• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/jiffies.h>
4 #include <linux/kernel.h>
5 #include <linux/ktime.h>
6 #include <linux/list.h>
7 #include <linux/math64.h>
8 #include <linux/sizes.h>
9 #include <linux/workqueue.h>
10 #include "ctree.h"
11 #include "block-group.h"
12 #include "discard.h"
13 #include "free-space-cache.h"
14 
15 /*
16  * This contains the logic to handle async discard.
17  *
18  * Async discard manages trimming of free space outside of transaction commit.
19  * Discarding is done by managing the block_groups on a LRU list based on free
20  * space recency.  Two passes are used to first prioritize discarding extents
21  * and then allow for trimming in the bitmap the best opportunity to coalesce.
22  * The block_groups are maintained on multiple lists to allow for multiple
23  * passes with different discard filter requirements.  A delayed work item is
24  * used to manage discarding with timeout determined by a max of the delay
25  * incurred by the iops rate limit, the byte rate limit, and the max delay of
26  * BTRFS_DISCARD_MAX_DELAY.
27  *
28  * Note, this only keeps track of block_groups that are explicitly for data.
29  * Mixed block_groups are not supported.
30  *
31  * The first list is special to manage discarding of fully free block groups.
32  * This is necessary because we issue a final trim for a full free block group
33  * after forgetting it.  When a block group becomes unused, instead of directly
34  * being added to the unused_bgs list, we add it to this first list.  Then
35  * from there, if it becomes fully discarded, we place it onto the unused_bgs
36  * list.
37  *
38  * The in-memory free space cache serves as the backing state for discard.
39  * Consequently this means there is no persistence.  We opt to load all the
40  * block groups in as not discarded, so the mount case degenerates to the
41  * crashing case.
42  *
43  * As the free space cache uses bitmaps, there exists a tradeoff between
44  * ease/efficiency for find_free_extent() and the accuracy of discard state.
45  * Here we opt to let untrimmed regions merge with everything while only letting
46  * trimmed regions merge with other trimmed regions.  This can cause
47  * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
48  * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
49  * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
50  * this resets the state and we will retry trimming the whole bitmap.  This is a
51  * tradeoff between discard state accuracy and the cost of accounting.
52  */
53 
54 /* This is an initial delay to give some chance for block reuse */
55 #define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
56 #define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)
57 
58 /* Target completion latency of discarding all discardable extents */
59 #define BTRFS_DISCARD_TARGET_MSEC	(6 * 60 * 60UL * MSEC_PER_SEC)
60 #define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
61 #define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
62 #define BTRFS_DISCARD_MAX_IOPS		(10U)
63 
64 /* Montonically decreasing minimum length filters after index 0 */
65 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
66 	0,
67 	BTRFS_ASYNC_DISCARD_MAX_FILTER,
68 	BTRFS_ASYNC_DISCARD_MIN_FILTER
69 };
70 
get_discard_list(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)71 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
72 					  struct btrfs_block_group *block_group)
73 {
74 	return &discard_ctl->discard_list[block_group->discard_index];
75 }
76 
__add_to_discard_list(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)77 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
78 				  struct btrfs_block_group *block_group)
79 {
80 	lockdep_assert_held(&discard_ctl->lock);
81 	if (!btrfs_run_discard_work(discard_ctl))
82 		return;
83 
84 	if (list_empty(&block_group->discard_list) ||
85 	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
86 		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
87 			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
88 		block_group->discard_eligible_time = (ktime_get_ns() +
89 						      BTRFS_DISCARD_DELAY);
90 		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
91 	}
92 	if (list_empty(&block_group->discard_list))
93 		btrfs_get_block_group(block_group);
94 
95 	list_move_tail(&block_group->discard_list,
96 		       get_discard_list(discard_ctl, block_group));
97 }
98 
add_to_discard_list(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)99 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
100 				struct btrfs_block_group *block_group)
101 {
102 	if (!btrfs_is_block_group_data_only(block_group))
103 		return;
104 
105 	spin_lock(&discard_ctl->lock);
106 	__add_to_discard_list(discard_ctl, block_group);
107 	spin_unlock(&discard_ctl->lock);
108 }
109 
add_to_discard_unused_list(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)110 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
111 				       struct btrfs_block_group *block_group)
112 {
113 	bool queued;
114 
115 	spin_lock(&discard_ctl->lock);
116 
117 	queued = !list_empty(&block_group->discard_list);
118 
119 	if (!btrfs_run_discard_work(discard_ctl)) {
120 		spin_unlock(&discard_ctl->lock);
121 		return;
122 	}
123 
124 	list_del_init(&block_group->discard_list);
125 
126 	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
127 	block_group->discard_eligible_time = (ktime_get_ns() +
128 					      BTRFS_DISCARD_UNUSED_DELAY);
129 	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
130 	if (!queued)
131 		btrfs_get_block_group(block_group);
132 	list_add_tail(&block_group->discard_list,
133 		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
134 
135 	spin_unlock(&discard_ctl->lock);
136 }
137 
remove_from_discard_list(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)138 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
139 				     struct btrfs_block_group *block_group)
140 {
141 	bool running = false;
142 	bool queued = false;
143 
144 	spin_lock(&discard_ctl->lock);
145 
146 	if (block_group == discard_ctl->block_group) {
147 		running = true;
148 		discard_ctl->block_group = NULL;
149 	}
150 
151 	block_group->discard_eligible_time = 0;
152 	queued = !list_empty(&block_group->discard_list);
153 	list_del_init(&block_group->discard_list);
154 	/*
155 	 * If the block group is currently running in the discard workfn, we
156 	 * don't want to deref it, since it's still being used by the workfn.
157 	 * The workfn will notice this case and deref the block group when it is
158 	 * finished.
159 	 */
160 	if (queued && !running)
161 		btrfs_put_block_group(block_group);
162 
163 	spin_unlock(&discard_ctl->lock);
164 
165 	return running;
166 }
167 
168 /**
169  * find_next_block_group - find block_group that's up next for discarding
170  * @discard_ctl: discard control
171  * @now: current time
172  *
173  * Iterate over the discard lists to find the next block_group up for
174  * discarding checking the discard_eligible_time of block_group.
175  */
find_next_block_group(struct btrfs_discard_ctl * discard_ctl,u64 now)176 static struct btrfs_block_group *find_next_block_group(
177 					struct btrfs_discard_ctl *discard_ctl,
178 					u64 now)
179 {
180 	struct btrfs_block_group *ret_block_group = NULL, *block_group;
181 	int i;
182 
183 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
184 		struct list_head *discard_list = &discard_ctl->discard_list[i];
185 
186 		if (!list_empty(discard_list)) {
187 			block_group = list_first_entry(discard_list,
188 						       struct btrfs_block_group,
189 						       discard_list);
190 
191 			if (!ret_block_group)
192 				ret_block_group = block_group;
193 
194 			if (ret_block_group->discard_eligible_time < now)
195 				break;
196 
197 			if (ret_block_group->discard_eligible_time >
198 			    block_group->discard_eligible_time)
199 				ret_block_group = block_group;
200 		}
201 	}
202 
203 	return ret_block_group;
204 }
205 
206 /**
207  * Wrap find_next_block_group()
208  *
209  * @discard_ctl:   discard control
210  * @discard_state: the discard_state of the block_group after state management
211  * @discard_index: the discard_index of the block_group after state management
212  * @now:           time when discard was invoked, in ns
213  *
214  * This wraps find_next_block_group() and sets the block_group to be in use.
215  * discard_state's control flow is managed here.  Variables related to
216  * discard_state are reset here as needed (eg discard_cursor).  @discard_state
217  * and @discard_index are remembered as it may change while we're discarding,
218  * but we want the discard to execute in the context determined here.
219  */
peek_discard_list(struct btrfs_discard_ctl * discard_ctl,enum btrfs_discard_state * discard_state,int * discard_index,u64 now)220 static struct btrfs_block_group *peek_discard_list(
221 					struct btrfs_discard_ctl *discard_ctl,
222 					enum btrfs_discard_state *discard_state,
223 					int *discard_index, u64 now)
224 {
225 	struct btrfs_block_group *block_group;
226 
227 	spin_lock(&discard_ctl->lock);
228 again:
229 	block_group = find_next_block_group(discard_ctl, now);
230 
231 	if (block_group && now >= block_group->discard_eligible_time) {
232 		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
233 		    block_group->used != 0) {
234 			if (btrfs_is_block_group_data_only(block_group)) {
235 				__add_to_discard_list(discard_ctl, block_group);
236 			} else {
237 				list_del_init(&block_group->discard_list);
238 				btrfs_put_block_group(block_group);
239 			}
240 			goto again;
241 		}
242 		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
243 			block_group->discard_cursor = block_group->start;
244 			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
245 		}
246 		discard_ctl->block_group = block_group;
247 	}
248 	if (block_group) {
249 		*discard_state = block_group->discard_state;
250 		*discard_index = block_group->discard_index;
251 	}
252 	spin_unlock(&discard_ctl->lock);
253 
254 	return block_group;
255 }
256 
257 /**
258  * btrfs_discard_check_filter - updates a block groups filters
259  * @block_group: block group of interest
260  * @bytes: recently freed region size after coalescing
261  *
262  * Async discard maintains multiple lists with progressively smaller filters
263  * to prioritize discarding based on size.  Should a free space that matches
264  * a larger filter be returned to the free_space_cache, prioritize that discard
265  * by moving @block_group to the proper filter.
266  */
btrfs_discard_check_filter(struct btrfs_block_group * block_group,u64 bytes)267 void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
268 				u64 bytes)
269 {
270 	struct btrfs_discard_ctl *discard_ctl;
271 
272 	if (!block_group ||
273 	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
274 		return;
275 
276 	discard_ctl = &block_group->fs_info->discard_ctl;
277 
278 	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
279 	    bytes >= discard_minlen[block_group->discard_index - 1]) {
280 		int i;
281 
282 		remove_from_discard_list(discard_ctl, block_group);
283 
284 		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
285 		     i++) {
286 			if (bytes >= discard_minlen[i]) {
287 				block_group->discard_index = i;
288 				add_to_discard_list(discard_ctl, block_group);
289 				break;
290 			}
291 		}
292 	}
293 }
294 
295 /**
296  * btrfs_update_discard_index - moves a block group along the discard lists
297  * @discard_ctl: discard control
298  * @block_group: block_group of interest
299  *
300  * Increment @block_group's discard_index.  If it falls of the list, let it be.
301  * Otherwise add it back to the appropriate list.
302  */
btrfs_update_discard_index(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)303 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
304 				       struct btrfs_block_group *block_group)
305 {
306 	block_group->discard_index++;
307 	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
308 		block_group->discard_index = 1;
309 		return;
310 	}
311 
312 	add_to_discard_list(discard_ctl, block_group);
313 }
314 
315 /**
316  * btrfs_discard_cancel_work - remove a block_group from the discard lists
317  * @discard_ctl: discard control
318  * @block_group: block_group of interest
319  *
320  * This removes @block_group from the discard lists.  If necessary, it waits on
321  * the current work and then reschedules the delayed work.
322  */
btrfs_discard_cancel_work(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)323 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
324 			       struct btrfs_block_group *block_group)
325 {
326 	if (remove_from_discard_list(discard_ctl, block_group)) {
327 		cancel_delayed_work_sync(&discard_ctl->work);
328 		btrfs_discard_schedule_work(discard_ctl, true);
329 	}
330 }
331 
332 /**
333  * btrfs_discard_queue_work - handles queuing the block_groups
334  * @discard_ctl: discard control
335  * @block_group: block_group of interest
336  *
337  * This maintains the LRU order of the discard lists.
338  */
btrfs_discard_queue_work(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)339 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
340 			      struct btrfs_block_group *block_group)
341 {
342 	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
343 		return;
344 
345 	if (block_group->used == 0)
346 		add_to_discard_unused_list(discard_ctl, block_group);
347 	else
348 		add_to_discard_list(discard_ctl, block_group);
349 
350 	if (!delayed_work_pending(&discard_ctl->work))
351 		btrfs_discard_schedule_work(discard_ctl, false);
352 }
353 
__btrfs_discard_schedule_work(struct btrfs_discard_ctl * discard_ctl,u64 now,bool override)354 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
355 					  u64 now, bool override)
356 {
357 	struct btrfs_block_group *block_group;
358 
359 	if (!btrfs_run_discard_work(discard_ctl))
360 		return;
361 	if (!override && delayed_work_pending(&discard_ctl->work))
362 		return;
363 
364 	block_group = find_next_block_group(discard_ctl, now);
365 	if (block_group) {
366 		u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC;
367 		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
368 
369 		/*
370 		 * A single delayed workqueue item is responsible for
371 		 * discarding, so we can manage the bytes rate limit by keeping
372 		 * track of the previous discard.
373 		 */
374 		if (kbps_limit && discard_ctl->prev_discard) {
375 			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
376 			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
377 						  NSEC_PER_SEC, bps_limit);
378 
379 			delay = max(delay, bps_delay);
380 		}
381 
382 		/*
383 		 * This timeout is to hopefully prevent immediate discarding
384 		 * in a recently allocated block group.
385 		 */
386 		if (now < block_group->discard_eligible_time) {
387 			u64 bg_timeout = block_group->discard_eligible_time - now;
388 
389 			delay = max(delay, bg_timeout);
390 		}
391 
392 		if (override && discard_ctl->prev_discard) {
393 			u64 elapsed = now - discard_ctl->prev_discard_time;
394 
395 			if (delay > elapsed)
396 				delay -= elapsed;
397 			else
398 				delay = 0;
399 		}
400 
401 		mod_delayed_work(discard_ctl->discard_workers,
402 				 &discard_ctl->work, nsecs_to_jiffies(delay));
403 	}
404 }
405 
406 /*
407  * btrfs_discard_schedule_work - responsible for scheduling the discard work
408  * @discard_ctl:  discard control
409  * @override:     override the current timer
410  *
411  * Discards are issued by a delayed workqueue item.  @override is used to
412  * update the current delay as the baseline delay interval is reevaluated on
413  * transaction commit.  This is also maxed with any other rate limit.
414  */
btrfs_discard_schedule_work(struct btrfs_discard_ctl * discard_ctl,bool override)415 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
416 				 bool override)
417 {
418 	const u64 now = ktime_get_ns();
419 
420 	spin_lock(&discard_ctl->lock);
421 	__btrfs_discard_schedule_work(discard_ctl, now, override);
422 	spin_unlock(&discard_ctl->lock);
423 }
424 
425 /**
426  * btrfs_finish_discard_pass - determine next step of a block_group
427  * @discard_ctl: discard control
428  * @block_group: block_group of interest
429  *
430  * This determines the next step for a block group after it's finished going
431  * through a pass on a discard list.  If it is unused and fully trimmed, we can
432  * mark it unused and send it to the unused_bgs path.  Otherwise, pass it onto
433  * the appropriate filter list or let it fall off.
434  */
btrfs_finish_discard_pass(struct btrfs_discard_ctl * discard_ctl,struct btrfs_block_group * block_group)435 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
436 				      struct btrfs_block_group *block_group)
437 {
438 	remove_from_discard_list(discard_ctl, block_group);
439 
440 	if (block_group->used == 0) {
441 		if (btrfs_is_free_space_trimmed(block_group))
442 			btrfs_mark_bg_unused(block_group);
443 		else
444 			add_to_discard_unused_list(discard_ctl, block_group);
445 	} else {
446 		btrfs_update_discard_index(discard_ctl, block_group);
447 	}
448 }
449 
450 /**
451  * btrfs_discard_workfn - discard work function
452  * @work: work
453  *
454  * This finds the next block_group to start discarding and then discards a
455  * single region.  It does this in a two-pass fashion: first extents and second
456  * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
457  */
btrfs_discard_workfn(struct work_struct * work)458 static void btrfs_discard_workfn(struct work_struct *work)
459 {
460 	struct btrfs_discard_ctl *discard_ctl;
461 	struct btrfs_block_group *block_group;
462 	enum btrfs_discard_state discard_state;
463 	int discard_index = 0;
464 	u64 trimmed = 0;
465 	u64 minlen = 0;
466 	u64 now = ktime_get_ns();
467 
468 	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
469 
470 	block_group = peek_discard_list(discard_ctl, &discard_state,
471 					&discard_index, now);
472 	if (!block_group || !btrfs_run_discard_work(discard_ctl))
473 		return;
474 	if (now < block_group->discard_eligible_time) {
475 		btrfs_discard_schedule_work(discard_ctl, false);
476 		return;
477 	}
478 
479 	/* Perform discarding */
480 	minlen = discard_minlen[discard_index];
481 
482 	if (discard_state == BTRFS_DISCARD_BITMAPS) {
483 		u64 maxlen = 0;
484 
485 		/*
486 		 * Use the previous levels minimum discard length as the max
487 		 * length filter.  In the case something is added to make a
488 		 * region go beyond the max filter, the entire bitmap is set
489 		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
490 		 */
491 		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
492 			maxlen = discard_minlen[discard_index - 1];
493 
494 		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
495 				       block_group->discard_cursor,
496 				       btrfs_block_group_end(block_group),
497 				       minlen, maxlen, true);
498 		discard_ctl->discard_bitmap_bytes += trimmed;
499 	} else {
500 		btrfs_trim_block_group_extents(block_group, &trimmed,
501 				       block_group->discard_cursor,
502 				       btrfs_block_group_end(block_group),
503 				       minlen, true);
504 		discard_ctl->discard_extent_bytes += trimmed;
505 	}
506 
507 	/* Determine next steps for a block_group */
508 	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
509 		if (discard_state == BTRFS_DISCARD_BITMAPS) {
510 			btrfs_finish_discard_pass(discard_ctl, block_group);
511 		} else {
512 			block_group->discard_cursor = block_group->start;
513 			spin_lock(&discard_ctl->lock);
514 			if (block_group->discard_state !=
515 			    BTRFS_DISCARD_RESET_CURSOR)
516 				block_group->discard_state =
517 							BTRFS_DISCARD_BITMAPS;
518 			spin_unlock(&discard_ctl->lock);
519 		}
520 	}
521 
522 	now = ktime_get_ns();
523 	spin_lock(&discard_ctl->lock);
524 	discard_ctl->prev_discard = trimmed;
525 	discard_ctl->prev_discard_time = now;
526 	/*
527 	 * If the block group was removed from the discard list while it was
528 	 * running in this workfn, then we didn't deref it, since this function
529 	 * still owned that reference. But we set the discard_ctl->block_group
530 	 * back to NULL, so we can use that condition to know that now we need
531 	 * to deref the block_group.
532 	 */
533 	if (discard_ctl->block_group == NULL)
534 		btrfs_put_block_group(block_group);
535 	discard_ctl->block_group = NULL;
536 	__btrfs_discard_schedule_work(discard_ctl, now, false);
537 	spin_unlock(&discard_ctl->lock);
538 }
539 
540 /**
541  * btrfs_run_discard_work - determines if async discard should be running
542  * @discard_ctl: discard control
543  *
544  * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
545  */
btrfs_run_discard_work(struct btrfs_discard_ctl * discard_ctl)546 bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
547 {
548 	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
549 						     struct btrfs_fs_info,
550 						     discard_ctl);
551 
552 	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
553 		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
554 }
555 
556 /**
557  * btrfs_discard_calc_delay - recalculate the base delay
558  * @discard_ctl: discard control
559  *
560  * Recalculate the base delay which is based off the total number of
561  * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
562  * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
563  */
btrfs_discard_calc_delay(struct btrfs_discard_ctl * discard_ctl)564 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
565 {
566 	s32 discardable_extents;
567 	s64 discardable_bytes;
568 	u32 iops_limit;
569 	unsigned long delay;
570 
571 	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
572 	if (!discardable_extents)
573 		return;
574 
575 	spin_lock(&discard_ctl->lock);
576 
577 	/*
578 	 * The following is to fix a potential -1 discrepenancy that we're not
579 	 * sure how to reproduce. But given that this is the only place that
580 	 * utilizes these numbers and this is only called by from
581 	 * btrfs_finish_extent_commit() which is synchronized, we can correct
582 	 * here.
583 	 */
584 	if (discardable_extents < 0)
585 		atomic_add(-discardable_extents,
586 			   &discard_ctl->discardable_extents);
587 
588 	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
589 	if (discardable_bytes < 0)
590 		atomic64_add(-discardable_bytes,
591 			     &discard_ctl->discardable_bytes);
592 
593 	if (discardable_extents <= 0) {
594 		spin_unlock(&discard_ctl->lock);
595 		return;
596 	}
597 
598 	iops_limit = READ_ONCE(discard_ctl->iops_limit);
599 	if (iops_limit)
600 		delay = MSEC_PER_SEC / iops_limit;
601 	else
602 		delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
603 
604 	delay = clamp(delay, BTRFS_DISCARD_MIN_DELAY_MSEC,
605 		      BTRFS_DISCARD_MAX_DELAY_MSEC);
606 	discard_ctl->delay_ms = delay;
607 
608 	spin_unlock(&discard_ctl->lock);
609 }
610 
611 /**
612  * btrfs_discard_update_discardable - propagate discard counters
613  * @block_group: block_group of interest
614  *
615  * This propagates deltas of counters up to the discard_ctl.  It maintains a
616  * current counter and a previous counter passing the delta up to the global
617  * stat.  Then the current counter value becomes the previous counter value.
618  */
btrfs_discard_update_discardable(struct btrfs_block_group * block_group)619 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group)
620 {
621 	struct btrfs_free_space_ctl *ctl;
622 	struct btrfs_discard_ctl *discard_ctl;
623 	s32 extents_delta;
624 	s64 bytes_delta;
625 
626 	if (!block_group ||
627 	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
628 	    !btrfs_is_block_group_data_only(block_group))
629 		return;
630 
631 	ctl = block_group->free_space_ctl;
632 	discard_ctl = &block_group->fs_info->discard_ctl;
633 
634 	lockdep_assert_held(&ctl->tree_lock);
635 	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
636 			ctl->discardable_extents[BTRFS_STAT_PREV];
637 	if (extents_delta) {
638 		atomic_add(extents_delta, &discard_ctl->discardable_extents);
639 		ctl->discardable_extents[BTRFS_STAT_PREV] =
640 			ctl->discardable_extents[BTRFS_STAT_CURR];
641 	}
642 
643 	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
644 		      ctl->discardable_bytes[BTRFS_STAT_PREV];
645 	if (bytes_delta) {
646 		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
647 		ctl->discardable_bytes[BTRFS_STAT_PREV] =
648 			ctl->discardable_bytes[BTRFS_STAT_CURR];
649 	}
650 }
651 
652 /**
653  * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists
654  * @fs_info: fs_info of interest
655  *
656  * The unused_bgs list needs to be punted to the discard lists because the
657  * order of operations is changed.  In the normal synchronous discard path, the
658  * block groups are trimmed via a single large trim in transaction commit.  This
659  * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
660  * it must be done before going down the unused_bgs path.
661  */
btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info * fs_info)662 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
663 {
664 	struct btrfs_block_group *block_group, *next;
665 
666 	spin_lock(&fs_info->unused_bgs_lock);
667 	/* We enabled async discard, so punt all to the queue */
668 	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
669 				 bg_list) {
670 		list_del_init(&block_group->bg_list);
671 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
672 		/*
673 		 * This put is for the get done by btrfs_mark_bg_unused.
674 		 * Queueing discard incremented it for discard's reference.
675 		 */
676 		btrfs_put_block_group(block_group);
677 	}
678 	spin_unlock(&fs_info->unused_bgs_lock);
679 }
680 
681 /**
682  * btrfs_discard_purge_list - purge discard lists
683  * @discard_ctl: discard control
684  *
685  * If we are disabling async discard, we may have intercepted block groups that
686  * are completely free and ready for the unused_bgs path.  As discarding will
687  * now happen in transaction commit or not at all, we can safely mark the
688  * corresponding block groups as unused and they will be sent on their merry
689  * way to the unused_bgs list.
690  */
btrfs_discard_purge_list(struct btrfs_discard_ctl * discard_ctl)691 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
692 {
693 	struct btrfs_block_group *block_group, *next;
694 	int i;
695 
696 	spin_lock(&discard_ctl->lock);
697 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
698 		list_for_each_entry_safe(block_group, next,
699 					 &discard_ctl->discard_list[i],
700 					 discard_list) {
701 			list_del_init(&block_group->discard_list);
702 			spin_unlock(&discard_ctl->lock);
703 			if (block_group->used == 0)
704 				btrfs_mark_bg_unused(block_group);
705 			spin_lock(&discard_ctl->lock);
706 			btrfs_put_block_group(block_group);
707 		}
708 	}
709 	spin_unlock(&discard_ctl->lock);
710 }
711 
btrfs_discard_resume(struct btrfs_fs_info * fs_info)712 void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
713 {
714 	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
715 		btrfs_discard_cleanup(fs_info);
716 		return;
717 	}
718 
719 	btrfs_discard_punt_unused_bgs_list(fs_info);
720 
721 	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
722 }
723 
btrfs_discard_stop(struct btrfs_fs_info * fs_info)724 void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
725 {
726 	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
727 }
728 
btrfs_discard_init(struct btrfs_fs_info * fs_info)729 void btrfs_discard_init(struct btrfs_fs_info *fs_info)
730 {
731 	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
732 	int i;
733 
734 	spin_lock_init(&discard_ctl->lock);
735 	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
736 
737 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
738 		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
739 
740 	discard_ctl->prev_discard = 0;
741 	discard_ctl->prev_discard_time = 0;
742 	atomic_set(&discard_ctl->discardable_extents, 0);
743 	atomic64_set(&discard_ctl->discardable_bytes, 0);
744 	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
745 	discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC;
746 	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
747 	discard_ctl->kbps_limit = 0;
748 	discard_ctl->discard_extent_bytes = 0;
749 	discard_ctl->discard_bitmap_bytes = 0;
750 	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
751 }
752 
btrfs_discard_cleanup(struct btrfs_fs_info * fs_info)753 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
754 {
755 	btrfs_discard_stop(fs_info);
756 	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
757 	btrfs_discard_purge_list(&fs_info->discard_ctl);
758 }
759