1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28
29 static struct btf_type btf_void;
30
31 struct btf {
32 /* raw BTF data in native endianness */
33 void *raw_data;
34 /* raw BTF data in non-native endianness */
35 void *raw_data_swapped;
36 __u32 raw_size;
37 /* whether target endianness differs from the native one */
38 bool swapped_endian;
39
40 /*
41 * When BTF is loaded from an ELF or raw memory it is stored
42 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 * point inside that memory region to their respective parts of BTF
44 * representation:
45 *
46 * +--------------------------------+
47 * | Header | Types | Strings |
48 * +--------------------------------+
49 * ^ ^ ^
50 * | | |
51 * hdr | |
52 * types_data-+ |
53 * strs_data------------+
54 *
55 * If BTF data is later modified, e.g., due to types added or
56 * removed, BTF deduplication performed, etc, this contiguous
57 * representation is broken up into three independently allocated
58 * memory regions to be able to modify them independently.
59 * raw_data is nulled out at that point, but can be later allocated
60 * and cached again if user calls btf__get_raw_data(), at which point
61 * raw_data will contain a contiguous copy of header, types, and
62 * strings:
63 *
64 * +----------+ +---------+ +-----------+
65 * | Header | | Types | | Strings |
66 * +----------+ +---------+ +-----------+
67 * ^ ^ ^
68 * | | |
69 * hdr | |
70 * types_data----+ |
71 * strset__data(strs_set)-----+
72 *
73 * +----------+---------+-----------+
74 * | Header | Types | Strings |
75 * raw_data----->+----------+---------+-----------+
76 */
77 struct btf_header *hdr;
78
79 void *types_data;
80 size_t types_data_cap; /* used size stored in hdr->type_len */
81
82 /* type ID to `struct btf_type *` lookup index
83 * type_offs[0] corresponds to the first non-VOID type:
84 * - for base BTF it's type [1];
85 * - for split BTF it's the first non-base BTF type.
86 */
87 __u32 *type_offs;
88 size_t type_offs_cap;
89 /* number of types in this BTF instance:
90 * - doesn't include special [0] void type;
91 * - for split BTF counts number of types added on top of base BTF.
92 */
93 __u32 nr_types;
94 /* if not NULL, points to the base BTF on top of which the current
95 * split BTF is based
96 */
97 struct btf *base_btf;
98 /* BTF type ID of the first type in this BTF instance:
99 * - for base BTF it's equal to 1;
100 * - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 */
102 int start_id;
103 /* logical string offset of this BTF instance:
104 * - for base BTF it's equal to 0;
105 * - for split BTF it's equal to total size of base BTF's string section size.
106 */
107 int start_str_off;
108
109 /* only one of strs_data or strs_set can be non-NULL, depending on
110 * whether BTF is in a modifiable state (strs_set is used) or not
111 * (strs_data points inside raw_data)
112 */
113 void *strs_data;
114 /* a set of unique strings */
115 struct strset *strs_set;
116 /* whether strings are already deduplicated */
117 bool strs_deduped;
118
119 /* BTF object FD, if loaded into kernel */
120 int fd;
121
122 /* Pointer size (in bytes) for a target architecture of this BTF */
123 int ptr_sz;
124 };
125
ptr_to_u64(const void * ptr)126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 return (__u64) (unsigned long) ptr;
129 }
130
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
134 * are already used. At most *max_cnt* elements can be ever allocated.
135 * If necessary, memory is reallocated and all existing data is copied over,
136 * new pointer to the memory region is stored at *data, new memory region
137 * capacity (in number of elements) is stored in *cap.
138 * On success, memory pointer to the beginning of unused memory is returned.
139 * On error, NULL is returned.
140 */
libbpf_add_mem(void ** data,size_t * cap_cnt,size_t elem_sz,size_t cur_cnt,size_t max_cnt,size_t add_cnt)141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 size_t new_cnt;
145 void *new_data;
146
147 if (cur_cnt + add_cnt <= *cap_cnt)
148 return *data + cur_cnt * elem_sz;
149
150 /* requested more than the set limit */
151 if (cur_cnt + add_cnt > max_cnt)
152 return NULL;
153
154 new_cnt = *cap_cnt;
155 new_cnt += new_cnt / 4; /* expand by 25% */
156 if (new_cnt < 16) /* but at least 16 elements */
157 new_cnt = 16;
158 if (new_cnt > max_cnt) /* but not exceeding a set limit */
159 new_cnt = max_cnt;
160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */
161 new_cnt = cur_cnt + add_cnt;
162
163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 if (!new_data)
165 return NULL;
166
167 /* zero out newly allocated portion of memory */
168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169
170 *data = new_data;
171 *cap_cnt = new_cnt;
172 return new_data + cur_cnt * elem_sz;
173 }
174
175 /* Ensure given dynamically allocated memory region has enough allocated space
176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177 */
libbpf_ensure_mem(void ** data,size_t * cap_cnt,size_t elem_sz,size_t need_cnt)178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 void *p;
181
182 if (need_cnt <= *cap_cnt)
183 return 0;
184
185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 if (!p)
187 return -ENOMEM;
188
189 return 0;
190 }
191
btf_add_type_idx_entry(struct btf * btf,__u32 type_off)192 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
193 {
194 __u32 *p;
195
196 p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
197 btf->nr_types, BTF_MAX_NR_TYPES, 1);
198 if (!p)
199 return -ENOMEM;
200
201 *p = type_off;
202 return 0;
203 }
204
btf_bswap_hdr(struct btf_header * h)205 static void btf_bswap_hdr(struct btf_header *h)
206 {
207 h->magic = bswap_16(h->magic);
208 h->hdr_len = bswap_32(h->hdr_len);
209 h->type_off = bswap_32(h->type_off);
210 h->type_len = bswap_32(h->type_len);
211 h->str_off = bswap_32(h->str_off);
212 h->str_len = bswap_32(h->str_len);
213 }
214
btf_parse_hdr(struct btf * btf)215 static int btf_parse_hdr(struct btf *btf)
216 {
217 struct btf_header *hdr = btf->hdr;
218 __u32 meta_left;
219
220 if (btf->raw_size < sizeof(struct btf_header)) {
221 pr_debug("BTF header not found\n");
222 return -EINVAL;
223 }
224
225 if (hdr->magic == bswap_16(BTF_MAGIC)) {
226 btf->swapped_endian = true;
227 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
228 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
229 bswap_32(hdr->hdr_len));
230 return -ENOTSUP;
231 }
232 btf_bswap_hdr(hdr);
233 } else if (hdr->magic != BTF_MAGIC) {
234 pr_debug("Invalid BTF magic: %x\n", hdr->magic);
235 return -EINVAL;
236 }
237
238 if (btf->raw_size < hdr->hdr_len) {
239 pr_debug("BTF header len %u larger than data size %u\n",
240 hdr->hdr_len, btf->raw_size);
241 return -EINVAL;
242 }
243
244 meta_left = btf->raw_size - hdr->hdr_len;
245 if (meta_left < (long long)hdr->str_off + hdr->str_len) {
246 pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
247 return -EINVAL;
248 }
249
250 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
251 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
252 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
253 return -EINVAL;
254 }
255
256 if (hdr->type_off % 4) {
257 pr_debug("BTF type section is not aligned to 4 bytes\n");
258 return -EINVAL;
259 }
260
261 return 0;
262 }
263
btf_parse_str_sec(struct btf * btf)264 static int btf_parse_str_sec(struct btf *btf)
265 {
266 const struct btf_header *hdr = btf->hdr;
267 const char *start = btf->strs_data;
268 const char *end = start + btf->hdr->str_len;
269
270 if (btf->base_btf && hdr->str_len == 0)
271 return 0;
272 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
273 pr_debug("Invalid BTF string section\n");
274 return -EINVAL;
275 }
276 if (!btf->base_btf && start[0]) {
277 pr_debug("Invalid BTF string section\n");
278 return -EINVAL;
279 }
280 return 0;
281 }
282
btf_type_size(const struct btf_type * t)283 static int btf_type_size(const struct btf_type *t)
284 {
285 const int base_size = sizeof(struct btf_type);
286 __u16 vlen = btf_vlen(t);
287
288 switch (btf_kind(t)) {
289 case BTF_KIND_FWD:
290 case BTF_KIND_CONST:
291 case BTF_KIND_VOLATILE:
292 case BTF_KIND_RESTRICT:
293 case BTF_KIND_PTR:
294 case BTF_KIND_TYPEDEF:
295 case BTF_KIND_FUNC:
296 case BTF_KIND_FLOAT:
297 return base_size;
298 case BTF_KIND_INT:
299 return base_size + sizeof(__u32);
300 case BTF_KIND_ENUM:
301 return base_size + vlen * sizeof(struct btf_enum);
302 case BTF_KIND_ARRAY:
303 return base_size + sizeof(struct btf_array);
304 case BTF_KIND_STRUCT:
305 case BTF_KIND_UNION:
306 return base_size + vlen * sizeof(struct btf_member);
307 case BTF_KIND_FUNC_PROTO:
308 return base_size + vlen * sizeof(struct btf_param);
309 case BTF_KIND_VAR:
310 return base_size + sizeof(struct btf_var);
311 case BTF_KIND_DATASEC:
312 return base_size + vlen * sizeof(struct btf_var_secinfo);
313 default:
314 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
315 return -EINVAL;
316 }
317 }
318
btf_bswap_type_base(struct btf_type * t)319 static void btf_bswap_type_base(struct btf_type *t)
320 {
321 t->name_off = bswap_32(t->name_off);
322 t->info = bswap_32(t->info);
323 t->type = bswap_32(t->type);
324 }
325
btf_bswap_type_rest(struct btf_type * t)326 static int btf_bswap_type_rest(struct btf_type *t)
327 {
328 struct btf_var_secinfo *v;
329 struct btf_member *m;
330 struct btf_array *a;
331 struct btf_param *p;
332 struct btf_enum *e;
333 __u16 vlen = btf_vlen(t);
334 int i;
335
336 switch (btf_kind(t)) {
337 case BTF_KIND_FWD:
338 case BTF_KIND_CONST:
339 case BTF_KIND_VOLATILE:
340 case BTF_KIND_RESTRICT:
341 case BTF_KIND_PTR:
342 case BTF_KIND_TYPEDEF:
343 case BTF_KIND_FUNC:
344 case BTF_KIND_FLOAT:
345 return 0;
346 case BTF_KIND_INT:
347 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
348 return 0;
349 case BTF_KIND_ENUM:
350 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
351 e->name_off = bswap_32(e->name_off);
352 e->val = bswap_32(e->val);
353 }
354 return 0;
355 case BTF_KIND_ARRAY:
356 a = btf_array(t);
357 a->type = bswap_32(a->type);
358 a->index_type = bswap_32(a->index_type);
359 a->nelems = bswap_32(a->nelems);
360 return 0;
361 case BTF_KIND_STRUCT:
362 case BTF_KIND_UNION:
363 for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
364 m->name_off = bswap_32(m->name_off);
365 m->type = bswap_32(m->type);
366 m->offset = bswap_32(m->offset);
367 }
368 return 0;
369 case BTF_KIND_FUNC_PROTO:
370 for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
371 p->name_off = bswap_32(p->name_off);
372 p->type = bswap_32(p->type);
373 }
374 return 0;
375 case BTF_KIND_VAR:
376 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
377 return 0;
378 case BTF_KIND_DATASEC:
379 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
380 v->type = bswap_32(v->type);
381 v->offset = bswap_32(v->offset);
382 v->size = bswap_32(v->size);
383 }
384 return 0;
385 default:
386 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
387 return -EINVAL;
388 }
389 }
390
btf_parse_type_sec(struct btf * btf)391 static int btf_parse_type_sec(struct btf *btf)
392 {
393 struct btf_header *hdr = btf->hdr;
394 void *next_type = btf->types_data;
395 void *end_type = next_type + hdr->type_len;
396 int err, type_size;
397
398 while (next_type + sizeof(struct btf_type) <= end_type) {
399 if (btf->swapped_endian)
400 btf_bswap_type_base(next_type);
401
402 type_size = btf_type_size(next_type);
403 if (type_size < 0)
404 return type_size;
405 if (next_type + type_size > end_type) {
406 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
407 return -EINVAL;
408 }
409
410 if (btf->swapped_endian && btf_bswap_type_rest(next_type))
411 return -EINVAL;
412
413 err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
414 if (err)
415 return err;
416
417 next_type += type_size;
418 btf->nr_types++;
419 }
420
421 if (next_type != end_type) {
422 pr_warn("BTF types data is malformed\n");
423 return -EINVAL;
424 }
425
426 return 0;
427 }
428
btf__get_nr_types(const struct btf * btf)429 __u32 btf__get_nr_types(const struct btf *btf)
430 {
431 return btf->start_id + btf->nr_types - 1;
432 }
433
btf__base_btf(const struct btf * btf)434 const struct btf *btf__base_btf(const struct btf *btf)
435 {
436 return btf->base_btf;
437 }
438
439 /* internal helper returning non-const pointer to a type */
btf_type_by_id(struct btf * btf,__u32 type_id)440 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
441 {
442 if (type_id == 0)
443 return &btf_void;
444 if (type_id < btf->start_id)
445 return btf_type_by_id(btf->base_btf, type_id);
446 return btf->types_data + btf->type_offs[type_id - btf->start_id];
447 }
448
btf__type_by_id(const struct btf * btf,__u32 type_id)449 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
450 {
451 if (type_id >= btf->start_id + btf->nr_types)
452 return errno = EINVAL, NULL;
453 return btf_type_by_id((struct btf *)btf, type_id);
454 }
455
determine_ptr_size(const struct btf * btf)456 static int determine_ptr_size(const struct btf *btf)
457 {
458 const struct btf_type *t;
459 const char *name;
460 int i, n;
461
462 if (btf->base_btf && btf->base_btf->ptr_sz > 0)
463 return btf->base_btf->ptr_sz;
464
465 n = btf__get_nr_types(btf);
466 for (i = 1; i <= n; i++) {
467 t = btf__type_by_id(btf, i);
468 if (!btf_is_int(t))
469 continue;
470
471 name = btf__name_by_offset(btf, t->name_off);
472 if (!name)
473 continue;
474
475 if (strcmp(name, "long int") == 0 ||
476 strcmp(name, "long unsigned int") == 0) {
477 if (t->size != 4 && t->size != 8)
478 continue;
479 return t->size;
480 }
481 }
482
483 return -1;
484 }
485
btf_ptr_sz(const struct btf * btf)486 static size_t btf_ptr_sz(const struct btf *btf)
487 {
488 if (!btf->ptr_sz)
489 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
490 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
491 }
492
493 /* Return pointer size this BTF instance assumes. The size is heuristically
494 * determined by looking for 'long' or 'unsigned long' integer type and
495 * recording its size in bytes. If BTF type information doesn't have any such
496 * type, this function returns 0. In the latter case, native architecture's
497 * pointer size is assumed, so will be either 4 or 8, depending on
498 * architecture that libbpf was compiled for. It's possible to override
499 * guessed value by using btf__set_pointer_size() API.
500 */
btf__pointer_size(const struct btf * btf)501 size_t btf__pointer_size(const struct btf *btf)
502 {
503 if (!btf->ptr_sz)
504 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
505
506 if (btf->ptr_sz < 0)
507 /* not enough BTF type info to guess */
508 return 0;
509
510 return btf->ptr_sz;
511 }
512
513 /* Override or set pointer size in bytes. Only values of 4 and 8 are
514 * supported.
515 */
btf__set_pointer_size(struct btf * btf,size_t ptr_sz)516 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
517 {
518 if (ptr_sz != 4 && ptr_sz != 8)
519 return libbpf_err(-EINVAL);
520 btf->ptr_sz = ptr_sz;
521 return 0;
522 }
523
is_host_big_endian(void)524 static bool is_host_big_endian(void)
525 {
526 #if __BYTE_ORDER == __LITTLE_ENDIAN
527 return false;
528 #elif __BYTE_ORDER == __BIG_ENDIAN
529 return true;
530 #else
531 # error "Unrecognized __BYTE_ORDER__"
532 #endif
533 }
534
btf__endianness(const struct btf * btf)535 enum btf_endianness btf__endianness(const struct btf *btf)
536 {
537 if (is_host_big_endian())
538 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
539 else
540 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
541 }
542
btf__set_endianness(struct btf * btf,enum btf_endianness endian)543 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
544 {
545 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
546 return libbpf_err(-EINVAL);
547
548 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
549 if (!btf->swapped_endian) {
550 free(btf->raw_data_swapped);
551 btf->raw_data_swapped = NULL;
552 }
553 return 0;
554 }
555
btf_type_is_void(const struct btf_type * t)556 static bool btf_type_is_void(const struct btf_type *t)
557 {
558 return t == &btf_void || btf_is_fwd(t);
559 }
560
btf_type_is_void_or_null(const struct btf_type * t)561 static bool btf_type_is_void_or_null(const struct btf_type *t)
562 {
563 return !t || btf_type_is_void(t);
564 }
565
566 #define MAX_RESOLVE_DEPTH 32
567
btf__resolve_size(const struct btf * btf,__u32 type_id)568 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
569 {
570 const struct btf_array *array;
571 const struct btf_type *t;
572 __u32 nelems = 1;
573 __s64 size = -1;
574 int i;
575
576 t = btf__type_by_id(btf, type_id);
577 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
578 switch (btf_kind(t)) {
579 case BTF_KIND_INT:
580 case BTF_KIND_STRUCT:
581 case BTF_KIND_UNION:
582 case BTF_KIND_ENUM:
583 case BTF_KIND_DATASEC:
584 case BTF_KIND_FLOAT:
585 size = t->size;
586 goto done;
587 case BTF_KIND_PTR:
588 size = btf_ptr_sz(btf);
589 goto done;
590 case BTF_KIND_TYPEDEF:
591 case BTF_KIND_VOLATILE:
592 case BTF_KIND_CONST:
593 case BTF_KIND_RESTRICT:
594 case BTF_KIND_VAR:
595 type_id = t->type;
596 break;
597 case BTF_KIND_ARRAY:
598 array = btf_array(t);
599 if (nelems && array->nelems > UINT32_MAX / nelems)
600 return libbpf_err(-E2BIG);
601 nelems *= array->nelems;
602 type_id = array->type;
603 break;
604 default:
605 return libbpf_err(-EINVAL);
606 }
607
608 t = btf__type_by_id(btf, type_id);
609 }
610
611 done:
612 if (size < 0)
613 return libbpf_err(-EINVAL);
614 if (nelems && size > UINT32_MAX / nelems)
615 return libbpf_err(-E2BIG);
616
617 return nelems * size;
618 }
619
btf__align_of(const struct btf * btf,__u32 id)620 int btf__align_of(const struct btf *btf, __u32 id)
621 {
622 const struct btf_type *t = btf__type_by_id(btf, id);
623 __u16 kind = btf_kind(t);
624
625 switch (kind) {
626 case BTF_KIND_INT:
627 case BTF_KIND_ENUM:
628 case BTF_KIND_FLOAT:
629 return min(btf_ptr_sz(btf), (size_t)t->size);
630 case BTF_KIND_PTR:
631 return btf_ptr_sz(btf);
632 case BTF_KIND_TYPEDEF:
633 case BTF_KIND_VOLATILE:
634 case BTF_KIND_CONST:
635 case BTF_KIND_RESTRICT:
636 return btf__align_of(btf, t->type);
637 case BTF_KIND_ARRAY:
638 return btf__align_of(btf, btf_array(t)->type);
639 case BTF_KIND_STRUCT:
640 case BTF_KIND_UNION: {
641 const struct btf_member *m = btf_members(t);
642 __u16 vlen = btf_vlen(t);
643 int i, max_align = 1, align;
644
645 for (i = 0; i < vlen; i++, m++) {
646 align = btf__align_of(btf, m->type);
647 if (align <= 0)
648 return libbpf_err(align);
649 max_align = max(max_align, align);
650
651 /* if field offset isn't aligned according to field
652 * type's alignment, then struct must be packed
653 */
654 if (btf_member_bitfield_size(t, i) == 0 &&
655 (m->offset % (8 * align)) != 0)
656 return 1;
657 }
658
659 /* if struct/union size isn't a multiple of its alignment,
660 * then struct must be packed
661 */
662 if ((t->size % max_align) != 0)
663 return 1;
664
665 return max_align;
666 }
667 default:
668 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
669 return errno = EINVAL, 0;
670 }
671 }
672
btf__resolve_type(const struct btf * btf,__u32 type_id)673 int btf__resolve_type(const struct btf *btf, __u32 type_id)
674 {
675 const struct btf_type *t;
676 int depth = 0;
677
678 t = btf__type_by_id(btf, type_id);
679 while (depth < MAX_RESOLVE_DEPTH &&
680 !btf_type_is_void_or_null(t) &&
681 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
682 type_id = t->type;
683 t = btf__type_by_id(btf, type_id);
684 depth++;
685 }
686
687 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
688 return libbpf_err(-EINVAL);
689
690 return type_id;
691 }
692
btf__find_by_name(const struct btf * btf,const char * type_name)693 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
694 {
695 __u32 i, nr_types = btf__get_nr_types(btf);
696
697 if (!strcmp(type_name, "void"))
698 return 0;
699
700 for (i = 1; i <= nr_types; i++) {
701 const struct btf_type *t = btf__type_by_id(btf, i);
702 const char *name = btf__name_by_offset(btf, t->name_off);
703
704 if (name && !strcmp(type_name, name))
705 return i;
706 }
707
708 return libbpf_err(-ENOENT);
709 }
710
btf__find_by_name_kind(const struct btf * btf,const char * type_name,__u32 kind)711 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
712 __u32 kind)
713 {
714 __u32 i, nr_types = btf__get_nr_types(btf);
715
716 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
717 return 0;
718
719 for (i = 1; i <= nr_types; i++) {
720 const struct btf_type *t = btf__type_by_id(btf, i);
721 const char *name;
722
723 if (btf_kind(t) != kind)
724 continue;
725 name = btf__name_by_offset(btf, t->name_off);
726 if (name && !strcmp(type_name, name))
727 return i;
728 }
729
730 return libbpf_err(-ENOENT);
731 }
732
btf_is_modifiable(const struct btf * btf)733 static bool btf_is_modifiable(const struct btf *btf)
734 {
735 return (void *)btf->hdr != btf->raw_data;
736 }
737
btf__free(struct btf * btf)738 void btf__free(struct btf *btf)
739 {
740 if (IS_ERR_OR_NULL(btf))
741 return;
742
743 if (btf->fd >= 0)
744 close(btf->fd);
745
746 if (btf_is_modifiable(btf)) {
747 /* if BTF was modified after loading, it will have a split
748 * in-memory representation for header, types, and strings
749 * sections, so we need to free all of them individually. It
750 * might still have a cached contiguous raw data present,
751 * which will be unconditionally freed below.
752 */
753 free(btf->hdr);
754 free(btf->types_data);
755 strset__free(btf->strs_set);
756 }
757 free(btf->raw_data);
758 free(btf->raw_data_swapped);
759 free(btf->type_offs);
760 free(btf);
761 }
762
btf_new_empty(struct btf * base_btf)763 static struct btf *btf_new_empty(struct btf *base_btf)
764 {
765 struct btf *btf;
766
767 btf = calloc(1, sizeof(*btf));
768 if (!btf)
769 return ERR_PTR(-ENOMEM);
770
771 btf->nr_types = 0;
772 btf->start_id = 1;
773 btf->start_str_off = 0;
774 btf->fd = -1;
775 btf->ptr_sz = sizeof(void *);
776 btf->swapped_endian = false;
777
778 if (base_btf) {
779 btf->base_btf = base_btf;
780 btf->start_id = btf__get_nr_types(base_btf) + 1;
781 btf->start_str_off = base_btf->hdr->str_len;
782 }
783
784 /* +1 for empty string at offset 0 */
785 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
786 btf->raw_data = calloc(1, btf->raw_size);
787 if (!btf->raw_data) {
788 free(btf);
789 return ERR_PTR(-ENOMEM);
790 }
791
792 btf->hdr = btf->raw_data;
793 btf->hdr->hdr_len = sizeof(struct btf_header);
794 btf->hdr->magic = BTF_MAGIC;
795 btf->hdr->version = BTF_VERSION;
796
797 btf->types_data = btf->raw_data + btf->hdr->hdr_len;
798 btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
799 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
800
801 return btf;
802 }
803
btf__new_empty(void)804 struct btf *btf__new_empty(void)
805 {
806 return libbpf_ptr(btf_new_empty(NULL));
807 }
808
btf__new_empty_split(struct btf * base_btf)809 struct btf *btf__new_empty_split(struct btf *base_btf)
810 {
811 return libbpf_ptr(btf_new_empty(base_btf));
812 }
813
btf_new(const void * data,__u32 size,struct btf * base_btf)814 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
815 {
816 struct btf *btf;
817 int err;
818
819 btf = calloc(1, sizeof(struct btf));
820 if (!btf)
821 return ERR_PTR(-ENOMEM);
822
823 btf->nr_types = 0;
824 btf->start_id = 1;
825 btf->start_str_off = 0;
826 btf->fd = -1;
827
828 if (base_btf) {
829 btf->base_btf = base_btf;
830 btf->start_id = btf__get_nr_types(base_btf) + 1;
831 btf->start_str_off = base_btf->hdr->str_len;
832 }
833
834 btf->raw_data = malloc(size);
835 if (!btf->raw_data) {
836 err = -ENOMEM;
837 goto done;
838 }
839 memcpy(btf->raw_data, data, size);
840 btf->raw_size = size;
841
842 btf->hdr = btf->raw_data;
843 err = btf_parse_hdr(btf);
844 if (err)
845 goto done;
846
847 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
848 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
849
850 err = btf_parse_str_sec(btf);
851 err = err ?: btf_parse_type_sec(btf);
852 if (err)
853 goto done;
854
855 done:
856 if (err) {
857 btf__free(btf);
858 return ERR_PTR(err);
859 }
860
861 return btf;
862 }
863
btf__new(const void * data,__u32 size)864 struct btf *btf__new(const void *data, __u32 size)
865 {
866 return libbpf_ptr(btf_new(data, size, NULL));
867 }
868
btf_parse_elf(const char * path,struct btf * base_btf,struct btf_ext ** btf_ext)869 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
870 struct btf_ext **btf_ext)
871 {
872 Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
873 int err = 0, fd = -1, idx = 0;
874 struct btf *btf = NULL;
875 Elf_Scn *scn = NULL;
876 Elf *elf = NULL;
877 GElf_Ehdr ehdr;
878 size_t shstrndx;
879
880 if (elf_version(EV_CURRENT) == EV_NONE) {
881 pr_warn("failed to init libelf for %s\n", path);
882 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
883 }
884
885 fd = open(path, O_RDONLY);
886 if (fd < 0) {
887 err = -errno;
888 pr_warn("failed to open %s: %s\n", path, strerror(errno));
889 return ERR_PTR(err);
890 }
891
892 err = -LIBBPF_ERRNO__FORMAT;
893
894 elf = elf_begin(fd, ELF_C_READ, NULL);
895 if (!elf) {
896 pr_warn("failed to open %s as ELF file\n", path);
897 goto done;
898 }
899 if (!gelf_getehdr(elf, &ehdr)) {
900 pr_warn("failed to get EHDR from %s\n", path);
901 goto done;
902 }
903
904 if (elf_getshdrstrndx(elf, &shstrndx)) {
905 pr_warn("failed to get section names section index for %s\n",
906 path);
907 goto done;
908 }
909
910 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
911 pr_warn("failed to get e_shstrndx from %s\n", path);
912 goto done;
913 }
914
915 while ((scn = elf_nextscn(elf, scn)) != NULL) {
916 GElf_Shdr sh;
917 char *name;
918
919 idx++;
920 if (gelf_getshdr(scn, &sh) != &sh) {
921 pr_warn("failed to get section(%d) header from %s\n",
922 idx, path);
923 goto done;
924 }
925 name = elf_strptr(elf, shstrndx, sh.sh_name);
926 if (!name) {
927 pr_warn("failed to get section(%d) name from %s\n",
928 idx, path);
929 goto done;
930 }
931 if (strcmp(name, BTF_ELF_SEC) == 0) {
932 btf_data = elf_getdata(scn, 0);
933 if (!btf_data) {
934 pr_warn("failed to get section(%d, %s) data from %s\n",
935 idx, name, path);
936 goto done;
937 }
938 continue;
939 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
940 btf_ext_data = elf_getdata(scn, 0);
941 if (!btf_ext_data) {
942 pr_warn("failed to get section(%d, %s) data from %s\n",
943 idx, name, path);
944 goto done;
945 }
946 continue;
947 }
948 }
949
950 err = 0;
951
952 if (!btf_data) {
953 err = -ENOENT;
954 goto done;
955 }
956 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
957 err = libbpf_get_error(btf);
958 if (err)
959 goto done;
960
961 switch (gelf_getclass(elf)) {
962 case ELFCLASS32:
963 btf__set_pointer_size(btf, 4);
964 break;
965 case ELFCLASS64:
966 btf__set_pointer_size(btf, 8);
967 break;
968 default:
969 pr_warn("failed to get ELF class (bitness) for %s\n", path);
970 break;
971 }
972
973 if (btf_ext && btf_ext_data) {
974 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
975 err = libbpf_get_error(*btf_ext);
976 if (err)
977 goto done;
978 } else if (btf_ext) {
979 *btf_ext = NULL;
980 }
981 done:
982 if (elf)
983 elf_end(elf);
984 close(fd);
985
986 if (!err)
987 return btf;
988
989 if (btf_ext)
990 btf_ext__free(*btf_ext);
991 btf__free(btf);
992
993 return ERR_PTR(err);
994 }
995
btf__parse_elf(const char * path,struct btf_ext ** btf_ext)996 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
997 {
998 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
999 }
1000
btf__parse_elf_split(const char * path,struct btf * base_btf)1001 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1002 {
1003 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1004 }
1005
btf_parse_raw(const char * path,struct btf * base_btf)1006 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1007 {
1008 struct btf *btf = NULL;
1009 void *data = NULL;
1010 FILE *f = NULL;
1011 __u16 magic;
1012 int err = 0;
1013 long sz;
1014
1015 f = fopen(path, "rb");
1016 if (!f) {
1017 err = -errno;
1018 goto err_out;
1019 }
1020
1021 /* check BTF magic */
1022 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1023 err = -EIO;
1024 goto err_out;
1025 }
1026 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1027 /* definitely not a raw BTF */
1028 err = -EPROTO;
1029 goto err_out;
1030 }
1031
1032 /* get file size */
1033 if (fseek(f, 0, SEEK_END)) {
1034 err = -errno;
1035 goto err_out;
1036 }
1037 sz = ftell(f);
1038 if (sz < 0) {
1039 err = -errno;
1040 goto err_out;
1041 }
1042 /* rewind to the start */
1043 if (fseek(f, 0, SEEK_SET)) {
1044 err = -errno;
1045 goto err_out;
1046 }
1047
1048 /* pre-alloc memory and read all of BTF data */
1049 data = malloc(sz);
1050 if (!data) {
1051 err = -ENOMEM;
1052 goto err_out;
1053 }
1054 if (fread(data, 1, sz, f) < sz) {
1055 err = -EIO;
1056 goto err_out;
1057 }
1058
1059 /* finally parse BTF data */
1060 btf = btf_new(data, sz, base_btf);
1061
1062 err_out:
1063 free(data);
1064 if (f)
1065 fclose(f);
1066 return err ? ERR_PTR(err) : btf;
1067 }
1068
btf__parse_raw(const char * path)1069 struct btf *btf__parse_raw(const char *path)
1070 {
1071 return libbpf_ptr(btf_parse_raw(path, NULL));
1072 }
1073
btf__parse_raw_split(const char * path,struct btf * base_btf)1074 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1075 {
1076 return libbpf_ptr(btf_parse_raw(path, base_btf));
1077 }
1078
btf_parse(const char * path,struct btf * base_btf,struct btf_ext ** btf_ext)1079 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1080 {
1081 struct btf *btf;
1082 int err;
1083
1084 if (btf_ext)
1085 *btf_ext = NULL;
1086
1087 btf = btf_parse_raw(path, base_btf);
1088 err = libbpf_get_error(btf);
1089 if (!err)
1090 return btf;
1091 if (err != -EPROTO)
1092 return ERR_PTR(err);
1093 return btf_parse_elf(path, base_btf, btf_ext);
1094 }
1095
btf__parse(const char * path,struct btf_ext ** btf_ext)1096 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1097 {
1098 return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1099 }
1100
btf__parse_split(const char * path,struct btf * base_btf)1101 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1102 {
1103 return libbpf_ptr(btf_parse(path, base_btf, NULL));
1104 }
1105
compare_vsi_off(const void * _a,const void * _b)1106 static int compare_vsi_off(const void *_a, const void *_b)
1107 {
1108 const struct btf_var_secinfo *a = _a;
1109 const struct btf_var_secinfo *b = _b;
1110
1111 return a->offset - b->offset;
1112 }
1113
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)1114 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1115 struct btf_type *t)
1116 {
1117 __u32 size = 0, off = 0, i, vars = btf_vlen(t);
1118 const char *name = btf__name_by_offset(btf, t->name_off);
1119 const struct btf_type *t_var;
1120 struct btf_var_secinfo *vsi;
1121 const struct btf_var *var;
1122 int ret;
1123
1124 if (!name) {
1125 pr_debug("No name found in string section for DATASEC kind.\n");
1126 return -ENOENT;
1127 }
1128
1129 /* .extern datasec size and var offsets were set correctly during
1130 * extern collection step, so just skip straight to sorting variables
1131 */
1132 if (t->size)
1133 goto sort_vars;
1134
1135 ret = bpf_object__section_size(obj, name, &size);
1136 if (ret || !size || (t->size && t->size != size)) {
1137 pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1138 return -ENOENT;
1139 }
1140
1141 t->size = size;
1142
1143 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1144 t_var = btf__type_by_id(btf, vsi->type);
1145 var = btf_var(t_var);
1146
1147 if (!btf_is_var(t_var)) {
1148 pr_debug("Non-VAR type seen in section %s\n", name);
1149 return -EINVAL;
1150 }
1151
1152 if (var->linkage == BTF_VAR_STATIC)
1153 continue;
1154
1155 name = btf__name_by_offset(btf, t_var->name_off);
1156 if (!name) {
1157 pr_debug("No name found in string section for VAR kind\n");
1158 return -ENOENT;
1159 }
1160
1161 ret = bpf_object__variable_offset(obj, name, &off);
1162 if (ret) {
1163 pr_debug("No offset found in symbol table for VAR %s\n",
1164 name);
1165 return -ENOENT;
1166 }
1167
1168 vsi->offset = off;
1169 }
1170
1171 sort_vars:
1172 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1173 return 0;
1174 }
1175
btf__finalize_data(struct bpf_object * obj,struct btf * btf)1176 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1177 {
1178 int err = 0;
1179 __u32 i;
1180
1181 for (i = 1; i <= btf->nr_types; i++) {
1182 struct btf_type *t = btf_type_by_id(btf, i);
1183
1184 /* Loader needs to fix up some of the things compiler
1185 * couldn't get its hands on while emitting BTF. This
1186 * is section size and global variable offset. We use
1187 * the info from the ELF itself for this purpose.
1188 */
1189 if (btf_is_datasec(t)) {
1190 err = btf_fixup_datasec(obj, btf, t);
1191 if (err)
1192 break;
1193 }
1194 }
1195
1196 return libbpf_err(err);
1197 }
1198
1199 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1200
btf__load_into_kernel(struct btf * btf)1201 int btf__load_into_kernel(struct btf *btf)
1202 {
1203 __u32 log_buf_size = 0, raw_size;
1204 char *log_buf = NULL;
1205 void *raw_data;
1206 int err = 0;
1207
1208 if (btf->fd >= 0)
1209 return libbpf_err(-EEXIST);
1210
1211 retry_load:
1212 if (log_buf_size) {
1213 log_buf = malloc(log_buf_size);
1214 if (!log_buf)
1215 return libbpf_err(-ENOMEM);
1216
1217 *log_buf = 0;
1218 }
1219
1220 raw_data = btf_get_raw_data(btf, &raw_size, false);
1221 if (!raw_data) {
1222 err = -ENOMEM;
1223 goto done;
1224 }
1225 /* cache native raw data representation */
1226 btf->raw_size = raw_size;
1227 btf->raw_data = raw_data;
1228
1229 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1230 if (btf->fd < 0) {
1231 if (!log_buf || errno == ENOSPC) {
1232 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1233 log_buf_size << 1);
1234 free(log_buf);
1235 goto retry_load;
1236 }
1237
1238 err = -errno;
1239 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1240 if (*log_buf)
1241 pr_warn("%s\n", log_buf);
1242 goto done;
1243 }
1244
1245 done:
1246 free(log_buf);
1247 return libbpf_err(err);
1248 }
1249 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel")));
1250
btf__fd(const struct btf * btf)1251 int btf__fd(const struct btf *btf)
1252 {
1253 return btf->fd;
1254 }
1255
btf__set_fd(struct btf * btf,int fd)1256 void btf__set_fd(struct btf *btf, int fd)
1257 {
1258 btf->fd = fd;
1259 }
1260
btf_strs_data(const struct btf * btf)1261 static const void *btf_strs_data(const struct btf *btf)
1262 {
1263 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1264 }
1265
btf_get_raw_data(const struct btf * btf,__u32 * size,bool swap_endian)1266 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1267 {
1268 struct btf_header *hdr = btf->hdr;
1269 struct btf_type *t;
1270 void *data, *p;
1271 __u32 data_sz;
1272 int i;
1273
1274 data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1275 if (data) {
1276 *size = btf->raw_size;
1277 return data;
1278 }
1279
1280 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1281 data = calloc(1, data_sz);
1282 if (!data)
1283 return NULL;
1284 p = data;
1285
1286 memcpy(p, hdr, hdr->hdr_len);
1287 if (swap_endian)
1288 btf_bswap_hdr(p);
1289 p += hdr->hdr_len;
1290
1291 memcpy(p, btf->types_data, hdr->type_len);
1292 if (swap_endian) {
1293 for (i = 0; i < btf->nr_types; i++) {
1294 t = p + btf->type_offs[i];
1295 /* btf_bswap_type_rest() relies on native t->info, so
1296 * we swap base type info after we swapped all the
1297 * additional information
1298 */
1299 if (btf_bswap_type_rest(t))
1300 goto err_out;
1301 btf_bswap_type_base(t);
1302 }
1303 }
1304 p += hdr->type_len;
1305
1306 memcpy(p, btf_strs_data(btf), hdr->str_len);
1307 p += hdr->str_len;
1308
1309 *size = data_sz;
1310 return data;
1311 err_out:
1312 free(data);
1313 return NULL;
1314 }
1315
btf__get_raw_data(const struct btf * btf_ro,__u32 * size)1316 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1317 {
1318 struct btf *btf = (struct btf *)btf_ro;
1319 __u32 data_sz;
1320 void *data;
1321
1322 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1323 if (!data)
1324 return errno = -ENOMEM, NULL;
1325
1326 btf->raw_size = data_sz;
1327 if (btf->swapped_endian)
1328 btf->raw_data_swapped = data;
1329 else
1330 btf->raw_data = data;
1331 *size = data_sz;
1332 return data;
1333 }
1334
btf__str_by_offset(const struct btf * btf,__u32 offset)1335 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1336 {
1337 if (offset < btf->start_str_off)
1338 return btf__str_by_offset(btf->base_btf, offset);
1339 else if (offset - btf->start_str_off < btf->hdr->str_len)
1340 return btf_strs_data(btf) + (offset - btf->start_str_off);
1341 else
1342 return errno = EINVAL, NULL;
1343 }
1344
btf__name_by_offset(const struct btf * btf,__u32 offset)1345 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1346 {
1347 return btf__str_by_offset(btf, offset);
1348 }
1349
btf_get_from_fd(int btf_fd,struct btf * base_btf)1350 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1351 {
1352 struct bpf_btf_info btf_info;
1353 __u32 len = sizeof(btf_info);
1354 __u32 last_size;
1355 struct btf *btf;
1356 void *ptr;
1357 int err;
1358
1359 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1360 * let's start with a sane default - 4KiB here - and resize it only if
1361 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1362 */
1363 last_size = 4096;
1364 ptr = malloc(last_size);
1365 if (!ptr)
1366 return ERR_PTR(-ENOMEM);
1367
1368 memset(&btf_info, 0, sizeof(btf_info));
1369 btf_info.btf = ptr_to_u64(ptr);
1370 btf_info.btf_size = last_size;
1371 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1372
1373 if (!err && btf_info.btf_size > last_size) {
1374 void *temp_ptr;
1375
1376 last_size = btf_info.btf_size;
1377 temp_ptr = realloc(ptr, last_size);
1378 if (!temp_ptr) {
1379 btf = ERR_PTR(-ENOMEM);
1380 goto exit_free;
1381 }
1382 ptr = temp_ptr;
1383
1384 len = sizeof(btf_info);
1385 memset(&btf_info, 0, sizeof(btf_info));
1386 btf_info.btf = ptr_to_u64(ptr);
1387 btf_info.btf_size = last_size;
1388
1389 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1390 }
1391
1392 if (err || btf_info.btf_size > last_size) {
1393 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1394 goto exit_free;
1395 }
1396
1397 btf = btf_new(ptr, btf_info.btf_size, base_btf);
1398
1399 exit_free:
1400 free(ptr);
1401 return btf;
1402 }
1403
btf__load_from_kernel_by_id_split(__u32 id,struct btf * base_btf)1404 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1405 {
1406 struct btf *btf;
1407 int btf_fd;
1408
1409 btf_fd = bpf_btf_get_fd_by_id(id);
1410 if (btf_fd < 0)
1411 return libbpf_err_ptr(-errno);
1412
1413 btf = btf_get_from_fd(btf_fd, base_btf);
1414 close(btf_fd);
1415
1416 return libbpf_ptr(btf);
1417 }
1418
btf__load_from_kernel_by_id(__u32 id)1419 struct btf *btf__load_from_kernel_by_id(__u32 id)
1420 {
1421 return btf__load_from_kernel_by_id_split(id, NULL);
1422 }
1423
btf__get_from_id(__u32 id,struct btf ** btf)1424 int btf__get_from_id(__u32 id, struct btf **btf)
1425 {
1426 struct btf *res;
1427 int err;
1428
1429 *btf = NULL;
1430 res = btf__load_from_kernel_by_id(id);
1431 err = libbpf_get_error(res);
1432
1433 if (err)
1434 return libbpf_err(err);
1435
1436 *btf = res;
1437 return 0;
1438 }
1439
btf__get_map_kv_tids(const struct btf * btf,const char * map_name,__u32 expected_key_size,__u32 expected_value_size,__u32 * key_type_id,__u32 * value_type_id)1440 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1441 __u32 expected_key_size, __u32 expected_value_size,
1442 __u32 *key_type_id, __u32 *value_type_id)
1443 {
1444 const struct btf_type *container_type;
1445 const struct btf_member *key, *value;
1446 const size_t max_name = 256;
1447 char container_name[max_name];
1448 __s64 key_size, value_size;
1449 __s32 container_id;
1450
1451 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1452 pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1453 map_name, map_name);
1454 return libbpf_err(-EINVAL);
1455 }
1456
1457 container_id = btf__find_by_name(btf, container_name);
1458 if (container_id < 0) {
1459 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1460 map_name, container_name);
1461 return libbpf_err(container_id);
1462 }
1463
1464 container_type = btf__type_by_id(btf, container_id);
1465 if (!container_type) {
1466 pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1467 map_name, container_id);
1468 return libbpf_err(-EINVAL);
1469 }
1470
1471 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1472 pr_warn("map:%s container_name:%s is an invalid container struct\n",
1473 map_name, container_name);
1474 return libbpf_err(-EINVAL);
1475 }
1476
1477 key = btf_members(container_type);
1478 value = key + 1;
1479
1480 key_size = btf__resolve_size(btf, key->type);
1481 if (key_size < 0) {
1482 pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1483 return libbpf_err(key_size);
1484 }
1485
1486 if (expected_key_size != key_size) {
1487 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1488 map_name, (__u32)key_size, expected_key_size);
1489 return libbpf_err(-EINVAL);
1490 }
1491
1492 value_size = btf__resolve_size(btf, value->type);
1493 if (value_size < 0) {
1494 pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1495 return libbpf_err(value_size);
1496 }
1497
1498 if (expected_value_size != value_size) {
1499 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1500 map_name, (__u32)value_size, expected_value_size);
1501 return libbpf_err(-EINVAL);
1502 }
1503
1504 *key_type_id = key->type;
1505 *value_type_id = value->type;
1506
1507 return 0;
1508 }
1509
btf_invalidate_raw_data(struct btf * btf)1510 static void btf_invalidate_raw_data(struct btf *btf)
1511 {
1512 if (btf->raw_data) {
1513 free(btf->raw_data);
1514 btf->raw_data = NULL;
1515 }
1516 if (btf->raw_data_swapped) {
1517 free(btf->raw_data_swapped);
1518 btf->raw_data_swapped = NULL;
1519 }
1520 }
1521
1522 /* Ensure BTF is ready to be modified (by splitting into a three memory
1523 * regions for header, types, and strings). Also invalidate cached
1524 * raw_data, if any.
1525 */
btf_ensure_modifiable(struct btf * btf)1526 static int btf_ensure_modifiable(struct btf *btf)
1527 {
1528 void *hdr, *types;
1529 struct strset *set = NULL;
1530 int err = -ENOMEM;
1531
1532 if (btf_is_modifiable(btf)) {
1533 /* any BTF modification invalidates raw_data */
1534 btf_invalidate_raw_data(btf);
1535 return 0;
1536 }
1537
1538 /* split raw data into three memory regions */
1539 hdr = malloc(btf->hdr->hdr_len);
1540 types = malloc(btf->hdr->type_len);
1541 if (!hdr || !types)
1542 goto err_out;
1543
1544 memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1545 memcpy(types, btf->types_data, btf->hdr->type_len);
1546
1547 /* build lookup index for all strings */
1548 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1549 if (IS_ERR(set)) {
1550 err = PTR_ERR(set);
1551 goto err_out;
1552 }
1553
1554 /* only when everything was successful, update internal state */
1555 btf->hdr = hdr;
1556 btf->types_data = types;
1557 btf->types_data_cap = btf->hdr->type_len;
1558 btf->strs_data = NULL;
1559 btf->strs_set = set;
1560 /* if BTF was created from scratch, all strings are guaranteed to be
1561 * unique and deduplicated
1562 */
1563 if (btf->hdr->str_len == 0)
1564 btf->strs_deduped = true;
1565 if (!btf->base_btf && btf->hdr->str_len == 1)
1566 btf->strs_deduped = true;
1567
1568 /* invalidate raw_data representation */
1569 btf_invalidate_raw_data(btf);
1570
1571 return 0;
1572
1573 err_out:
1574 strset__free(set);
1575 free(hdr);
1576 free(types);
1577 return err;
1578 }
1579
1580 /* Find an offset in BTF string section that corresponds to a given string *s*.
1581 * Returns:
1582 * - >0 offset into string section, if string is found;
1583 * - -ENOENT, if string is not in the string section;
1584 * - <0, on any other error.
1585 */
btf__find_str(struct btf * btf,const char * s)1586 int btf__find_str(struct btf *btf, const char *s)
1587 {
1588 int off;
1589
1590 if (btf->base_btf) {
1591 off = btf__find_str(btf->base_btf, s);
1592 if (off != -ENOENT)
1593 return off;
1594 }
1595
1596 /* BTF needs to be in a modifiable state to build string lookup index */
1597 if (btf_ensure_modifiable(btf))
1598 return libbpf_err(-ENOMEM);
1599
1600 off = strset__find_str(btf->strs_set, s);
1601 if (off < 0)
1602 return libbpf_err(off);
1603
1604 return btf->start_str_off + off;
1605 }
1606
1607 /* Add a string s to the BTF string section.
1608 * Returns:
1609 * - > 0 offset into string section, on success;
1610 * - < 0, on error.
1611 */
btf__add_str(struct btf * btf,const char * s)1612 int btf__add_str(struct btf *btf, const char *s)
1613 {
1614 int off;
1615
1616 if (btf->base_btf) {
1617 off = btf__find_str(btf->base_btf, s);
1618 if (off != -ENOENT)
1619 return off;
1620 }
1621
1622 if (btf_ensure_modifiable(btf))
1623 return libbpf_err(-ENOMEM);
1624
1625 off = strset__add_str(btf->strs_set, s);
1626 if (off < 0)
1627 return libbpf_err(off);
1628
1629 btf->hdr->str_len = strset__data_size(btf->strs_set);
1630
1631 return btf->start_str_off + off;
1632 }
1633
btf_add_type_mem(struct btf * btf,size_t add_sz)1634 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1635 {
1636 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1637 btf->hdr->type_len, UINT_MAX, add_sz);
1638 }
1639
btf_type_inc_vlen(struct btf_type * t)1640 static void btf_type_inc_vlen(struct btf_type *t)
1641 {
1642 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1643 }
1644
btf_commit_type(struct btf * btf,int data_sz)1645 static int btf_commit_type(struct btf *btf, int data_sz)
1646 {
1647 int err;
1648
1649 err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1650 if (err)
1651 return libbpf_err(err);
1652
1653 btf->hdr->type_len += data_sz;
1654 btf->hdr->str_off += data_sz;
1655 btf->nr_types++;
1656 return btf->start_id + btf->nr_types - 1;
1657 }
1658
1659 struct btf_pipe {
1660 const struct btf *src;
1661 struct btf *dst;
1662 };
1663
btf_rewrite_str(__u32 * str_off,void * ctx)1664 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1665 {
1666 struct btf_pipe *p = ctx;
1667 int off;
1668
1669 if (!*str_off) /* nothing to do for empty strings */
1670 return 0;
1671
1672 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1673 if (off < 0)
1674 return off;
1675
1676 *str_off = off;
1677 return 0;
1678 }
1679
btf__add_type(struct btf * btf,const struct btf * src_btf,const struct btf_type * src_type)1680 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1681 {
1682 struct btf_pipe p = { .src = src_btf, .dst = btf };
1683 struct btf_type *t;
1684 int sz, err;
1685
1686 sz = btf_type_size(src_type);
1687 if (sz < 0)
1688 return libbpf_err(sz);
1689
1690 /* deconstruct BTF, if necessary, and invalidate raw_data */
1691 if (btf_ensure_modifiable(btf))
1692 return libbpf_err(-ENOMEM);
1693
1694 t = btf_add_type_mem(btf, sz);
1695 if (!t)
1696 return libbpf_err(-ENOMEM);
1697
1698 memcpy(t, src_type, sz);
1699
1700 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1701 if (err)
1702 return libbpf_err(err);
1703
1704 return btf_commit_type(btf, sz);
1705 }
1706
1707 /*
1708 * Append new BTF_KIND_INT type with:
1709 * - *name* - non-empty, non-NULL type name;
1710 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1711 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1712 * Returns:
1713 * - >0, type ID of newly added BTF type;
1714 * - <0, on error.
1715 */
btf__add_int(struct btf * btf,const char * name,size_t byte_sz,int encoding)1716 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1717 {
1718 struct btf_type *t;
1719 int sz, name_off;
1720
1721 /* non-empty name */
1722 if (!name || !name[0])
1723 return libbpf_err(-EINVAL);
1724 /* byte_sz must be power of 2 */
1725 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1726 return libbpf_err(-EINVAL);
1727 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1728 return libbpf_err(-EINVAL);
1729
1730 /* deconstruct BTF, if necessary, and invalidate raw_data */
1731 if (btf_ensure_modifiable(btf))
1732 return libbpf_err(-ENOMEM);
1733
1734 sz = sizeof(struct btf_type) + sizeof(int);
1735 t = btf_add_type_mem(btf, sz);
1736 if (!t)
1737 return libbpf_err(-ENOMEM);
1738
1739 /* if something goes wrong later, we might end up with an extra string,
1740 * but that shouldn't be a problem, because BTF can't be constructed
1741 * completely anyway and will most probably be just discarded
1742 */
1743 name_off = btf__add_str(btf, name);
1744 if (name_off < 0)
1745 return name_off;
1746
1747 t->name_off = name_off;
1748 t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1749 t->size = byte_sz;
1750 /* set INT info, we don't allow setting legacy bit offset/size */
1751 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1752
1753 return btf_commit_type(btf, sz);
1754 }
1755
1756 /*
1757 * Append new BTF_KIND_FLOAT type with:
1758 * - *name* - non-empty, non-NULL type name;
1759 * - *sz* - size of the type, in bytes;
1760 * Returns:
1761 * - >0, type ID of newly added BTF type;
1762 * - <0, on error.
1763 */
btf__add_float(struct btf * btf,const char * name,size_t byte_sz)1764 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1765 {
1766 struct btf_type *t;
1767 int sz, name_off;
1768
1769 /* non-empty name */
1770 if (!name || !name[0])
1771 return libbpf_err(-EINVAL);
1772
1773 /* byte_sz must be one of the explicitly allowed values */
1774 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1775 byte_sz != 16)
1776 return libbpf_err(-EINVAL);
1777
1778 if (btf_ensure_modifiable(btf))
1779 return libbpf_err(-ENOMEM);
1780
1781 sz = sizeof(struct btf_type);
1782 t = btf_add_type_mem(btf, sz);
1783 if (!t)
1784 return libbpf_err(-ENOMEM);
1785
1786 name_off = btf__add_str(btf, name);
1787 if (name_off < 0)
1788 return name_off;
1789
1790 t->name_off = name_off;
1791 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1792 t->size = byte_sz;
1793
1794 return btf_commit_type(btf, sz);
1795 }
1796
1797 /* it's completely legal to append BTF types with type IDs pointing forward to
1798 * types that haven't been appended yet, so we only make sure that id looks
1799 * sane, we can't guarantee that ID will always be valid
1800 */
validate_type_id(int id)1801 static int validate_type_id(int id)
1802 {
1803 if (id < 0 || id > BTF_MAX_NR_TYPES)
1804 return -EINVAL;
1805 return 0;
1806 }
1807
1808 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
btf_add_ref_kind(struct btf * btf,int kind,const char * name,int ref_type_id)1809 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1810 {
1811 struct btf_type *t;
1812 int sz, name_off = 0;
1813
1814 if (validate_type_id(ref_type_id))
1815 return libbpf_err(-EINVAL);
1816
1817 if (btf_ensure_modifiable(btf))
1818 return libbpf_err(-ENOMEM);
1819
1820 sz = sizeof(struct btf_type);
1821 t = btf_add_type_mem(btf, sz);
1822 if (!t)
1823 return libbpf_err(-ENOMEM);
1824
1825 if (name && name[0]) {
1826 name_off = btf__add_str(btf, name);
1827 if (name_off < 0)
1828 return name_off;
1829 }
1830
1831 t->name_off = name_off;
1832 t->info = btf_type_info(kind, 0, 0);
1833 t->type = ref_type_id;
1834
1835 return btf_commit_type(btf, sz);
1836 }
1837
1838 /*
1839 * Append new BTF_KIND_PTR type with:
1840 * - *ref_type_id* - referenced type ID, it might not exist yet;
1841 * Returns:
1842 * - >0, type ID of newly added BTF type;
1843 * - <0, on error.
1844 */
btf__add_ptr(struct btf * btf,int ref_type_id)1845 int btf__add_ptr(struct btf *btf, int ref_type_id)
1846 {
1847 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1848 }
1849
1850 /*
1851 * Append new BTF_KIND_ARRAY type with:
1852 * - *index_type_id* - type ID of the type describing array index;
1853 * - *elem_type_id* - type ID of the type describing array element;
1854 * - *nr_elems* - the size of the array;
1855 * Returns:
1856 * - >0, type ID of newly added BTF type;
1857 * - <0, on error.
1858 */
btf__add_array(struct btf * btf,int index_type_id,int elem_type_id,__u32 nr_elems)1859 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1860 {
1861 struct btf_type *t;
1862 struct btf_array *a;
1863 int sz;
1864
1865 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1866 return libbpf_err(-EINVAL);
1867
1868 if (btf_ensure_modifiable(btf))
1869 return libbpf_err(-ENOMEM);
1870
1871 sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1872 t = btf_add_type_mem(btf, sz);
1873 if (!t)
1874 return libbpf_err(-ENOMEM);
1875
1876 t->name_off = 0;
1877 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1878 t->size = 0;
1879
1880 a = btf_array(t);
1881 a->type = elem_type_id;
1882 a->index_type = index_type_id;
1883 a->nelems = nr_elems;
1884
1885 return btf_commit_type(btf, sz);
1886 }
1887
1888 /* generic STRUCT/UNION append function */
btf_add_composite(struct btf * btf,int kind,const char * name,__u32 bytes_sz)1889 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1890 {
1891 struct btf_type *t;
1892 int sz, name_off = 0;
1893
1894 if (btf_ensure_modifiable(btf))
1895 return libbpf_err(-ENOMEM);
1896
1897 sz = sizeof(struct btf_type);
1898 t = btf_add_type_mem(btf, sz);
1899 if (!t)
1900 return libbpf_err(-ENOMEM);
1901
1902 if (name && name[0]) {
1903 name_off = btf__add_str(btf, name);
1904 if (name_off < 0)
1905 return name_off;
1906 }
1907
1908 /* start out with vlen=0 and no kflag; this will be adjusted when
1909 * adding each member
1910 */
1911 t->name_off = name_off;
1912 t->info = btf_type_info(kind, 0, 0);
1913 t->size = bytes_sz;
1914
1915 return btf_commit_type(btf, sz);
1916 }
1917
1918 /*
1919 * Append new BTF_KIND_STRUCT type with:
1920 * - *name* - name of the struct, can be NULL or empty for anonymous structs;
1921 * - *byte_sz* - size of the struct, in bytes;
1922 *
1923 * Struct initially has no fields in it. Fields can be added by
1924 * btf__add_field() right after btf__add_struct() succeeds.
1925 *
1926 * Returns:
1927 * - >0, type ID of newly added BTF type;
1928 * - <0, on error.
1929 */
btf__add_struct(struct btf * btf,const char * name,__u32 byte_sz)1930 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1931 {
1932 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1933 }
1934
1935 /*
1936 * Append new BTF_KIND_UNION type with:
1937 * - *name* - name of the union, can be NULL or empty for anonymous union;
1938 * - *byte_sz* - size of the union, in bytes;
1939 *
1940 * Union initially has no fields in it. Fields can be added by
1941 * btf__add_field() right after btf__add_union() succeeds. All fields
1942 * should have *bit_offset* of 0.
1943 *
1944 * Returns:
1945 * - >0, type ID of newly added BTF type;
1946 * - <0, on error.
1947 */
btf__add_union(struct btf * btf,const char * name,__u32 byte_sz)1948 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1949 {
1950 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1951 }
1952
btf_last_type(struct btf * btf)1953 static struct btf_type *btf_last_type(struct btf *btf)
1954 {
1955 return btf_type_by_id(btf, btf__get_nr_types(btf));
1956 }
1957
1958 /*
1959 * Append new field for the current STRUCT/UNION type with:
1960 * - *name* - name of the field, can be NULL or empty for anonymous field;
1961 * - *type_id* - type ID for the type describing field type;
1962 * - *bit_offset* - bit offset of the start of the field within struct/union;
1963 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1964 * Returns:
1965 * - 0, on success;
1966 * - <0, on error.
1967 */
btf__add_field(struct btf * btf,const char * name,int type_id,__u32 bit_offset,__u32 bit_size)1968 int btf__add_field(struct btf *btf, const char *name, int type_id,
1969 __u32 bit_offset, __u32 bit_size)
1970 {
1971 struct btf_type *t;
1972 struct btf_member *m;
1973 bool is_bitfield;
1974 int sz, name_off = 0;
1975
1976 /* last type should be union/struct */
1977 if (btf->nr_types == 0)
1978 return libbpf_err(-EINVAL);
1979 t = btf_last_type(btf);
1980 if (!btf_is_composite(t))
1981 return libbpf_err(-EINVAL);
1982
1983 if (validate_type_id(type_id))
1984 return libbpf_err(-EINVAL);
1985 /* best-effort bit field offset/size enforcement */
1986 is_bitfield = bit_size || (bit_offset % 8 != 0);
1987 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1988 return libbpf_err(-EINVAL);
1989
1990 /* only offset 0 is allowed for unions */
1991 if (btf_is_union(t) && bit_offset)
1992 return libbpf_err(-EINVAL);
1993
1994 /* decompose and invalidate raw data */
1995 if (btf_ensure_modifiable(btf))
1996 return libbpf_err(-ENOMEM);
1997
1998 sz = sizeof(struct btf_member);
1999 m = btf_add_type_mem(btf, sz);
2000 if (!m)
2001 return libbpf_err(-ENOMEM);
2002
2003 if (name && name[0]) {
2004 name_off = btf__add_str(btf, name);
2005 if (name_off < 0)
2006 return name_off;
2007 }
2008
2009 m->name_off = name_off;
2010 m->type = type_id;
2011 m->offset = bit_offset | (bit_size << 24);
2012
2013 /* btf_add_type_mem can invalidate t pointer */
2014 t = btf_last_type(btf);
2015 /* update parent type's vlen and kflag */
2016 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2017
2018 btf->hdr->type_len += sz;
2019 btf->hdr->str_off += sz;
2020 return 0;
2021 }
2022
2023 /*
2024 * Append new BTF_KIND_ENUM type with:
2025 * - *name* - name of the enum, can be NULL or empty for anonymous enums;
2026 * - *byte_sz* - size of the enum, in bytes.
2027 *
2028 * Enum initially has no enum values in it (and corresponds to enum forward
2029 * declaration). Enumerator values can be added by btf__add_enum_value()
2030 * immediately after btf__add_enum() succeeds.
2031 *
2032 * Returns:
2033 * - >0, type ID of newly added BTF type;
2034 * - <0, on error.
2035 */
btf__add_enum(struct btf * btf,const char * name,__u32 byte_sz)2036 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2037 {
2038 struct btf_type *t;
2039 int sz, name_off = 0;
2040
2041 /* byte_sz must be power of 2 */
2042 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2043 return libbpf_err(-EINVAL);
2044
2045 if (btf_ensure_modifiable(btf))
2046 return libbpf_err(-ENOMEM);
2047
2048 sz = sizeof(struct btf_type);
2049 t = btf_add_type_mem(btf, sz);
2050 if (!t)
2051 return libbpf_err(-ENOMEM);
2052
2053 if (name && name[0]) {
2054 name_off = btf__add_str(btf, name);
2055 if (name_off < 0)
2056 return name_off;
2057 }
2058
2059 /* start out with vlen=0; it will be adjusted when adding enum values */
2060 t->name_off = name_off;
2061 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2062 t->size = byte_sz;
2063
2064 return btf_commit_type(btf, sz);
2065 }
2066
2067 /*
2068 * Append new enum value for the current ENUM type with:
2069 * - *name* - name of the enumerator value, can't be NULL or empty;
2070 * - *value* - integer value corresponding to enum value *name*;
2071 * Returns:
2072 * - 0, on success;
2073 * - <0, on error.
2074 */
btf__add_enum_value(struct btf * btf,const char * name,__s64 value)2075 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2076 {
2077 struct btf_type *t;
2078 struct btf_enum *v;
2079 int sz, name_off;
2080
2081 /* last type should be BTF_KIND_ENUM */
2082 if (btf->nr_types == 0)
2083 return libbpf_err(-EINVAL);
2084 t = btf_last_type(btf);
2085 if (!btf_is_enum(t))
2086 return libbpf_err(-EINVAL);
2087
2088 /* non-empty name */
2089 if (!name || !name[0])
2090 return libbpf_err(-EINVAL);
2091 if (value < INT_MIN || value > UINT_MAX)
2092 return libbpf_err(-E2BIG);
2093
2094 /* decompose and invalidate raw data */
2095 if (btf_ensure_modifiable(btf))
2096 return libbpf_err(-ENOMEM);
2097
2098 sz = sizeof(struct btf_enum);
2099 v = btf_add_type_mem(btf, sz);
2100 if (!v)
2101 return libbpf_err(-ENOMEM);
2102
2103 name_off = btf__add_str(btf, name);
2104 if (name_off < 0)
2105 return name_off;
2106
2107 v->name_off = name_off;
2108 v->val = value;
2109
2110 /* update parent type's vlen */
2111 t = btf_last_type(btf);
2112 btf_type_inc_vlen(t);
2113
2114 btf->hdr->type_len += sz;
2115 btf->hdr->str_off += sz;
2116 return 0;
2117 }
2118
2119 /*
2120 * Append new BTF_KIND_FWD type with:
2121 * - *name*, non-empty/non-NULL name;
2122 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2123 * BTF_FWD_UNION, or BTF_FWD_ENUM;
2124 * Returns:
2125 * - >0, type ID of newly added BTF type;
2126 * - <0, on error.
2127 */
btf__add_fwd(struct btf * btf,const char * name,enum btf_fwd_kind fwd_kind)2128 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2129 {
2130 if (!name || !name[0])
2131 return libbpf_err(-EINVAL);
2132
2133 switch (fwd_kind) {
2134 case BTF_FWD_STRUCT:
2135 case BTF_FWD_UNION: {
2136 struct btf_type *t;
2137 int id;
2138
2139 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2140 if (id <= 0)
2141 return id;
2142 t = btf_type_by_id(btf, id);
2143 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2144 return id;
2145 }
2146 case BTF_FWD_ENUM:
2147 /* enum forward in BTF currently is just an enum with no enum
2148 * values; we also assume a standard 4-byte size for it
2149 */
2150 return btf__add_enum(btf, name, sizeof(int));
2151 default:
2152 return libbpf_err(-EINVAL);
2153 }
2154 }
2155
2156 /*
2157 * Append new BTF_KING_TYPEDEF type with:
2158 * - *name*, non-empty/non-NULL name;
2159 * - *ref_type_id* - referenced type ID, it might not exist yet;
2160 * Returns:
2161 * - >0, type ID of newly added BTF type;
2162 * - <0, on error.
2163 */
btf__add_typedef(struct btf * btf,const char * name,int ref_type_id)2164 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2165 {
2166 if (!name || !name[0])
2167 return libbpf_err(-EINVAL);
2168
2169 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2170 }
2171
2172 /*
2173 * Append new BTF_KIND_VOLATILE type with:
2174 * - *ref_type_id* - referenced type ID, it might not exist yet;
2175 * Returns:
2176 * - >0, type ID of newly added BTF type;
2177 * - <0, on error.
2178 */
btf__add_volatile(struct btf * btf,int ref_type_id)2179 int btf__add_volatile(struct btf *btf, int ref_type_id)
2180 {
2181 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2182 }
2183
2184 /*
2185 * Append new BTF_KIND_CONST type with:
2186 * - *ref_type_id* - referenced type ID, it might not exist yet;
2187 * Returns:
2188 * - >0, type ID of newly added BTF type;
2189 * - <0, on error.
2190 */
btf__add_const(struct btf * btf,int ref_type_id)2191 int btf__add_const(struct btf *btf, int ref_type_id)
2192 {
2193 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2194 }
2195
2196 /*
2197 * Append new BTF_KIND_RESTRICT type with:
2198 * - *ref_type_id* - referenced type ID, it might not exist yet;
2199 * Returns:
2200 * - >0, type ID of newly added BTF type;
2201 * - <0, on error.
2202 */
btf__add_restrict(struct btf * btf,int ref_type_id)2203 int btf__add_restrict(struct btf *btf, int ref_type_id)
2204 {
2205 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2206 }
2207
2208 /*
2209 * Append new BTF_KIND_FUNC type with:
2210 * - *name*, non-empty/non-NULL name;
2211 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2212 * Returns:
2213 * - >0, type ID of newly added BTF type;
2214 * - <0, on error.
2215 */
btf__add_func(struct btf * btf,const char * name,enum btf_func_linkage linkage,int proto_type_id)2216 int btf__add_func(struct btf *btf, const char *name,
2217 enum btf_func_linkage linkage, int proto_type_id)
2218 {
2219 int id;
2220
2221 if (!name || !name[0])
2222 return libbpf_err(-EINVAL);
2223 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2224 linkage != BTF_FUNC_EXTERN)
2225 return libbpf_err(-EINVAL);
2226
2227 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2228 if (id > 0) {
2229 struct btf_type *t = btf_type_by_id(btf, id);
2230
2231 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2232 }
2233 return libbpf_err(id);
2234 }
2235
2236 /*
2237 * Append new BTF_KIND_FUNC_PROTO with:
2238 * - *ret_type_id* - type ID for return result of a function.
2239 *
2240 * Function prototype initially has no arguments, but they can be added by
2241 * btf__add_func_param() one by one, immediately after
2242 * btf__add_func_proto() succeeded.
2243 *
2244 * Returns:
2245 * - >0, type ID of newly added BTF type;
2246 * - <0, on error.
2247 */
btf__add_func_proto(struct btf * btf,int ret_type_id)2248 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2249 {
2250 struct btf_type *t;
2251 int sz;
2252
2253 if (validate_type_id(ret_type_id))
2254 return libbpf_err(-EINVAL);
2255
2256 if (btf_ensure_modifiable(btf))
2257 return libbpf_err(-ENOMEM);
2258
2259 sz = sizeof(struct btf_type);
2260 t = btf_add_type_mem(btf, sz);
2261 if (!t)
2262 return libbpf_err(-ENOMEM);
2263
2264 /* start out with vlen=0; this will be adjusted when adding enum
2265 * values, if necessary
2266 */
2267 t->name_off = 0;
2268 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2269 t->type = ret_type_id;
2270
2271 return btf_commit_type(btf, sz);
2272 }
2273
2274 /*
2275 * Append new function parameter for current FUNC_PROTO type with:
2276 * - *name* - parameter name, can be NULL or empty;
2277 * - *type_id* - type ID describing the type of the parameter.
2278 * Returns:
2279 * - 0, on success;
2280 * - <0, on error.
2281 */
btf__add_func_param(struct btf * btf,const char * name,int type_id)2282 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2283 {
2284 struct btf_type *t;
2285 struct btf_param *p;
2286 int sz, name_off = 0;
2287
2288 if (validate_type_id(type_id))
2289 return libbpf_err(-EINVAL);
2290
2291 /* last type should be BTF_KIND_FUNC_PROTO */
2292 if (btf->nr_types == 0)
2293 return libbpf_err(-EINVAL);
2294 t = btf_last_type(btf);
2295 if (!btf_is_func_proto(t))
2296 return libbpf_err(-EINVAL);
2297
2298 /* decompose and invalidate raw data */
2299 if (btf_ensure_modifiable(btf))
2300 return libbpf_err(-ENOMEM);
2301
2302 sz = sizeof(struct btf_param);
2303 p = btf_add_type_mem(btf, sz);
2304 if (!p)
2305 return libbpf_err(-ENOMEM);
2306
2307 if (name && name[0]) {
2308 name_off = btf__add_str(btf, name);
2309 if (name_off < 0)
2310 return name_off;
2311 }
2312
2313 p->name_off = name_off;
2314 p->type = type_id;
2315
2316 /* update parent type's vlen */
2317 t = btf_last_type(btf);
2318 btf_type_inc_vlen(t);
2319
2320 btf->hdr->type_len += sz;
2321 btf->hdr->str_off += sz;
2322 return 0;
2323 }
2324
2325 /*
2326 * Append new BTF_KIND_VAR type with:
2327 * - *name* - non-empty/non-NULL name;
2328 * - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2329 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2330 * - *type_id* - type ID of the type describing the type of the variable.
2331 * Returns:
2332 * - >0, type ID of newly added BTF type;
2333 * - <0, on error.
2334 */
btf__add_var(struct btf * btf,const char * name,int linkage,int type_id)2335 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2336 {
2337 struct btf_type *t;
2338 struct btf_var *v;
2339 int sz, name_off;
2340
2341 /* non-empty name */
2342 if (!name || !name[0])
2343 return libbpf_err(-EINVAL);
2344 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2345 linkage != BTF_VAR_GLOBAL_EXTERN)
2346 return libbpf_err(-EINVAL);
2347 if (validate_type_id(type_id))
2348 return libbpf_err(-EINVAL);
2349
2350 /* deconstruct BTF, if necessary, and invalidate raw_data */
2351 if (btf_ensure_modifiable(btf))
2352 return libbpf_err(-ENOMEM);
2353
2354 sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2355 t = btf_add_type_mem(btf, sz);
2356 if (!t)
2357 return libbpf_err(-ENOMEM);
2358
2359 name_off = btf__add_str(btf, name);
2360 if (name_off < 0)
2361 return name_off;
2362
2363 t->name_off = name_off;
2364 t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2365 t->type = type_id;
2366
2367 v = btf_var(t);
2368 v->linkage = linkage;
2369
2370 return btf_commit_type(btf, sz);
2371 }
2372
2373 /*
2374 * Append new BTF_KIND_DATASEC type with:
2375 * - *name* - non-empty/non-NULL name;
2376 * - *byte_sz* - data section size, in bytes.
2377 *
2378 * Data section is initially empty. Variables info can be added with
2379 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2380 *
2381 * Returns:
2382 * - >0, type ID of newly added BTF type;
2383 * - <0, on error.
2384 */
btf__add_datasec(struct btf * btf,const char * name,__u32 byte_sz)2385 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2386 {
2387 struct btf_type *t;
2388 int sz, name_off;
2389
2390 /* non-empty name */
2391 if (!name || !name[0])
2392 return libbpf_err(-EINVAL);
2393
2394 if (btf_ensure_modifiable(btf))
2395 return libbpf_err(-ENOMEM);
2396
2397 sz = sizeof(struct btf_type);
2398 t = btf_add_type_mem(btf, sz);
2399 if (!t)
2400 return libbpf_err(-ENOMEM);
2401
2402 name_off = btf__add_str(btf, name);
2403 if (name_off < 0)
2404 return name_off;
2405
2406 /* start with vlen=0, which will be update as var_secinfos are added */
2407 t->name_off = name_off;
2408 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2409 t->size = byte_sz;
2410
2411 return btf_commit_type(btf, sz);
2412 }
2413
2414 /*
2415 * Append new data section variable information entry for current DATASEC type:
2416 * - *var_type_id* - type ID, describing type of the variable;
2417 * - *offset* - variable offset within data section, in bytes;
2418 * - *byte_sz* - variable size, in bytes.
2419 *
2420 * Returns:
2421 * - 0, on success;
2422 * - <0, on error.
2423 */
btf__add_datasec_var_info(struct btf * btf,int var_type_id,__u32 offset,__u32 byte_sz)2424 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2425 {
2426 struct btf_type *t;
2427 struct btf_var_secinfo *v;
2428 int sz;
2429
2430 /* last type should be BTF_KIND_DATASEC */
2431 if (btf->nr_types == 0)
2432 return libbpf_err(-EINVAL);
2433 t = btf_last_type(btf);
2434 if (!btf_is_datasec(t))
2435 return libbpf_err(-EINVAL);
2436
2437 if (validate_type_id(var_type_id))
2438 return libbpf_err(-EINVAL);
2439
2440 /* decompose and invalidate raw data */
2441 if (btf_ensure_modifiable(btf))
2442 return libbpf_err(-ENOMEM);
2443
2444 sz = sizeof(struct btf_var_secinfo);
2445 v = btf_add_type_mem(btf, sz);
2446 if (!v)
2447 return libbpf_err(-ENOMEM);
2448
2449 v->type = var_type_id;
2450 v->offset = offset;
2451 v->size = byte_sz;
2452
2453 /* update parent type's vlen */
2454 t = btf_last_type(btf);
2455 btf_type_inc_vlen(t);
2456
2457 btf->hdr->type_len += sz;
2458 btf->hdr->str_off += sz;
2459 return 0;
2460 }
2461
2462 struct btf_ext_sec_setup_param {
2463 __u32 off;
2464 __u32 len;
2465 __u32 min_rec_size;
2466 struct btf_ext_info *ext_info;
2467 const char *desc;
2468 };
2469
btf_ext_setup_info(struct btf_ext * btf_ext,struct btf_ext_sec_setup_param * ext_sec)2470 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2471 struct btf_ext_sec_setup_param *ext_sec)
2472 {
2473 const struct btf_ext_info_sec *sinfo;
2474 struct btf_ext_info *ext_info;
2475 __u32 info_left, record_size;
2476 /* The start of the info sec (including the __u32 record_size). */
2477 void *info;
2478
2479 if (ext_sec->len == 0)
2480 return 0;
2481
2482 if (ext_sec->off & 0x03) {
2483 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2484 ext_sec->desc);
2485 return -EINVAL;
2486 }
2487
2488 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2489 info_left = ext_sec->len;
2490
2491 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2492 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2493 ext_sec->desc, ext_sec->off, ext_sec->len);
2494 return -EINVAL;
2495 }
2496
2497 /* At least a record size */
2498 if (info_left < sizeof(__u32)) {
2499 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2500 return -EINVAL;
2501 }
2502
2503 /* The record size needs to meet the minimum standard */
2504 record_size = *(__u32 *)info;
2505 if (record_size < ext_sec->min_rec_size ||
2506 record_size & 0x03) {
2507 pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2508 ext_sec->desc, record_size);
2509 return -EINVAL;
2510 }
2511
2512 sinfo = info + sizeof(__u32);
2513 info_left -= sizeof(__u32);
2514
2515 /* If no records, return failure now so .BTF.ext won't be used. */
2516 if (!info_left) {
2517 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2518 return -EINVAL;
2519 }
2520
2521 while (info_left) {
2522 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2523 __u64 total_record_size;
2524 __u32 num_records;
2525
2526 if (info_left < sec_hdrlen) {
2527 pr_debug("%s section header is not found in .BTF.ext\n",
2528 ext_sec->desc);
2529 return -EINVAL;
2530 }
2531
2532 num_records = sinfo->num_info;
2533 if (num_records == 0) {
2534 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2535 ext_sec->desc);
2536 return -EINVAL;
2537 }
2538
2539 total_record_size = sec_hdrlen +
2540 (__u64)num_records * record_size;
2541 if (info_left < total_record_size) {
2542 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2543 ext_sec->desc);
2544 return -EINVAL;
2545 }
2546
2547 info_left -= total_record_size;
2548 sinfo = (void *)sinfo + total_record_size;
2549 }
2550
2551 ext_info = ext_sec->ext_info;
2552 ext_info->len = ext_sec->len - sizeof(__u32);
2553 ext_info->rec_size = record_size;
2554 ext_info->info = info + sizeof(__u32);
2555
2556 return 0;
2557 }
2558
btf_ext_setup_func_info(struct btf_ext * btf_ext)2559 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2560 {
2561 struct btf_ext_sec_setup_param param = {
2562 .off = btf_ext->hdr->func_info_off,
2563 .len = btf_ext->hdr->func_info_len,
2564 .min_rec_size = sizeof(struct bpf_func_info_min),
2565 .ext_info = &btf_ext->func_info,
2566 .desc = "func_info"
2567 };
2568
2569 return btf_ext_setup_info(btf_ext, ¶m);
2570 }
2571
btf_ext_setup_line_info(struct btf_ext * btf_ext)2572 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2573 {
2574 struct btf_ext_sec_setup_param param = {
2575 .off = btf_ext->hdr->line_info_off,
2576 .len = btf_ext->hdr->line_info_len,
2577 .min_rec_size = sizeof(struct bpf_line_info_min),
2578 .ext_info = &btf_ext->line_info,
2579 .desc = "line_info",
2580 };
2581
2582 return btf_ext_setup_info(btf_ext, ¶m);
2583 }
2584
btf_ext_setup_core_relos(struct btf_ext * btf_ext)2585 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2586 {
2587 struct btf_ext_sec_setup_param param = {
2588 .off = btf_ext->hdr->core_relo_off,
2589 .len = btf_ext->hdr->core_relo_len,
2590 .min_rec_size = sizeof(struct bpf_core_relo),
2591 .ext_info = &btf_ext->core_relo_info,
2592 .desc = "core_relo",
2593 };
2594
2595 return btf_ext_setup_info(btf_ext, ¶m);
2596 }
2597
btf_ext_parse_hdr(__u8 * data,__u32 data_size)2598 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2599 {
2600 const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2601
2602 if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2603 data_size < hdr->hdr_len) {
2604 pr_debug("BTF.ext header not found");
2605 return -EINVAL;
2606 }
2607
2608 if (hdr->magic == bswap_16(BTF_MAGIC)) {
2609 pr_warn("BTF.ext in non-native endianness is not supported\n");
2610 return -ENOTSUP;
2611 } else if (hdr->magic != BTF_MAGIC) {
2612 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2613 return -EINVAL;
2614 }
2615
2616 if (hdr->version != BTF_VERSION) {
2617 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2618 return -ENOTSUP;
2619 }
2620
2621 if (hdr->flags) {
2622 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2623 return -ENOTSUP;
2624 }
2625
2626 if (data_size == hdr->hdr_len) {
2627 pr_debug("BTF.ext has no data\n");
2628 return -EINVAL;
2629 }
2630
2631 return 0;
2632 }
2633
btf_ext__free(struct btf_ext * btf_ext)2634 void btf_ext__free(struct btf_ext *btf_ext)
2635 {
2636 if (IS_ERR_OR_NULL(btf_ext))
2637 return;
2638 free(btf_ext->data);
2639 free(btf_ext);
2640 }
2641
btf_ext__new(const __u8 * data,__u32 size)2642 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
2643 {
2644 struct btf_ext *btf_ext;
2645 int err;
2646
2647 btf_ext = calloc(1, sizeof(struct btf_ext));
2648 if (!btf_ext)
2649 return libbpf_err_ptr(-ENOMEM);
2650
2651 btf_ext->data_size = size;
2652 btf_ext->data = malloc(size);
2653 if (!btf_ext->data) {
2654 err = -ENOMEM;
2655 goto done;
2656 }
2657 memcpy(btf_ext->data, data, size);
2658
2659 err = btf_ext_parse_hdr(btf_ext->data, size);
2660 if (err)
2661 goto done;
2662
2663 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2664 err = -EINVAL;
2665 goto done;
2666 }
2667
2668 err = btf_ext_setup_func_info(btf_ext);
2669 if (err)
2670 goto done;
2671
2672 err = btf_ext_setup_line_info(btf_ext);
2673 if (err)
2674 goto done;
2675
2676 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) {
2677 err = -EINVAL;
2678 goto done;
2679 }
2680
2681 err = btf_ext_setup_core_relos(btf_ext);
2682 if (err)
2683 goto done;
2684
2685 done:
2686 if (err) {
2687 btf_ext__free(btf_ext);
2688 return libbpf_err_ptr(err);
2689 }
2690
2691 return btf_ext;
2692 }
2693
btf_ext__get_raw_data(const struct btf_ext * btf_ext,__u32 * size)2694 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2695 {
2696 *size = btf_ext->data_size;
2697 return btf_ext->data;
2698 }
2699
btf_ext_reloc_info(const struct btf * btf,const struct btf_ext_info * ext_info,const char * sec_name,__u32 insns_cnt,void ** info,__u32 * cnt)2700 static int btf_ext_reloc_info(const struct btf *btf,
2701 const struct btf_ext_info *ext_info,
2702 const char *sec_name, __u32 insns_cnt,
2703 void **info, __u32 *cnt)
2704 {
2705 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2706 __u32 i, record_size, existing_len, records_len;
2707 struct btf_ext_info_sec *sinfo;
2708 const char *info_sec_name;
2709 __u64 remain_len;
2710 void *data;
2711
2712 record_size = ext_info->rec_size;
2713 sinfo = ext_info->info;
2714 remain_len = ext_info->len;
2715 while (remain_len > 0) {
2716 records_len = sinfo->num_info * record_size;
2717 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2718 if (strcmp(info_sec_name, sec_name)) {
2719 remain_len -= sec_hdrlen + records_len;
2720 sinfo = (void *)sinfo + sec_hdrlen + records_len;
2721 continue;
2722 }
2723
2724 existing_len = (*cnt) * record_size;
2725 data = realloc(*info, existing_len + records_len);
2726 if (!data)
2727 return libbpf_err(-ENOMEM);
2728
2729 memcpy(data + existing_len, sinfo->data, records_len);
2730 /* adjust insn_off only, the rest data will be passed
2731 * to the kernel.
2732 */
2733 for (i = 0; i < sinfo->num_info; i++) {
2734 __u32 *insn_off;
2735
2736 insn_off = data + existing_len + (i * record_size);
2737 *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2738 }
2739 *info = data;
2740 *cnt += sinfo->num_info;
2741 return 0;
2742 }
2743
2744 return libbpf_err(-ENOENT);
2745 }
2746
btf_ext__reloc_func_info(const struct btf * btf,const struct btf_ext * btf_ext,const char * sec_name,__u32 insns_cnt,void ** func_info,__u32 * cnt)2747 int btf_ext__reloc_func_info(const struct btf *btf,
2748 const struct btf_ext *btf_ext,
2749 const char *sec_name, __u32 insns_cnt,
2750 void **func_info, __u32 *cnt)
2751 {
2752 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2753 insns_cnt, func_info, cnt);
2754 }
2755
btf_ext__reloc_line_info(const struct btf * btf,const struct btf_ext * btf_ext,const char * sec_name,__u32 insns_cnt,void ** line_info,__u32 * cnt)2756 int btf_ext__reloc_line_info(const struct btf *btf,
2757 const struct btf_ext *btf_ext,
2758 const char *sec_name, __u32 insns_cnt,
2759 void **line_info, __u32 *cnt)
2760 {
2761 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2762 insns_cnt, line_info, cnt);
2763 }
2764
btf_ext__func_info_rec_size(const struct btf_ext * btf_ext)2765 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2766 {
2767 return btf_ext->func_info.rec_size;
2768 }
2769
btf_ext__line_info_rec_size(const struct btf_ext * btf_ext)2770 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2771 {
2772 return btf_ext->line_info.rec_size;
2773 }
2774
2775 struct btf_dedup;
2776
2777 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2778 const struct btf_dedup_opts *opts);
2779 static void btf_dedup_free(struct btf_dedup *d);
2780 static int btf_dedup_prep(struct btf_dedup *d);
2781 static int btf_dedup_strings(struct btf_dedup *d);
2782 static int btf_dedup_prim_types(struct btf_dedup *d);
2783 static int btf_dedup_struct_types(struct btf_dedup *d);
2784 static int btf_dedup_ref_types(struct btf_dedup *d);
2785 static int btf_dedup_compact_types(struct btf_dedup *d);
2786 static int btf_dedup_remap_types(struct btf_dedup *d);
2787
2788 /*
2789 * Deduplicate BTF types and strings.
2790 *
2791 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2792 * section with all BTF type descriptors and string data. It overwrites that
2793 * memory in-place with deduplicated types and strings without any loss of
2794 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2795 * is provided, all the strings referenced from .BTF.ext section are honored
2796 * and updated to point to the right offsets after deduplication.
2797 *
2798 * If function returns with error, type/string data might be garbled and should
2799 * be discarded.
2800 *
2801 * More verbose and detailed description of both problem btf_dedup is solving,
2802 * as well as solution could be found at:
2803 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2804 *
2805 * Problem description and justification
2806 * =====================================
2807 *
2808 * BTF type information is typically emitted either as a result of conversion
2809 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2810 * unit contains information about a subset of all the types that are used
2811 * in an application. These subsets are frequently overlapping and contain a lot
2812 * of duplicated information when later concatenated together into a single
2813 * binary. This algorithm ensures that each unique type is represented by single
2814 * BTF type descriptor, greatly reducing resulting size of BTF data.
2815 *
2816 * Compilation unit isolation and subsequent duplication of data is not the only
2817 * problem. The same type hierarchy (e.g., struct and all the type that struct
2818 * references) in different compilation units can be represented in BTF to
2819 * various degrees of completeness (or, rather, incompleteness) due to
2820 * struct/union forward declarations.
2821 *
2822 * Let's take a look at an example, that we'll use to better understand the
2823 * problem (and solution). Suppose we have two compilation units, each using
2824 * same `struct S`, but each of them having incomplete type information about
2825 * struct's fields:
2826 *
2827 * // CU #1:
2828 * struct S;
2829 * struct A {
2830 * int a;
2831 * struct A* self;
2832 * struct S* parent;
2833 * };
2834 * struct B;
2835 * struct S {
2836 * struct A* a_ptr;
2837 * struct B* b_ptr;
2838 * };
2839 *
2840 * // CU #2:
2841 * struct S;
2842 * struct A;
2843 * struct B {
2844 * int b;
2845 * struct B* self;
2846 * struct S* parent;
2847 * };
2848 * struct S {
2849 * struct A* a_ptr;
2850 * struct B* b_ptr;
2851 * };
2852 *
2853 * In case of CU #1, BTF data will know only that `struct B` exist (but no
2854 * more), but will know the complete type information about `struct A`. While
2855 * for CU #2, it will know full type information about `struct B`, but will
2856 * only know about forward declaration of `struct A` (in BTF terms, it will
2857 * have `BTF_KIND_FWD` type descriptor with name `B`).
2858 *
2859 * This compilation unit isolation means that it's possible that there is no
2860 * single CU with complete type information describing structs `S`, `A`, and
2861 * `B`. Also, we might get tons of duplicated and redundant type information.
2862 *
2863 * Additional complication we need to keep in mind comes from the fact that
2864 * types, in general, can form graphs containing cycles, not just DAGs.
2865 *
2866 * While algorithm does deduplication, it also merges and resolves type
2867 * information (unless disabled throught `struct btf_opts`), whenever possible.
2868 * E.g., in the example above with two compilation units having partial type
2869 * information for structs `A` and `B`, the output of algorithm will emit
2870 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2871 * (as well as type information for `int` and pointers), as if they were defined
2872 * in a single compilation unit as:
2873 *
2874 * struct A {
2875 * int a;
2876 * struct A* self;
2877 * struct S* parent;
2878 * };
2879 * struct B {
2880 * int b;
2881 * struct B* self;
2882 * struct S* parent;
2883 * };
2884 * struct S {
2885 * struct A* a_ptr;
2886 * struct B* b_ptr;
2887 * };
2888 *
2889 * Algorithm summary
2890 * =================
2891 *
2892 * Algorithm completes its work in 6 separate passes:
2893 *
2894 * 1. Strings deduplication.
2895 * 2. Primitive types deduplication (int, enum, fwd).
2896 * 3. Struct/union types deduplication.
2897 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2898 * protos, and const/volatile/restrict modifiers).
2899 * 5. Types compaction.
2900 * 6. Types remapping.
2901 *
2902 * Algorithm determines canonical type descriptor, which is a single
2903 * representative type for each truly unique type. This canonical type is the
2904 * one that will go into final deduplicated BTF type information. For
2905 * struct/unions, it is also the type that algorithm will merge additional type
2906 * information into (while resolving FWDs), as it discovers it from data in
2907 * other CUs. Each input BTF type eventually gets either mapped to itself, if
2908 * that type is canonical, or to some other type, if that type is equivalent
2909 * and was chosen as canonical representative. This mapping is stored in
2910 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2911 * FWD type got resolved to.
2912 *
2913 * To facilitate fast discovery of canonical types, we also maintain canonical
2914 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2915 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2916 * that match that signature. With sufficiently good choice of type signature
2917 * hashing function, we can limit number of canonical types for each unique type
2918 * signature to a very small number, allowing to find canonical type for any
2919 * duplicated type very quickly.
2920 *
2921 * Struct/union deduplication is the most critical part and algorithm for
2922 * deduplicating structs/unions is described in greater details in comments for
2923 * `btf_dedup_is_equiv` function.
2924 */
btf__dedup(struct btf * btf,struct btf_ext * btf_ext,const struct btf_dedup_opts * opts)2925 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2926 const struct btf_dedup_opts *opts)
2927 {
2928 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2929 int err;
2930
2931 if (IS_ERR(d)) {
2932 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2933 return libbpf_err(-EINVAL);
2934 }
2935
2936 if (btf_ensure_modifiable(btf)) {
2937 err = -ENOMEM;
2938 goto done;
2939 }
2940
2941 err = btf_dedup_prep(d);
2942 if (err) {
2943 pr_debug("btf_dedup_prep failed:%d\n", err);
2944 goto done;
2945 }
2946 err = btf_dedup_strings(d);
2947 if (err < 0) {
2948 pr_debug("btf_dedup_strings failed:%d\n", err);
2949 goto done;
2950 }
2951 err = btf_dedup_prim_types(d);
2952 if (err < 0) {
2953 pr_debug("btf_dedup_prim_types failed:%d\n", err);
2954 goto done;
2955 }
2956 err = btf_dedup_struct_types(d);
2957 if (err < 0) {
2958 pr_debug("btf_dedup_struct_types failed:%d\n", err);
2959 goto done;
2960 }
2961 err = btf_dedup_ref_types(d);
2962 if (err < 0) {
2963 pr_debug("btf_dedup_ref_types failed:%d\n", err);
2964 goto done;
2965 }
2966 err = btf_dedup_compact_types(d);
2967 if (err < 0) {
2968 pr_debug("btf_dedup_compact_types failed:%d\n", err);
2969 goto done;
2970 }
2971 err = btf_dedup_remap_types(d);
2972 if (err < 0) {
2973 pr_debug("btf_dedup_remap_types failed:%d\n", err);
2974 goto done;
2975 }
2976
2977 done:
2978 btf_dedup_free(d);
2979 return libbpf_err(err);
2980 }
2981
2982 #define BTF_UNPROCESSED_ID ((__u32)-1)
2983 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2984
2985 struct btf_dedup {
2986 /* .BTF section to be deduped in-place */
2987 struct btf *btf;
2988 /*
2989 * Optional .BTF.ext section. When provided, any strings referenced
2990 * from it will be taken into account when deduping strings
2991 */
2992 struct btf_ext *btf_ext;
2993 /*
2994 * This is a map from any type's signature hash to a list of possible
2995 * canonical representative type candidates. Hash collisions are
2996 * ignored, so even types of various kinds can share same list of
2997 * candidates, which is fine because we rely on subsequent
2998 * btf_xxx_equal() checks to authoritatively verify type equality.
2999 */
3000 struct hashmap *dedup_table;
3001 /* Canonical types map */
3002 __u32 *map;
3003 /* Hypothetical mapping, used during type graph equivalence checks */
3004 __u32 *hypot_map;
3005 __u32 *hypot_list;
3006 size_t hypot_cnt;
3007 size_t hypot_cap;
3008 /* Whether hypothetical mapping, if successful, would need to adjust
3009 * already canonicalized types (due to a new forward declaration to
3010 * concrete type resolution). In such case, during split BTF dedup
3011 * candidate type would still be considered as different, because base
3012 * BTF is considered to be immutable.
3013 */
3014 bool hypot_adjust_canon;
3015 /* Various option modifying behavior of algorithm */
3016 struct btf_dedup_opts opts;
3017 /* temporary strings deduplication state */
3018 struct strset *strs_set;
3019 };
3020
hash_combine(long h,long value)3021 static long hash_combine(long h, long value)
3022 {
3023 return h * 31 + value;
3024 }
3025
3026 #define for_each_dedup_cand(d, node, hash) \
3027 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
3028
btf_dedup_table_add(struct btf_dedup * d,long hash,__u32 type_id)3029 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3030 {
3031 return hashmap__append(d->dedup_table,
3032 (void *)hash, (void *)(long)type_id);
3033 }
3034
btf_dedup_hypot_map_add(struct btf_dedup * d,__u32 from_id,__u32 to_id)3035 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3036 __u32 from_id, __u32 to_id)
3037 {
3038 if (d->hypot_cnt == d->hypot_cap) {
3039 __u32 *new_list;
3040
3041 d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3042 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3043 if (!new_list)
3044 return -ENOMEM;
3045 d->hypot_list = new_list;
3046 }
3047 d->hypot_list[d->hypot_cnt++] = from_id;
3048 d->hypot_map[from_id] = to_id;
3049 return 0;
3050 }
3051
btf_dedup_clear_hypot_map(struct btf_dedup * d)3052 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3053 {
3054 int i;
3055
3056 for (i = 0; i < d->hypot_cnt; i++)
3057 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3058 d->hypot_cnt = 0;
3059 d->hypot_adjust_canon = false;
3060 }
3061
btf_dedup_free(struct btf_dedup * d)3062 static void btf_dedup_free(struct btf_dedup *d)
3063 {
3064 hashmap__free(d->dedup_table);
3065 d->dedup_table = NULL;
3066
3067 free(d->map);
3068 d->map = NULL;
3069
3070 free(d->hypot_map);
3071 d->hypot_map = NULL;
3072
3073 free(d->hypot_list);
3074 d->hypot_list = NULL;
3075
3076 free(d);
3077 }
3078
btf_dedup_identity_hash_fn(const void * key,void * ctx)3079 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3080 {
3081 return (size_t)key;
3082 }
3083
btf_dedup_collision_hash_fn(const void * key,void * ctx)3084 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3085 {
3086 return 0;
3087 }
3088
btf_dedup_equal_fn(const void * k1,const void * k2,void * ctx)3089 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3090 {
3091 return k1 == k2;
3092 }
3093
btf_dedup_new(struct btf * btf,struct btf_ext * btf_ext,const struct btf_dedup_opts * opts)3094 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3095 const struct btf_dedup_opts *opts)
3096 {
3097 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3098 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3099 int i, err = 0, type_cnt;
3100
3101 if (!d)
3102 return ERR_PTR(-ENOMEM);
3103
3104 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3105 /* dedup_table_size is now used only to force collisions in tests */
3106 if (opts && opts->dedup_table_size == 1)
3107 hash_fn = btf_dedup_collision_hash_fn;
3108
3109 d->btf = btf;
3110 d->btf_ext = btf_ext;
3111
3112 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3113 if (IS_ERR(d->dedup_table)) {
3114 err = PTR_ERR(d->dedup_table);
3115 d->dedup_table = NULL;
3116 goto done;
3117 }
3118
3119 type_cnt = btf__get_nr_types(btf) + 1;
3120 d->map = malloc(sizeof(__u32) * type_cnt);
3121 if (!d->map) {
3122 err = -ENOMEM;
3123 goto done;
3124 }
3125 /* special BTF "void" type is made canonical immediately */
3126 d->map[0] = 0;
3127 for (i = 1; i < type_cnt; i++) {
3128 struct btf_type *t = btf_type_by_id(d->btf, i);
3129
3130 /* VAR and DATASEC are never deduped and are self-canonical */
3131 if (btf_is_var(t) || btf_is_datasec(t))
3132 d->map[i] = i;
3133 else
3134 d->map[i] = BTF_UNPROCESSED_ID;
3135 }
3136
3137 d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3138 if (!d->hypot_map) {
3139 err = -ENOMEM;
3140 goto done;
3141 }
3142 for (i = 0; i < type_cnt; i++)
3143 d->hypot_map[i] = BTF_UNPROCESSED_ID;
3144
3145 done:
3146 if (err) {
3147 btf_dedup_free(d);
3148 return ERR_PTR(err);
3149 }
3150
3151 return d;
3152 }
3153
3154 /*
3155 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3156 * string and pass pointer to it to a provided callback `fn`.
3157 */
btf_for_each_str_off(struct btf_dedup * d,str_off_visit_fn fn,void * ctx)3158 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3159 {
3160 int i, r;
3161
3162 for (i = 0; i < d->btf->nr_types; i++) {
3163 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3164
3165 r = btf_type_visit_str_offs(t, fn, ctx);
3166 if (r)
3167 return r;
3168 }
3169
3170 if (!d->btf_ext)
3171 return 0;
3172
3173 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3174 if (r)
3175 return r;
3176
3177 return 0;
3178 }
3179
strs_dedup_remap_str_off(__u32 * str_off_ptr,void * ctx)3180 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3181 {
3182 struct btf_dedup *d = ctx;
3183 __u32 str_off = *str_off_ptr;
3184 const char *s;
3185 int off, err;
3186
3187 /* don't touch empty string or string in main BTF */
3188 if (str_off == 0 || str_off < d->btf->start_str_off)
3189 return 0;
3190
3191 s = btf__str_by_offset(d->btf, str_off);
3192 if (d->btf->base_btf) {
3193 err = btf__find_str(d->btf->base_btf, s);
3194 if (err >= 0) {
3195 *str_off_ptr = err;
3196 return 0;
3197 }
3198 if (err != -ENOENT)
3199 return err;
3200 }
3201
3202 off = strset__add_str(d->strs_set, s);
3203 if (off < 0)
3204 return off;
3205
3206 *str_off_ptr = d->btf->start_str_off + off;
3207 return 0;
3208 }
3209
3210 /*
3211 * Dedup string and filter out those that are not referenced from either .BTF
3212 * or .BTF.ext (if provided) sections.
3213 *
3214 * This is done by building index of all strings in BTF's string section,
3215 * then iterating over all entities that can reference strings (e.g., type
3216 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3217 * strings as used. After that all used strings are deduped and compacted into
3218 * sequential blob of memory and new offsets are calculated. Then all the string
3219 * references are iterated again and rewritten using new offsets.
3220 */
btf_dedup_strings(struct btf_dedup * d)3221 static int btf_dedup_strings(struct btf_dedup *d)
3222 {
3223 int err;
3224
3225 if (d->btf->strs_deduped)
3226 return 0;
3227
3228 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3229 if (IS_ERR(d->strs_set)) {
3230 err = PTR_ERR(d->strs_set);
3231 goto err_out;
3232 }
3233
3234 if (!d->btf->base_btf) {
3235 /* insert empty string; we won't be looking it up during strings
3236 * dedup, but it's good to have it for generic BTF string lookups
3237 */
3238 err = strset__add_str(d->strs_set, "");
3239 if (err < 0)
3240 goto err_out;
3241 }
3242
3243 /* remap string offsets */
3244 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3245 if (err)
3246 goto err_out;
3247
3248 /* replace BTF string data and hash with deduped ones */
3249 strset__free(d->btf->strs_set);
3250 d->btf->hdr->str_len = strset__data_size(d->strs_set);
3251 d->btf->strs_set = d->strs_set;
3252 d->strs_set = NULL;
3253 d->btf->strs_deduped = true;
3254 return 0;
3255
3256 err_out:
3257 strset__free(d->strs_set);
3258 d->strs_set = NULL;
3259
3260 return err;
3261 }
3262
btf_hash_common(struct btf_type * t)3263 static long btf_hash_common(struct btf_type *t)
3264 {
3265 long h;
3266
3267 h = hash_combine(0, t->name_off);
3268 h = hash_combine(h, t->info);
3269 h = hash_combine(h, t->size);
3270 return h;
3271 }
3272
btf_equal_common(struct btf_type * t1,struct btf_type * t2)3273 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3274 {
3275 return t1->name_off == t2->name_off &&
3276 t1->info == t2->info &&
3277 t1->size == t2->size;
3278 }
3279
3280 /* Calculate type signature hash of INT. */
btf_hash_int(struct btf_type * t)3281 static long btf_hash_int(struct btf_type *t)
3282 {
3283 __u32 info = *(__u32 *)(t + 1);
3284 long h;
3285
3286 h = btf_hash_common(t);
3287 h = hash_combine(h, info);
3288 return h;
3289 }
3290
3291 /* Check structural equality of two INTs. */
btf_equal_int(struct btf_type * t1,struct btf_type * t2)3292 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3293 {
3294 __u32 info1, info2;
3295
3296 if (!btf_equal_common(t1, t2))
3297 return false;
3298 info1 = *(__u32 *)(t1 + 1);
3299 info2 = *(__u32 *)(t2 + 1);
3300 return info1 == info2;
3301 }
3302
3303 /* Calculate type signature hash of ENUM. */
btf_hash_enum(struct btf_type * t)3304 static long btf_hash_enum(struct btf_type *t)
3305 {
3306 long h;
3307
3308 /* don't hash vlen and enum members to support enum fwd resolving */
3309 h = hash_combine(0, t->name_off);
3310 h = hash_combine(h, t->info & ~0xffff);
3311 h = hash_combine(h, t->size);
3312 return h;
3313 }
3314
3315 /* Check structural equality of two ENUMs. */
btf_equal_enum(struct btf_type * t1,struct btf_type * t2)3316 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3317 {
3318 const struct btf_enum *m1, *m2;
3319 __u16 vlen;
3320 int i;
3321
3322 if (!btf_equal_common(t1, t2))
3323 return false;
3324
3325 vlen = btf_vlen(t1);
3326 m1 = btf_enum(t1);
3327 m2 = btf_enum(t2);
3328 for (i = 0; i < vlen; i++) {
3329 if (m1->name_off != m2->name_off || m1->val != m2->val)
3330 return false;
3331 m1++;
3332 m2++;
3333 }
3334 return true;
3335 }
3336
btf_is_enum_fwd(struct btf_type * t)3337 static inline bool btf_is_enum_fwd(struct btf_type *t)
3338 {
3339 return btf_is_enum(t) && btf_vlen(t) == 0;
3340 }
3341
btf_compat_enum(struct btf_type * t1,struct btf_type * t2)3342 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3343 {
3344 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3345 return btf_equal_enum(t1, t2);
3346 /* ignore vlen when comparing */
3347 return t1->name_off == t2->name_off &&
3348 (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3349 t1->size == t2->size;
3350 }
3351
3352 /*
3353 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3354 * as referenced type IDs equivalence is established separately during type
3355 * graph equivalence check algorithm.
3356 */
btf_hash_struct(struct btf_type * t)3357 static long btf_hash_struct(struct btf_type *t)
3358 {
3359 const struct btf_member *member = btf_members(t);
3360 __u32 vlen = btf_vlen(t);
3361 long h = btf_hash_common(t);
3362 int i;
3363
3364 for (i = 0; i < vlen; i++) {
3365 h = hash_combine(h, member->name_off);
3366 h = hash_combine(h, member->offset);
3367 /* no hashing of referenced type ID, it can be unresolved yet */
3368 member++;
3369 }
3370 return h;
3371 }
3372
3373 /*
3374 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3375 * type IDs. This check is performed during type graph equivalence check and
3376 * referenced types equivalence is checked separately.
3377 */
btf_shallow_equal_struct(struct btf_type * t1,struct btf_type * t2)3378 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3379 {
3380 const struct btf_member *m1, *m2;
3381 __u16 vlen;
3382 int i;
3383
3384 if (!btf_equal_common(t1, t2))
3385 return false;
3386
3387 vlen = btf_vlen(t1);
3388 m1 = btf_members(t1);
3389 m2 = btf_members(t2);
3390 for (i = 0; i < vlen; i++) {
3391 if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3392 return false;
3393 m1++;
3394 m2++;
3395 }
3396 return true;
3397 }
3398
3399 /*
3400 * Calculate type signature hash of ARRAY, including referenced type IDs,
3401 * under assumption that they were already resolved to canonical type IDs and
3402 * are not going to change.
3403 */
btf_hash_array(struct btf_type * t)3404 static long btf_hash_array(struct btf_type *t)
3405 {
3406 const struct btf_array *info = btf_array(t);
3407 long h = btf_hash_common(t);
3408
3409 h = hash_combine(h, info->type);
3410 h = hash_combine(h, info->index_type);
3411 h = hash_combine(h, info->nelems);
3412 return h;
3413 }
3414
3415 /*
3416 * Check exact equality of two ARRAYs, taking into account referenced
3417 * type IDs, under assumption that they were already resolved to canonical
3418 * type IDs and are not going to change.
3419 * This function is called during reference types deduplication to compare
3420 * ARRAY to potential canonical representative.
3421 */
btf_equal_array(struct btf_type * t1,struct btf_type * t2)3422 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3423 {
3424 const struct btf_array *info1, *info2;
3425
3426 if (!btf_equal_common(t1, t2))
3427 return false;
3428
3429 info1 = btf_array(t1);
3430 info2 = btf_array(t2);
3431 return info1->type == info2->type &&
3432 info1->index_type == info2->index_type &&
3433 info1->nelems == info2->nelems;
3434 }
3435
3436 /*
3437 * Check structural compatibility of two ARRAYs, ignoring referenced type
3438 * IDs. This check is performed during type graph equivalence check and
3439 * referenced types equivalence is checked separately.
3440 */
btf_compat_array(struct btf_type * t1,struct btf_type * t2)3441 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3442 {
3443 if (!btf_equal_common(t1, t2))
3444 return false;
3445
3446 return btf_array(t1)->nelems == btf_array(t2)->nelems;
3447 }
3448
3449 /*
3450 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3451 * under assumption that they were already resolved to canonical type IDs and
3452 * are not going to change.
3453 */
btf_hash_fnproto(struct btf_type * t)3454 static long btf_hash_fnproto(struct btf_type *t)
3455 {
3456 const struct btf_param *member = btf_params(t);
3457 __u16 vlen = btf_vlen(t);
3458 long h = btf_hash_common(t);
3459 int i;
3460
3461 for (i = 0; i < vlen; i++) {
3462 h = hash_combine(h, member->name_off);
3463 h = hash_combine(h, member->type);
3464 member++;
3465 }
3466 return h;
3467 }
3468
3469 /*
3470 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3471 * type IDs, under assumption that they were already resolved to canonical
3472 * type IDs and are not going to change.
3473 * This function is called during reference types deduplication to compare
3474 * FUNC_PROTO to potential canonical representative.
3475 */
btf_equal_fnproto(struct btf_type * t1,struct btf_type * t2)3476 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3477 {
3478 const struct btf_param *m1, *m2;
3479 __u16 vlen;
3480 int i;
3481
3482 if (!btf_equal_common(t1, t2))
3483 return false;
3484
3485 vlen = btf_vlen(t1);
3486 m1 = btf_params(t1);
3487 m2 = btf_params(t2);
3488 for (i = 0; i < vlen; i++) {
3489 if (m1->name_off != m2->name_off || m1->type != m2->type)
3490 return false;
3491 m1++;
3492 m2++;
3493 }
3494 return true;
3495 }
3496
3497 /*
3498 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3499 * IDs. This check is performed during type graph equivalence check and
3500 * referenced types equivalence is checked separately.
3501 */
btf_compat_fnproto(struct btf_type * t1,struct btf_type * t2)3502 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3503 {
3504 const struct btf_param *m1, *m2;
3505 __u16 vlen;
3506 int i;
3507
3508 /* skip return type ID */
3509 if (t1->name_off != t2->name_off || t1->info != t2->info)
3510 return false;
3511
3512 vlen = btf_vlen(t1);
3513 m1 = btf_params(t1);
3514 m2 = btf_params(t2);
3515 for (i = 0; i < vlen; i++) {
3516 if (m1->name_off != m2->name_off)
3517 return false;
3518 m1++;
3519 m2++;
3520 }
3521 return true;
3522 }
3523
3524 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3525 * types and initializing the rest of the state (canonical type mapping) for
3526 * the fixed base BTF part.
3527 */
btf_dedup_prep(struct btf_dedup * d)3528 static int btf_dedup_prep(struct btf_dedup *d)
3529 {
3530 struct btf_type *t;
3531 int type_id;
3532 long h;
3533
3534 if (!d->btf->base_btf)
3535 return 0;
3536
3537 for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3538 t = btf_type_by_id(d->btf, type_id);
3539
3540 /* all base BTF types are self-canonical by definition */
3541 d->map[type_id] = type_id;
3542
3543 switch (btf_kind(t)) {
3544 case BTF_KIND_VAR:
3545 case BTF_KIND_DATASEC:
3546 /* VAR and DATASEC are never hash/deduplicated */
3547 continue;
3548 case BTF_KIND_CONST:
3549 case BTF_KIND_VOLATILE:
3550 case BTF_KIND_RESTRICT:
3551 case BTF_KIND_PTR:
3552 case BTF_KIND_FWD:
3553 case BTF_KIND_TYPEDEF:
3554 case BTF_KIND_FUNC:
3555 case BTF_KIND_FLOAT:
3556 h = btf_hash_common(t);
3557 break;
3558 case BTF_KIND_INT:
3559 h = btf_hash_int(t);
3560 break;
3561 case BTF_KIND_ENUM:
3562 h = btf_hash_enum(t);
3563 break;
3564 case BTF_KIND_STRUCT:
3565 case BTF_KIND_UNION:
3566 h = btf_hash_struct(t);
3567 break;
3568 case BTF_KIND_ARRAY:
3569 h = btf_hash_array(t);
3570 break;
3571 case BTF_KIND_FUNC_PROTO:
3572 h = btf_hash_fnproto(t);
3573 break;
3574 default:
3575 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3576 return -EINVAL;
3577 }
3578 if (btf_dedup_table_add(d, h, type_id))
3579 return -ENOMEM;
3580 }
3581
3582 return 0;
3583 }
3584
3585 /*
3586 * Deduplicate primitive types, that can't reference other types, by calculating
3587 * their type signature hash and comparing them with any possible canonical
3588 * candidate. If no canonical candidate matches, type itself is marked as
3589 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3590 */
btf_dedup_prim_type(struct btf_dedup * d,__u32 type_id)3591 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3592 {
3593 struct btf_type *t = btf_type_by_id(d->btf, type_id);
3594 struct hashmap_entry *hash_entry;
3595 struct btf_type *cand;
3596 /* if we don't find equivalent type, then we are canonical */
3597 __u32 new_id = type_id;
3598 __u32 cand_id;
3599 long h;
3600
3601 switch (btf_kind(t)) {
3602 case BTF_KIND_CONST:
3603 case BTF_KIND_VOLATILE:
3604 case BTF_KIND_RESTRICT:
3605 case BTF_KIND_PTR:
3606 case BTF_KIND_TYPEDEF:
3607 case BTF_KIND_ARRAY:
3608 case BTF_KIND_STRUCT:
3609 case BTF_KIND_UNION:
3610 case BTF_KIND_FUNC:
3611 case BTF_KIND_FUNC_PROTO:
3612 case BTF_KIND_VAR:
3613 case BTF_KIND_DATASEC:
3614 return 0;
3615
3616 case BTF_KIND_INT:
3617 h = btf_hash_int(t);
3618 for_each_dedup_cand(d, hash_entry, h) {
3619 cand_id = (__u32)(long)hash_entry->value;
3620 cand = btf_type_by_id(d->btf, cand_id);
3621 if (btf_equal_int(t, cand)) {
3622 new_id = cand_id;
3623 break;
3624 }
3625 }
3626 break;
3627
3628 case BTF_KIND_ENUM:
3629 h = btf_hash_enum(t);
3630 for_each_dedup_cand(d, hash_entry, h) {
3631 cand_id = (__u32)(long)hash_entry->value;
3632 cand = btf_type_by_id(d->btf, cand_id);
3633 if (btf_equal_enum(t, cand)) {
3634 new_id = cand_id;
3635 break;
3636 }
3637 if (d->opts.dont_resolve_fwds)
3638 continue;
3639 if (btf_compat_enum(t, cand)) {
3640 if (btf_is_enum_fwd(t)) {
3641 /* resolve fwd to full enum */
3642 new_id = cand_id;
3643 break;
3644 }
3645 /* resolve canonical enum fwd to full enum */
3646 d->map[cand_id] = type_id;
3647 }
3648 }
3649 break;
3650
3651 case BTF_KIND_FWD:
3652 case BTF_KIND_FLOAT:
3653 h = btf_hash_common(t);
3654 for_each_dedup_cand(d, hash_entry, h) {
3655 cand_id = (__u32)(long)hash_entry->value;
3656 cand = btf_type_by_id(d->btf, cand_id);
3657 if (btf_equal_common(t, cand)) {
3658 new_id = cand_id;
3659 break;
3660 }
3661 }
3662 break;
3663
3664 default:
3665 return -EINVAL;
3666 }
3667
3668 d->map[type_id] = new_id;
3669 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3670 return -ENOMEM;
3671
3672 return 0;
3673 }
3674
btf_dedup_prim_types(struct btf_dedup * d)3675 static int btf_dedup_prim_types(struct btf_dedup *d)
3676 {
3677 int i, err;
3678
3679 for (i = 0; i < d->btf->nr_types; i++) {
3680 err = btf_dedup_prim_type(d, d->btf->start_id + i);
3681 if (err)
3682 return err;
3683 }
3684 return 0;
3685 }
3686
3687 /*
3688 * Check whether type is already mapped into canonical one (could be to itself).
3689 */
is_type_mapped(struct btf_dedup * d,uint32_t type_id)3690 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3691 {
3692 return d->map[type_id] <= BTF_MAX_NR_TYPES;
3693 }
3694
3695 /*
3696 * Resolve type ID into its canonical type ID, if any; otherwise return original
3697 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3698 * STRUCT/UNION link and resolve it into canonical type ID as well.
3699 */
resolve_type_id(struct btf_dedup * d,__u32 type_id)3700 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3701 {
3702 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3703 type_id = d->map[type_id];
3704 return type_id;
3705 }
3706
3707 /*
3708 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3709 * type ID.
3710 */
resolve_fwd_id(struct btf_dedup * d,uint32_t type_id)3711 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3712 {
3713 __u32 orig_type_id = type_id;
3714
3715 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3716 return type_id;
3717
3718 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3719 type_id = d->map[type_id];
3720
3721 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3722 return type_id;
3723
3724 return orig_type_id;
3725 }
3726
3727
btf_fwd_kind(struct btf_type * t)3728 static inline __u16 btf_fwd_kind(struct btf_type *t)
3729 {
3730 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3731 }
3732
3733 /* Check if given two types are identical ARRAY definitions */
btf_dedup_identical_arrays(struct btf_dedup * d,__u32 id1,__u32 id2)3734 static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3735 {
3736 struct btf_type *t1, *t2;
3737
3738 t1 = btf_type_by_id(d->btf, id1);
3739 t2 = btf_type_by_id(d->btf, id2);
3740 if (!btf_is_array(t1) || !btf_is_array(t2))
3741 return false;
3742
3743 return btf_equal_array(t1, t2);
3744 }
3745
3746 /* Check if given two types are identical STRUCT/UNION definitions */
btf_dedup_identical_structs(struct btf_dedup * d,__u32 id1,__u32 id2)3747 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
3748 {
3749 const struct btf_member *m1, *m2;
3750 struct btf_type *t1, *t2;
3751 int n, i;
3752
3753 t1 = btf_type_by_id(d->btf, id1);
3754 t2 = btf_type_by_id(d->btf, id2);
3755
3756 if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
3757 return false;
3758
3759 if (!btf_shallow_equal_struct(t1, t2))
3760 return false;
3761
3762 m1 = btf_members(t1);
3763 m2 = btf_members(t2);
3764 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
3765 if (m1->type != m2->type &&
3766 !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
3767 !btf_dedup_identical_structs(d, m1->type, m2->type))
3768 return false;
3769 }
3770 return true;
3771 }
3772
3773 /*
3774 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3775 * call it "candidate graph" in this description for brevity) to a type graph
3776 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3777 * here, though keep in mind that not all types in canonical graph are
3778 * necessarily canonical representatives themselves, some of them might be
3779 * duplicates or its uniqueness might not have been established yet).
3780 * Returns:
3781 * - >0, if type graphs are equivalent;
3782 * - 0, if not equivalent;
3783 * - <0, on error.
3784 *
3785 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3786 * equivalence of BTF types at each step. If at any point BTF types in candidate
3787 * and canonical graphs are not compatible structurally, whole graphs are
3788 * incompatible. If types are structurally equivalent (i.e., all information
3789 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3790 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3791 * If a type references other types, then those referenced types are checked
3792 * for equivalence recursively.
3793 *
3794 * During DFS traversal, if we find that for current `canon_id` type we
3795 * already have some mapping in hypothetical map, we check for two possible
3796 * situations:
3797 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3798 * happen when type graphs have cycles. In this case we assume those two
3799 * types are equivalent.
3800 * - `canon_id` is mapped to different type. This is contradiction in our
3801 * hypothetical mapping, because same graph in canonical graph corresponds
3802 * to two different types in candidate graph, which for equivalent type
3803 * graphs shouldn't happen. This condition terminates equivalence check
3804 * with negative result.
3805 *
3806 * If type graphs traversal exhausts types to check and find no contradiction,
3807 * then type graphs are equivalent.
3808 *
3809 * When checking types for equivalence, there is one special case: FWD types.
3810 * If FWD type resolution is allowed and one of the types (either from canonical
3811 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3812 * flag) and their names match, hypothetical mapping is updated to point from
3813 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3814 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3815 *
3816 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3817 * if there are two exactly named (or anonymous) structs/unions that are
3818 * compatible structurally, one of which has FWD field, while other is concrete
3819 * STRUCT/UNION, but according to C sources they are different structs/unions
3820 * that are referencing different types with the same name. This is extremely
3821 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3822 * this logic is causing problems.
3823 *
3824 * Doing FWD resolution means that both candidate and/or canonical graphs can
3825 * consists of portions of the graph that come from multiple compilation units.
3826 * This is due to the fact that types within single compilation unit are always
3827 * deduplicated and FWDs are already resolved, if referenced struct/union
3828 * definiton is available. So, if we had unresolved FWD and found corresponding
3829 * STRUCT/UNION, they will be from different compilation units. This
3830 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3831 * type graph will likely have at least two different BTF types that describe
3832 * same type (e.g., most probably there will be two different BTF types for the
3833 * same 'int' primitive type) and could even have "overlapping" parts of type
3834 * graph that describe same subset of types.
3835 *
3836 * This in turn means that our assumption that each type in canonical graph
3837 * must correspond to exactly one type in candidate graph might not hold
3838 * anymore and will make it harder to detect contradictions using hypothetical
3839 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3840 * resolution only in canonical graph. FWDs in candidate graphs are never
3841 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3842 * that can occur:
3843 * - Both types in canonical and candidate graphs are FWDs. If they are
3844 * structurally equivalent, then they can either be both resolved to the
3845 * same STRUCT/UNION or not resolved at all. In both cases they are
3846 * equivalent and there is no need to resolve FWD on candidate side.
3847 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3848 * so nothing to resolve as well, algorithm will check equivalence anyway.
3849 * - Type in canonical graph is FWD, while type in candidate is concrete
3850 * STRUCT/UNION. In this case candidate graph comes from single compilation
3851 * unit, so there is exactly one BTF type for each unique C type. After
3852 * resolving FWD into STRUCT/UNION, there might be more than one BTF type
3853 * in canonical graph mapping to single BTF type in candidate graph, but
3854 * because hypothetical mapping maps from canonical to candidate types, it's
3855 * alright, and we still maintain the property of having single `canon_id`
3856 * mapping to single `cand_id` (there could be two different `canon_id`
3857 * mapped to the same `cand_id`, but it's not contradictory).
3858 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3859 * graph is FWD. In this case we are just going to check compatibility of
3860 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3861 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3862 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3863 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3864 * canonical graph.
3865 */
btf_dedup_is_equiv(struct btf_dedup * d,__u32 cand_id,__u32 canon_id)3866 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3867 __u32 canon_id)
3868 {
3869 struct btf_type *cand_type;
3870 struct btf_type *canon_type;
3871 __u32 hypot_type_id;
3872 __u16 cand_kind;
3873 __u16 canon_kind;
3874 int i, eq;
3875
3876 /* if both resolve to the same canonical, they must be equivalent */
3877 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3878 return 1;
3879
3880 canon_id = resolve_fwd_id(d, canon_id);
3881
3882 hypot_type_id = d->hypot_map[canon_id];
3883 if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3884 if (hypot_type_id == cand_id)
3885 return 1;
3886 /* In some cases compiler will generate different DWARF types
3887 * for *identical* array type definitions and use them for
3888 * different fields within the *same* struct. This breaks type
3889 * equivalence check, which makes an assumption that candidate
3890 * types sub-graph has a consistent and deduped-by-compiler
3891 * types within a single CU. So work around that by explicitly
3892 * allowing identical array types here.
3893 */
3894 if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
3895 return 1;
3896 /* It turns out that similar situation can happen with
3897 * struct/union sometimes, sigh... Handle the case where
3898 * structs/unions are exactly the same, down to the referenced
3899 * type IDs. Anything more complicated (e.g., if referenced
3900 * types are different, but equivalent) is *way more*
3901 * complicated and requires a many-to-many equivalence mapping.
3902 */
3903 if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
3904 return 1;
3905 return 0;
3906 }
3907
3908 if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3909 return -ENOMEM;
3910
3911 cand_type = btf_type_by_id(d->btf, cand_id);
3912 canon_type = btf_type_by_id(d->btf, canon_id);
3913 cand_kind = btf_kind(cand_type);
3914 canon_kind = btf_kind(canon_type);
3915
3916 if (cand_type->name_off != canon_type->name_off)
3917 return 0;
3918
3919 /* FWD <--> STRUCT/UNION equivalence check, if enabled */
3920 if (!d->opts.dont_resolve_fwds
3921 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3922 && cand_kind != canon_kind) {
3923 __u16 real_kind;
3924 __u16 fwd_kind;
3925
3926 if (cand_kind == BTF_KIND_FWD) {
3927 real_kind = canon_kind;
3928 fwd_kind = btf_fwd_kind(cand_type);
3929 } else {
3930 real_kind = cand_kind;
3931 fwd_kind = btf_fwd_kind(canon_type);
3932 /* we'd need to resolve base FWD to STRUCT/UNION */
3933 if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3934 d->hypot_adjust_canon = true;
3935 }
3936 return fwd_kind == real_kind;
3937 }
3938
3939 if (cand_kind != canon_kind)
3940 return 0;
3941
3942 switch (cand_kind) {
3943 case BTF_KIND_INT:
3944 return btf_equal_int(cand_type, canon_type);
3945
3946 case BTF_KIND_ENUM:
3947 if (d->opts.dont_resolve_fwds)
3948 return btf_equal_enum(cand_type, canon_type);
3949 else
3950 return btf_compat_enum(cand_type, canon_type);
3951
3952 case BTF_KIND_FWD:
3953 case BTF_KIND_FLOAT:
3954 return btf_equal_common(cand_type, canon_type);
3955
3956 case BTF_KIND_CONST:
3957 case BTF_KIND_VOLATILE:
3958 case BTF_KIND_RESTRICT:
3959 case BTF_KIND_PTR:
3960 case BTF_KIND_TYPEDEF:
3961 case BTF_KIND_FUNC:
3962 if (cand_type->info != canon_type->info)
3963 return 0;
3964 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3965
3966 case BTF_KIND_ARRAY: {
3967 const struct btf_array *cand_arr, *canon_arr;
3968
3969 if (!btf_compat_array(cand_type, canon_type))
3970 return 0;
3971 cand_arr = btf_array(cand_type);
3972 canon_arr = btf_array(canon_type);
3973 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
3974 if (eq <= 0)
3975 return eq;
3976 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3977 }
3978
3979 case BTF_KIND_STRUCT:
3980 case BTF_KIND_UNION: {
3981 const struct btf_member *cand_m, *canon_m;
3982 __u16 vlen;
3983
3984 if (!btf_shallow_equal_struct(cand_type, canon_type))
3985 return 0;
3986 vlen = btf_vlen(cand_type);
3987 cand_m = btf_members(cand_type);
3988 canon_m = btf_members(canon_type);
3989 for (i = 0; i < vlen; i++) {
3990 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3991 if (eq <= 0)
3992 return eq;
3993 cand_m++;
3994 canon_m++;
3995 }
3996
3997 return 1;
3998 }
3999
4000 case BTF_KIND_FUNC_PROTO: {
4001 const struct btf_param *cand_p, *canon_p;
4002 __u16 vlen;
4003
4004 if (!btf_compat_fnproto(cand_type, canon_type))
4005 return 0;
4006 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4007 if (eq <= 0)
4008 return eq;
4009 vlen = btf_vlen(cand_type);
4010 cand_p = btf_params(cand_type);
4011 canon_p = btf_params(canon_type);
4012 for (i = 0; i < vlen; i++) {
4013 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4014 if (eq <= 0)
4015 return eq;
4016 cand_p++;
4017 canon_p++;
4018 }
4019 return 1;
4020 }
4021
4022 default:
4023 return -EINVAL;
4024 }
4025 return 0;
4026 }
4027
4028 /*
4029 * Use hypothetical mapping, produced by successful type graph equivalence
4030 * check, to augment existing struct/union canonical mapping, where possible.
4031 *
4032 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4033 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4034 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4035 * we are recording the mapping anyway. As opposed to carefulness required
4036 * for struct/union correspondence mapping (described below), for FWD resolution
4037 * it's not important, as by the time that FWD type (reference type) will be
4038 * deduplicated all structs/unions will be deduped already anyway.
4039 *
4040 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4041 * not required for correctness. It needs to be done carefully to ensure that
4042 * struct/union from candidate's type graph is not mapped into corresponding
4043 * struct/union from canonical type graph that itself hasn't been resolved into
4044 * canonical representative. The only guarantee we have is that canonical
4045 * struct/union was determined as canonical and that won't change. But any
4046 * types referenced through that struct/union fields could have been not yet
4047 * resolved, so in case like that it's too early to establish any kind of
4048 * correspondence between structs/unions.
4049 *
4050 * No canonical correspondence is derived for primitive types (they are already
4051 * deduplicated completely already anyway) or reference types (they rely on
4052 * stability of struct/union canonical relationship for equivalence checks).
4053 */
btf_dedup_merge_hypot_map(struct btf_dedup * d)4054 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4055 {
4056 __u32 canon_type_id, targ_type_id;
4057 __u16 t_kind, c_kind;
4058 __u32 t_id, c_id;
4059 int i;
4060
4061 for (i = 0; i < d->hypot_cnt; i++) {
4062 canon_type_id = d->hypot_list[i];
4063 targ_type_id = d->hypot_map[canon_type_id];
4064 t_id = resolve_type_id(d, targ_type_id);
4065 c_id = resolve_type_id(d, canon_type_id);
4066 t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4067 c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4068 /*
4069 * Resolve FWD into STRUCT/UNION.
4070 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4071 * mapped to canonical representative (as opposed to
4072 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4073 * eventually that struct is going to be mapped and all resolved
4074 * FWDs will automatically resolve to correct canonical
4075 * representative. This will happen before ref type deduping,
4076 * which critically depends on stability of these mapping. This
4077 * stability is not a requirement for STRUCT/UNION equivalence
4078 * checks, though.
4079 */
4080
4081 /* if it's the split BTF case, we still need to point base FWD
4082 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4083 * will be resolved against base FWD. If we don't point base
4084 * canonical FWD to the resolved STRUCT/UNION, then all the
4085 * FWDs in split BTF won't be correctly resolved to a proper
4086 * STRUCT/UNION.
4087 */
4088 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4089 d->map[c_id] = t_id;
4090
4091 /* if graph equivalence determined that we'd need to adjust
4092 * base canonical types, then we need to only point base FWDs
4093 * to STRUCTs/UNIONs and do no more modifications. For all
4094 * other purposes the type graphs were not equivalent.
4095 */
4096 if (d->hypot_adjust_canon)
4097 continue;
4098
4099 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4100 d->map[t_id] = c_id;
4101
4102 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4103 c_kind != BTF_KIND_FWD &&
4104 is_type_mapped(d, c_id) &&
4105 !is_type_mapped(d, t_id)) {
4106 /*
4107 * as a perf optimization, we can map struct/union
4108 * that's part of type graph we just verified for
4109 * equivalence. We can do that for struct/union that has
4110 * canonical representative only, though.
4111 */
4112 d->map[t_id] = c_id;
4113 }
4114 }
4115 }
4116
4117 /*
4118 * Deduplicate struct/union types.
4119 *
4120 * For each struct/union type its type signature hash is calculated, taking
4121 * into account type's name, size, number, order and names of fields, but
4122 * ignoring type ID's referenced from fields, because they might not be deduped
4123 * completely until after reference types deduplication phase. This type hash
4124 * is used to iterate over all potential canonical types, sharing same hash.
4125 * For each canonical candidate we check whether type graphs that they form
4126 * (through referenced types in fields and so on) are equivalent using algorithm
4127 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4128 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4129 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4130 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4131 * potentially map other structs/unions to their canonical representatives,
4132 * if such relationship hasn't yet been established. This speeds up algorithm
4133 * by eliminating some of the duplicate work.
4134 *
4135 * If no matching canonical representative was found, struct/union is marked
4136 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4137 * for further look ups.
4138 */
btf_dedup_struct_type(struct btf_dedup * d,__u32 type_id)4139 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4140 {
4141 struct btf_type *cand_type, *t;
4142 struct hashmap_entry *hash_entry;
4143 /* if we don't find equivalent type, then we are canonical */
4144 __u32 new_id = type_id;
4145 __u16 kind;
4146 long h;
4147
4148 /* already deduped or is in process of deduping (loop detected) */
4149 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4150 return 0;
4151
4152 t = btf_type_by_id(d->btf, type_id);
4153 kind = btf_kind(t);
4154
4155 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4156 return 0;
4157
4158 h = btf_hash_struct(t);
4159 for_each_dedup_cand(d, hash_entry, h) {
4160 __u32 cand_id = (__u32)(long)hash_entry->value;
4161 int eq;
4162
4163 /*
4164 * Even though btf_dedup_is_equiv() checks for
4165 * btf_shallow_equal_struct() internally when checking two
4166 * structs (unions) for equivalence, we need to guard here
4167 * from picking matching FWD type as a dedup candidate.
4168 * This can happen due to hash collision. In such case just
4169 * relying on btf_dedup_is_equiv() would lead to potentially
4170 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4171 * FWD and compatible STRUCT/UNION are considered equivalent.
4172 */
4173 cand_type = btf_type_by_id(d->btf, cand_id);
4174 if (!btf_shallow_equal_struct(t, cand_type))
4175 continue;
4176
4177 btf_dedup_clear_hypot_map(d);
4178 eq = btf_dedup_is_equiv(d, type_id, cand_id);
4179 if (eq < 0)
4180 return eq;
4181 if (!eq)
4182 continue;
4183 btf_dedup_merge_hypot_map(d);
4184 if (d->hypot_adjust_canon) /* not really equivalent */
4185 continue;
4186 new_id = cand_id;
4187 break;
4188 }
4189
4190 d->map[type_id] = new_id;
4191 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4192 return -ENOMEM;
4193
4194 return 0;
4195 }
4196
btf_dedup_struct_types(struct btf_dedup * d)4197 static int btf_dedup_struct_types(struct btf_dedup *d)
4198 {
4199 int i, err;
4200
4201 for (i = 0; i < d->btf->nr_types; i++) {
4202 err = btf_dedup_struct_type(d, d->btf->start_id + i);
4203 if (err)
4204 return err;
4205 }
4206 return 0;
4207 }
4208
4209 /*
4210 * Deduplicate reference type.
4211 *
4212 * Once all primitive and struct/union types got deduplicated, we can easily
4213 * deduplicate all other (reference) BTF types. This is done in two steps:
4214 *
4215 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4216 * resolution can be done either immediately for primitive or struct/union types
4217 * (because they were deduped in previous two phases) or recursively for
4218 * reference types. Recursion will always terminate at either primitive or
4219 * struct/union type, at which point we can "unwind" chain of reference types
4220 * one by one. There is no danger of encountering cycles because in C type
4221 * system the only way to form type cycle is through struct/union, so any chain
4222 * of reference types, even those taking part in a type cycle, will inevitably
4223 * reach struct/union at some point.
4224 *
4225 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4226 * becomes "stable", in the sense that no further deduplication will cause
4227 * any changes to it. With that, it's now possible to calculate type's signature
4228 * hash (this time taking into account referenced type IDs) and loop over all
4229 * potential canonical representatives. If no match was found, current type
4230 * will become canonical representative of itself and will be added into
4231 * btf_dedup->dedup_table as another possible canonical representative.
4232 */
btf_dedup_ref_type(struct btf_dedup * d,__u32 type_id)4233 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4234 {
4235 struct hashmap_entry *hash_entry;
4236 __u32 new_id = type_id, cand_id;
4237 struct btf_type *t, *cand;
4238 /* if we don't find equivalent type, then we are representative type */
4239 int ref_type_id;
4240 long h;
4241
4242 if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4243 return -ELOOP;
4244 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4245 return resolve_type_id(d, type_id);
4246
4247 t = btf_type_by_id(d->btf, type_id);
4248 d->map[type_id] = BTF_IN_PROGRESS_ID;
4249
4250 switch (btf_kind(t)) {
4251 case BTF_KIND_CONST:
4252 case BTF_KIND_VOLATILE:
4253 case BTF_KIND_RESTRICT:
4254 case BTF_KIND_PTR:
4255 case BTF_KIND_TYPEDEF:
4256 case BTF_KIND_FUNC:
4257 ref_type_id = btf_dedup_ref_type(d, t->type);
4258 if (ref_type_id < 0)
4259 return ref_type_id;
4260 t->type = ref_type_id;
4261
4262 h = btf_hash_common(t);
4263 for_each_dedup_cand(d, hash_entry, h) {
4264 cand_id = (__u32)(long)hash_entry->value;
4265 cand = btf_type_by_id(d->btf, cand_id);
4266 if (btf_equal_common(t, cand)) {
4267 new_id = cand_id;
4268 break;
4269 }
4270 }
4271 break;
4272
4273 case BTF_KIND_ARRAY: {
4274 struct btf_array *info = btf_array(t);
4275
4276 ref_type_id = btf_dedup_ref_type(d, info->type);
4277 if (ref_type_id < 0)
4278 return ref_type_id;
4279 info->type = ref_type_id;
4280
4281 ref_type_id = btf_dedup_ref_type(d, info->index_type);
4282 if (ref_type_id < 0)
4283 return ref_type_id;
4284 info->index_type = ref_type_id;
4285
4286 h = btf_hash_array(t);
4287 for_each_dedup_cand(d, hash_entry, h) {
4288 cand_id = (__u32)(long)hash_entry->value;
4289 cand = btf_type_by_id(d->btf, cand_id);
4290 if (btf_equal_array(t, cand)) {
4291 new_id = cand_id;
4292 break;
4293 }
4294 }
4295 break;
4296 }
4297
4298 case BTF_KIND_FUNC_PROTO: {
4299 struct btf_param *param;
4300 __u16 vlen;
4301 int i;
4302
4303 ref_type_id = btf_dedup_ref_type(d, t->type);
4304 if (ref_type_id < 0)
4305 return ref_type_id;
4306 t->type = ref_type_id;
4307
4308 vlen = btf_vlen(t);
4309 param = btf_params(t);
4310 for (i = 0; i < vlen; i++) {
4311 ref_type_id = btf_dedup_ref_type(d, param->type);
4312 if (ref_type_id < 0)
4313 return ref_type_id;
4314 param->type = ref_type_id;
4315 param++;
4316 }
4317
4318 h = btf_hash_fnproto(t);
4319 for_each_dedup_cand(d, hash_entry, h) {
4320 cand_id = (__u32)(long)hash_entry->value;
4321 cand = btf_type_by_id(d->btf, cand_id);
4322 if (btf_equal_fnproto(t, cand)) {
4323 new_id = cand_id;
4324 break;
4325 }
4326 }
4327 break;
4328 }
4329
4330 default:
4331 return -EINVAL;
4332 }
4333
4334 d->map[type_id] = new_id;
4335 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4336 return -ENOMEM;
4337
4338 return new_id;
4339 }
4340
btf_dedup_ref_types(struct btf_dedup * d)4341 static int btf_dedup_ref_types(struct btf_dedup *d)
4342 {
4343 int i, err;
4344
4345 for (i = 0; i < d->btf->nr_types; i++) {
4346 err = btf_dedup_ref_type(d, d->btf->start_id + i);
4347 if (err < 0)
4348 return err;
4349 }
4350 /* we won't need d->dedup_table anymore */
4351 hashmap__free(d->dedup_table);
4352 d->dedup_table = NULL;
4353 return 0;
4354 }
4355
4356 /*
4357 * Compact types.
4358 *
4359 * After we established for each type its corresponding canonical representative
4360 * type, we now can eliminate types that are not canonical and leave only
4361 * canonical ones layed out sequentially in memory by copying them over
4362 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4363 * a map from original type ID to a new compacted type ID, which will be used
4364 * during next phase to "fix up" type IDs, referenced from struct/union and
4365 * reference types.
4366 */
btf_dedup_compact_types(struct btf_dedup * d)4367 static int btf_dedup_compact_types(struct btf_dedup *d)
4368 {
4369 __u32 *new_offs;
4370 __u32 next_type_id = d->btf->start_id;
4371 const struct btf_type *t;
4372 void *p;
4373 int i, id, len;
4374
4375 /* we are going to reuse hypot_map to store compaction remapping */
4376 d->hypot_map[0] = 0;
4377 /* base BTF types are not renumbered */
4378 for (id = 1; id < d->btf->start_id; id++)
4379 d->hypot_map[id] = id;
4380 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4381 d->hypot_map[id] = BTF_UNPROCESSED_ID;
4382
4383 p = d->btf->types_data;
4384
4385 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4386 if (d->map[id] != id)
4387 continue;
4388
4389 t = btf__type_by_id(d->btf, id);
4390 len = btf_type_size(t);
4391 if (len < 0)
4392 return len;
4393
4394 memmove(p, t, len);
4395 d->hypot_map[id] = next_type_id;
4396 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4397 p += len;
4398 next_type_id++;
4399 }
4400
4401 /* shrink struct btf's internal types index and update btf_header */
4402 d->btf->nr_types = next_type_id - d->btf->start_id;
4403 d->btf->type_offs_cap = d->btf->nr_types;
4404 d->btf->hdr->type_len = p - d->btf->types_data;
4405 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4406 sizeof(*new_offs));
4407 if (d->btf->type_offs_cap && !new_offs)
4408 return -ENOMEM;
4409 d->btf->type_offs = new_offs;
4410 d->btf->hdr->str_off = d->btf->hdr->type_len;
4411 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4412 return 0;
4413 }
4414
4415 /*
4416 * Figure out final (deduplicated and compacted) type ID for provided original
4417 * `type_id` by first resolving it into corresponding canonical type ID and
4418 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4419 * which is populated during compaction phase.
4420 */
btf_dedup_remap_type_id(__u32 * type_id,void * ctx)4421 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4422 {
4423 struct btf_dedup *d = ctx;
4424 __u32 resolved_type_id, new_type_id;
4425
4426 resolved_type_id = resolve_type_id(d, *type_id);
4427 new_type_id = d->hypot_map[resolved_type_id];
4428 if (new_type_id > BTF_MAX_NR_TYPES)
4429 return -EINVAL;
4430
4431 *type_id = new_type_id;
4432 return 0;
4433 }
4434
4435 /*
4436 * Remap referenced type IDs into deduped type IDs.
4437 *
4438 * After BTF types are deduplicated and compacted, their final type IDs may
4439 * differ from original ones. The map from original to a corresponding
4440 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4441 * compaction phase. During remapping phase we are rewriting all type IDs
4442 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4443 * their final deduped type IDs.
4444 */
btf_dedup_remap_types(struct btf_dedup * d)4445 static int btf_dedup_remap_types(struct btf_dedup *d)
4446 {
4447 int i, r;
4448
4449 for (i = 0; i < d->btf->nr_types; i++) {
4450 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4451
4452 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4453 if (r)
4454 return r;
4455 }
4456
4457 if (!d->btf_ext)
4458 return 0;
4459
4460 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4461 if (r)
4462 return r;
4463
4464 return 0;
4465 }
4466
4467 /*
4468 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4469 * data out of it to use for target BTF.
4470 */
btf__load_vmlinux_btf(void)4471 struct btf *btf__load_vmlinux_btf(void)
4472 {
4473 struct {
4474 const char *path_fmt;
4475 bool raw_btf;
4476 } locations[] = {
4477 /* try canonical vmlinux BTF through sysfs first */
4478 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4479 /* fall back to trying to find vmlinux ELF on disk otherwise */
4480 { "/boot/vmlinux-%1$s" },
4481 { "/lib/modules/%1$s/vmlinux-%1$s" },
4482 { "/lib/modules/%1$s/build/vmlinux" },
4483 { "/usr/lib/modules/%1$s/kernel/vmlinux" },
4484 { "/usr/lib/debug/boot/vmlinux-%1$s" },
4485 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4486 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4487 };
4488 char path[PATH_MAX + 1];
4489 struct utsname buf;
4490 struct btf *btf;
4491 int i, err;
4492
4493 uname(&buf);
4494
4495 for (i = 0; i < ARRAY_SIZE(locations); i++) {
4496 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4497
4498 if (access(path, R_OK))
4499 continue;
4500
4501 if (locations[i].raw_btf)
4502 btf = btf__parse_raw(path);
4503 else
4504 btf = btf__parse_elf(path, NULL);
4505 err = libbpf_get_error(btf);
4506 pr_debug("loading kernel BTF '%s': %d\n", path, err);
4507 if (err)
4508 continue;
4509
4510 return btf;
4511 }
4512
4513 pr_warn("failed to find valid kernel BTF\n");
4514 return libbpf_err_ptr(-ESRCH);
4515 }
4516
4517 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4518
btf__load_module_btf(const char * module_name,struct btf * vmlinux_btf)4519 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4520 {
4521 char path[80];
4522
4523 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4524 return btf__parse_split(path, vmlinux_btf);
4525 }
4526
btf_type_visit_type_ids(struct btf_type * t,type_id_visit_fn visit,void * ctx)4527 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4528 {
4529 int i, n, err;
4530
4531 switch (btf_kind(t)) {
4532 case BTF_KIND_INT:
4533 case BTF_KIND_FLOAT:
4534 case BTF_KIND_ENUM:
4535 return 0;
4536
4537 case BTF_KIND_FWD:
4538 case BTF_KIND_CONST:
4539 case BTF_KIND_VOLATILE:
4540 case BTF_KIND_RESTRICT:
4541 case BTF_KIND_PTR:
4542 case BTF_KIND_TYPEDEF:
4543 case BTF_KIND_FUNC:
4544 case BTF_KIND_VAR:
4545 return visit(&t->type, ctx);
4546
4547 case BTF_KIND_ARRAY: {
4548 struct btf_array *a = btf_array(t);
4549
4550 err = visit(&a->type, ctx);
4551 err = err ?: visit(&a->index_type, ctx);
4552 return err;
4553 }
4554
4555 case BTF_KIND_STRUCT:
4556 case BTF_KIND_UNION: {
4557 struct btf_member *m = btf_members(t);
4558
4559 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4560 err = visit(&m->type, ctx);
4561 if (err)
4562 return err;
4563 }
4564 return 0;
4565 }
4566
4567 case BTF_KIND_FUNC_PROTO: {
4568 struct btf_param *m = btf_params(t);
4569
4570 err = visit(&t->type, ctx);
4571 if (err)
4572 return err;
4573 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4574 err = visit(&m->type, ctx);
4575 if (err)
4576 return err;
4577 }
4578 return 0;
4579 }
4580
4581 case BTF_KIND_DATASEC: {
4582 struct btf_var_secinfo *m = btf_var_secinfos(t);
4583
4584 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4585 err = visit(&m->type, ctx);
4586 if (err)
4587 return err;
4588 }
4589 return 0;
4590 }
4591
4592 default:
4593 return -EINVAL;
4594 }
4595 }
4596
btf_type_visit_str_offs(struct btf_type * t,str_off_visit_fn visit,void * ctx)4597 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4598 {
4599 int i, n, err;
4600
4601 err = visit(&t->name_off, ctx);
4602 if (err)
4603 return err;
4604
4605 switch (btf_kind(t)) {
4606 case BTF_KIND_STRUCT:
4607 case BTF_KIND_UNION: {
4608 struct btf_member *m = btf_members(t);
4609
4610 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4611 err = visit(&m->name_off, ctx);
4612 if (err)
4613 return err;
4614 }
4615 break;
4616 }
4617 case BTF_KIND_ENUM: {
4618 struct btf_enum *m = btf_enum(t);
4619
4620 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4621 err = visit(&m->name_off, ctx);
4622 if (err)
4623 return err;
4624 }
4625 break;
4626 }
4627 case BTF_KIND_FUNC_PROTO: {
4628 struct btf_param *m = btf_params(t);
4629
4630 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4631 err = visit(&m->name_off, ctx);
4632 if (err)
4633 return err;
4634 }
4635 break;
4636 }
4637 default:
4638 break;
4639 }
4640
4641 return 0;
4642 }
4643
btf_ext_visit_type_ids(struct btf_ext * btf_ext,type_id_visit_fn visit,void * ctx)4644 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4645 {
4646 const struct btf_ext_info *seg;
4647 struct btf_ext_info_sec *sec;
4648 int i, err;
4649
4650 seg = &btf_ext->func_info;
4651 for_each_btf_ext_sec(seg, sec) {
4652 struct bpf_func_info_min *rec;
4653
4654 for_each_btf_ext_rec(seg, sec, i, rec) {
4655 err = visit(&rec->type_id, ctx);
4656 if (err < 0)
4657 return err;
4658 }
4659 }
4660
4661 seg = &btf_ext->core_relo_info;
4662 for_each_btf_ext_sec(seg, sec) {
4663 struct bpf_core_relo *rec;
4664
4665 for_each_btf_ext_rec(seg, sec, i, rec) {
4666 err = visit(&rec->type_id, ctx);
4667 if (err < 0)
4668 return err;
4669 }
4670 }
4671
4672 return 0;
4673 }
4674
btf_ext_visit_str_offs(struct btf_ext * btf_ext,str_off_visit_fn visit,void * ctx)4675 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4676 {
4677 const struct btf_ext_info *seg;
4678 struct btf_ext_info_sec *sec;
4679 int i, err;
4680
4681 seg = &btf_ext->func_info;
4682 for_each_btf_ext_sec(seg, sec) {
4683 err = visit(&sec->sec_name_off, ctx);
4684 if (err)
4685 return err;
4686 }
4687
4688 seg = &btf_ext->line_info;
4689 for_each_btf_ext_sec(seg, sec) {
4690 struct bpf_line_info_min *rec;
4691
4692 err = visit(&sec->sec_name_off, ctx);
4693 if (err)
4694 return err;
4695
4696 for_each_btf_ext_rec(seg, sec, i, rec) {
4697 err = visit(&rec->file_name_off, ctx);
4698 if (err)
4699 return err;
4700 err = visit(&rec->line_off, ctx);
4701 if (err)
4702 return err;
4703 }
4704 }
4705
4706 seg = &btf_ext->core_relo_info;
4707 for_each_btf_ext_sec(seg, sec) {
4708 struct bpf_core_relo *rec;
4709
4710 err = visit(&sec->sec_name_off, ctx);
4711 if (err)
4712 return err;
4713
4714 for_each_btf_ext_rec(seg, sec, i, rec) {
4715 err = visit(&rec->access_str_off, ctx);
4716 if (err)
4717 return err;
4718 }
4719 }
4720
4721 return 0;
4722 }
4723