1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/jiffies.h>
4 #include <linux/kernel.h>
5 #include <linux/ktime.h>
6 #include <linux/list.h>
7 #include <linux/math64.h>
8 #include <linux/sizes.h>
9 #include <linux/workqueue.h>
10 #include "ctree.h"
11 #include "block-group.h"
12 #include "discard.h"
13 #include "free-space-cache.h"
14
15 /*
16 * This contains the logic to handle async discard.
17 *
18 * Async discard manages trimming of free space outside of transaction commit.
19 * Discarding is done by managing the block_groups on a LRU list based on free
20 * space recency. Two passes are used to first prioritize discarding extents
21 * and then allow for trimming in the bitmap the best opportunity to coalesce.
22 * The block_groups are maintained on multiple lists to allow for multiple
23 * passes with different discard filter requirements. A delayed work item is
24 * used to manage discarding with timeout determined by a max of the delay
25 * incurred by the iops rate limit, the byte rate limit, and the max delay of
26 * BTRFS_DISCARD_MAX_DELAY.
27 *
28 * Note, this only keeps track of block_groups that are explicitly for data.
29 * Mixed block_groups are not supported.
30 *
31 * The first list is special to manage discarding of fully free block groups.
32 * This is necessary because we issue a final trim for a full free block group
33 * after forgetting it. When a block group becomes unused, instead of directly
34 * being added to the unused_bgs list, we add it to this first list. Then
35 * from there, if it becomes fully discarded, we place it onto the unused_bgs
36 * list.
37 *
38 * The in-memory free space cache serves as the backing state for discard.
39 * Consequently this means there is no persistence. We opt to load all the
40 * block groups in as not discarded, so the mount case degenerates to the
41 * crashing case.
42 *
43 * As the free space cache uses bitmaps, there exists a tradeoff between
44 * ease/efficiency for find_free_extent() and the accuracy of discard state.
45 * Here we opt to let untrimmed regions merge with everything while only letting
46 * trimmed regions merge with other trimmed regions. This can cause
47 * overtrimming, but the coalescing benefit seems to be worth it. Additionally,
48 * bitmap state is tracked as a whole. If we're able to fully trim a bitmap,
49 * the trimmed flag is set on the bitmap. Otherwise, if an allocation comes in,
50 * this resets the state and we will retry trimming the whole bitmap. This is a
51 * tradeoff between discard state accuracy and the cost of accounting.
52 */
53
54 /* This is an initial delay to give some chance for block reuse */
55 #define BTRFS_DISCARD_DELAY (120ULL * NSEC_PER_SEC)
56 #define BTRFS_DISCARD_UNUSED_DELAY (10ULL * NSEC_PER_SEC)
57
58 /* Target completion latency of discarding all discardable extents */
59 #define BTRFS_DISCARD_TARGET_MSEC (6 * 60 * 60UL * MSEC_PER_SEC)
60 #define BTRFS_DISCARD_MIN_DELAY_MSEC (1UL)
61 #define BTRFS_DISCARD_MAX_DELAY_MSEC (1000UL)
62 #define BTRFS_DISCARD_MAX_IOPS (10U)
63
64 /* Montonically decreasing minimum length filters after index 0 */
65 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
66 0,
67 BTRFS_ASYNC_DISCARD_MAX_FILTER,
68 BTRFS_ASYNC_DISCARD_MIN_FILTER
69 };
70
get_discard_list(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)71 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
72 struct btrfs_block_group *block_group)
73 {
74 return &discard_ctl->discard_list[block_group->discard_index];
75 }
76
__add_to_discard_list(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)77 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
78 struct btrfs_block_group *block_group)
79 {
80 lockdep_assert_held(&discard_ctl->lock);
81 if (!btrfs_run_discard_work(discard_ctl))
82 return;
83
84 if (list_empty(&block_group->discard_list) ||
85 block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
86 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
87 block_group->discard_index = BTRFS_DISCARD_INDEX_START;
88 block_group->discard_eligible_time = (ktime_get_ns() +
89 BTRFS_DISCARD_DELAY);
90 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
91 }
92 if (list_empty(&block_group->discard_list))
93 btrfs_get_block_group(block_group);
94
95 list_move_tail(&block_group->discard_list,
96 get_discard_list(discard_ctl, block_group));
97 }
98
add_to_discard_list(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)99 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
100 struct btrfs_block_group *block_group)
101 {
102 if (!btrfs_is_block_group_data_only(block_group))
103 return;
104
105 spin_lock(&discard_ctl->lock);
106 __add_to_discard_list(discard_ctl, block_group);
107 spin_unlock(&discard_ctl->lock);
108 }
109
add_to_discard_unused_list(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)110 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
111 struct btrfs_block_group *block_group)
112 {
113 bool queued;
114
115 spin_lock(&discard_ctl->lock);
116
117 queued = !list_empty(&block_group->discard_list);
118
119 if (!btrfs_run_discard_work(discard_ctl)) {
120 spin_unlock(&discard_ctl->lock);
121 return;
122 }
123
124 list_del_init(&block_group->discard_list);
125
126 block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
127 block_group->discard_eligible_time = (ktime_get_ns() +
128 BTRFS_DISCARD_UNUSED_DELAY);
129 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
130 if (!queued)
131 btrfs_get_block_group(block_group);
132 list_add_tail(&block_group->discard_list,
133 &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
134
135 spin_unlock(&discard_ctl->lock);
136 }
137
remove_from_discard_list(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)138 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
139 struct btrfs_block_group *block_group)
140 {
141 bool running = false;
142 bool queued = false;
143
144 spin_lock(&discard_ctl->lock);
145
146 if (block_group == discard_ctl->block_group) {
147 running = true;
148 discard_ctl->block_group = NULL;
149 }
150
151 block_group->discard_eligible_time = 0;
152 queued = !list_empty(&block_group->discard_list);
153 list_del_init(&block_group->discard_list);
154 /*
155 * If the block group is currently running in the discard workfn, we
156 * don't want to deref it, since it's still being used by the workfn.
157 * The workfn will notice this case and deref the block group when it is
158 * finished.
159 */
160 if (queued && !running)
161 btrfs_put_block_group(block_group);
162
163 spin_unlock(&discard_ctl->lock);
164
165 return running;
166 }
167
168 /**
169 * find_next_block_group - find block_group that's up next for discarding
170 * @discard_ctl: discard control
171 * @now: current time
172 *
173 * Iterate over the discard lists to find the next block_group up for
174 * discarding checking the discard_eligible_time of block_group.
175 */
find_next_block_group(struct btrfs_discard_ctl * discard_ctl,u64 now)176 static struct btrfs_block_group *find_next_block_group(
177 struct btrfs_discard_ctl *discard_ctl,
178 u64 now)
179 {
180 struct btrfs_block_group *ret_block_group = NULL, *block_group;
181 int i;
182
183 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
184 struct list_head *discard_list = &discard_ctl->discard_list[i];
185
186 if (!list_empty(discard_list)) {
187 block_group = list_first_entry(discard_list,
188 struct btrfs_block_group,
189 discard_list);
190
191 if (!ret_block_group)
192 ret_block_group = block_group;
193
194 if (ret_block_group->discard_eligible_time < now)
195 break;
196
197 if (ret_block_group->discard_eligible_time >
198 block_group->discard_eligible_time)
199 ret_block_group = block_group;
200 }
201 }
202
203 return ret_block_group;
204 }
205
206 /**
207 * Wrap find_next_block_group()
208 *
209 * @discard_ctl: discard control
210 * @discard_state: the discard_state of the block_group after state management
211 * @discard_index: the discard_index of the block_group after state management
212 * @now: time when discard was invoked, in ns
213 *
214 * This wraps find_next_block_group() and sets the block_group to be in use.
215 * discard_state's control flow is managed here. Variables related to
216 * discard_state are reset here as needed (eg discard_cursor). @discard_state
217 * and @discard_index are remembered as it may change while we're discarding,
218 * but we want the discard to execute in the context determined here.
219 */
peek_discard_list(struct btrfs_discard_ctl * discard_ctl,enum btrfs_discard_state * discard_state,int * discard_index,u64 now)220 static struct btrfs_block_group *peek_discard_list(
221 struct btrfs_discard_ctl *discard_ctl,
222 enum btrfs_discard_state *discard_state,
223 int *discard_index, u64 now)
224 {
225 struct btrfs_block_group *block_group;
226
227 spin_lock(&discard_ctl->lock);
228 again:
229 block_group = find_next_block_group(discard_ctl, now);
230
231 if (block_group && now >= block_group->discard_eligible_time) {
232 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
233 block_group->used != 0) {
234 if (btrfs_is_block_group_data_only(block_group)) {
235 __add_to_discard_list(discard_ctl, block_group);
236 } else {
237 list_del_init(&block_group->discard_list);
238 btrfs_put_block_group(block_group);
239 }
240 goto again;
241 }
242 if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
243 block_group->discard_cursor = block_group->start;
244 block_group->discard_state = BTRFS_DISCARD_EXTENTS;
245 }
246 discard_ctl->block_group = block_group;
247 }
248 if (block_group) {
249 *discard_state = block_group->discard_state;
250 *discard_index = block_group->discard_index;
251 }
252 spin_unlock(&discard_ctl->lock);
253
254 return block_group;
255 }
256
257 /**
258 * btrfs_discard_check_filter - updates a block groups filters
259 * @block_group: block group of interest
260 * @bytes: recently freed region size after coalescing
261 *
262 * Async discard maintains multiple lists with progressively smaller filters
263 * to prioritize discarding based on size. Should a free space that matches
264 * a larger filter be returned to the free_space_cache, prioritize that discard
265 * by moving @block_group to the proper filter.
266 */
btrfs_discard_check_filter(struct btrfs_block_group * block_group,u64 bytes)267 void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
268 u64 bytes)
269 {
270 struct btrfs_discard_ctl *discard_ctl;
271
272 if (!block_group ||
273 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
274 return;
275
276 discard_ctl = &block_group->fs_info->discard_ctl;
277
278 if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
279 bytes >= discard_minlen[block_group->discard_index - 1]) {
280 int i;
281
282 remove_from_discard_list(discard_ctl, block_group);
283
284 for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
285 i++) {
286 if (bytes >= discard_minlen[i]) {
287 block_group->discard_index = i;
288 add_to_discard_list(discard_ctl, block_group);
289 break;
290 }
291 }
292 }
293 }
294
295 /**
296 * btrfs_update_discard_index - moves a block group along the discard lists
297 * @discard_ctl: discard control
298 * @block_group: block_group of interest
299 *
300 * Increment @block_group's discard_index. If it falls of the list, let it be.
301 * Otherwise add it back to the appropriate list.
302 */
btrfs_update_discard_index(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)303 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
304 struct btrfs_block_group *block_group)
305 {
306 block_group->discard_index++;
307 if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
308 block_group->discard_index = 1;
309 return;
310 }
311
312 add_to_discard_list(discard_ctl, block_group);
313 }
314
315 /**
316 * btrfs_discard_cancel_work - remove a block_group from the discard lists
317 * @discard_ctl: discard control
318 * @block_group: block_group of interest
319 *
320 * This removes @block_group from the discard lists. If necessary, it waits on
321 * the current work and then reschedules the delayed work.
322 */
btrfs_discard_cancel_work(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)323 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
324 struct btrfs_block_group *block_group)
325 {
326 if (remove_from_discard_list(discard_ctl, block_group)) {
327 cancel_delayed_work_sync(&discard_ctl->work);
328 btrfs_discard_schedule_work(discard_ctl, true);
329 }
330 }
331
332 /**
333 * btrfs_discard_queue_work - handles queuing the block_groups
334 * @discard_ctl: discard control
335 * @block_group: block_group of interest
336 *
337 * This maintains the LRU order of the discard lists.
338 */
btrfs_discard_queue_work(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)339 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
340 struct btrfs_block_group *block_group)
341 {
342 if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
343 return;
344
345 if (block_group->used == 0)
346 add_to_discard_unused_list(discard_ctl, block_group);
347 else
348 add_to_discard_list(discard_ctl, block_group);
349
350 if (!delayed_work_pending(&discard_ctl->work))
351 btrfs_discard_schedule_work(discard_ctl, false);
352 }
353
__btrfs_discard_schedule_work(struct btrfs_discard_ctl * discard_ctl,u64 now,bool override)354 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
355 u64 now, bool override)
356 {
357 struct btrfs_block_group *block_group;
358
359 if (!btrfs_run_discard_work(discard_ctl))
360 return;
361 if (!override && delayed_work_pending(&discard_ctl->work))
362 return;
363
364 block_group = find_next_block_group(discard_ctl, now);
365 if (block_group) {
366 u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC;
367 u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
368
369 /*
370 * A single delayed workqueue item is responsible for
371 * discarding, so we can manage the bytes rate limit by keeping
372 * track of the previous discard.
373 */
374 if (kbps_limit && discard_ctl->prev_discard) {
375 u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
376 u64 bps_delay = div64_u64(discard_ctl->prev_discard *
377 NSEC_PER_SEC, bps_limit);
378
379 delay = max(delay, bps_delay);
380 }
381
382 /*
383 * This timeout is to hopefully prevent immediate discarding
384 * in a recently allocated block group.
385 */
386 if (now < block_group->discard_eligible_time) {
387 u64 bg_timeout = block_group->discard_eligible_time - now;
388
389 delay = max(delay, bg_timeout);
390 }
391
392 if (override && discard_ctl->prev_discard) {
393 u64 elapsed = now - discard_ctl->prev_discard_time;
394
395 if (delay > elapsed)
396 delay -= elapsed;
397 else
398 delay = 0;
399 }
400
401 mod_delayed_work(discard_ctl->discard_workers,
402 &discard_ctl->work, nsecs_to_jiffies(delay));
403 }
404 }
405
406 /*
407 * btrfs_discard_schedule_work - responsible for scheduling the discard work
408 * @discard_ctl: discard control
409 * @override: override the current timer
410 *
411 * Discards are issued by a delayed workqueue item. @override is used to
412 * update the current delay as the baseline delay interval is reevaluated on
413 * transaction commit. This is also maxed with any other rate limit.
414 */
btrfs_discard_schedule_work(struct btrfs_discard_ctl * discard_ctl,bool override)415 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
416 bool override)
417 {
418 const u64 now = ktime_get_ns();
419
420 spin_lock(&discard_ctl->lock);
421 __btrfs_discard_schedule_work(discard_ctl, now, override);
422 spin_unlock(&discard_ctl->lock);
423 }
424
425 /**
426 * btrfs_finish_discard_pass - determine next step of a block_group
427 * @discard_ctl: discard control
428 * @block_group: block_group of interest
429 *
430 * This determines the next step for a block group after it's finished going
431 * through a pass on a discard list. If it is unused and fully trimmed, we can
432 * mark it unused and send it to the unused_bgs path. Otherwise, pass it onto
433 * the appropriate filter list or let it fall off.
434 */
btrfs_finish_discard_pass(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)435 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
436 struct btrfs_block_group *block_group)
437 {
438 remove_from_discard_list(discard_ctl, block_group);
439
440 if (block_group->used == 0) {
441 if (btrfs_is_free_space_trimmed(block_group))
442 btrfs_mark_bg_unused(block_group);
443 else
444 add_to_discard_unused_list(discard_ctl, block_group);
445 } else {
446 btrfs_update_discard_index(discard_ctl, block_group);
447 }
448 }
449
450 /**
451 * btrfs_discard_workfn - discard work function
452 * @work: work
453 *
454 * This finds the next block_group to start discarding and then discards a
455 * single region. It does this in a two-pass fashion: first extents and second
456 * bitmaps. Completely discarded block groups are sent to the unused_bgs path.
457 */
btrfs_discard_workfn(struct work_struct * work)458 static void btrfs_discard_workfn(struct work_struct *work)
459 {
460 struct btrfs_discard_ctl *discard_ctl;
461 struct btrfs_block_group *block_group;
462 enum btrfs_discard_state discard_state;
463 int discard_index = 0;
464 u64 trimmed = 0;
465 u64 minlen = 0;
466 u64 now = ktime_get_ns();
467
468 discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
469
470 block_group = peek_discard_list(discard_ctl, &discard_state,
471 &discard_index, now);
472 if (!block_group || !btrfs_run_discard_work(discard_ctl))
473 return;
474 if (now < block_group->discard_eligible_time) {
475 btrfs_discard_schedule_work(discard_ctl, false);
476 return;
477 }
478
479 /* Perform discarding */
480 minlen = discard_minlen[discard_index];
481
482 if (discard_state == BTRFS_DISCARD_BITMAPS) {
483 u64 maxlen = 0;
484
485 /*
486 * Use the previous levels minimum discard length as the max
487 * length filter. In the case something is added to make a
488 * region go beyond the max filter, the entire bitmap is set
489 * back to BTRFS_TRIM_STATE_UNTRIMMED.
490 */
491 if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
492 maxlen = discard_minlen[discard_index - 1];
493
494 btrfs_trim_block_group_bitmaps(block_group, &trimmed,
495 block_group->discard_cursor,
496 btrfs_block_group_end(block_group),
497 minlen, maxlen, true);
498 discard_ctl->discard_bitmap_bytes += trimmed;
499 } else {
500 btrfs_trim_block_group_extents(block_group, &trimmed,
501 block_group->discard_cursor,
502 btrfs_block_group_end(block_group),
503 minlen, true);
504 discard_ctl->discard_extent_bytes += trimmed;
505 }
506
507 /* Determine next steps for a block_group */
508 if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
509 if (discard_state == BTRFS_DISCARD_BITMAPS) {
510 btrfs_finish_discard_pass(discard_ctl, block_group);
511 } else {
512 block_group->discard_cursor = block_group->start;
513 spin_lock(&discard_ctl->lock);
514 if (block_group->discard_state !=
515 BTRFS_DISCARD_RESET_CURSOR)
516 block_group->discard_state =
517 BTRFS_DISCARD_BITMAPS;
518 spin_unlock(&discard_ctl->lock);
519 }
520 }
521
522 now = ktime_get_ns();
523 spin_lock(&discard_ctl->lock);
524 discard_ctl->prev_discard = trimmed;
525 discard_ctl->prev_discard_time = now;
526 /*
527 * If the block group was removed from the discard list while it was
528 * running in this workfn, then we didn't deref it, since this function
529 * still owned that reference. But we set the discard_ctl->block_group
530 * back to NULL, so we can use that condition to know that now we need
531 * to deref the block_group.
532 */
533 if (discard_ctl->block_group == NULL)
534 btrfs_put_block_group(block_group);
535 discard_ctl->block_group = NULL;
536 __btrfs_discard_schedule_work(discard_ctl, now, false);
537 spin_unlock(&discard_ctl->lock);
538 }
539
540 /**
541 * btrfs_run_discard_work - determines if async discard should be running
542 * @discard_ctl: discard control
543 *
544 * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
545 */
btrfs_run_discard_work(struct btrfs_discard_ctl * discard_ctl)546 bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
547 {
548 struct btrfs_fs_info *fs_info = container_of(discard_ctl,
549 struct btrfs_fs_info,
550 discard_ctl);
551
552 return (!(fs_info->sb->s_flags & SB_RDONLY) &&
553 test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
554 }
555
556 /**
557 * btrfs_discard_calc_delay - recalculate the base delay
558 * @discard_ctl: discard control
559 *
560 * Recalculate the base delay which is based off the total number of
561 * discardable_extents. Clamp this between the lower_limit (iops_limit or 1ms)
562 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
563 */
btrfs_discard_calc_delay(struct btrfs_discard_ctl * discard_ctl)564 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
565 {
566 s32 discardable_extents;
567 s64 discardable_bytes;
568 u32 iops_limit;
569 unsigned long delay;
570
571 discardable_extents = atomic_read(&discard_ctl->discardable_extents);
572 if (!discardable_extents)
573 return;
574
575 spin_lock(&discard_ctl->lock);
576
577 /*
578 * The following is to fix a potential -1 discrepenancy that we're not
579 * sure how to reproduce. But given that this is the only place that
580 * utilizes these numbers and this is only called by from
581 * btrfs_finish_extent_commit() which is synchronized, we can correct
582 * here.
583 */
584 if (discardable_extents < 0)
585 atomic_add(-discardable_extents,
586 &discard_ctl->discardable_extents);
587
588 discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
589 if (discardable_bytes < 0)
590 atomic64_add(-discardable_bytes,
591 &discard_ctl->discardable_bytes);
592
593 if (discardable_extents <= 0) {
594 spin_unlock(&discard_ctl->lock);
595 return;
596 }
597
598 iops_limit = READ_ONCE(discard_ctl->iops_limit);
599 if (iops_limit)
600 delay = MSEC_PER_SEC / iops_limit;
601 else
602 delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
603
604 delay = clamp(delay, BTRFS_DISCARD_MIN_DELAY_MSEC,
605 BTRFS_DISCARD_MAX_DELAY_MSEC);
606 discard_ctl->delay_ms = delay;
607
608 spin_unlock(&discard_ctl->lock);
609 }
610
611 /**
612 * btrfs_discard_update_discardable - propagate discard counters
613 * @block_group: block_group of interest
614 *
615 * This propagates deltas of counters up to the discard_ctl. It maintains a
616 * current counter and a previous counter passing the delta up to the global
617 * stat. Then the current counter value becomes the previous counter value.
618 */
btrfs_discard_update_discardable(struct btrfs_block_group * block_group)619 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group)
620 {
621 struct btrfs_free_space_ctl *ctl;
622 struct btrfs_discard_ctl *discard_ctl;
623 s32 extents_delta;
624 s64 bytes_delta;
625
626 if (!block_group ||
627 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
628 !btrfs_is_block_group_data_only(block_group))
629 return;
630
631 ctl = block_group->free_space_ctl;
632 discard_ctl = &block_group->fs_info->discard_ctl;
633
634 lockdep_assert_held(&ctl->tree_lock);
635 extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
636 ctl->discardable_extents[BTRFS_STAT_PREV];
637 if (extents_delta) {
638 atomic_add(extents_delta, &discard_ctl->discardable_extents);
639 ctl->discardable_extents[BTRFS_STAT_PREV] =
640 ctl->discardable_extents[BTRFS_STAT_CURR];
641 }
642
643 bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
644 ctl->discardable_bytes[BTRFS_STAT_PREV];
645 if (bytes_delta) {
646 atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
647 ctl->discardable_bytes[BTRFS_STAT_PREV] =
648 ctl->discardable_bytes[BTRFS_STAT_CURR];
649 }
650 }
651
652 /**
653 * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists
654 * @fs_info: fs_info of interest
655 *
656 * The unused_bgs list needs to be punted to the discard lists because the
657 * order of operations is changed. In the normal synchronous discard path, the
658 * block groups are trimmed via a single large trim in transaction commit. This
659 * is ultimately what we are trying to avoid with asynchronous discard. Thus,
660 * it must be done before going down the unused_bgs path.
661 */
btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info * fs_info)662 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
663 {
664 struct btrfs_block_group *block_group, *next;
665
666 spin_lock(&fs_info->unused_bgs_lock);
667 /* We enabled async discard, so punt all to the queue */
668 list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
669 bg_list) {
670 list_del_init(&block_group->bg_list);
671 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
672 /*
673 * This put is for the get done by btrfs_mark_bg_unused.
674 * Queueing discard incremented it for discard's reference.
675 */
676 btrfs_put_block_group(block_group);
677 }
678 spin_unlock(&fs_info->unused_bgs_lock);
679 }
680
681 /**
682 * btrfs_discard_purge_list - purge discard lists
683 * @discard_ctl: discard control
684 *
685 * If we are disabling async discard, we may have intercepted block groups that
686 * are completely free and ready for the unused_bgs path. As discarding will
687 * now happen in transaction commit or not at all, we can safely mark the
688 * corresponding block groups as unused and they will be sent on their merry
689 * way to the unused_bgs list.
690 */
btrfs_discard_purge_list(struct btrfs_discard_ctl * discard_ctl)691 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
692 {
693 struct btrfs_block_group *block_group, *next;
694 int i;
695
696 spin_lock(&discard_ctl->lock);
697 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
698 list_for_each_entry_safe(block_group, next,
699 &discard_ctl->discard_list[i],
700 discard_list) {
701 list_del_init(&block_group->discard_list);
702 spin_unlock(&discard_ctl->lock);
703 if (block_group->used == 0)
704 btrfs_mark_bg_unused(block_group);
705 spin_lock(&discard_ctl->lock);
706 btrfs_put_block_group(block_group);
707 }
708 }
709 spin_unlock(&discard_ctl->lock);
710 }
711
btrfs_discard_resume(struct btrfs_fs_info * fs_info)712 void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
713 {
714 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
715 btrfs_discard_cleanup(fs_info);
716 return;
717 }
718
719 btrfs_discard_punt_unused_bgs_list(fs_info);
720
721 set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
722 }
723
btrfs_discard_stop(struct btrfs_fs_info * fs_info)724 void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
725 {
726 clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
727 }
728
btrfs_discard_init(struct btrfs_fs_info * fs_info)729 void btrfs_discard_init(struct btrfs_fs_info *fs_info)
730 {
731 struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
732 int i;
733
734 spin_lock_init(&discard_ctl->lock);
735 INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
736
737 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
738 INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
739
740 discard_ctl->prev_discard = 0;
741 discard_ctl->prev_discard_time = 0;
742 atomic_set(&discard_ctl->discardable_extents, 0);
743 atomic64_set(&discard_ctl->discardable_bytes, 0);
744 discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
745 discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC;
746 discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
747 discard_ctl->kbps_limit = 0;
748 discard_ctl->discard_extent_bytes = 0;
749 discard_ctl->discard_bitmap_bytes = 0;
750 atomic64_set(&discard_ctl->discard_bytes_saved, 0);
751 }
752
btrfs_discard_cleanup(struct btrfs_fs_info * fs_info)753 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
754 {
755 btrfs_discard_stop(fs_info);
756 cancel_delayed_work_sync(&fs_info->discard_ctl.work);
757 btrfs_discard_purge_list(&fs_info->discard_ctl);
758 }
759