• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "misc.h"
15 #include "ctree.h"
16 #include "free-space-cache.h"
17 #include "transaction.h"
18 #include "disk-io.h"
19 #include "extent_io.h"
20 #include "volumes.h"
21 #include "space-info.h"
22 #include "delalloc-space.h"
23 #include "block-group.h"
24 #include "discard.h"
25 
26 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
27 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
28 #define FORCE_EXTENT_THRESHOLD	SZ_1M
29 
30 struct btrfs_trim_range {
31 	u64 start;
32 	u64 bytes;
33 	struct list_head list;
34 };
35 
36 static int link_free_space(struct btrfs_free_space_ctl *ctl,
37 			   struct btrfs_free_space *info);
38 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
39 			      struct btrfs_free_space *info);
40 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
41 			 struct btrfs_free_space *bitmap_info, u64 *offset,
42 			 u64 *bytes, bool for_alloc);
43 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
44 			struct btrfs_free_space *bitmap_info);
45 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
46 			      struct btrfs_free_space *info, u64 offset,
47 			      u64 bytes);
48 
__lookup_free_space_inode(struct btrfs_root * root,struct btrfs_path * path,u64 offset)49 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
50 					       struct btrfs_path *path,
51 					       u64 offset)
52 {
53 	struct btrfs_fs_info *fs_info = root->fs_info;
54 	struct btrfs_key key;
55 	struct btrfs_key location;
56 	struct btrfs_disk_key disk_key;
57 	struct btrfs_free_space_header *header;
58 	struct extent_buffer *leaf;
59 	struct inode *inode = NULL;
60 	unsigned nofs_flag;
61 	int ret;
62 
63 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
64 	key.offset = offset;
65 	key.type = 0;
66 
67 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
68 	if (ret < 0)
69 		return ERR_PTR(ret);
70 	if (ret > 0) {
71 		btrfs_release_path(path);
72 		return ERR_PTR(-ENOENT);
73 	}
74 
75 	leaf = path->nodes[0];
76 	header = btrfs_item_ptr(leaf, path->slots[0],
77 				struct btrfs_free_space_header);
78 	btrfs_free_space_key(leaf, header, &disk_key);
79 	btrfs_disk_key_to_cpu(&location, &disk_key);
80 	btrfs_release_path(path);
81 
82 	/*
83 	 * We are often under a trans handle at this point, so we need to make
84 	 * sure NOFS is set to keep us from deadlocking.
85 	 */
86 	nofs_flag = memalloc_nofs_save();
87 	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
88 	btrfs_release_path(path);
89 	memalloc_nofs_restore(nofs_flag);
90 	if (IS_ERR(inode))
91 		return inode;
92 
93 	mapping_set_gfp_mask(inode->i_mapping,
94 			mapping_gfp_constraint(inode->i_mapping,
95 			~(__GFP_FS | __GFP_HIGHMEM)));
96 
97 	return inode;
98 }
99 
lookup_free_space_inode(struct btrfs_block_group * block_group,struct btrfs_path * path)100 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
101 		struct btrfs_path *path)
102 {
103 	struct btrfs_fs_info *fs_info = block_group->fs_info;
104 	struct inode *inode = NULL;
105 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
106 
107 	spin_lock(&block_group->lock);
108 	if (block_group->inode)
109 		inode = igrab(block_group->inode);
110 	spin_unlock(&block_group->lock);
111 	if (inode)
112 		return inode;
113 
114 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
115 					  block_group->start);
116 	if (IS_ERR(inode))
117 		return inode;
118 
119 	spin_lock(&block_group->lock);
120 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
121 		btrfs_info(fs_info, "Old style space inode found, converting.");
122 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
123 			BTRFS_INODE_NODATACOW;
124 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
125 	}
126 
127 	if (!block_group->iref) {
128 		block_group->inode = igrab(inode);
129 		block_group->iref = 1;
130 	}
131 	spin_unlock(&block_group->lock);
132 
133 	return inode;
134 }
135 
__create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 ino,u64 offset)136 static int __create_free_space_inode(struct btrfs_root *root,
137 				     struct btrfs_trans_handle *trans,
138 				     struct btrfs_path *path,
139 				     u64 ino, u64 offset)
140 {
141 	struct btrfs_key key;
142 	struct btrfs_disk_key disk_key;
143 	struct btrfs_free_space_header *header;
144 	struct btrfs_inode_item *inode_item;
145 	struct extent_buffer *leaf;
146 	/* We inline CRCs for the free disk space cache */
147 	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
148 			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
149 	int ret;
150 
151 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
152 	if (ret)
153 		return ret;
154 
155 	leaf = path->nodes[0];
156 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
157 				    struct btrfs_inode_item);
158 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
159 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
160 			     sizeof(*inode_item));
161 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
162 	btrfs_set_inode_size(leaf, inode_item, 0);
163 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
164 	btrfs_set_inode_uid(leaf, inode_item, 0);
165 	btrfs_set_inode_gid(leaf, inode_item, 0);
166 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
167 	btrfs_set_inode_flags(leaf, inode_item, flags);
168 	btrfs_set_inode_nlink(leaf, inode_item, 1);
169 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
170 	btrfs_set_inode_block_group(leaf, inode_item, offset);
171 	btrfs_mark_buffer_dirty(leaf);
172 	btrfs_release_path(path);
173 
174 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
175 	key.offset = offset;
176 	key.type = 0;
177 	ret = btrfs_insert_empty_item(trans, root, path, &key,
178 				      sizeof(struct btrfs_free_space_header));
179 	if (ret < 0) {
180 		btrfs_release_path(path);
181 		return ret;
182 	}
183 
184 	leaf = path->nodes[0];
185 	header = btrfs_item_ptr(leaf, path->slots[0],
186 				struct btrfs_free_space_header);
187 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
188 	btrfs_set_free_space_key(leaf, header, &disk_key);
189 	btrfs_mark_buffer_dirty(leaf);
190 	btrfs_release_path(path);
191 
192 	return 0;
193 }
194 
create_free_space_inode(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)195 int create_free_space_inode(struct btrfs_trans_handle *trans,
196 			    struct btrfs_block_group *block_group,
197 			    struct btrfs_path *path)
198 {
199 	int ret;
200 	u64 ino;
201 
202 	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
203 	if (ret < 0)
204 		return ret;
205 
206 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
207 					 ino, block_group->start);
208 }
209 
210 /*
211  * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
212  * handles lookup, otherwise it takes ownership and iputs the inode.
213  * Don't reuse an inode pointer after passing it into this function.
214  */
btrfs_remove_free_space_inode(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_block_group * block_group)215 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
216 				  struct inode *inode,
217 				  struct btrfs_block_group *block_group)
218 {
219 	struct btrfs_path *path;
220 	struct btrfs_key key;
221 	int ret = 0;
222 
223 	path = btrfs_alloc_path();
224 	if (!path)
225 		return -ENOMEM;
226 
227 	if (!inode)
228 		inode = lookup_free_space_inode(block_group, path);
229 	if (IS_ERR(inode)) {
230 		if (PTR_ERR(inode) != -ENOENT)
231 			ret = PTR_ERR(inode);
232 		goto out;
233 	}
234 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
235 	if (ret) {
236 		btrfs_add_delayed_iput(inode);
237 		goto out;
238 	}
239 	clear_nlink(inode);
240 	/* One for the block groups ref */
241 	spin_lock(&block_group->lock);
242 	if (block_group->iref) {
243 		block_group->iref = 0;
244 		block_group->inode = NULL;
245 		spin_unlock(&block_group->lock);
246 		iput(inode);
247 	} else {
248 		spin_unlock(&block_group->lock);
249 	}
250 	/* One for the lookup ref */
251 	btrfs_add_delayed_iput(inode);
252 
253 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
254 	key.type = 0;
255 	key.offset = block_group->start;
256 	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
257 				-1, 1);
258 	if (ret) {
259 		if (ret > 0)
260 			ret = 0;
261 		goto out;
262 	}
263 	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
264 out:
265 	btrfs_free_path(path);
266 	return ret;
267 }
268 
btrfs_check_trunc_cache_free_space(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)269 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
270 				       struct btrfs_block_rsv *rsv)
271 {
272 	u64 needed_bytes;
273 	int ret;
274 
275 	/* 1 for slack space, 1 for updating the inode */
276 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
277 		btrfs_calc_metadata_size(fs_info, 1);
278 
279 	spin_lock(&rsv->lock);
280 	if (rsv->reserved < needed_bytes)
281 		ret = -ENOSPC;
282 	else
283 		ret = 0;
284 	spin_unlock(&rsv->lock);
285 	return ret;
286 }
287 
btrfs_truncate_free_space_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct inode * inode)288 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
289 				    struct btrfs_block_group *block_group,
290 				    struct inode *inode)
291 {
292 	struct btrfs_root *root = BTRFS_I(inode)->root;
293 	int ret = 0;
294 	bool locked = false;
295 
296 	if (block_group) {
297 		struct btrfs_path *path = btrfs_alloc_path();
298 
299 		if (!path) {
300 			ret = -ENOMEM;
301 			goto fail;
302 		}
303 		locked = true;
304 		mutex_lock(&trans->transaction->cache_write_mutex);
305 		if (!list_empty(&block_group->io_list)) {
306 			list_del_init(&block_group->io_list);
307 
308 			btrfs_wait_cache_io(trans, block_group, path);
309 			btrfs_put_block_group(block_group);
310 		}
311 
312 		/*
313 		 * now that we've truncated the cache away, its no longer
314 		 * setup or written
315 		 */
316 		spin_lock(&block_group->lock);
317 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
318 		spin_unlock(&block_group->lock);
319 		btrfs_free_path(path);
320 	}
321 
322 	btrfs_i_size_write(BTRFS_I(inode), 0);
323 	truncate_pagecache(inode, 0);
324 
325 	/*
326 	 * We skip the throttling logic for free space cache inodes, so we don't
327 	 * need to check for -EAGAIN.
328 	 */
329 	ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
330 					 0, BTRFS_EXTENT_DATA_KEY, NULL);
331 	if (ret)
332 		goto fail;
333 
334 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
335 
336 fail:
337 	if (locked)
338 		mutex_unlock(&trans->transaction->cache_write_mutex);
339 	if (ret)
340 		btrfs_abort_transaction(trans, ret);
341 
342 	return ret;
343 }
344 
readahead_cache(struct inode * inode)345 static void readahead_cache(struct inode *inode)
346 {
347 	struct file_ra_state ra;
348 	unsigned long last_index;
349 
350 	file_ra_state_init(&ra, inode->i_mapping);
351 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
352 
353 	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
354 }
355 
io_ctl_init(struct btrfs_io_ctl * io_ctl,struct inode * inode,int write)356 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
357 		       int write)
358 {
359 	int num_pages;
360 
361 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
362 
363 	/* Make sure we can fit our crcs and generation into the first page */
364 	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
365 		return -ENOSPC;
366 
367 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
368 
369 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
370 	if (!io_ctl->pages)
371 		return -ENOMEM;
372 
373 	io_ctl->num_pages = num_pages;
374 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
375 	io_ctl->inode = inode;
376 
377 	return 0;
378 }
379 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
380 
io_ctl_free(struct btrfs_io_ctl * io_ctl)381 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
382 {
383 	kfree(io_ctl->pages);
384 	io_ctl->pages = NULL;
385 }
386 
io_ctl_unmap_page(struct btrfs_io_ctl * io_ctl)387 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
388 {
389 	if (io_ctl->cur) {
390 		io_ctl->cur = NULL;
391 		io_ctl->orig = NULL;
392 	}
393 }
394 
io_ctl_map_page(struct btrfs_io_ctl * io_ctl,int clear)395 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
396 {
397 	ASSERT(io_ctl->index < io_ctl->num_pages);
398 	io_ctl->page = io_ctl->pages[io_ctl->index++];
399 	io_ctl->cur = page_address(io_ctl->page);
400 	io_ctl->orig = io_ctl->cur;
401 	io_ctl->size = PAGE_SIZE;
402 	if (clear)
403 		clear_page(io_ctl->cur);
404 }
405 
io_ctl_drop_pages(struct btrfs_io_ctl * io_ctl)406 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
407 {
408 	int i;
409 
410 	io_ctl_unmap_page(io_ctl);
411 
412 	for (i = 0; i < io_ctl->num_pages; i++) {
413 		if (io_ctl->pages[i]) {
414 			ClearPageChecked(io_ctl->pages[i]);
415 			unlock_page(io_ctl->pages[i]);
416 			put_page(io_ctl->pages[i]);
417 		}
418 	}
419 }
420 
io_ctl_prepare_pages(struct btrfs_io_ctl * io_ctl,bool uptodate)421 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
422 {
423 	struct page *page;
424 	struct inode *inode = io_ctl->inode;
425 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
426 	int i;
427 
428 	for (i = 0; i < io_ctl->num_pages; i++) {
429 		int ret;
430 
431 		page = find_or_create_page(inode->i_mapping, i, mask);
432 		if (!page) {
433 			io_ctl_drop_pages(io_ctl);
434 			return -ENOMEM;
435 		}
436 
437 		ret = set_page_extent_mapped(page);
438 		if (ret < 0) {
439 			unlock_page(page);
440 			put_page(page);
441 			io_ctl_drop_pages(io_ctl);
442 			return ret;
443 		}
444 
445 		io_ctl->pages[i] = page;
446 		if (uptodate && !PageUptodate(page)) {
447 			btrfs_readpage(NULL, page);
448 			lock_page(page);
449 			if (page->mapping != inode->i_mapping) {
450 				btrfs_err(BTRFS_I(inode)->root->fs_info,
451 					  "free space cache page truncated");
452 				io_ctl_drop_pages(io_ctl);
453 				return -EIO;
454 			}
455 			if (!PageUptodate(page)) {
456 				btrfs_err(BTRFS_I(inode)->root->fs_info,
457 					   "error reading free space cache");
458 				io_ctl_drop_pages(io_ctl);
459 				return -EIO;
460 			}
461 		}
462 	}
463 
464 	for (i = 0; i < io_ctl->num_pages; i++)
465 		clear_page_dirty_for_io(io_ctl->pages[i]);
466 
467 	return 0;
468 }
469 
io_ctl_set_generation(struct btrfs_io_ctl * io_ctl,u64 generation)470 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
471 {
472 	io_ctl_map_page(io_ctl, 1);
473 
474 	/*
475 	 * Skip the csum areas.  If we don't check crcs then we just have a
476 	 * 64bit chunk at the front of the first page.
477 	 */
478 	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
479 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
480 
481 	put_unaligned_le64(generation, io_ctl->cur);
482 	io_ctl->cur += sizeof(u64);
483 }
484 
io_ctl_check_generation(struct btrfs_io_ctl * io_ctl,u64 generation)485 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
486 {
487 	u64 cache_gen;
488 
489 	/*
490 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
491 	 * chunk at the front of the first page.
492 	 */
493 	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
494 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
495 
496 	cache_gen = get_unaligned_le64(io_ctl->cur);
497 	if (cache_gen != generation) {
498 		btrfs_err_rl(io_ctl->fs_info,
499 			"space cache generation (%llu) does not match inode (%llu)",
500 				cache_gen, generation);
501 		io_ctl_unmap_page(io_ctl);
502 		return -EIO;
503 	}
504 	io_ctl->cur += sizeof(u64);
505 	return 0;
506 }
507 
io_ctl_set_crc(struct btrfs_io_ctl * io_ctl,int index)508 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
509 {
510 	u32 *tmp;
511 	u32 crc = ~(u32)0;
512 	unsigned offset = 0;
513 
514 	if (index == 0)
515 		offset = sizeof(u32) * io_ctl->num_pages;
516 
517 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
518 	btrfs_crc32c_final(crc, (u8 *)&crc);
519 	io_ctl_unmap_page(io_ctl);
520 	tmp = page_address(io_ctl->pages[0]);
521 	tmp += index;
522 	*tmp = crc;
523 }
524 
io_ctl_check_crc(struct btrfs_io_ctl * io_ctl,int index)525 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
526 {
527 	u32 *tmp, val;
528 	u32 crc = ~(u32)0;
529 	unsigned offset = 0;
530 
531 	if (index == 0)
532 		offset = sizeof(u32) * io_ctl->num_pages;
533 
534 	tmp = page_address(io_ctl->pages[0]);
535 	tmp += index;
536 	val = *tmp;
537 
538 	io_ctl_map_page(io_ctl, 0);
539 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
540 	btrfs_crc32c_final(crc, (u8 *)&crc);
541 	if (val != crc) {
542 		btrfs_err_rl(io_ctl->fs_info,
543 			"csum mismatch on free space cache");
544 		io_ctl_unmap_page(io_ctl);
545 		return -EIO;
546 	}
547 
548 	return 0;
549 }
550 
io_ctl_add_entry(struct btrfs_io_ctl * io_ctl,u64 offset,u64 bytes,void * bitmap)551 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
552 			    void *bitmap)
553 {
554 	struct btrfs_free_space_entry *entry;
555 
556 	if (!io_ctl->cur)
557 		return -ENOSPC;
558 
559 	entry = io_ctl->cur;
560 	put_unaligned_le64(offset, &entry->offset);
561 	put_unaligned_le64(bytes, &entry->bytes);
562 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
563 		BTRFS_FREE_SPACE_EXTENT;
564 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
565 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
566 
567 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
568 		return 0;
569 
570 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
571 
572 	/* No more pages to map */
573 	if (io_ctl->index >= io_ctl->num_pages)
574 		return 0;
575 
576 	/* map the next page */
577 	io_ctl_map_page(io_ctl, 1);
578 	return 0;
579 }
580 
io_ctl_add_bitmap(struct btrfs_io_ctl * io_ctl,void * bitmap)581 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
582 {
583 	if (!io_ctl->cur)
584 		return -ENOSPC;
585 
586 	/*
587 	 * If we aren't at the start of the current page, unmap this one and
588 	 * map the next one if there is any left.
589 	 */
590 	if (io_ctl->cur != io_ctl->orig) {
591 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
592 		if (io_ctl->index >= io_ctl->num_pages)
593 			return -ENOSPC;
594 		io_ctl_map_page(io_ctl, 0);
595 	}
596 
597 	copy_page(io_ctl->cur, bitmap);
598 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
599 	if (io_ctl->index < io_ctl->num_pages)
600 		io_ctl_map_page(io_ctl, 0);
601 	return 0;
602 }
603 
io_ctl_zero_remaining_pages(struct btrfs_io_ctl * io_ctl)604 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
605 {
606 	/*
607 	 * If we're not on the boundary we know we've modified the page and we
608 	 * need to crc the page.
609 	 */
610 	if (io_ctl->cur != io_ctl->orig)
611 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
612 	else
613 		io_ctl_unmap_page(io_ctl);
614 
615 	while (io_ctl->index < io_ctl->num_pages) {
616 		io_ctl_map_page(io_ctl, 1);
617 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
618 	}
619 }
620 
io_ctl_read_entry(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry,u8 * type)621 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
622 			    struct btrfs_free_space *entry, u8 *type)
623 {
624 	struct btrfs_free_space_entry *e;
625 	int ret;
626 
627 	if (!io_ctl->cur) {
628 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
629 		if (ret)
630 			return ret;
631 	}
632 
633 	e = io_ctl->cur;
634 	entry->offset = get_unaligned_le64(&e->offset);
635 	entry->bytes = get_unaligned_le64(&e->bytes);
636 	*type = e->type;
637 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
638 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
639 
640 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
641 		return 0;
642 
643 	io_ctl_unmap_page(io_ctl);
644 
645 	return 0;
646 }
647 
io_ctl_read_bitmap(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry)648 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
649 			      struct btrfs_free_space *entry)
650 {
651 	int ret;
652 
653 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
654 	if (ret)
655 		return ret;
656 
657 	copy_page(entry->bitmap, io_ctl->cur);
658 	io_ctl_unmap_page(io_ctl);
659 
660 	return 0;
661 }
662 
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)663 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
664 {
665 	struct btrfs_block_group *block_group = ctl->private;
666 	u64 max_bytes;
667 	u64 bitmap_bytes;
668 	u64 extent_bytes;
669 	u64 size = block_group->length;
670 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
671 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
672 
673 	max_bitmaps = max_t(u64, max_bitmaps, 1);
674 
675 	if (ctl->total_bitmaps > max_bitmaps)
676 		btrfs_err(block_group->fs_info,
677 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
678 			  block_group->start, block_group->length,
679 			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
680 			  bytes_per_bg);
681 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
682 
683 	/*
684 	 * We are trying to keep the total amount of memory used per 1GiB of
685 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
686 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
687 	 * bitmaps, we may end up using more memory than this.
688 	 */
689 	if (size < SZ_1G)
690 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
691 	else
692 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
693 
694 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
695 
696 	/*
697 	 * we want the extent entry threshold to always be at most 1/2 the max
698 	 * bytes we can have, or whatever is less than that.
699 	 */
700 	extent_bytes = max_bytes - bitmap_bytes;
701 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
702 
703 	ctl->extents_thresh =
704 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
705 }
706 
__load_free_space_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_path * path,u64 offset)707 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
708 				   struct btrfs_free_space_ctl *ctl,
709 				   struct btrfs_path *path, u64 offset)
710 {
711 	struct btrfs_fs_info *fs_info = root->fs_info;
712 	struct btrfs_free_space_header *header;
713 	struct extent_buffer *leaf;
714 	struct btrfs_io_ctl io_ctl;
715 	struct btrfs_key key;
716 	struct btrfs_free_space *e, *n;
717 	LIST_HEAD(bitmaps);
718 	u64 num_entries;
719 	u64 num_bitmaps;
720 	u64 generation;
721 	u8 type;
722 	int ret = 0;
723 
724 	/* Nothing in the space cache, goodbye */
725 	if (!i_size_read(inode))
726 		return 0;
727 
728 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
729 	key.offset = offset;
730 	key.type = 0;
731 
732 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
733 	if (ret < 0)
734 		return 0;
735 	else if (ret > 0) {
736 		btrfs_release_path(path);
737 		return 0;
738 	}
739 
740 	ret = -1;
741 
742 	leaf = path->nodes[0];
743 	header = btrfs_item_ptr(leaf, path->slots[0],
744 				struct btrfs_free_space_header);
745 	num_entries = btrfs_free_space_entries(leaf, header);
746 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
747 	generation = btrfs_free_space_generation(leaf, header);
748 	btrfs_release_path(path);
749 
750 	if (!BTRFS_I(inode)->generation) {
751 		btrfs_info(fs_info,
752 			   "the free space cache file (%llu) is invalid, skip it",
753 			   offset);
754 		return 0;
755 	}
756 
757 	if (BTRFS_I(inode)->generation != generation) {
758 		btrfs_err(fs_info,
759 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
760 			  BTRFS_I(inode)->generation, generation);
761 		return 0;
762 	}
763 
764 	if (!num_entries)
765 		return 0;
766 
767 	ret = io_ctl_init(&io_ctl, inode, 0);
768 	if (ret)
769 		return ret;
770 
771 	readahead_cache(inode);
772 
773 	ret = io_ctl_prepare_pages(&io_ctl, true);
774 	if (ret)
775 		goto out;
776 
777 	ret = io_ctl_check_crc(&io_ctl, 0);
778 	if (ret)
779 		goto free_cache;
780 
781 	ret = io_ctl_check_generation(&io_ctl, generation);
782 	if (ret)
783 		goto free_cache;
784 
785 	while (num_entries) {
786 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
787 				      GFP_NOFS);
788 		if (!e) {
789 			ret = -ENOMEM;
790 			goto free_cache;
791 		}
792 
793 		ret = io_ctl_read_entry(&io_ctl, e, &type);
794 		if (ret) {
795 			kmem_cache_free(btrfs_free_space_cachep, e);
796 			goto free_cache;
797 		}
798 
799 		if (!e->bytes) {
800 			ret = -1;
801 			kmem_cache_free(btrfs_free_space_cachep, e);
802 			goto free_cache;
803 		}
804 
805 		if (type == BTRFS_FREE_SPACE_EXTENT) {
806 			spin_lock(&ctl->tree_lock);
807 			ret = link_free_space(ctl, e);
808 			spin_unlock(&ctl->tree_lock);
809 			if (ret) {
810 				btrfs_err(fs_info,
811 					"Duplicate entries in free space cache, dumping");
812 				kmem_cache_free(btrfs_free_space_cachep, e);
813 				goto free_cache;
814 			}
815 		} else {
816 			ASSERT(num_bitmaps);
817 			num_bitmaps--;
818 			e->bitmap = kmem_cache_zalloc(
819 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
820 			if (!e->bitmap) {
821 				ret = -ENOMEM;
822 				kmem_cache_free(
823 					btrfs_free_space_cachep, e);
824 				goto free_cache;
825 			}
826 			spin_lock(&ctl->tree_lock);
827 			ret = link_free_space(ctl, e);
828 			if (ret) {
829 				spin_unlock(&ctl->tree_lock);
830 				btrfs_err(fs_info,
831 					"Duplicate entries in free space cache, dumping");
832 				kmem_cache_free(btrfs_free_space_cachep, e);
833 				goto free_cache;
834 			}
835 			ctl->total_bitmaps++;
836 			recalculate_thresholds(ctl);
837 			spin_unlock(&ctl->tree_lock);
838 			list_add_tail(&e->list, &bitmaps);
839 		}
840 
841 		num_entries--;
842 	}
843 
844 	io_ctl_unmap_page(&io_ctl);
845 
846 	/*
847 	 * We add the bitmaps at the end of the entries in order that
848 	 * the bitmap entries are added to the cache.
849 	 */
850 	list_for_each_entry_safe(e, n, &bitmaps, list) {
851 		list_del_init(&e->list);
852 		ret = io_ctl_read_bitmap(&io_ctl, e);
853 		if (ret)
854 			goto free_cache;
855 	}
856 
857 	io_ctl_drop_pages(&io_ctl);
858 	ret = 1;
859 out:
860 	io_ctl_free(&io_ctl);
861 	return ret;
862 free_cache:
863 	io_ctl_drop_pages(&io_ctl);
864 	__btrfs_remove_free_space_cache(ctl);
865 	goto out;
866 }
867 
copy_free_space_cache(struct btrfs_block_group * block_group,struct btrfs_free_space_ctl * ctl)868 static int copy_free_space_cache(struct btrfs_block_group *block_group,
869 				 struct btrfs_free_space_ctl *ctl)
870 {
871 	struct btrfs_free_space *info;
872 	struct rb_node *n;
873 	int ret = 0;
874 
875 	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
876 		info = rb_entry(n, struct btrfs_free_space, offset_index);
877 		if (!info->bitmap) {
878 			unlink_free_space(ctl, info);
879 			ret = btrfs_add_free_space(block_group, info->offset,
880 						   info->bytes);
881 			kmem_cache_free(btrfs_free_space_cachep, info);
882 		} else {
883 			u64 offset = info->offset;
884 			u64 bytes = ctl->unit;
885 
886 			while (search_bitmap(ctl, info, &offset, &bytes,
887 					     false) == 0) {
888 				ret = btrfs_add_free_space(block_group, offset,
889 							   bytes);
890 				if (ret)
891 					break;
892 				bitmap_clear_bits(ctl, info, offset, bytes);
893 				offset = info->offset;
894 				bytes = ctl->unit;
895 			}
896 			free_bitmap(ctl, info);
897 		}
898 		cond_resched();
899 	}
900 	return ret;
901 }
902 
load_free_space_cache(struct btrfs_block_group * block_group)903 int load_free_space_cache(struct btrfs_block_group *block_group)
904 {
905 	struct btrfs_fs_info *fs_info = block_group->fs_info;
906 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
907 	struct btrfs_free_space_ctl tmp_ctl = {};
908 	struct inode *inode;
909 	struct btrfs_path *path;
910 	int ret = 0;
911 	bool matched;
912 	u64 used = block_group->used;
913 
914 	/*
915 	 * Because we could potentially discard our loaded free space, we want
916 	 * to load everything into a temporary structure first, and then if it's
917 	 * valid copy it all into the actual free space ctl.
918 	 */
919 	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
920 
921 	/*
922 	 * If this block group has been marked to be cleared for one reason or
923 	 * another then we can't trust the on disk cache, so just return.
924 	 */
925 	spin_lock(&block_group->lock);
926 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
927 		spin_unlock(&block_group->lock);
928 		return 0;
929 	}
930 	spin_unlock(&block_group->lock);
931 
932 	path = btrfs_alloc_path();
933 	if (!path)
934 		return 0;
935 	path->search_commit_root = 1;
936 	path->skip_locking = 1;
937 
938 	/*
939 	 * We must pass a path with search_commit_root set to btrfs_iget in
940 	 * order to avoid a deadlock when allocating extents for the tree root.
941 	 *
942 	 * When we are COWing an extent buffer from the tree root, when looking
943 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
944 	 * block group without its free space cache loaded. When we find one
945 	 * we must load its space cache which requires reading its free space
946 	 * cache's inode item from the root tree. If this inode item is located
947 	 * in the same leaf that we started COWing before, then we end up in
948 	 * deadlock on the extent buffer (trying to read lock it when we
949 	 * previously write locked it).
950 	 *
951 	 * It's safe to read the inode item using the commit root because
952 	 * block groups, once loaded, stay in memory forever (until they are
953 	 * removed) as well as their space caches once loaded. New block groups
954 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
955 	 * we will never try to read their inode item while the fs is mounted.
956 	 */
957 	inode = lookup_free_space_inode(block_group, path);
958 	if (IS_ERR(inode)) {
959 		btrfs_free_path(path);
960 		return 0;
961 	}
962 
963 	/* We may have converted the inode and made the cache invalid. */
964 	spin_lock(&block_group->lock);
965 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
966 		spin_unlock(&block_group->lock);
967 		btrfs_free_path(path);
968 		goto out;
969 	}
970 	spin_unlock(&block_group->lock);
971 
972 	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
973 				      path, block_group->start);
974 	btrfs_free_path(path);
975 	if (ret <= 0)
976 		goto out;
977 
978 	matched = (tmp_ctl.free_space == (block_group->length - used -
979 					  block_group->bytes_super));
980 
981 	if (matched) {
982 		ret = copy_free_space_cache(block_group, &tmp_ctl);
983 		/*
984 		 * ret == 1 means we successfully loaded the free space cache,
985 		 * so we need to re-set it here.
986 		 */
987 		if (ret == 0)
988 			ret = 1;
989 	} else {
990 		__btrfs_remove_free_space_cache(&tmp_ctl);
991 		btrfs_warn(fs_info,
992 			   "block group %llu has wrong amount of free space",
993 			   block_group->start);
994 		ret = -1;
995 	}
996 out:
997 	if (ret < 0) {
998 		/* This cache is bogus, make sure it gets cleared */
999 		spin_lock(&block_group->lock);
1000 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1001 		spin_unlock(&block_group->lock);
1002 		ret = 0;
1003 
1004 		btrfs_warn(fs_info,
1005 			   "failed to load free space cache for block group %llu, rebuilding it now",
1006 			   block_group->start);
1007 	}
1008 
1009 	spin_lock(&ctl->tree_lock);
1010 	btrfs_discard_update_discardable(block_group);
1011 	spin_unlock(&ctl->tree_lock);
1012 	iput(inode);
1013 	return ret;
1014 }
1015 
1016 static noinline_for_stack
write_cache_extent_entries(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group * block_group,int * entries,int * bitmaps,struct list_head * bitmap_list)1017 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1018 			      struct btrfs_free_space_ctl *ctl,
1019 			      struct btrfs_block_group *block_group,
1020 			      int *entries, int *bitmaps,
1021 			      struct list_head *bitmap_list)
1022 {
1023 	int ret;
1024 	struct btrfs_free_cluster *cluster = NULL;
1025 	struct btrfs_free_cluster *cluster_locked = NULL;
1026 	struct rb_node *node = rb_first(&ctl->free_space_offset);
1027 	struct btrfs_trim_range *trim_entry;
1028 
1029 	/* Get the cluster for this block_group if it exists */
1030 	if (block_group && !list_empty(&block_group->cluster_list)) {
1031 		cluster = list_entry(block_group->cluster_list.next,
1032 				     struct btrfs_free_cluster,
1033 				     block_group_list);
1034 	}
1035 
1036 	if (!node && cluster) {
1037 		cluster_locked = cluster;
1038 		spin_lock(&cluster_locked->lock);
1039 		node = rb_first(&cluster->root);
1040 		cluster = NULL;
1041 	}
1042 
1043 	/* Write out the extent entries */
1044 	while (node) {
1045 		struct btrfs_free_space *e;
1046 
1047 		e = rb_entry(node, struct btrfs_free_space, offset_index);
1048 		*entries += 1;
1049 
1050 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1051 				       e->bitmap);
1052 		if (ret)
1053 			goto fail;
1054 
1055 		if (e->bitmap) {
1056 			list_add_tail(&e->list, bitmap_list);
1057 			*bitmaps += 1;
1058 		}
1059 		node = rb_next(node);
1060 		if (!node && cluster) {
1061 			node = rb_first(&cluster->root);
1062 			cluster_locked = cluster;
1063 			spin_lock(&cluster_locked->lock);
1064 			cluster = NULL;
1065 		}
1066 	}
1067 	if (cluster_locked) {
1068 		spin_unlock(&cluster_locked->lock);
1069 		cluster_locked = NULL;
1070 	}
1071 
1072 	/*
1073 	 * Make sure we don't miss any range that was removed from our rbtree
1074 	 * because trimming is running. Otherwise after a umount+mount (or crash
1075 	 * after committing the transaction) we would leak free space and get
1076 	 * an inconsistent free space cache report from fsck.
1077 	 */
1078 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1079 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1080 				       trim_entry->bytes, NULL);
1081 		if (ret)
1082 			goto fail;
1083 		*entries += 1;
1084 	}
1085 
1086 	return 0;
1087 fail:
1088 	if (cluster_locked)
1089 		spin_unlock(&cluster_locked->lock);
1090 	return -ENOSPC;
1091 }
1092 
1093 static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 offset,int entries,int bitmaps)1094 update_cache_item(struct btrfs_trans_handle *trans,
1095 		  struct btrfs_root *root,
1096 		  struct inode *inode,
1097 		  struct btrfs_path *path, u64 offset,
1098 		  int entries, int bitmaps)
1099 {
1100 	struct btrfs_key key;
1101 	struct btrfs_free_space_header *header;
1102 	struct extent_buffer *leaf;
1103 	int ret;
1104 
1105 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1106 	key.offset = offset;
1107 	key.type = 0;
1108 
1109 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1110 	if (ret < 0) {
1111 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1112 				 EXTENT_DELALLOC, 0, 0, NULL);
1113 		goto fail;
1114 	}
1115 	leaf = path->nodes[0];
1116 	if (ret > 0) {
1117 		struct btrfs_key found_key;
1118 		ASSERT(path->slots[0]);
1119 		path->slots[0]--;
1120 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1121 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1122 		    found_key.offset != offset) {
1123 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1124 					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1125 					 0, NULL);
1126 			btrfs_release_path(path);
1127 			goto fail;
1128 		}
1129 	}
1130 
1131 	BTRFS_I(inode)->generation = trans->transid;
1132 	header = btrfs_item_ptr(leaf, path->slots[0],
1133 				struct btrfs_free_space_header);
1134 	btrfs_set_free_space_entries(leaf, header, entries);
1135 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1136 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1137 	btrfs_mark_buffer_dirty(leaf);
1138 	btrfs_release_path(path);
1139 
1140 	return 0;
1141 
1142 fail:
1143 	return -1;
1144 }
1145 
write_pinned_extent_entries(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,int * entries)1146 static noinline_for_stack int write_pinned_extent_entries(
1147 			    struct btrfs_trans_handle *trans,
1148 			    struct btrfs_block_group *block_group,
1149 			    struct btrfs_io_ctl *io_ctl,
1150 			    int *entries)
1151 {
1152 	u64 start, extent_start, extent_end, len;
1153 	struct extent_io_tree *unpin = NULL;
1154 	int ret;
1155 
1156 	if (!block_group)
1157 		return 0;
1158 
1159 	/*
1160 	 * We want to add any pinned extents to our free space cache
1161 	 * so we don't leak the space
1162 	 *
1163 	 * We shouldn't have switched the pinned extents yet so this is the
1164 	 * right one
1165 	 */
1166 	unpin = &trans->transaction->pinned_extents;
1167 
1168 	start = block_group->start;
1169 
1170 	while (start < block_group->start + block_group->length) {
1171 		ret = find_first_extent_bit(unpin, start,
1172 					    &extent_start, &extent_end,
1173 					    EXTENT_DIRTY, NULL);
1174 		if (ret)
1175 			return 0;
1176 
1177 		/* This pinned extent is out of our range */
1178 		if (extent_start >= block_group->start + block_group->length)
1179 			return 0;
1180 
1181 		extent_start = max(extent_start, start);
1182 		extent_end = min(block_group->start + block_group->length,
1183 				 extent_end + 1);
1184 		len = extent_end - extent_start;
1185 
1186 		*entries += 1;
1187 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1188 		if (ret)
1189 			return -ENOSPC;
1190 
1191 		start = extent_end;
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 static noinline_for_stack int
write_bitmap_entries(struct btrfs_io_ctl * io_ctl,struct list_head * bitmap_list)1198 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1199 {
1200 	struct btrfs_free_space *entry, *next;
1201 	int ret;
1202 
1203 	/* Write out the bitmaps */
1204 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1205 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1206 		if (ret)
1207 			return -ENOSPC;
1208 		list_del_init(&entry->list);
1209 	}
1210 
1211 	return 0;
1212 }
1213 
flush_dirty_cache(struct inode * inode)1214 static int flush_dirty_cache(struct inode *inode)
1215 {
1216 	int ret;
1217 
1218 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1219 	if (ret)
1220 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1221 				 EXTENT_DELALLOC, 0, 0, NULL);
1222 
1223 	return ret;
1224 }
1225 
1226 static void noinline_for_stack
cleanup_bitmap_list(struct list_head * bitmap_list)1227 cleanup_bitmap_list(struct list_head *bitmap_list)
1228 {
1229 	struct btrfs_free_space *entry, *next;
1230 
1231 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1232 		list_del_init(&entry->list);
1233 }
1234 
1235 static void noinline_for_stack
cleanup_write_cache_enospc(struct inode * inode,struct btrfs_io_ctl * io_ctl,struct extent_state ** cached_state)1236 cleanup_write_cache_enospc(struct inode *inode,
1237 			   struct btrfs_io_ctl *io_ctl,
1238 			   struct extent_state **cached_state)
1239 {
1240 	io_ctl_drop_pages(io_ctl);
1241 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1242 			     i_size_read(inode) - 1, cached_state);
1243 }
1244 
__btrfs_wait_cache_io(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path,u64 offset)1245 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1246 				 struct btrfs_trans_handle *trans,
1247 				 struct btrfs_block_group *block_group,
1248 				 struct btrfs_io_ctl *io_ctl,
1249 				 struct btrfs_path *path, u64 offset)
1250 {
1251 	int ret;
1252 	struct inode *inode = io_ctl->inode;
1253 
1254 	if (!inode)
1255 		return 0;
1256 
1257 	/* Flush the dirty pages in the cache file. */
1258 	ret = flush_dirty_cache(inode);
1259 	if (ret)
1260 		goto out;
1261 
1262 	/* Update the cache item to tell everyone this cache file is valid. */
1263 	ret = update_cache_item(trans, root, inode, path, offset,
1264 				io_ctl->entries, io_ctl->bitmaps);
1265 out:
1266 	if (ret) {
1267 		invalidate_inode_pages2(inode->i_mapping);
1268 		BTRFS_I(inode)->generation = 0;
1269 		if (block_group)
1270 			btrfs_debug(root->fs_info,
1271 	  "failed to write free space cache for block group %llu error %d",
1272 				  block_group->start, ret);
1273 	}
1274 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1275 
1276 	if (block_group) {
1277 		/* the dirty list is protected by the dirty_bgs_lock */
1278 		spin_lock(&trans->transaction->dirty_bgs_lock);
1279 
1280 		/* the disk_cache_state is protected by the block group lock */
1281 		spin_lock(&block_group->lock);
1282 
1283 		/*
1284 		 * only mark this as written if we didn't get put back on
1285 		 * the dirty list while waiting for IO.   Otherwise our
1286 		 * cache state won't be right, and we won't get written again
1287 		 */
1288 		if (!ret && list_empty(&block_group->dirty_list))
1289 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1290 		else if (ret)
1291 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1292 
1293 		spin_unlock(&block_group->lock);
1294 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1295 		io_ctl->inode = NULL;
1296 		iput(inode);
1297 	}
1298 
1299 	return ret;
1300 
1301 }
1302 
btrfs_wait_cache_io(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)1303 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1304 			struct btrfs_block_group *block_group,
1305 			struct btrfs_path *path)
1306 {
1307 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1308 				     block_group, &block_group->io_ctl,
1309 				     path, block_group->start);
1310 }
1311 
1312 /**
1313  * Write out cached info to an inode
1314  *
1315  * @root:        root the inode belongs to
1316  * @inode:       freespace inode we are writing out
1317  * @ctl:         free space cache we are going to write out
1318  * @block_group: block_group for this cache if it belongs to a block_group
1319  * @io_ctl:      holds context for the io
1320  * @trans:       the trans handle
1321  *
1322  * This function writes out a free space cache struct to disk for quick recovery
1323  * on mount.  This will return 0 if it was successful in writing the cache out,
1324  * or an errno if it was not.
1325  */
__btrfs_write_out_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_trans_handle * trans)1326 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1327 				   struct btrfs_free_space_ctl *ctl,
1328 				   struct btrfs_block_group *block_group,
1329 				   struct btrfs_io_ctl *io_ctl,
1330 				   struct btrfs_trans_handle *trans)
1331 {
1332 	struct extent_state *cached_state = NULL;
1333 	LIST_HEAD(bitmap_list);
1334 	int entries = 0;
1335 	int bitmaps = 0;
1336 	int ret;
1337 	int must_iput = 0;
1338 
1339 	if (!i_size_read(inode))
1340 		return -EIO;
1341 
1342 	WARN_ON(io_ctl->pages);
1343 	ret = io_ctl_init(io_ctl, inode, 1);
1344 	if (ret)
1345 		return ret;
1346 
1347 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1348 		down_write(&block_group->data_rwsem);
1349 		spin_lock(&block_group->lock);
1350 		if (block_group->delalloc_bytes) {
1351 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1352 			spin_unlock(&block_group->lock);
1353 			up_write(&block_group->data_rwsem);
1354 			BTRFS_I(inode)->generation = 0;
1355 			ret = 0;
1356 			must_iput = 1;
1357 			goto out;
1358 		}
1359 		spin_unlock(&block_group->lock);
1360 	}
1361 
1362 	/* Lock all pages first so we can lock the extent safely. */
1363 	ret = io_ctl_prepare_pages(io_ctl, false);
1364 	if (ret)
1365 		goto out_unlock;
1366 
1367 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1368 			 &cached_state);
1369 
1370 	io_ctl_set_generation(io_ctl, trans->transid);
1371 
1372 	mutex_lock(&ctl->cache_writeout_mutex);
1373 	/* Write out the extent entries in the free space cache */
1374 	spin_lock(&ctl->tree_lock);
1375 	ret = write_cache_extent_entries(io_ctl, ctl,
1376 					 block_group, &entries, &bitmaps,
1377 					 &bitmap_list);
1378 	if (ret)
1379 		goto out_nospc_locked;
1380 
1381 	/*
1382 	 * Some spaces that are freed in the current transaction are pinned,
1383 	 * they will be added into free space cache after the transaction is
1384 	 * committed, we shouldn't lose them.
1385 	 *
1386 	 * If this changes while we are working we'll get added back to
1387 	 * the dirty list and redo it.  No locking needed
1388 	 */
1389 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1390 	if (ret)
1391 		goto out_nospc_locked;
1392 
1393 	/*
1394 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1395 	 * locked while doing it because a concurrent trim can be manipulating
1396 	 * or freeing the bitmap.
1397 	 */
1398 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1399 	spin_unlock(&ctl->tree_lock);
1400 	mutex_unlock(&ctl->cache_writeout_mutex);
1401 	if (ret)
1402 		goto out_nospc;
1403 
1404 	/* Zero out the rest of the pages just to make sure */
1405 	io_ctl_zero_remaining_pages(io_ctl);
1406 
1407 	/* Everything is written out, now we dirty the pages in the file. */
1408 	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1409 				io_ctl->num_pages, 0, i_size_read(inode),
1410 				&cached_state, false);
1411 	if (ret)
1412 		goto out_nospc;
1413 
1414 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1415 		up_write(&block_group->data_rwsem);
1416 	/*
1417 	 * Release the pages and unlock the extent, we will flush
1418 	 * them out later
1419 	 */
1420 	io_ctl_drop_pages(io_ctl);
1421 	io_ctl_free(io_ctl);
1422 
1423 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1424 			     i_size_read(inode) - 1, &cached_state);
1425 
1426 	/*
1427 	 * at this point the pages are under IO and we're happy,
1428 	 * The caller is responsible for waiting on them and updating
1429 	 * the cache and the inode
1430 	 */
1431 	io_ctl->entries = entries;
1432 	io_ctl->bitmaps = bitmaps;
1433 
1434 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1435 	if (ret)
1436 		goto out;
1437 
1438 	return 0;
1439 
1440 out_nospc_locked:
1441 	cleanup_bitmap_list(&bitmap_list);
1442 	spin_unlock(&ctl->tree_lock);
1443 	mutex_unlock(&ctl->cache_writeout_mutex);
1444 
1445 out_nospc:
1446 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1447 
1448 out_unlock:
1449 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1450 		up_write(&block_group->data_rwsem);
1451 
1452 out:
1453 	io_ctl->inode = NULL;
1454 	io_ctl_free(io_ctl);
1455 	if (ret) {
1456 		invalidate_inode_pages2(inode->i_mapping);
1457 		BTRFS_I(inode)->generation = 0;
1458 	}
1459 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1460 	if (must_iput)
1461 		iput(inode);
1462 	return ret;
1463 }
1464 
btrfs_write_out_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)1465 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1466 			  struct btrfs_block_group *block_group,
1467 			  struct btrfs_path *path)
1468 {
1469 	struct btrfs_fs_info *fs_info = trans->fs_info;
1470 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1471 	struct inode *inode;
1472 	int ret = 0;
1473 
1474 	spin_lock(&block_group->lock);
1475 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1476 		spin_unlock(&block_group->lock);
1477 		return 0;
1478 	}
1479 	spin_unlock(&block_group->lock);
1480 
1481 	inode = lookup_free_space_inode(block_group, path);
1482 	if (IS_ERR(inode))
1483 		return 0;
1484 
1485 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1486 				block_group, &block_group->io_ctl, trans);
1487 	if (ret) {
1488 		btrfs_debug(fs_info,
1489 	  "failed to write free space cache for block group %llu error %d",
1490 			  block_group->start, ret);
1491 		spin_lock(&block_group->lock);
1492 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1493 		spin_unlock(&block_group->lock);
1494 
1495 		block_group->io_ctl.inode = NULL;
1496 		iput(inode);
1497 	}
1498 
1499 	/*
1500 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1501 	 * to wait for IO and put the inode
1502 	 */
1503 
1504 	return ret;
1505 }
1506 
offset_to_bit(u64 bitmap_start,u32 unit,u64 offset)1507 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1508 					  u64 offset)
1509 {
1510 	ASSERT(offset >= bitmap_start);
1511 	offset -= bitmap_start;
1512 	return (unsigned long)(div_u64(offset, unit));
1513 }
1514 
bytes_to_bits(u64 bytes,u32 unit)1515 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1516 {
1517 	return (unsigned long)(div_u64(bytes, unit));
1518 }
1519 
offset_to_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)1520 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1521 				   u64 offset)
1522 {
1523 	u64 bitmap_start;
1524 	u64 bytes_per_bitmap;
1525 
1526 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1527 	bitmap_start = offset - ctl->start;
1528 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1529 	bitmap_start *= bytes_per_bitmap;
1530 	bitmap_start += ctl->start;
1531 
1532 	return bitmap_start;
1533 }
1534 
tree_insert_offset(struct rb_root * root,u64 offset,struct rb_node * node,int bitmap)1535 static int tree_insert_offset(struct rb_root *root, u64 offset,
1536 			      struct rb_node *node, int bitmap)
1537 {
1538 	struct rb_node **p = &root->rb_node;
1539 	struct rb_node *parent = NULL;
1540 	struct btrfs_free_space *info;
1541 
1542 	while (*p) {
1543 		parent = *p;
1544 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1545 
1546 		if (offset < info->offset) {
1547 			p = &(*p)->rb_left;
1548 		} else if (offset > info->offset) {
1549 			p = &(*p)->rb_right;
1550 		} else {
1551 			/*
1552 			 * we could have a bitmap entry and an extent entry
1553 			 * share the same offset.  If this is the case, we want
1554 			 * the extent entry to always be found first if we do a
1555 			 * linear search through the tree, since we want to have
1556 			 * the quickest allocation time, and allocating from an
1557 			 * extent is faster than allocating from a bitmap.  So
1558 			 * if we're inserting a bitmap and we find an entry at
1559 			 * this offset, we want to go right, or after this entry
1560 			 * logically.  If we are inserting an extent and we've
1561 			 * found a bitmap, we want to go left, or before
1562 			 * logically.
1563 			 */
1564 			if (bitmap) {
1565 				if (info->bitmap) {
1566 					WARN_ON_ONCE(1);
1567 					return -EEXIST;
1568 				}
1569 				p = &(*p)->rb_right;
1570 			} else {
1571 				if (!info->bitmap) {
1572 					WARN_ON_ONCE(1);
1573 					return -EEXIST;
1574 				}
1575 				p = &(*p)->rb_left;
1576 			}
1577 		}
1578 	}
1579 
1580 	rb_link_node(node, parent, p);
1581 	rb_insert_color(node, root);
1582 
1583 	return 0;
1584 }
1585 
1586 /*
1587  * searches the tree for the given offset.
1588  *
1589  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1590  * want a section that has at least bytes size and comes at or after the given
1591  * offset.
1592  */
1593 static struct btrfs_free_space *
tree_search_offset(struct btrfs_free_space_ctl * ctl,u64 offset,int bitmap_only,int fuzzy)1594 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1595 		   u64 offset, int bitmap_only, int fuzzy)
1596 {
1597 	struct rb_node *n = ctl->free_space_offset.rb_node;
1598 	struct btrfs_free_space *entry, *prev = NULL;
1599 
1600 	/* find entry that is closest to the 'offset' */
1601 	while (1) {
1602 		if (!n) {
1603 			entry = NULL;
1604 			break;
1605 		}
1606 
1607 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1608 		prev = entry;
1609 
1610 		if (offset < entry->offset)
1611 			n = n->rb_left;
1612 		else if (offset > entry->offset)
1613 			n = n->rb_right;
1614 		else
1615 			break;
1616 	}
1617 
1618 	if (bitmap_only) {
1619 		if (!entry)
1620 			return NULL;
1621 		if (entry->bitmap)
1622 			return entry;
1623 
1624 		/*
1625 		 * bitmap entry and extent entry may share same offset,
1626 		 * in that case, bitmap entry comes after extent entry.
1627 		 */
1628 		n = rb_next(n);
1629 		if (!n)
1630 			return NULL;
1631 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1632 		if (entry->offset != offset)
1633 			return NULL;
1634 
1635 		WARN_ON(!entry->bitmap);
1636 		return entry;
1637 	} else if (entry) {
1638 		if (entry->bitmap) {
1639 			/*
1640 			 * if previous extent entry covers the offset,
1641 			 * we should return it instead of the bitmap entry
1642 			 */
1643 			n = rb_prev(&entry->offset_index);
1644 			if (n) {
1645 				prev = rb_entry(n, struct btrfs_free_space,
1646 						offset_index);
1647 				if (!prev->bitmap &&
1648 				    prev->offset + prev->bytes > offset)
1649 					entry = prev;
1650 			}
1651 		}
1652 		return entry;
1653 	}
1654 
1655 	if (!prev)
1656 		return NULL;
1657 
1658 	/* find last entry before the 'offset' */
1659 	entry = prev;
1660 	if (entry->offset > offset) {
1661 		n = rb_prev(&entry->offset_index);
1662 		if (n) {
1663 			entry = rb_entry(n, struct btrfs_free_space,
1664 					offset_index);
1665 			ASSERT(entry->offset <= offset);
1666 		} else {
1667 			if (fuzzy)
1668 				return entry;
1669 			else
1670 				return NULL;
1671 		}
1672 	}
1673 
1674 	if (entry->bitmap) {
1675 		n = rb_prev(&entry->offset_index);
1676 		if (n) {
1677 			prev = rb_entry(n, struct btrfs_free_space,
1678 					offset_index);
1679 			if (!prev->bitmap &&
1680 			    prev->offset + prev->bytes > offset)
1681 				return prev;
1682 		}
1683 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1684 			return entry;
1685 	} else if (entry->offset + entry->bytes > offset)
1686 		return entry;
1687 
1688 	if (!fuzzy)
1689 		return NULL;
1690 
1691 	while (1) {
1692 		if (entry->bitmap) {
1693 			if (entry->offset + BITS_PER_BITMAP *
1694 			    ctl->unit > offset)
1695 				break;
1696 		} else {
1697 			if (entry->offset + entry->bytes > offset)
1698 				break;
1699 		}
1700 
1701 		n = rb_next(&entry->offset_index);
1702 		if (!n)
1703 			return NULL;
1704 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1705 	}
1706 	return entry;
1707 }
1708 
1709 static inline void
__unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1710 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1711 		    struct btrfs_free_space *info)
1712 {
1713 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1714 	ctl->free_extents--;
1715 
1716 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1717 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1718 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1719 	}
1720 }
1721 
unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1722 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1723 			      struct btrfs_free_space *info)
1724 {
1725 	__unlink_free_space(ctl, info);
1726 	ctl->free_space -= info->bytes;
1727 }
1728 
link_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1729 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1730 			   struct btrfs_free_space *info)
1731 {
1732 	int ret = 0;
1733 
1734 	ASSERT(info->bytes || info->bitmap);
1735 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1736 				 &info->offset_index, (info->bitmap != NULL));
1737 	if (ret)
1738 		return ret;
1739 
1740 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1741 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1742 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1743 	}
1744 
1745 	ctl->free_space += info->bytes;
1746 	ctl->free_extents++;
1747 	return ret;
1748 }
1749 
__bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1750 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1751 				       struct btrfs_free_space *info,
1752 				       u64 offset, u64 bytes)
1753 {
1754 	unsigned long start, count, end;
1755 	int extent_delta = -1;
1756 
1757 	start = offset_to_bit(info->offset, ctl->unit, offset);
1758 	count = bytes_to_bits(bytes, ctl->unit);
1759 	end = start + count;
1760 	ASSERT(end <= BITS_PER_BITMAP);
1761 
1762 	bitmap_clear(info->bitmap, start, count);
1763 
1764 	info->bytes -= bytes;
1765 	if (info->max_extent_size > ctl->unit)
1766 		info->max_extent_size = 0;
1767 
1768 	if (start && test_bit(start - 1, info->bitmap))
1769 		extent_delta++;
1770 
1771 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1772 		extent_delta++;
1773 
1774 	info->bitmap_extents += extent_delta;
1775 	if (!btrfs_free_space_trimmed(info)) {
1776 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1777 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1778 	}
1779 }
1780 
bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1781 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1782 			      struct btrfs_free_space *info, u64 offset,
1783 			      u64 bytes)
1784 {
1785 	__bitmap_clear_bits(ctl, info, offset, bytes);
1786 	ctl->free_space -= bytes;
1787 }
1788 
bitmap_set_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1789 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1790 			    struct btrfs_free_space *info, u64 offset,
1791 			    u64 bytes)
1792 {
1793 	unsigned long start, count, end;
1794 	int extent_delta = 1;
1795 
1796 	start = offset_to_bit(info->offset, ctl->unit, offset);
1797 	count = bytes_to_bits(bytes, ctl->unit);
1798 	end = start + count;
1799 	ASSERT(end <= BITS_PER_BITMAP);
1800 
1801 	bitmap_set(info->bitmap, start, count);
1802 
1803 	info->bytes += bytes;
1804 	ctl->free_space += bytes;
1805 
1806 	if (start && test_bit(start - 1, info->bitmap))
1807 		extent_delta--;
1808 
1809 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1810 		extent_delta--;
1811 
1812 	info->bitmap_extents += extent_delta;
1813 	if (!btrfs_free_space_trimmed(info)) {
1814 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1815 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1816 	}
1817 }
1818 
1819 /*
1820  * If we can not find suitable extent, we will use bytes to record
1821  * the size of the max extent.
1822  */
search_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes,bool for_alloc)1823 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1824 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1825 			 u64 *bytes, bool for_alloc)
1826 {
1827 	unsigned long found_bits = 0;
1828 	unsigned long max_bits = 0;
1829 	unsigned long bits, i;
1830 	unsigned long next_zero;
1831 	unsigned long extent_bits;
1832 
1833 	/*
1834 	 * Skip searching the bitmap if we don't have a contiguous section that
1835 	 * is large enough for this allocation.
1836 	 */
1837 	if (for_alloc &&
1838 	    bitmap_info->max_extent_size &&
1839 	    bitmap_info->max_extent_size < *bytes) {
1840 		*bytes = bitmap_info->max_extent_size;
1841 		return -1;
1842 	}
1843 
1844 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1845 			  max_t(u64, *offset, bitmap_info->offset));
1846 	bits = bytes_to_bits(*bytes, ctl->unit);
1847 
1848 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1849 		if (for_alloc && bits == 1) {
1850 			found_bits = 1;
1851 			break;
1852 		}
1853 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1854 					       BITS_PER_BITMAP, i);
1855 		extent_bits = next_zero - i;
1856 		if (extent_bits >= bits) {
1857 			found_bits = extent_bits;
1858 			break;
1859 		} else if (extent_bits > max_bits) {
1860 			max_bits = extent_bits;
1861 		}
1862 		i = next_zero;
1863 	}
1864 
1865 	if (found_bits) {
1866 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1867 		*bytes = (u64)(found_bits) * ctl->unit;
1868 		return 0;
1869 	}
1870 
1871 	*bytes = (u64)(max_bits) * ctl->unit;
1872 	bitmap_info->max_extent_size = *bytes;
1873 	return -1;
1874 }
1875 
get_max_extent_size(struct btrfs_free_space * entry)1876 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1877 {
1878 	if (entry->bitmap)
1879 		return entry->max_extent_size;
1880 	return entry->bytes;
1881 }
1882 
1883 /* Cache the size of the max extent in bytes */
1884 static struct btrfs_free_space *
find_free_space(struct btrfs_free_space_ctl * ctl,u64 * offset,u64 * bytes,unsigned long align,u64 * max_extent_size)1885 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1886 		unsigned long align, u64 *max_extent_size)
1887 {
1888 	struct btrfs_free_space *entry;
1889 	struct rb_node *node;
1890 	u64 tmp;
1891 	u64 align_off;
1892 	int ret;
1893 
1894 	if (!ctl->free_space_offset.rb_node)
1895 		goto out;
1896 
1897 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1898 	if (!entry)
1899 		goto out;
1900 
1901 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1902 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1903 		if (entry->bytes < *bytes) {
1904 			*max_extent_size = max(get_max_extent_size(entry),
1905 					       *max_extent_size);
1906 			continue;
1907 		}
1908 
1909 		/* make sure the space returned is big enough
1910 		 * to match our requested alignment
1911 		 */
1912 		if (*bytes >= align) {
1913 			tmp = entry->offset - ctl->start + align - 1;
1914 			tmp = div64_u64(tmp, align);
1915 			tmp = tmp * align + ctl->start;
1916 			align_off = tmp - entry->offset;
1917 		} else {
1918 			align_off = 0;
1919 			tmp = entry->offset;
1920 		}
1921 
1922 		if (entry->bytes < *bytes + align_off) {
1923 			*max_extent_size = max(get_max_extent_size(entry),
1924 					       *max_extent_size);
1925 			continue;
1926 		}
1927 
1928 		if (entry->bitmap) {
1929 			u64 size = *bytes;
1930 
1931 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1932 			if (!ret) {
1933 				*offset = tmp;
1934 				*bytes = size;
1935 				return entry;
1936 			} else {
1937 				*max_extent_size =
1938 					max(get_max_extent_size(entry),
1939 					    *max_extent_size);
1940 			}
1941 			continue;
1942 		}
1943 
1944 		*offset = tmp;
1945 		*bytes = entry->bytes - align_off;
1946 		return entry;
1947 	}
1948 out:
1949 	return NULL;
1950 }
1951 
add_new_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset)1952 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1953 			   struct btrfs_free_space *info, u64 offset)
1954 {
1955 	info->offset = offset_to_bitmap(ctl, offset);
1956 	info->bytes = 0;
1957 	info->bitmap_extents = 0;
1958 	INIT_LIST_HEAD(&info->list);
1959 	link_free_space(ctl, info);
1960 	ctl->total_bitmaps++;
1961 	recalculate_thresholds(ctl);
1962 }
1963 
free_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info)1964 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1965 			struct btrfs_free_space *bitmap_info)
1966 {
1967 	/*
1968 	 * Normally when this is called, the bitmap is completely empty. However,
1969 	 * if we are blowing up the free space cache for one reason or another
1970 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1971 	 * we may leave stats on the table.
1972 	 */
1973 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1974 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
1975 			bitmap_info->bitmap_extents;
1976 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1977 
1978 	}
1979 	unlink_free_space(ctl, bitmap_info);
1980 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1981 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1982 	ctl->total_bitmaps--;
1983 	recalculate_thresholds(ctl);
1984 }
1985 
remove_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)1986 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1987 			      struct btrfs_free_space *bitmap_info,
1988 			      u64 *offset, u64 *bytes)
1989 {
1990 	u64 end;
1991 	u64 search_start, search_bytes;
1992 	int ret;
1993 
1994 again:
1995 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1996 
1997 	/*
1998 	 * We need to search for bits in this bitmap.  We could only cover some
1999 	 * of the extent in this bitmap thanks to how we add space, so we need
2000 	 * to search for as much as it as we can and clear that amount, and then
2001 	 * go searching for the next bit.
2002 	 */
2003 	search_start = *offset;
2004 	search_bytes = ctl->unit;
2005 	search_bytes = min(search_bytes, end - search_start + 1);
2006 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2007 			    false);
2008 	if (ret < 0 || search_start != *offset)
2009 		return -EINVAL;
2010 
2011 	/* We may have found more bits than what we need */
2012 	search_bytes = min(search_bytes, *bytes);
2013 
2014 	/* Cannot clear past the end of the bitmap */
2015 	search_bytes = min(search_bytes, end - search_start + 1);
2016 
2017 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2018 	*offset += search_bytes;
2019 	*bytes -= search_bytes;
2020 
2021 	if (*bytes) {
2022 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2023 		if (!bitmap_info->bytes)
2024 			free_bitmap(ctl, bitmap_info);
2025 
2026 		/*
2027 		 * no entry after this bitmap, but we still have bytes to
2028 		 * remove, so something has gone wrong.
2029 		 */
2030 		if (!next)
2031 			return -EINVAL;
2032 
2033 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2034 				       offset_index);
2035 
2036 		/*
2037 		 * if the next entry isn't a bitmap we need to return to let the
2038 		 * extent stuff do its work.
2039 		 */
2040 		if (!bitmap_info->bitmap)
2041 			return -EAGAIN;
2042 
2043 		/*
2044 		 * Ok the next item is a bitmap, but it may not actually hold
2045 		 * the information for the rest of this free space stuff, so
2046 		 * look for it, and if we don't find it return so we can try
2047 		 * everything over again.
2048 		 */
2049 		search_start = *offset;
2050 		search_bytes = ctl->unit;
2051 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2052 				    &search_bytes, false);
2053 		if (ret < 0 || search_start != *offset)
2054 			return -EAGAIN;
2055 
2056 		goto again;
2057 	} else if (!bitmap_info->bytes)
2058 		free_bitmap(ctl, bitmap_info);
2059 
2060 	return 0;
2061 }
2062 
add_bytes_to_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes,enum btrfs_trim_state trim_state)2063 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2064 			       struct btrfs_free_space *info, u64 offset,
2065 			       u64 bytes, enum btrfs_trim_state trim_state)
2066 {
2067 	u64 bytes_to_set = 0;
2068 	u64 end;
2069 
2070 	/*
2071 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2072 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2073 	 */
2074 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2075 		if (btrfs_free_space_trimmed(info)) {
2076 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2077 				info->bitmap_extents;
2078 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2079 		}
2080 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2081 	}
2082 
2083 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2084 
2085 	bytes_to_set = min(end - offset, bytes);
2086 
2087 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2088 
2089 	/*
2090 	 * We set some bytes, we have no idea what the max extent size is
2091 	 * anymore.
2092 	 */
2093 	info->max_extent_size = 0;
2094 
2095 	return bytes_to_set;
2096 
2097 }
2098 
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2099 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2100 		      struct btrfs_free_space *info)
2101 {
2102 	struct btrfs_block_group *block_group = ctl->private;
2103 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2104 	bool forced = false;
2105 
2106 #ifdef CONFIG_BTRFS_DEBUG
2107 	if (btrfs_should_fragment_free_space(block_group))
2108 		forced = true;
2109 #endif
2110 
2111 	/* This is a way to reclaim large regions from the bitmaps. */
2112 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2113 		return false;
2114 
2115 	/*
2116 	 * If we are below the extents threshold then we can add this as an
2117 	 * extent, and don't have to deal with the bitmap
2118 	 */
2119 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2120 		/*
2121 		 * If this block group has some small extents we don't want to
2122 		 * use up all of our free slots in the cache with them, we want
2123 		 * to reserve them to larger extents, however if we have plenty
2124 		 * of cache left then go ahead an dadd them, no sense in adding
2125 		 * the overhead of a bitmap if we don't have to.
2126 		 */
2127 		if (info->bytes <= fs_info->sectorsize * 8) {
2128 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2129 				return false;
2130 		} else {
2131 			return false;
2132 		}
2133 	}
2134 
2135 	/*
2136 	 * The original block groups from mkfs can be really small, like 8
2137 	 * megabytes, so don't bother with a bitmap for those entries.  However
2138 	 * some block groups can be smaller than what a bitmap would cover but
2139 	 * are still large enough that they could overflow the 32k memory limit,
2140 	 * so allow those block groups to still be allowed to have a bitmap
2141 	 * entry.
2142 	 */
2143 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2144 		return false;
2145 
2146 	return true;
2147 }
2148 
2149 static const struct btrfs_free_space_op free_space_op = {
2150 	.use_bitmap		= use_bitmap,
2151 };
2152 
insert_into_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2153 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2154 			      struct btrfs_free_space *info)
2155 {
2156 	struct btrfs_free_space *bitmap_info;
2157 	struct btrfs_block_group *block_group = NULL;
2158 	int added = 0;
2159 	u64 bytes, offset, bytes_added;
2160 	enum btrfs_trim_state trim_state;
2161 	int ret;
2162 
2163 	bytes = info->bytes;
2164 	offset = info->offset;
2165 	trim_state = info->trim_state;
2166 
2167 	if (!ctl->op->use_bitmap(ctl, info))
2168 		return 0;
2169 
2170 	if (ctl->op == &free_space_op)
2171 		block_group = ctl->private;
2172 again:
2173 	/*
2174 	 * Since we link bitmaps right into the cluster we need to see if we
2175 	 * have a cluster here, and if so and it has our bitmap we need to add
2176 	 * the free space to that bitmap.
2177 	 */
2178 	if (block_group && !list_empty(&block_group->cluster_list)) {
2179 		struct btrfs_free_cluster *cluster;
2180 		struct rb_node *node;
2181 		struct btrfs_free_space *entry;
2182 
2183 		cluster = list_entry(block_group->cluster_list.next,
2184 				     struct btrfs_free_cluster,
2185 				     block_group_list);
2186 		spin_lock(&cluster->lock);
2187 		node = rb_first(&cluster->root);
2188 		if (!node) {
2189 			spin_unlock(&cluster->lock);
2190 			goto no_cluster_bitmap;
2191 		}
2192 
2193 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2194 		if (!entry->bitmap) {
2195 			spin_unlock(&cluster->lock);
2196 			goto no_cluster_bitmap;
2197 		}
2198 
2199 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2200 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2201 							  bytes, trim_state);
2202 			bytes -= bytes_added;
2203 			offset += bytes_added;
2204 		}
2205 		spin_unlock(&cluster->lock);
2206 		if (!bytes) {
2207 			ret = 1;
2208 			goto out;
2209 		}
2210 	}
2211 
2212 no_cluster_bitmap:
2213 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2214 					 1, 0);
2215 	if (!bitmap_info) {
2216 		ASSERT(added == 0);
2217 		goto new_bitmap;
2218 	}
2219 
2220 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2221 					  trim_state);
2222 	bytes -= bytes_added;
2223 	offset += bytes_added;
2224 	added = 0;
2225 
2226 	if (!bytes) {
2227 		ret = 1;
2228 		goto out;
2229 	} else
2230 		goto again;
2231 
2232 new_bitmap:
2233 	if (info && info->bitmap) {
2234 		add_new_bitmap(ctl, info, offset);
2235 		added = 1;
2236 		info = NULL;
2237 		goto again;
2238 	} else {
2239 		spin_unlock(&ctl->tree_lock);
2240 
2241 		/* no pre-allocated info, allocate a new one */
2242 		if (!info) {
2243 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2244 						 GFP_NOFS);
2245 			if (!info) {
2246 				spin_lock(&ctl->tree_lock);
2247 				ret = -ENOMEM;
2248 				goto out;
2249 			}
2250 		}
2251 
2252 		/* allocate the bitmap */
2253 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2254 						 GFP_NOFS);
2255 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2256 		spin_lock(&ctl->tree_lock);
2257 		if (!info->bitmap) {
2258 			ret = -ENOMEM;
2259 			goto out;
2260 		}
2261 		goto again;
2262 	}
2263 
2264 out:
2265 	if (info) {
2266 		if (info->bitmap)
2267 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2268 					info->bitmap);
2269 		kmem_cache_free(btrfs_free_space_cachep, info);
2270 	}
2271 
2272 	return ret;
2273 }
2274 
2275 /*
2276  * Free space merging rules:
2277  *  1) Merge trimmed areas together
2278  *  2) Let untrimmed areas coalesce with trimmed areas
2279  *  3) Always pull neighboring regions from bitmaps
2280  *
2281  * The above rules are for when we merge free space based on btrfs_trim_state.
2282  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2283  * same reason: to promote larger extent regions which makes life easier for
2284  * find_free_extent().  Rule 2 enables coalescing based on the common path
2285  * being returning free space from btrfs_finish_extent_commit().  So when free
2286  * space is trimmed, it will prevent aggregating trimmed new region and
2287  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2288  * and provide find_free_extent() with the largest extents possible hoping for
2289  * the reuse path.
2290  */
try_merge_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2291 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2292 			  struct btrfs_free_space *info, bool update_stat)
2293 {
2294 	struct btrfs_free_space *left_info = NULL;
2295 	struct btrfs_free_space *right_info;
2296 	bool merged = false;
2297 	u64 offset = info->offset;
2298 	u64 bytes = info->bytes;
2299 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2300 
2301 	/*
2302 	 * first we want to see if there is free space adjacent to the range we
2303 	 * are adding, if there is remove that struct and add a new one to
2304 	 * cover the entire range
2305 	 */
2306 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2307 	if (right_info && rb_prev(&right_info->offset_index))
2308 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2309 				     struct btrfs_free_space, offset_index);
2310 	else if (!right_info)
2311 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2312 
2313 	/* See try_merge_free_space() comment. */
2314 	if (right_info && !right_info->bitmap &&
2315 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2316 		if (update_stat)
2317 			unlink_free_space(ctl, right_info);
2318 		else
2319 			__unlink_free_space(ctl, right_info);
2320 		info->bytes += right_info->bytes;
2321 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2322 		merged = true;
2323 	}
2324 
2325 	/* See try_merge_free_space() comment. */
2326 	if (left_info && !left_info->bitmap &&
2327 	    left_info->offset + left_info->bytes == offset &&
2328 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2329 		if (update_stat)
2330 			unlink_free_space(ctl, left_info);
2331 		else
2332 			__unlink_free_space(ctl, left_info);
2333 		info->offset = left_info->offset;
2334 		info->bytes += left_info->bytes;
2335 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2336 		merged = true;
2337 	}
2338 
2339 	return merged;
2340 }
2341 
steal_from_bitmap_to_end(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2342 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2343 				     struct btrfs_free_space *info,
2344 				     bool update_stat)
2345 {
2346 	struct btrfs_free_space *bitmap;
2347 	unsigned long i;
2348 	unsigned long j;
2349 	const u64 end = info->offset + info->bytes;
2350 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2351 	u64 bytes;
2352 
2353 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2354 	if (!bitmap)
2355 		return false;
2356 
2357 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2358 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2359 	if (j == i)
2360 		return false;
2361 	bytes = (j - i) * ctl->unit;
2362 	info->bytes += bytes;
2363 
2364 	/* See try_merge_free_space() comment. */
2365 	if (!btrfs_free_space_trimmed(bitmap))
2366 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2367 
2368 	if (update_stat)
2369 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2370 	else
2371 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2372 
2373 	if (!bitmap->bytes)
2374 		free_bitmap(ctl, bitmap);
2375 
2376 	return true;
2377 }
2378 
steal_from_bitmap_to_front(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2379 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2380 				       struct btrfs_free_space *info,
2381 				       bool update_stat)
2382 {
2383 	struct btrfs_free_space *bitmap;
2384 	u64 bitmap_offset;
2385 	unsigned long i;
2386 	unsigned long j;
2387 	unsigned long prev_j;
2388 	u64 bytes;
2389 
2390 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2391 	/* If we're on a boundary, try the previous logical bitmap. */
2392 	if (bitmap_offset == info->offset) {
2393 		if (info->offset == 0)
2394 			return false;
2395 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2396 	}
2397 
2398 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2399 	if (!bitmap)
2400 		return false;
2401 
2402 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2403 	j = 0;
2404 	prev_j = (unsigned long)-1;
2405 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2406 		if (j > i)
2407 			break;
2408 		prev_j = j;
2409 	}
2410 	if (prev_j == i)
2411 		return false;
2412 
2413 	if (prev_j == (unsigned long)-1)
2414 		bytes = (i + 1) * ctl->unit;
2415 	else
2416 		bytes = (i - prev_j) * ctl->unit;
2417 
2418 	info->offset -= bytes;
2419 	info->bytes += bytes;
2420 
2421 	/* See try_merge_free_space() comment. */
2422 	if (!btrfs_free_space_trimmed(bitmap))
2423 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2424 
2425 	if (update_stat)
2426 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2427 	else
2428 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2429 
2430 	if (!bitmap->bytes)
2431 		free_bitmap(ctl, bitmap);
2432 
2433 	return true;
2434 }
2435 
2436 /*
2437  * We prefer always to allocate from extent entries, both for clustered and
2438  * non-clustered allocation requests. So when attempting to add a new extent
2439  * entry, try to see if there's adjacent free space in bitmap entries, and if
2440  * there is, migrate that space from the bitmaps to the extent.
2441  * Like this we get better chances of satisfying space allocation requests
2442  * because we attempt to satisfy them based on a single cache entry, and never
2443  * on 2 or more entries - even if the entries represent a contiguous free space
2444  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2445  * ends).
2446  */
steal_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2447 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2448 			      struct btrfs_free_space *info,
2449 			      bool update_stat)
2450 {
2451 	/*
2452 	 * Only work with disconnected entries, as we can change their offset,
2453 	 * and must be extent entries.
2454 	 */
2455 	ASSERT(!info->bitmap);
2456 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2457 
2458 	if (ctl->total_bitmaps > 0) {
2459 		bool stole_end;
2460 		bool stole_front = false;
2461 
2462 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2463 		if (ctl->total_bitmaps > 0)
2464 			stole_front = steal_from_bitmap_to_front(ctl, info,
2465 								 update_stat);
2466 
2467 		if (stole_end || stole_front)
2468 			try_merge_free_space(ctl, info, update_stat);
2469 	}
2470 }
2471 
__btrfs_add_free_space(struct btrfs_fs_info * fs_info,struct btrfs_free_space_ctl * ctl,u64 offset,u64 bytes,enum btrfs_trim_state trim_state)2472 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2473 			   struct btrfs_free_space_ctl *ctl,
2474 			   u64 offset, u64 bytes,
2475 			   enum btrfs_trim_state trim_state)
2476 {
2477 	struct btrfs_block_group *block_group = ctl->private;
2478 	struct btrfs_free_space *info;
2479 	int ret = 0;
2480 	u64 filter_bytes = bytes;
2481 
2482 	ASSERT(!btrfs_is_zoned(fs_info));
2483 
2484 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2485 	if (!info)
2486 		return -ENOMEM;
2487 
2488 	info->offset = offset;
2489 	info->bytes = bytes;
2490 	info->trim_state = trim_state;
2491 	RB_CLEAR_NODE(&info->offset_index);
2492 
2493 	spin_lock(&ctl->tree_lock);
2494 
2495 	if (try_merge_free_space(ctl, info, true))
2496 		goto link;
2497 
2498 	/*
2499 	 * There was no extent directly to the left or right of this new
2500 	 * extent then we know we're going to have to allocate a new extent, so
2501 	 * before we do that see if we need to drop this into a bitmap
2502 	 */
2503 	ret = insert_into_bitmap(ctl, info);
2504 	if (ret < 0) {
2505 		goto out;
2506 	} else if (ret) {
2507 		ret = 0;
2508 		goto out;
2509 	}
2510 link:
2511 	/*
2512 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2513 	 * going to add the new free space to existing bitmap entries - because
2514 	 * that would mean unnecessary work that would be reverted. Therefore
2515 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2516 	 */
2517 	steal_from_bitmap(ctl, info, true);
2518 
2519 	filter_bytes = max(filter_bytes, info->bytes);
2520 
2521 	ret = link_free_space(ctl, info);
2522 	if (ret)
2523 		kmem_cache_free(btrfs_free_space_cachep, info);
2524 out:
2525 	btrfs_discard_update_discardable(block_group);
2526 	spin_unlock(&ctl->tree_lock);
2527 
2528 	if (ret) {
2529 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2530 		ASSERT(ret != -EEXIST);
2531 	}
2532 
2533 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2534 		btrfs_discard_check_filter(block_group, filter_bytes);
2535 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2536 	}
2537 
2538 	return ret;
2539 }
2540 
__btrfs_add_free_space_zoned(struct btrfs_block_group * block_group,u64 bytenr,u64 size,bool used)2541 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2542 					u64 bytenr, u64 size, bool used)
2543 {
2544 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2545 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2546 	u64 offset = bytenr - block_group->start;
2547 	u64 to_free, to_unusable;
2548 	const int bg_reclaim_threshold = READ_ONCE(fs_info->bg_reclaim_threshold);
2549 
2550 	spin_lock(&ctl->tree_lock);
2551 	if (!used)
2552 		to_free = size;
2553 	else if (offset >= block_group->alloc_offset)
2554 		to_free = size;
2555 	else if (offset + size <= block_group->alloc_offset)
2556 		to_free = 0;
2557 	else
2558 		to_free = offset + size - block_group->alloc_offset;
2559 	to_unusable = size - to_free;
2560 
2561 	ctl->free_space += to_free;
2562 	/*
2563 	 * If the block group is read-only, we should account freed space into
2564 	 * bytes_readonly.
2565 	 */
2566 	if (!block_group->ro)
2567 		block_group->zone_unusable += to_unusable;
2568 	spin_unlock(&ctl->tree_lock);
2569 	if (!used) {
2570 		spin_lock(&block_group->lock);
2571 		block_group->alloc_offset -= size;
2572 		spin_unlock(&block_group->lock);
2573 	}
2574 
2575 	/* All the region is now unusable. Mark it as unused and reclaim */
2576 	if (block_group->zone_unusable == block_group->length) {
2577 		btrfs_mark_bg_unused(block_group);
2578 	} else if (bg_reclaim_threshold &&
2579 		   block_group->zone_unusable >=
2580 		   div_factor_fine(block_group->length, bg_reclaim_threshold)) {
2581 		btrfs_mark_bg_to_reclaim(block_group);
2582 	}
2583 
2584 	return 0;
2585 }
2586 
btrfs_add_free_space(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2587 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2588 			 u64 bytenr, u64 size)
2589 {
2590 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2591 
2592 	if (btrfs_is_zoned(block_group->fs_info))
2593 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2594 						    true);
2595 
2596 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2597 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2598 
2599 	return __btrfs_add_free_space(block_group->fs_info,
2600 				      block_group->free_space_ctl,
2601 				      bytenr, size, trim_state);
2602 }
2603 
btrfs_add_free_space_unused(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2604 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2605 				u64 bytenr, u64 size)
2606 {
2607 	if (btrfs_is_zoned(block_group->fs_info))
2608 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2609 						    false);
2610 
2611 	return btrfs_add_free_space(block_group, bytenr, size);
2612 }
2613 
2614 /*
2615  * This is a subtle distinction because when adding free space back in general,
2616  * we want it to be added as untrimmed for async. But in the case where we add
2617  * it on loading of a block group, we want to consider it trimmed.
2618  */
btrfs_add_free_space_async_trimmed(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2619 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2620 				       u64 bytenr, u64 size)
2621 {
2622 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2623 
2624 	if (btrfs_is_zoned(block_group->fs_info))
2625 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2626 						    true);
2627 
2628 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2629 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2630 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2631 
2632 	return __btrfs_add_free_space(block_group->fs_info,
2633 				      block_group->free_space_ctl,
2634 				      bytenr, size, trim_state);
2635 }
2636 
btrfs_remove_free_space(struct btrfs_block_group * block_group,u64 offset,u64 bytes)2637 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2638 			    u64 offset, u64 bytes)
2639 {
2640 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2641 	struct btrfs_free_space *info;
2642 	int ret;
2643 	bool re_search = false;
2644 
2645 	if (btrfs_is_zoned(block_group->fs_info)) {
2646 		/*
2647 		 * This can happen with conventional zones when replaying log.
2648 		 * Since the allocation info of tree-log nodes are not recorded
2649 		 * to the extent-tree, calculate_alloc_pointer() failed to
2650 		 * advance the allocation pointer after last allocated tree log
2651 		 * node blocks.
2652 		 *
2653 		 * This function is called from
2654 		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2655 		 * Advance the pointer not to overwrite the tree-log nodes.
2656 		 */
2657 		if (block_group->start + block_group->alloc_offset <
2658 		    offset + bytes) {
2659 			block_group->alloc_offset =
2660 				offset + bytes - block_group->start;
2661 		}
2662 		return 0;
2663 	}
2664 
2665 	spin_lock(&ctl->tree_lock);
2666 
2667 again:
2668 	ret = 0;
2669 	if (!bytes)
2670 		goto out_lock;
2671 
2672 	info = tree_search_offset(ctl, offset, 0, 0);
2673 	if (!info) {
2674 		/*
2675 		 * oops didn't find an extent that matched the space we wanted
2676 		 * to remove, look for a bitmap instead
2677 		 */
2678 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2679 					  1, 0);
2680 		if (!info) {
2681 			/*
2682 			 * If we found a partial bit of our free space in a
2683 			 * bitmap but then couldn't find the other part this may
2684 			 * be a problem, so WARN about it.
2685 			 */
2686 			WARN_ON(re_search);
2687 			goto out_lock;
2688 		}
2689 	}
2690 
2691 	re_search = false;
2692 	if (!info->bitmap) {
2693 		unlink_free_space(ctl, info);
2694 		if (offset == info->offset) {
2695 			u64 to_free = min(bytes, info->bytes);
2696 
2697 			info->bytes -= to_free;
2698 			info->offset += to_free;
2699 			if (info->bytes) {
2700 				ret = link_free_space(ctl, info);
2701 				WARN_ON(ret);
2702 			} else {
2703 				kmem_cache_free(btrfs_free_space_cachep, info);
2704 			}
2705 
2706 			offset += to_free;
2707 			bytes -= to_free;
2708 			goto again;
2709 		} else {
2710 			u64 old_end = info->bytes + info->offset;
2711 
2712 			info->bytes = offset - info->offset;
2713 			ret = link_free_space(ctl, info);
2714 			WARN_ON(ret);
2715 			if (ret)
2716 				goto out_lock;
2717 
2718 			/* Not enough bytes in this entry to satisfy us */
2719 			if (old_end < offset + bytes) {
2720 				bytes -= old_end - offset;
2721 				offset = old_end;
2722 				goto again;
2723 			} else if (old_end == offset + bytes) {
2724 				/* all done */
2725 				goto out_lock;
2726 			}
2727 			spin_unlock(&ctl->tree_lock);
2728 
2729 			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2730 						     offset + bytes,
2731 						     old_end - (offset + bytes),
2732 						     info->trim_state);
2733 			WARN_ON(ret);
2734 			goto out;
2735 		}
2736 	}
2737 
2738 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2739 	if (ret == -EAGAIN) {
2740 		re_search = true;
2741 		goto again;
2742 	}
2743 out_lock:
2744 	btrfs_discard_update_discardable(block_group);
2745 	spin_unlock(&ctl->tree_lock);
2746 out:
2747 	return ret;
2748 }
2749 
btrfs_dump_free_space(struct btrfs_block_group * block_group,u64 bytes)2750 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2751 			   u64 bytes)
2752 {
2753 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2754 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2755 	struct btrfs_free_space *info;
2756 	struct rb_node *n;
2757 	int count = 0;
2758 
2759 	/*
2760 	 * Zoned btrfs does not use free space tree and cluster. Just print
2761 	 * out the free space after the allocation offset.
2762 	 */
2763 	if (btrfs_is_zoned(fs_info)) {
2764 		btrfs_info(fs_info, "free space %llu",
2765 			   block_group->length - block_group->alloc_offset);
2766 		return;
2767 	}
2768 
2769 	spin_lock(&ctl->tree_lock);
2770 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2771 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2772 		if (info->bytes >= bytes && !block_group->ro)
2773 			count++;
2774 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2775 			   info->offset, info->bytes,
2776 		       (info->bitmap) ? "yes" : "no");
2777 	}
2778 	spin_unlock(&ctl->tree_lock);
2779 	btrfs_info(fs_info, "block group has cluster?: %s",
2780 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2781 	btrfs_info(fs_info,
2782 		   "%d blocks of free space at or bigger than bytes is", count);
2783 }
2784 
btrfs_init_free_space_ctl(struct btrfs_block_group * block_group,struct btrfs_free_space_ctl * ctl)2785 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2786 			       struct btrfs_free_space_ctl *ctl)
2787 {
2788 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2789 
2790 	spin_lock_init(&ctl->tree_lock);
2791 	ctl->unit = fs_info->sectorsize;
2792 	ctl->start = block_group->start;
2793 	ctl->private = block_group;
2794 	ctl->op = &free_space_op;
2795 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2796 	mutex_init(&ctl->cache_writeout_mutex);
2797 
2798 	/*
2799 	 * we only want to have 32k of ram per block group for keeping
2800 	 * track of free space, and if we pass 1/2 of that we want to
2801 	 * start converting things over to using bitmaps
2802 	 */
2803 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2804 }
2805 
2806 /*
2807  * for a given cluster, put all of its extents back into the free
2808  * space cache.  If the block group passed doesn't match the block group
2809  * pointed to by the cluster, someone else raced in and freed the
2810  * cluster already.  In that case, we just return without changing anything
2811  */
__btrfs_return_cluster_to_free_space(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster)2812 static void __btrfs_return_cluster_to_free_space(
2813 			     struct btrfs_block_group *block_group,
2814 			     struct btrfs_free_cluster *cluster)
2815 {
2816 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2817 	struct btrfs_free_space *entry;
2818 	struct rb_node *node;
2819 
2820 	spin_lock(&cluster->lock);
2821 	if (cluster->block_group != block_group) {
2822 		spin_unlock(&cluster->lock);
2823 		return;
2824 	}
2825 
2826 	cluster->block_group = NULL;
2827 	cluster->window_start = 0;
2828 	list_del_init(&cluster->block_group_list);
2829 
2830 	node = rb_first(&cluster->root);
2831 	while (node) {
2832 		bool bitmap;
2833 
2834 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2835 		node = rb_next(&entry->offset_index);
2836 		rb_erase(&entry->offset_index, &cluster->root);
2837 		RB_CLEAR_NODE(&entry->offset_index);
2838 
2839 		bitmap = (entry->bitmap != NULL);
2840 		if (!bitmap) {
2841 			/* Merging treats extents as if they were new */
2842 			if (!btrfs_free_space_trimmed(entry)) {
2843 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2844 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2845 					entry->bytes;
2846 			}
2847 
2848 			try_merge_free_space(ctl, entry, false);
2849 			steal_from_bitmap(ctl, entry, false);
2850 
2851 			/* As we insert directly, update these statistics */
2852 			if (!btrfs_free_space_trimmed(entry)) {
2853 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2854 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2855 					entry->bytes;
2856 			}
2857 		}
2858 		tree_insert_offset(&ctl->free_space_offset,
2859 				   entry->offset, &entry->offset_index, bitmap);
2860 	}
2861 	cluster->root = RB_ROOT;
2862 	spin_unlock(&cluster->lock);
2863 	btrfs_put_block_group(block_group);
2864 }
2865 
__btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl * ctl)2866 static void __btrfs_remove_free_space_cache_locked(
2867 				struct btrfs_free_space_ctl *ctl)
2868 {
2869 	struct btrfs_free_space *info;
2870 	struct rb_node *node;
2871 
2872 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2873 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2874 		if (!info->bitmap) {
2875 			unlink_free_space(ctl, info);
2876 			kmem_cache_free(btrfs_free_space_cachep, info);
2877 		} else {
2878 			free_bitmap(ctl, info);
2879 		}
2880 
2881 		cond_resched_lock(&ctl->tree_lock);
2882 	}
2883 }
2884 
__btrfs_remove_free_space_cache(struct btrfs_free_space_ctl * ctl)2885 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2886 {
2887 	spin_lock(&ctl->tree_lock);
2888 	__btrfs_remove_free_space_cache_locked(ctl);
2889 	if (ctl->private)
2890 		btrfs_discard_update_discardable(ctl->private);
2891 	spin_unlock(&ctl->tree_lock);
2892 }
2893 
btrfs_remove_free_space_cache(struct btrfs_block_group * block_group)2894 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2895 {
2896 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2897 	struct btrfs_free_cluster *cluster;
2898 	struct list_head *head;
2899 
2900 	spin_lock(&ctl->tree_lock);
2901 	while ((head = block_group->cluster_list.next) !=
2902 	       &block_group->cluster_list) {
2903 		cluster = list_entry(head, struct btrfs_free_cluster,
2904 				     block_group_list);
2905 
2906 		WARN_ON(cluster->block_group != block_group);
2907 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2908 
2909 		cond_resched_lock(&ctl->tree_lock);
2910 	}
2911 	__btrfs_remove_free_space_cache_locked(ctl);
2912 	btrfs_discard_update_discardable(block_group);
2913 	spin_unlock(&ctl->tree_lock);
2914 
2915 }
2916 
2917 /**
2918  * btrfs_is_free_space_trimmed - see if everything is trimmed
2919  * @block_group: block_group of interest
2920  *
2921  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2922  */
btrfs_is_free_space_trimmed(struct btrfs_block_group * block_group)2923 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2924 {
2925 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2926 	struct btrfs_free_space *info;
2927 	struct rb_node *node;
2928 	bool ret = true;
2929 
2930 	spin_lock(&ctl->tree_lock);
2931 	node = rb_first(&ctl->free_space_offset);
2932 
2933 	while (node) {
2934 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2935 
2936 		if (!btrfs_free_space_trimmed(info)) {
2937 			ret = false;
2938 			break;
2939 		}
2940 
2941 		node = rb_next(node);
2942 	}
2943 
2944 	spin_unlock(&ctl->tree_lock);
2945 	return ret;
2946 }
2947 
btrfs_find_space_for_alloc(struct btrfs_block_group * block_group,u64 offset,u64 bytes,u64 empty_size,u64 * max_extent_size)2948 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2949 			       u64 offset, u64 bytes, u64 empty_size,
2950 			       u64 *max_extent_size)
2951 {
2952 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2953 	struct btrfs_discard_ctl *discard_ctl =
2954 					&block_group->fs_info->discard_ctl;
2955 	struct btrfs_free_space *entry = NULL;
2956 	u64 bytes_search = bytes + empty_size;
2957 	u64 ret = 0;
2958 	u64 align_gap = 0;
2959 	u64 align_gap_len = 0;
2960 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2961 
2962 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
2963 
2964 	spin_lock(&ctl->tree_lock);
2965 	entry = find_free_space(ctl, &offset, &bytes_search,
2966 				block_group->full_stripe_len, max_extent_size);
2967 	if (!entry)
2968 		goto out;
2969 
2970 	ret = offset;
2971 	if (entry->bitmap) {
2972 		bitmap_clear_bits(ctl, entry, offset, bytes);
2973 
2974 		if (!btrfs_free_space_trimmed(entry))
2975 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2976 
2977 		if (!entry->bytes)
2978 			free_bitmap(ctl, entry);
2979 	} else {
2980 		unlink_free_space(ctl, entry);
2981 		align_gap_len = offset - entry->offset;
2982 		align_gap = entry->offset;
2983 		align_gap_trim_state = entry->trim_state;
2984 
2985 		if (!btrfs_free_space_trimmed(entry))
2986 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2987 
2988 		entry->offset = offset + bytes;
2989 		WARN_ON(entry->bytes < bytes + align_gap_len);
2990 
2991 		entry->bytes -= bytes + align_gap_len;
2992 		if (!entry->bytes)
2993 			kmem_cache_free(btrfs_free_space_cachep, entry);
2994 		else
2995 			link_free_space(ctl, entry);
2996 	}
2997 out:
2998 	btrfs_discard_update_discardable(block_group);
2999 	spin_unlock(&ctl->tree_lock);
3000 
3001 	if (align_gap_len)
3002 		__btrfs_add_free_space(block_group->fs_info, ctl,
3003 				       align_gap, align_gap_len,
3004 				       align_gap_trim_state);
3005 	return ret;
3006 }
3007 
3008 /*
3009  * given a cluster, put all of its extents back into the free space
3010  * cache.  If a block group is passed, this function will only free
3011  * a cluster that belongs to the passed block group.
3012  *
3013  * Otherwise, it'll get a reference on the block group pointed to by the
3014  * cluster and remove the cluster from it.
3015  */
btrfs_return_cluster_to_free_space(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster)3016 void btrfs_return_cluster_to_free_space(
3017 			       struct btrfs_block_group *block_group,
3018 			       struct btrfs_free_cluster *cluster)
3019 {
3020 	struct btrfs_free_space_ctl *ctl;
3021 
3022 	/* first, get a safe pointer to the block group */
3023 	spin_lock(&cluster->lock);
3024 	if (!block_group) {
3025 		block_group = cluster->block_group;
3026 		if (!block_group) {
3027 			spin_unlock(&cluster->lock);
3028 			return;
3029 		}
3030 	} else if (cluster->block_group != block_group) {
3031 		/* someone else has already freed it don't redo their work */
3032 		spin_unlock(&cluster->lock);
3033 		return;
3034 	}
3035 	btrfs_get_block_group(block_group);
3036 	spin_unlock(&cluster->lock);
3037 
3038 	ctl = block_group->free_space_ctl;
3039 
3040 	/* now return any extents the cluster had on it */
3041 	spin_lock(&ctl->tree_lock);
3042 	__btrfs_return_cluster_to_free_space(block_group, cluster);
3043 	spin_unlock(&ctl->tree_lock);
3044 
3045 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3046 
3047 	/* finally drop our ref */
3048 	btrfs_put_block_group(block_group);
3049 }
3050 
btrfs_alloc_from_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct btrfs_free_space * entry,u64 bytes,u64 min_start,u64 * max_extent_size)3051 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3052 				   struct btrfs_free_cluster *cluster,
3053 				   struct btrfs_free_space *entry,
3054 				   u64 bytes, u64 min_start,
3055 				   u64 *max_extent_size)
3056 {
3057 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3058 	int err;
3059 	u64 search_start = cluster->window_start;
3060 	u64 search_bytes = bytes;
3061 	u64 ret = 0;
3062 
3063 	search_start = min_start;
3064 	search_bytes = bytes;
3065 
3066 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3067 	if (err) {
3068 		*max_extent_size = max(get_max_extent_size(entry),
3069 				       *max_extent_size);
3070 		return 0;
3071 	}
3072 
3073 	ret = search_start;
3074 	__bitmap_clear_bits(ctl, entry, ret, bytes);
3075 
3076 	return ret;
3077 }
3078 
3079 /*
3080  * given a cluster, try to allocate 'bytes' from it, returns 0
3081  * if it couldn't find anything suitably large, or a logical disk offset
3082  * if things worked out
3083  */
btrfs_alloc_from_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,u64 bytes,u64 min_start,u64 * max_extent_size)3084 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3085 			     struct btrfs_free_cluster *cluster, u64 bytes,
3086 			     u64 min_start, u64 *max_extent_size)
3087 {
3088 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3089 	struct btrfs_discard_ctl *discard_ctl =
3090 					&block_group->fs_info->discard_ctl;
3091 	struct btrfs_free_space *entry = NULL;
3092 	struct rb_node *node;
3093 	u64 ret = 0;
3094 
3095 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3096 
3097 	spin_lock(&cluster->lock);
3098 	if (bytes > cluster->max_size)
3099 		goto out;
3100 
3101 	if (cluster->block_group != block_group)
3102 		goto out;
3103 
3104 	node = rb_first(&cluster->root);
3105 	if (!node)
3106 		goto out;
3107 
3108 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3109 	while (1) {
3110 		if (entry->bytes < bytes)
3111 			*max_extent_size = max(get_max_extent_size(entry),
3112 					       *max_extent_size);
3113 
3114 		if (entry->bytes < bytes ||
3115 		    (!entry->bitmap && entry->offset < min_start)) {
3116 			node = rb_next(&entry->offset_index);
3117 			if (!node)
3118 				break;
3119 			entry = rb_entry(node, struct btrfs_free_space,
3120 					 offset_index);
3121 			continue;
3122 		}
3123 
3124 		if (entry->bitmap) {
3125 			ret = btrfs_alloc_from_bitmap(block_group,
3126 						      cluster, entry, bytes,
3127 						      cluster->window_start,
3128 						      max_extent_size);
3129 			if (ret == 0) {
3130 				node = rb_next(&entry->offset_index);
3131 				if (!node)
3132 					break;
3133 				entry = rb_entry(node, struct btrfs_free_space,
3134 						 offset_index);
3135 				continue;
3136 			}
3137 			cluster->window_start += bytes;
3138 		} else {
3139 			ret = entry->offset;
3140 
3141 			entry->offset += bytes;
3142 			entry->bytes -= bytes;
3143 		}
3144 
3145 		break;
3146 	}
3147 out:
3148 	spin_unlock(&cluster->lock);
3149 
3150 	if (!ret)
3151 		return 0;
3152 
3153 	spin_lock(&ctl->tree_lock);
3154 
3155 	if (!btrfs_free_space_trimmed(entry))
3156 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3157 
3158 	ctl->free_space -= bytes;
3159 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3160 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3161 
3162 	spin_lock(&cluster->lock);
3163 	if (entry->bytes == 0) {
3164 		rb_erase(&entry->offset_index, &cluster->root);
3165 		ctl->free_extents--;
3166 		if (entry->bitmap) {
3167 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3168 					entry->bitmap);
3169 			ctl->total_bitmaps--;
3170 			recalculate_thresholds(ctl);
3171 		} else if (!btrfs_free_space_trimmed(entry)) {
3172 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3173 		}
3174 		kmem_cache_free(btrfs_free_space_cachep, entry);
3175 	}
3176 
3177 	spin_unlock(&cluster->lock);
3178 	spin_unlock(&ctl->tree_lock);
3179 
3180 	return ret;
3181 }
3182 
btrfs_bitmap_cluster(struct btrfs_block_group * block_group,struct btrfs_free_space * entry,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3183 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3184 				struct btrfs_free_space *entry,
3185 				struct btrfs_free_cluster *cluster,
3186 				u64 offset, u64 bytes,
3187 				u64 cont1_bytes, u64 min_bytes)
3188 {
3189 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3190 	unsigned long next_zero;
3191 	unsigned long i;
3192 	unsigned long want_bits;
3193 	unsigned long min_bits;
3194 	unsigned long found_bits;
3195 	unsigned long max_bits = 0;
3196 	unsigned long start = 0;
3197 	unsigned long total_found = 0;
3198 	int ret;
3199 
3200 	i = offset_to_bit(entry->offset, ctl->unit,
3201 			  max_t(u64, offset, entry->offset));
3202 	want_bits = bytes_to_bits(bytes, ctl->unit);
3203 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3204 
3205 	/*
3206 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3207 	 * fragmented.
3208 	 */
3209 	if (entry->max_extent_size &&
3210 	    entry->max_extent_size < cont1_bytes)
3211 		return -ENOSPC;
3212 again:
3213 	found_bits = 0;
3214 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3215 		next_zero = find_next_zero_bit(entry->bitmap,
3216 					       BITS_PER_BITMAP, i);
3217 		if (next_zero - i >= min_bits) {
3218 			found_bits = next_zero - i;
3219 			if (found_bits > max_bits)
3220 				max_bits = found_bits;
3221 			break;
3222 		}
3223 		if (next_zero - i > max_bits)
3224 			max_bits = next_zero - i;
3225 		i = next_zero;
3226 	}
3227 
3228 	if (!found_bits) {
3229 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3230 		return -ENOSPC;
3231 	}
3232 
3233 	if (!total_found) {
3234 		start = i;
3235 		cluster->max_size = 0;
3236 	}
3237 
3238 	total_found += found_bits;
3239 
3240 	if (cluster->max_size < found_bits * ctl->unit)
3241 		cluster->max_size = found_bits * ctl->unit;
3242 
3243 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3244 		i = next_zero + 1;
3245 		goto again;
3246 	}
3247 
3248 	cluster->window_start = start * ctl->unit + entry->offset;
3249 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3250 	ret = tree_insert_offset(&cluster->root, entry->offset,
3251 				 &entry->offset_index, 1);
3252 	ASSERT(!ret); /* -EEXIST; Logic error */
3253 
3254 	trace_btrfs_setup_cluster(block_group, cluster,
3255 				  total_found * ctl->unit, 1);
3256 	return 0;
3257 }
3258 
3259 /*
3260  * This searches the block group for just extents to fill the cluster with.
3261  * Try to find a cluster with at least bytes total bytes, at least one
3262  * extent of cont1_bytes, and other clusters of at least min_bytes.
3263  */
3264 static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3265 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3266 			struct btrfs_free_cluster *cluster,
3267 			struct list_head *bitmaps, u64 offset, u64 bytes,
3268 			u64 cont1_bytes, u64 min_bytes)
3269 {
3270 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3271 	struct btrfs_free_space *first = NULL;
3272 	struct btrfs_free_space *entry = NULL;
3273 	struct btrfs_free_space *last;
3274 	struct rb_node *node;
3275 	u64 window_free;
3276 	u64 max_extent;
3277 	u64 total_size = 0;
3278 
3279 	entry = tree_search_offset(ctl, offset, 0, 1);
3280 	if (!entry)
3281 		return -ENOSPC;
3282 
3283 	/*
3284 	 * We don't want bitmaps, so just move along until we find a normal
3285 	 * extent entry.
3286 	 */
3287 	while (entry->bitmap || entry->bytes < min_bytes) {
3288 		if (entry->bitmap && list_empty(&entry->list))
3289 			list_add_tail(&entry->list, bitmaps);
3290 		node = rb_next(&entry->offset_index);
3291 		if (!node)
3292 			return -ENOSPC;
3293 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3294 	}
3295 
3296 	window_free = entry->bytes;
3297 	max_extent = entry->bytes;
3298 	first = entry;
3299 	last = entry;
3300 
3301 	for (node = rb_next(&entry->offset_index); node;
3302 	     node = rb_next(&entry->offset_index)) {
3303 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3304 
3305 		if (entry->bitmap) {
3306 			if (list_empty(&entry->list))
3307 				list_add_tail(&entry->list, bitmaps);
3308 			continue;
3309 		}
3310 
3311 		if (entry->bytes < min_bytes)
3312 			continue;
3313 
3314 		last = entry;
3315 		window_free += entry->bytes;
3316 		if (entry->bytes > max_extent)
3317 			max_extent = entry->bytes;
3318 	}
3319 
3320 	if (window_free < bytes || max_extent < cont1_bytes)
3321 		return -ENOSPC;
3322 
3323 	cluster->window_start = first->offset;
3324 
3325 	node = &first->offset_index;
3326 
3327 	/*
3328 	 * now we've found our entries, pull them out of the free space
3329 	 * cache and put them into the cluster rbtree
3330 	 */
3331 	do {
3332 		int ret;
3333 
3334 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3335 		node = rb_next(&entry->offset_index);
3336 		if (entry->bitmap || entry->bytes < min_bytes)
3337 			continue;
3338 
3339 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3340 		ret = tree_insert_offset(&cluster->root, entry->offset,
3341 					 &entry->offset_index, 0);
3342 		total_size += entry->bytes;
3343 		ASSERT(!ret); /* -EEXIST; Logic error */
3344 	} while (node && entry != last);
3345 
3346 	cluster->max_size = max_extent;
3347 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3348 	return 0;
3349 }
3350 
3351 /*
3352  * This specifically looks for bitmaps that may work in the cluster, we assume
3353  * that we have already failed to find extents that will work.
3354  */
3355 static noinline int
setup_cluster_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3356 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3357 		     struct btrfs_free_cluster *cluster,
3358 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3359 		     u64 cont1_bytes, u64 min_bytes)
3360 {
3361 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3362 	struct btrfs_free_space *entry = NULL;
3363 	int ret = -ENOSPC;
3364 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3365 
3366 	if (ctl->total_bitmaps == 0)
3367 		return -ENOSPC;
3368 
3369 	/*
3370 	 * The bitmap that covers offset won't be in the list unless offset
3371 	 * is just its start offset.
3372 	 */
3373 	if (!list_empty(bitmaps))
3374 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3375 
3376 	if (!entry || entry->offset != bitmap_offset) {
3377 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3378 		if (entry && list_empty(&entry->list))
3379 			list_add(&entry->list, bitmaps);
3380 	}
3381 
3382 	list_for_each_entry(entry, bitmaps, list) {
3383 		if (entry->bytes < bytes)
3384 			continue;
3385 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3386 					   bytes, cont1_bytes, min_bytes);
3387 		if (!ret)
3388 			return 0;
3389 	}
3390 
3391 	/*
3392 	 * The bitmaps list has all the bitmaps that record free space
3393 	 * starting after offset, so no more search is required.
3394 	 */
3395 	return -ENOSPC;
3396 }
3397 
3398 /*
3399  * here we try to find a cluster of blocks in a block group.  The goal
3400  * is to find at least bytes+empty_size.
3401  * We might not find them all in one contiguous area.
3402  *
3403  * returns zero and sets up cluster if things worked out, otherwise
3404  * it returns -enospc
3405  */
btrfs_find_space_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 empty_size)3406 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3407 			     struct btrfs_free_cluster *cluster,
3408 			     u64 offset, u64 bytes, u64 empty_size)
3409 {
3410 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3411 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3412 	struct btrfs_free_space *entry, *tmp;
3413 	LIST_HEAD(bitmaps);
3414 	u64 min_bytes;
3415 	u64 cont1_bytes;
3416 	int ret;
3417 
3418 	/*
3419 	 * Choose the minimum extent size we'll require for this
3420 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3421 	 * For metadata, allow allocates with smaller extents.  For
3422 	 * data, keep it dense.
3423 	 */
3424 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3425 		cont1_bytes = min_bytes = bytes + empty_size;
3426 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3427 		cont1_bytes = bytes;
3428 		min_bytes = fs_info->sectorsize;
3429 	} else {
3430 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3431 		min_bytes = fs_info->sectorsize;
3432 	}
3433 
3434 	spin_lock(&ctl->tree_lock);
3435 
3436 	/*
3437 	 * If we know we don't have enough space to make a cluster don't even
3438 	 * bother doing all the work to try and find one.
3439 	 */
3440 	if (ctl->free_space < bytes) {
3441 		spin_unlock(&ctl->tree_lock);
3442 		return -ENOSPC;
3443 	}
3444 
3445 	spin_lock(&cluster->lock);
3446 
3447 	/* someone already found a cluster, hooray */
3448 	if (cluster->block_group) {
3449 		ret = 0;
3450 		goto out;
3451 	}
3452 
3453 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3454 				 min_bytes);
3455 
3456 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3457 				      bytes + empty_size,
3458 				      cont1_bytes, min_bytes);
3459 	if (ret)
3460 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3461 					   offset, bytes + empty_size,
3462 					   cont1_bytes, min_bytes);
3463 
3464 	/* Clear our temporary list */
3465 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3466 		list_del_init(&entry->list);
3467 
3468 	if (!ret) {
3469 		btrfs_get_block_group(block_group);
3470 		list_add_tail(&cluster->block_group_list,
3471 			      &block_group->cluster_list);
3472 		cluster->block_group = block_group;
3473 	} else {
3474 		trace_btrfs_failed_cluster_setup(block_group);
3475 	}
3476 out:
3477 	spin_unlock(&cluster->lock);
3478 	spin_unlock(&ctl->tree_lock);
3479 
3480 	return ret;
3481 }
3482 
3483 /*
3484  * simple code to zero out a cluster
3485  */
btrfs_init_free_cluster(struct btrfs_free_cluster * cluster)3486 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3487 {
3488 	spin_lock_init(&cluster->lock);
3489 	spin_lock_init(&cluster->refill_lock);
3490 	cluster->root = RB_ROOT;
3491 	cluster->max_size = 0;
3492 	cluster->fragmented = false;
3493 	INIT_LIST_HEAD(&cluster->block_group_list);
3494 	cluster->block_group = NULL;
3495 }
3496 
do_trimming(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 bytes,u64 reserved_start,u64 reserved_bytes,enum btrfs_trim_state reserved_trim_state,struct btrfs_trim_range * trim_entry)3497 static int do_trimming(struct btrfs_block_group *block_group,
3498 		       u64 *total_trimmed, u64 start, u64 bytes,
3499 		       u64 reserved_start, u64 reserved_bytes,
3500 		       enum btrfs_trim_state reserved_trim_state,
3501 		       struct btrfs_trim_range *trim_entry)
3502 {
3503 	struct btrfs_space_info *space_info = block_group->space_info;
3504 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3505 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3506 	int ret;
3507 	int update = 0;
3508 	const u64 end = start + bytes;
3509 	const u64 reserved_end = reserved_start + reserved_bytes;
3510 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3511 	u64 trimmed = 0;
3512 
3513 	spin_lock(&space_info->lock);
3514 	spin_lock(&block_group->lock);
3515 	if (!block_group->ro) {
3516 		block_group->reserved += reserved_bytes;
3517 		space_info->bytes_reserved += reserved_bytes;
3518 		update = 1;
3519 	}
3520 	spin_unlock(&block_group->lock);
3521 	spin_unlock(&space_info->lock);
3522 
3523 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3524 	if (!ret) {
3525 		*total_trimmed += trimmed;
3526 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3527 	}
3528 
3529 	mutex_lock(&ctl->cache_writeout_mutex);
3530 	if (reserved_start < start)
3531 		__btrfs_add_free_space(fs_info, ctl, reserved_start,
3532 				       start - reserved_start,
3533 				       reserved_trim_state);
3534 	if (start + bytes < reserved_start + reserved_bytes)
3535 		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3536 				       reserved_trim_state);
3537 	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3538 	list_del(&trim_entry->list);
3539 	mutex_unlock(&ctl->cache_writeout_mutex);
3540 
3541 	if (update) {
3542 		spin_lock(&space_info->lock);
3543 		spin_lock(&block_group->lock);
3544 		if (block_group->ro)
3545 			space_info->bytes_readonly += reserved_bytes;
3546 		block_group->reserved -= reserved_bytes;
3547 		space_info->bytes_reserved -= reserved_bytes;
3548 		spin_unlock(&block_group->lock);
3549 		spin_unlock(&space_info->lock);
3550 	}
3551 
3552 	return ret;
3553 }
3554 
3555 /*
3556  * If @async is set, then we will trim 1 region and return.
3557  */
trim_no_bitmap(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen,bool async)3558 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3559 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3560 			  bool async)
3561 {
3562 	struct btrfs_discard_ctl *discard_ctl =
3563 					&block_group->fs_info->discard_ctl;
3564 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3565 	struct btrfs_free_space *entry;
3566 	struct rb_node *node;
3567 	int ret = 0;
3568 	u64 extent_start;
3569 	u64 extent_bytes;
3570 	enum btrfs_trim_state extent_trim_state;
3571 	u64 bytes;
3572 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3573 
3574 	while (start < end) {
3575 		struct btrfs_trim_range trim_entry;
3576 
3577 		mutex_lock(&ctl->cache_writeout_mutex);
3578 		spin_lock(&ctl->tree_lock);
3579 
3580 		if (ctl->free_space < minlen)
3581 			goto out_unlock;
3582 
3583 		entry = tree_search_offset(ctl, start, 0, 1);
3584 		if (!entry)
3585 			goto out_unlock;
3586 
3587 		/* Skip bitmaps and if async, already trimmed entries */
3588 		while (entry->bitmap ||
3589 		       (async && btrfs_free_space_trimmed(entry))) {
3590 			node = rb_next(&entry->offset_index);
3591 			if (!node)
3592 				goto out_unlock;
3593 			entry = rb_entry(node, struct btrfs_free_space,
3594 					 offset_index);
3595 		}
3596 
3597 		if (entry->offset >= end)
3598 			goto out_unlock;
3599 
3600 		extent_start = entry->offset;
3601 		extent_bytes = entry->bytes;
3602 		extent_trim_state = entry->trim_state;
3603 		if (async) {
3604 			start = entry->offset;
3605 			bytes = entry->bytes;
3606 			if (bytes < minlen) {
3607 				spin_unlock(&ctl->tree_lock);
3608 				mutex_unlock(&ctl->cache_writeout_mutex);
3609 				goto next;
3610 			}
3611 			unlink_free_space(ctl, entry);
3612 			/*
3613 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3614 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3615 			 * X when we come back around.  So trim it now.
3616 			 */
3617 			if (max_discard_size &&
3618 			    bytes >= (max_discard_size +
3619 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3620 				bytes = max_discard_size;
3621 				extent_bytes = max_discard_size;
3622 				entry->offset += max_discard_size;
3623 				entry->bytes -= max_discard_size;
3624 				link_free_space(ctl, entry);
3625 			} else {
3626 				kmem_cache_free(btrfs_free_space_cachep, entry);
3627 			}
3628 		} else {
3629 			start = max(start, extent_start);
3630 			bytes = min(extent_start + extent_bytes, end) - start;
3631 			if (bytes < minlen) {
3632 				spin_unlock(&ctl->tree_lock);
3633 				mutex_unlock(&ctl->cache_writeout_mutex);
3634 				goto next;
3635 			}
3636 
3637 			unlink_free_space(ctl, entry);
3638 			kmem_cache_free(btrfs_free_space_cachep, entry);
3639 		}
3640 
3641 		spin_unlock(&ctl->tree_lock);
3642 		trim_entry.start = extent_start;
3643 		trim_entry.bytes = extent_bytes;
3644 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3645 		mutex_unlock(&ctl->cache_writeout_mutex);
3646 
3647 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3648 				  extent_start, extent_bytes, extent_trim_state,
3649 				  &trim_entry);
3650 		if (ret) {
3651 			block_group->discard_cursor = start + bytes;
3652 			break;
3653 		}
3654 next:
3655 		start += bytes;
3656 		block_group->discard_cursor = start;
3657 		if (async && *total_trimmed)
3658 			break;
3659 
3660 		if (fatal_signal_pending(current)) {
3661 			ret = -ERESTARTSYS;
3662 			break;
3663 		}
3664 
3665 		cond_resched();
3666 	}
3667 
3668 	return ret;
3669 
3670 out_unlock:
3671 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3672 	spin_unlock(&ctl->tree_lock);
3673 	mutex_unlock(&ctl->cache_writeout_mutex);
3674 
3675 	return ret;
3676 }
3677 
3678 /*
3679  * If we break out of trimming a bitmap prematurely, we should reset the
3680  * trimming bit.  In a rather contrieved case, it's possible to race here so
3681  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3682  *
3683  * start = start of bitmap
3684  * end = near end of bitmap
3685  *
3686  * Thread 1:			Thread 2:
3687  * trim_bitmaps(start)
3688  *				trim_bitmaps(end)
3689  *				end_trimming_bitmap()
3690  * reset_trimming_bitmap()
3691  */
reset_trimming_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)3692 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3693 {
3694 	struct btrfs_free_space *entry;
3695 
3696 	spin_lock(&ctl->tree_lock);
3697 	entry = tree_search_offset(ctl, offset, 1, 0);
3698 	if (entry) {
3699 		if (btrfs_free_space_trimmed(entry)) {
3700 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3701 				entry->bitmap_extents;
3702 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3703 		}
3704 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3705 	}
3706 
3707 	spin_unlock(&ctl->tree_lock);
3708 }
3709 
end_trimming_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * entry)3710 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3711 				struct btrfs_free_space *entry)
3712 {
3713 	if (btrfs_free_space_trimming_bitmap(entry)) {
3714 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3715 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3716 			entry->bitmap_extents;
3717 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3718 	}
3719 }
3720 
3721 /*
3722  * If @async is set, then we will trim 1 region and return.
3723  */
trim_bitmaps(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen,u64 maxlen,bool async)3724 static int trim_bitmaps(struct btrfs_block_group *block_group,
3725 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3726 			u64 maxlen, bool async)
3727 {
3728 	struct btrfs_discard_ctl *discard_ctl =
3729 					&block_group->fs_info->discard_ctl;
3730 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3731 	struct btrfs_free_space *entry;
3732 	int ret = 0;
3733 	int ret2;
3734 	u64 bytes;
3735 	u64 offset = offset_to_bitmap(ctl, start);
3736 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3737 
3738 	while (offset < end) {
3739 		bool next_bitmap = false;
3740 		struct btrfs_trim_range trim_entry;
3741 
3742 		mutex_lock(&ctl->cache_writeout_mutex);
3743 		spin_lock(&ctl->tree_lock);
3744 
3745 		if (ctl->free_space < minlen) {
3746 			block_group->discard_cursor =
3747 				btrfs_block_group_end(block_group);
3748 			spin_unlock(&ctl->tree_lock);
3749 			mutex_unlock(&ctl->cache_writeout_mutex);
3750 			break;
3751 		}
3752 
3753 		entry = tree_search_offset(ctl, offset, 1, 0);
3754 		/*
3755 		 * Bitmaps are marked trimmed lossily now to prevent constant
3756 		 * discarding of the same bitmap (the reason why we are bound
3757 		 * by the filters).  So, retrim the block group bitmaps when we
3758 		 * are preparing to punt to the unused_bgs list.  This uses
3759 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3760 		 * which is the only discard index which sets minlen to 0.
3761 		 */
3762 		if (!entry || (async && minlen && start == offset &&
3763 			       btrfs_free_space_trimmed(entry))) {
3764 			spin_unlock(&ctl->tree_lock);
3765 			mutex_unlock(&ctl->cache_writeout_mutex);
3766 			next_bitmap = true;
3767 			goto next;
3768 		}
3769 
3770 		/*
3771 		 * Async discard bitmap trimming begins at by setting the start
3772 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3773 		 * start of the bitmap.  This lets us know we are fully
3774 		 * scanning the bitmap rather than only some portion of it.
3775 		 */
3776 		if (start == offset)
3777 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3778 
3779 		bytes = minlen;
3780 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3781 		if (ret2 || start >= end) {
3782 			/*
3783 			 * We lossily consider a bitmap trimmed if we only skip
3784 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3785 			 */
3786 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3787 				end_trimming_bitmap(ctl, entry);
3788 			else
3789 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3790 			spin_unlock(&ctl->tree_lock);
3791 			mutex_unlock(&ctl->cache_writeout_mutex);
3792 			next_bitmap = true;
3793 			goto next;
3794 		}
3795 
3796 		/*
3797 		 * We already trimmed a region, but are using the locking above
3798 		 * to reset the trim_state.
3799 		 */
3800 		if (async && *total_trimmed) {
3801 			spin_unlock(&ctl->tree_lock);
3802 			mutex_unlock(&ctl->cache_writeout_mutex);
3803 			goto out;
3804 		}
3805 
3806 		bytes = min(bytes, end - start);
3807 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3808 			spin_unlock(&ctl->tree_lock);
3809 			mutex_unlock(&ctl->cache_writeout_mutex);
3810 			goto next;
3811 		}
3812 
3813 		/*
3814 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3815 		 * If X < @minlen, we won't trim X when we come back around.
3816 		 * So trim it now.  We differ here from trimming extents as we
3817 		 * don't keep individual state per bit.
3818 		 */
3819 		if (async &&
3820 		    max_discard_size &&
3821 		    bytes > (max_discard_size + minlen))
3822 			bytes = max_discard_size;
3823 
3824 		bitmap_clear_bits(ctl, entry, start, bytes);
3825 		if (entry->bytes == 0)
3826 			free_bitmap(ctl, entry);
3827 
3828 		spin_unlock(&ctl->tree_lock);
3829 		trim_entry.start = start;
3830 		trim_entry.bytes = bytes;
3831 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3832 		mutex_unlock(&ctl->cache_writeout_mutex);
3833 
3834 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3835 				  start, bytes, 0, &trim_entry);
3836 		if (ret) {
3837 			reset_trimming_bitmap(ctl, offset);
3838 			block_group->discard_cursor =
3839 				btrfs_block_group_end(block_group);
3840 			break;
3841 		}
3842 next:
3843 		if (next_bitmap) {
3844 			offset += BITS_PER_BITMAP * ctl->unit;
3845 			start = offset;
3846 		} else {
3847 			start += bytes;
3848 		}
3849 		block_group->discard_cursor = start;
3850 
3851 		if (fatal_signal_pending(current)) {
3852 			if (start != offset)
3853 				reset_trimming_bitmap(ctl, offset);
3854 			ret = -ERESTARTSYS;
3855 			break;
3856 		}
3857 
3858 		cond_resched();
3859 	}
3860 
3861 	if (offset >= end)
3862 		block_group->discard_cursor = end;
3863 
3864 out:
3865 	return ret;
3866 }
3867 
btrfs_trim_block_group(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen)3868 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3869 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3870 {
3871 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3872 	int ret;
3873 	u64 rem = 0;
3874 
3875 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3876 
3877 	*trimmed = 0;
3878 
3879 	spin_lock(&block_group->lock);
3880 	if (block_group->removed) {
3881 		spin_unlock(&block_group->lock);
3882 		return 0;
3883 	}
3884 	btrfs_freeze_block_group(block_group);
3885 	spin_unlock(&block_group->lock);
3886 
3887 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3888 	if (ret)
3889 		goto out;
3890 
3891 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3892 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3893 	/* If we ended in the middle of a bitmap, reset the trimming flag */
3894 	if (rem)
3895 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3896 out:
3897 	btrfs_unfreeze_block_group(block_group);
3898 	return ret;
3899 }
3900 
btrfs_trim_block_group_extents(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen,bool async)3901 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3902 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3903 				   bool async)
3904 {
3905 	int ret;
3906 
3907 	*trimmed = 0;
3908 
3909 	spin_lock(&block_group->lock);
3910 	if (block_group->removed) {
3911 		spin_unlock(&block_group->lock);
3912 		return 0;
3913 	}
3914 	btrfs_freeze_block_group(block_group);
3915 	spin_unlock(&block_group->lock);
3916 
3917 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3918 	btrfs_unfreeze_block_group(block_group);
3919 
3920 	return ret;
3921 }
3922 
btrfs_trim_block_group_bitmaps(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen,u64 maxlen,bool async)3923 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3924 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3925 				   u64 maxlen, bool async)
3926 {
3927 	int ret;
3928 
3929 	*trimmed = 0;
3930 
3931 	spin_lock(&block_group->lock);
3932 	if (block_group->removed) {
3933 		spin_unlock(&block_group->lock);
3934 		return 0;
3935 	}
3936 	btrfs_freeze_block_group(block_group);
3937 	spin_unlock(&block_group->lock);
3938 
3939 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3940 			   async);
3941 
3942 	btrfs_unfreeze_block_group(block_group);
3943 
3944 	return ret;
3945 }
3946 
btrfs_free_space_cache_v1_active(struct btrfs_fs_info * fs_info)3947 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
3948 {
3949 	return btrfs_super_cache_generation(fs_info->super_copy);
3950 }
3951 
cleanup_free_space_cache_v1(struct btrfs_fs_info * fs_info,struct btrfs_trans_handle * trans)3952 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
3953 				       struct btrfs_trans_handle *trans)
3954 {
3955 	struct btrfs_block_group *block_group;
3956 	struct rb_node *node;
3957 	int ret = 0;
3958 
3959 	btrfs_info(fs_info, "cleaning free space cache v1");
3960 
3961 	node = rb_first(&fs_info->block_group_cache_tree);
3962 	while (node) {
3963 		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
3964 		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
3965 		if (ret)
3966 			goto out;
3967 		node = rb_next(node);
3968 	}
3969 out:
3970 	return ret;
3971 }
3972 
btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info * fs_info,bool active)3973 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
3974 {
3975 	struct btrfs_trans_handle *trans;
3976 	int ret;
3977 
3978 	/*
3979 	 * update_super_roots will appropriately set or unset
3980 	 * super_copy->cache_generation based on SPACE_CACHE and
3981 	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
3982 	 * transaction commit whether we are enabling space cache v1 and don't
3983 	 * have any other work to do, or are disabling it and removing free
3984 	 * space inodes.
3985 	 */
3986 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3987 	if (IS_ERR(trans))
3988 		return PTR_ERR(trans);
3989 
3990 	if (!active) {
3991 		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
3992 		ret = cleanup_free_space_cache_v1(fs_info, trans);
3993 		if (ret) {
3994 			btrfs_abort_transaction(trans, ret);
3995 			btrfs_end_transaction(trans);
3996 			goto out;
3997 		}
3998 	}
3999 
4000 	ret = btrfs_commit_transaction(trans);
4001 out:
4002 	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4003 
4004 	return ret;
4005 }
4006 
4007 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4008 /*
4009  * Use this if you need to make a bitmap or extent entry specifically, it
4010  * doesn't do any of the merging that add_free_space does, this acts a lot like
4011  * how the free space cache loading stuff works, so you can get really weird
4012  * configurations.
4013  */
test_add_free_space_entry(struct btrfs_block_group * cache,u64 offset,u64 bytes,bool bitmap)4014 int test_add_free_space_entry(struct btrfs_block_group *cache,
4015 			      u64 offset, u64 bytes, bool bitmap)
4016 {
4017 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4018 	struct btrfs_free_space *info = NULL, *bitmap_info;
4019 	void *map = NULL;
4020 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4021 	u64 bytes_added;
4022 	int ret;
4023 
4024 again:
4025 	if (!info) {
4026 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4027 		if (!info)
4028 			return -ENOMEM;
4029 	}
4030 
4031 	if (!bitmap) {
4032 		spin_lock(&ctl->tree_lock);
4033 		info->offset = offset;
4034 		info->bytes = bytes;
4035 		info->max_extent_size = 0;
4036 		ret = link_free_space(ctl, info);
4037 		spin_unlock(&ctl->tree_lock);
4038 		if (ret)
4039 			kmem_cache_free(btrfs_free_space_cachep, info);
4040 		return ret;
4041 	}
4042 
4043 	if (!map) {
4044 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4045 		if (!map) {
4046 			kmem_cache_free(btrfs_free_space_cachep, info);
4047 			return -ENOMEM;
4048 		}
4049 	}
4050 
4051 	spin_lock(&ctl->tree_lock);
4052 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4053 					 1, 0);
4054 	if (!bitmap_info) {
4055 		info->bitmap = map;
4056 		map = NULL;
4057 		add_new_bitmap(ctl, info, offset);
4058 		bitmap_info = info;
4059 		info = NULL;
4060 	}
4061 
4062 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4063 					  trim_state);
4064 
4065 	bytes -= bytes_added;
4066 	offset += bytes_added;
4067 	spin_unlock(&ctl->tree_lock);
4068 
4069 	if (bytes)
4070 		goto again;
4071 
4072 	if (info)
4073 		kmem_cache_free(btrfs_free_space_cachep, info);
4074 	if (map)
4075 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4076 	return 0;
4077 }
4078 
4079 /*
4080  * Checks to see if the given range is in the free space cache.  This is really
4081  * just used to check the absence of space, so if there is free space in the
4082  * range at all we will return 1.
4083  */
test_check_exists(struct btrfs_block_group * cache,u64 offset,u64 bytes)4084 int test_check_exists(struct btrfs_block_group *cache,
4085 		      u64 offset, u64 bytes)
4086 {
4087 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4088 	struct btrfs_free_space *info;
4089 	int ret = 0;
4090 
4091 	spin_lock(&ctl->tree_lock);
4092 	info = tree_search_offset(ctl, offset, 0, 0);
4093 	if (!info) {
4094 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4095 					  1, 0);
4096 		if (!info)
4097 			goto out;
4098 	}
4099 
4100 have_info:
4101 	if (info->bitmap) {
4102 		u64 bit_off, bit_bytes;
4103 		struct rb_node *n;
4104 		struct btrfs_free_space *tmp;
4105 
4106 		bit_off = offset;
4107 		bit_bytes = ctl->unit;
4108 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4109 		if (!ret) {
4110 			if (bit_off == offset) {
4111 				ret = 1;
4112 				goto out;
4113 			} else if (bit_off > offset &&
4114 				   offset + bytes > bit_off) {
4115 				ret = 1;
4116 				goto out;
4117 			}
4118 		}
4119 
4120 		n = rb_prev(&info->offset_index);
4121 		while (n) {
4122 			tmp = rb_entry(n, struct btrfs_free_space,
4123 				       offset_index);
4124 			if (tmp->offset + tmp->bytes < offset)
4125 				break;
4126 			if (offset + bytes < tmp->offset) {
4127 				n = rb_prev(&tmp->offset_index);
4128 				continue;
4129 			}
4130 			info = tmp;
4131 			goto have_info;
4132 		}
4133 
4134 		n = rb_next(&info->offset_index);
4135 		while (n) {
4136 			tmp = rb_entry(n, struct btrfs_free_space,
4137 				       offset_index);
4138 			if (offset + bytes < tmp->offset)
4139 				break;
4140 			if (tmp->offset + tmp->bytes < offset) {
4141 				n = rb_next(&tmp->offset_index);
4142 				continue;
4143 			}
4144 			info = tmp;
4145 			goto have_info;
4146 		}
4147 
4148 		ret = 0;
4149 		goto out;
4150 	}
4151 
4152 	if (info->offset == offset) {
4153 		ret = 1;
4154 		goto out;
4155 	}
4156 
4157 	if (offset > info->offset && offset < info->offset + info->bytes)
4158 		ret = 1;
4159 out:
4160 	spin_unlock(&ctl->tree_lock);
4161 	return ret;
4162 }
4163 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4164