != xdp->rxq->dev) {
3976 		/* The target device is different from the receiving device, so
3977 		 * redirect it to the new device.
3978 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
3979 		 * drivers to unmap the packet from their rx ring.
3980 		 */
3981 		ri->tgt_index = slave->ifindex;
3982 		ri->map_id = INT_MAX;
3983 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
3984 		return XDP_REDIRECT;
3985 	}
3986 	return XDP_TX;
3987 }
3988 EXPORT_SYMBOL_GPL(xdp_master_redirect);
3989 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3990 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3991 		    struct bpf_prog *xdp_prog)
3992 {
3993 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3994 	enum bpf_map_type map_type = ri->map_type;
3995 	void *fwd = ri->tgt_value;
3996 	u32 map_id = ri->map_id;
3997 	struct bpf_map *map;
3998 	int err;
3999 
4000 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4001 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4002 
4003 	switch (map_type) {
4004 	case BPF_MAP_TYPE_DEVMAP:
4005 		fallthrough;
4006 	case BPF_MAP_TYPE_DEVMAP_HASH:
4007 		map = READ_ONCE(ri->map);
4008 		if (unlikely(map)) {
4009 			WRITE_ONCE(ri->map, NULL);
4010 			err = dev_map_enqueue_multi(xdp, dev, map,
4011 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4012 		} else {
4013 			err = dev_map_enqueue(fwd, xdp, dev);
4014 		}
4015 		break;
4016 	case BPF_MAP_TYPE_CPUMAP:
4017 		err = cpu_map_enqueue(fwd, xdp, dev);
4018 		break;
4019 	case BPF_MAP_TYPE_XSKMAP:
4020 		err = __xsk_map_redirect(fwd, xdp);
4021 		break;
4022 	case BPF_MAP_TYPE_UNSPEC:
4023 		if (map_id == INT_MAX) {
4024 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4025 			if (unlikely(!fwd)) {
4026 				err = -EINVAL;
4027 				break;
4028 			}
4029 			err = dev_xdp_enqueue(fwd, xdp, dev);
4030 			break;
4031 		}
4032 		fallthrough;
4033 	default:
4034 		err = -EBADRQC;
4035 	}
4036 
4037 	if (unlikely(err))
4038 		goto err;
4039 
4040 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4041 	return 0;
4042 err:
4043 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4044 	return err;
4045 }
4046 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4047 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id)4048 static int xdp_do_generic_redirect_map(struct net_device *dev,
4049 				       struct sk_buff *skb,
4050 				       struct xdp_buff *xdp,
4051 				       struct bpf_prog *xdp_prog,
4052 				       void *fwd,
4053 				       enum bpf_map_type map_type, u32 map_id)
4054 {
4055 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4056 	struct bpf_map *map;
4057 	int err;
4058 
4059 	switch (map_type) {
4060 	case BPF_MAP_TYPE_DEVMAP:
4061 		fallthrough;
4062 	case BPF_MAP_TYPE_DEVMAP_HASH:
4063 		map = READ_ONCE(ri->map);
4064 		if (unlikely(map)) {
4065 			WRITE_ONCE(ri->map, NULL);
4066 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4067 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4068 		} else {
4069 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4070 		}
4071 		if (unlikely(err))
4072 			goto err;
4073 		break;
4074 	case BPF_MAP_TYPE_XSKMAP:
4075 		err = xsk_generic_rcv(fwd, xdp);
4076 		if (err)
4077 			goto err;
4078 		consume_skb(skb);
4079 		break;
4080 	case BPF_MAP_TYPE_CPUMAP:
4081 		err = cpu_map_generic_redirect(fwd, skb);
4082 		if (unlikely(err))
4083 			goto err;
4084 		break;
4085 	default:
4086 		err = -EBADRQC;
4087 		goto err;
4088 	}
4089 
4090 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4091 	return 0;
4092 err:
4093 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4094 	return err;
4095 }
4096 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4097 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4098 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4099 {
4100 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4101 	enum bpf_map_type map_type = ri->map_type;
4102 	void *fwd = ri->tgt_value;
4103 	u32 map_id = ri->map_id;
4104 	int err;
4105 
4106 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4107 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4108 
4109 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4110 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4111 		if (unlikely(!fwd)) {
4112 			err = -EINVAL;
4113 			goto err;
4114 		}
4115 
4116 		err = xdp_ok_fwd_dev(fwd, skb->len);
4117 		if (unlikely(err))
4118 			goto err;
4119 
4120 		skb->dev = fwd;
4121 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4122 		generic_xdp_tx(skb, xdp_prog);
4123 		return 0;
4124 	}
4125 
4126 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4127 err:
4128 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4129 	return err;
4130 }
4131 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4132 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4133 {
4134 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4135 
4136 	if (unlikely(flags))
4137 		return XDP_ABORTED;
4138 
4139 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4140 	 * by map_idr) is used for ifindex based XDP redirect.
4141 	 */
4142 	ri->tgt_index = ifindex;
4143 	ri->map_id = INT_MAX;
4144 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4145 
4146 	return XDP_REDIRECT;
4147 }
4148 
4149 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4150 	.func           = bpf_xdp_redirect,
4151 	.gpl_only       = false,
4152 	.ret_type       = RET_INTEGER,
4153 	.arg1_type      = ARG_ANYTHING,
4154 	.arg2_type      = ARG_ANYTHING,
4155 };
4156 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags)4157 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4158 	   u64, flags)
4159 {
4160 	return map->ops->map_redirect(map, ifindex, flags);
4161 }
4162 
4163 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4164 	.func           = bpf_xdp_redirect_map,
4165 	.gpl_only       = false,
4166 	.ret_type       = RET_INTEGER,
4167 	.arg1_type      = ARG_CONST_MAP_PTR,
4168 	.arg2_type      = ARG_ANYTHING,
4169 	.arg3_type      = ARG_ANYTHING,
4170 };
4171 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4172 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4173 				  unsigned long off, unsigned long len)
4174 {
4175 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4176 
4177 	if (unlikely(!ptr))
4178 		return len;
4179 	if (ptr != dst_buff)
4180 		memcpy(dst_buff, ptr, len);
4181 
4182 	return 0;
4183 }
4184 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4185 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4186 	   u64, flags, void *, meta, u64, meta_size)
4187 {
4188 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4189 
4190 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4191 		return -EINVAL;
4192 	if (unlikely(!skb || skb_size > skb->len))
4193 		return -EFAULT;
4194 
4195 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4196 				bpf_skb_copy);
4197 }
4198 
4199 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4200 	.func		= bpf_skb_event_output,
4201 	.gpl_only	= true,
4202 	.ret_type	= RET_INTEGER,
4203 	.arg1_type	= ARG_PTR_TO_CTX,
4204 	.arg2_type	= ARG_CONST_MAP_PTR,
4205 	.arg3_type	= ARG_ANYTHING,
4206 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4207 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4208 };
4209 
4210 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4211 
4212 const struct bpf_func_proto bpf_skb_output_proto = {
4213 	.func		= bpf_skb_event_output,
4214 	.gpl_only	= true,
4215 	.ret_type	= RET_INTEGER,
4216 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4217 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4218 	.arg2_type	= ARG_CONST_MAP_PTR,
4219 	.arg3_type	= ARG_ANYTHING,
4220 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4221 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4222 };
4223 
bpf_tunnel_key_af(u64 flags)4224 static unsigned short bpf_tunnel_key_af(u64 flags)
4225 {
4226 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4227 }
4228 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4229 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4230 	   u32, size, u64, flags)
4231 {
4232 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4233 	u8 compat[sizeof(struct bpf_tunnel_key)];
4234 	void *to_orig = to;
4235 	int err;
4236 
4237 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4238 		err = -EINVAL;
4239 		goto err_clear;
4240 	}
4241 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4242 		err = -EPROTO;
4243 		goto err_clear;
4244 	}
4245 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4246 		err = -EINVAL;
4247 		switch (size) {
4248 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4249 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4250 			goto set_compat;
4251 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4252 			/* Fixup deprecated structure layouts here, so we have
4253 			 * a common path later on.
4254 			 */
4255 			if (ip_tunnel_info_af(info) != AF_INET)
4256 				goto err_clear;
4257 set_compat:
4258 			to = (struct bpf_tunnel_key *)compat;
4259 			break;
4260 		default:
4261 			goto err_clear;
4262 		}
4263 	}
4264 
4265 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4266 	to->tunnel_tos = info->key.tos;
4267 	to->tunnel_ttl = info->key.ttl;
4268 	to->tunnel_ext = 0;
4269 
4270 	if (flags & BPF_F_TUNINFO_IPV6) {
4271 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4272 		       sizeof(to->remote_ipv6));
4273 		to->tunnel_label = be32_to_cpu(info->key.label);
4274 	} else {
4275 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4276 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4277 		to->tunnel_label = 0;
4278 	}
4279 
4280 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4281 		memcpy(to_orig, to, size);
4282 
4283 	return 0;
4284 err_clear:
4285 	memset(to_orig, 0, size);
4286 	return err;
4287 }
4288 
4289 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4290 	.func		= bpf_skb_get_tunnel_key,
4291 	.gpl_only	= false,
4292 	.ret_type	= RET_INTEGER,
4293 	.arg1_type	= ARG_PTR_TO_CTX,
4294 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4295 	.arg3_type	= ARG_CONST_SIZE,
4296 	.arg4_type	= ARG_ANYTHING,
4297 };
4298 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4299 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4300 {
4301 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4302 	int err;
4303 
4304 	if (unlikely(!info ||
4305 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4306 		err = -ENOENT;
4307 		goto err_clear;
4308 	}
4309 	if (unlikely(size < info->options_len)) {
4310 		err = -ENOMEM;
4311 		goto err_clear;
4312 	}
4313 
4314 	ip_tunnel_info_opts_get(to, info);
4315 	if (size > info->options_len)
4316 		memset(to + info->options_len, 0, size - info->options_len);
4317 
4318 	return info->options_len;
4319 err_clear:
4320 	memset(to, 0, size);
4321 	return err;
4322 }
4323 
4324 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4325 	.func		= bpf_skb_get_tunnel_opt,
4326 	.gpl_only	= false,
4327 	.ret_type	= RET_INTEGER,
4328 	.arg1_type	= ARG_PTR_TO_CTX,
4329 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4330 	.arg3_type	= ARG_CONST_SIZE,
4331 };
4332 
4333 static struct metadata_dst __percpu *md_dst;
4334 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4335 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4336 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4337 {
4338 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4339 	u8 compat[sizeof(struct bpf_tunnel_key)];
4340 	struct ip_tunnel_info *info;
4341 
4342 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4343 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4344 		return -EINVAL;
4345 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4346 		switch (size) {
4347 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4348 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4349 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4350 			/* Fixup deprecated structure layouts here, so we have
4351 			 * a common path later on.
4352 			 */
4353 			memcpy(compat, from, size);
4354 			memset(compat + size, 0, sizeof(compat) - size);
4355 			from = (const struct bpf_tunnel_key *) compat;
4356 			break;
4357 		default:
4358 			return -EINVAL;
4359 		}
4360 	}
4361 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4362 		     from->tunnel_ext))
4363 		return -EINVAL;
4364 
4365 	skb_dst_drop(skb);
4366 	dst_hold((struct dst_entry *) md);
4367 	skb_dst_set(skb, (struct dst_entry *) md);
4368 
4369 	info = &md->u.tun_info;
4370 	memset(info, 0, sizeof(*info));
4371 	info->mode = IP_TUNNEL_INFO_TX;
4372 
4373 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4374 	if (flags & BPF_F_DONT_FRAGMENT)
4375 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4376 	if (flags & BPF_F_ZERO_CSUM_TX)
4377 		info->key.tun_flags &= ~TUNNEL_CSUM;
4378 	if (flags & BPF_F_SEQ_NUMBER)
4379 		info->key.tun_flags |= TUNNEL_SEQ;
4380 
4381 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4382 	info->key.tos = from->tunnel_tos;
4383 	info->key.ttl = from->tunnel_ttl;
4384 
4385 	if (flags & BPF_F_TUNINFO_IPV6) {
4386 		info->mode |= IP_TUNNEL_INFO_IPV6;
4387 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4388 		       sizeof(from->remote_ipv6));
4389 		info->key.label = cpu_to_be32(from->tunnel_label) &
4390 				  IPV6_FLOWLABEL_MASK;
4391 	} else {
4392 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4393 	}
4394 
4395 	return 0;
4396 }
4397 
4398 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4399 	.func		= bpf_skb_set_tunnel_key,
4400 	.gpl_only	= false,
4401 	.ret_type	= RET_INTEGER,
4402 	.arg1_type	= ARG_PTR_TO_CTX,
4403 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4404 	.arg3_type	= ARG_CONST_SIZE,
4405 	.arg4_type	= ARG_ANYTHING,
4406 };
4407 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4408 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4409 	   const u8 *, from, u32, size)
4410 {
4411 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4412 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4413 
4414 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4415 		return -EINVAL;
4416 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4417 		return -ENOMEM;
4418 
4419 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4420 
4421 	return 0;
4422 }
4423 
4424 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4425 	.func		= bpf_skb_set_tunnel_opt,
4426 	.gpl_only	= false,
4427 	.ret_type	= RET_INTEGER,
4428 	.arg1_type	= ARG_PTR_TO_CTX,
4429 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4430 	.arg3_type	= ARG_CONST_SIZE,
4431 };
4432 
4433 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4434 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4435 {
4436 	if (!md_dst) {
4437 		struct metadata_dst __percpu *tmp;
4438 
4439 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4440 						METADATA_IP_TUNNEL,
4441 						GFP_KERNEL);
4442 		if (!tmp)
4443 			return NULL;
4444 		if (cmpxchg(&md_dst, NULL, tmp))
4445 			metadata_dst_free_percpu(tmp);
4446 	}
4447 
4448 	switch (which) {
4449 	case BPF_FUNC_skb_set_tunnel_key:
4450 		return &bpf_skb_set_tunnel_key_proto;
4451 	case BPF_FUNC_skb_set_tunnel_opt:
4452 		return &bpf_skb_set_tunnel_opt_proto;
4453 	default:
4454 		return NULL;
4455 	}
4456 }
4457 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4458 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4459 	   u32, idx)
4460 {
4461 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4462 	struct cgroup *cgrp;
4463 	struct sock *sk;
4464 
4465 	sk = skb_to_full_sk(skb);
4466 	if (!sk || !sk_fullsock(sk))
4467 		return -ENOENT;
4468 	if (unlikely(idx >= array->map.max_entries))
4469 		return -E2BIG;
4470 
4471 	cgrp = READ_ONCE(array->ptrs[idx]);
4472 	if (unlikely(!cgrp))
4473 		return -EAGAIN;
4474 
4475 	return sk_under_cgroup_hierarchy(sk, cgrp);
4476 }
4477 
4478 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4479 	.func		= bpf_skb_under_cgroup,
4480 	.gpl_only	= false,
4481 	.ret_type	= RET_INTEGER,
4482 	.arg1_type	= ARG_PTR_TO_CTX,
4483 	.arg2_type	= ARG_CONST_MAP_PTR,
4484 	.arg3_type	= ARG_ANYTHING,
4485 };
4486 
4487 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4488 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4489 {
4490 	struct cgroup *cgrp;
4491 
4492 	sk = sk_to_full_sk(sk);
4493 	if (!sk || !sk_fullsock(sk))
4494 		return 0;
4495 
4496 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4497 	return cgroup_id(cgrp);
4498 }
4499 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4500 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4501 {
4502 	return __bpf_sk_cgroup_id(skb->sk);
4503 }
4504 
4505 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4506 	.func           = bpf_skb_cgroup_id,
4507 	.gpl_only       = false,
4508 	.ret_type       = RET_INTEGER,
4509 	.arg1_type      = ARG_PTR_TO_CTX,
4510 };
4511 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4512 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4513 					      int ancestor_level)
4514 {
4515 	struct cgroup *ancestor;
4516 	struct cgroup *cgrp;
4517 
4518 	sk = sk_to_full_sk(sk);
4519 	if (!sk || !sk_fullsock(sk))
4520 		return 0;
4521 
4522 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4523 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4524 	if (!ancestor)
4525 		return 0;
4526 
4527 	return cgroup_id(ancestor);
4528 }
4529 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4530 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4531 	   ancestor_level)
4532 {
4533 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4534 }
4535 
4536 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4537 	.func           = bpf_skb_ancestor_cgroup_id,
4538 	.gpl_only       = false,
4539 	.ret_type       = RET_INTEGER,
4540 	.arg1_type      = ARG_PTR_TO_CTX,
4541 	.arg2_type      = ARG_ANYTHING,
4542 };
4543 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4544 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4545 {
4546 	return __bpf_sk_cgroup_id(sk);
4547 }
4548 
4549 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4550 	.func           = bpf_sk_cgroup_id,
4551 	.gpl_only       = false,
4552 	.ret_type       = RET_INTEGER,
4553 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4554 };
4555 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)4556 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4557 {
4558 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4559 }
4560 
4561 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4562 	.func           = bpf_sk_ancestor_cgroup_id,
4563 	.gpl_only       = false,
4564 	.ret_type       = RET_INTEGER,
4565 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4566 	.arg2_type      = ARG_ANYTHING,
4567 };
4568 #endif
4569 
bpf_xdp_copy(void * dst_buff,const void * src_buff,unsigned long off,unsigned long len)4570 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4571 				  unsigned long off, unsigned long len)
4572 {
4573 	memcpy(dst_buff, src_buff + off, len);
4574 	return 0;
4575 }
4576 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4577 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4578 	   u64, flags, void *, meta, u64, meta_size)
4579 {
4580 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4581 
4582 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4583 		return -EINVAL;
4584 	if (unlikely(!xdp ||
4585 		     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4586 		return -EFAULT;
4587 
4588 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4589 				xdp_size, bpf_xdp_copy);
4590 }
4591 
4592 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4593 	.func		= bpf_xdp_event_output,
4594 	.gpl_only	= true,
4595 	.ret_type	= RET_INTEGER,
4596 	.arg1_type	= ARG_PTR_TO_CTX,
4597 	.arg2_type	= ARG_CONST_MAP_PTR,
4598 	.arg3_type	= ARG_ANYTHING,
4599 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4600 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4601 };
4602 
4603 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4604 
4605 const struct bpf_func_proto bpf_xdp_output_proto = {
4606 	.func		= bpf_xdp_event_output,
4607 	.gpl_only	= true,
4608 	.ret_type	= RET_INTEGER,
4609 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4610 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4611 	.arg2_type	= ARG_CONST_MAP_PTR,
4612 	.arg3_type	= ARG_ANYTHING,
4613 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4614 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4615 };
4616 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)4617 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4618 {
4619 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4620 }
4621 
4622 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4623 	.func           = bpf_get_socket_cookie,
4624 	.gpl_only       = false,
4625 	.ret_type       = RET_INTEGER,
4626 	.arg1_type      = ARG_PTR_TO_CTX,
4627 };
4628 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4629 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4630 {
4631 	return __sock_gen_cookie(ctx->sk);
4632 }
4633 
4634 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4635 	.func		= bpf_get_socket_cookie_sock_addr,
4636 	.gpl_only	= false,
4637 	.ret_type	= RET_INTEGER,
4638 	.arg1_type	= ARG_PTR_TO_CTX,
4639 };
4640 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)4641 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4642 {
4643 	return __sock_gen_cookie(ctx);
4644 }
4645 
4646 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4647 	.func		= bpf_get_socket_cookie_sock,
4648 	.gpl_only	= false,
4649 	.ret_type	= RET_INTEGER,
4650 	.arg1_type	= ARG_PTR_TO_CTX,
4651 };
4652 
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)4653 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4654 {
4655 	return sk ? sock_gen_cookie(sk) : 0;
4656 }
4657 
4658 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4659 	.func		= bpf_get_socket_ptr_cookie,
4660 	.gpl_only	= false,
4661 	.ret_type	= RET_INTEGER,
4662 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4663 };
4664 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4665 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4666 {
4667 	return __sock_gen_cookie(ctx->sk);
4668 }
4669 
4670 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4671 	.func		= bpf_get_socket_cookie_sock_ops,
4672 	.gpl_only	= false,
4673 	.ret_type	= RET_INTEGER,
4674 	.arg1_type	= ARG_PTR_TO_CTX,
4675 };
4676 
__bpf_get_netns_cookie(struct sock * sk)4677 static u64 __bpf_get_netns_cookie(struct sock *sk)
4678 {
4679 	const struct net *net = sk ? sock_net(sk) : &init_net;
4680 
4681 	return net->net_cookie;
4682 }
4683 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)4684 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4685 {
4686 	return __bpf_get_netns_cookie(ctx);
4687 }
4688 
4689 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4690 	.func		= bpf_get_netns_cookie_sock,
4691 	.gpl_only	= false,
4692 	.ret_type	= RET_INTEGER,
4693 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4694 };
4695 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4696 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4697 {
4698 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4699 }
4700 
4701 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4702 	.func		= bpf_get_netns_cookie_sock_addr,
4703 	.gpl_only	= false,
4704 	.ret_type	= RET_INTEGER,
4705 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4706 };
4707 
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4708 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4709 {
4710 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4711 }
4712 
4713 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4714 	.func		= bpf_get_netns_cookie_sock_ops,
4715 	.gpl_only	= false,
4716 	.ret_type	= RET_INTEGER,
4717 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4718 };
4719 
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)4720 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4721 {
4722 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4723 }
4724 
4725 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4726 	.func		= bpf_get_netns_cookie_sk_msg,
4727 	.gpl_only	= false,
4728 	.ret_type	= RET_INTEGER,
4729 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4730 };
4731 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)4732 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4733 {
4734 	struct sock *sk = sk_to_full_sk(skb->sk);
4735 	kuid_t kuid;
4736 
4737 	if (!sk || !sk_fullsock(sk))
4738 		return overflowuid;
4739 	kuid = sock_net_uid(sock_net(sk), sk);
4740 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4741 }
4742 
4743 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4744 	.func           = bpf_get_socket_uid,
4745 	.gpl_only       = false,
4746 	.ret_type       = RET_INTEGER,
4747 	.arg1_type      = ARG_PTR_TO_CTX,
4748 };
4749 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)4750 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4751 			   char *optval, int optlen)
4752 {
4753 	char devname[IFNAMSIZ];
4754 	int val, valbool;
4755 	struct net *net;
4756 	int ifindex;
4757 	int ret = 0;
4758 
4759 	if (!sk_fullsock(sk))
4760 		return -EINVAL;
4761 
4762 	sock_owned_by_me(sk);
4763 
4764 	if (level == SOL_SOCKET) {
4765 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4766 			return -EINVAL;
4767 		val = *((int *)optval);
4768 		valbool = val ? 1 : 0;
4769 
4770 		/* Only some socketops are supported */
4771 		switch (optname) {
4772 		case SO_RCVBUF:
4773 			val = min_t(u32, val, READ_ONCE(sysctl_rmem_max));
4774 			val = min_t(int, val, INT_MAX / 2);
4775 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4776 			WRITE_ONCE(sk->sk_rcvbuf,
4777 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4778 			break;
4779 		case SO_SNDBUF:
4780 			val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
4781 			val = min_t(int, val, INT_MAX / 2);
4782 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4783 			WRITE_ONCE(sk->sk_sndbuf,
4784 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4785 			break;
4786 		case SO_MAX_PACING_RATE: /* 32bit version */
4787 			if (val != ~0U)
4788 				cmpxchg(&sk->sk_pacing_status,
4789 					SK_PACING_NONE,
4790 					SK_PACING_NEEDED);
4791 			sk->sk_max_pacing_rate = (val == ~0U) ?
4792 						 ~0UL : (unsigned int)val;
4793 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4794 						 sk->sk_max_pacing_rate);
4795 			break;
4796 		case SO_PRIORITY:
4797 			sk->sk_priority = val;
4798 			break;
4799 		case SO_RCVLOWAT:
4800 			if (val < 0)
4801 				val = INT_MAX;
4802 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4803 			break;
4804 		case SO_MARK:
4805 			if (sk->sk_mark != val) {
4806 				sk->sk_mark = val;
4807 				sk_dst_reset(sk);
4808 			}
4809 			break;
4810 		case SO_BINDTODEVICE:
4811 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
4812 			strncpy(devname, optval, optlen);
4813 			devname[optlen] = 0;
4814 
4815 			ifindex = 0;
4816 			if (devname[0] != '\0') {
4817 				struct net_device *dev;
4818 
4819 				ret = -ENODEV;
4820 
4821 				net = sock_net(sk);
4822 				dev = dev_get_by_name(net, devname);
4823 				if (!dev)
4824 					break;
4825 				ifindex = dev->ifindex;
4826 				dev_put(dev);
4827 			}
4828 			fallthrough;
4829 		case SO_BINDTOIFINDEX:
4830 			if (optname == SO_BINDTOIFINDEX)
4831 				ifindex = val;
4832 			ret = sock_bindtoindex(sk, ifindex, false);
4833 			break;
4834 		case SO_KEEPALIVE:
4835 			if (sk->sk_prot->keepalive)
4836 				sk->sk_prot->keepalive(sk, valbool);
4837 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4838 			break;
4839 		case SO_REUSEPORT:
4840 			sk->sk_reuseport = valbool;
4841 			break;
4842 		default:
4843 			ret = -EINVAL;
4844 		}
4845 #ifdef CONFIG_INET
4846 	} else if (level == SOL_IP) {
4847 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4848 			return -EINVAL;
4849 
4850 		val = *((int *)optval);
4851 		/* Only some options are supported */
4852 		switch (optname) {
4853 		case IP_TOS:
4854 			if (val < -1 || val > 0xff) {
4855 				ret = -EINVAL;
4856 			} else {
4857 				struct inet_sock *inet = inet_sk(sk);
4858 
4859 				if (val == -1)
4860 					val = 0;
4861 				inet->tos = val;
4862 			}
4863 			break;
4864 		default:
4865 			ret = -EINVAL;
4866 		}
4867 #if IS_ENABLED(CONFIG_IPV6)
4868 	} else if (level == SOL_IPV6) {
4869 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4870 			return -EINVAL;
4871 
4872 		val = *((int *)optval);
4873 		/* Only some options are supported */
4874 		switch (optname) {
4875 		case IPV6_TCLASS:
4876 			if (val < -1 || val > 0xff) {
4877 				ret = -EINVAL;
4878 			} else {
4879 				struct ipv6_pinfo *np = inet6_sk(sk);
4880 
4881 				if (val == -1)
4882 					val = 0;
4883 				np->tclass = val;
4884 			}
4885 			break;
4886 		default:
4887 			ret = -EINVAL;
4888 		}
4889 #endif
4890 	} else if (level == SOL_TCP &&
4891 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4892 		if (optname == TCP_CONGESTION) {
4893 			char name[TCP_CA_NAME_MAX];
4894 
4895 			strncpy(name, optval, min_t(long, optlen,
4896 						    TCP_CA_NAME_MAX-1));
4897 			name[TCP_CA_NAME_MAX-1] = 0;
4898 			ret = tcp_set_congestion_control(sk, name, false, true);
4899 		} else {
4900 			struct inet_connection_sock *icsk = inet_csk(sk);
4901 			struct tcp_sock *tp = tcp_sk(sk);
4902 			unsigned long timeout;
4903 
4904 			if (optlen != sizeof(int))
4905 				return -EINVAL;
4906 
4907 			val = *((int *)optval);
4908 			/* Only some options are supported */
4909 			switch (optname) {
4910 			case TCP_BPF_IW:
4911 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4912 					ret = -EINVAL;
4913 				else
4914 					tcp_snd_cwnd_set(tp, val);
4915 				break;
4916 			case TCP_BPF_SNDCWND_CLAMP:
4917 				if (val <= 0) {
4918 					ret = -EINVAL;
4919 				} else {
4920 					tp->snd_cwnd_clamp = val;
4921 					tp->snd_ssthresh = val;
4922 				}
4923 				break;
4924 			case TCP_BPF_DELACK_MAX:
4925 				timeout = usecs_to_jiffies(val);
4926 				if (timeout > TCP_DELACK_MAX ||
4927 				    timeout < TCP_TIMEOUT_MIN)
4928 					return -EINVAL;
4929 				inet_csk(sk)->icsk_delack_max = timeout;
4930 				break;
4931 			case TCP_BPF_RTO_MIN:
4932 				timeout = usecs_to_jiffies(val);
4933 				if (timeout > TCP_RTO_MIN ||
4934 				    timeout < TCP_TIMEOUT_MIN)
4935 					return -EINVAL;
4936 				inet_csk(sk)->icsk_rto_min = timeout;
4937 				break;
4938 			case TCP_SAVE_SYN:
4939 				if (val < 0 || val > 1)
4940 					ret = -EINVAL;
4941 				else
4942 					tp->save_syn = val;
4943 				break;
4944 			case TCP_KEEPIDLE:
4945 				ret = tcp_sock_set_keepidle_locked(sk, val);
4946 				break;
4947 			case TCP_KEEPINTVL:
4948 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
4949 					ret = -EINVAL;
4950 				else
4951 					tp->keepalive_intvl = val * HZ;
4952 				break;
4953 			case TCP_KEEPCNT:
4954 				if (val < 1 || val > MAX_TCP_KEEPCNT)
4955 					ret = -EINVAL;
4956 				else
4957 					tp->keepalive_probes = val;
4958 				break;
4959 			case TCP_SYNCNT:
4960 				if (val < 1 || val > MAX_TCP_SYNCNT)
4961 					ret = -EINVAL;
4962 				else
4963 					icsk->icsk_syn_retries = val;
4964 				break;
4965 			case TCP_USER_TIMEOUT:
4966 				if (val < 0)
4967 					ret = -EINVAL;
4968 				else
4969 					icsk->icsk_user_timeout = val;
4970 				break;
4971 			case TCP_NOTSENT_LOWAT:
4972 				tp->notsent_lowat = val;
4973 				sk->sk_write_space(sk);
4974 				break;
4975 			case TCP_WINDOW_CLAMP:
4976 				ret = tcp_set_window_clamp(sk, val);
4977 				break;
4978 			default:
4979 				ret = -EINVAL;
4980 			}
4981 		}
4982 #endif
4983 	} else {
4984 		ret = -EINVAL;
4985 	}
4986 	return ret;
4987 }
4988 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)4989 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4990 			   char *optval, int optlen)
4991 {
4992 	if (!sk_fullsock(sk))
4993 		goto err_clear;
4994 
4995 	sock_owned_by_me(sk);
4996 
4997 	if (level == SOL_SOCKET) {
4998 		if (optlen != sizeof(int))
4999 			goto err_clear;
5000 
5001 		switch (optname) {
5002 		case SO_MARK:
5003 			*((int *)optval) = sk->sk_mark;
5004 			break;
5005 		case SO_PRIORITY:
5006 			*((int *)optval) = sk->sk_priority;
5007 			break;
5008 		case SO_BINDTOIFINDEX:
5009 			*((int *)optval) = sk->sk_bound_dev_if;
5010 			break;
5011 		case SO_REUSEPORT:
5012 			*((int *)optval) = sk->sk_reuseport;
5013 			break;
5014 		default:
5015 			goto err_clear;
5016 		}
5017 #ifdef CONFIG_INET
5018 	} else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
5019 		struct inet_connection_sock *icsk;
5020 		struct tcp_sock *tp;
5021 
5022 		switch (optname) {
5023 		case TCP_CONGESTION:
5024 			icsk = inet_csk(sk);
5025 
5026 			if (!icsk->icsk_ca_ops || optlen <= 1)
5027 				goto err_clear;
5028 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
5029 			optval[optlen - 1] = 0;
5030 			break;
5031 		case TCP_SAVED_SYN:
5032 			tp = tcp_sk(sk);
5033 
5034 			if (optlen <= 0 || !tp->saved_syn ||
5035 			    optlen > tcp_saved_syn_len(tp->saved_syn))
5036 				goto err_clear;
5037 			memcpy(optval, tp->saved_syn->data, optlen);
5038 			break;
5039 		default:
5040 			goto err_clear;
5041 		}
5042 	} else if (level == SOL_IP) {
5043 		struct inet_sock *inet = inet_sk(sk);
5044 
5045 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5046 			goto err_clear;
5047 
5048 		/* Only some options are supported */
5049 		switch (optname) {
5050 		case IP_TOS:
5051 			*((int *)optval) = (int)inet->tos;
5052 			break;
5053 		default:
5054 			goto err_clear;
5055 		}
5056 #if IS_ENABLED(CONFIG_IPV6)
5057 	} else if (level == SOL_IPV6) {
5058 		struct ipv6_pinfo *np = inet6_sk(sk);
5059 
5060 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5061 			goto err_clear;
5062 
5063 		/* Only some options are supported */
5064 		switch (optname) {
5065 		case IPV6_TCLASS:
5066 			*((int *)optval) = (int)np->tclass;
5067 			break;
5068 		default:
5069 			goto err_clear;
5070 		}
5071 #endif
5072 #endif
5073 	} else {
5074 		goto err_clear;
5075 	}
5076 	return 0;
5077 err_clear:
5078 	memset(optval, 0, optlen);
5079 	return -EINVAL;
5080 }
5081 
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5082 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5083 	   int, optname, char *, optval, int, optlen)
5084 {
5085 	if (level == SOL_TCP && optname == TCP_CONGESTION) {
5086 		if (optlen >= sizeof("cdg") - 1 &&
5087 		    !strncmp("cdg", optval, optlen))
5088 			return -ENOTSUPP;
5089 	}
5090 
5091 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5092 }
5093 
5094 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5095 	.func		= bpf_sk_setsockopt,
5096 	.gpl_only	= false,
5097 	.ret_type	= RET_INTEGER,
5098 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5099 	.arg2_type	= ARG_ANYTHING,
5100 	.arg3_type	= ARG_ANYTHING,
5101 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5102 	.arg5_type	= ARG_CONST_SIZE,
5103 };
5104 
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5105 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5106 	   int, optname, char *, optval, int, optlen)
5107 {
5108 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5109 }
5110 
5111 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5112 	.func		= bpf_sk_getsockopt,
5113 	.gpl_only	= false,
5114 	.ret_type	= RET_INTEGER,
5115 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5116 	.arg2_type	= ARG_ANYTHING,
5117 	.arg3_type	= ARG_ANYTHING,
5118 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5119 	.arg5_type	= ARG_CONST_SIZE,
5120 };
5121 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5122 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5123 	   int, level, int, optname, char *, optval, int, optlen)
5124 {
5125 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5126 }
5127 
5128 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5129 	.func		= bpf_sock_addr_setsockopt,
5130 	.gpl_only	= false,
5131 	.ret_type	= RET_INTEGER,
5132 	.arg1_type	= ARG_PTR_TO_CTX,
5133 	.arg2_type	= ARG_ANYTHING,
5134 	.arg3_type	= ARG_ANYTHING,
5135 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5136 	.arg5_type	= ARG_CONST_SIZE,
5137 };
5138 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5139 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5140 	   int, level, int, optname, char *, optval, int, optlen)
5141 {
5142 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5143 }
5144 
5145 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5146 	.func		= bpf_sock_addr_getsockopt,
5147 	.gpl_only	= false,
5148 	.ret_type	= RET_INTEGER,
5149 	.arg1_type	= ARG_PTR_TO_CTX,
5150 	.arg2_type	= ARG_ANYTHING,
5151 	.arg3_type	= ARG_ANYTHING,
5152 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5153 	.arg5_type	= ARG_CONST_SIZE,
5154 };
5155 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5156 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5157 	   int, level, int, optname, char *, optval, int, optlen)
5158 {
5159 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5160 }
5161 
5162 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5163 	.func		= bpf_sock_ops_setsockopt,
5164 	.gpl_only	= false,
5165 	.ret_type	= RET_INTEGER,
5166 	.arg1_type	= ARG_PTR_TO_CTX,
5167 	.arg2_type	= ARG_ANYTHING,
5168 	.arg3_type	= ARG_ANYTHING,
5169 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5170 	.arg5_type	= ARG_CONST_SIZE,
5171 };
5172 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5173 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5174 				int optname, const u8 **start)
5175 {
5176 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5177 	const u8 *hdr_start;
5178 	int ret;
5179 
5180 	if (syn_skb) {
5181 		/* sk is a request_sock here */
5182 
5183 		if (optname == TCP_BPF_SYN) {
5184 			hdr_start = syn_skb->data;
5185 			ret = tcp_hdrlen(syn_skb);
5186 		} else if (optname == TCP_BPF_SYN_IP) {
5187 			hdr_start = skb_network_header(syn_skb);
5188 			ret = skb_network_header_len(syn_skb) +
5189 				tcp_hdrlen(syn_skb);
5190 		} else {
5191 			/* optname == TCP_BPF_SYN_MAC */
5192 			hdr_start = skb_mac_header(syn_skb);
5193 			ret = skb_mac_header_len(syn_skb) +
5194 				skb_network_header_len(syn_skb) +
5195 				tcp_hdrlen(syn_skb);
5196 		}
5197 	} else {
5198 		struct sock *sk = bpf_sock->sk;
5199 		struct saved_syn *saved_syn;
5200 
5201 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5202 			/* synack retransmit. bpf_sock->syn_skb will
5203 			 * not be available.  It has to resort to
5204 			 * saved_syn (if it is saved).
5205 			 */
5206 			saved_syn = inet_reqsk(sk)->saved_syn;
5207 		else
5208 			saved_syn = tcp_sk(sk)->saved_syn;
5209 
5210 		if (!saved_syn)
5211 			return -ENOENT;
5212 
5213 		if (optname == TCP_BPF_SYN) {
5214 			hdr_start = saved_syn->data +
5215 				saved_syn->mac_hdrlen +
5216 				saved_syn->network_hdrlen;
5217 			ret = saved_syn->tcp_hdrlen;
5218 		} else if (optname == TCP_BPF_SYN_IP) {
5219 			hdr_start = saved_syn->data +
5220 				saved_syn->mac_hdrlen;
5221 			ret = saved_syn->network_hdrlen +
5222 				saved_syn->tcp_hdrlen;
5223 		} else {
5224 			/* optname == TCP_BPF_SYN_MAC */
5225 
5226 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5227 			if (!saved_syn->mac_hdrlen)
5228 				return -ENOENT;
5229 
5230 			hdr_start = saved_syn->data;
5231 			ret = saved_syn->mac_hdrlen +
5232 				saved_syn->network_hdrlen +
5233 				saved_syn->tcp_hdrlen;
5234 		}
5235 	}
5236 
5237 	*start = hdr_start;
5238 	return ret;
5239 }
5240 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5241 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5242 	   int, level, int, optname, char *, optval, int, optlen)
5243 {
5244 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5245 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5246 		int ret, copy_len = 0;
5247 		const u8 *start;
5248 
5249 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5250 		if (ret > 0) {
5251 			copy_len = ret;
5252 			if (optlen < copy_len) {
5253 				copy_len = optlen;
5254 				ret = -ENOSPC;
5255 			}
5256 
5257 			memcpy(optval, start, copy_len);
5258 		}
5259 
5260 		/* Zero out unused buffer at the end */
5261 		memset(optval + copy_len, 0, optlen - copy_len);
5262 
5263 		return ret;
5264 	}
5265 
5266 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5267 }
5268 
5269 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5270 	.func		= bpf_sock_ops_getsockopt,
5271 	.gpl_only	= false,
5272 	.ret_type	= RET_INTEGER,
5273 	.arg1_type	= ARG_PTR_TO_CTX,
5274 	.arg2_type	= ARG_ANYTHING,
5275 	.arg3_type	= ARG_ANYTHING,
5276 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5277 	.arg5_type	= ARG_CONST_SIZE,
5278 };
5279 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5280 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5281 	   int, argval)
5282 {
5283 	struct sock *sk = bpf_sock->sk;
5284 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5285 
5286 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5287 		return -EINVAL;
5288 
5289 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5290 
5291 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5292 }
5293 
5294 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5295 	.func		= bpf_sock_ops_cb_flags_set,
5296 	.gpl_only	= false,
5297 	.ret_type	= RET_INTEGER,
5298 	.arg1_type	= ARG_PTR_TO_CTX,
5299 	.arg2_type	= ARG_ANYTHING,
5300 };
5301 
5302 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5303 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5304 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5305 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5306 	   int, addr_len)
5307 {
5308 #ifdef CONFIG_INET
5309 	struct sock *sk = ctx->sk;
5310 	u32 flags = BIND_FROM_BPF;
5311 	int err;
5312 
5313 	err = -EINVAL;
5314 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5315 		return err;
5316 	if (addr->sa_family == AF_INET) {
5317 		if (addr_len < sizeof(struct sockaddr_in))
5318 			return err;
5319 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5320 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5321 		return __inet_bind(sk, addr, addr_len, flags);
5322 #if IS_ENABLED(CONFIG_IPV6)
5323 	} else if (addr->sa_family == AF_INET6) {
5324 		if (addr_len < SIN6_LEN_RFC2133)
5325 			return err;
5326 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5327 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5328 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5329 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5330 		 */
5331 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5332 #endif /* CONFIG_IPV6 */
5333 	}
5334 #endif /* CONFIG_INET */
5335 
5336 	return -EAFNOSUPPORT;
5337 }
5338 
5339 static const struct bpf_func_proto bpf_bind_proto = {
5340 	.func		= bpf_bind,
5341 	.gpl_only	= false,
5342 	.ret_type	= RET_INTEGER,
5343 	.arg1_type	= ARG_PTR_TO_CTX,
5344 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5345 	.arg3_type	= ARG_CONST_SIZE,
5346 };
5347 
5348 #ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5349 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5350 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5351 {
5352 	const struct sec_path *sp = skb_sec_path(skb);
5353 	const struct xfrm_state *x;
5354 
5355 	if (!sp || unlikely(index >= sp->len || flags))
5356 		goto err_clear;
5357 
5358 	x = sp->xvec[index];
5359 
5360 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5361 		goto err_clear;
5362 
5363 	to->reqid = x->props.reqid;
5364 	to->spi = x->id.spi;
5365 	to->family = x->props.family;
5366 	to->ext = 0;
5367 
5368 	if (to->family == AF_INET6) {
5369 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5370 		       sizeof(to->remote_ipv6));
5371 	} else {
5372 		to->remote_ipv4 = x->props.saddr.a4;
5373 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5374 	}
5375 
5376 	return 0;
5377 err_clear:
5378 	memset(to, 0, size);
5379 	return -EINVAL;
5380 }
5381 
5382 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5383 	.func		= bpf_skb_get_xfrm_state,
5384 	.gpl_only	= false,
5385 	.ret_type	= RET_INTEGER,
5386 	.arg1_type	= ARG_PTR_TO_CTX,
5387 	.arg2_type	= ARG_ANYTHING,
5388 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5389 	.arg4_type	= ARG_CONST_SIZE,
5390 	.arg5_type	= ARG_ANYTHING,
5391 };
5392 #endif
5393 
5394 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,const struct neighbour * neigh,const struct net_device * dev,u32 mtu)5395 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5396 				  const struct neighbour *neigh,
5397 				  const struct net_device *dev, u32 mtu)
5398 {
5399 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5400 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5401 	params->h_vlan_TCI = 0;
5402 	params->h_vlan_proto = 0;
5403 	if (mtu)
5404 		params->mtu_result = mtu; /* union with tot_len */
5405 
5406 	return 0;
5407 }
5408 #endif
5409 
5410 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5411 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5412 			       u32 flags, bool check_mtu)
5413 {
5414 	struct fib_nh_common *nhc;
5415 	struct in_device *in_dev;
5416 	struct neighbour *neigh;
5417 	struct net_device *dev;
5418 	struct fib_result res;
5419 	struct flowi4 fl4;
5420 	u32 mtu = 0;
5421 	int err;
5422 
5423 	dev = dev_get_by_index_rcu(net, params->ifindex);
5424 	if (unlikely(!dev))
5425 		return -ENODEV;
5426 
5427 	/* verify forwarding is enabled on this interface */
5428 	in_dev = __in_dev_get_rcu(dev);
5429 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5430 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5431 
5432 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5433 		fl4.flowi4_iif = 1;
5434 		fl4.flowi4_oif = params->ifindex;
5435 	} else {
5436 		fl4.flowi4_iif = params->ifindex;
5437 		fl4.flowi4_oif = 0;
5438 	}
5439 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5440 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5441 	fl4.flowi4_flags = 0;
5442 
5443 	fl4.flowi4_proto = params->l4_protocol;
5444 	fl4.daddr = params->ipv4_dst;
5445 	fl4.saddr = params->ipv4_src;
5446 	fl4.fl4_sport = params->sport;
5447 	fl4.fl4_dport = params->dport;
5448 	fl4.flowi4_multipath_hash = 0;
5449 
5450 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5451 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5452 		struct fib_table *tb;
5453 
5454 		tb = fib_get_table(net, tbid);
5455 		if (unlikely(!tb))
5456 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5457 
5458 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5459 	} else {
5460 		fl4.flowi4_mark = 0;
5461 		fl4.flowi4_secid = 0;
5462 		fl4.flowi4_tun_key.tun_id = 0;
5463 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5464 
5465 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5466 	}
5467 
5468 	if (err) {
5469 		/* map fib lookup errors to RTN_ type */
5470 		if (err == -EINVAL)
5471 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5472 		if (err == -EHOSTUNREACH)
5473 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5474 		if (err == -EACCES)
5475 			return BPF_FIB_LKUP_RET_PROHIBIT;
5476 
5477 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5478 	}
5479 
5480 	if (res.type != RTN_UNICAST)
5481 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5482 
5483 	if (fib_info_num_path(res.fi) > 1)
5484 		fib_select_path(net, &res, &fl4, NULL);
5485 
5486 	if (check_mtu) {
5487 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5488 		if (params->tot_len > mtu) {
5489 			params->mtu_result = mtu; /* union with tot_len */
5490 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5491 		}
5492 	}
5493 
5494 	nhc = res.nhc;
5495 
5496 	/* do not handle lwt encaps right now */
5497 	if (nhc->nhc_lwtstate)
5498 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5499 
5500 	dev = nhc->nhc_dev;
5501 
5502 	params->rt_metric = res.fi->fib_priority;
5503 	params->ifindex = dev->ifindex;
5504 
5505 	/* xdp and cls_bpf programs are run in RCU-bh so
5506 	 * rcu_read_lock_bh is not needed here
5507 	 */
5508 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5509 		if (nhc->nhc_gw_family)
5510 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5511 
5512 		neigh = __ipv4_neigh_lookup_noref(dev,
5513 						 (__force u32)params->ipv4_dst);
5514 	} else {
5515 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5516 
5517 		params->family = AF_INET6;
5518 		*dst = nhc->nhc_gw.ipv6;
5519 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5520 	}
5521 
5522 	if (!neigh || !(neigh->nud_state & NUD_VALID))
5523 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5524 
5525 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5526 }
5527 #endif
5528 
5529 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5530 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5531 			       u32 flags, bool check_mtu)
5532 {
5533 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5534 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5535 	struct fib6_result res = {};
5536 	struct neighbour *neigh;
5537 	struct net_device *dev;
5538 	struct inet6_dev *idev;
5539 	struct flowi6 fl6;
5540 	int strict = 0;
5541 	int oif, err;
5542 	u32 mtu = 0;
5543 
5544 	/* link local addresses are never forwarded */
5545 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5546 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5547 
5548 	dev = dev_get_by_index_rcu(net, params->ifindex);
5549 	if (unlikely(!dev))
5550 		return -ENODEV;
5551 
5552 	idev = __in6_dev_get_safely(dev);
5553 	if (unlikely(!idev || !idev->cnf.forwarding))
5554 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5555 
5556 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5557 		fl6.flowi6_iif = 1;
5558 		oif = fl6.flowi6_oif = params->ifindex;
5559 	} else {
5560 		oif = fl6.flowi6_iif = params->ifindex;
5561 		fl6.flowi6_oif = 0;
5562 		strict = RT6_LOOKUP_F_HAS_SADDR;
5563 	}
5564 	fl6.flowlabel = params->flowinfo;
5565 	fl6.flowi6_scope = 0;
5566 	fl6.flowi6_flags = 0;
5567 	fl6.mp_hash = 0;
5568 
5569 	fl6.flowi6_proto = params->l4_protocol;
5570 	fl6.daddr = *dst;
5571 	fl6.saddr = *src;
5572 	fl6.fl6_sport = params->sport;
5573 	fl6.fl6_dport = params->dport;
5574 
5575 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5576 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5577 		struct fib6_table *tb;
5578 
5579 		tb = ipv6_stub->fib6_get_table(net, tbid);
5580 		if (unlikely(!tb))
5581 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5582 
5583 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5584 						   strict);
5585 	} else {
5586 		fl6.flowi6_mark = 0;
5587 		fl6.flowi6_secid = 0;
5588 		fl6.flowi6_tun_key.tun_id = 0;
5589 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5590 
5591 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5592 	}
5593 
5594 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5595 		     res.f6i == net->ipv6.fib6_null_entry))
5596 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5597 
5598 	switch (res.fib6_type) {
5599 	/* only unicast is forwarded */
5600 	case RTN_UNICAST:
5601 		break;
5602 	case RTN_BLACKHOLE:
5603 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5604 	case RTN_UNREACHABLE:
5605 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5606 	case RTN_PROHIBIT:
5607 		return BPF_FIB_LKUP_RET_PROHIBIT;
5608 	default:
5609 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5610 	}
5611 
5612 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5613 				    fl6.flowi6_oif != 0, NULL, strict);
5614 
5615 	if (check_mtu) {
5616 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5617 		if (params->tot_len > mtu) {
5618 			params->mtu_result = mtu; /* union with tot_len */
5619 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5620 		}
5621 	}
5622 
5623 	if (res.nh->fib_nh_lws)
5624 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5625 
5626 	if (res.nh->fib_nh_gw_family)
5627 		*dst = res.nh->fib_nh_gw6;
5628 
5629 	dev = res.nh->fib_nh_dev;
5630 	params->rt_metric = res.f6i->fib6_metric;
5631 	params->ifindex = dev->ifindex;
5632 
5633 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5634 	 * not needed here.
5635 	 */
5636 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5637 	if (!neigh || !(neigh->nud_state & NUD_VALID))
5638 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5639 
5640 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5641 }
5642 #endif
5643 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)5644 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5645 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5646 {
5647 	if (plen < sizeof(*params))
5648 		return -EINVAL;
5649 
5650 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5651 		return -EINVAL;
5652 
5653 	switch (params->family) {
5654 #if IS_ENABLED(CONFIG_INET)
5655 	case AF_INET:
5656 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5657 					   flags, true);
5658 #endif
5659 #if IS_ENABLED(CONFIG_IPV6)
5660 	case AF_INET6:
5661 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5662 					   flags, true);
5663 #endif
5664 	}
5665 	return -EAFNOSUPPORT;
5666 }
5667 
5668 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5669 	.func		= bpf_xdp_fib_lookup,
5670 	.gpl_only	= true,
5671 	.ret_type	= RET_INTEGER,
5672 	.arg1_type      = ARG_PTR_TO_CTX,
5673 	.arg2_type      = ARG_PTR_TO_MEM,
5674 	.arg3_type      = ARG_CONST_SIZE,
5675 	.arg4_type	= ARG_ANYTHING,
5676 };
5677 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)5678 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5679 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5680 {
5681 	struct net *net = dev_net(skb->dev);
5682 	int rc = -EAFNOSUPPORT;
5683 	bool check_mtu = false;
5684 
5685 	if (plen < sizeof(*params))
5686 		return -EINVAL;
5687 
5688 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5689 		return -EINVAL;
5690 
5691 	if (params->tot_len)
5692 		check_mtu = true;
5693 
5694 	switch (params->family) {
5695 #if IS_ENABLED(CONFIG_INET)
5696 	case AF_INET:
5697 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5698 		break;
5699 #endif
5700 #if IS_ENABLED(CONFIG_IPV6)
5701 	case AF_INET6:
5702 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5703 		break;
5704 #endif
5705 	}
5706 
5707 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5708 		struct net_device *dev;
5709 
5710 		/* When tot_len isn't provided by user, check skb
5711 		 * against MTU of FIB lookup resulting net_device
5712 		 */
5713 		dev = dev_get_by_index_rcu(net, params->ifindex);
5714 		if (!is_skb_forwardable(dev, skb))
5715 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5716 
5717 		params->mtu_result = dev->mtu; /* union with tot_len */
5718 	}
5719 
5720 	return rc;
5721 }
5722 
5723 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5724 	.func		= bpf_skb_fib_lookup,
5725 	.gpl_only	= true,
5726 	.ret_type	= RET_INTEGER,
5727 	.arg1_type      = ARG_PTR_TO_CTX,
5728 	.arg2_type      = ARG_PTR_TO_MEM,
5729 	.arg3_type      = ARG_CONST_SIZE,
5730 	.arg4_type	= ARG_ANYTHING,
5731 };
5732 
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)5733 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5734 					    u32 ifindex)
5735 {
5736 	struct net *netns = dev_net(dev_curr);
5737 
5738 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5739 	if (ifindex == 0)
5740 		return dev_curr;
5741 
5742 	return dev_get_by_index_rcu(netns, ifindex);
5743 }
5744 
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)5745 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5746 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5747 {
5748 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5749 	struct net_device *dev = skb->dev;
5750 	int skb_len, dev_len;
5751 	int mtu;
5752 
5753 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5754 		return -EINVAL;
5755 
5756 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
5757 		return -EINVAL;
5758 
5759 	dev = __dev_via_ifindex(dev, ifindex);
5760 	if (unlikely(!dev))
5761 		return -ENODEV;
5762 
5763 	mtu = READ_ONCE(dev->mtu);
5764 
5765 	dev_len = mtu + dev->hard_header_len;
5766 
5767 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5768 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
5769 
5770 	skb_len += len_diff; /* minus result pass check */
5771 	if (skb_len <= dev_len) {
5772 		ret = BPF_MTU_CHK_RET_SUCCESS;
5773 		goto out;
5774 	}
5775 	/* At this point, skb->len exceed MTU, but as it include length of all
5776 	 * segments, it can still be below MTU.  The SKB can possibly get
5777 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
5778 	 * must choose if segs are to be MTU checked.
5779 	 */
5780 	if (skb_is_gso(skb)) {
5781 		ret = BPF_MTU_CHK_RET_SUCCESS;
5782 
5783 		if (flags & BPF_MTU_CHK_SEGS &&
5784 		    !skb_gso_validate_network_len(skb, mtu))
5785 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
5786 	}
5787 out:
5788 	/* BPF verifier guarantees valid pointer */
5789 	*mtu_len = mtu;
5790 
5791 	return ret;
5792 }
5793 
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)5794 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
5795 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5796 {
5797 	struct net_device *dev = xdp->rxq->dev;
5798 	int xdp_len = xdp->data_end - xdp->data;
5799 	int ret = BPF_MTU_CHK_RET_SUCCESS;
5800 	int mtu, dev_len;
5801 
5802 	/* XDP variant doesn't support multi-buffer segment check (yet) */
5803 	if (unlikely(flags))
5804 		return -EINVAL;
5805 
5806 	dev = __dev_via_ifindex(dev, ifindex);
5807 	if (unlikely(!dev))
5808 		return -ENODEV;
5809 
5810 	mtu = READ_ONCE(dev->mtu);
5811 
5812 	/* Add L2-header as dev MTU is L3 size */
5813 	dev_len = mtu + dev->hard_header_len;
5814 
5815 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5816 	if (*mtu_len)
5817 		xdp_len = *mtu_len + dev->hard_header_len;
5818 
5819 	xdp_len += len_diff; /* minus result pass check */
5820 	if (xdp_len > dev_len)
5821 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5822 
5823 	/* BPF verifier guarantees valid pointer */
5824 	*mtu_len = mtu;
5825 
5826 	return ret;
5827 }
5828 
5829 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
5830 	.func		= bpf_skb_check_mtu,
5831 	.gpl_only	= true,
5832 	.ret_type	= RET_INTEGER,
5833 	.arg1_type      = ARG_PTR_TO_CTX,
5834 	.arg2_type      = ARG_ANYTHING,
5835 	.arg3_type      = ARG_PTR_TO_INT,
5836 	.arg4_type      = ARG_ANYTHING,
5837 	.arg5_type      = ARG_ANYTHING,
5838 };
5839 
5840 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
5841 	.func		= bpf_xdp_check_mtu,
5842 	.gpl_only	= true,
5843 	.ret_type	= RET_INTEGER,
5844 	.arg1_type      = ARG_PTR_TO_CTX,
5845 	.arg2_type      = ARG_ANYTHING,
5846 	.arg3_type      = ARG_PTR_TO_INT,
5847 	.arg4_type      = ARG_ANYTHING,
5848 	.arg5_type      = ARG_ANYTHING,
5849 };
5850 
5851 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)5852 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5853 {
5854 	int err;
5855 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5856 
5857 	if (!seg6_validate_srh(srh, len, false))
5858 		return -EINVAL;
5859 
5860 	switch (type) {
5861 	case BPF_LWT_ENCAP_SEG6_INLINE:
5862 		if (skb->protocol != htons(ETH_P_IPV6))
5863 			return -EBADMSG;
5864 
5865 		err = seg6_do_srh_inline(skb, srh);
5866 		break;
5867 	case BPF_LWT_ENCAP_SEG6:
5868 		skb_reset_inner_headers(skb);
5869 		skb->encapsulation = 1;
5870 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5871 		break;
5872 	default:
5873 		return -EINVAL;
5874 	}
5875 
5876 	bpf_compute_data_pointers(skb);
5877 	if (err)
5878 		return err;
5879 
5880 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5881 
5882 	return seg6_lookup_nexthop(skb, NULL, 0);
5883 }
5884 #endif /* CONFIG_IPV6_SEG6_BPF */
5885 
5886 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)5887 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5888 			     bool ingress)
5889 {
5890 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5891 }
5892 #endif
5893 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)5894 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5895 	   u32, len)
5896 {
5897 	switch (type) {
5898 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5899 	case BPF_LWT_ENCAP_SEG6:
5900 	case BPF_LWT_ENCAP_SEG6_INLINE:
5901 		return bpf_push_seg6_encap(skb, type, hdr, len);
5902 #endif
5903 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5904 	case BPF_LWT_ENCAP_IP:
5905 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5906 #endif
5907 	default:
5908 		return -EINVAL;
5909 	}
5910 }
5911 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)5912 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5913 	   void *, hdr, u32, len)
5914 {
5915 	switch (type) {
5916 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5917 	case BPF_LWT_ENCAP_IP:
5918 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5919 #endif
5920 	default:
5921 		return -EINVAL;
5922 	}
5923 }
5924 
5925 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5926 	.func		= bpf_lwt_in_push_encap,
5927 	.gpl_only	= false,
5928 	.ret_type	= RET_INTEGER,
5929 	.arg1_type	= ARG_PTR_TO_CTX,
5930 	.arg2_type	= ARG_ANYTHING,
5931 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5932 	.arg4_type	= ARG_CONST_SIZE
5933 };
5934 
5935 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5936 	.func		= bpf_lwt_xmit_push_encap,
5937 	.gpl_only	= false,
5938 	.ret_type	= RET_INTEGER,
5939 	.arg1_type	= ARG_PTR_TO_CTX,
5940 	.arg2_type	= ARG_ANYTHING,
5941 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5942 	.arg4_type	= ARG_CONST_SIZE
5943 };
5944 
5945 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)5946 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5947 	   const void *, from, u32, len)
5948 {
5949 	struct seg6_bpf_srh_state *srh_state =
5950 		this_cpu_ptr(&seg6_bpf_srh_states);
5951 	struct ipv6_sr_hdr *srh = srh_state->srh;
5952 	void *srh_tlvs, *srh_end, *ptr;
5953 	int srhoff = 0;
5954 
5955 	if (srh == NULL)
5956 		return -EINVAL;
5957 
5958 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5959 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5960 
5961 	ptr = skb->data + offset;
5962 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
5963 		srh_state->valid = false;
5964 	else if (ptr < (void *)&srh->flags ||
5965 		 ptr + len > (void *)&srh->segments)
5966 		return -EFAULT;
5967 
5968 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
5969 		return -EFAULT;
5970 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5971 		return -EINVAL;
5972 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5973 
5974 	memcpy(skb->data + offset, from, len);
5975 	return 0;
5976 }
5977 
5978 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5979 	.func		= bpf_lwt_seg6_store_bytes,
5980 	.gpl_only	= false,
5981 	.ret_type	= RET_INTEGER,
5982 	.arg1_type	= ARG_PTR_TO_CTX,
5983 	.arg2_type	= ARG_ANYTHING,
5984 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5985 	.arg4_type	= ARG_CONST_SIZE
5986 };
5987 
bpf_update_srh_state(struct sk_buff * skb)5988 static void bpf_update_srh_state(struct sk_buff *skb)
5989 {
5990 	struct seg6_bpf_srh_state *srh_state =
5991 		this_cpu_ptr(&seg6_bpf_srh_states);
5992 	int srhoff = 0;
5993 
5994 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5995 		srh_state->srh = NULL;
5996 	} else {
5997 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5998 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5999 		srh_state->valid = true;
6000 	}
6001 }
6002 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6003 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6004 	   u32, action, void *, param, u32, param_len)
6005 {
6006 	struct seg6_bpf_srh_state *srh_state =
6007 		this_cpu_ptr(&seg6_bpf_srh_states);
6008 	int hdroff = 0;
6009 	int err;
6010 
6011 	switch (action) {
6012 	case SEG6_LOCAL_ACTION_END_X:
6013 		if (!seg6_bpf_has_valid_srh(skb))
6014 			return -EBADMSG;
6015 		if (param_len != sizeof(struct in6_addr))
6016 			return -EINVAL;
6017 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6018 	case SEG6_LOCAL_ACTION_END_T:
6019 		if (!seg6_bpf_has_valid_srh(skb))
6020 			return -EBADMSG;
6021 		if (param_len != sizeof(int))
6022 			return -EINVAL;
6023 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6024 	case SEG6_LOCAL_ACTION_END_DT6:
6025 		if (!seg6_bpf_has_valid_srh(skb))
6026 			return -EBADMSG;
6027 		if (param_len != sizeof(int))
6028 			return -EINVAL;
6029 
6030 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6031 			return -EBADMSG;
6032 		if (!pskb_pull(skb, hdroff))
6033 			return -EBADMSG;
6034 
6035 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6036 		skb_reset_network_header(skb);
6037 		skb_reset_transport_header(skb);
6038 		skb->encapsulation = 0;
6039 
6040 		bpf_compute_data_pointers(skb);
6041 		bpf_update_srh_state(skb);
6042 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6043 	case SEG6_LOCAL_ACTION_END_B6:
6044 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6045 			return -EBADMSG;
6046 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6047 					  param, param_len);
6048 		if (!err)
6049 			bpf_update_srh_state(skb);
6050 
6051 		return err;
6052 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6053 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6054 			return -EBADMSG;
6055 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6056 					  param, param_len);
6057 		if (!err)
6058 			bpf_update_srh_state(skb);
6059 
6060 		return err;
6061 	default:
6062 		return -EINVAL;
6063 	}
6064 }
6065 
6066 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6067 	.func		= bpf_lwt_seg6_action,
6068 	.gpl_only	= false,
6069 	.ret_type	= RET_INTEGER,
6070 	.arg1_type	= ARG_PTR_TO_CTX,
6071 	.arg2_type	= ARG_ANYTHING,
6072 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6073 	.arg4_type	= ARG_CONST_SIZE
6074 };
6075 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6076 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6077 	   s32, len)
6078 {
6079 	struct seg6_bpf_srh_state *srh_state =
6080 		this_cpu_ptr(&seg6_bpf_srh_states);
6081 	struct ipv6_sr_hdr *srh = srh_state->srh;
6082 	void *srh_end, *srh_tlvs, *ptr;
6083 	struct ipv6hdr *hdr;
6084 	int srhoff = 0;
6085 	int ret;
6086 
6087 	if (unlikely(srh == NULL))
6088 		return -EINVAL;
6089 
6090 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6091 			((srh->first_segment + 1) << 4));
6092 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6093 			srh_state->hdrlen);
6094 	ptr = skb->data + offset;
6095 
6096 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6097 		return -EFAULT;
6098 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6099 		return -EFAULT;
6100 
6101 	if (len > 0) {
6102 		ret = skb_cow_head(skb, len);
6103 		if (unlikely(ret < 0))
6104 			return ret;
6105 
6106 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6107 	} else {
6108 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6109 	}
6110 
6111 	bpf_compute_data_pointers(skb);
6112 	if (unlikely(ret < 0))
6113 		return ret;
6114 
6115 	hdr = (struct ipv6hdr *)skb->data;
6116 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6117 
6118 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6119 		return -EINVAL;
6120 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6121 	srh_state->hdrlen += len;
6122 	srh_state->valid = false;
6123 	return 0;
6124 }
6125 
6126 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6127 	.func		= bpf_lwt_seg6_adjust_srh,
6128 	.gpl_only	= false,
6129 	.ret_type	= RET_INTEGER,
6130 	.arg1_type	= ARG_PTR_TO_CTX,
6131 	.arg2_type	= ARG_ANYTHING,
6132 	.arg3_type	= ARG_ANYTHING,
6133 };
6134 #endif /* CONFIG_IPV6_SEG6_BPF */
6135 
6136 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6137 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6138 			      int dif, int sdif, u8 family, u8 proto)
6139 {
6140 	bool refcounted = false;
6141 	struct sock *sk = NULL;
6142 
6143 	if (family == AF_INET) {
6144 		__be32 src4 = tuple->ipv4.saddr;
6145 		__be32 dst4 = tuple->ipv4.daddr;
6146 
6147 		if (proto == IPPROTO_TCP)
6148 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6149 					   src4, tuple->ipv4.sport,
6150 					   dst4, tuple->ipv4.dport,
6151 					   dif, sdif, &refcounted);
6152 		else
6153 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6154 					       dst4, tuple->ipv4.dport,
6155 					       dif, sdif, &udp_table, NULL);
6156 #if IS_ENABLED(CONFIG_IPV6)
6157 	} else {
6158 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6159 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6160 
6161 		if (proto == IPPROTO_TCP)
6162 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6163 					    src6, tuple->ipv6.sport,
6164 					    dst6, ntohs(tuple->ipv6.dport),
6165 					    dif, sdif, &refcounted);
6166 		else if (likely(ipv6_bpf_stub))
6167 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6168 							    src6, tuple->ipv6.sport,
6169 							    dst6, tuple->ipv6.dport,
6170 							    dif, sdif,
6171 							    &udp_table, NULL);
6172 #endif
6173 	}
6174 
6175 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6176 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6177 		sk = NULL;
6178 	}
6179 	return sk;
6180 }
6181 
6182 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6183  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6184  * Returns the socket as an 'unsigned long' to simplify the casting in the
6185  * callers to satisfy BPF_CALL declarations.
6186  */
6187 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6188 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6189 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6190 		 u64 flags, int sdif)
6191 {
6192 	struct sock *sk = NULL;
6193 	struct net *net;
6194 	u8 family;
6195 
6196 	if (len == sizeof(tuple->ipv4))
6197 		family = AF_INET;
6198 	else if (len == sizeof(tuple->ipv6))
6199 		family = AF_INET6;
6200 	else
6201 		return NULL;
6202 
6203 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6204 		goto out;
6205 
6206 	if (sdif < 0) {
6207 		if (family == AF_INET)
6208 			sdif = inet_sdif(skb);
6209 		else
6210 			sdif = inet6_sdif(skb);
6211 	}
6212 
6213 	if ((s32)netns_id < 0) {
6214 		net = caller_net;
6215 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6216 	} else {
6217 		net = get_net_ns_by_id(caller_net, netns_id);
6218 		if (unlikely(!net))
6219 			goto out;
6220 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6221 		put_net(net);
6222 	}
6223 
6224 out:
6225 	return sk;
6226 }
6227 
6228 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6229 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6230 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6231 		u64 flags, int sdif)
6232 {
6233 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6234 					   ifindex, proto, netns_id, flags,
6235 					   sdif);
6236 
6237 	if (sk) {
6238 		struct sock *sk2 = sk_to_full_sk(sk);
6239 
6240 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6241 		 * sock refcnt is decremented to prevent a request_sock leak.
6242 		 */
6243 		if (!sk_fullsock(sk2))
6244 			sk2 = NULL;
6245 		if (sk2 != sk) {
6246 			sock_gen_put(sk);
6247 			/* Ensure there is no need to bump sk2 refcnt */
6248 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6249 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6250 				return NULL;
6251 			}
6252 			sk = sk2;
6253 		}
6254 	}
6255 
6256 	return sk;
6257 }
6258 
6259 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6260 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6261 	       u8 proto, u64 netns_id, u64 flags)
6262 {
6263 	struct net *caller_net;
6264 	int ifindex;
6265 
6266 	if (skb->dev) {
6267 		caller_net = dev_net(skb->dev);
6268 		ifindex = skb->dev->ifindex;
6269 	} else {
6270 		caller_net = sock_net(skb->sk);
6271 		ifindex = 0;
6272 	}
6273 
6274 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6275 				netns_id, flags, -1);
6276 }
6277 
6278 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6279 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6280 	      u8 proto, u64 netns_id, u64 flags)
6281 {
6282 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6283 					 flags);
6284 
6285 	if (sk) {
6286 		struct sock *sk2 = sk_to_full_sk(sk);
6287 
6288 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6289 		 * sock refcnt is decremented to prevent a request_sock leak.
6290 		 */
6291 		if (!sk_fullsock(sk2))
6292 			sk2 = NULL;
6293 		if (sk2 != sk) {
6294 			sock_gen_put(sk);
6295 			/* Ensure there is no need to bump sk2 refcnt */
6296 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6297 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6298 				return NULL;
6299 			}
6300 			sk = sk2;
6301 		}
6302 	}
6303 
6304 	return sk;
6305 }
6306 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6307 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6308 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6309 {
6310 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6311 					     netns_id, flags);
6312 }
6313 
6314 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6315 	.func		= bpf_skc_lookup_tcp,
6316 	.gpl_only	= false,
6317 	.pkt_access	= true,
6318 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6319 	.arg1_type	= ARG_PTR_TO_CTX,
6320 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6321 	.arg3_type	= ARG_CONST_SIZE,
6322 	.arg4_type	= ARG_ANYTHING,
6323 	.arg5_type	= ARG_ANYTHING,
6324 };
6325 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6326 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6327 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6328 {
6329 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6330 					    netns_id, flags);
6331 }
6332 
6333 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6334 	.func		= bpf_sk_lookup_tcp,
6335 	.gpl_only	= false,
6336 	.pkt_access	= true,
6337 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6338 	.arg1_type	= ARG_PTR_TO_CTX,
6339 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6340 	.arg3_type	= ARG_CONST_SIZE,
6341 	.arg4_type	= ARG_ANYTHING,
6342 	.arg5_type	= ARG_ANYTHING,
6343 };
6344 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6345 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6346 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6347 {
6348 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6349 					    netns_id, flags);
6350 }
6351 
6352 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6353 	.func		= bpf_sk_lookup_udp,
6354 	.gpl_only	= false,
6355 	.pkt_access	= true,
6356 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6357 	.arg1_type	= ARG_PTR_TO_CTX,
6358 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6359 	.arg3_type	= ARG_CONST_SIZE,
6360 	.arg4_type	= ARG_ANYTHING,
6361 	.arg5_type	= ARG_ANYTHING,
6362 };
6363 
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6364 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6365 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6366 {
6367 	struct net_device *dev = skb->dev;
6368 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6369 	struct net *caller_net = dev_net(dev);
6370 
6371 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6372 					       ifindex, IPPROTO_TCP, netns_id,
6373 					       flags, sdif);
6374 }
6375 
6376 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6377 	.func		= bpf_tc_skc_lookup_tcp,
6378 	.gpl_only	= false,
6379 	.pkt_access	= true,
6380 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6381 	.arg1_type	= ARG_PTR_TO_CTX,
6382 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6383 	.arg3_type	= ARG_CONST_SIZE,
6384 	.arg4_type	= ARG_ANYTHING,
6385 	.arg5_type	= ARG_ANYTHING,
6386 };
6387 
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6388 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6389 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6390 {
6391 	struct net_device *dev = skb->dev;
6392 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6393 	struct net *caller_net = dev_net(dev);
6394 
6395 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6396 					      ifindex, IPPROTO_TCP, netns_id,
6397 					      flags, sdif);
6398 }
6399 
6400 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6401 	.func		= bpf_tc_sk_lookup_tcp,
6402 	.gpl_only	= false,
6403 	.pkt_access	= true,
6404 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6405 	.arg1_type	= ARG_PTR_TO_CTX,
6406 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6407 	.arg3_type	= ARG_CONST_SIZE,
6408 	.arg4_type	= ARG_ANYTHING,
6409 	.arg5_type	= ARG_ANYTHING,
6410 };
6411 
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6412 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6413 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6414 {
6415 	struct net_device *dev = skb->dev;
6416 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6417 	struct net *caller_net = dev_net(dev);
6418 
6419 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6420 					      ifindex, IPPROTO_UDP, netns_id,
6421 					      flags, sdif);
6422 }
6423 
6424 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6425 	.func		= bpf_tc_sk_lookup_udp,
6426 	.gpl_only	= false,
6427 	.pkt_access	= true,
6428 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6429 	.arg1_type	= ARG_PTR_TO_CTX,
6430 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6431 	.arg3_type	= ARG_CONST_SIZE,
6432 	.arg4_type	= ARG_ANYTHING,
6433 	.arg5_type	= ARG_ANYTHING,
6434 };
6435 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6436 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6437 {
6438 	if (sk && sk_is_refcounted(sk))
6439 		sock_gen_put(sk);
6440 	return 0;
6441 }
6442 
6443 static const struct bpf_func_proto bpf_sk_release_proto = {
6444 	.func		= bpf_sk_release,
6445 	.gpl_only	= false,
6446 	.ret_type	= RET_INTEGER,
6447 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6448 };
6449 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6450 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6451 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6452 {
6453 	struct net_device *dev = ctx->rxq->dev;
6454 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6455 	struct net *caller_net = dev_net(dev);
6456 
6457 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6458 					      ifindex, IPPROTO_UDP, netns_id,
6459 					      flags, sdif);
6460 }
6461 
6462 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6463 	.func           = bpf_xdp_sk_lookup_udp,
6464 	.gpl_only       = false,
6465 	.pkt_access     = true,
6466 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6467 	.arg1_type      = ARG_PTR_TO_CTX,
6468 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6469 	.arg3_type      = ARG_CONST_SIZE,
6470 	.arg4_type      = ARG_ANYTHING,
6471 	.arg5_type      = ARG_ANYTHING,
6472 };
6473 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6474 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6475 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6476 {
6477 	struct net_device *dev = ctx->rxq->dev;
6478 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6479 	struct net *caller_net = dev_net(dev);
6480 
6481 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6482 					       ifindex, IPPROTO_TCP, netns_id,
6483 					       flags, sdif);
6484 }
6485 
6486 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6487 	.func           = bpf_xdp_skc_lookup_tcp,
6488 	.gpl_only       = false,
6489 	.pkt_access     = true,
6490 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6491 	.arg1_type      = ARG_PTR_TO_CTX,
6492 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6493 	.arg3_type      = ARG_CONST_SIZE,
6494 	.arg4_type      = ARG_ANYTHING,
6495 	.arg5_type      = ARG_ANYTHING,
6496 };
6497 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6498 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6499 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6500 {
6501 	struct net_device *dev = ctx->rxq->dev;
6502 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6503 	struct net *caller_net = dev_net(dev);
6504 
6505 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6506 					      ifindex, IPPROTO_TCP, netns_id,
6507 					      flags, sdif);
6508 }
6509 
6510 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6511 	.func           = bpf_xdp_sk_lookup_tcp,
6512 	.gpl_only       = false,
6513 	.pkt_access     = true,
6514 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6515 	.arg1_type      = ARG_PTR_TO_CTX,
6516 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6517 	.arg3_type      = ARG_CONST_SIZE,
6518 	.arg4_type      = ARG_ANYTHING,
6519 	.arg5_type      = ARG_ANYTHING,
6520 };
6521 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6522 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6523 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6524 {
6525 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6526 					       sock_net(ctx->sk), 0,
6527 					       IPPROTO_TCP, netns_id, flags,
6528 					       -1);
6529 }
6530 
6531 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6532 	.func		= bpf_sock_addr_skc_lookup_tcp,
6533 	.gpl_only	= false,
6534 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6535 	.arg1_type	= ARG_PTR_TO_CTX,
6536 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6537 	.arg3_type	= ARG_CONST_SIZE,
6538 	.arg4_type	= ARG_ANYTHING,
6539 	.arg5_type	= ARG_ANYTHING,
6540 };
6541 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6542 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6543 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6544 {
6545 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6546 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6547 					      netns_id, flags, -1);
6548 }
6549 
6550 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6551 	.func		= bpf_sock_addr_sk_lookup_tcp,
6552 	.gpl_only	= false,
6553 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6554 	.arg1_type	= ARG_PTR_TO_CTX,
6555 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6556 	.arg3_type	= ARG_CONST_SIZE,
6557 	.arg4_type	= ARG_ANYTHING,
6558 	.arg5_type	= ARG_ANYTHING,
6559 };
6560 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6561 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6562 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6563 {
6564 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6565 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6566 					      netns_id, flags, -1);
6567 }
6568 
6569 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6570 	.func		= bpf_sock_addr_sk_lookup_udp,
6571 	.gpl_only	= false,
6572 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6573 	.arg1_type	= ARG_PTR_TO_CTX,
6574 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6575 	.arg3_type	= ARG_CONST_SIZE,
6576 	.arg4_type	= ARG_ANYTHING,
6577 	.arg5_type	= ARG_ANYTHING,
6578 };
6579 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6580 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6581 				  struct bpf_insn_access_aux *info)
6582 {
6583 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6584 					  icsk_retransmits))
6585 		return false;
6586 
6587 	if (off % size != 0)
6588 		return false;
6589 
6590 	switch (off) {
6591 	case offsetof(struct bpf_tcp_sock, bytes_received):
6592 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6593 		return size == sizeof(__u64);
6594 	default:
6595 		return size == sizeof(__u32);
6596 	}
6597 }
6598 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6599 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6600 				    const struct bpf_insn *si,
6601 				    struct bpf_insn *insn_buf,
6602 				    struct bpf_prog *prog, u32 *target_size)
6603 {
6604 	struct bpf_insn *insn = insn_buf;
6605 
6606 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6607 	do {								\
6608 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6609 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6610 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6611 				      si->dst_reg, si->src_reg,		\
6612 				      offsetof(struct tcp_sock, FIELD)); \
6613 	} while (0)
6614 
6615 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6616 	do {								\
6617 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6618 					  FIELD) >			\
6619 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6620 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6621 					struct inet_connection_sock,	\
6622 					FIELD),				\
6623 				      si->dst_reg, si->src_reg,		\
6624 				      offsetof(				\
6625 					struct inet_connection_sock,	\
6626 					FIELD));			\
6627 	} while (0)
6628 
6629 	if (insn > insn_buf)
6630 		return insn - insn_buf;
6631 
6632 	switch (si->off) {
6633 	case offsetof(struct bpf_tcp_sock, rtt_min):
6634 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6635 			     sizeof(struct minmax));
6636 		BUILD_BUG_ON(sizeof(struct minmax) <
6637 			     sizeof(struct minmax_sample));
6638 
6639 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6640 				      offsetof(struct tcp_sock, rtt_min) +
6641 				      offsetof(struct minmax_sample, v));
6642 		break;
6643 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6644 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6645 		break;
6646 	case offsetof(struct bpf_tcp_sock, srtt_us):
6647 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6648 		break;
6649 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6650 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6651 		break;
6652 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6653 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6654 		break;
6655 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6656 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6657 		break;
6658 	case offsetof(struct bpf_tcp_sock, snd_una):
6659 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6660 		break;
6661 	case offsetof(struct bpf_tcp_sock, mss_cache):
6662 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6663 		break;
6664 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6665 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6666 		break;
6667 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6668 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6669 		break;
6670 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6671 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6672 		break;
6673 	case offsetof(struct bpf_tcp_sock, packets_out):
6674 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6675 		break;
6676 	case offsetof(struct bpf_tcp_sock, retrans_out):
6677 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6678 		break;
6679 	case offsetof(struct bpf_tcp_sock, total_retrans):
6680 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6681 		break;
6682 	case offsetof(struct bpf_tcp_sock, segs_in):
6683 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6684 		break;
6685 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6686 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6687 		break;
6688 	case offsetof(struct bpf_tcp_sock, segs_out):
6689 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6690 		break;
6691 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6692 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6693 		break;
6694 	case offsetof(struct bpf_tcp_sock, lost_out):
6695 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6696 		break;
6697 	case offsetof(struct bpf_tcp_sock, sacked_out):
6698 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6699 		break;
6700 	case offsetof(struct bpf_tcp_sock, bytes_received):
6701 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6702 		break;
6703 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6704 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6705 		break;
6706 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6707 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6708 		break;
6709 	case offsetof(struct bpf_tcp_sock, delivered):
6710 		BPF_TCP_SOCK_GET_COMMON(delivered);
6711 		break;
6712 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6713 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6714 		break;
6715 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6716 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6717 		break;
6718 	}
6719 
6720 	return insn - insn_buf;
6721 }
6722 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)6723 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6724 {
6725 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6726 		return (unsigned long)sk;
6727 
6728 	return (unsigned long)NULL;
6729 }
6730 
6731 const struct bpf_func_proto bpf_tcp_sock_proto = {
6732 	.func		= bpf_tcp_sock,
6733 	.gpl_only	= false,
6734 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6735 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6736 };
6737 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)6738 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6739 {
6740 	sk = sk_to_full_sk(sk);
6741 
6742 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6743 		return (unsigned long)sk;
6744 
6745 	return (unsigned long)NULL;
6746 }
6747 
6748 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6749 	.func		= bpf_get_listener_sock,
6750 	.gpl_only	= false,
6751 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6752 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6753 };
6754 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)6755 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6756 {
6757 	unsigned int iphdr_len;
6758 
6759 	switch (skb_protocol(skb, true)) {
6760 	case cpu_to_be16(ETH_P_IP):
6761 		iphdr_len = sizeof(struct iphdr);
6762 		break;
6763 	case cpu_to_be16(ETH_P_IPV6):
6764 		iphdr_len = sizeof(struct ipv6hdr);
6765 		break;
6766 	default:
6767 		return 0;
6768 	}
6769 
6770 	if (skb_headlen(skb) < iphdr_len)
6771 		return 0;
6772 
6773 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6774 		return 0;
6775 
6776 	return INET_ECN_set_ce(skb);
6777 }
6778 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6779 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6780 				  struct bpf_insn_access_aux *info)
6781 {
6782 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6783 		return false;
6784 
6785 	if (off % size != 0)
6786 		return false;
6787 
6788 	switch (off) {
6789 	default:
6790 		return size == sizeof(__u32);
6791 	}
6792 }
6793 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6794 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6795 				    const struct bpf_insn *si,
6796 				    struct bpf_insn *insn_buf,
6797 				    struct bpf_prog *prog, u32 *target_size)
6798 {
6799 	struct bpf_insn *insn = insn_buf;
6800 
6801 #define BPF_XDP_SOCK_GET(FIELD)						\
6802 	do {								\
6803 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
6804 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
6805 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6806 				      si->dst_reg, si->src_reg,		\
6807 				      offsetof(struct xdp_sock, FIELD)); \
6808 	} while (0)
6809 
6810 	switch (si->off) {
6811 	case offsetof(struct bpf_xdp_sock, queue_id):
6812 		BPF_XDP_SOCK_GET(queue_id);
6813 		break;
6814 	}
6815 
6816 	return insn - insn_buf;
6817 }
6818 
6819 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6820 	.func           = bpf_skb_ecn_set_ce,
6821 	.gpl_only       = false,
6822 	.ret_type       = RET_INTEGER,
6823 	.arg1_type      = ARG_PTR_TO_CTX,
6824 };
6825 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)6826 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6827 	   struct tcphdr *, th, u32, th_len)
6828 {
6829 #ifdef CONFIG_SYN_COOKIES
6830 	u32 cookie;
6831 	int ret;
6832 
6833 	if (unlikely(!sk || th_len < sizeof(*th)))
6834 		return -EINVAL;
6835 
6836 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6837 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6838 		return -EINVAL;
6839 
6840 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6841 		return -EINVAL;
6842 
6843 	if (!th->ack || th->rst || th->syn)
6844 		return -ENOENT;
6845 
6846 	if (unlikely(iph_len < sizeof(struct iphdr)))
6847 		return -EINVAL;
6848 
6849 	if (tcp_synq_no_recent_overflow(sk))
6850 		return -ENOENT;
6851 
6852 	cookie = ntohl(th->ack_seq) - 1;
6853 
6854 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6855 	 * same offset so we can cast to the shorter header (struct iphdr).
6856 	 */
6857 	switch (((struct iphdr *)iph)->version) {
6858 	case 4:
6859 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
6860 			return -EINVAL;
6861 
6862 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6863 		break;
6864 
6865 #if IS_BUILTIN(CONFIG_IPV6)
6866 	case 6:
6867 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6868 			return -EINVAL;
6869 
6870 		if (sk->sk_family != AF_INET6)
6871 			return -EINVAL;
6872 
6873 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6874 		break;
6875 #endif /* CONFIG_IPV6 */
6876 
6877 	default:
6878 		return -EPROTONOSUPPORT;
6879 	}
6880 
6881 	if (ret > 0)
6882 		return 0;
6883 
6884 	return -ENOENT;
6885 #else
6886 	return -ENOTSUPP;
6887 #endif
6888 }
6889 
6890 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6891 	.func		= bpf_tcp_check_syncookie,
6892 	.gpl_only	= true,
6893 	.pkt_access	= true,
6894 	.ret_type	= RET_INTEGER,
6895 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6896 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6897 	.arg3_type	= ARG_CONST_SIZE,
6898 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6899 	.arg5_type	= ARG_CONST_SIZE,
6900 };
6901 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)6902 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6903 	   struct tcphdr *, th, u32, th_len)
6904 {
6905 #ifdef CONFIG_SYN_COOKIES
6906 	u32 cookie;
6907 	u16 mss;
6908 
6909 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6910 		return -EINVAL;
6911 
6912 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6913 		return -EINVAL;
6914 
6915 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6916 		return -ENOENT;
6917 
6918 	if (!th->syn || th->ack || th->fin || th->rst)
6919 		return -EINVAL;
6920 
6921 	if (unlikely(iph_len < sizeof(struct iphdr)))
6922 		return -EINVAL;
6923 
6924 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6925 	 * same offset so we can cast to the shorter header (struct iphdr).
6926 	 */
6927 	switch (((struct iphdr *)iph)->version) {
6928 	case 4:
6929 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6930 			return -EINVAL;
6931 
6932 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6933 		break;
6934 
6935 #if IS_BUILTIN(CONFIG_IPV6)
6936 	case 6:
6937 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6938 			return -EINVAL;
6939 
6940 		if (sk->sk_family != AF_INET6)
6941 			return -EINVAL;
6942 
6943 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6944 		break;
6945 #endif /* CONFIG_IPV6 */
6946 
6947 	default:
6948 		return -EPROTONOSUPPORT;
6949 	}
6950 	if (mss == 0)
6951 		return -ENOENT;
6952 
6953 	return cookie | ((u64)mss << 32);
6954 #else
6955 	return -EOPNOTSUPP;
6956 #endif /* CONFIG_SYN_COOKIES */
6957 }
6958 
6959 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6960 	.func		= bpf_tcp_gen_syncookie,
6961 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
6962 	.pkt_access	= true,
6963 	.ret_type	= RET_INTEGER,
6964 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6965 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6966 	.arg3_type	= ARG_CONST_SIZE,
6967 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6968 	.arg5_type	= ARG_CONST_SIZE,
6969 };
6970 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)6971 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6972 {
6973 	if (!sk || flags != 0)
6974 		return -EINVAL;
6975 	if (!skb_at_tc_ingress(skb))
6976 		return -EOPNOTSUPP;
6977 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6978 		return -ENETUNREACH;
6979 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6980 		return -ESOCKTNOSUPPORT;
6981 	if (sk_unhashed(sk))
6982 		return -EOPNOTSUPP;
6983 	if (sk_is_refcounted(sk) &&
6984 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6985 		return -ENOENT;
6986 
6987 	skb_orphan(skb);
6988 	skb->sk = sk;
6989 	skb->destructor = sock_pfree;
6990 
6991 	return 0;
6992 }
6993 
6994 static const struct bpf_func_proto bpf_sk_assign_proto = {
6995 	.func		= bpf_sk_assign,
6996 	.gpl_only	= false,
6997 	.ret_type	= RET_INTEGER,
6998 	.arg1_type      = ARG_PTR_TO_CTX,
6999 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7000 	.arg3_type	= ARG_ANYTHING,
7001 };
7002 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7003 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7004 				    u8 search_kind, const u8 *magic,
7005 				    u8 magic_len, bool *eol)
7006 {
7007 	u8 kind, kind_len;
7008 
7009 	*eol = false;
7010 
7011 	while (op < opend) {
7012 		kind = op[0];
7013 
7014 		if (kind == TCPOPT_EOL) {
7015 			*eol = true;
7016 			return ERR_PTR(-ENOMSG);
7017 		} else if (kind == TCPOPT_NOP) {
7018 			op++;
7019 			continue;
7020 		}
7021 
7022 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7023 			/* Something is wrong in the received header.
7024 			 * Follow the TCP stack's tcp_parse_options()
7025 			 * and just bail here.
7026 			 */
7027 			return ERR_PTR(-EFAULT);
7028 
7029 		kind_len = op[1];
7030 		if (search_kind == kind) {
7031 			if (!magic_len)
7032 				return op;
7033 
7034 			if (magic_len > kind_len - 2)
7035 				return ERR_PTR(-ENOMSG);
7036 
7037 			if (!memcmp(&op[2], magic, magic_len))
7038 				return op;
7039 		}
7040 
7041 		op += kind_len;
7042 	}
7043 
7044 	return ERR_PTR(-ENOMSG);
7045 }
7046 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7047 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7048 	   void *, search_res, u32, len, u64, flags)
7049 {
7050 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7051 	const u8 *op, *opend, *magic, *search = search_res;
7052 	u8 search_kind, search_len, copy_len, magic_len;
7053 	int ret;
7054 
7055 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7056 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7057 	 * and this helper disallow loading them also.
7058 	 */
7059 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7060 		return -EINVAL;
7061 
7062 	search_kind = search[0];
7063 	search_len = search[1];
7064 
7065 	if (search_len > len || search_kind == TCPOPT_NOP ||
7066 	    search_kind == TCPOPT_EOL)
7067 		return -EINVAL;
7068 
7069 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7070 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7071 		if (search_len != 4 && search_len != 6)
7072 			return -EINVAL;
7073 		magic = &search[2];
7074 		magic_len = search_len - 2;
7075 	} else {
7076 		if (search_len)
7077 			return -EINVAL;
7078 		magic = NULL;
7079 		magic_len = 0;
7080 	}
7081 
7082 	if (load_syn) {
7083 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7084 		if (ret < 0)
7085 			return ret;
7086 
7087 		opend = op + ret;
7088 		op += sizeof(struct tcphdr);
7089 	} else {
7090 		if (!bpf_sock->skb ||
7091 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7092 			/* This bpf_sock->op cannot call this helper */
7093 			return -EPERM;
7094 
7095 		opend = bpf_sock->skb_data_end;
7096 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7097 	}
7098 
7099 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7100 				&eol);
7101 	if (IS_ERR(op))
7102 		return PTR_ERR(op);
7103 
7104 	copy_len = op[1];
7105 	ret = copy_len;
7106 	if (copy_len > len) {
7107 		ret = -ENOSPC;
7108 		copy_len = len;
7109 	}
7110 
7111 	memcpy(search_res, op, copy_len);
7112 	return ret;
7113 }
7114 
7115 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7116 	.func		= bpf_sock_ops_load_hdr_opt,
7117 	.gpl_only	= false,
7118 	.ret_type	= RET_INTEGER,
7119 	.arg1_type	= ARG_PTR_TO_CTX,
7120 	.arg2_type	= ARG_PTR_TO_MEM,
7121 	.arg3_type	= ARG_CONST_SIZE,
7122 	.arg4_type	= ARG_ANYTHING,
7123 };
7124 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7125 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7126 	   const void *, from, u32, len, u64, flags)
7127 {
7128 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7129 	const u8 *op, *new_op, *magic = NULL;
7130 	struct sk_buff *skb;
7131 	bool eol;
7132 
7133 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7134 		return -EPERM;
7135 
7136 	if (len < 2 || flags)
7137 		return -EINVAL;
7138 
7139 	new_op = from;
7140 	new_kind = new_op[0];
7141 	new_kind_len = new_op[1];
7142 
7143 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7144 	    new_kind == TCPOPT_EOL)
7145 		return -EINVAL;
7146 
7147 	if (new_kind_len > bpf_sock->remaining_opt_len)
7148 		return -ENOSPC;
7149 
7150 	/* 253 is another experimental kind */
7151 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7152 		if (new_kind_len < 4)
7153 			return -EINVAL;
7154 		/* Match for the 2 byte magic also.
7155 		 * RFC 6994: the magic could be 2 or 4 bytes.
7156 		 * Hence, matching by 2 byte only is on the
7157 		 * conservative side but it is the right
7158 		 * thing to do for the 'search-for-duplication'
7159 		 * purpose.
7160 		 */
7161 		magic = &new_op[2];
7162 		magic_len = 2;
7163 	}
7164 
7165 	/* Check for duplication */
7166 	skb = bpf_sock->skb;
7167 	op = skb->data + sizeof(struct tcphdr);
7168 	opend = bpf_sock->skb_data_end;
7169 
7170 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7171 				&eol);
7172 	if (!IS_ERR(op))
7173 		return -EEXIST;
7174 
7175 	if (PTR_ERR(op) != -ENOMSG)
7176 		return PTR_ERR(op);
7177 
7178 	if (eol)
7179 		/* The option has been ended.  Treat it as no more
7180 		 * header option can be written.
7181 		 */
7182 		return -ENOSPC;
7183 
7184 	/* No duplication found.  Store the header option. */
7185 	memcpy(opend, from, new_kind_len);
7186 
7187 	bpf_sock->remaining_opt_len -= new_kind_len;
7188 	bpf_sock->skb_data_end += new_kind_len;
7189 
7190 	return 0;
7191 }
7192 
7193 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7194 	.func		= bpf_sock_ops_store_hdr_opt,
7195 	.gpl_only	= false,
7196 	.ret_type	= RET_INTEGER,
7197 	.arg1_type	= ARG_PTR_TO_CTX,
7198 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7199 	.arg3_type	= ARG_CONST_SIZE,
7200 	.arg4_type	= ARG_ANYTHING,
7201 };
7202 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7203 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7204 	   u32, len, u64, flags)
7205 {
7206 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7207 		return -EPERM;
7208 
7209 	if (flags || len < 2)
7210 		return -EINVAL;
7211 
7212 	if (len > bpf_sock->remaining_opt_len)
7213 		return -ENOSPC;
7214 
7215 	bpf_sock->remaining_opt_len -= len;
7216 
7217 	return 0;
7218 }
7219 
7220 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7221 	.func		= bpf_sock_ops_reserve_hdr_opt,
7222 	.gpl_only	= false,
7223 	.ret_type	= RET_INTEGER,
7224 	.arg1_type	= ARG_PTR_TO_CTX,
7225 	.arg2_type	= ARG_ANYTHING,
7226 	.arg3_type	= ARG_ANYTHING,
7227 };
7228 
7229 #endif /* CONFIG_INET */
7230 
bpf_helper_changes_pkt_data(void * func)7231 bool bpf_helper_changes_pkt_data(void *func)
7232 {
7233 	if (func == bpf_skb_vlan_push ||
7234 	    func == bpf_skb_vlan_pop ||
7235 	    func == bpf_skb_store_bytes ||
7236 	    func == bpf_skb_change_proto ||
7237 	    func == bpf_skb_change_head ||
7238 	    func == sk_skb_change_head ||
7239 	    func == bpf_skb_change_tail ||
7240 	    func == sk_skb_change_tail ||
7241 	    func == bpf_skb_adjust_room ||
7242 	    func == sk_skb_adjust_room ||
7243 	    func == bpf_skb_pull_data ||
7244 	    func == sk_skb_pull_data ||
7245 	    func == bpf_clone_redirect ||
7246 	    func == bpf_l3_csum_replace ||
7247 	    func == bpf_l4_csum_replace ||
7248 	    func == bpf_xdp_adjust_head ||
7249 	    func == bpf_xdp_adjust_meta ||
7250 	    func == bpf_msg_pull_data ||
7251 	    func == bpf_msg_push_data ||
7252 	    func == bpf_msg_pop_data ||
7253 	    func == bpf_xdp_adjust_tail ||
7254 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7255 	    func == bpf_lwt_seg6_store_bytes ||
7256 	    func == bpf_lwt_seg6_adjust_srh ||
7257 	    func == bpf_lwt_seg6_action ||
7258 #endif
7259 #ifdef CONFIG_INET
7260 	    func == bpf_sock_ops_store_hdr_opt ||
7261 #endif
7262 	    func == bpf_lwt_in_push_encap ||
7263 	    func == bpf_lwt_xmit_push_encap)
7264 		return true;
7265 
7266 	return false;
7267 }
7268 
7269 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7270 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7271 
7272 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7273 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7274 {
7275 	switch (func_id) {
7276 	/* inet and inet6 sockets are created in a process
7277 	 * context so there is always a valid uid/gid
7278 	 */
7279 	case BPF_FUNC_get_current_uid_gid:
7280 		return &bpf_get_current_uid_gid_proto;
7281 	case BPF_FUNC_get_local_storage:
7282 		return &bpf_get_local_storage_proto;
7283 	case BPF_FUNC_get_socket_cookie:
7284 		return &bpf_get_socket_cookie_sock_proto;
7285 	case BPF_FUNC_get_netns_cookie:
7286 		return &bpf_get_netns_cookie_sock_proto;
7287 	case BPF_FUNC_perf_event_output:
7288 		return &bpf_event_output_data_proto;
7289 	case BPF_FUNC_get_current_pid_tgid:
7290 		return &bpf_get_current_pid_tgid_proto;
7291 	case BPF_FUNC_get_current_comm:
7292 		return &bpf_get_current_comm_proto;
7293 #ifdef CONFIG_CGROUPS
7294 	case BPF_FUNC_get_current_cgroup_id:
7295 		return &bpf_get_current_cgroup_id_proto;
7296 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7297 		return &bpf_get_current_ancestor_cgroup_id_proto;
7298 #endif
7299 #ifdef CONFIG_CGROUP_NET_CLASSID
7300 	case BPF_FUNC_get_cgroup_classid:
7301 		return &bpf_get_cgroup_classid_curr_proto;
7302 #endif
7303 	case BPF_FUNC_sk_storage_get:
7304 		return &bpf_sk_storage_get_cg_sock_proto;
7305 	case BPF_FUNC_ktime_get_coarse_ns:
7306 		return &bpf_ktime_get_coarse_ns_proto;
7307 	default:
7308 		return bpf_base_func_proto(func_id);
7309 	}
7310 }
7311 
7312 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7313 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7314 {
7315 	switch (func_id) {
7316 	/* inet and inet6 sockets are created in a process
7317 	 * context so there is always a valid uid/gid
7318 	 */
7319 	case BPF_FUNC_get_current_uid_gid:
7320 		return &bpf_get_current_uid_gid_proto;
7321 	case BPF_FUNC_bind:
7322 		switch (prog->expected_attach_type) {
7323 		case BPF_CGROUP_INET4_CONNECT:
7324 		case BPF_CGROUP_INET6_CONNECT:
7325 			return &bpf_bind_proto;
7326 		default:
7327 			return NULL;
7328 		}
7329 	case BPF_FUNC_get_socket_cookie:
7330 		return &bpf_get_socket_cookie_sock_addr_proto;
7331 	case BPF_FUNC_get_netns_cookie:
7332 		return &bpf_get_netns_cookie_sock_addr_proto;
7333 	case BPF_FUNC_get_local_storage:
7334 		return &bpf_get_local_storage_proto;
7335 	case BPF_FUNC_perf_event_output:
7336 		return &bpf_event_output_data_proto;
7337 	case BPF_FUNC_get_current_pid_tgid:
7338 		return &bpf_get_current_pid_tgid_proto;
7339 	case BPF_FUNC_get_current_comm:
7340 		return &bpf_get_current_comm_proto;
7341 #ifdef CONFIG_CGROUPS
7342 	case BPF_FUNC_get_current_cgroup_id:
7343 		return &bpf_get_current_cgroup_id_proto;
7344 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7345 		return &bpf_get_current_ancestor_cgroup_id_proto;
7346 #endif
7347 #ifdef CONFIG_CGROUP_NET_CLASSID
7348 	case BPF_FUNC_get_cgroup_classid:
7349 		return &bpf_get_cgroup_classid_curr_proto;
7350 #endif
7351 #ifdef CONFIG_INET
7352 	case BPF_FUNC_sk_lookup_tcp:
7353 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7354 	case BPF_FUNC_sk_lookup_udp:
7355 		return &bpf_sock_addr_sk_lookup_udp_proto;
7356 	case BPF_FUNC_sk_release:
7357 		return &bpf_sk_release_proto;
7358 	case BPF_FUNC_skc_lookup_tcp:
7359 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7360 #endif /* CONFIG_INET */
7361 	case BPF_FUNC_sk_storage_get:
7362 		return &bpf_sk_storage_get_proto;
7363 	case BPF_FUNC_sk_storage_delete:
7364 		return &bpf_sk_storage_delete_proto;
7365 	case BPF_FUNC_setsockopt:
7366 		switch (prog->expected_attach_type) {
7367 		case BPF_CGROUP_INET4_BIND:
7368 		case BPF_CGROUP_INET6_BIND:
7369 		case BPF_CGROUP_INET4_CONNECT:
7370 		case BPF_CGROUP_INET6_CONNECT:
7371 		case BPF_CGROUP_UDP4_RECVMSG:
7372 		case BPF_CGROUP_UDP6_RECVMSG:
7373 		case BPF_CGROUP_UDP4_SENDMSG:
7374 		case BPF_CGROUP_UDP6_SENDMSG:
7375 		case BPF_CGROUP_INET4_GETPEERNAME:
7376 		case BPF_CGROUP_INET6_GETPEERNAME:
7377 		case BPF_CGROUP_INET4_GETSOCKNAME:
7378 		case BPF_CGROUP_INET6_GETSOCKNAME:
7379 			return &bpf_sock_addr_setsockopt_proto;
7380 		default:
7381 			return NULL;
7382 		}
7383 	case BPF_FUNC_getsockopt:
7384 		switch (prog->expected_attach_type) {
7385 		case BPF_CGROUP_INET4_BIND:
7386 		case BPF_CGROUP_INET6_BIND:
7387 		case BPF_CGROUP_INET4_CONNECT:
7388 		case BPF_CGROUP_INET6_CONNECT:
7389 		case BPF_CGROUP_UDP4_RECVMSG:
7390 		case BPF_CGROUP_UDP6_RECVMSG:
7391 		case BPF_CGROUP_UDP4_SENDMSG:
7392 		case BPF_CGROUP_UDP6_SENDMSG:
7393 		case BPF_CGROUP_INET4_GETPEERNAME:
7394 		case BPF_CGROUP_INET6_GETPEERNAME:
7395 		case BPF_CGROUP_INET4_GETSOCKNAME:
7396 		case BPF_CGROUP_INET6_GETSOCKNAME:
7397 			return &bpf_sock_addr_getsockopt_proto;
7398 		default:
7399 			return NULL;
7400 		}
7401 	default:
7402 		return bpf_sk_base_func_proto(func_id);
7403 	}
7404 }
7405 
7406 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7407 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7408 {
7409 	switch (func_id) {
7410 	case BPF_FUNC_skb_load_bytes:
7411 		return &bpf_skb_load_bytes_proto;
7412 	case BPF_FUNC_skb_load_bytes_relative:
7413 		return &bpf_skb_load_bytes_relative_proto;
7414 	case BPF_FUNC_get_socket_cookie:
7415 		return &bpf_get_socket_cookie_proto;
7416 	case BPF_FUNC_get_socket_uid:
7417 		return &bpf_get_socket_uid_proto;
7418 	case BPF_FUNC_perf_event_output:
7419 		return &bpf_skb_event_output_proto;
7420 	default:
7421 		return bpf_sk_base_func_proto(func_id);
7422 	}
7423 }
7424 
7425 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7426 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7427 
7428 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7429 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7430 {
7431 	switch (func_id) {
7432 	case BPF_FUNC_get_local_storage:
7433 		return &bpf_get_local_storage_proto;
7434 	case BPF_FUNC_sk_fullsock:
7435 		return &bpf_sk_fullsock_proto;
7436 	case BPF_FUNC_sk_storage_get:
7437 		return &bpf_sk_storage_get_proto;
7438 	case BPF_FUNC_sk_storage_delete:
7439 		return &bpf_sk_storage_delete_proto;
7440 	case BPF_FUNC_perf_event_output:
7441 		return &bpf_skb_event_output_proto;
7442 #ifdef CONFIG_SOCK_CGROUP_DATA
7443 	case BPF_FUNC_skb_cgroup_id:
7444 		return &bpf_skb_cgroup_id_proto;
7445 	case BPF_FUNC_skb_ancestor_cgroup_id:
7446 		return &bpf_skb_ancestor_cgroup_id_proto;
7447 	case BPF_FUNC_sk_cgroup_id:
7448 		return &bpf_sk_cgroup_id_proto;
7449 	case BPF_FUNC_sk_ancestor_cgroup_id:
7450 		return &bpf_sk_ancestor_cgroup_id_proto;
7451 #endif
7452 #ifdef CONFIG_INET
7453 	case BPF_FUNC_sk_lookup_tcp:
7454 		return &bpf_sk_lookup_tcp_proto;
7455 	case BPF_FUNC_sk_lookup_udp:
7456 		return &bpf_sk_lookup_udp_proto;
7457 	case BPF_FUNC_sk_release:
7458 		return &bpf_sk_release_proto;
7459 	case BPF_FUNC_skc_lookup_tcp:
7460 		return &bpf_skc_lookup_tcp_proto;
7461 	case BPF_FUNC_tcp_sock:
7462 		return &bpf_tcp_sock_proto;
7463 	case BPF_FUNC_get_listener_sock:
7464 		return &bpf_get_listener_sock_proto;
7465 	case BPF_FUNC_skb_ecn_set_ce:
7466 		return &bpf_skb_ecn_set_ce_proto;
7467 #endif
7468 	default:
7469 		return sk_filter_func_proto(func_id, prog);
7470 	}
7471 }
7472 
7473 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7474 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7475 {
7476 	switch (func_id) {
7477 	case BPF_FUNC_skb_store_bytes:
7478 		return &bpf_skb_store_bytes_proto;
7479 	case BPF_FUNC_skb_load_bytes:
7480 		return &bpf_skb_load_bytes_proto;
7481 	case BPF_FUNC_skb_load_bytes_relative:
7482 		return &bpf_skb_load_bytes_relative_proto;
7483 	case BPF_FUNC_skb_pull_data:
7484 		return &bpf_skb_pull_data_proto;
7485 	case BPF_FUNC_csum_diff:
7486 		return &bpf_csum_diff_proto;
7487 	case BPF_FUNC_csum_update:
7488 		return &bpf_csum_update_proto;
7489 	case BPF_FUNC_csum_level:
7490 		return &bpf_csum_level_proto;
7491 	case BPF_FUNC_l3_csum_replace:
7492 		return &bpf_l3_csum_replace_proto;
7493 	case BPF_FUNC_l4_csum_replace:
7494 		return &bpf_l4_csum_replace_proto;
7495 	case BPF_FUNC_clone_redirect:
7496 		return &bpf_clone_redirect_proto;
7497 	case BPF_FUNC_get_cgroup_classid:
7498 		return &bpf_get_cgroup_classid_proto;
7499 	case BPF_FUNC_skb_vlan_push:
7500 		return &bpf_skb_vlan_push_proto;
7501 	case BPF_FUNC_skb_vlan_pop:
7502 		return &bpf_skb_vlan_pop_proto;
7503 	case BPF_FUNC_skb_change_proto:
7504 		return &bpf_skb_change_proto_proto;
7505 	case BPF_FUNC_skb_change_type:
7506 		return &bpf_skb_change_type_proto;
7507 	case BPF_FUNC_skb_adjust_room:
7508 		return &bpf_skb_adjust_room_proto;
7509 	case BPF_FUNC_skb_change_tail:
7510 		return &bpf_skb_change_tail_proto;
7511 	case BPF_FUNC_skb_change_head:
7512 		return &bpf_skb_change_head_proto;
7513 	case BPF_FUNC_skb_get_tunnel_key:
7514 		return &bpf_skb_get_tunnel_key_proto;
7515 	case BPF_FUNC_skb_set_tunnel_key:
7516 		return bpf_get_skb_set_tunnel_proto(func_id);
7517 	case BPF_FUNC_skb_get_tunnel_opt:
7518 		return &bpf_skb_get_tunnel_opt_proto;
7519 	case BPF_FUNC_skb_set_tunnel_opt:
7520 		return bpf_get_skb_set_tunnel_proto(func_id);
7521 	case BPF_FUNC_redirect:
7522 		return &bpf_redirect_proto;
7523 	case BPF_FUNC_redirect_neigh:
7524 		return &bpf_redirect_neigh_proto;
7525 	case BPF_FUNC_redirect_peer:
7526 		return &bpf_redirect_peer_proto;
7527 	case BPF_FUNC_get_route_realm:
7528 		return &bpf_get_route_realm_proto;
7529 	case BPF_FUNC_get_hash_recalc:
7530 		return &bpf_get_hash_recalc_proto;
7531 	case BPF_FUNC_set_hash_invalid:
7532 		return &bpf_set_hash_invalid_proto;
7533 	case BPF_FUNC_set_hash:
7534 		return &bpf_set_hash_proto;
7535 	case BPF_FUNC_perf_event_output:
7536 		return &bpf_skb_event_output_proto;
7537 	case BPF_FUNC_get_smp_processor_id:
7538 		return &bpf_get_smp_processor_id_proto;
7539 	case BPF_FUNC_skb_under_cgroup:
7540 		return &bpf_skb_under_cgroup_proto;
7541 	case BPF_FUNC_get_socket_cookie:
7542 		return &bpf_get_socket_cookie_proto;
7543 	case BPF_FUNC_get_socket_uid:
7544 		return &bpf_get_socket_uid_proto;
7545 	case BPF_FUNC_fib_lookup:
7546 		return &bpf_skb_fib_lookup_proto;
7547 	case BPF_FUNC_check_mtu:
7548 		return &bpf_skb_check_mtu_proto;
7549 	case BPF_FUNC_sk_fullsock:
7550 		return &bpf_sk_fullsock_proto;
7551 	case BPF_FUNC_sk_storage_get:
7552 		return &bpf_sk_storage_get_proto;
7553 	case BPF_FUNC_sk_storage_delete:
7554 		return &bpf_sk_storage_delete_proto;
7555 #ifdef CONFIG_XFRM
7556 	case BPF_FUNC_skb_get_xfrm_state:
7557 		return &bpf_skb_get_xfrm_state_proto;
7558 #endif
7559 #ifdef CONFIG_CGROUP_NET_CLASSID
7560 	case BPF_FUNC_skb_cgroup_classid:
7561 		return &bpf_skb_cgroup_classid_proto;
7562 #endif
7563 #ifdef CONFIG_SOCK_CGROUP_DATA
7564 	case BPF_FUNC_skb_cgroup_id:
7565 		return &bpf_skb_cgroup_id_proto;
7566 	case BPF_FUNC_skb_ancestor_cgroup_id:
7567 		return &bpf_skb_ancestor_cgroup_id_proto;
7568 #endif
7569 #ifdef CONFIG_INET
7570 	case BPF_FUNC_sk_lookup_tcp:
7571 		return &bpf_tc_sk_lookup_tcp_proto;
7572 	case BPF_FUNC_sk_lookup_udp:
7573 		return &bpf_tc_sk_lookup_udp_proto;
7574 	case BPF_FUNC_sk_release:
7575 		return &bpf_sk_release_proto;
7576 	case BPF_FUNC_tcp_sock:
7577 		return &bpf_tcp_sock_proto;
7578 	case BPF_FUNC_get_listener_sock:
7579 		return &bpf_get_listener_sock_proto;
7580 	case BPF_FUNC_skc_lookup_tcp:
7581 		return &bpf_tc_skc_lookup_tcp_proto;
7582 	case BPF_FUNC_tcp_check_syncookie:
7583 		return &bpf_tcp_check_syncookie_proto;
7584 	case BPF_FUNC_skb_ecn_set_ce:
7585 		return &bpf_skb_ecn_set_ce_proto;
7586 	case BPF_FUNC_tcp_gen_syncookie:
7587 		return &bpf_tcp_gen_syncookie_proto;
7588 	case BPF_FUNC_sk_assign:
7589 		return &bpf_sk_assign_proto;
7590 #endif
7591 	default:
7592 		return bpf_sk_base_func_proto(func_id);
7593 	}
7594 }
7595 
7596 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7597 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7598 {
7599 	switch (func_id) {
7600 	case BPF_FUNC_perf_event_output:
7601 		return &bpf_xdp_event_output_proto;
7602 	case BPF_FUNC_get_smp_processor_id:
7603 		return &bpf_get_smp_processor_id_proto;
7604 	case BPF_FUNC_csum_diff:
7605 		return &bpf_csum_diff_proto;
7606 	case BPF_FUNC_xdp_adjust_head:
7607 		return &bpf_xdp_adjust_head_proto;
7608 	case BPF_FUNC_xdp_adjust_meta:
7609 		return &bpf_xdp_adjust_meta_proto;
7610 	case BPF_FUNC_redirect:
7611 		return &bpf_xdp_redirect_proto;
7612 	case BPF_FUNC_redirect_map:
7613 		return &bpf_xdp_redirect_map_proto;
7614 	case BPF_FUNC_xdp_adjust_tail:
7615 		return &bpf_xdp_adjust_tail_proto;
7616 	case BPF_FUNC_fib_lookup:
7617 		return &bpf_xdp_fib_lookup_proto;
7618 	case BPF_FUNC_check_mtu:
7619 		return &bpf_xdp_check_mtu_proto;
7620 #ifdef CONFIG_INET
7621 	case BPF_FUNC_sk_lookup_udp:
7622 		return &bpf_xdp_sk_lookup_udp_proto;
7623 	case BPF_FUNC_sk_lookup_tcp:
7624 		return &bpf_xdp_sk_lookup_tcp_proto;
7625 	case BPF_FUNC_sk_release:
7626 		return &bpf_sk_release_proto;
7627 	case BPF_FUNC_skc_lookup_tcp:
7628 		return &bpf_xdp_skc_lookup_tcp_proto;
7629 	case BPF_FUNC_tcp_check_syncookie:
7630 		return &bpf_tcp_check_syncookie_proto;
7631 	case BPF_FUNC_tcp_gen_syncookie:
7632 		return &bpf_tcp_gen_syncookie_proto;
7633 #endif
7634 	default:
7635 		return bpf_sk_base_func_proto(func_id);
7636 	}
7637 }
7638 
7639 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7640 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7641 
7642 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7643 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7644 {
7645 	switch (func_id) {
7646 	case BPF_FUNC_setsockopt:
7647 		return &bpf_sock_ops_setsockopt_proto;
7648 	case BPF_FUNC_getsockopt:
7649 		return &bpf_sock_ops_getsockopt_proto;
7650 	case BPF_FUNC_sock_ops_cb_flags_set:
7651 		return &bpf_sock_ops_cb_flags_set_proto;
7652 	case BPF_FUNC_sock_map_update:
7653 		return &bpf_sock_map_update_proto;
7654 	case BPF_FUNC_sock_hash_update:
7655 		return &bpf_sock_hash_update_proto;
7656 	case BPF_FUNC_get_socket_cookie:
7657 		return &bpf_get_socket_cookie_sock_ops_proto;
7658 	case BPF_FUNC_get_local_storage:
7659 		return &bpf_get_local_storage_proto;
7660 	case BPF_FUNC_perf_event_output:
7661 		return &bpf_event_output_data_proto;
7662 	case BPF_FUNC_sk_storage_get:
7663 		return &bpf_sk_storage_get_proto;
7664 	case BPF_FUNC_sk_storage_delete:
7665 		return &bpf_sk_storage_delete_proto;
7666 	case BPF_FUNC_get_netns_cookie:
7667 		return &bpf_get_netns_cookie_sock_ops_proto;
7668 #ifdef CONFIG_INET
7669 	case BPF_FUNC_load_hdr_opt:
7670 		return &bpf_sock_ops_load_hdr_opt_proto;
7671 	case BPF_FUNC_store_hdr_opt:
7672 		return &bpf_sock_ops_store_hdr_opt_proto;
7673 	case BPF_FUNC_reserve_hdr_opt:
7674 		return &bpf_sock_ops_reserve_hdr_opt_proto;
7675 	case BPF_FUNC_tcp_sock:
7676 		return &bpf_tcp_sock_proto;
7677 #endif /* CONFIG_INET */
7678 	default:
7679 		return bpf_sk_base_func_proto(func_id);
7680 	}
7681 }
7682 
7683 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7684 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7685 
7686 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7687 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7688 {
7689 	switch (func_id) {
7690 	case BPF_FUNC_msg_redirect_map:
7691 		return &bpf_msg_redirect_map_proto;
7692 	case BPF_FUNC_msg_redirect_hash:
7693 		return &bpf_msg_redirect_hash_proto;
7694 	case BPF_FUNC_msg_apply_bytes:
7695 		return &bpf_msg_apply_bytes_proto;
7696 	case BPF_FUNC_msg_cork_bytes:
7697 		return &bpf_msg_cork_bytes_proto;
7698 	case BPF_FUNC_msg_pull_data:
7699 		return &bpf_msg_pull_data_proto;
7700 	case BPF_FUNC_msg_push_data:
7701 		return &bpf_msg_push_data_proto;
7702 	case BPF_FUNC_msg_pop_data:
7703 		return &bpf_msg_pop_data_proto;
7704 	case BPF_FUNC_perf_event_output:
7705 		return &bpf_event_output_data_proto;
7706 	case BPF_FUNC_get_current_uid_gid:
7707 		return &bpf_get_current_uid_gid_proto;
7708 	case BPF_FUNC_get_current_pid_tgid:
7709 		return &bpf_get_current_pid_tgid_proto;
7710 	case BPF_FUNC_sk_storage_get:
7711 		return &bpf_sk_storage_get_proto;
7712 	case BPF_FUNC_sk_storage_delete:
7713 		return &bpf_sk_storage_delete_proto;
7714 	case BPF_FUNC_get_netns_cookie:
7715 		return &bpf_get_netns_cookie_sk_msg_proto;
7716 #ifdef CONFIG_CGROUPS
7717 	case BPF_FUNC_get_current_cgroup_id:
7718 		return &bpf_get_current_cgroup_id_proto;
7719 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7720 		return &bpf_get_current_ancestor_cgroup_id_proto;
7721 #endif
7722 #ifdef CONFIG_CGROUP_NET_CLASSID
7723 	case BPF_FUNC_get_cgroup_classid:
7724 		return &bpf_get_cgroup_classid_curr_proto;
7725 #endif
7726 	default:
7727 		return bpf_sk_base_func_proto(func_id);
7728 	}
7729 }
7730 
7731 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7732 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7733 
7734 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7735 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7736 {
7737 	switch (func_id) {
7738 	case BPF_FUNC_skb_store_bytes:
7739 		return &bpf_skb_store_bytes_proto;
7740 	case BPF_FUNC_skb_load_bytes:
7741 		return &bpf_skb_load_bytes_proto;
7742 	case BPF_FUNC_skb_pull_data:
7743 		return &sk_skb_pull_data_proto;
7744 	case BPF_FUNC_skb_change_tail:
7745 		return &sk_skb_change_tail_proto;
7746 	case BPF_FUNC_skb_change_head:
7747 		return &sk_skb_change_head_proto;
7748 	case BPF_FUNC_skb_adjust_room:
7749 		return &sk_skb_adjust_room_proto;
7750 	case BPF_FUNC_get_socket_cookie:
7751 		return &bpf_get_socket_cookie_proto;
7752 	case BPF_FUNC_get_socket_uid:
7753 		return &bpf_get_socket_uid_proto;
7754 	case BPF_FUNC_sk_redirect_map:
7755 		return &bpf_sk_redirect_map_proto;
7756 	case BPF_FUNC_sk_redirect_hash:
7757 		return &bpf_sk_redirect_hash_proto;
7758 	case BPF_FUNC_perf_event_output:
7759 		return &bpf_skb_event_output_proto;
7760 #ifdef CONFIG_INET
7761 	case BPF_FUNC_sk_lookup_tcp:
7762 		return &bpf_sk_lookup_tcp_proto;
7763 	case BPF_FUNC_sk_lookup_udp:
7764 		return &bpf_sk_lookup_udp_proto;
7765 	case BPF_FUNC_sk_release:
7766 		return &bpf_sk_release_proto;
7767 	case BPF_FUNC_skc_lookup_tcp:
7768 		return &bpf_skc_lookup_tcp_proto;
7769 #endif
7770 	default:
7771 		return bpf_sk_base_func_proto(func_id);
7772 	}
7773 }
7774 
7775 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7776 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7777 {
7778 	switch (func_id) {
7779 	case BPF_FUNC_skb_load_bytes:
7780 		return &bpf_flow_dissector_load_bytes_proto;
7781 	default:
7782 		return bpf_sk_base_func_proto(func_id);
7783 	}
7784 }
7785 
7786 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7787 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7788 {
7789 	switch (func_id) {
7790 	case BPF_FUNC_skb_load_bytes:
7791 		return &bpf_skb_load_bytes_proto;
7792 	case BPF_FUNC_skb_pull_data:
7793 		return &bpf_skb_pull_data_proto;
7794 	case BPF_FUNC_csum_diff:
7795 		return &bpf_csum_diff_proto;
7796 	case BPF_FUNC_get_cgroup_classid:
7797 		return &bpf_get_cgroup_classid_proto;
7798 	case BPF_FUNC_get_route_realm:
7799 		return &bpf_get_route_realm_proto;
7800 	case BPF_FUNC_get_hash_recalc:
7801 		return &bpf_get_hash_recalc_proto;
7802 	case BPF_FUNC_perf_event_output:
7803 		return &bpf_skb_event_output_proto;
7804 	case BPF_FUNC_get_smp_processor_id:
7805 		return &bpf_get_smp_processor_id_proto;
7806 	case BPF_FUNC_skb_under_cgroup:
7807 		return &bpf_skb_under_cgroup_proto;
7808 	default:
7809 		return bpf_sk_base_func_proto(func_id);
7810 	}
7811 }
7812 
7813 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7814 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7815 {
7816 	switch (func_id) {
7817 	case BPF_FUNC_lwt_push_encap:
7818 		return &bpf_lwt_in_push_encap_proto;
7819 	default:
7820 		return lwt_out_func_proto(func_id, prog);
7821 	}
7822 }
7823 
7824 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7825 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7826 {
7827 	switch (func_id) {
7828 	case BPF_FUNC_skb_get_tunnel_key:
7829 		return &bpf_skb_get_tunnel_key_proto;
7830 	case BPF_FUNC_skb_set_tunnel_key:
7831 		return bpf_get_skb_set_tunnel_proto(func_id);
7832 	case BPF_FUNC_skb_get_tunnel_opt:
7833 		return &bpf_skb_get_tunnel_opt_proto;
7834 	case BPF_FUNC_skb_set_tunnel_opt:
7835 		return bpf_get_skb_set_tunnel_proto(func_id);
7836 	case BPF_FUNC_redirect:
7837 		return &bpf_redirect_proto;
7838 	case BPF_FUNC_clone_redirect:
7839 		return &bpf_clone_redirect_proto;
7840 	case BPF_FUNC_skb_change_tail:
7841 		return &bpf_skb_change_tail_proto;
7842 	case BPF_FUNC_skb_change_head:
7843 		return &bpf_skb_change_head_proto;
7844 	case BPF_FUNC_skb_store_bytes:
7845 		return &bpf_skb_store_bytes_proto;
7846 	case BPF_FUNC_csum_update:
7847 		return &bpf_csum_update_proto;
7848 	case BPF_FUNC_csum_level:
7849 		return &bpf_csum_level_proto;
7850 	case BPF_FUNC_l3_csum_replace:
7851 		return &bpf_l3_csum_replace_proto;
7852 	case BPF_FUNC_l4_csum_replace:
7853 		return &bpf_l4_csum_replace_proto;
7854 	case BPF_FUNC_set_hash_invalid:
7855 		return &bpf_set_hash_invalid_proto;
7856 	case BPF_FUNC_lwt_push_encap:
7857 		return &bpf_lwt_xmit_push_encap_proto;
7858 	default:
7859 		return lwt_out_func_proto(func_id, prog);
7860 	}
7861 }
7862 
7863 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7864 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7865 {
7866 	switch (func_id) {
7867 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7868 	case BPF_FUNC_lwt_seg6_store_bytes:
7869 		return &bpf_lwt_seg6_store_bytes_proto;
7870 	case BPF_FUNC_lwt_seg6_action:
7871 		return &bpf_lwt_seg6_action_proto;
7872 	case BPF_FUNC_lwt_seg6_adjust_srh:
7873 		return &bpf_lwt_seg6_adjust_srh_proto;
7874 #endif
7875 	default:
7876 		return lwt_out_func_proto(func_id, prog);
7877 	}
7878 }
7879 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7880 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7881 				    const struct bpf_prog *prog,
7882 				    struct bpf_insn_access_aux *info)
7883 {
7884 	const int size_default = sizeof(__u32);
7885 
7886 	if (off < 0 || off >= sizeof(struct __sk_buff))
7887 		return false;
7888 
7889 	/* The verifier guarantees that size > 0. */
7890 	if (off % size != 0)
7891 		return false;
7892 
7893 	switch (off) {
7894 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7895 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
7896 			return false;
7897 		break;
7898 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7899 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7900 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7901 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7902 	case bpf_ctx_range(struct __sk_buff, data):
7903 	case bpf_ctx_range(struct __sk_buff, data_meta):
7904 	case bpf_ctx_range(struct __sk_buff, data_end):
7905 		if (size != size_default)
7906 			return false;
7907 		break;
7908 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7909 		return false;
7910 	case bpf_ctx_range(struct __sk_buff, tstamp):
7911 		if (size != sizeof(__u64))
7912 			return false;
7913 		break;
7914 	case offsetof(struct __sk_buff, sk):
7915 		if (type == BPF_WRITE || size != sizeof(__u64))
7916 			return false;
7917 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7918 		break;
7919 	default:
7920 		/* Only narrow read access allowed for now. */
7921 		if (type == BPF_WRITE) {
7922 			if (size != size_default)
7923 				return false;
7924 		} else {
7925 			bpf_ctx_record_field_size(info, size_default);
7926 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7927 				return false;
7928 		}
7929 	}
7930 
7931 	return true;
7932 }
7933 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7934 static bool sk_filter_is_valid_access(int off, int size,
7935 				      enum bpf_access_type type,
7936 				      const struct bpf_prog *prog,
7937 				      struct bpf_insn_access_aux *info)
7938 {
7939 	switch (off) {
7940 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7941 	case bpf_ctx_range(struct __sk_buff, data):
7942 	case bpf_ctx_range(struct __sk_buff, data_meta):
7943 	case bpf_ctx_range(struct __sk_buff, data_end):
7944 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7945 	case bpf_ctx_range(struct __sk_buff, tstamp):
7946 	case bpf_ctx_range(struct __sk_buff, wire_len):
7947 		return false;
7948 	}
7949 
7950 	if (type == BPF_WRITE) {
7951 		switch (off) {
7952 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7953 			break;
7954 		default:
7955 			return false;
7956 		}
7957 	}
7958 
7959 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7960 }
7961 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7962 static bool cg_skb_is_valid_access(int off, int size,
7963 				   enum bpf_access_type type,
7964 				   const struct bpf_prog *prog,
7965 				   struct bpf_insn_access_aux *info)
7966 {
7967 	switch (off) {
7968 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7969 	case bpf_ctx_range(struct __sk_buff, data_meta):
7970 	case bpf_ctx_range(struct __sk_buff, wire_len):
7971 		return false;
7972 	case bpf_ctx_range(struct __sk_buff, data):
7973 	case bpf_ctx_range(struct __sk_buff, data_end):
7974 		if (!bpf_capable())
7975 			return false;
7976 		break;
7977 	}
7978 
7979 	if (type == BPF_WRITE) {
7980 		switch (off) {
7981 		case bpf_ctx_range(struct __sk_buff, mark):
7982 		case bpf_ctx_range(struct __sk_buff, priority):
7983 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7984 			break;
7985 		case bpf_ctx_range(struct __sk_buff, tstamp):
7986 			if (!bpf_capable())
7987 				return false;
7988 			break;
7989 		default:
7990 			return false;
7991 		}
7992 	}
7993 
7994 	switch (off) {
7995 	case bpf_ctx_range(struct __sk_buff, data):
7996 		info->reg_type = PTR_TO_PACKET;
7997 		break;
7998 	case bpf_ctx_range(struct __sk_buff, data_end):
7999 		info->reg_type = PTR_TO_PACKET_END;
8000 		break;
8001 	}
8002 
8003 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8004 }
8005 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8006 static bool lwt_is_valid_access(int off, int size,
8007 				enum bpf_access_type type,
8008 				const struct bpf_prog *prog,
8009 				struct bpf_insn_access_aux *info)
8010 {
8011 	switch (off) {
8012 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8013 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8014 	case bpf_ctx_range(struct __sk_buff, data_meta):
8015 	case bpf_ctx_range(struct __sk_buff, tstamp):
8016 	case bpf_ctx_range(struct __sk_buff, wire_len):
8017 		return false;
8018 	}
8019 
8020 	if (type == BPF_WRITE) {
8021 		switch (off) {
8022 		case bpf_ctx_range(struct __sk_buff, mark):
8023 		case bpf_ctx_range(struct __sk_buff, priority):
8024 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8025 			break;
8026 		default:
8027 			return false;
8028 		}
8029 	}
8030 
8031 	switch (off) {
8032 	case bpf_ctx_range(struct __sk_buff, data):
8033 		info->reg_type = PTR_TO_PACKET;
8034 		break;
8035 	case bpf_ctx_range(struct __sk_buff, data_end):
8036 		info->reg_type = PTR_TO_PACKET_END;
8037 		break;
8038 	}
8039 
8040 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8041 }
8042 
8043 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8044 static bool __sock_filter_check_attach_type(int off,
8045 					    enum bpf_access_type access_type,
8046 					    enum bpf_attach_type attach_type)
8047 {
8048 	switch (off) {
8049 	case offsetof(struct bpf_sock, bound_dev_if):
8050 	case offsetof(struct bpf_sock, mark):
8051 	case offsetof(struct bpf_sock, priority):
8052 		switch (attach_type) {
8053 		case BPF_CGROUP_INET_SOCK_CREATE:
8054 		case BPF_CGROUP_INET_SOCK_RELEASE:
8055 			goto full_access;
8056 		default:
8057 			return false;
8058 		}
8059 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8060 		switch (attach_type) {
8061 		case BPF_CGROUP_INET4_POST_BIND:
8062 			goto read_only;
8063 		default:
8064 			return false;
8065 		}
8066 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8067 		switch (attach_type) {
8068 		case BPF_CGROUP_INET6_POST_BIND:
8069 			goto read_only;
8070 		default:
8071 			return false;
8072 		}
8073 	case bpf_ctx_range(struct bpf_sock, src_port):
8074 		switch (attach_type) {
8075 		case BPF_CGROUP_INET4_POST_BIND:
8076 		case BPF_CGROUP_INET6_POST_BIND:
8077 			goto read_only;
8078 		default:
8079 			return false;
8080 		}
8081 	}
8082 read_only:
8083 	return access_type == BPF_READ;
8084 full_access:
8085 	return true;
8086 }
8087 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8088 bool bpf_sock_common_is_valid_access(int off, int size,
8089 				     enum bpf_access_type type,
8090 				     struct bpf_insn_access_aux *info)
8091 {
8092 	switch (off) {
8093 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8094 		return false;
8095 	default:
8096 		return bpf_sock_is_valid_access(off, size, type, info);
8097 	}
8098 }
8099 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8100 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8101 			      struct bpf_insn_access_aux *info)
8102 {
8103 	const int size_default = sizeof(__u32);
8104 	int field_size;
8105 
8106 	if (off < 0 || off >= sizeof(struct bpf_sock))
8107 		return false;
8108 	if (off % size != 0)
8109 		return false;
8110 
8111 	switch (off) {
8112 	case offsetof(struct bpf_sock, state):
8113 	case offsetof(struct bpf_sock, family):
8114 	case offsetof(struct bpf_sock, type):
8115 	case offsetof(struct bpf_sock, protocol):
8116 	case offsetof(struct bpf_sock, src_port):
8117 	case offsetof(struct bpf_sock, rx_queue_mapping):
8118 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8119 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8120 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8121 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8122 		bpf_ctx_record_field_size(info, size_default);
8123 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8124 	case bpf_ctx_range(struct bpf_sock, dst_port):
8125 		field_size = size == size_default ?
8126 			size_default : sizeof_field(struct bpf_sock, dst_port);
8127 		bpf_ctx_record_field_size(info, field_size);
8128 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8129 	case offsetofend(struct bpf_sock, dst_port) ...
8130 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8131 		return false;
8132 	}
8133 
8134 	return size == size_default;
8135 }
8136 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8137 static bool sock_filter_is_valid_access(int off, int size,
8138 					enum bpf_access_type type,
8139 					const struct bpf_prog *prog,
8140 					struct bpf_insn_access_aux *info)
8141 {
8142 	if (!bpf_sock_is_valid_access(off, size, type, info))
8143 		return false;
8144 	return __sock_filter_check_attach_type(off, type,
8145 					       prog->expected_attach_type);
8146 }
8147 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8148 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8149 			     const struct bpf_prog *prog)
8150 {
8151 	/* Neither direct read nor direct write requires any preliminary
8152 	 * action.
8153 	 */
8154 	return 0;
8155 }
8156 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8157 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8158 				const struct bpf_prog *prog, int drop_verdict)
8159 {
8160 	struct bpf_insn *insn = insn_buf;
8161 
8162 	if (!direct_write)
8163 		return 0;
8164 
8165 	/* if (!skb->cloned)
8166 	 *       goto start;
8167 	 *
8168 	 * (Fast-path, otherwise approximation that we might be
8169 	 *  a clone, do the rest in helper.)
8170 	 */
8171 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
8172 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8173 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8174 
8175 	/* ret = bpf_skb_pull_data(skb, 0); */
8176 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8177 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8178 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8179 			       BPF_FUNC_skb_pull_data);
8180 	/* if (!ret)
8181 	 *      goto restore;
8182 	 * return TC_ACT_SHOT;
8183 	 */
8184 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8185 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8186 	*insn++ = BPF_EXIT_INSN();
8187 
8188 	/* restore: */
8189 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8190 	/* start: */
8191 	*insn++ = prog->insnsi[0];
8192 
8193 	return insn - insn_buf;
8194 }
8195 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8196 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8197 			  struct bpf_insn *insn_buf)
8198 {
8199 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8200 	struct bpf_insn *insn = insn_buf;
8201 
8202 	if (!indirect) {
8203 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8204 	} else {
8205 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8206 		if (orig->imm)
8207 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8208 	}
8209 	/* We're guaranteed here that CTX is in R6. */
8210 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8211 
8212 	switch (BPF_SIZE(orig->code)) {
8213 	case BPF_B:
8214 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8215 		break;
8216 	case BPF_H:
8217 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8218 		break;
8219 	case BPF_W:
8220 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8221 		break;
8222 	}
8223 
8224 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8225 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8226 	*insn++ = BPF_EXIT_INSN();
8227 
8228 	return insn - insn_buf;
8229 }
8230 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8231 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8232 			       const struct bpf_prog *prog)
8233 {
8234 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8235 }
8236 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8237 static bool tc_cls_act_is_valid_access(int off, int size,
8238 				       enum bpf_access_type type,
8239 				       const struct bpf_prog *prog,
8240 				       struct bpf_insn_access_aux *info)
8241 {
8242 	if (type == BPF_WRITE) {
8243 		switch (off) {
8244 		case bpf_ctx_range(struct __sk_buff, mark):
8245 		case bpf_ctx_range(struct __sk_buff, tc_index):
8246 		case bpf_ctx_range(struct __sk_buff, priority):
8247 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8248 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8249 		case bpf_ctx_range(struct __sk_buff, tstamp):
8250 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8251 			break;
8252 		default:
8253 			return false;
8254 		}
8255 	}
8256 
8257 	switch (off) {
8258 	case bpf_ctx_range(struct __sk_buff, data):
8259 		info->reg_type = PTR_TO_PACKET;
8260 		break;
8261 	case bpf_ctx_range(struct __sk_buff, data_meta):
8262 		info->reg_type = PTR_TO_PACKET_META;
8263 		break;
8264 	case bpf_ctx_range(struct __sk_buff, data_end):
8265 		info->reg_type = PTR_TO_PACKET_END;
8266 		break;
8267 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8268 		return false;
8269 	}
8270 
8271 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8272 }
8273 
__is_valid_xdp_access(int off,int size)8274 static bool __is_valid_xdp_access(int off, int size)
8275 {
8276 	if (off < 0 || off >= sizeof(struct xdp_md))
8277 		return false;
8278 	if (off % size != 0)
8279 		return false;
8280 	if (size != sizeof(__u32))
8281 		return false;
8282 
8283 	return true;
8284 }
8285 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8286 static bool xdp_is_valid_access(int off, int size,
8287 				enum bpf_access_type type,
8288 				const struct bpf_prog *prog,
8289 				struct bpf_insn_access_aux *info)
8290 {
8291 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8292 		switch (off) {
8293 		case offsetof(struct xdp_md, egress_ifindex):
8294 			return false;
8295 		}
8296 	}
8297 
8298 	if (type == BPF_WRITE) {
8299 		if (bpf_prog_is_dev_bound(prog->aux)) {
8300 			switch (off) {
8301 			case offsetof(struct xdp_md, rx_queue_index):
8302 				return __is_valid_xdp_access(off, size);
8303 			}
8304 		}
8305 		return false;
8306 	}
8307 
8308 	switch (off) {
8309 	case offsetof(struct xdp_md, data):
8310 		info->reg_type = PTR_TO_PACKET;
8311 		break;
8312 	case offsetof(struct xdp_md, data_meta):
8313 		info->reg_type = PTR_TO_PACKET_META;
8314 		break;
8315 	case offsetof(struct xdp_md, data_end):
8316 		info->reg_type = PTR_TO_PACKET_END;
8317 		break;
8318 	}
8319 
8320 	return __is_valid_xdp_access(off, size);
8321 }
8322 
bpf_warn_invalid_xdp_action(u32 act)8323 void bpf_warn_invalid_xdp_action(u32 act)
8324 {
8325 	const u32 act_max = XDP_REDIRECT;
8326 
8327 	pr_warn_once("%s XDP return value %u, expect packet loss!\n",
8328 		     act > act_max ? "Illegal" : "Driver unsupported",
8329 		     act);
8330 }
8331 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8332 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8333 static bool sock_addr_is_valid_access(int off, int size,
8334 				      enum bpf_access_type type,
8335 				      const struct bpf_prog *prog,
8336 				      struct bpf_insn_access_aux *info)
8337 {
8338 	const int size_default = sizeof(__u32);
8339 
8340 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8341 		return false;
8342 	if (off % size != 0)
8343 		return false;
8344 
8345 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8346 	 * versa.
8347 	 */
8348 	switch (off) {
8349 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8350 		switch (prog->expected_attach_type) {
8351 		case BPF_CGROUP_INET4_BIND:
8352 		case BPF_CGROUP_INET4_CONNECT:
8353 		case BPF_CGROUP_INET4_GETPEERNAME:
8354 		case BPF_CGROUP_INET4_GETSOCKNAME:
8355 		case BPF_CGROUP_UDP4_SENDMSG:
8356 		case BPF_CGROUP_UDP4_RECVMSG:
8357 			break;
8358 		default:
8359 			return false;
8360 		}
8361 		break;
8362 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8363 		switch (prog->expected_attach_type) {
8364 		case BPF_CGROUP_INET6_BIND:
8365 		case BPF_CGROUP_INET6_CONNECT:
8366 		case BPF_CGROUP_INET6_GETPEERNAME:
8367 		case BPF_CGROUP_INET6_GETSOCKNAME:
8368 		case BPF_CGROUP_UDP6_SENDMSG:
8369 		case BPF_CGROUP_UDP6_RECVMSG:
8370 			break;
8371 		default:
8372 			return false;
8373 		}
8374 		break;
8375 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8376 		switch (prog->expected_attach_type) {
8377 		case BPF_CGROUP_UDP4_SENDMSG:
8378 			break;
8379 		default:
8380 			return false;
8381 		}
8382 		break;
8383 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8384 				msg_src_ip6[3]):
8385 		switch (prog->expected_attach_type) {
8386 		case BPF_CGROUP_UDP6_SENDMSG:
8387 			break;
8388 		default:
8389 			return false;
8390 		}
8391 		break;
8392 	}
8393 
8394 	switch (off) {
8395 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8396 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8397 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8398 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8399 				msg_src_ip6[3]):
8400 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8401 		if (type == BPF_READ) {
8402 			bpf_ctx_record_field_size(info, size_default);
8403 
8404 			if (bpf_ctx_wide_access_ok(off, size,
8405 						   struct bpf_sock_addr,
8406 						   user_ip6))
8407 				return true;
8408 
8409 			if (bpf_ctx_wide_access_ok(off, size,
8410 						   struct bpf_sock_addr,
8411 						   msg_src_ip6))
8412 				return true;
8413 
8414 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8415 				return false;
8416 		} else {
8417 			if (bpf_ctx_wide_access_ok(off, size,
8418 						   struct bpf_sock_addr,
8419 						   user_ip6))
8420 				return true;
8421 
8422 			if (bpf_ctx_wide_access_ok(off, size,
8423 						   struct bpf_sock_addr,
8424 						   msg_src_ip6))
8425 				return true;
8426 
8427 			if (size != size_default)
8428 				return false;
8429 		}
8430 		break;
8431 	case offsetof(struct bpf_sock_addr, sk):
8432 		if (type != BPF_READ)
8433 			return false;
8434 		if (size != sizeof(__u64))
8435 			return false;
8436 		info->reg_type = PTR_TO_SOCKET;
8437 		break;
8438 	default:
8439 		if (type == BPF_READ) {
8440 			if (size != size_default)
8441 				return false;
8442 		} else {
8443 			return false;
8444 		}
8445 	}
8446 
8447 	return true;
8448 }
8449 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8450 static bool sock_ops_is_valid_access(int off, int size,
8451 				     enum bpf_access_type type,
8452 				     const struct bpf_prog *prog,
8453 				     struct bpf_insn_access_aux *info)
8454 {
8455 	const int size_default = sizeof(__u32);
8456 
8457 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8458 		return false;
8459 
8460 	/* The verifier guarantees that size > 0. */
8461 	if (off % size != 0)
8462 		return false;
8463 
8464 	if (type == BPF_WRITE) {
8465 		switch (off) {
8466 		case offsetof(struct bpf_sock_ops, reply):
8467 		case offsetof(struct bpf_sock_ops, sk_txhash):
8468 			if (size != size_default)
8469 				return false;
8470 			break;
8471 		default:
8472 			return false;
8473 		}
8474 	} else {
8475 		switch (off) {
8476 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8477 					bytes_acked):
8478 			if (size != sizeof(__u64))
8479 				return false;
8480 			break;
8481 		case offsetof(struct bpf_sock_ops, sk):
8482 			if (size != sizeof(__u64))
8483 				return false;
8484 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8485 			break;
8486 		case offsetof(struct bpf_sock_ops, skb_data):
8487 			if (size != sizeof(__u64))
8488 				return false;
8489 			info->reg_type = PTR_TO_PACKET;
8490 			break;
8491 		case offsetof(struct bpf_sock_ops, skb_data_end):
8492 			if (size != sizeof(__u64))
8493 				return false;
8494 			info->reg_type = PTR_TO_PACKET_END;
8495 			break;
8496 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8497 			bpf_ctx_record_field_size(info, size_default);
8498 			return bpf_ctx_narrow_access_ok(off, size,
8499 							size_default);
8500 		default:
8501 			if (size != size_default)
8502 				return false;
8503 			break;
8504 		}
8505 	}
8506 
8507 	return true;
8508 }
8509 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8510 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8511 			   const struct bpf_prog *prog)
8512 {
8513 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8514 }
8515 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8516 static bool sk_skb_is_valid_access(int off, int size,
8517 				   enum bpf_access_type type,
8518 				   const struct bpf_prog *prog,
8519 				   struct bpf_insn_access_aux *info)
8520 {
8521 	switch (off) {
8522 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8523 	case bpf_ctx_range(struct __sk_buff, data_meta):
8524 	case bpf_ctx_range(struct __sk_buff, tstamp):
8525 	case bpf_ctx_range(struct __sk_buff, wire_len):
8526 		return false;
8527 	}
8528 
8529 	if (type == BPF_WRITE) {
8530 		switch (off) {
8531 		case bpf_ctx_range(struct __sk_buff, tc_index):
8532 		case bpf_ctx_range(struct __sk_buff, priority):
8533 			break;
8534 		default:
8535 			return false;
8536 		}
8537 	}
8538 
8539 	switch (off) {
8540 	case bpf_ctx_range(struct __sk_buff, mark):
8541 		return false;
8542 	case bpf_ctx_range(struct __sk_buff, data):
8543 		info->reg_type = PTR_TO_PACKET;
8544 		break;
8545 	case bpf_ctx_range(struct __sk_buff, data_end):
8546 		info->reg_type = PTR_TO_PACKET_END;
8547 		break;
8548 	}
8549 
8550 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8551 }
8552 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8553 static bool sk_msg_is_valid_access(int off, int size,
8554 				   enum bpf_access_type type,
8555 				   const struct bpf_prog *prog,
8556 				   struct bpf_insn_access_aux *info)
8557 {
8558 	if (type == BPF_WRITE)
8559 		return false;
8560 
8561 	if (off % size != 0)
8562 		return false;
8563 
8564 	switch (off) {
8565 	case offsetof(struct sk_msg_md, data):
8566 		info->reg_type = PTR_TO_PACKET;
8567 		if (size != sizeof(__u64))
8568 			return false;
8569 		break;
8570 	case offsetof(struct sk_msg_md, data_end):
8571 		info->reg_type = PTR_TO_PACKET_END;
8572 		if (size != sizeof(__u64))
8573 			return false;
8574 		break;
8575 	case offsetof(struct sk_msg_md, sk):
8576 		if (size != sizeof(__u64))
8577 			return false;
8578 		info->reg_type = PTR_TO_SOCKET;
8579 		break;
8580 	case bpf_ctx_range(struct sk_msg_md, family):
8581 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8582 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
8583 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8584 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8585 	case bpf_ctx_range(struct sk_msg_md, remote_port):
8586 	case bpf_ctx_range(struct sk_msg_md, local_port):
8587 	case bpf_ctx_range(struct sk_msg_md, size):
8588 		if (size != sizeof(__u32))
8589 			return false;
8590 		break;
8591 	default:
8592 		return false;
8593 	}
8594 	return true;
8595 }
8596 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8597 static bool flow_dissector_is_valid_access(int off, int size,
8598 					   enum bpf_access_type type,
8599 					   const struct bpf_prog *prog,
8600 					   struct bpf_insn_access_aux *info)
8601 {
8602 	const int size_default = sizeof(__u32);
8603 
8604 	if (off < 0 || off >= sizeof(struct __sk_buff))
8605 		return false;
8606 
8607 	if (type == BPF_WRITE)
8608 		return false;
8609 
8610 	switch (off) {
8611 	case bpf_ctx_range(struct __sk_buff, data):
8612 		if (size != size_default)
8613 			return false;
8614 		info->reg_type = PTR_TO_PACKET;
8615 		return true;
8616 	case bpf_ctx_range(struct __sk_buff, data_end):
8617 		if (size != size_default)
8618 			return false;
8619 		info->reg_type = PTR_TO_PACKET_END;
8620 		return true;
8621 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8622 		if (size != sizeof(__u64))
8623 			return false;
8624 		info->reg_type = PTR_TO_FLOW_KEYS;
8625 		return true;
8626 	default:
8627 		return false;
8628 	}
8629 }
8630 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8631 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8632 					     const struct bpf_insn *si,
8633 					     struct bpf_insn *insn_buf,
8634 					     struct bpf_prog *prog,
8635 					     u32 *target_size)
8636 
8637 {
8638 	struct bpf_insn *insn = insn_buf;
8639 
8640 	switch (si->off) {
8641 	case offsetof(struct __sk_buff, data):
8642 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8643 				      si->dst_reg, si->src_reg,
8644 				      offsetof(struct bpf_flow_dissector, data));
8645 		break;
8646 
8647 	case offsetof(struct __sk_buff, data_end):
8648 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8649 				      si->dst_reg, si->src_reg,
8650 				      offsetof(struct bpf_flow_dissector, data_end));
8651 		break;
8652 
8653 	case offsetof(struct __sk_buff, flow_keys):
8654 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8655 				      si->dst_reg, si->src_reg,
8656 				      offsetof(struct bpf_flow_dissector, flow_keys));
8657 		break;
8658 	}
8659 
8660 	return insn - insn_buf;
8661 }
8662 
bpf_convert_shinfo_access(const struct bpf_insn * si,struct bpf_insn * insn)8663 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8664 						  struct bpf_insn *insn)
8665 {
8666 	/* si->dst_reg = skb_shinfo(SKB); */
8667 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8668 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8669 			      BPF_REG_AX, si->src_reg,
8670 			      offsetof(struct sk_buff, end));
8671 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8672 			      si->dst_reg, si->src_reg,
8673 			      offsetof(struct sk_buff, head));
8674 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8675 #else
8676 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8677 			      si->dst_reg, si->src_reg,
8678 			      offsetof(struct sk_buff, end));
8679 #endif
8680 
8681 	return insn;
8682 }
8683 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8684 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8685 				  const struct bpf_insn *si,
8686 				  struct bpf_insn *insn_buf,
8687 				  struct bpf_prog *prog, u32 *target_size)
8688 {
8689 	struct bpf_insn *insn = insn_buf;
8690 	int off;
8691 
8692 	switch (si->off) {
8693 	case offsetof(struct __sk_buff, len):
8694 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8695 				      bpf_target_off(struct sk_buff, len, 4,
8696 						     target_size));
8697 		break;
8698 
8699 	case offsetof(struct __sk_buff, protocol):
8700 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8701 				      bpf_target_off(struct sk_buff, protocol, 2,
8702 						     target_size));
8703 		break;
8704 
8705 	case offsetof(struct __sk_buff, vlan_proto):
8706 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8707 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
8708 						     target_size));
8709 		break;
8710 
8711 	case offsetof(struct __sk_buff, priority):
8712 		if (type == BPF_WRITE)
8713 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8714 					      bpf_target_off(struct sk_buff, priority, 4,
8715 							     target_size));
8716 		else
8717 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8718 					      bpf_target_off(struct sk_buff, priority, 4,
8719 							     target_size));
8720 		break;
8721 
8722 	case offsetof(struct __sk_buff, ingress_ifindex):
8723 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8724 				      bpf_target_off(struct sk_buff, skb_iif, 4,
8725 						     target_size));
8726 		break;
8727 
8728 	case offsetof(struct __sk_buff, ifindex):
8729 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8730 				      si->dst_reg, si->src_reg,
8731 				      offsetof(struct sk_buff, dev));
8732 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8733 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8734 				      bpf_target_off(struct net_device, ifindex, 4,
8735 						     target_size));
8736 		break;
8737 
8738 	case offsetof(struct __sk_buff, hash):
8739 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8740 				      bpf_target_off(struct sk_buff, hash, 4,
8741 						     target_size));
8742 		break;
8743 
8744 	case offsetof(struct __sk_buff, mark):
8745 		if (type == BPF_WRITE)
8746 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8747 					      bpf_target_off(struct sk_buff, mark, 4,
8748 							     target_size));
8749 		else
8750 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8751 					      bpf_target_off(struct sk_buff, mark, 4,
8752 							     target_size));
8753 		break;
8754 
8755 	case offsetof(struct __sk_buff, pkt_type):
8756 		*target_size = 1;
8757 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8758 				      PKT_TYPE_OFFSET());
8759 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8760 #ifdef __BIG_ENDIAN_BITFIELD
8761 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8762 #endif
8763 		break;
8764 
8765 	case offsetof(struct __sk_buff, queue_mapping):
8766 		if (type == BPF_WRITE) {
8767 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8768 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8769 					      bpf_target_off(struct sk_buff,
8770 							     queue_mapping,
8771 							     2, target_size));
8772 		} else {
8773 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8774 					      bpf_target_off(struct sk_buff,
8775 							     queue_mapping,
8776 							     2, target_size));
8777 		}
8778 		break;
8779 
8780 	case offsetof(struct __sk_buff, vlan_present):
8781 		*target_size = 1;
8782 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8783 				      PKT_VLAN_PRESENT_OFFSET());
8784 		if (PKT_VLAN_PRESENT_BIT)
8785 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8786 		if (PKT_VLAN_PRESENT_BIT < 7)
8787 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8788 		break;
8789 
8790 	case offsetof(struct __sk_buff, vlan_tci):
8791 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8792 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
8793 						     target_size));
8794 		break;
8795 
8796 	case offsetof(struct __sk_buff, cb[0]) ...
8797 	     offsetofend(struct __sk_buff, cb[4]) - 1:
8798 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8799 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8800 			      offsetof(struct qdisc_skb_cb, data)) %
8801 			     sizeof(__u64));
8802 
8803 		prog->cb_access = 1;
8804 		off  = si->off;
8805 		off -= offsetof(struct __sk_buff, cb[0]);
8806 		off += offsetof(struct sk_buff, cb);
8807 		off += offsetof(struct qdisc_skb_cb, data);
8808 		if (type == BPF_WRITE)
8809 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8810 					      si->src_reg, off);
8811 		else
8812 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8813 					      si->src_reg, off);
8814 		break;
8815 
8816 	case offsetof(struct __sk_buff, tc_classid):
8817 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8818 
8819 		off  = si->off;
8820 		off -= offsetof(struct __sk_buff, tc_classid);
8821 		off += offsetof(struct sk_buff, cb);
8822 		off += offsetof(struct qdisc_skb_cb, tc_classid);
8823 		*target_size = 2;
8824 		if (type == BPF_WRITE)
8825 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8826 					      si->src_reg, off);
8827 		else
8828 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8829 					      si->src_reg, off);
8830 		break;
8831 
8832 	case offsetof(struct __sk_buff, data):
8833 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8834 				      si->dst_reg, si->src_reg,
8835 				      offsetof(struct sk_buff, data));
8836 		break;
8837 
8838 	case offsetof(struct __sk_buff, data_meta):
8839 		off  = si->off;
8840 		off -= offsetof(struct __sk_buff, data_meta);
8841 		off += offsetof(struct sk_buff, cb);
8842 		off += offsetof(struct bpf_skb_data_end, data_meta);
8843 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8844 				      si->src_reg, off);
8845 		break;
8846 
8847 	case offsetof(struct __sk_buff, data_end):
8848 		off  = si->off;
8849 		off -= offsetof(struct __sk_buff, data_end);
8850 		off += offsetof(struct sk_buff, cb);
8851 		off += offsetof(struct bpf_skb_data_end, data_end);
8852 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8853 				      si->src_reg, off);
8854 		break;
8855 
8856 	case offsetof(struct __sk_buff, tc_index):
8857 #ifdef CONFIG_NET_SCHED
8858 		if (type == BPF_WRITE)
8859 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8860 					      bpf_target_off(struct sk_buff, tc_index, 2,
8861 							     target_size));
8862 		else
8863 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8864 					      bpf_target_off(struct sk_buff, tc_index, 2,
8865 							     target_size));
8866 #else
8867 		*target_size = 2;
8868 		if (type == BPF_WRITE)
8869 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8870 		else
8871 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8872 #endif
8873 		break;
8874 
8875 	case offsetof(struct __sk_buff, napi_id):
8876 #if defined(CONFIG_NET_RX_BUSY_POLL)
8877 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8878 				      bpf_target_off(struct sk_buff, napi_id, 4,
8879 						     target_size));
8880 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8881 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8882 #else
8883 		*target_size = 4;
8884 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8885 #endif
8886 		break;
8887 	case offsetof(struct __sk_buff, family):
8888 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8889 
8890 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8891 				      si->dst_reg, si->src_reg,
8892 				      offsetof(struct sk_buff, sk));
8893 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8894 				      bpf_target_off(struct sock_common,
8895 						     skc_family,
8896 						     2, target_size));
8897 		break;
8898 	case offsetof(struct __sk_buff, remote_ip4):
8899 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8900 
8901 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8902 				      si->dst_reg, si->src_reg,
8903 				      offsetof(struct sk_buff, sk));
8904 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8905 				      bpf_target_off(struct sock_common,
8906 						     skc_daddr,
8907 						     4, target_size));
8908 		break;
8909 	case offsetof(struct __sk_buff, local_ip4):
8910 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8911 					  skc_rcv_saddr) != 4);
8912 
8913 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8914 				      si->dst_reg, si->src_reg,
8915 				      offsetof(struct sk_buff, sk));
8916 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8917 				      bpf_target_off(struct sock_common,
8918 						     skc_rcv_saddr,
8919 						     4, target_size));
8920 		break;
8921 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
8922 	     offsetof(struct __sk_buff, remote_ip6[3]):
8923 #if IS_ENABLED(CONFIG_IPV6)
8924 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8925 					  skc_v6_daddr.s6_addr32[0]) != 4);
8926 
8927 		off = si->off;
8928 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
8929 
8930 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8931 				      si->dst_reg, si->src_reg,
8932 				      offsetof(struct sk_buff, sk));
8933 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8934 				      offsetof(struct sock_common,
8935 					       skc_v6_daddr.s6_addr32[0]) +
8936 				      off);
8937 #else
8938 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8939 #endif
8940 		break;
8941 	case offsetof(struct __sk_buff, local_ip6[0]) ...
8942 	     offsetof(struct __sk_buff, local_ip6[3]):
8943 #if IS_ENABLED(CONFIG_IPV6)
8944 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8945 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8946 
8947 		off = si->off;
8948 		off -= offsetof(struct __sk_buff, local_ip6[0]);
8949 
8950 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8951 				      si->dst_reg, si->src_reg,
8952 				      offsetof(struct sk_buff, sk));
8953 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8954 				      offsetof(struct sock_common,
8955 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8956 				      off);
8957 #else
8958 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8959 #endif
8960 		break;
8961 
8962 	case offsetof(struct __sk_buff, remote_port):
8963 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8964 
8965 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8966 				      si->dst_reg, si->src_reg,
8967 				      offsetof(struct sk_buff, sk));
8968 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8969 				      bpf_target_off(struct sock_common,
8970 						     skc_dport,
8971 						     2, target_size));
8972 #ifndef __BIG_ENDIAN_BITFIELD
8973 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8974 #endif
8975 		break;
8976 
8977 	case offsetof(struct __sk_buff, local_port):
8978 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8979 
8980 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8981 				      si->dst_reg, si->src_reg,
8982 				      offsetof(struct sk_buff, sk));
8983 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8984 				      bpf_target_off(struct sock_common,
8985 						     skc_num, 2, target_size));
8986 		break;
8987 
8988 	case offsetof(struct __sk_buff, tstamp):
8989 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8990 
8991 		if (type == BPF_WRITE)
8992 			*insn++ = BPF_STX_MEM(BPF_DW,
8993 					      si->dst_reg, si->src_reg,
8994 					      bpf_target_off(struct sk_buff,
8995 							     tstamp, 8,
8996 							     target_size));
8997 		else
8998 			*insn++ = BPF_LDX_MEM(BPF_DW,
8999 					      si->dst_reg, si->src_reg,
9000 					      bpf_target_off(struct sk_buff,
9001 							     tstamp, 8,
9002 							     target_size));
9003 		break;
9004 
9005 	case offsetof(struct __sk_buff, gso_segs):
9006 		insn = bpf_convert_shinfo_access(si, insn);
9007 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9008 				      si->dst_reg, si->dst_reg,
9009 				      bpf_target_off(struct skb_shared_info,
9010 						     gso_segs, 2,
9011 						     target_size));
9012 		break;
9013 	case offsetof(struct __sk_buff, gso_size):
9014 		insn = bpf_convert_shinfo_access(si, insn);
9015 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9016 				      si->dst_reg, si->dst_reg,
9017 				      bpf_target_off(struct skb_shared_info,
9018 						     gso_size, 2,
9019 						     target_size));
9020 		break;
9021 	case offsetof(struct __sk_buff, wire_len):
9022 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9023 
9024 		off = si->off;
9025 		off -= offsetof(struct __sk_buff, wire_len);
9026 		off += offsetof(struct sk_buff, cb);
9027 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9028 		*target_size = 4;
9029 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9030 		break;
9031 
9032 	case offsetof(struct __sk_buff, sk):
9033 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9034 				      si->dst_reg, si->src_reg,
9035 				      offsetof(struct sk_buff, sk));
9036 		break;
9037 	}
9038 
9039 	return insn - insn_buf;
9040 }
9041 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9042 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9043 				const struct bpf_insn *si,
9044 				struct bpf_insn *insn_buf,
9045 				struct bpf_prog *prog, u32 *target_size)
9046 {
9047 	struct bpf_insn *insn = insn_buf;
9048 	int off;
9049 
9050 	switch (si->off) {
9051 	case offsetof(struct bpf_sock, bound_dev_if):
9052 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9053 
9054 		if (type == BPF_WRITE)
9055 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9056 					offsetof(struct sock, sk_bound_dev_if));
9057 		else
9058 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9059 				      offsetof(struct sock, sk_bound_dev_if));
9060 		break;
9061 
9062 	case offsetof(struct bpf_sock, mark):
9063 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9064 
9065 		if (type == BPF_WRITE)
9066 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9067 					offsetof(struct sock, sk_mark));
9068 		else
9069 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9070 				      offsetof(struct sock, sk_mark));
9071 		break;
9072 
9073 	case offsetof(struct bpf_sock, priority):
9074 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9075 
9076 		if (type == BPF_WRITE)
9077 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9078 					offsetof(struct sock, sk_priority));
9079 		else
9080 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9081 				      offsetof(struct sock, sk_priority));
9082 		break;
9083 
9084 	case offsetof(struct bpf_sock, family):
9085 		*insn++ = BPF_LDX_MEM(
9086 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9087 			si->dst_reg, si->src_reg,
9088 			bpf_target_off(struct sock_common,
9089 				       skc_family,
9090 				       sizeof_field(struct sock_common,
9091 						    skc_family),
9092 				       target_size));
9093 		break;
9094 
9095 	case offsetof(struct bpf_sock, type):
9096 		*insn++ = BPF_LDX_MEM(
9097 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9098 			si->dst_reg, si->src_reg,
9099 			bpf_target_off(struct sock, sk_type,
9100 				       sizeof_field(struct sock, sk_type),
9101 				       target_size));
9102 		break;
9103 
9104 	case offsetof(struct bpf_sock, protocol):
9105 		*insn++ = BPF_LDX_MEM(
9106 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9107 			si->dst_reg, si->src_reg,
9108 			bpf_target_off(struct sock, sk_protocol,
9109 				       sizeof_field(struct sock, sk_protocol),
9110 				       target_size));
9111 		break;
9112 
9113 	case offsetof(struct bpf_sock, src_ip4):
9114 		*insn++ = BPF_LDX_MEM(
9115 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9116 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9117 				       sizeof_field(struct sock_common,
9118 						    skc_rcv_saddr),
9119 				       target_size));
9120 		break;
9121 
9122 	case offsetof(struct bpf_sock, dst_ip4):
9123 		*insn++ = BPF_LDX_MEM(
9124 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9125 			bpf_target_off(struct sock_common, skc_daddr,
9126 				       sizeof_field(struct sock_common,
9127 						    skc_daddr),
9128 				       target_size));
9129 		break;
9130 
9131 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9132 #if IS_ENABLED(CONFIG_IPV6)
9133 		off = si->off;
9134 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9135 		*insn++ = BPF_LDX_MEM(
9136 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9137 			bpf_target_off(
9138 				struct sock_common,
9139 				skc_v6_rcv_saddr.s6_addr32[0],
9140 				sizeof_field(struct sock_common,
9141 					     skc_v6_rcv_saddr.s6_addr32[0]),
9142 				target_size) + off);
9143 #else
9144 		(void)off;
9145 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9146 #endif
9147 		break;
9148 
9149 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9150 #if IS_ENABLED(CONFIG_IPV6)
9151 		off = si->off;
9152 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9153 		*insn++ = BPF_LDX_MEM(
9154 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9155 			bpf_target_off(struct sock_common,
9156 				       skc_v6_daddr.s6_addr32[0],
9157 				       sizeof_field(struct sock_common,
9158 						    skc_v6_daddr.s6_addr32[0]),
9159 				       target_size) + off);
9160 #else
9161 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9162 		*target_size = 4;
9163 #endif
9164 		break;
9165 
9166 	case offsetof(struct bpf_sock, src_port):
9167 		*insn++ = BPF_LDX_MEM(
9168 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9169 			si->dst_reg, si->src_reg,
9170 			bpf_target_off(struct sock_common, skc_num,
9171 				       sizeof_field(struct sock_common,
9172 						    skc_num),
9173 				       target_size));
9174 		break;
9175 
9176 	case offsetof(struct bpf_sock, dst_port):
9177 		*insn++ = BPF_LDX_MEM(
9178 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9179 			si->dst_reg, si->src_reg,
9180 			bpf_target_off(struct sock_common, skc_dport,
9181 				       sizeof_field(struct sock_common,
9182 						    skc_dport),
9183 				       target_size));
9184 		break;
9185 
9186 	case offsetof(struct bpf_sock, state):
9187 		*insn++ = BPF_LDX_MEM(
9188 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9189 			si->dst_reg, si->src_reg,
9190 			bpf_target_off(struct sock_common, skc_state,
9191 				       sizeof_field(struct sock_common,
9192 						    skc_state),
9193 				       target_size));
9194 		break;
9195 	case offsetof(struct bpf_sock, rx_queue_mapping):
9196 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9197 		*insn++ = BPF_LDX_MEM(
9198 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9199 			si->dst_reg, si->src_reg,
9200 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9201 				       sizeof_field(struct sock,
9202 						    sk_rx_queue_mapping),
9203 				       target_size));
9204 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9205 				      1);
9206 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9207 #else
9208 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9209 		*target_size = 2;
9210 #endif
9211 		break;
9212 	}
9213 
9214 	return insn - insn_buf;
9215 }
9216 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9217 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9218 					 const struct bpf_insn *si,
9219 					 struct bpf_insn *insn_buf,
9220 					 struct bpf_prog *prog, u32 *target_size)
9221 {
9222 	struct bpf_insn *insn = insn_buf;
9223 
9224 	switch (si->off) {
9225 	case offsetof(struct __sk_buff, ifindex):
9226 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9227 				      si->dst_reg, si->src_reg,
9228 				      offsetof(struct sk_buff, dev));
9229 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9230 				      bpf_target_off(struct net_device, ifindex, 4,
9231 						     target_size));
9232 		break;
9233 	default:
9234 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9235 					      target_size);
9236 	}
9237 
9238 	return insn - insn_buf;
9239 }
9240 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9241 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9242 				  const struct bpf_insn *si,
9243 				  struct bpf_insn *insn_buf,
9244 				  struct bpf_prog *prog, u32 *target_size)
9245 {
9246 	struct bpf_insn *insn = insn_buf;
9247 
9248 	switch (si->off) {
9249 	case offsetof(struct xdp_md, data):
9250 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9251 				      si->dst_reg, si->src_reg,
9252 				      offsetof(struct xdp_buff, data));
9253 		break;
9254 	case offsetof(struct xdp_md, data_meta):
9255 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9256 				      si->dst_reg, si->src_reg,
9257 				      offsetof(struct xdp_buff, data_meta));
9258 		break;
9259 	case offsetof(struct xdp_md, data_end):
9260 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9261 				      si->dst_reg, si->src_reg,
9262 				      offsetof(struct xdp_buff, data_end));
9263 		break;
9264 	case offsetof(struct xdp_md, ingress_ifindex):
9265 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9266 				      si->dst_reg, si->src_reg,
9267 				      offsetof(struct xdp_buff, rxq));
9268 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9269 				      si->dst_reg, si->dst_reg,
9270 				      offsetof(struct xdp_rxq_info, dev));
9271 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9272 				      offsetof(struct net_device, ifindex));
9273 		break;
9274 	case offsetof(struct xdp_md, rx_queue_index):
9275 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9276 				      si->dst_reg, si->src_reg,
9277 				      offsetof(struct xdp_buff, rxq));
9278 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9279 				      offsetof(struct xdp_rxq_info,
9280 					       queue_index));
9281 		break;
9282 	case offsetof(struct xdp_md, egress_ifindex):
9283 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9284 				      si->dst_reg, si->src_reg,
9285 				      offsetof(struct xdp_buff, txq));
9286 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9287 				      si->dst_reg, si->dst_reg,
9288 				      offsetof(struct xdp_txq_info, dev));
9289 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9290 				      offsetof(struct net_device, ifindex));
9291 		break;
9292 	}
9293 
9294 	return insn - insn_buf;
9295 }
9296 
9297 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9298  * context Structure, F is Field in context structure that contains a pointer
9299  * to Nested Structure of type NS that has the field NF.
9300  *
9301  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9302  * sure that SIZE is not greater than actual size of S.F.NF.
9303  *
9304  * If offset OFF is provided, the load happens from that offset relative to
9305  * offset of NF.
9306  */
9307 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9308 	do {								       \
9309 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9310 				      si->src_reg, offsetof(S, F));	       \
9311 		*insn++ = BPF_LDX_MEM(					       \
9312 			SIZE, si->dst_reg, si->dst_reg,			       \
9313 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9314 				       target_size)			       \
9315 				+ OFF);					       \
9316 	} while (0)
9317 
9318 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9319 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9320 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9321 
9322 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9323  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9324  *
9325  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9326  * "register" since two registers available in convert_ctx_access are not
9327  * enough: we can't override neither SRC, since it contains value to store, nor
9328  * DST since it contains pointer to context that may be used by later
9329  * instructions. But we need a temporary place to save pointer to nested
9330  * structure whose field we want to store to.
9331  */
9332 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9333 	do {								       \
9334 		int tmp_reg = BPF_REG_9;				       \
9335 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9336 			--tmp_reg;					       \
9337 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9338 			--tmp_reg;					       \
9339 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9340 				      offsetof(S, TF));			       \
9341 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9342 				      si->dst_reg, offsetof(S, F));	       \
9343 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9344 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9345 				       target_size)			       \
9346 				+ OFF);					       \
9347 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9348 				      offsetof(S, TF));			       \
9349 	} while (0)
9350 
9351 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9352 						      TF)		       \
9353 	do {								       \
9354 		if (type == BPF_WRITE) {				       \
9355 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9356 							 OFF, TF);	       \
9357 		} else {						       \
9358 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9359 				S, NS, F, NF, SIZE, OFF);  \
9360 		}							       \
9361 	} while (0)
9362 
9363 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9364 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9365 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9366 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9367 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9368 					const struct bpf_insn *si,
9369 					struct bpf_insn *insn_buf,
9370 					struct bpf_prog *prog, u32 *target_size)
9371 {
9372 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9373 	struct bpf_insn *insn = insn_buf;
9374 
9375 	switch (si->off) {
9376 	case offsetof(struct bpf_sock_addr, user_family):
9377 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9378 					    struct sockaddr, uaddr, sa_family);
9379 		break;
9380 
9381 	case offsetof(struct bpf_sock_addr, user_ip4):
9382 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9383 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9384 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9385 		break;
9386 
9387 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9388 		off = si->off;
9389 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9390 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9391 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9392 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9393 			tmp_reg);
9394 		break;
9395 
9396 	case offsetof(struct bpf_sock_addr, user_port):
9397 		/* To get port we need to know sa_family first and then treat
9398 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9399 		 * Though we can simplify since port field has same offset and
9400 		 * size in both structures.
9401 		 * Here we check this invariant and use just one of the
9402 		 * structures if it's true.
9403 		 */
9404 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9405 			     offsetof(struct sockaddr_in6, sin6_port));
9406 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9407 			     sizeof_field(struct sockaddr_in6, sin6_port));
9408 		/* Account for sin6_port being smaller than user_port. */
9409 		port_size = min(port_size, BPF_LDST_BYTES(si));
9410 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9411 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9412 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9413 		break;
9414 
9415 	case offsetof(struct bpf_sock_addr, family):
9416 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9417 					    struct sock, sk, sk_family);
9418 		break;
9419 
9420 	case offsetof(struct bpf_sock_addr, type):
9421 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9422 					    struct sock, sk, sk_type);
9423 		break;
9424 
9425 	case offsetof(struct bpf_sock_addr, protocol):
9426 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9427 					    struct sock, sk, sk_protocol);
9428 		break;
9429 
9430 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9431 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9432 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9433 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9434 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9435 		break;
9436 
9437 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9438 				msg_src_ip6[3]):
9439 		off = si->off;
9440 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9441 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9442 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9443 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9444 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9445 		break;
9446 	case offsetof(struct bpf_sock_addr, sk):
9447 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9448 				      si->dst_reg, si->src_reg,
9449 				      offsetof(struct bpf_sock_addr_kern, sk));
9450 		break;
9451 	}
9452 
9453 	return insn - insn_buf;
9454 }
9455 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9456 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9457 				       const struct bpf_insn *si,
9458 				       struct bpf_insn *insn_buf,
9459 				       struct bpf_prog *prog,
9460 				       u32 *target_size)
9461 {
9462 	struct bpf_insn *insn = insn_buf;
9463 	int off;
9464 
9465 /* Helper macro for adding read access to tcp_sock or sock fields. */
9466 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9467 	do {								      \
9468 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9469 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9470 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9471 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9472 			reg--;						      \
9473 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9474 			reg--;						      \
9475 		if (si->dst_reg == si->src_reg) {			      \
9476 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9477 					  offsetof(struct bpf_sock_ops_kern,  \
9478 					  temp));			      \
9479 			fullsock_reg = reg;				      \
9480 			jmp += 2;					      \
9481 		}							      \
9482 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9483 						struct bpf_sock_ops_kern,     \
9484 						is_fullsock),		      \
9485 				      fullsock_reg, si->src_reg,	      \
9486 				      offsetof(struct bpf_sock_ops_kern,      \
9487 					       is_fullsock));		      \
9488 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9489 		if (si->dst_reg == si->src_reg)				      \
9490 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9491 				      offsetof(struct bpf_sock_ops_kern,      \
9492 				      temp));				      \
9493 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9494 						struct bpf_sock_ops_kern, sk),\
9495 				      si->dst_reg, si->src_reg,		      \
9496 				      offsetof(struct bpf_sock_ops_kern, sk));\
9497 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
9498 						       OBJ_FIELD),	      \
9499 				      si->dst_reg, si->dst_reg,		      \
9500 				      offsetof(OBJ, OBJ_FIELD));	      \
9501 		if (si->dst_reg == si->src_reg)	{			      \
9502 			*insn++ = BPF_JMP_A(1);				      \
9503 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9504 				      offsetof(struct bpf_sock_ops_kern,      \
9505 				      temp));				      \
9506 		}							      \
9507 	} while (0)
9508 
9509 #define SOCK_OPS_GET_SK()							      \
9510 	do {								      \
9511 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9512 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9513 			reg--;						      \
9514 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9515 			reg--;						      \
9516 		if (si->dst_reg == si->src_reg) {			      \
9517 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9518 					  offsetof(struct bpf_sock_ops_kern,  \
9519 					  temp));			      \
9520 			fullsock_reg = reg;				      \
9521 			jmp += 2;					      \
9522 		}							      \
9523 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9524 						struct bpf_sock_ops_kern,     \
9525 						is_fullsock),		      \
9526 				      fullsock_reg, si->src_reg,	      \
9527 				      offsetof(struct bpf_sock_ops_kern,      \
9528 					       is_fullsock));		      \
9529 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9530 		if (si->dst_reg == si->src_reg)				      \
9531 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9532 				      offsetof(struct bpf_sock_ops_kern,      \
9533 				      temp));				      \
9534 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9535 						struct bpf_sock_ops_kern, sk),\
9536 				      si->dst_reg, si->src_reg,		      \
9537 				      offsetof(struct bpf_sock_ops_kern, sk));\
9538 		if (si->dst_reg == si->src_reg)	{			      \
9539 			*insn++ = BPF_JMP_A(1);				      \
9540 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9541 				      offsetof(struct bpf_sock_ops_kern,      \
9542 				      temp));				      \
9543 		}							      \
9544 	} while (0)
9545 
9546 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9547 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9548 
9549 /* Helper macro for adding write access to tcp_sock or sock fields.
9550  * The macro is called with two registers, dst_reg which contains a pointer
9551  * to ctx (context) and src_reg which contains the value that should be
9552  * stored. However, we need an additional register since we cannot overwrite
9553  * dst_reg because it may be used later in the program.
9554  * Instead we "borrow" one of the other register. We first save its value
9555  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9556  * it at the end of the macro.
9557  */
9558 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9559 	do {								      \
9560 		int reg = BPF_REG_9;					      \
9561 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9562 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9563 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9564 			reg--;						      \
9565 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9566 			reg--;						      \
9567 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
9568 				      offsetof(struct bpf_sock_ops_kern,      \
9569 					       temp));			      \
9570 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9571 						struct bpf_sock_ops_kern,     \
9572 						is_fullsock),		      \
9573 				      reg, si->dst_reg,			      \
9574 				      offsetof(struct bpf_sock_ops_kern,      \
9575 					       is_fullsock));		      \
9576 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
9577 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9578 						struct bpf_sock_ops_kern, sk),\
9579 				      reg, si->dst_reg,			      \
9580 				      offsetof(struct bpf_sock_ops_kern, sk));\
9581 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
9582 				      reg, si->src_reg,			      \
9583 				      offsetof(OBJ, OBJ_FIELD));	      \
9584 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
9585 				      offsetof(struct bpf_sock_ops_kern,      \
9586 					       temp));			      \
9587 	} while (0)
9588 
9589 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
9590 	do {								      \
9591 		if (TYPE == BPF_WRITE)					      \
9592 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9593 		else							      \
9594 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9595 	} while (0)
9596 
9597 	if (insn > insn_buf)
9598 		return insn - insn_buf;
9599 
9600 	switch (si->off) {
9601 	case offsetof(struct bpf_sock_ops, op):
9602 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9603 						       op),
9604 				      si->dst_reg, si->src_reg,
9605 				      offsetof(struct bpf_sock_ops_kern, op));
9606 		break;
9607 
9608 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
9609 	     offsetof(struct bpf_sock_ops, replylong[3]):
9610 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9611 			     sizeof_field(struct bpf_sock_ops_kern, reply));
9612 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9613 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
9614 		off = si->off;
9615 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
9616 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9617 		if (type == BPF_WRITE)
9618 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9619 					      off);
9620 		else
9621 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9622 					      off);
9623 		break;
9624 
9625 	case offsetof(struct bpf_sock_ops, family):
9626 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9627 
9628 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9629 					      struct bpf_sock_ops_kern, sk),
9630 				      si->dst_reg, si->src_reg,
9631 				      offsetof(struct bpf_sock_ops_kern, sk));
9632 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9633 				      offsetof(struct sock_common, skc_family));
9634 		break;
9635 
9636 	case offsetof(struct bpf_sock_ops, remote_ip4):
9637 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9638 
9639 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9640 						struct bpf_sock_ops_kern, sk),
9641 				      si->dst_reg, si->src_reg,
9642 				      offsetof(struct bpf_sock_ops_kern, sk));
9643 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9644 				      offsetof(struct sock_common, skc_daddr));
9645 		break;
9646 
9647 	case offsetof(struct bpf_sock_ops, local_ip4):
9648 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9649 					  skc_rcv_saddr) != 4);
9650 
9651 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9652 					      struct bpf_sock_ops_kern, sk),
9653 				      si->dst_reg, si->src_reg,
9654 				      offsetof(struct bpf_sock_ops_kern, sk));
9655 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9656 				      offsetof(struct sock_common,
9657 					       skc_rcv_saddr));
9658 		break;
9659 
9660 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9661 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
9662 #if IS_ENABLED(CONFIG_IPV6)
9663 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9664 					  skc_v6_daddr.s6_addr32[0]) != 4);
9665 
9666 		off = si->off;
9667 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9668 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9669 						struct bpf_sock_ops_kern, sk),
9670 				      si->dst_reg, si->src_reg,
9671 				      offsetof(struct bpf_sock_ops_kern, sk));
9672 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9673 				      offsetof(struct sock_common,
9674 					       skc_v6_daddr.s6_addr32[0]) +
9675 				      off);
9676 #else
9677 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9678 #endif
9679 		break;
9680 
9681 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9682 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
9683 #if IS_ENABLED(CONFIG_IPV6)
9684 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9685 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9686 
9687 		off = si->off;
9688 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9689 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9690 						struct bpf_sock_ops_kern, sk),
9691 				      si->dst_reg, si->src_reg,
9692 				      offsetof(struct bpf_sock_ops_kern, sk));
9693 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9694 				      offsetof(struct sock_common,
9695 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9696 				      off);
9697 #else
9698 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9699 #endif
9700 		break;
9701 
9702 	case offsetof(struct bpf_sock_ops, remote_port):
9703 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9704 
9705 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9706 						struct bpf_sock_ops_kern, sk),
9707 				      si->dst_reg, si->src_reg,
9708 				      offsetof(struct bpf_sock_ops_kern, sk));
9709 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9710 				      offsetof(struct sock_common, skc_dport));
9711 #ifndef __BIG_ENDIAN_BITFIELD
9712 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9713 #endif
9714 		break;
9715 
9716 	case offsetof(struct bpf_sock_ops, local_port):
9717 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9718 
9719 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9720 						struct bpf_sock_ops_kern, sk),
9721 				      si->dst_reg, si->src_reg,
9722 				      offsetof(struct bpf_sock_ops_kern, sk));
9723 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9724 				      offsetof(struct sock_common, skc_num));
9725 		break;
9726 
9727 	case offsetof(struct bpf_sock_ops, is_fullsock):
9728 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9729 						struct bpf_sock_ops_kern,
9730 						is_fullsock),
9731 				      si->dst_reg, si->src_reg,
9732 				      offsetof(struct bpf_sock_ops_kern,
9733 					       is_fullsock));
9734 		break;
9735 
9736 	case offsetof(struct bpf_sock_ops, state):
9737 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9738 
9739 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9740 						struct bpf_sock_ops_kern, sk),
9741 				      si->dst_reg, si->src_reg,
9742 				      offsetof(struct bpf_sock_ops_kern, sk));
9743 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9744 				      offsetof(struct sock_common, skc_state));
9745 		break;
9746 
9747 	case offsetof(struct bpf_sock_ops, rtt_min):
9748 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9749 			     sizeof(struct minmax));
9750 		BUILD_BUG_ON(sizeof(struct minmax) <
9751 			     sizeof(struct minmax_sample));
9752 
9753 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9754 						struct bpf_sock_ops_kern, sk),
9755 				      si->dst_reg, si->src_reg,
9756 				      offsetof(struct bpf_sock_ops_kern, sk));
9757 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9758 				      offsetof(struct tcp_sock, rtt_min) +
9759 				      sizeof_field(struct minmax_sample, t));
9760 		break;
9761 
9762 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9763 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9764 				   struct tcp_sock);
9765 		break;
9766 
9767 	case offsetof(struct bpf_sock_ops, sk_txhash):
9768 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9769 					  struct sock, type);
9770 		break;
9771 	case offsetof(struct bpf_sock_ops, snd_cwnd):
9772 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9773 		break;
9774 	case offsetof(struct bpf_sock_ops, srtt_us):
9775 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9776 		break;
9777 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
9778 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9779 		break;
9780 	case offsetof(struct bpf_sock_ops, rcv_nxt):
9781 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9782 		break;
9783 	case offsetof(struct bpf_sock_ops, snd_nxt):
9784 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9785 		break;
9786 	case offsetof(struct bpf_sock_ops, snd_una):
9787 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9788 		break;
9789 	case offsetof(struct bpf_sock_ops, mss_cache):
9790 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9791 		break;
9792 	case offsetof(struct bpf_sock_ops, ecn_flags):
9793 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9794 		break;
9795 	case offsetof(struct bpf_sock_ops, rate_delivered):
9796 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9797 		break;
9798 	case offsetof(struct bpf_sock_ops, rate_interval_us):
9799 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9800 		break;
9801 	case offsetof(struct bpf_sock_ops, packets_out):
9802 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9803 		break;
9804 	case offsetof(struct bpf_sock_ops, retrans_out):
9805 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9806 		break;
9807 	case offsetof(struct bpf_sock_ops, total_retrans):
9808 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9809 		break;
9810 	case offsetof(struct bpf_sock_ops, segs_in):
9811 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9812 		break;
9813 	case offsetof(struct bpf_sock_ops, data_segs_in):
9814 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9815 		break;
9816 	case offsetof(struct bpf_sock_ops, segs_out):
9817 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9818 		break;
9819 	case offsetof(struct bpf_sock_ops, data_segs_out):
9820 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9821 		break;
9822 	case offsetof(struct bpf_sock_ops, lost_out):
9823 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9824 		break;
9825 	case offsetof(struct bpf_sock_ops, sacked_out):
9826 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9827 		break;
9828 	case offsetof(struct bpf_sock_ops, bytes_received):
9829 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9830 		break;
9831 	case offsetof(struct bpf_sock_ops, bytes_acked):
9832 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9833 		break;
9834 	case offsetof(struct bpf_sock_ops, sk):
9835 		SOCK_OPS_GET_SK();
9836 		break;
9837 	case offsetof(struct bpf_sock_ops, skb_data_end):
9838 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9839 						       skb_data_end),
9840 				      si->dst_reg, si->src_reg,
9841 				      offsetof(struct bpf_sock_ops_kern,
9842 					       skb_data_end));
9843 		break;
9844 	case offsetof(struct bpf_sock_ops, skb_data):
9845 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9846 						       skb),
9847 				      si->dst_reg, si->src_reg,
9848 				      offsetof(struct bpf_sock_ops_kern,
9849 					       skb));
9850 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9851 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9852 				      si->dst_reg, si->dst_reg,
9853 				      offsetof(struct sk_buff, data));
9854 		break;
9855 	case offsetof(struct bpf_sock_ops, skb_len):
9856 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9857 						       skb),
9858 				      si->dst_reg, si->src_reg,
9859 				      offsetof(struct bpf_sock_ops_kern,
9860 					       skb));
9861 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9862 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9863 				      si->dst_reg, si->dst_reg,
9864 				      offsetof(struct sk_buff, len));
9865 		break;
9866 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9867 		off = offsetof(struct sk_buff, cb);
9868 		off += offsetof(struct tcp_skb_cb, tcp_flags);
9869 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9870 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9871 						       skb),
9872 				      si->dst_reg, si->src_reg,
9873 				      offsetof(struct bpf_sock_ops_kern,
9874 					       skb));
9875 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9876 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9877 						       tcp_flags),
9878 				      si->dst_reg, si->dst_reg, off);
9879 		break;
9880 	}
9881 	return insn - insn_buf;
9882 }
9883 
9884 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)9885 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
9886 						    struct bpf_insn *insn)
9887 {
9888 	int reg;
9889 	int temp_reg_off = offsetof(struct sk_buff, cb) +
9890 			   offsetof(struct sk_skb_cb, temp_reg);
9891 
9892 	if (si->src_reg == si->dst_reg) {
9893 		/* We need an extra register, choose and save a register. */
9894 		reg = BPF_REG_9;
9895 		if (si->src_reg == reg || si->dst_reg == reg)
9896 			reg--;
9897 		if (si->src_reg == reg || si->dst_reg == reg)
9898 			reg--;
9899 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
9900 	} else {
9901 		reg = si->dst_reg;
9902 	}
9903 
9904 	/* reg = skb->data */
9905 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9906 			      reg, si->src_reg,
9907 			      offsetof(struct sk_buff, data));
9908 	/* AX = skb->len */
9909 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9910 			      BPF_REG_AX, si->src_reg,
9911 			      offsetof(struct sk_buff, len));
9912 	/* reg = skb->data + skb->len */
9913 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
9914 	/* AX = skb->data_len */
9915 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
9916 			      BPF_REG_AX, si->src_reg,
9917 			      offsetof(struct sk_buff, data_len));
9918 
9919 	/* reg = skb->data + skb->len - skb->data_len */
9920 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
9921 
9922 	if (si->src_reg == si->dst_reg) {
9923 		/* Restore the saved register */
9924 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
9925 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
9926 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
9927 	}
9928 
9929 	return insn;
9930 }
9931 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9932 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9933 				     const struct bpf_insn *si,
9934 				     struct bpf_insn *insn_buf,
9935 				     struct bpf_prog *prog, u32 *target_size)
9936 {
9937 	struct bpf_insn *insn = insn_buf;
9938 	int off;
9939 
9940 	switch (si->off) {
9941 	case offsetof(struct __sk_buff, data_end):
9942 		insn = bpf_convert_data_end_access(si, insn);
9943 		break;
9944 	case offsetof(struct __sk_buff, cb[0]) ...
9945 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9946 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
9947 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9948 			      offsetof(struct sk_skb_cb, data)) %
9949 			     sizeof(__u64));
9950 
9951 		prog->cb_access = 1;
9952 		off  = si->off;
9953 		off -= offsetof(struct __sk_buff, cb[0]);
9954 		off += offsetof(struct sk_buff, cb);
9955 		off += offsetof(struct sk_skb_cb, data);
9956 		if (type == BPF_WRITE)
9957 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9958 					      si->src_reg, off);
9959 		else
9960 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9961 					      si->src_reg, off);
9962 		break;
9963 
9964 
9965 	default:
9966 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9967 					      target_size);
9968 	}
9969 
9970 	return insn - insn_buf;
9971 }
9972 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9973 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9974 				     const struct bpf_insn *si,
9975 				     struct bpf_insn *insn_buf,
9976 				     struct bpf_prog *prog, u32 *target_size)
9977 {
9978 	struct bpf_insn *insn = insn_buf;
9979 #if IS_ENABLED(CONFIG_IPV6)
9980 	int off;
9981 #endif
9982 
9983 	/* convert ctx uses the fact sg element is first in struct */
9984 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9985 
9986 	switch (si->off) {
9987 	case offsetof(struct sk_msg_md, data):
9988 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9989 				      si->dst_reg, si->src_reg,
9990 				      offsetof(struct sk_msg, data));
9991 		break;
9992 	case offsetof(struct sk_msg_md, data_end):
9993 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9994 				      si->dst_reg, si->src_reg,
9995 				      offsetof(struct sk_msg, data_end));
9996 		break;
9997 	case offsetof(struct sk_msg_md, family):
9998 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9999 
10000 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10001 					      struct sk_msg, sk),
10002 				      si->dst_reg, si->src_reg,
10003 				      offsetof(struct sk_msg, sk));
10004 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10005 				      offsetof(struct sock_common, skc_family));
10006 		break;
10007 
10008 	case offsetof(struct sk_msg_md, remote_ip4):
10009 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10010 
10011 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10012 						struct sk_msg, sk),
10013 				      si->dst_reg, si->src_reg,
10014 				      offsetof(struct sk_msg, sk));
10015 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10016 				      offsetof(struct sock_common, skc_daddr));
10017 		break;
10018 
10019 	case offsetof(struct sk_msg_md, local_ip4):
10020 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10021 					  skc_rcv_saddr) != 4);
10022 
10023 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10024 					      struct sk_msg, sk),
10025 				      si->dst_reg, si->src_reg,
10026 				      offsetof(struct sk_msg, sk));
10027 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10028 				      offsetof(struct sock_common,
10029 					       skc_rcv_saddr));
10030 		break;
10031 
10032 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10033 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10034 #if IS_ENABLED(CONFIG_IPV6)
10035 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10036 					  skc_v6_daddr.s6_addr32[0]) != 4);
10037 
10038 		off = si->off;
10039 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10040 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10041 						struct sk_msg, sk),
10042 				      si->dst_reg, si->src_reg,
10043 				      offsetof(struct sk_msg, sk));
10044 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10045 				      offsetof(struct sock_common,
10046 					       skc_v6_daddr.s6_addr32[0]) +
10047 				      off);
10048 #else
10049 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10050 #endif
10051 		break;
10052 
10053 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10054 	     offsetof(struct sk_msg_md, local_ip6[3]):
10055 #if IS_ENABLED(CONFIG_IPV6)
10056 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10057 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10058 
10059 		off = si->off;
10060 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10061 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10062 						struct sk_msg, sk),
10063 				      si->dst_reg, si->src_reg,
10064 				      offsetof(struct sk_msg, sk));
10065 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10066 				      offsetof(struct sock_common,
10067 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10068 				      off);
10069 #else
10070 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10071 #endif
10072 		break;
10073 
10074 	case offsetof(struct sk_msg_md, remote_port):
10075 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10076 
10077 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10078 						struct sk_msg, sk),
10079 				      si->dst_reg, si->src_reg,
10080 				      offsetof(struct sk_msg, sk));
10081 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10082 				      offsetof(struct sock_common, skc_dport));
10083 #ifndef __BIG_ENDIAN_BITFIELD
10084 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10085 #endif
10086 		break;
10087 
10088 	case offsetof(struct sk_msg_md, local_port):
10089 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10090 
10091 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10092 						struct sk_msg, sk),
10093 				      si->dst_reg, si->src_reg,
10094 				      offsetof(struct sk_msg, sk));
10095 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10096 				      offsetof(struct sock_common, skc_num));
10097 		break;
10098 
10099 	case offsetof(struct sk_msg_md, size):
10100 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10101 				      si->dst_reg, si->src_reg,
10102 				      offsetof(struct sk_msg_sg, size));
10103 		break;
10104 
10105 	case offsetof(struct sk_msg_md, sk):
10106 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10107 				      si->dst_reg, si->src_reg,
10108 				      offsetof(struct sk_msg, sk));
10109 		break;
10110 	}
10111 
10112 	return insn - insn_buf;
10113 }
10114 
10115 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10116 	.get_func_proto		= sk_filter_func_proto,
10117 	.is_valid_access	= sk_filter_is_valid_access,
10118 	.convert_ctx_access	= bpf_convert_ctx_access,
10119 	.gen_ld_abs		= bpf_gen_ld_abs,
10120 };
10121 
10122 const struct bpf_prog_ops sk_filter_prog_ops = {
10123 	.test_run		= bpf_prog_test_run_skb,
10124 };
10125 
10126 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10127 	.get_func_proto		= tc_cls_act_func_proto,
10128 	.is_valid_access	= tc_cls_act_is_valid_access,
10129 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10130 	.gen_prologue		= tc_cls_act_prologue,
10131 	.gen_ld_abs		= bpf_gen_ld_abs,
10132 	.check_kfunc_call	= bpf_prog_test_check_kfunc_call,
10133 };
10134 
10135 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10136 	.test_run		= bpf_prog_test_run_skb,
10137 };
10138 
10139 const struct bpf_verifier_ops xdp_verifier_ops = {
10140 	.get_func_proto		= xdp_func_proto,
10141 	.is_valid_access	= xdp_is_valid_access,
10142 	.convert_ctx_access	= xdp_convert_ctx_access,
10143 	.gen_prologue		= bpf_noop_prologue,
10144 };
10145 
10146 const struct bpf_prog_ops xdp_prog_ops = {
10147 	.test_run		= bpf_prog_test_run_xdp,
10148 };
10149 
10150 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10151 	.get_func_proto		= cg_skb_func_proto,
10152 	.is_valid_access	= cg_skb_is_valid_access,
10153 	.convert_ctx_access	= bpf_convert_ctx_access,
10154 };
10155 
10156 const struct bpf_prog_ops cg_skb_prog_ops = {
10157 	.test_run		= bpf_prog_test_run_skb,
10158 };
10159 
10160 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10161 	.get_func_proto		= lwt_in_func_proto,
10162 	.is_valid_access	= lwt_is_valid_access,
10163 	.convert_ctx_access	= bpf_convert_ctx_access,
10164 };
10165 
10166 const struct bpf_prog_ops lwt_in_prog_ops = {
10167 	.test_run		= bpf_prog_test_run_skb,
10168 };
10169 
10170 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10171 	.get_func_proto		= lwt_out_func_proto,
10172 	.is_valid_access	= lwt_is_valid_access,
10173 	.convert_ctx_access	= bpf_convert_ctx_access,
10174 };
10175 
10176 const struct bpf_prog_ops lwt_out_prog_ops = {
10177 	.test_run		= bpf_prog_test_run_skb,
10178 };
10179 
10180 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10181 	.get_func_proto		= lwt_xmit_func_proto,
10182 	.is_valid_access	= lwt_is_valid_access,
10183 	.convert_ctx_access	= bpf_convert_ctx_access,
10184 	.gen_prologue		= tc_cls_act_prologue,
10185 };
10186 
10187 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10188 	.test_run		= bpf_prog_test_run_skb,
10189 };
10190 
10191 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10192 	.get_func_proto		= lwt_seg6local_func_proto,
10193 	.is_valid_access	= lwt_is_valid_access,
10194 	.convert_ctx_access	= bpf_convert_ctx_access,
10195 };
10196 
10197 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10198 	.test_run		= bpf_prog_test_run_skb,
10199 };
10200 
10201 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10202 	.get_func_proto		= sock_filter_func_proto,
10203 	.is_valid_access	= sock_filter_is_valid_access,
10204 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10205 };
10206 
10207 const struct bpf_prog_ops cg_sock_prog_ops = {
10208 };
10209 
10210 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10211 	.get_func_proto		= sock_addr_func_proto,
10212 	.is_valid_access	= sock_addr_is_valid_access,
10213 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10214 };
10215 
10216 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10217 };
10218 
10219 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10220 	.get_func_proto		= sock_ops_func_proto,
10221 	.is_valid_access	= sock_ops_is_valid_access,
10222 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10223 };
10224 
10225 const struct bpf_prog_ops sock_ops_prog_ops = {
10226 };
10227 
10228 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10229 	.get_func_proto		= sk_skb_func_proto,
10230 	.is_valid_access	= sk_skb_is_valid_access,
10231 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10232 	.gen_prologue		= sk_skb_prologue,
10233 };
10234 
10235 const struct bpf_prog_ops sk_skb_prog_ops = {
10236 };
10237 
10238 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10239 	.get_func_proto		= sk_msg_func_proto,
10240 	.is_valid_access	= sk_msg_is_valid_access,
10241 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10242 	.gen_prologue		= bpf_noop_prologue,
10243 };
10244 
10245 const struct bpf_prog_ops sk_msg_prog_ops = {
10246 };
10247 
10248 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10249 	.get_func_proto		= flow_dissector_func_proto,
10250 	.is_valid_access	= flow_dissector_is_valid_access,
10251 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10252 };
10253 
10254 const struct bpf_prog_ops flow_dissector_prog_ops = {
10255 	.test_run		= bpf_prog_test_run_flow_dissector,
10256 };
10257 
sk_detach_filter(struct sock * sk)10258 int sk_detach_filter(struct sock *sk)
10259 {
10260 	int ret = -ENOENT;
10261 	struct sk_filter *filter;
10262 
10263 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10264 		return -EPERM;
10265 
10266 	filter = rcu_dereference_protected(sk->sk_filter,
10267 					   lockdep_sock_is_held(sk));
10268 	if (filter) {
10269 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10270 		sk_filter_uncharge(sk, filter);
10271 		ret = 0;
10272 	}
10273 
10274 	return ret;
10275 }
10276 EXPORT_SYMBOL_GPL(sk_detach_filter);
10277 
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)10278 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10279 		  unsigned int len)
10280 {
10281 	struct sock_fprog_kern *fprog;
10282 	struct sk_filter *filter;
10283 	int ret = 0;
10284 
10285 	lock_sock(sk);
10286 	filter = rcu_dereference_protected(sk->sk_filter,
10287 					   lockdep_sock_is_held(sk));
10288 	if (!filter)
10289 		goto out;
10290 
10291 	/* We're copying the filter that has been originally attached,
10292 	 * so no conversion/decode needed anymore. eBPF programs that
10293 	 * have no original program cannot be dumped through this.
10294 	 */
10295 	ret = -EACCES;
10296 	fprog = filter->prog->orig_prog;
10297 	if (!fprog)
10298 		goto out;
10299 
10300 	ret = fprog->len;
10301 	if (!len)
10302 		/* User space only enquires number of filter blocks. */
10303 		goto out;
10304 
10305 	ret = -EINVAL;
10306 	if (len < fprog->len)
10307 		goto out;
10308 
10309 	ret = -EFAULT;
10310 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10311 		goto out;
10312 
10313 	/* Instead of bytes, the API requests to return the number
10314 	 * of filter blocks.
10315 	 */
10316 	ret = fprog->len;
10317 out:
10318 	release_sock(sk);
10319 	return ret;
10320 }
10321 
10322 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)10323 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10324 				    struct sock_reuseport *reuse,
10325 				    struct sock *sk, struct sk_buff *skb,
10326 				    struct sock *migrating_sk,
10327 				    u32 hash)
10328 {
10329 	reuse_kern->skb = skb;
10330 	reuse_kern->sk = sk;
10331 	reuse_kern->selected_sk = NULL;
10332 	reuse_kern->migrating_sk = migrating_sk;
10333 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10334 	reuse_kern->hash = hash;
10335 	reuse_kern->reuseport_id = reuse->reuseport_id;
10336 	reuse_kern->bind_inany = reuse->bind_inany;
10337 }
10338 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)10339 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10340 				  struct bpf_prog *prog, struct sk_buff *skb,
10341 				  struct sock *migrating_sk,
10342 				  u32 hash)
10343 {
10344 	struct sk_reuseport_kern reuse_kern;
10345 	enum sk_action action;
10346 
10347 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10348 	action = bpf_prog_run(prog, &reuse_kern);
10349 
10350 	if (action == SK_PASS)
10351 		return reuse_kern.selected_sk;
10352 	else
10353 		return ERR_PTR(-ECONNREFUSED);
10354 }
10355 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)10356 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10357 	   struct bpf_map *, map, void *, key, u32, flags)
10358 {
10359 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10360 	struct sock_reuseport *reuse;
10361 	struct sock *selected_sk;
10362 
10363 	selected_sk = map->ops->map_lookup_elem(map, key);
10364 	if (!selected_sk)
10365 		return -ENOENT;
10366 
10367 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10368 	if (!reuse) {
10369 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10370 		if (sk_is_refcounted(selected_sk))
10371 			sock_put(selected_sk);
10372 
10373 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
10374 		 * The only (!reuse) case here is - the sk has already been
10375 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
10376 		 *
10377 		 * Other maps (e.g. sock_map) do not provide this guarantee and
10378 		 * the sk may never be in the reuseport group to begin with.
10379 		 */
10380 		return is_sockarray ? -ENOENT : -EINVAL;
10381 	}
10382 
10383 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10384 		struct sock *sk = reuse_kern->sk;
10385 
10386 		if (sk->sk_protocol != selected_sk->sk_protocol)
10387 			return -EPROTOTYPE;
10388 		else if (sk->sk_family != selected_sk->sk_family)
10389 			return -EAFNOSUPPORT;
10390 
10391 		/* Catch all. Likely bound to a different sockaddr. */
10392 		return -EBADFD;
10393 	}
10394 
10395 	reuse_kern->selected_sk = selected_sk;
10396 
10397 	return 0;
10398 }
10399 
10400 static const struct bpf_func_proto sk_select_reuseport_proto = {
10401 	.func           = sk_select_reuseport,
10402 	.gpl_only       = false,
10403 	.ret_type       = RET_INTEGER,
10404 	.arg1_type	= ARG_PTR_TO_CTX,
10405 	.arg2_type      = ARG_CONST_MAP_PTR,
10406 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10407 	.arg4_type	= ARG_ANYTHING,
10408 };
10409 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)10410 BPF_CALL_4(sk_reuseport_load_bytes,
10411 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10412 	   void *, to, u32, len)
10413 {
10414 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10415 }
10416 
10417 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10418 	.func		= sk_reuseport_load_bytes,
10419 	.gpl_only	= false,
10420 	.ret_type	= RET_INTEGER,
10421 	.arg1_type	= ARG_PTR_TO_CTX,
10422 	.arg2_type	= ARG_ANYTHING,
10423 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10424 	.arg4_type	= ARG_CONST_SIZE,
10425 };
10426 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)10427 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10428 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10429 	   void *, to, u32, len, u32, start_header)
10430 {
10431 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10432 					       len, start_header);
10433 }
10434 
10435 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10436 	.func		= sk_reuseport_load_bytes_relative,
10437 	.gpl_only	= false,
10438 	.ret_type	= RET_INTEGER,
10439 	.arg1_type	= ARG_PTR_TO_CTX,
10440 	.arg2_type	= ARG_ANYTHING,
10441 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10442 	.arg4_type	= ARG_CONST_SIZE,
10443 	.arg5_type	= ARG_ANYTHING,
10444 };
10445 
10446 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)10447 sk_reuseport_func_proto(enum bpf_func_id func_id,
10448 			const struct bpf_prog *prog)
10449 {
10450 	switch (func_id) {
10451 	case BPF_FUNC_sk_select_reuseport:
10452 		return &sk_select_reuseport_proto;
10453 	case BPF_FUNC_skb_load_bytes:
10454 		return &sk_reuseport_load_bytes_proto;
10455 	case BPF_FUNC_skb_load_bytes_relative:
10456 		return &sk_reuseport_load_bytes_relative_proto;
10457 	case BPF_FUNC_get_socket_cookie:
10458 		return &bpf_get_socket_ptr_cookie_proto;
10459 	case BPF_FUNC_ktime_get_coarse_ns:
10460 		return &bpf_ktime_get_coarse_ns_proto;
10461 	default:
10462 		return bpf_base_func_proto(func_id);
10463 	}
10464 }
10465 
10466 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)10467 sk_reuseport_is_valid_access(int off, int size,
10468 			     enum bpf_access_type type,
10469 			     const struct bpf_prog *prog,
10470 			     struct bpf_insn_access_aux *info)
10471 {
10472 	const u32 size_default = sizeof(__u32);
10473 
10474 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10475 	    off % size || type != BPF_READ)
10476 		return false;
10477 
10478 	switch (off) {
10479 	case offsetof(struct sk_reuseport_md, data):
10480 		info->reg_type = PTR_TO_PACKET;
10481 		return size == sizeof(__u64);
10482 
10483 	case offsetof(struct sk_reuseport_md, data_end):
10484 		info->reg_type = PTR_TO_PACKET_END;
10485 		return size == sizeof(__u64);
10486 
10487 	case offsetof(struct sk_reuseport_md, hash):
10488 		return size == size_default;
10489 
10490 	case offsetof(struct sk_reuseport_md, sk):
10491 		info->reg_type = PTR_TO_SOCKET;
10492 		return size == sizeof(__u64);
10493 
10494 	case offsetof(struct sk_reuseport_md, migrating_sk):
10495 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10496 		return size == sizeof(__u64);
10497 
10498 	/* Fields that allow narrowing */
10499 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10500 		if (size < sizeof_field(struct sk_buff, protocol))
10501 			return false;
10502 		fallthrough;
10503 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10504 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10505 	case bpf_ctx_range(struct sk_reuseport_md, len):
10506 		bpf_ctx_record_field_size(info, size_default);
10507 		return bpf_ctx_narrow_access_ok(off, size, size_default);
10508 
10509 	default:
10510 		return false;
10511 	}
10512 }
10513 
10514 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
10515 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10516 			      si->dst_reg, si->src_reg,			\
10517 			      bpf_target_off(struct sk_reuseport_kern, F, \
10518 					     sizeof_field(struct sk_reuseport_kern, F), \
10519 					     target_size));		\
10520 	})
10521 
10522 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
10523 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10524 				    struct sk_buff,			\
10525 				    skb,				\
10526 				    SKB_FIELD)
10527 
10528 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
10529 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10530 				    struct sock,			\
10531 				    sk,					\
10532 				    SK_FIELD)
10533 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10534 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10535 					   const struct bpf_insn *si,
10536 					   struct bpf_insn *insn_buf,
10537 					   struct bpf_prog *prog,
10538 					   u32 *target_size)
10539 {
10540 	struct bpf_insn *insn = insn_buf;
10541 
10542 	switch (si->off) {
10543 	case offsetof(struct sk_reuseport_md, data):
10544 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
10545 		break;
10546 
10547 	case offsetof(struct sk_reuseport_md, len):
10548 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
10549 		break;
10550 
10551 	case offsetof(struct sk_reuseport_md, eth_protocol):
10552 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10553 		break;
10554 
10555 	case offsetof(struct sk_reuseport_md, ip_protocol):
10556 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10557 		break;
10558 
10559 	case offsetof(struct sk_reuseport_md, data_end):
10560 		SK_REUSEPORT_LOAD_FIELD(data_end);
10561 		break;
10562 
10563 	case offsetof(struct sk_reuseport_md, hash):
10564 		SK_REUSEPORT_LOAD_FIELD(hash);
10565 		break;
10566 
10567 	case offsetof(struct sk_reuseport_md, bind_inany):
10568 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
10569 		break;
10570 
10571 	case offsetof(struct sk_reuseport_md, sk):
10572 		SK_REUSEPORT_LOAD_FIELD(sk);
10573 		break;
10574 
10575 	case offsetof(struct sk_reuseport_md, migrating_sk):
10576 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10577 		break;
10578 	}
10579 
10580 	return insn - insn_buf;
10581 }
10582 
10583 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10584 	.get_func_proto		= sk_reuseport_func_proto,
10585 	.is_valid_access	= sk_reuseport_is_valid_access,
10586 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
10587 };
10588 
10589 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10590 };
10591 
10592 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10593 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10594 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)10595 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10596 	   struct sock *, sk, u64, flags)
10597 {
10598 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10599 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10600 		return -EINVAL;
10601 	if (unlikely(sk && sk_is_refcounted(sk)))
10602 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10603 	if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10604 		return -ESOCKTNOSUPPORT; /* reject connected sockets */
10605 
10606 	/* Check if socket is suitable for packet L3/L4 protocol */
10607 	if (sk && sk->sk_protocol != ctx->protocol)
10608 		return -EPROTOTYPE;
10609 	if (sk && sk->sk_family != ctx->family &&
10610 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10611 		return -EAFNOSUPPORT;
10612 
10613 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10614 		return -EEXIST;
10615 
10616 	/* Select socket as lookup result */
10617 	ctx->selected_sk = sk;
10618 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10619 	return 0;
10620 }
10621 
10622 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10623 	.func		= bpf_sk_lookup_assign,
10624 	.gpl_only	= false,
10625 	.ret_type	= RET_INTEGER,
10626 	.arg1_type	= ARG_PTR_TO_CTX,
10627 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
10628 	.arg3_type	= ARG_ANYTHING,
10629 };
10630 
10631 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)10632 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10633 {
10634 	switch (func_id) {
10635 	case BPF_FUNC_perf_event_output:
10636 		return &bpf_event_output_data_proto;
10637 	case BPF_FUNC_sk_assign:
10638 		return &bpf_sk_lookup_assign_proto;
10639 	case BPF_FUNC_sk_release:
10640 		return &bpf_sk_release_proto;
10641 	default:
10642 		return bpf_sk_base_func_proto(func_id);
10643 	}
10644 }
10645 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)10646 static bool sk_lookup_is_valid_access(int off, int size,
10647 				      enum bpf_access_type type,
10648 				      const struct bpf_prog *prog,
10649 				      struct bpf_insn_access_aux *info)
10650 {
10651 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10652 		return false;
10653 	if (off % size != 0)
10654 		return false;
10655 	if (type != BPF_READ)
10656 		return false;
10657 
10658 	switch (off) {
10659 	case offsetof(struct bpf_sk_lookup, sk):
10660 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
10661 		return size == sizeof(__u64);
10662 
10663 	case bpf_ctx_range(struct bpf_sk_lookup, family):
10664 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10665 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10666 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10667 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10668 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10669 	case offsetof(struct bpf_sk_lookup, remote_port) ...
10670 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
10671 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10672 		bpf_ctx_record_field_size(info, sizeof(__u32));
10673 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10674 
10675 	default:
10676 		return false;
10677 	}
10678 }
10679 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10680 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10681 					const struct bpf_insn *si,
10682 					struct bpf_insn *insn_buf,
10683 					struct bpf_prog *prog,
10684 					u32 *target_size)
10685 {
10686 	struct bpf_insn *insn = insn_buf;
10687 
10688 	switch (si->off) {
10689 	case offsetof(struct bpf_sk_lookup, sk):
10690 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10691 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
10692 		break;
10693 
10694 	case offsetof(struct bpf_sk_lookup, family):
10695 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10696 				      bpf_target_off(struct bpf_sk_lookup_kern,
10697 						     family, 2, target_size));
10698 		break;
10699 
10700 	case offsetof(struct bpf_sk_lookup, protocol):
10701 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10702 				      bpf_target_off(struct bpf_sk_lookup_kern,
10703 						     protocol, 2, target_size));
10704 		break;
10705 
10706 	case offsetof(struct bpf_sk_lookup, remote_ip4):
10707 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10708 				      bpf_target_off(struct bpf_sk_lookup_kern,
10709 						     v4.saddr, 4, target_size));
10710 		break;
10711 
10712 	case offsetof(struct bpf_sk_lookup, local_ip4):
10713 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10714 				      bpf_target_off(struct bpf_sk_lookup_kern,
10715 						     v4.daddr, 4, target_size));
10716 		break;
10717 
10718 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10719 				remote_ip6[0], remote_ip6[3]): {
10720 #if IS_ENABLED(CONFIG_IPV6)
10721 		int off = si->off;
10722 
10723 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10724 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10725 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10726 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10727 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10728 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10729 #else
10730 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10731 #endif
10732 		break;
10733 	}
10734 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10735 				local_ip6[0], local_ip6[3]): {
10736 #if IS_ENABLED(CONFIG_IPV6)
10737 		int off = si->off;
10738 
10739 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10740 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10741 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10742 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10743 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10744 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10745 #else
10746 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10747 #endif
10748 		break;
10749 	}
10750 	case offsetof(struct bpf_sk_lookup, remote_port):
10751 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10752 				      bpf_target_off(struct bpf_sk_lookup_kern,
10753 						     sport, 2, target_size));
10754 		break;
10755 
10756 	case offsetof(struct bpf_sk_lookup, local_port):
10757 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10758 				      bpf_target_off(struct bpf_sk_lookup_kern,
10759 						     dport, 2, target_size));
10760 		break;
10761 	}
10762 
10763 	return insn - insn_buf;
10764 }
10765 
10766 const struct bpf_prog_ops sk_lookup_prog_ops = {
10767 	.test_run = bpf_prog_test_run_sk_lookup,
10768 };
10769 
10770 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10771 	.get_func_proto		= sk_lookup_func_proto,
10772 	.is_valid_access	= sk_lookup_is_valid_access,
10773 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
10774 };
10775 
10776 #endif /* CONFIG_INET */
10777 
DEFINE_BPF_DISPATCHER(xdp)10778 DEFINE_BPF_DISPATCHER(xdp)
10779 
10780 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10781 {
10782 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10783 }
10784 
10785 #ifdef CONFIG_DEBUG_INFO_BTF
BTF_ID_LIST_GLOBAL(btf_sock_ids)10786 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10787 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10788 BTF_SOCK_TYPE_xxx
10789 #undef BTF_SOCK_TYPE
10790 #else
10791 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10792 #endif
10793 
10794 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10795 {
10796 	/* tcp6_sock type is not generated in dwarf and hence btf,
10797 	 * trigger an explicit type generation here.
10798 	 */
10799 	BTF_TYPE_EMIT(struct tcp6_sock);
10800 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10801 	    sk->sk_family == AF_INET6)
10802 		return (unsigned long)sk;
10803 
10804 	return (unsigned long)NULL;
10805 }
10806 
10807 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10808 	.func			= bpf_skc_to_tcp6_sock,
10809 	.gpl_only		= false,
10810 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10811 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10812 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10813 };
10814 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)10815 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10816 {
10817 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10818 		return (unsigned long)sk;
10819 
10820 	return (unsigned long)NULL;
10821 }
10822 
10823 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10824 	.func			= bpf_skc_to_tcp_sock,
10825 	.gpl_only		= false,
10826 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10827 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10828 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10829 };
10830 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)10831 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10832 {
10833 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10834 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
10835 	 */
10836 	BTF_TYPE_EMIT(struct inet_timewait_sock);
10837 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
10838 
10839 #ifdef CONFIG_INET
10840 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10841 		return (unsigned long)sk;
10842 #endif
10843 
10844 #if IS_BUILTIN(CONFIG_IPV6)
10845 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10846 		return (unsigned long)sk;
10847 #endif
10848 
10849 	return (unsigned long)NULL;
10850 }
10851 
10852 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10853 	.func			= bpf_skc_to_tcp_timewait_sock,
10854 	.gpl_only		= false,
10855 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10856 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10857 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10858 };
10859 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)10860 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10861 {
10862 #ifdef CONFIG_INET
10863 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10864 		return (unsigned long)sk;
10865 #endif
10866 
10867 #if IS_BUILTIN(CONFIG_IPV6)
10868 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10869 		return (unsigned long)sk;
10870 #endif
10871 
10872 	return (unsigned long)NULL;
10873 }
10874 
10875 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10876 	.func			= bpf_skc_to_tcp_request_sock,
10877 	.gpl_only		= false,
10878 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10879 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10880 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10881 };
10882 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)10883 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10884 {
10885 	/* udp6_sock type is not generated in dwarf and hence btf,
10886 	 * trigger an explicit type generation here.
10887 	 */
10888 	BTF_TYPE_EMIT(struct udp6_sock);
10889 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10890 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10891 		return (unsigned long)sk;
10892 
10893 	return (unsigned long)NULL;
10894 }
10895 
10896 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10897 	.func			= bpf_skc_to_udp6_sock,
10898 	.gpl_only		= false,
10899 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10900 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10901 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10902 };
10903 
BPF_CALL_1(bpf_sock_from_file,struct file *,file)10904 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
10905 {
10906 	return (unsigned long)sock_from_file(file);
10907 }
10908 
10909 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
10910 BTF_ID(struct, socket)
10911 BTF_ID(struct, file)
10912 
10913 const struct bpf_func_proto bpf_sock_from_file_proto = {
10914 	.func		= bpf_sock_from_file,
10915 	.gpl_only	= false,
10916 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
10917 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
10918 	.arg1_type	= ARG_PTR_TO_BTF_ID,
10919 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
10920 };
10921 
10922 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)10923 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10924 {
10925 	const struct bpf_func_proto *func;
10926 
10927 	switch (func_id) {
10928 	case BPF_FUNC_skc_to_tcp6_sock:
10929 		func = &bpf_skc_to_tcp6_sock_proto;
10930 		break;
10931 	case BPF_FUNC_skc_to_tcp_sock:
10932 		func = &bpf_skc_to_tcp_sock_proto;
10933 		break;
10934 	case BPF_FUNC_skc_to_tcp_timewait_sock:
10935 		func = &bpf_skc_to_tcp_timewait_sock_proto;
10936 		break;
10937 	case BPF_FUNC_skc_to_tcp_request_sock:
10938 		func = &bpf_skc_to_tcp_request_sock_proto;
10939 		break;
10940 	case BPF_FUNC_skc_to_udp6_sock:
10941 		func = &bpf_skc_to_udp6_sock_proto;
10942 		break;
10943 	case BPF_FUNC_ktime_get_coarse_ns:
10944 		return &bpf_ktime_get_coarse_ns_proto;
10945 	default:
10946 		return bpf_base_func_proto(func_id);
10947 	}
10948 
10949 	if (!perfmon_capable())
10950 		return NULL;
10951 
10952 	return func;
10953 }
10954