1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46
47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
53
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
72 struct btrfs_end_io_wq {
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
77 blk_status_t status;
78 enum btrfs_wq_endio_type metadata;
79 struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
btrfs_end_io_wq_init(void)84 int __init btrfs_end_io_wq_init(void)
85 {
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
89 SLAB_MEM_SPREAD,
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94 }
95
btrfs_end_io_wq_exit(void)96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
112 struct async_submit_bio {
113 struct inode *inode;
114 struct bio *bio;
115 extent_submit_bio_start_t *submit_bio_start;
116 int mirror_num;
117
118 /* Optional parameter for submit_bio_start used by direct io */
119 u64 dio_file_offset;
120 struct btrfs_work work;
121 blk_status_t status;
122 };
123
124 /*
125 * Compute the csum of a btree block and store the result to provided buffer.
126 */
csum_tree_block(struct extent_buffer * buf,u8 * result)127 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
128 {
129 struct btrfs_fs_info *fs_info = buf->fs_info;
130 const int num_pages = num_extent_pages(buf);
131 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
132 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
133 char *kaddr;
134 int i;
135
136 shash->tfm = fs_info->csum_shash;
137 crypto_shash_init(shash);
138 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
139 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
140 first_page_part - BTRFS_CSUM_SIZE);
141
142 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
143 kaddr = page_address(buf->pages[i]);
144 crypto_shash_update(shash, kaddr, PAGE_SIZE);
145 }
146 memset(result, 0, BTRFS_CSUM_SIZE);
147 crypto_shash_final(shash, result);
148 }
149
150 /*
151 * we can't consider a given block up to date unless the transid of the
152 * block matches the transid in the parent node's pointer. This is how we
153 * detect blocks that either didn't get written at all or got written
154 * in the wrong place.
155 */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)156 static int verify_parent_transid(struct extent_io_tree *io_tree,
157 struct extent_buffer *eb, u64 parent_transid,
158 int atomic)
159 {
160 struct extent_state *cached_state = NULL;
161 int ret;
162
163 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
164 return 0;
165
166 if (atomic)
167 return -EAGAIN;
168
169 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
170 &cached_state);
171 if (extent_buffer_uptodate(eb) &&
172 btrfs_header_generation(eb) == parent_transid) {
173 ret = 0;
174 goto out;
175 }
176 btrfs_err_rl(eb->fs_info,
177 "parent transid verify failed on %llu wanted %llu found %llu",
178 eb->start,
179 parent_transid, btrfs_header_generation(eb));
180 ret = 1;
181 clear_extent_buffer_uptodate(eb);
182 out:
183 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
184 &cached_state);
185 return ret;
186 }
187
btrfs_supported_super_csum(u16 csum_type)188 static bool btrfs_supported_super_csum(u16 csum_type)
189 {
190 switch (csum_type) {
191 case BTRFS_CSUM_TYPE_CRC32:
192 case BTRFS_CSUM_TYPE_XXHASH:
193 case BTRFS_CSUM_TYPE_SHA256:
194 case BTRFS_CSUM_TYPE_BLAKE2:
195 return true;
196 default:
197 return false;
198 }
199 }
200
201 /*
202 * Return 0 if the superblock checksum type matches the checksum value of that
203 * algorithm. Pass the raw disk superblock data.
204 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)205 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
206 const struct btrfs_super_block *disk_sb)
207 {
208 char result[BTRFS_CSUM_SIZE];
209 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
210
211 shash->tfm = fs_info->csum_shash;
212
213 /*
214 * The super_block structure does not span the whole
215 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
216 * filled with zeros and is included in the checksum.
217 */
218 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
219 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
220
221 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
222 return 1;
223
224 return 0;
225 }
226
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)227 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
228 struct btrfs_key *first_key, u64 parent_transid)
229 {
230 struct btrfs_fs_info *fs_info = eb->fs_info;
231 int found_level;
232 struct btrfs_key found_key;
233 int ret;
234
235 found_level = btrfs_header_level(eb);
236 if (found_level != level) {
237 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
238 KERN_ERR "BTRFS: tree level check failed\n");
239 btrfs_err(fs_info,
240 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
241 eb->start, level, found_level);
242 return -EIO;
243 }
244
245 if (!first_key)
246 return 0;
247
248 /*
249 * For live tree block (new tree blocks in current transaction),
250 * we need proper lock context to avoid race, which is impossible here.
251 * So we only checks tree blocks which is read from disk, whose
252 * generation <= fs_info->last_trans_committed.
253 */
254 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
255 return 0;
256
257 /* We have @first_key, so this @eb must have at least one item */
258 if (btrfs_header_nritems(eb) == 0) {
259 btrfs_err(fs_info,
260 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
261 eb->start);
262 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
263 return -EUCLEAN;
264 }
265
266 if (found_level)
267 btrfs_node_key_to_cpu(eb, &found_key, 0);
268 else
269 btrfs_item_key_to_cpu(eb, &found_key, 0);
270 ret = btrfs_comp_cpu_keys(first_key, &found_key);
271
272 if (ret) {
273 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
274 KERN_ERR "BTRFS: tree first key check failed\n");
275 btrfs_err(fs_info,
276 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
277 eb->start, parent_transid, first_key->objectid,
278 first_key->type, first_key->offset,
279 found_key.objectid, found_key.type,
280 found_key.offset);
281 }
282 return ret;
283 }
284
285 /*
286 * helper to read a given tree block, doing retries as required when
287 * the checksums don't match and we have alternate mirrors to try.
288 *
289 * @parent_transid: expected transid, skip check if 0
290 * @level: expected level, mandatory check
291 * @first_key: expected key of first slot, skip check if NULL
292 */
btree_read_extent_buffer_pages(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)293 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
294 u64 parent_transid, int level,
295 struct btrfs_key *first_key)
296 {
297 struct btrfs_fs_info *fs_info = eb->fs_info;
298 struct extent_io_tree *io_tree;
299 int failed = 0;
300 int ret;
301 int num_copies = 0;
302 int mirror_num = 0;
303 int failed_mirror = 0;
304
305 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
306 while (1) {
307 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
308 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
309 if (!ret) {
310 if (verify_parent_transid(io_tree, eb,
311 parent_transid, 0))
312 ret = -EIO;
313 else if (btrfs_verify_level_key(eb, level,
314 first_key, parent_transid))
315 ret = -EUCLEAN;
316 else
317 break;
318 }
319
320 num_copies = btrfs_num_copies(fs_info,
321 eb->start, eb->len);
322 if (num_copies == 1)
323 break;
324
325 if (!failed_mirror) {
326 failed = 1;
327 failed_mirror = eb->read_mirror;
328 }
329
330 mirror_num++;
331 if (mirror_num == failed_mirror)
332 mirror_num++;
333
334 if (mirror_num > num_copies)
335 break;
336 }
337
338 if (failed && !ret && failed_mirror)
339 btrfs_repair_eb_io_failure(eb, failed_mirror);
340
341 return ret;
342 }
343
csum_one_extent_buffer(struct extent_buffer * eb)344 static int csum_one_extent_buffer(struct extent_buffer *eb)
345 {
346 struct btrfs_fs_info *fs_info = eb->fs_info;
347 u8 result[BTRFS_CSUM_SIZE];
348 int ret;
349
350 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
351 offsetof(struct btrfs_header, fsid),
352 BTRFS_FSID_SIZE) == 0);
353 csum_tree_block(eb, result);
354
355 if (btrfs_header_level(eb))
356 ret = btrfs_check_node(eb);
357 else
358 ret = btrfs_check_leaf_full(eb);
359
360 if (ret < 0)
361 goto error;
362
363 /*
364 * Also check the generation, the eb reached here must be newer than
365 * last committed. Or something seriously wrong happened.
366 */
367 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
368 ret = -EUCLEAN;
369 btrfs_err(fs_info,
370 "block=%llu bad generation, have %llu expect > %llu",
371 eb->start, btrfs_header_generation(eb),
372 fs_info->last_trans_committed);
373 goto error;
374 }
375 write_extent_buffer(eb, result, 0, fs_info->csum_size);
376
377 return 0;
378
379 error:
380 btrfs_print_tree(eb, 0);
381 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
382 eb->start);
383 /*
384 * Be noisy if this is an extent buffer from a log tree. We don't abort
385 * a transaction in case there's a bad log tree extent buffer, we just
386 * fallback to a transaction commit. Still we want to know when there is
387 * a bad log tree extent buffer, as that may signal a bug somewhere.
388 */
389 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
390 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
391 return ret;
392 }
393
394 /* Checksum all dirty extent buffers in one bio_vec */
csum_dirty_subpage_buffers(struct btrfs_fs_info * fs_info,struct bio_vec * bvec)395 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
396 struct bio_vec *bvec)
397 {
398 struct page *page = bvec->bv_page;
399 u64 bvec_start = page_offset(page) + bvec->bv_offset;
400 u64 cur;
401 int ret = 0;
402
403 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
404 cur += fs_info->nodesize) {
405 struct extent_buffer *eb;
406 bool uptodate;
407
408 eb = find_extent_buffer(fs_info, cur);
409 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
410 fs_info->nodesize);
411
412 /* A dirty eb shouldn't disappear from buffer_radix */
413 if (WARN_ON(!eb))
414 return -EUCLEAN;
415
416 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
417 free_extent_buffer(eb);
418 return -EUCLEAN;
419 }
420 if (WARN_ON(!uptodate)) {
421 free_extent_buffer(eb);
422 return -EUCLEAN;
423 }
424
425 ret = csum_one_extent_buffer(eb);
426 free_extent_buffer(eb);
427 if (ret < 0)
428 return ret;
429 }
430 return ret;
431 }
432
433 /*
434 * Checksum a dirty tree block before IO. This has extra checks to make sure
435 * we only fill in the checksum field in the first page of a multi-page block.
436 * For subpage extent buffers we need bvec to also read the offset in the page.
437 */
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct bio_vec * bvec)438 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
439 {
440 struct page *page = bvec->bv_page;
441 u64 start = page_offset(page);
442 u64 found_start;
443 struct extent_buffer *eb;
444
445 if (fs_info->sectorsize < PAGE_SIZE)
446 return csum_dirty_subpage_buffers(fs_info, bvec);
447
448 eb = (struct extent_buffer *)page->private;
449 if (page != eb->pages[0])
450 return 0;
451
452 found_start = btrfs_header_bytenr(eb);
453
454 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
455 WARN_ON(found_start != 0);
456 return 0;
457 }
458
459 /*
460 * Please do not consolidate these warnings into a single if.
461 * It is useful to know what went wrong.
462 */
463 if (WARN_ON(found_start != start))
464 return -EUCLEAN;
465 if (WARN_ON(!PageUptodate(page)))
466 return -EUCLEAN;
467
468 return csum_one_extent_buffer(eb);
469 }
470
check_tree_block_fsid(struct extent_buffer * eb)471 static int check_tree_block_fsid(struct extent_buffer *eb)
472 {
473 struct btrfs_fs_info *fs_info = eb->fs_info;
474 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
475 u8 fsid[BTRFS_FSID_SIZE];
476 u8 *metadata_uuid;
477
478 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
479 BTRFS_FSID_SIZE);
480 /*
481 * Checking the incompat flag is only valid for the current fs. For
482 * seed devices it's forbidden to have their uuid changed so reading
483 * ->fsid in this case is fine
484 */
485 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
486 metadata_uuid = fs_devices->metadata_uuid;
487 else
488 metadata_uuid = fs_devices->fsid;
489
490 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
491 return 0;
492
493 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
494 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
495 return 0;
496
497 return 1;
498 }
499
500 /* Do basic extent buffer checks at read time */
validate_extent_buffer(struct extent_buffer * eb)501 static int validate_extent_buffer(struct extent_buffer *eb)
502 {
503 struct btrfs_fs_info *fs_info = eb->fs_info;
504 u64 found_start;
505 const u32 csum_size = fs_info->csum_size;
506 u8 found_level;
507 u8 result[BTRFS_CSUM_SIZE];
508 const u8 *header_csum;
509 int ret = 0;
510
511 found_start = btrfs_header_bytenr(eb);
512 if (found_start != eb->start) {
513 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
514 eb->start, found_start);
515 ret = -EIO;
516 goto out;
517 }
518 if (check_tree_block_fsid(eb)) {
519 btrfs_err_rl(fs_info, "bad fsid on block %llu",
520 eb->start);
521 ret = -EIO;
522 goto out;
523 }
524 found_level = btrfs_header_level(eb);
525 if (found_level >= BTRFS_MAX_LEVEL) {
526 btrfs_err(fs_info, "bad tree block level %d on %llu",
527 (int)btrfs_header_level(eb), eb->start);
528 ret = -EIO;
529 goto out;
530 }
531
532 csum_tree_block(eb, result);
533 header_csum = page_address(eb->pages[0]) +
534 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
535
536 if (memcmp(result, header_csum, csum_size) != 0) {
537 btrfs_warn_rl(fs_info,
538 "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
539 eb->start,
540 CSUM_FMT_VALUE(csum_size, header_csum),
541 CSUM_FMT_VALUE(csum_size, result),
542 btrfs_header_level(eb));
543 ret = -EUCLEAN;
544 goto out;
545 }
546
547 /*
548 * If this is a leaf block and it is corrupt, set the corrupt bit so
549 * that we don't try and read the other copies of this block, just
550 * return -EIO.
551 */
552 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
553 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
554 ret = -EIO;
555 }
556
557 if (found_level > 0 && btrfs_check_node(eb))
558 ret = -EIO;
559
560 if (!ret)
561 set_extent_buffer_uptodate(eb);
562 else
563 btrfs_err(fs_info,
564 "block=%llu read time tree block corruption detected",
565 eb->start);
566 out:
567 return ret;
568 }
569
validate_subpage_buffer(struct page * page,u64 start,u64 end,int mirror)570 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
571 int mirror)
572 {
573 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
574 struct extent_buffer *eb;
575 bool reads_done;
576 int ret = 0;
577
578 /*
579 * We don't allow bio merge for subpage metadata read, so we should
580 * only get one eb for each endio hook.
581 */
582 ASSERT(end == start + fs_info->nodesize - 1);
583 ASSERT(PagePrivate(page));
584
585 eb = find_extent_buffer(fs_info, start);
586 /*
587 * When we are reading one tree block, eb must have been inserted into
588 * the radix tree. If not, something is wrong.
589 */
590 ASSERT(eb);
591
592 reads_done = atomic_dec_and_test(&eb->io_pages);
593 /* Subpage read must finish in page read */
594 ASSERT(reads_done);
595
596 eb->read_mirror = mirror;
597 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
598 ret = -EIO;
599 goto err;
600 }
601 ret = validate_extent_buffer(eb);
602 if (ret < 0)
603 goto err;
604
605 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
606 btree_readahead_hook(eb, ret);
607
608 set_extent_buffer_uptodate(eb);
609
610 free_extent_buffer(eb);
611 return ret;
612 err:
613 /*
614 * end_bio_extent_readpage decrements io_pages in case of error,
615 * make sure it has something to decrement.
616 */
617 atomic_inc(&eb->io_pages);
618 clear_extent_buffer_uptodate(eb);
619 free_extent_buffer(eb);
620 return ret;
621 }
622
btrfs_validate_metadata_buffer(struct btrfs_io_bio * io_bio,struct page * page,u64 start,u64 end,int mirror)623 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
624 struct page *page, u64 start, u64 end,
625 int mirror)
626 {
627 struct extent_buffer *eb;
628 int ret = 0;
629 int reads_done;
630
631 ASSERT(page->private);
632
633 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
634 return validate_subpage_buffer(page, start, end, mirror);
635
636 eb = (struct extent_buffer *)page->private;
637
638 /*
639 * The pending IO might have been the only thing that kept this buffer
640 * in memory. Make sure we have a ref for all this other checks
641 */
642 atomic_inc(&eb->refs);
643
644 reads_done = atomic_dec_and_test(&eb->io_pages);
645 if (!reads_done)
646 goto err;
647
648 eb->read_mirror = mirror;
649 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
650 ret = -EIO;
651 goto err;
652 }
653 ret = validate_extent_buffer(eb);
654 err:
655 if (reads_done &&
656 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
657 btree_readahead_hook(eb, ret);
658
659 if (ret) {
660 /*
661 * our io error hook is going to dec the io pages
662 * again, we have to make sure it has something
663 * to decrement
664 */
665 atomic_inc(&eb->io_pages);
666 clear_extent_buffer_uptodate(eb);
667 }
668 free_extent_buffer(eb);
669
670 return ret;
671 }
672
end_workqueue_bio(struct bio * bio)673 static void end_workqueue_bio(struct bio *bio)
674 {
675 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
676 struct btrfs_fs_info *fs_info;
677 struct btrfs_workqueue *wq;
678
679 fs_info = end_io_wq->info;
680 end_io_wq->status = bio->bi_status;
681
682 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
683 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
684 wq = fs_info->endio_meta_write_workers;
685 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
686 wq = fs_info->endio_freespace_worker;
687 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
688 wq = fs_info->endio_raid56_workers;
689 else
690 wq = fs_info->endio_write_workers;
691 } else {
692 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
693 wq = fs_info->endio_raid56_workers;
694 else if (end_io_wq->metadata)
695 wq = fs_info->endio_meta_workers;
696 else
697 wq = fs_info->endio_workers;
698 }
699
700 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
701 btrfs_queue_work(wq, &end_io_wq->work);
702 }
703
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)704 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 enum btrfs_wq_endio_type metadata)
706 {
707 struct btrfs_end_io_wq *end_io_wq;
708
709 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
710 if (!end_io_wq)
711 return BLK_STS_RESOURCE;
712
713 end_io_wq->private = bio->bi_private;
714 end_io_wq->end_io = bio->bi_end_io;
715 end_io_wq->info = info;
716 end_io_wq->status = 0;
717 end_io_wq->bio = bio;
718 end_io_wq->metadata = metadata;
719
720 bio->bi_private = end_io_wq;
721 bio->bi_end_io = end_workqueue_bio;
722 return 0;
723 }
724
run_one_async_start(struct btrfs_work * work)725 static void run_one_async_start(struct btrfs_work *work)
726 {
727 struct async_submit_bio *async;
728 blk_status_t ret;
729
730 async = container_of(work, struct async_submit_bio, work);
731 ret = async->submit_bio_start(async->inode, async->bio,
732 async->dio_file_offset);
733 if (ret)
734 async->status = ret;
735 }
736
737 /*
738 * In order to insert checksums into the metadata in large chunks, we wait
739 * until bio submission time. All the pages in the bio are checksummed and
740 * sums are attached onto the ordered extent record.
741 *
742 * At IO completion time the csums attached on the ordered extent record are
743 * inserted into the tree.
744 */
run_one_async_done(struct btrfs_work * work)745 static void run_one_async_done(struct btrfs_work *work)
746 {
747 struct async_submit_bio *async;
748 struct inode *inode;
749 blk_status_t ret;
750
751 async = container_of(work, struct async_submit_bio, work);
752 inode = async->inode;
753
754 /* If an error occurred we just want to clean up the bio and move on */
755 if (async->status) {
756 async->bio->bi_status = async->status;
757 bio_endio(async->bio);
758 return;
759 }
760
761 /*
762 * All of the bios that pass through here are from async helpers.
763 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
764 * This changes nothing when cgroups aren't in use.
765 */
766 async->bio->bi_opf |= REQ_CGROUP_PUNT;
767 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
768 if (ret) {
769 async->bio->bi_status = ret;
770 bio_endio(async->bio);
771 }
772 }
773
run_one_async_free(struct btrfs_work * work)774 static void run_one_async_free(struct btrfs_work *work)
775 {
776 struct async_submit_bio *async;
777
778 async = container_of(work, struct async_submit_bio, work);
779 kfree(async);
780 }
781
btrfs_wq_submit_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 dio_file_offset,extent_submit_bio_start_t * submit_bio_start)782 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
783 int mirror_num, unsigned long bio_flags,
784 u64 dio_file_offset,
785 extent_submit_bio_start_t *submit_bio_start)
786 {
787 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
788 struct async_submit_bio *async;
789
790 async = kmalloc(sizeof(*async), GFP_NOFS);
791 if (!async)
792 return BLK_STS_RESOURCE;
793
794 async->inode = inode;
795 async->bio = bio;
796 async->mirror_num = mirror_num;
797 async->submit_bio_start = submit_bio_start;
798
799 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
800 run_one_async_free);
801
802 async->dio_file_offset = dio_file_offset;
803
804 async->status = 0;
805
806 if (op_is_sync(bio->bi_opf))
807 btrfs_set_work_high_priority(&async->work);
808
809 btrfs_queue_work(fs_info->workers, &async->work);
810 return 0;
811 }
812
btree_csum_one_bio(struct bio * bio)813 static blk_status_t btree_csum_one_bio(struct bio *bio)
814 {
815 struct bio_vec *bvec;
816 struct btrfs_root *root;
817 int ret = 0;
818 struct bvec_iter_all iter_all;
819
820 ASSERT(!bio_flagged(bio, BIO_CLONED));
821 bio_for_each_segment_all(bvec, bio, iter_all) {
822 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
823 ret = csum_dirty_buffer(root->fs_info, bvec);
824 if (ret)
825 break;
826 }
827
828 return errno_to_blk_status(ret);
829 }
830
btree_submit_bio_start(struct inode * inode,struct bio * bio,u64 dio_file_offset)831 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
832 u64 dio_file_offset)
833 {
834 /*
835 * when we're called for a write, we're already in the async
836 * submission context. Just jump into btrfs_map_bio
837 */
838 return btree_csum_one_bio(bio);
839 }
840
should_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)841 static bool should_async_write(struct btrfs_fs_info *fs_info,
842 struct btrfs_inode *bi)
843 {
844 if (btrfs_is_zoned(fs_info))
845 return false;
846 if (atomic_read(&bi->sync_writers))
847 return false;
848 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
849 return false;
850 return true;
851 }
852
btrfs_submit_metadata_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)853 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
854 int mirror_num, unsigned long bio_flags)
855 {
856 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
857 blk_status_t ret;
858
859 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
860 /*
861 * called for a read, do the setup so that checksum validation
862 * can happen in the async kernel threads
863 */
864 ret = btrfs_bio_wq_end_io(fs_info, bio,
865 BTRFS_WQ_ENDIO_METADATA);
866 if (ret)
867 goto out_w_error;
868 ret = btrfs_map_bio(fs_info, bio, mirror_num);
869 } else if (!should_async_write(fs_info, BTRFS_I(inode))) {
870 ret = btree_csum_one_bio(bio);
871 if (ret)
872 goto out_w_error;
873 ret = btrfs_map_bio(fs_info, bio, mirror_num);
874 } else {
875 /*
876 * kthread helpers are used to submit writes so that
877 * checksumming can happen in parallel across all CPUs
878 */
879 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
880 0, btree_submit_bio_start);
881 }
882
883 if (ret)
884 goto out_w_error;
885 return 0;
886
887 out_w_error:
888 bio->bi_status = ret;
889 bio_endio(bio);
890 return ret;
891 }
892
893 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)894 static int btree_migratepage(struct address_space *mapping,
895 struct page *newpage, struct page *page,
896 enum migrate_mode mode)
897 {
898 /*
899 * we can't safely write a btree page from here,
900 * we haven't done the locking hook
901 */
902 if (PageDirty(page))
903 return -EAGAIN;
904 /*
905 * Buffers may be managed in a filesystem specific way.
906 * We must have no buffers or drop them.
907 */
908 if (page_has_private(page) &&
909 !try_to_release_page(page, GFP_KERNEL))
910 return -EAGAIN;
911 return migrate_page(mapping, newpage, page, mode);
912 }
913 #endif
914
915
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)916 static int btree_writepages(struct address_space *mapping,
917 struct writeback_control *wbc)
918 {
919 struct btrfs_fs_info *fs_info;
920 int ret;
921
922 if (wbc->sync_mode == WB_SYNC_NONE) {
923
924 if (wbc->for_kupdate)
925 return 0;
926
927 fs_info = BTRFS_I(mapping->host)->root->fs_info;
928 /* this is a bit racy, but that's ok */
929 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
930 BTRFS_DIRTY_METADATA_THRESH,
931 fs_info->dirty_metadata_batch);
932 if (ret < 0)
933 return 0;
934 }
935 return btree_write_cache_pages(mapping, wbc);
936 }
937
btree_releasepage(struct page * page,gfp_t gfp_flags)938 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
939 {
940 if (PageWriteback(page) || PageDirty(page))
941 return 0;
942
943 return try_release_extent_buffer(page);
944 }
945
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)946 static void btree_invalidatepage(struct page *page, unsigned int offset,
947 unsigned int length)
948 {
949 struct extent_io_tree *tree;
950 tree = &BTRFS_I(page->mapping->host)->io_tree;
951 extent_invalidatepage(tree, page, offset);
952 btree_releasepage(page, GFP_NOFS);
953 if (PagePrivate(page)) {
954 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
955 "page private not zero on page %llu",
956 (unsigned long long)page_offset(page));
957 detach_page_private(page);
958 }
959 }
960
btree_set_page_dirty(struct page * page)961 static int btree_set_page_dirty(struct page *page)
962 {
963 #ifdef DEBUG
964 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
965 struct btrfs_subpage *subpage;
966 struct extent_buffer *eb;
967 int cur_bit = 0;
968 u64 page_start = page_offset(page);
969
970 if (fs_info->sectorsize == PAGE_SIZE) {
971 BUG_ON(!PagePrivate(page));
972 eb = (struct extent_buffer *)page->private;
973 BUG_ON(!eb);
974 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
975 BUG_ON(!atomic_read(&eb->refs));
976 btrfs_assert_tree_locked(eb);
977 return __set_page_dirty_nobuffers(page);
978 }
979 ASSERT(PagePrivate(page) && page->private);
980 subpage = (struct btrfs_subpage *)page->private;
981
982 ASSERT(subpage->dirty_bitmap);
983 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
984 unsigned long flags;
985 u64 cur;
986 u16 tmp = (1 << cur_bit);
987
988 spin_lock_irqsave(&subpage->lock, flags);
989 if (!(tmp & subpage->dirty_bitmap)) {
990 spin_unlock_irqrestore(&subpage->lock, flags);
991 cur_bit++;
992 continue;
993 }
994 spin_unlock_irqrestore(&subpage->lock, flags);
995 cur = page_start + cur_bit * fs_info->sectorsize;
996
997 eb = find_extent_buffer(fs_info, cur);
998 ASSERT(eb);
999 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1000 ASSERT(atomic_read(&eb->refs));
1001 btrfs_assert_tree_locked(eb);
1002 free_extent_buffer(eb);
1003
1004 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1005 }
1006 #endif
1007 return __set_page_dirty_nobuffers(page);
1008 }
1009
1010 static const struct address_space_operations btree_aops = {
1011 .writepages = btree_writepages,
1012 .releasepage = btree_releasepage,
1013 .invalidatepage = btree_invalidatepage,
1014 #ifdef CONFIG_MIGRATION
1015 .migratepage = btree_migratepage,
1016 #endif
1017 .set_page_dirty = btree_set_page_dirty,
1018 };
1019
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)1020 struct extent_buffer *btrfs_find_create_tree_block(
1021 struct btrfs_fs_info *fs_info,
1022 u64 bytenr, u64 owner_root,
1023 int level)
1024 {
1025 if (btrfs_is_testing(fs_info))
1026 return alloc_test_extent_buffer(fs_info, bytenr);
1027 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1028 }
1029
1030 /*
1031 * Read tree block at logical address @bytenr and do variant basic but critical
1032 * verification.
1033 *
1034 * @owner_root: the objectid of the root owner for this block.
1035 * @parent_transid: expected transid of this tree block, skip check if 0
1036 * @level: expected level, mandatory check
1037 * @first_key: expected key in slot 0, skip check if NULL
1038 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 parent_transid,int level,struct btrfs_key * first_key)1039 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1040 u64 owner_root, u64 parent_transid,
1041 int level, struct btrfs_key *first_key)
1042 {
1043 struct extent_buffer *buf = NULL;
1044 int ret;
1045
1046 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1047 if (IS_ERR(buf))
1048 return buf;
1049
1050 ret = btree_read_extent_buffer_pages(buf, parent_transid,
1051 level, first_key);
1052 if (ret) {
1053 free_extent_buffer_stale(buf);
1054 return ERR_PTR(ret);
1055 }
1056 return buf;
1057
1058 }
1059
btrfs_clean_tree_block(struct extent_buffer * buf)1060 void btrfs_clean_tree_block(struct extent_buffer *buf)
1061 {
1062 struct btrfs_fs_info *fs_info = buf->fs_info;
1063 if (btrfs_header_generation(buf) ==
1064 fs_info->running_transaction->transid) {
1065 btrfs_assert_tree_locked(buf);
1066
1067 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1068 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1069 -buf->len,
1070 fs_info->dirty_metadata_batch);
1071 clear_extent_buffer_dirty(buf);
1072 }
1073 }
1074 }
1075
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1076 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1077 u64 objectid)
1078 {
1079 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1080 root->fs_info = fs_info;
1081 root->node = NULL;
1082 root->commit_root = NULL;
1083 root->state = 0;
1084 root->orphan_cleanup_state = 0;
1085
1086 root->last_trans = 0;
1087 root->free_objectid = 0;
1088 root->nr_delalloc_inodes = 0;
1089 root->nr_ordered_extents = 0;
1090 root->inode_tree = RB_ROOT;
1091 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1092 root->block_rsv = NULL;
1093
1094 INIT_LIST_HEAD(&root->dirty_list);
1095 INIT_LIST_HEAD(&root->root_list);
1096 INIT_LIST_HEAD(&root->delalloc_inodes);
1097 INIT_LIST_HEAD(&root->delalloc_root);
1098 INIT_LIST_HEAD(&root->ordered_extents);
1099 INIT_LIST_HEAD(&root->ordered_root);
1100 INIT_LIST_HEAD(&root->reloc_dirty_list);
1101 INIT_LIST_HEAD(&root->logged_list[0]);
1102 INIT_LIST_HEAD(&root->logged_list[1]);
1103 spin_lock_init(&root->inode_lock);
1104 spin_lock_init(&root->delalloc_lock);
1105 spin_lock_init(&root->ordered_extent_lock);
1106 spin_lock_init(&root->accounting_lock);
1107 spin_lock_init(&root->log_extents_lock[0]);
1108 spin_lock_init(&root->log_extents_lock[1]);
1109 spin_lock_init(&root->qgroup_meta_rsv_lock);
1110 mutex_init(&root->objectid_mutex);
1111 mutex_init(&root->log_mutex);
1112 mutex_init(&root->ordered_extent_mutex);
1113 mutex_init(&root->delalloc_mutex);
1114 init_waitqueue_head(&root->qgroup_flush_wait);
1115 init_waitqueue_head(&root->log_writer_wait);
1116 init_waitqueue_head(&root->log_commit_wait[0]);
1117 init_waitqueue_head(&root->log_commit_wait[1]);
1118 INIT_LIST_HEAD(&root->log_ctxs[0]);
1119 INIT_LIST_HEAD(&root->log_ctxs[1]);
1120 atomic_set(&root->log_commit[0], 0);
1121 atomic_set(&root->log_commit[1], 0);
1122 atomic_set(&root->log_writers, 0);
1123 atomic_set(&root->log_batch, 0);
1124 refcount_set(&root->refs, 1);
1125 atomic_set(&root->snapshot_force_cow, 0);
1126 atomic_set(&root->nr_swapfiles, 0);
1127 root->log_transid = 0;
1128 root->log_transid_committed = -1;
1129 root->last_log_commit = 0;
1130 if (!dummy) {
1131 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1132 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1133 extent_io_tree_init(fs_info, &root->log_csum_range,
1134 IO_TREE_LOG_CSUM_RANGE, NULL);
1135 }
1136
1137 memset(&root->root_key, 0, sizeof(root->root_key));
1138 memset(&root->root_item, 0, sizeof(root->root_item));
1139 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1140 root->root_key.objectid = objectid;
1141 root->anon_dev = 0;
1142
1143 spin_lock_init(&root->root_item_lock);
1144 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1145 #ifdef CONFIG_BTRFS_DEBUG
1146 INIT_LIST_HEAD(&root->leak_list);
1147 spin_lock(&fs_info->fs_roots_radix_lock);
1148 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1149 spin_unlock(&fs_info->fs_roots_radix_lock);
1150 #endif
1151 }
1152
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)1153 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1154 u64 objectid, gfp_t flags)
1155 {
1156 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1157 if (root)
1158 __setup_root(root, fs_info, objectid);
1159 return root;
1160 }
1161
1162 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1163 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1164 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1165 {
1166 struct btrfs_root *root;
1167
1168 if (!fs_info)
1169 return ERR_PTR(-EINVAL);
1170
1171 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1172 if (!root)
1173 return ERR_PTR(-ENOMEM);
1174
1175 /* We don't use the stripesize in selftest, set it as sectorsize */
1176 root->alloc_bytenr = 0;
1177
1178 return root;
1179 }
1180 #endif
1181
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1182 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1183 u64 objectid)
1184 {
1185 struct btrfs_fs_info *fs_info = trans->fs_info;
1186 struct extent_buffer *leaf;
1187 struct btrfs_root *tree_root = fs_info->tree_root;
1188 struct btrfs_root *root;
1189 struct btrfs_key key;
1190 unsigned int nofs_flag;
1191 int ret = 0;
1192
1193 /*
1194 * We're holding a transaction handle, so use a NOFS memory allocation
1195 * context to avoid deadlock if reclaim happens.
1196 */
1197 nofs_flag = memalloc_nofs_save();
1198 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1199 memalloc_nofs_restore(nofs_flag);
1200 if (!root)
1201 return ERR_PTR(-ENOMEM);
1202
1203 root->root_key.objectid = objectid;
1204 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1205 root->root_key.offset = 0;
1206
1207 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1208 BTRFS_NESTING_NORMAL);
1209 if (IS_ERR(leaf)) {
1210 ret = PTR_ERR(leaf);
1211 leaf = NULL;
1212 goto fail_unlock;
1213 }
1214
1215 root->node = leaf;
1216 btrfs_mark_buffer_dirty(leaf);
1217
1218 root->commit_root = btrfs_root_node(root);
1219 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1220
1221 btrfs_set_root_flags(&root->root_item, 0);
1222 btrfs_set_root_limit(&root->root_item, 0);
1223 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1224 btrfs_set_root_generation(&root->root_item, trans->transid);
1225 btrfs_set_root_level(&root->root_item, 0);
1226 btrfs_set_root_refs(&root->root_item, 1);
1227 btrfs_set_root_used(&root->root_item, leaf->len);
1228 btrfs_set_root_last_snapshot(&root->root_item, 0);
1229 btrfs_set_root_dirid(&root->root_item, 0);
1230 if (is_fstree(objectid))
1231 generate_random_guid(root->root_item.uuid);
1232 else
1233 export_guid(root->root_item.uuid, &guid_null);
1234 btrfs_set_root_drop_level(&root->root_item, 0);
1235
1236 btrfs_tree_unlock(leaf);
1237
1238 key.objectid = objectid;
1239 key.type = BTRFS_ROOT_ITEM_KEY;
1240 key.offset = 0;
1241 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1242 if (ret)
1243 goto fail;
1244
1245 return root;
1246
1247 fail_unlock:
1248 if (leaf)
1249 btrfs_tree_unlock(leaf);
1250 fail:
1251 btrfs_put_root(root);
1252
1253 return ERR_PTR(ret);
1254 }
1255
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1256 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1257 struct btrfs_fs_info *fs_info)
1258 {
1259 struct btrfs_root *root;
1260
1261 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1262 if (!root)
1263 return ERR_PTR(-ENOMEM);
1264
1265 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1266 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1267 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1268
1269 return root;
1270 }
1271
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)1272 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1273 struct btrfs_root *root)
1274 {
1275 struct extent_buffer *leaf;
1276
1277 /*
1278 * DON'T set SHAREABLE bit for log trees.
1279 *
1280 * Log trees are not exposed to user space thus can't be snapshotted,
1281 * and they go away before a real commit is actually done.
1282 *
1283 * They do store pointers to file data extents, and those reference
1284 * counts still get updated (along with back refs to the log tree).
1285 */
1286
1287 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1288 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1289 if (IS_ERR(leaf))
1290 return PTR_ERR(leaf);
1291
1292 root->node = leaf;
1293
1294 btrfs_mark_buffer_dirty(root->node);
1295 btrfs_tree_unlock(root->node);
1296
1297 return 0;
1298 }
1299
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1300 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1301 struct btrfs_fs_info *fs_info)
1302 {
1303 struct btrfs_root *log_root;
1304
1305 log_root = alloc_log_tree(trans, fs_info);
1306 if (IS_ERR(log_root))
1307 return PTR_ERR(log_root);
1308
1309 if (!btrfs_is_zoned(fs_info)) {
1310 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1311
1312 if (ret) {
1313 btrfs_put_root(log_root);
1314 return ret;
1315 }
1316 }
1317
1318 WARN_ON(fs_info->log_root_tree);
1319 fs_info->log_root_tree = log_root;
1320 return 0;
1321 }
1322
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1323 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1324 struct btrfs_root *root)
1325 {
1326 struct btrfs_fs_info *fs_info = root->fs_info;
1327 struct btrfs_root *log_root;
1328 struct btrfs_inode_item *inode_item;
1329 int ret;
1330
1331 log_root = alloc_log_tree(trans, fs_info);
1332 if (IS_ERR(log_root))
1333 return PTR_ERR(log_root);
1334
1335 ret = btrfs_alloc_log_tree_node(trans, log_root);
1336 if (ret) {
1337 btrfs_put_root(log_root);
1338 return ret;
1339 }
1340
1341 log_root->last_trans = trans->transid;
1342 log_root->root_key.offset = root->root_key.objectid;
1343
1344 inode_item = &log_root->root_item.inode;
1345 btrfs_set_stack_inode_generation(inode_item, 1);
1346 btrfs_set_stack_inode_size(inode_item, 3);
1347 btrfs_set_stack_inode_nlink(inode_item, 1);
1348 btrfs_set_stack_inode_nbytes(inode_item,
1349 fs_info->nodesize);
1350 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1351
1352 btrfs_set_root_node(&log_root->root_item, log_root->node);
1353
1354 WARN_ON(root->log_root);
1355 root->log_root = log_root;
1356 root->log_transid = 0;
1357 root->log_transid_committed = -1;
1358 root->last_log_commit = 0;
1359 return 0;
1360 }
1361
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1362 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1363 struct btrfs_path *path,
1364 struct btrfs_key *key)
1365 {
1366 struct btrfs_root *root;
1367 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1368 u64 generation;
1369 int ret;
1370 int level;
1371
1372 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1373 if (!root)
1374 return ERR_PTR(-ENOMEM);
1375
1376 ret = btrfs_find_root(tree_root, key, path,
1377 &root->root_item, &root->root_key);
1378 if (ret) {
1379 if (ret > 0)
1380 ret = -ENOENT;
1381 goto fail;
1382 }
1383
1384 generation = btrfs_root_generation(&root->root_item);
1385 level = btrfs_root_level(&root->root_item);
1386 root->node = read_tree_block(fs_info,
1387 btrfs_root_bytenr(&root->root_item),
1388 key->objectid, generation, level, NULL);
1389 if (IS_ERR(root->node)) {
1390 ret = PTR_ERR(root->node);
1391 root->node = NULL;
1392 goto fail;
1393 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1394 ret = -EIO;
1395 goto fail;
1396 }
1397 root->commit_root = btrfs_root_node(root);
1398 return root;
1399 fail:
1400 btrfs_put_root(root);
1401 return ERR_PTR(ret);
1402 }
1403
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1404 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1405 struct btrfs_key *key)
1406 {
1407 struct btrfs_root *root;
1408 struct btrfs_path *path;
1409
1410 path = btrfs_alloc_path();
1411 if (!path)
1412 return ERR_PTR(-ENOMEM);
1413 root = read_tree_root_path(tree_root, path, key);
1414 btrfs_free_path(path);
1415
1416 return root;
1417 }
1418
1419 /*
1420 * Initialize subvolume root in-memory structure
1421 *
1422 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1423 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1424 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1425 {
1426 int ret;
1427 unsigned int nofs_flag;
1428
1429 /*
1430 * We might be called under a transaction (e.g. indirect backref
1431 * resolution) which could deadlock if it triggers memory reclaim
1432 */
1433 nofs_flag = memalloc_nofs_save();
1434 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1435 memalloc_nofs_restore(nofs_flag);
1436 if (ret)
1437 goto fail;
1438
1439 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1440 !btrfs_is_data_reloc_root(root) &&
1441 is_fstree(root->root_key.objectid)) {
1442 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1443 btrfs_check_and_init_root_item(&root->root_item);
1444 }
1445
1446 /*
1447 * Don't assign anonymous block device to roots that are not exposed to
1448 * userspace, the id pool is limited to 1M
1449 */
1450 if (is_fstree(root->root_key.objectid) &&
1451 btrfs_root_refs(&root->root_item) > 0) {
1452 if (!anon_dev) {
1453 ret = get_anon_bdev(&root->anon_dev);
1454 if (ret)
1455 goto fail;
1456 } else {
1457 root->anon_dev = anon_dev;
1458 }
1459 }
1460
1461 mutex_lock(&root->objectid_mutex);
1462 ret = btrfs_init_root_free_objectid(root);
1463 if (ret) {
1464 mutex_unlock(&root->objectid_mutex);
1465 goto fail;
1466 }
1467
1468 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1469
1470 mutex_unlock(&root->objectid_mutex);
1471
1472 return 0;
1473 fail:
1474 /* The caller is responsible to call btrfs_free_fs_root */
1475 return ret;
1476 }
1477
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1478 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1479 u64 root_id)
1480 {
1481 struct btrfs_root *root;
1482
1483 spin_lock(&fs_info->fs_roots_radix_lock);
1484 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1485 (unsigned long)root_id);
1486 if (root)
1487 root = btrfs_grab_root(root);
1488 spin_unlock(&fs_info->fs_roots_radix_lock);
1489 return root;
1490 }
1491
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1492 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1493 u64 objectid)
1494 {
1495 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1496 return btrfs_grab_root(fs_info->tree_root);
1497 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1498 return btrfs_grab_root(fs_info->extent_root);
1499 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1500 return btrfs_grab_root(fs_info->chunk_root);
1501 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1502 return btrfs_grab_root(fs_info->dev_root);
1503 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1504 return btrfs_grab_root(fs_info->csum_root);
1505 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1506 return btrfs_grab_root(fs_info->quota_root) ?
1507 fs_info->quota_root : ERR_PTR(-ENOENT);
1508 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1509 return btrfs_grab_root(fs_info->uuid_root) ?
1510 fs_info->uuid_root : ERR_PTR(-ENOENT);
1511 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1512 return btrfs_grab_root(fs_info->free_space_root) ?
1513 fs_info->free_space_root : ERR_PTR(-ENOENT);
1514 return NULL;
1515 }
1516
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1517 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1518 struct btrfs_root *root)
1519 {
1520 int ret;
1521
1522 ret = radix_tree_preload(GFP_NOFS);
1523 if (ret)
1524 return ret;
1525
1526 spin_lock(&fs_info->fs_roots_radix_lock);
1527 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1528 (unsigned long)root->root_key.objectid,
1529 root);
1530 if (ret == 0) {
1531 btrfs_grab_root(root);
1532 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1533 }
1534 spin_unlock(&fs_info->fs_roots_radix_lock);
1535 radix_tree_preload_end();
1536
1537 return ret;
1538 }
1539
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1540 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1541 {
1542 #ifdef CONFIG_BTRFS_DEBUG
1543 struct btrfs_root *root;
1544
1545 while (!list_empty(&fs_info->allocated_roots)) {
1546 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1547
1548 root = list_first_entry(&fs_info->allocated_roots,
1549 struct btrfs_root, leak_list);
1550 btrfs_err(fs_info, "leaked root %s refcount %d",
1551 btrfs_root_name(&root->root_key, buf),
1552 refcount_read(&root->refs));
1553 while (refcount_read(&root->refs) > 1)
1554 btrfs_put_root(root);
1555 btrfs_put_root(root);
1556 }
1557 #endif
1558 }
1559
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1560 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1561 {
1562 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1563 percpu_counter_destroy(&fs_info->delalloc_bytes);
1564 percpu_counter_destroy(&fs_info->ordered_bytes);
1565 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1566 btrfs_free_csum_hash(fs_info);
1567 btrfs_free_stripe_hash_table(fs_info);
1568 btrfs_free_ref_cache(fs_info);
1569 kfree(fs_info->balance_ctl);
1570 kfree(fs_info->delayed_root);
1571 btrfs_put_root(fs_info->extent_root);
1572 btrfs_put_root(fs_info->tree_root);
1573 btrfs_put_root(fs_info->chunk_root);
1574 btrfs_put_root(fs_info->dev_root);
1575 btrfs_put_root(fs_info->csum_root);
1576 btrfs_put_root(fs_info->quota_root);
1577 btrfs_put_root(fs_info->uuid_root);
1578 btrfs_put_root(fs_info->free_space_root);
1579 btrfs_put_root(fs_info->fs_root);
1580 btrfs_put_root(fs_info->data_reloc_root);
1581 btrfs_check_leaked_roots(fs_info);
1582 btrfs_extent_buffer_leak_debug_check(fs_info);
1583 kfree(fs_info->super_copy);
1584 kfree(fs_info->super_for_commit);
1585 kvfree(fs_info);
1586 }
1587
1588
1589 /*
1590 * Get an in-memory reference of a root structure.
1591 *
1592 * For essential trees like root/extent tree, we grab it from fs_info directly.
1593 * For subvolume trees, we check the cached filesystem roots first. If not
1594 * found, then read it from disk and add it to cached fs roots.
1595 *
1596 * Caller should release the root by calling btrfs_put_root() after the usage.
1597 *
1598 * NOTE: Reloc and log trees can't be read by this function as they share the
1599 * same root objectid.
1600 *
1601 * @objectid: root id
1602 * @anon_dev: preallocated anonymous block device number for new roots,
1603 * pass 0 for new allocation.
1604 * @check_ref: whether to check root item references, If true, return -ENOENT
1605 * for orphan roots
1606 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev,bool check_ref)1607 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1608 u64 objectid, dev_t anon_dev,
1609 bool check_ref)
1610 {
1611 struct btrfs_root *root;
1612 struct btrfs_path *path;
1613 struct btrfs_key key;
1614 int ret;
1615
1616 root = btrfs_get_global_root(fs_info, objectid);
1617 if (root)
1618 return root;
1619 again:
1620 root = btrfs_lookup_fs_root(fs_info, objectid);
1621 if (root) {
1622 /*
1623 * Some other caller may have read out the newly inserted
1624 * subvolume already (for things like backref walk etc). Not
1625 * that common but still possible. In that case, we just need
1626 * to free the anon_dev.
1627 */
1628 if (unlikely(anon_dev)) {
1629 free_anon_bdev(anon_dev);
1630 anon_dev = 0;
1631 }
1632
1633 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1634 btrfs_put_root(root);
1635 return ERR_PTR(-ENOENT);
1636 }
1637 return root;
1638 }
1639
1640 key.objectid = objectid;
1641 key.type = BTRFS_ROOT_ITEM_KEY;
1642 key.offset = (u64)-1;
1643 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1644 if (IS_ERR(root))
1645 return root;
1646
1647 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1648 ret = -ENOENT;
1649 goto fail;
1650 }
1651
1652 ret = btrfs_init_fs_root(root, anon_dev);
1653 if (ret)
1654 goto fail;
1655
1656 path = btrfs_alloc_path();
1657 if (!path) {
1658 ret = -ENOMEM;
1659 goto fail;
1660 }
1661 key.objectid = BTRFS_ORPHAN_OBJECTID;
1662 key.type = BTRFS_ORPHAN_ITEM_KEY;
1663 key.offset = objectid;
1664
1665 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1666 btrfs_free_path(path);
1667 if (ret < 0)
1668 goto fail;
1669 if (ret == 0)
1670 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1671
1672 ret = btrfs_insert_fs_root(fs_info, root);
1673 if (ret) {
1674 if (ret == -EEXIST) {
1675 btrfs_put_root(root);
1676 goto again;
1677 }
1678 goto fail;
1679 }
1680 return root;
1681 fail:
1682 /*
1683 * If our caller provided us an anonymous device, then it's his
1684 * responsability to free it in case we fail. So we have to set our
1685 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1686 * and once again by our caller.
1687 */
1688 if (anon_dev)
1689 root->anon_dev = 0;
1690 btrfs_put_root(root);
1691 return ERR_PTR(ret);
1692 }
1693
1694 /*
1695 * Get in-memory reference of a root structure
1696 *
1697 * @objectid: tree objectid
1698 * @check_ref: if set, verify that the tree exists and the item has at least
1699 * one reference
1700 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1701 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1702 u64 objectid, bool check_ref)
1703 {
1704 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1705 }
1706
1707 /*
1708 * Get in-memory reference of a root structure, created as new, optionally pass
1709 * the anonymous block device id
1710 *
1711 * @objectid: tree objectid
1712 * @anon_dev: if zero, allocate a new anonymous block device or use the
1713 * parameter value
1714 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev)1715 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1716 u64 objectid, dev_t anon_dev)
1717 {
1718 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1719 }
1720
1721 /*
1722 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1723 * @fs_info: the fs_info
1724 * @objectid: the objectid we need to lookup
1725 *
1726 * This is exclusively used for backref walking, and exists specifically because
1727 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1728 * creation time, which means we may have to read the tree_root in order to look
1729 * up a fs root that is not in memory. If the root is not in memory we will
1730 * read the tree root commit root and look up the fs root from there. This is a
1731 * temporary root, it will not be inserted into the radix tree as it doesn't
1732 * have the most uptodate information, it'll simply be discarded once the
1733 * backref code is finished using the root.
1734 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1735 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1736 struct btrfs_path *path,
1737 u64 objectid)
1738 {
1739 struct btrfs_root *root;
1740 struct btrfs_key key;
1741
1742 ASSERT(path->search_commit_root && path->skip_locking);
1743
1744 /*
1745 * This can return -ENOENT if we ask for a root that doesn't exist, but
1746 * since this is called via the backref walking code we won't be looking
1747 * up a root that doesn't exist, unless there's corruption. So if root
1748 * != NULL just return it.
1749 */
1750 root = btrfs_get_global_root(fs_info, objectid);
1751 if (root)
1752 return root;
1753
1754 root = btrfs_lookup_fs_root(fs_info, objectid);
1755 if (root)
1756 return root;
1757
1758 key.objectid = objectid;
1759 key.type = BTRFS_ROOT_ITEM_KEY;
1760 key.offset = (u64)-1;
1761 root = read_tree_root_path(fs_info->tree_root, path, &key);
1762 btrfs_release_path(path);
1763
1764 return root;
1765 }
1766
1767 /*
1768 * called by the kthread helper functions to finally call the bio end_io
1769 * functions. This is where read checksum verification actually happens
1770 */
end_workqueue_fn(struct btrfs_work * work)1771 static void end_workqueue_fn(struct btrfs_work *work)
1772 {
1773 struct bio *bio;
1774 struct btrfs_end_io_wq *end_io_wq;
1775
1776 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1777 bio = end_io_wq->bio;
1778
1779 bio->bi_status = end_io_wq->status;
1780 bio->bi_private = end_io_wq->private;
1781 bio->bi_end_io = end_io_wq->end_io;
1782 bio_endio(bio);
1783 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1784 }
1785
cleaner_kthread(void * arg)1786 static int cleaner_kthread(void *arg)
1787 {
1788 struct btrfs_root *root = arg;
1789 struct btrfs_fs_info *fs_info = root->fs_info;
1790 int again;
1791
1792 while (1) {
1793 again = 0;
1794
1795 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1796
1797 /* Make the cleaner go to sleep early. */
1798 if (btrfs_need_cleaner_sleep(fs_info))
1799 goto sleep;
1800
1801 /*
1802 * Do not do anything if we might cause open_ctree() to block
1803 * before we have finished mounting the filesystem.
1804 */
1805 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1806 goto sleep;
1807
1808 if (!mutex_trylock(&fs_info->cleaner_mutex))
1809 goto sleep;
1810
1811 /*
1812 * Avoid the problem that we change the status of the fs
1813 * during the above check and trylock.
1814 */
1815 if (btrfs_need_cleaner_sleep(fs_info)) {
1816 mutex_unlock(&fs_info->cleaner_mutex);
1817 goto sleep;
1818 }
1819
1820 btrfs_run_delayed_iputs(fs_info);
1821
1822 again = btrfs_clean_one_deleted_snapshot(root);
1823 mutex_unlock(&fs_info->cleaner_mutex);
1824
1825 /*
1826 * The defragger has dealt with the R/O remount and umount,
1827 * needn't do anything special here.
1828 */
1829 btrfs_run_defrag_inodes(fs_info);
1830
1831 /*
1832 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1833 * with relocation (btrfs_relocate_chunk) and relocation
1834 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1835 * after acquiring fs_info->reclaim_bgs_lock. So we
1836 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1837 * unused block groups.
1838 */
1839 btrfs_delete_unused_bgs(fs_info);
1840
1841 /*
1842 * Reclaim block groups in the reclaim_bgs list after we deleted
1843 * all unused block_groups. This possibly gives us some more free
1844 * space.
1845 */
1846 btrfs_reclaim_bgs(fs_info);
1847 sleep:
1848 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1849 if (kthread_should_park())
1850 kthread_parkme();
1851 if (kthread_should_stop())
1852 return 0;
1853 if (!again) {
1854 set_current_state(TASK_INTERRUPTIBLE);
1855 schedule();
1856 __set_current_state(TASK_RUNNING);
1857 }
1858 }
1859 }
1860
transaction_kthread(void * arg)1861 static int transaction_kthread(void *arg)
1862 {
1863 struct btrfs_root *root = arg;
1864 struct btrfs_fs_info *fs_info = root->fs_info;
1865 struct btrfs_trans_handle *trans;
1866 struct btrfs_transaction *cur;
1867 u64 transid;
1868 time64_t delta;
1869 unsigned long delay;
1870 bool cannot_commit;
1871
1872 do {
1873 cannot_commit = false;
1874 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1875 mutex_lock(&fs_info->transaction_kthread_mutex);
1876
1877 spin_lock(&fs_info->trans_lock);
1878 cur = fs_info->running_transaction;
1879 if (!cur) {
1880 spin_unlock(&fs_info->trans_lock);
1881 goto sleep;
1882 }
1883
1884 delta = ktime_get_seconds() - cur->start_time;
1885 if (cur->state < TRANS_STATE_COMMIT_START &&
1886 delta < fs_info->commit_interval) {
1887 spin_unlock(&fs_info->trans_lock);
1888 delay -= msecs_to_jiffies((delta - 1) * 1000);
1889 delay = min(delay,
1890 msecs_to_jiffies(fs_info->commit_interval * 1000));
1891 goto sleep;
1892 }
1893 transid = cur->transid;
1894 spin_unlock(&fs_info->trans_lock);
1895
1896 /* If the file system is aborted, this will always fail. */
1897 trans = btrfs_attach_transaction(root);
1898 if (IS_ERR(trans)) {
1899 if (PTR_ERR(trans) != -ENOENT)
1900 cannot_commit = true;
1901 goto sleep;
1902 }
1903 if (transid == trans->transid) {
1904 btrfs_commit_transaction(trans);
1905 } else {
1906 btrfs_end_transaction(trans);
1907 }
1908 sleep:
1909 wake_up_process(fs_info->cleaner_kthread);
1910 mutex_unlock(&fs_info->transaction_kthread_mutex);
1911
1912 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1913 &fs_info->fs_state)))
1914 btrfs_cleanup_transaction(fs_info);
1915 if (!kthread_should_stop() &&
1916 (!btrfs_transaction_blocked(fs_info) ||
1917 cannot_commit))
1918 schedule_timeout_interruptible(delay);
1919 } while (!kthread_should_stop());
1920 return 0;
1921 }
1922
1923 /*
1924 * This will find the highest generation in the array of root backups. The
1925 * index of the highest array is returned, or -EINVAL if we can't find
1926 * anything.
1927 *
1928 * We check to make sure the array is valid by comparing the
1929 * generation of the latest root in the array with the generation
1930 * in the super block. If they don't match we pitch it.
1931 */
find_newest_super_backup(struct btrfs_fs_info * info)1932 static int find_newest_super_backup(struct btrfs_fs_info *info)
1933 {
1934 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1935 u64 cur;
1936 struct btrfs_root_backup *root_backup;
1937 int i;
1938
1939 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1940 root_backup = info->super_copy->super_roots + i;
1941 cur = btrfs_backup_tree_root_gen(root_backup);
1942 if (cur == newest_gen)
1943 return i;
1944 }
1945
1946 return -EINVAL;
1947 }
1948
1949 /*
1950 * copy all the root pointers into the super backup array.
1951 * this will bump the backup pointer by one when it is
1952 * done
1953 */
backup_super_roots(struct btrfs_fs_info * info)1954 static void backup_super_roots(struct btrfs_fs_info *info)
1955 {
1956 const int next_backup = info->backup_root_index;
1957 struct btrfs_root_backup *root_backup;
1958
1959 root_backup = info->super_for_commit->super_roots + next_backup;
1960
1961 /*
1962 * make sure all of our padding and empty slots get zero filled
1963 * regardless of which ones we use today
1964 */
1965 memset(root_backup, 0, sizeof(*root_backup));
1966
1967 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1968
1969 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1970 btrfs_set_backup_tree_root_gen(root_backup,
1971 btrfs_header_generation(info->tree_root->node));
1972
1973 btrfs_set_backup_tree_root_level(root_backup,
1974 btrfs_header_level(info->tree_root->node));
1975
1976 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1977 btrfs_set_backup_chunk_root_gen(root_backup,
1978 btrfs_header_generation(info->chunk_root->node));
1979 btrfs_set_backup_chunk_root_level(root_backup,
1980 btrfs_header_level(info->chunk_root->node));
1981
1982 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1983 btrfs_set_backup_extent_root_gen(root_backup,
1984 btrfs_header_generation(info->extent_root->node));
1985 btrfs_set_backup_extent_root_level(root_backup,
1986 btrfs_header_level(info->extent_root->node));
1987
1988 /*
1989 * we might commit during log recovery, which happens before we set
1990 * the fs_root. Make sure it is valid before we fill it in.
1991 */
1992 if (info->fs_root && info->fs_root->node) {
1993 btrfs_set_backup_fs_root(root_backup,
1994 info->fs_root->node->start);
1995 btrfs_set_backup_fs_root_gen(root_backup,
1996 btrfs_header_generation(info->fs_root->node));
1997 btrfs_set_backup_fs_root_level(root_backup,
1998 btrfs_header_level(info->fs_root->node));
1999 }
2000
2001 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2002 btrfs_set_backup_dev_root_gen(root_backup,
2003 btrfs_header_generation(info->dev_root->node));
2004 btrfs_set_backup_dev_root_level(root_backup,
2005 btrfs_header_level(info->dev_root->node));
2006
2007 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2008 btrfs_set_backup_csum_root_gen(root_backup,
2009 btrfs_header_generation(info->csum_root->node));
2010 btrfs_set_backup_csum_root_level(root_backup,
2011 btrfs_header_level(info->csum_root->node));
2012
2013 btrfs_set_backup_total_bytes(root_backup,
2014 btrfs_super_total_bytes(info->super_copy));
2015 btrfs_set_backup_bytes_used(root_backup,
2016 btrfs_super_bytes_used(info->super_copy));
2017 btrfs_set_backup_num_devices(root_backup,
2018 btrfs_super_num_devices(info->super_copy));
2019
2020 /*
2021 * if we don't copy this out to the super_copy, it won't get remembered
2022 * for the next commit
2023 */
2024 memcpy(&info->super_copy->super_roots,
2025 &info->super_for_commit->super_roots,
2026 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2027 }
2028
2029 /*
2030 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2031 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2032 *
2033 * fs_info - filesystem whose backup roots need to be read
2034 * priority - priority of backup root required
2035 *
2036 * Returns backup root index on success and -EINVAL otherwise.
2037 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)2038 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2039 {
2040 int backup_index = find_newest_super_backup(fs_info);
2041 struct btrfs_super_block *super = fs_info->super_copy;
2042 struct btrfs_root_backup *root_backup;
2043
2044 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2045 if (priority == 0)
2046 return backup_index;
2047
2048 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2049 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2050 } else {
2051 return -EINVAL;
2052 }
2053
2054 root_backup = super->super_roots + backup_index;
2055
2056 btrfs_set_super_generation(super,
2057 btrfs_backup_tree_root_gen(root_backup));
2058 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2059 btrfs_set_super_root_level(super,
2060 btrfs_backup_tree_root_level(root_backup));
2061 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2062
2063 /*
2064 * Fixme: the total bytes and num_devices need to match or we should
2065 * need a fsck
2066 */
2067 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2068 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2069
2070 return backup_index;
2071 }
2072
2073 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2074 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2075 {
2076 btrfs_destroy_workqueue(fs_info->fixup_workers);
2077 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2078 btrfs_destroy_workqueue(fs_info->workers);
2079 btrfs_destroy_workqueue(fs_info->endio_workers);
2080 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2081 btrfs_destroy_workqueue(fs_info->rmw_workers);
2082 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2083 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2084 btrfs_destroy_workqueue(fs_info->delayed_workers);
2085 btrfs_destroy_workqueue(fs_info->caching_workers);
2086 btrfs_destroy_workqueue(fs_info->readahead_workers);
2087 btrfs_destroy_workqueue(fs_info->flush_workers);
2088 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2089 if (fs_info->discard_ctl.discard_workers)
2090 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2091 /*
2092 * Now that all other work queues are destroyed, we can safely destroy
2093 * the queues used for metadata I/O, since tasks from those other work
2094 * queues can do metadata I/O operations.
2095 */
2096 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2097 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2098 }
2099
free_root_extent_buffers(struct btrfs_root * root)2100 static void free_root_extent_buffers(struct btrfs_root *root)
2101 {
2102 if (root) {
2103 free_extent_buffer(root->node);
2104 free_extent_buffer(root->commit_root);
2105 root->node = NULL;
2106 root->commit_root = NULL;
2107 }
2108 }
2109
2110 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2111 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2112 {
2113 free_root_extent_buffers(info->tree_root);
2114
2115 free_root_extent_buffers(info->dev_root);
2116 free_root_extent_buffers(info->extent_root);
2117 free_root_extent_buffers(info->csum_root);
2118 free_root_extent_buffers(info->quota_root);
2119 free_root_extent_buffers(info->uuid_root);
2120 free_root_extent_buffers(info->fs_root);
2121 free_root_extent_buffers(info->data_reloc_root);
2122 if (free_chunk_root)
2123 free_root_extent_buffers(info->chunk_root);
2124 free_root_extent_buffers(info->free_space_root);
2125 }
2126
btrfs_put_root(struct btrfs_root * root)2127 void btrfs_put_root(struct btrfs_root *root)
2128 {
2129 if (!root)
2130 return;
2131
2132 if (refcount_dec_and_test(&root->refs)) {
2133 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2134 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2135 if (root->anon_dev)
2136 free_anon_bdev(root->anon_dev);
2137 btrfs_drew_lock_destroy(&root->snapshot_lock);
2138 free_root_extent_buffers(root);
2139 #ifdef CONFIG_BTRFS_DEBUG
2140 spin_lock(&root->fs_info->fs_roots_radix_lock);
2141 list_del_init(&root->leak_list);
2142 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2143 #endif
2144 kfree(root);
2145 }
2146 }
2147
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2148 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2149 {
2150 int ret;
2151 struct btrfs_root *gang[8];
2152 int i;
2153
2154 while (!list_empty(&fs_info->dead_roots)) {
2155 gang[0] = list_entry(fs_info->dead_roots.next,
2156 struct btrfs_root, root_list);
2157 list_del(&gang[0]->root_list);
2158
2159 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2160 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2161 btrfs_put_root(gang[0]);
2162 }
2163
2164 while (1) {
2165 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2166 (void **)gang, 0,
2167 ARRAY_SIZE(gang));
2168 if (!ret)
2169 break;
2170 for (i = 0; i < ret; i++)
2171 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2172 }
2173 }
2174
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2175 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2176 {
2177 mutex_init(&fs_info->scrub_lock);
2178 atomic_set(&fs_info->scrubs_running, 0);
2179 atomic_set(&fs_info->scrub_pause_req, 0);
2180 atomic_set(&fs_info->scrubs_paused, 0);
2181 atomic_set(&fs_info->scrub_cancel_req, 0);
2182 init_waitqueue_head(&fs_info->scrub_pause_wait);
2183 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2184 }
2185
btrfs_init_balance(struct btrfs_fs_info * fs_info)2186 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2187 {
2188 spin_lock_init(&fs_info->balance_lock);
2189 mutex_init(&fs_info->balance_mutex);
2190 atomic_set(&fs_info->balance_pause_req, 0);
2191 atomic_set(&fs_info->balance_cancel_req, 0);
2192 fs_info->balance_ctl = NULL;
2193 init_waitqueue_head(&fs_info->balance_wait_q);
2194 atomic_set(&fs_info->reloc_cancel_req, 0);
2195 }
2196
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2197 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2198 {
2199 struct inode *inode = fs_info->btree_inode;
2200
2201 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2202 set_nlink(inode, 1);
2203 /*
2204 * we set the i_size on the btree inode to the max possible int.
2205 * the real end of the address space is determined by all of
2206 * the devices in the system
2207 */
2208 inode->i_size = OFFSET_MAX;
2209 inode->i_mapping->a_ops = &btree_aops;
2210
2211 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2212 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2213 IO_TREE_BTREE_INODE_IO, inode);
2214 BTRFS_I(inode)->io_tree.track_uptodate = false;
2215 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2216
2217 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2218 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2219 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2220 btrfs_insert_inode_hash(inode);
2221 }
2222
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2223 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2224 {
2225 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2226 init_rwsem(&fs_info->dev_replace.rwsem);
2227 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2228 }
2229
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2230 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2231 {
2232 spin_lock_init(&fs_info->qgroup_lock);
2233 mutex_init(&fs_info->qgroup_ioctl_lock);
2234 fs_info->qgroup_tree = RB_ROOT;
2235 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2236 fs_info->qgroup_seq = 1;
2237 fs_info->qgroup_ulist = NULL;
2238 fs_info->qgroup_rescan_running = false;
2239 mutex_init(&fs_info->qgroup_rescan_lock);
2240 }
2241
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2242 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2243 struct btrfs_fs_devices *fs_devices)
2244 {
2245 u32 max_active = fs_info->thread_pool_size;
2246 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2247
2248 fs_info->workers =
2249 btrfs_alloc_workqueue(fs_info, "worker",
2250 flags | WQ_HIGHPRI, max_active, 16);
2251
2252 fs_info->delalloc_workers =
2253 btrfs_alloc_workqueue(fs_info, "delalloc",
2254 flags, max_active, 2);
2255
2256 fs_info->flush_workers =
2257 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2258 flags, max_active, 0);
2259
2260 fs_info->caching_workers =
2261 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2262
2263 fs_info->fixup_workers =
2264 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2265
2266 /*
2267 * endios are largely parallel and should have a very
2268 * low idle thresh
2269 */
2270 fs_info->endio_workers =
2271 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2272 fs_info->endio_meta_workers =
2273 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2274 max_active, 4);
2275 fs_info->endio_meta_write_workers =
2276 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2277 max_active, 2);
2278 fs_info->endio_raid56_workers =
2279 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2280 max_active, 4);
2281 fs_info->rmw_workers =
2282 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2283 fs_info->endio_write_workers =
2284 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2285 max_active, 2);
2286 fs_info->endio_freespace_worker =
2287 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2288 max_active, 0);
2289 fs_info->delayed_workers =
2290 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2291 max_active, 0);
2292 fs_info->readahead_workers =
2293 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2294 max_active, 2);
2295 fs_info->qgroup_rescan_workers =
2296 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2297 fs_info->discard_ctl.discard_workers =
2298 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2299
2300 if (!(fs_info->workers && fs_info->delalloc_workers &&
2301 fs_info->flush_workers &&
2302 fs_info->endio_workers && fs_info->endio_meta_workers &&
2303 fs_info->endio_meta_write_workers &&
2304 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2305 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2306 fs_info->caching_workers && fs_info->readahead_workers &&
2307 fs_info->fixup_workers && fs_info->delayed_workers &&
2308 fs_info->qgroup_rescan_workers &&
2309 fs_info->discard_ctl.discard_workers)) {
2310 return -ENOMEM;
2311 }
2312
2313 return 0;
2314 }
2315
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2316 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2317 {
2318 struct crypto_shash *csum_shash;
2319 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2320
2321 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2322
2323 if (IS_ERR(csum_shash)) {
2324 btrfs_err(fs_info, "error allocating %s hash for checksum",
2325 csum_driver);
2326 return PTR_ERR(csum_shash);
2327 }
2328
2329 fs_info->csum_shash = csum_shash;
2330
2331 /*
2332 * Check if the checksum implementation is a fast accelerated one.
2333 * As-is this is a bit of a hack and should be replaced once the csum
2334 * implementations provide that information themselves.
2335 */
2336 switch (csum_type) {
2337 case BTRFS_CSUM_TYPE_CRC32:
2338 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2339 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2340 break;
2341 default:
2342 break;
2343 }
2344
2345 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2346 btrfs_super_csum_name(csum_type),
2347 crypto_shash_driver_name(csum_shash));
2348 return 0;
2349 }
2350
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2351 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2352 struct btrfs_fs_devices *fs_devices)
2353 {
2354 int ret;
2355 struct btrfs_root *log_tree_root;
2356 struct btrfs_super_block *disk_super = fs_info->super_copy;
2357 u64 bytenr = btrfs_super_log_root(disk_super);
2358 int level = btrfs_super_log_root_level(disk_super);
2359
2360 if (fs_devices->rw_devices == 0) {
2361 btrfs_warn(fs_info, "log replay required on RO media");
2362 return -EIO;
2363 }
2364
2365 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2366 GFP_KERNEL);
2367 if (!log_tree_root)
2368 return -ENOMEM;
2369
2370 log_tree_root->node = read_tree_block(fs_info, bytenr,
2371 BTRFS_TREE_LOG_OBJECTID,
2372 fs_info->generation + 1, level,
2373 NULL);
2374 if (IS_ERR(log_tree_root->node)) {
2375 btrfs_warn(fs_info, "failed to read log tree");
2376 ret = PTR_ERR(log_tree_root->node);
2377 log_tree_root->node = NULL;
2378 btrfs_put_root(log_tree_root);
2379 return ret;
2380 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2381 btrfs_err(fs_info, "failed to read log tree");
2382 btrfs_put_root(log_tree_root);
2383 return -EIO;
2384 }
2385 /* returns with log_tree_root freed on success */
2386 ret = btrfs_recover_log_trees(log_tree_root);
2387 if (ret) {
2388 btrfs_handle_fs_error(fs_info, ret,
2389 "Failed to recover log tree");
2390 btrfs_put_root(log_tree_root);
2391 return ret;
2392 }
2393
2394 if (sb_rdonly(fs_info->sb)) {
2395 ret = btrfs_commit_super(fs_info);
2396 if (ret)
2397 return ret;
2398 }
2399
2400 return 0;
2401 }
2402
btrfs_read_roots(struct btrfs_fs_info * fs_info)2403 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2404 {
2405 struct btrfs_root *tree_root = fs_info->tree_root;
2406 struct btrfs_root *root;
2407 struct btrfs_key location;
2408 int ret;
2409
2410 BUG_ON(!fs_info->tree_root);
2411
2412 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2413 location.type = BTRFS_ROOT_ITEM_KEY;
2414 location.offset = 0;
2415
2416 root = btrfs_read_tree_root(tree_root, &location);
2417 if (IS_ERR(root)) {
2418 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2419 ret = PTR_ERR(root);
2420 goto out;
2421 }
2422 } else {
2423 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2424 fs_info->extent_root = root;
2425 }
2426
2427 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2428 root = btrfs_read_tree_root(tree_root, &location);
2429 if (IS_ERR(root)) {
2430 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2431 ret = PTR_ERR(root);
2432 goto out;
2433 }
2434 } else {
2435 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2436 fs_info->dev_root = root;
2437 }
2438 /* Initialize fs_info for all devices in any case */
2439 ret = btrfs_init_devices_late(fs_info);
2440 if (ret)
2441 goto out;
2442
2443 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2444 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2445 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2446 root = btrfs_read_tree_root(tree_root, &location);
2447 if (IS_ERR(root)) {
2448 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2449 ret = PTR_ERR(root);
2450 goto out;
2451 }
2452 } else {
2453 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2454 fs_info->csum_root = root;
2455 }
2456 }
2457
2458 /*
2459 * This tree can share blocks with some other fs tree during relocation
2460 * and we need a proper setup by btrfs_get_fs_root
2461 */
2462 root = btrfs_get_fs_root(tree_root->fs_info,
2463 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2464 if (IS_ERR(root)) {
2465 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2466 ret = PTR_ERR(root);
2467 goto out;
2468 }
2469 } else {
2470 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2471 fs_info->data_reloc_root = root;
2472 }
2473
2474 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2475 root = btrfs_read_tree_root(tree_root, &location);
2476 if (!IS_ERR(root)) {
2477 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2478 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2479 fs_info->quota_root = root;
2480 }
2481
2482 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2483 root = btrfs_read_tree_root(tree_root, &location);
2484 if (IS_ERR(root)) {
2485 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2486 ret = PTR_ERR(root);
2487 if (ret != -ENOENT)
2488 goto out;
2489 }
2490 } else {
2491 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2492 fs_info->uuid_root = root;
2493 }
2494
2495 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2496 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2497 root = btrfs_read_tree_root(tree_root, &location);
2498 if (IS_ERR(root)) {
2499 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2500 ret = PTR_ERR(root);
2501 goto out;
2502 }
2503 } else {
2504 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2505 fs_info->free_space_root = root;
2506 }
2507 }
2508
2509 return 0;
2510 out:
2511 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2512 location.objectid, ret);
2513 return ret;
2514 }
2515
2516 /*
2517 * Real super block validation
2518 * NOTE: super csum type and incompat features will not be checked here.
2519 *
2520 * @sb: super block to check
2521 * @mirror_num: the super block number to check its bytenr:
2522 * 0 the primary (1st) sb
2523 * 1, 2 2nd and 3rd backup copy
2524 * -1 skip bytenr check
2525 */
btrfs_validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2526 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2527 struct btrfs_super_block *sb, int mirror_num)
2528 {
2529 u64 nodesize = btrfs_super_nodesize(sb);
2530 u64 sectorsize = btrfs_super_sectorsize(sb);
2531 int ret = 0;
2532
2533 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2534 btrfs_err(fs_info, "no valid FS found");
2535 ret = -EINVAL;
2536 }
2537 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2538 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2539 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2540 ret = -EINVAL;
2541 }
2542 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2543 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2544 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2545 ret = -EINVAL;
2546 }
2547 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2548 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2549 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2550 ret = -EINVAL;
2551 }
2552 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2553 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2554 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2555 ret = -EINVAL;
2556 }
2557
2558 /*
2559 * Check sectorsize and nodesize first, other check will need it.
2560 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2561 */
2562 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2563 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2564 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2565 ret = -EINVAL;
2566 }
2567
2568 /*
2569 * For 4K page size, we only support 4K sector size.
2570 * For 64K page size, we support read-write for 64K sector size, and
2571 * read-only for 4K sector size.
2572 */
2573 if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2574 (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2575 sectorsize != SZ_64K))) {
2576 btrfs_err(fs_info,
2577 "sectorsize %llu not yet supported for page size %lu",
2578 sectorsize, PAGE_SIZE);
2579 ret = -EINVAL;
2580 }
2581
2582 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2583 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2584 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2585 ret = -EINVAL;
2586 }
2587 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2588 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2589 le32_to_cpu(sb->__unused_leafsize), nodesize);
2590 ret = -EINVAL;
2591 }
2592
2593 /* Root alignment check */
2594 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2595 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2596 btrfs_super_root(sb));
2597 ret = -EINVAL;
2598 }
2599 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2600 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2601 btrfs_super_chunk_root(sb));
2602 ret = -EINVAL;
2603 }
2604 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2605 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2606 btrfs_super_log_root(sb));
2607 ret = -EINVAL;
2608 }
2609
2610 if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2611 btrfs_err(fs_info,
2612 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2613 sb->fsid, fs_info->fs_devices->fsid);
2614 ret = -EINVAL;
2615 }
2616
2617 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2618 BTRFS_FSID_SIZE) != 0) {
2619 btrfs_err(fs_info,
2620 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2621 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2622 ret = -EINVAL;
2623 }
2624
2625 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2626 BTRFS_FSID_SIZE) != 0) {
2627 btrfs_err(fs_info,
2628 "dev_item UUID does not match metadata fsid: %pU != %pU",
2629 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2630 ret = -EINVAL;
2631 }
2632
2633 /*
2634 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2635 * done later
2636 */
2637 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2638 btrfs_err(fs_info, "bytes_used is too small %llu",
2639 btrfs_super_bytes_used(sb));
2640 ret = -EINVAL;
2641 }
2642 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2643 btrfs_err(fs_info, "invalid stripesize %u",
2644 btrfs_super_stripesize(sb));
2645 ret = -EINVAL;
2646 }
2647 if (btrfs_super_num_devices(sb) > (1UL << 31))
2648 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2649 btrfs_super_num_devices(sb));
2650 if (btrfs_super_num_devices(sb) == 0) {
2651 btrfs_err(fs_info, "number of devices is 0");
2652 ret = -EINVAL;
2653 }
2654
2655 if (mirror_num >= 0 &&
2656 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2657 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2658 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2659 ret = -EINVAL;
2660 }
2661
2662 /*
2663 * Obvious sys_chunk_array corruptions, it must hold at least one key
2664 * and one chunk
2665 */
2666 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2667 btrfs_err(fs_info, "system chunk array too big %u > %u",
2668 btrfs_super_sys_array_size(sb),
2669 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2670 ret = -EINVAL;
2671 }
2672 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2673 + sizeof(struct btrfs_chunk)) {
2674 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2675 btrfs_super_sys_array_size(sb),
2676 sizeof(struct btrfs_disk_key)
2677 + sizeof(struct btrfs_chunk));
2678 ret = -EINVAL;
2679 }
2680
2681 /*
2682 * The generation is a global counter, we'll trust it more than the others
2683 * but it's still possible that it's the one that's wrong.
2684 */
2685 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2686 btrfs_warn(fs_info,
2687 "suspicious: generation < chunk_root_generation: %llu < %llu",
2688 btrfs_super_generation(sb),
2689 btrfs_super_chunk_root_generation(sb));
2690 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2691 && btrfs_super_cache_generation(sb) != (u64)-1)
2692 btrfs_warn(fs_info,
2693 "suspicious: generation < cache_generation: %llu < %llu",
2694 btrfs_super_generation(sb),
2695 btrfs_super_cache_generation(sb));
2696
2697 return ret;
2698 }
2699
2700 /*
2701 * Validation of super block at mount time.
2702 * Some checks already done early at mount time, like csum type and incompat
2703 * flags will be skipped.
2704 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2705 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2706 {
2707 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2708 }
2709
2710 /*
2711 * Validation of super block at write time.
2712 * Some checks like bytenr check will be skipped as their values will be
2713 * overwritten soon.
2714 * Extra checks like csum type and incompat flags will be done here.
2715 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2716 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2717 struct btrfs_super_block *sb)
2718 {
2719 int ret;
2720
2721 ret = btrfs_validate_super(fs_info, sb, -1);
2722 if (ret < 0)
2723 goto out;
2724 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2725 ret = -EUCLEAN;
2726 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2727 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2728 goto out;
2729 }
2730 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2731 ret = -EUCLEAN;
2732 btrfs_err(fs_info,
2733 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2734 btrfs_super_incompat_flags(sb),
2735 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2736 goto out;
2737 }
2738 out:
2739 if (ret < 0)
2740 btrfs_err(fs_info,
2741 "super block corruption detected before writing it to disk");
2742 return ret;
2743 }
2744
init_tree_roots(struct btrfs_fs_info * fs_info)2745 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2746 {
2747 int backup_index = find_newest_super_backup(fs_info);
2748 struct btrfs_super_block *sb = fs_info->super_copy;
2749 struct btrfs_root *tree_root = fs_info->tree_root;
2750 bool handle_error = false;
2751 int ret = 0;
2752 int i;
2753
2754 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2755 u64 generation;
2756 int level;
2757
2758 if (handle_error) {
2759 if (!IS_ERR(tree_root->node))
2760 free_extent_buffer(tree_root->node);
2761 tree_root->node = NULL;
2762
2763 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2764 break;
2765
2766 free_root_pointers(fs_info, 0);
2767
2768 /*
2769 * Don't use the log in recovery mode, it won't be
2770 * valid
2771 */
2772 btrfs_set_super_log_root(sb, 0);
2773
2774 /* We can't trust the free space cache either */
2775 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2776
2777 ret = read_backup_root(fs_info, i);
2778 backup_index = ret;
2779 if (ret < 0)
2780 return ret;
2781 }
2782 generation = btrfs_super_generation(sb);
2783 level = btrfs_super_root_level(sb);
2784 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2785 BTRFS_ROOT_TREE_OBJECTID,
2786 generation, level, NULL);
2787 if (IS_ERR(tree_root->node)) {
2788 handle_error = true;
2789 ret = PTR_ERR(tree_root->node);
2790 tree_root->node = NULL;
2791 btrfs_warn(fs_info, "couldn't read tree root");
2792 continue;
2793
2794 } else if (!extent_buffer_uptodate(tree_root->node)) {
2795 handle_error = true;
2796 ret = -EIO;
2797 btrfs_warn(fs_info, "error while reading tree root");
2798 continue;
2799 }
2800
2801 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2802 tree_root->commit_root = btrfs_root_node(tree_root);
2803 btrfs_set_root_refs(&tree_root->root_item, 1);
2804
2805 /*
2806 * No need to hold btrfs_root::objectid_mutex since the fs
2807 * hasn't been fully initialised and we are the only user
2808 */
2809 ret = btrfs_init_root_free_objectid(tree_root);
2810 if (ret < 0) {
2811 handle_error = true;
2812 continue;
2813 }
2814
2815 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2816
2817 ret = btrfs_read_roots(fs_info);
2818 if (ret < 0) {
2819 handle_error = true;
2820 continue;
2821 }
2822
2823 /* All successful */
2824 fs_info->generation = generation;
2825 fs_info->last_trans_committed = generation;
2826 fs_info->last_reloc_trans = 0;
2827
2828 /* Always begin writing backup roots after the one being used */
2829 if (backup_index < 0) {
2830 fs_info->backup_root_index = 0;
2831 } else {
2832 fs_info->backup_root_index = backup_index + 1;
2833 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2834 }
2835 break;
2836 }
2837
2838 return ret;
2839 }
2840
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2841 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2842 {
2843 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2844 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2845 INIT_LIST_HEAD(&fs_info->trans_list);
2846 INIT_LIST_HEAD(&fs_info->dead_roots);
2847 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2848 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2849 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2850 spin_lock_init(&fs_info->delalloc_root_lock);
2851 spin_lock_init(&fs_info->trans_lock);
2852 spin_lock_init(&fs_info->fs_roots_radix_lock);
2853 spin_lock_init(&fs_info->delayed_iput_lock);
2854 spin_lock_init(&fs_info->defrag_inodes_lock);
2855 spin_lock_init(&fs_info->super_lock);
2856 spin_lock_init(&fs_info->buffer_lock);
2857 spin_lock_init(&fs_info->unused_bgs_lock);
2858 spin_lock_init(&fs_info->treelog_bg_lock);
2859 spin_lock_init(&fs_info->relocation_bg_lock);
2860 rwlock_init(&fs_info->tree_mod_log_lock);
2861 mutex_init(&fs_info->unused_bg_unpin_mutex);
2862 mutex_init(&fs_info->reclaim_bgs_lock);
2863 mutex_init(&fs_info->reloc_mutex);
2864 mutex_init(&fs_info->delalloc_root_mutex);
2865 mutex_init(&fs_info->zoned_meta_io_lock);
2866 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2867 seqlock_init(&fs_info->profiles_lock);
2868
2869 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2870 INIT_LIST_HEAD(&fs_info->space_info);
2871 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2872 INIT_LIST_HEAD(&fs_info->unused_bgs);
2873 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2874 #ifdef CONFIG_BTRFS_DEBUG
2875 INIT_LIST_HEAD(&fs_info->allocated_roots);
2876 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2877 spin_lock_init(&fs_info->eb_leak_lock);
2878 #endif
2879 extent_map_tree_init(&fs_info->mapping_tree);
2880 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2881 BTRFS_BLOCK_RSV_GLOBAL);
2882 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2883 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2884 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2885 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2886 BTRFS_BLOCK_RSV_DELOPS);
2887 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2888 BTRFS_BLOCK_RSV_DELREFS);
2889
2890 atomic_set(&fs_info->async_delalloc_pages, 0);
2891 atomic_set(&fs_info->defrag_running, 0);
2892 atomic_set(&fs_info->reada_works_cnt, 0);
2893 atomic_set(&fs_info->nr_delayed_iputs, 0);
2894 atomic64_set(&fs_info->tree_mod_seq, 0);
2895 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2896 fs_info->metadata_ratio = 0;
2897 fs_info->defrag_inodes = RB_ROOT;
2898 atomic64_set(&fs_info->free_chunk_space, 0);
2899 fs_info->tree_mod_log = RB_ROOT;
2900 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2901 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2902 /* readahead state */
2903 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2904 spin_lock_init(&fs_info->reada_lock);
2905 btrfs_init_ref_verify(fs_info);
2906
2907 fs_info->thread_pool_size = min_t(unsigned long,
2908 num_online_cpus() + 2, 8);
2909
2910 INIT_LIST_HEAD(&fs_info->ordered_roots);
2911 spin_lock_init(&fs_info->ordered_root_lock);
2912
2913 btrfs_init_scrub(fs_info);
2914 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2915 fs_info->check_integrity_print_mask = 0;
2916 #endif
2917 btrfs_init_balance(fs_info);
2918 btrfs_init_async_reclaim_work(fs_info);
2919
2920 spin_lock_init(&fs_info->block_group_cache_lock);
2921 fs_info->block_group_cache_tree = RB_ROOT;
2922 fs_info->first_logical_byte = (u64)-1;
2923
2924 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2925 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2926 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2927
2928 mutex_init(&fs_info->ordered_operations_mutex);
2929 mutex_init(&fs_info->tree_log_mutex);
2930 mutex_init(&fs_info->chunk_mutex);
2931 mutex_init(&fs_info->transaction_kthread_mutex);
2932 mutex_init(&fs_info->cleaner_mutex);
2933 mutex_init(&fs_info->ro_block_group_mutex);
2934 init_rwsem(&fs_info->commit_root_sem);
2935 init_rwsem(&fs_info->cleanup_work_sem);
2936 init_rwsem(&fs_info->subvol_sem);
2937 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2938
2939 btrfs_init_dev_replace_locks(fs_info);
2940 btrfs_init_qgroup(fs_info);
2941 btrfs_discard_init(fs_info);
2942
2943 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2944 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2945
2946 init_waitqueue_head(&fs_info->transaction_throttle);
2947 init_waitqueue_head(&fs_info->transaction_wait);
2948 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2949 init_waitqueue_head(&fs_info->async_submit_wait);
2950 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2951
2952 /* Usable values until the real ones are cached from the superblock */
2953 fs_info->nodesize = 4096;
2954 fs_info->sectorsize = 4096;
2955 fs_info->sectorsize_bits = ilog2(4096);
2956 fs_info->stripesize = 4096;
2957
2958 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2959
2960 spin_lock_init(&fs_info->swapfile_pins_lock);
2961 fs_info->swapfile_pins = RB_ROOT;
2962
2963 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2964 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2965 }
2966
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2967 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2968 {
2969 int ret;
2970
2971 fs_info->sb = sb;
2972 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2973 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2974
2975 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2976 if (ret)
2977 return ret;
2978
2979 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2980 if (ret)
2981 return ret;
2982
2983 fs_info->dirty_metadata_batch = PAGE_SIZE *
2984 (1 + ilog2(nr_cpu_ids));
2985
2986 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2987 if (ret)
2988 return ret;
2989
2990 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2991 GFP_KERNEL);
2992 if (ret)
2993 return ret;
2994
2995 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2996 GFP_KERNEL);
2997 if (!fs_info->delayed_root)
2998 return -ENOMEM;
2999 btrfs_init_delayed_root(fs_info->delayed_root);
3000
3001 if (sb_rdonly(sb))
3002 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3003
3004 return btrfs_alloc_stripe_hash_table(fs_info);
3005 }
3006
btrfs_uuid_rescan_kthread(void * data)3007 static int btrfs_uuid_rescan_kthread(void *data)
3008 {
3009 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3010 int ret;
3011
3012 /*
3013 * 1st step is to iterate through the existing UUID tree and
3014 * to delete all entries that contain outdated data.
3015 * 2nd step is to add all missing entries to the UUID tree.
3016 */
3017 ret = btrfs_uuid_tree_iterate(fs_info);
3018 if (ret < 0) {
3019 if (ret != -EINTR)
3020 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3021 ret);
3022 up(&fs_info->uuid_tree_rescan_sem);
3023 return ret;
3024 }
3025 return btrfs_uuid_scan_kthread(data);
3026 }
3027
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)3028 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3029 {
3030 struct task_struct *task;
3031
3032 down(&fs_info->uuid_tree_rescan_sem);
3033 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3034 if (IS_ERR(task)) {
3035 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3036 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3037 up(&fs_info->uuid_tree_rescan_sem);
3038 return PTR_ERR(task);
3039 }
3040
3041 return 0;
3042 }
3043
3044 /*
3045 * Some options only have meaning at mount time and shouldn't persist across
3046 * remounts, or be displayed. Clear these at the end of mount and remount
3047 * code paths.
3048 */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)3049 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3050 {
3051 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3052 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3053 }
3054
3055 /*
3056 * Mounting logic specific to read-write file systems. Shared by open_ctree
3057 * and btrfs_remount when remounting from read-only to read-write.
3058 */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)3059 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3060 {
3061 int ret;
3062 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3063 bool clear_free_space_tree = false;
3064
3065 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3066 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3067 clear_free_space_tree = true;
3068 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3069 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3070 btrfs_warn(fs_info, "free space tree is invalid");
3071 clear_free_space_tree = true;
3072 }
3073
3074 if (clear_free_space_tree) {
3075 btrfs_info(fs_info, "clearing free space tree");
3076 ret = btrfs_clear_free_space_tree(fs_info);
3077 if (ret) {
3078 btrfs_warn(fs_info,
3079 "failed to clear free space tree: %d", ret);
3080 goto out;
3081 }
3082 }
3083
3084 /*
3085 * btrfs_find_orphan_roots() is responsible for finding all the dead
3086 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3087 * them into the fs_info->fs_roots_radix tree. This must be done before
3088 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3089 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3090 * item before the root's tree is deleted - this means that if we unmount
3091 * or crash before the deletion completes, on the next mount we will not
3092 * delete what remains of the tree because the orphan item does not
3093 * exists anymore, which is what tells us we have a pending deletion.
3094 */
3095 ret = btrfs_find_orphan_roots(fs_info);
3096 if (ret)
3097 goto out;
3098
3099 ret = btrfs_cleanup_fs_roots(fs_info);
3100 if (ret)
3101 goto out;
3102
3103 down_read(&fs_info->cleanup_work_sem);
3104 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3105 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3106 up_read(&fs_info->cleanup_work_sem);
3107 goto out;
3108 }
3109 up_read(&fs_info->cleanup_work_sem);
3110
3111 mutex_lock(&fs_info->cleaner_mutex);
3112 ret = btrfs_recover_relocation(fs_info->tree_root);
3113 mutex_unlock(&fs_info->cleaner_mutex);
3114 if (ret < 0) {
3115 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3116 goto out;
3117 }
3118
3119 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3120 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3121 btrfs_info(fs_info, "creating free space tree");
3122 ret = btrfs_create_free_space_tree(fs_info);
3123 if (ret) {
3124 btrfs_warn(fs_info,
3125 "failed to create free space tree: %d", ret);
3126 goto out;
3127 }
3128 }
3129
3130 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3131 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3132 if (ret)
3133 goto out;
3134 }
3135
3136 ret = btrfs_resume_balance_async(fs_info);
3137 if (ret)
3138 goto out;
3139
3140 ret = btrfs_resume_dev_replace_async(fs_info);
3141 if (ret) {
3142 btrfs_warn(fs_info, "failed to resume dev_replace");
3143 goto out;
3144 }
3145
3146 btrfs_qgroup_rescan_resume(fs_info);
3147
3148 if (!fs_info->uuid_root) {
3149 btrfs_info(fs_info, "creating UUID tree");
3150 ret = btrfs_create_uuid_tree(fs_info);
3151 if (ret) {
3152 btrfs_warn(fs_info,
3153 "failed to create the UUID tree %d", ret);
3154 goto out;
3155 }
3156 }
3157
3158 out:
3159 return ret;
3160 }
3161
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)3162 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3163 char *options)
3164 {
3165 u32 sectorsize;
3166 u32 nodesize;
3167 u32 stripesize;
3168 u64 generation;
3169 u64 features;
3170 u16 csum_type;
3171 struct btrfs_super_block *disk_super;
3172 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3173 struct btrfs_root *tree_root;
3174 struct btrfs_root *chunk_root;
3175 int ret;
3176 int err = -EINVAL;
3177 int level;
3178
3179 ret = init_mount_fs_info(fs_info, sb);
3180 if (ret) {
3181 err = ret;
3182 goto fail;
3183 }
3184
3185 /* These need to be init'ed before we start creating inodes and such. */
3186 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3187 GFP_KERNEL);
3188 fs_info->tree_root = tree_root;
3189 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3190 GFP_KERNEL);
3191 fs_info->chunk_root = chunk_root;
3192 if (!tree_root || !chunk_root) {
3193 err = -ENOMEM;
3194 goto fail;
3195 }
3196
3197 fs_info->btree_inode = new_inode(sb);
3198 if (!fs_info->btree_inode) {
3199 err = -ENOMEM;
3200 goto fail;
3201 }
3202 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3203 btrfs_init_btree_inode(fs_info);
3204
3205 invalidate_bdev(fs_devices->latest_dev->bdev);
3206
3207 /*
3208 * Read super block and check the signature bytes only
3209 */
3210 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3211 if (IS_ERR(disk_super)) {
3212 err = PTR_ERR(disk_super);
3213 goto fail_alloc;
3214 }
3215
3216 /*
3217 * Verify the type first, if that or the checksum value are
3218 * corrupted, we'll find out
3219 */
3220 csum_type = btrfs_super_csum_type(disk_super);
3221 if (!btrfs_supported_super_csum(csum_type)) {
3222 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3223 csum_type);
3224 err = -EINVAL;
3225 btrfs_release_disk_super(disk_super);
3226 goto fail_alloc;
3227 }
3228
3229 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3230
3231 ret = btrfs_init_csum_hash(fs_info, csum_type);
3232 if (ret) {
3233 err = ret;
3234 btrfs_release_disk_super(disk_super);
3235 goto fail_alloc;
3236 }
3237
3238 /*
3239 * We want to check superblock checksum, the type is stored inside.
3240 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3241 */
3242 if (btrfs_check_super_csum(fs_info, disk_super)) {
3243 btrfs_err(fs_info, "superblock checksum mismatch");
3244 err = -EINVAL;
3245 btrfs_release_disk_super(disk_super);
3246 goto fail_alloc;
3247 }
3248
3249 /*
3250 * super_copy is zeroed at allocation time and we never touch the
3251 * following bytes up to INFO_SIZE, the checksum is calculated from
3252 * the whole block of INFO_SIZE
3253 */
3254 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3255 btrfs_release_disk_super(disk_super);
3256
3257 disk_super = fs_info->super_copy;
3258
3259
3260 features = btrfs_super_flags(disk_super);
3261 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3262 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3263 btrfs_set_super_flags(disk_super, features);
3264 btrfs_info(fs_info,
3265 "found metadata UUID change in progress flag, clearing");
3266 }
3267
3268 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3269 sizeof(*fs_info->super_for_commit));
3270
3271 ret = btrfs_validate_mount_super(fs_info);
3272 if (ret) {
3273 btrfs_err(fs_info, "superblock contains fatal errors");
3274 err = -EINVAL;
3275 goto fail_alloc;
3276 }
3277
3278 if (!btrfs_super_root(disk_super))
3279 goto fail_alloc;
3280
3281 /* check FS state, whether FS is broken. */
3282 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3283 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3284
3285 /*
3286 * In the long term, we'll store the compression type in the super
3287 * block, and it'll be used for per file compression control.
3288 */
3289 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3290
3291
3292 /* Set up fs_info before parsing mount options */
3293 nodesize = btrfs_super_nodesize(disk_super);
3294 sectorsize = btrfs_super_sectorsize(disk_super);
3295 stripesize = sectorsize;
3296 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3297 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3298
3299 fs_info->nodesize = nodesize;
3300 fs_info->sectorsize = sectorsize;
3301 fs_info->sectorsize_bits = ilog2(sectorsize);
3302 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3303 fs_info->stripesize = stripesize;
3304
3305 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3306 if (ret) {
3307 err = ret;
3308 goto fail_alloc;
3309 }
3310
3311 features = btrfs_super_incompat_flags(disk_super) &
3312 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3313 if (features) {
3314 btrfs_err(fs_info,
3315 "cannot mount because of unsupported optional features (0x%llx)",
3316 features);
3317 err = -EINVAL;
3318 goto fail_alloc;
3319 }
3320
3321 features = btrfs_super_incompat_flags(disk_super);
3322 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3323 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3324 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3325 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3326 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3327
3328 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3329 btrfs_info(fs_info, "has skinny extents");
3330
3331 /*
3332 * Flag our filesystem as having big metadata blocks if they are bigger
3333 * than the page size.
3334 */
3335 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3336 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3337 btrfs_info(fs_info,
3338 "flagging fs with big metadata feature");
3339 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3340 }
3341
3342 /*
3343 * mixed block groups end up with duplicate but slightly offset
3344 * extent buffers for the same range. It leads to corruptions
3345 */
3346 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3347 (sectorsize != nodesize)) {
3348 btrfs_err(fs_info,
3349 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3350 nodesize, sectorsize);
3351 goto fail_alloc;
3352 }
3353
3354 /*
3355 * Needn't use the lock because there is no other task which will
3356 * update the flag.
3357 */
3358 btrfs_set_super_incompat_flags(disk_super, features);
3359
3360 features = btrfs_super_compat_ro_flags(disk_super) &
3361 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3362 if (!sb_rdonly(sb) && features) {
3363 btrfs_err(fs_info,
3364 "cannot mount read-write because of unsupported optional features (0x%llx)",
3365 features);
3366 err = -EINVAL;
3367 goto fail_alloc;
3368 }
3369
3370 if (sectorsize != PAGE_SIZE) {
3371 /*
3372 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3373 * going to be deprecated.
3374 *
3375 * Force to use v2 cache for subpage case.
3376 */
3377 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3378 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3379 "forcing free space tree for sector size %u with page size %lu",
3380 sectorsize, PAGE_SIZE);
3381
3382 btrfs_warn(fs_info,
3383 "read-write for sector size %u with page size %lu is experimental",
3384 sectorsize, PAGE_SIZE);
3385 }
3386 if (sectorsize != PAGE_SIZE) {
3387 if (btrfs_super_incompat_flags(fs_info->super_copy) &
3388 BTRFS_FEATURE_INCOMPAT_RAID56) {
3389 btrfs_err(fs_info,
3390 "RAID56 is not yet supported for sector size %u with page size %lu",
3391 sectorsize, PAGE_SIZE);
3392 err = -EINVAL;
3393 goto fail_alloc;
3394 }
3395 }
3396
3397 ret = btrfs_init_workqueues(fs_info, fs_devices);
3398 if (ret) {
3399 err = ret;
3400 goto fail_sb_buffer;
3401 }
3402
3403 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3404 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3405
3406 sb->s_blocksize = sectorsize;
3407 sb->s_blocksize_bits = blksize_bits(sectorsize);
3408 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3409
3410 mutex_lock(&fs_info->chunk_mutex);
3411 ret = btrfs_read_sys_array(fs_info);
3412 mutex_unlock(&fs_info->chunk_mutex);
3413 if (ret) {
3414 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3415 goto fail_sb_buffer;
3416 }
3417
3418 generation = btrfs_super_chunk_root_generation(disk_super);
3419 level = btrfs_super_chunk_root_level(disk_super);
3420
3421 chunk_root->node = read_tree_block(fs_info,
3422 btrfs_super_chunk_root(disk_super),
3423 BTRFS_CHUNK_TREE_OBJECTID,
3424 generation, level, NULL);
3425 if (IS_ERR(chunk_root->node) ||
3426 !extent_buffer_uptodate(chunk_root->node)) {
3427 btrfs_err(fs_info, "failed to read chunk root");
3428 if (!IS_ERR(chunk_root->node))
3429 free_extent_buffer(chunk_root->node);
3430 chunk_root->node = NULL;
3431 goto fail_tree_roots;
3432 }
3433 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3434 chunk_root->commit_root = btrfs_root_node(chunk_root);
3435
3436 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3437 offsetof(struct btrfs_header, chunk_tree_uuid),
3438 BTRFS_UUID_SIZE);
3439
3440 ret = btrfs_read_chunk_tree(fs_info);
3441 if (ret) {
3442 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3443 goto fail_tree_roots;
3444 }
3445
3446 /*
3447 * At this point we know all the devices that make this filesystem,
3448 * including the seed devices but we don't know yet if the replace
3449 * target is required. So free devices that are not part of this
3450 * filesystem but skip the replace target device which is checked
3451 * below in btrfs_init_dev_replace().
3452 */
3453 btrfs_free_extra_devids(fs_devices);
3454 if (!fs_devices->latest_dev->bdev) {
3455 btrfs_err(fs_info, "failed to read devices");
3456 goto fail_tree_roots;
3457 }
3458
3459 ret = init_tree_roots(fs_info);
3460 if (ret)
3461 goto fail_tree_roots;
3462
3463 /*
3464 * Get zone type information of zoned block devices. This will also
3465 * handle emulation of a zoned filesystem if a regular device has the
3466 * zoned incompat feature flag set.
3467 */
3468 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3469 if (ret) {
3470 btrfs_err(fs_info,
3471 "zoned: failed to read device zone info: %d",
3472 ret);
3473 goto fail_block_groups;
3474 }
3475
3476 /*
3477 * If we have a uuid root and we're not being told to rescan we need to
3478 * check the generation here so we can set the
3479 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3480 * transaction during a balance or the log replay without updating the
3481 * uuid generation, and then if we crash we would rescan the uuid tree,
3482 * even though it was perfectly fine.
3483 */
3484 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3485 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3486 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3487
3488 ret = btrfs_verify_dev_extents(fs_info);
3489 if (ret) {
3490 btrfs_err(fs_info,
3491 "failed to verify dev extents against chunks: %d",
3492 ret);
3493 goto fail_block_groups;
3494 }
3495 ret = btrfs_recover_balance(fs_info);
3496 if (ret) {
3497 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3498 goto fail_block_groups;
3499 }
3500
3501 ret = btrfs_init_dev_stats(fs_info);
3502 if (ret) {
3503 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3504 goto fail_block_groups;
3505 }
3506
3507 ret = btrfs_init_dev_replace(fs_info);
3508 if (ret) {
3509 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3510 goto fail_block_groups;
3511 }
3512 /*
3513 * We have unsupported RO compat features, although RO mounted, we
3514 * should not cause any metadata write, including log replay.
3515 * Or we could screw up whatever the new feature requires.
3516 */
3517 if (unlikely(features && btrfs_super_log_root(disk_super) &&
3518 !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3519 btrfs_err(fs_info,
3520 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3521 features);
3522 err = -EINVAL;
3523 goto fail_alloc;
3524 }
3525
3526
3527 ret = btrfs_check_zoned_mode(fs_info);
3528 if (ret) {
3529 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3530 ret);
3531 goto fail_block_groups;
3532 }
3533
3534 ret = btrfs_sysfs_add_fsid(fs_devices);
3535 if (ret) {
3536 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3537 ret);
3538 goto fail_block_groups;
3539 }
3540
3541 ret = btrfs_sysfs_add_mounted(fs_info);
3542 if (ret) {
3543 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3544 goto fail_fsdev_sysfs;
3545 }
3546
3547 ret = btrfs_init_space_info(fs_info);
3548 if (ret) {
3549 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3550 goto fail_sysfs;
3551 }
3552
3553 ret = btrfs_read_block_groups(fs_info);
3554 if (ret) {
3555 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3556 goto fail_sysfs;
3557 }
3558
3559 btrfs_free_zone_cache(fs_info);
3560
3561 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3562 !btrfs_check_rw_degradable(fs_info, NULL)) {
3563 btrfs_warn(fs_info,
3564 "writable mount is not allowed due to too many missing devices");
3565 goto fail_sysfs;
3566 }
3567
3568 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3569 "btrfs-cleaner");
3570 if (IS_ERR(fs_info->cleaner_kthread))
3571 goto fail_sysfs;
3572
3573 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3574 tree_root,
3575 "btrfs-transaction");
3576 if (IS_ERR(fs_info->transaction_kthread))
3577 goto fail_cleaner;
3578
3579 if (!btrfs_test_opt(fs_info, NOSSD) &&
3580 !fs_info->fs_devices->rotating) {
3581 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3582 }
3583
3584 /*
3585 * Mount does not set all options immediately, we can do it now and do
3586 * not have to wait for transaction commit
3587 */
3588 btrfs_apply_pending_changes(fs_info);
3589
3590 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3591 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3592 ret = btrfsic_mount(fs_info, fs_devices,
3593 btrfs_test_opt(fs_info,
3594 CHECK_INTEGRITY_DATA) ? 1 : 0,
3595 fs_info->check_integrity_print_mask);
3596 if (ret)
3597 btrfs_warn(fs_info,
3598 "failed to initialize integrity check module: %d",
3599 ret);
3600 }
3601 #endif
3602 ret = btrfs_read_qgroup_config(fs_info);
3603 if (ret)
3604 goto fail_trans_kthread;
3605
3606 if (btrfs_build_ref_tree(fs_info))
3607 btrfs_err(fs_info, "couldn't build ref tree");
3608
3609 /* do not make disk changes in broken FS or nologreplay is given */
3610 if (btrfs_super_log_root(disk_super) != 0 &&
3611 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3612 btrfs_info(fs_info, "start tree-log replay");
3613 ret = btrfs_replay_log(fs_info, fs_devices);
3614 if (ret) {
3615 err = ret;
3616 goto fail_qgroup;
3617 }
3618 }
3619
3620 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3621 if (IS_ERR(fs_info->fs_root)) {
3622 err = PTR_ERR(fs_info->fs_root);
3623 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3624 fs_info->fs_root = NULL;
3625 goto fail_qgroup;
3626 }
3627
3628 if (sb_rdonly(sb))
3629 goto clear_oneshot;
3630
3631 ret = btrfs_start_pre_rw_mount(fs_info);
3632 if (ret) {
3633 close_ctree(fs_info);
3634 return ret;
3635 }
3636 btrfs_discard_resume(fs_info);
3637
3638 if (fs_info->uuid_root &&
3639 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3640 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3641 btrfs_info(fs_info, "checking UUID tree");
3642 ret = btrfs_check_uuid_tree(fs_info);
3643 if (ret) {
3644 btrfs_warn(fs_info,
3645 "failed to check the UUID tree: %d", ret);
3646 close_ctree(fs_info);
3647 return ret;
3648 }
3649 }
3650
3651 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3652
3653 /* Kick the cleaner thread so it'll start deleting snapshots. */
3654 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3655 wake_up_process(fs_info->cleaner_kthread);
3656
3657 clear_oneshot:
3658 btrfs_clear_oneshot_options(fs_info);
3659 return 0;
3660
3661 fail_qgroup:
3662 btrfs_free_qgroup_config(fs_info);
3663 fail_trans_kthread:
3664 kthread_stop(fs_info->transaction_kthread);
3665 btrfs_cleanup_transaction(fs_info);
3666 btrfs_free_fs_roots(fs_info);
3667 fail_cleaner:
3668 kthread_stop(fs_info->cleaner_kthread);
3669
3670 /*
3671 * make sure we're done with the btree inode before we stop our
3672 * kthreads
3673 */
3674 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3675
3676 fail_sysfs:
3677 btrfs_sysfs_remove_mounted(fs_info);
3678
3679 fail_fsdev_sysfs:
3680 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3681
3682 fail_block_groups:
3683 btrfs_put_block_group_cache(fs_info);
3684
3685 fail_tree_roots:
3686 if (fs_info->data_reloc_root)
3687 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3688 free_root_pointers(fs_info, true);
3689 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3690
3691 fail_sb_buffer:
3692 btrfs_stop_all_workers(fs_info);
3693 btrfs_free_block_groups(fs_info);
3694 fail_alloc:
3695 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3696
3697 iput(fs_info->btree_inode);
3698 fail:
3699 btrfs_close_devices(fs_info->fs_devices);
3700 return err;
3701 }
3702 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3703
btrfs_end_super_write(struct bio * bio)3704 static void btrfs_end_super_write(struct bio *bio)
3705 {
3706 struct btrfs_device *device = bio->bi_private;
3707 struct bio_vec *bvec;
3708 struct bvec_iter_all iter_all;
3709 struct page *page;
3710
3711 bio_for_each_segment_all(bvec, bio, iter_all) {
3712 page = bvec->bv_page;
3713
3714 if (bio->bi_status) {
3715 btrfs_warn_rl_in_rcu(device->fs_info,
3716 "lost page write due to IO error on %s (%d)",
3717 rcu_str_deref(device->name),
3718 blk_status_to_errno(bio->bi_status));
3719 ClearPageUptodate(page);
3720 SetPageError(page);
3721 btrfs_dev_stat_inc_and_print(device,
3722 BTRFS_DEV_STAT_WRITE_ERRS);
3723 } else {
3724 SetPageUptodate(page);
3725 }
3726
3727 put_page(page);
3728 unlock_page(page);
3729 }
3730
3731 bio_put(bio);
3732 }
3733
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,bool drop_cache)3734 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3735 int copy_num, bool drop_cache)
3736 {
3737 struct btrfs_super_block *super;
3738 struct page *page;
3739 u64 bytenr, bytenr_orig;
3740 struct address_space *mapping = bdev->bd_inode->i_mapping;
3741 int ret;
3742
3743 bytenr_orig = btrfs_sb_offset(copy_num);
3744 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3745 if (ret == -ENOENT)
3746 return ERR_PTR(-EINVAL);
3747 else if (ret)
3748 return ERR_PTR(ret);
3749
3750 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3751 return ERR_PTR(-EINVAL);
3752
3753 if (drop_cache) {
3754 /* This should only be called with the primary sb. */
3755 ASSERT(copy_num == 0);
3756
3757 /*
3758 * Drop the page of the primary superblock, so later read will
3759 * always read from the device.
3760 */
3761 invalidate_inode_pages2_range(mapping,
3762 bytenr >> PAGE_SHIFT,
3763 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3764 }
3765
3766 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3767 if (IS_ERR(page))
3768 return ERR_CAST(page);
3769
3770 super = page_address(page);
3771 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3772 btrfs_release_disk_super(super);
3773 return ERR_PTR(-ENODATA);
3774 }
3775
3776 if (btrfs_super_bytenr(super) != bytenr_orig) {
3777 btrfs_release_disk_super(super);
3778 return ERR_PTR(-EINVAL);
3779 }
3780
3781 return super;
3782 }
3783
3784
btrfs_read_dev_super(struct block_device * bdev)3785 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3786 {
3787 struct btrfs_super_block *super, *latest = NULL;
3788 int i;
3789 u64 transid = 0;
3790
3791 /* we would like to check all the supers, but that would make
3792 * a btrfs mount succeed after a mkfs from a different FS.
3793 * So, we need to add a special mount option to scan for
3794 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3795 */
3796 for (i = 0; i < 1; i++) {
3797 super = btrfs_read_dev_one_super(bdev, i, false);
3798 if (IS_ERR(super))
3799 continue;
3800
3801 if (!latest || btrfs_super_generation(super) > transid) {
3802 if (latest)
3803 btrfs_release_disk_super(super);
3804
3805 latest = super;
3806 transid = btrfs_super_generation(super);
3807 }
3808 }
3809
3810 return super;
3811 }
3812
3813 /*
3814 * Write superblock @sb to the @device. Do not wait for completion, all the
3815 * pages we use for writing are locked.
3816 *
3817 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3818 * the expected device size at commit time. Note that max_mirrors must be
3819 * same for write and wait phases.
3820 *
3821 * Return number of errors when page is not found or submission fails.
3822 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3823 static int write_dev_supers(struct btrfs_device *device,
3824 struct btrfs_super_block *sb, int max_mirrors)
3825 {
3826 struct btrfs_fs_info *fs_info = device->fs_info;
3827 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3828 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3829 int i;
3830 int errors = 0;
3831 int ret;
3832 u64 bytenr, bytenr_orig;
3833
3834 if (max_mirrors == 0)
3835 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3836
3837 shash->tfm = fs_info->csum_shash;
3838
3839 for (i = 0; i < max_mirrors; i++) {
3840 struct page *page;
3841 struct bio *bio;
3842 struct btrfs_super_block *disk_super;
3843
3844 bytenr_orig = btrfs_sb_offset(i);
3845 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3846 if (ret == -ENOENT) {
3847 continue;
3848 } else if (ret < 0) {
3849 btrfs_err(device->fs_info,
3850 "couldn't get super block location for mirror %d",
3851 i);
3852 errors++;
3853 continue;
3854 }
3855 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3856 device->commit_total_bytes)
3857 break;
3858
3859 btrfs_set_super_bytenr(sb, bytenr_orig);
3860
3861 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3862 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3863 sb->csum);
3864
3865 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3866 GFP_NOFS);
3867 if (!page) {
3868 btrfs_err(device->fs_info,
3869 "couldn't get super block page for bytenr %llu",
3870 bytenr);
3871 errors++;
3872 continue;
3873 }
3874
3875 /* Bump the refcount for wait_dev_supers() */
3876 get_page(page);
3877
3878 disk_super = page_address(page);
3879 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3880
3881 /*
3882 * Directly use bios here instead of relying on the page cache
3883 * to do I/O, so we don't lose the ability to do integrity
3884 * checking.
3885 */
3886 bio = bio_alloc(GFP_NOFS, 1);
3887 bio_set_dev(bio, device->bdev);
3888 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3889 bio->bi_private = device;
3890 bio->bi_end_io = btrfs_end_super_write;
3891 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3892 offset_in_page(bytenr));
3893
3894 /*
3895 * We FUA only the first super block. The others we allow to
3896 * go down lazy and there's a short window where the on-disk
3897 * copies might still contain the older version.
3898 */
3899 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3900 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3901 bio->bi_opf |= REQ_FUA;
3902
3903 btrfsic_submit_bio(bio);
3904 btrfs_advance_sb_log(device, i);
3905 }
3906 return errors < i ? 0 : -1;
3907 }
3908
3909 /*
3910 * Wait for write completion of superblocks done by write_dev_supers,
3911 * @max_mirrors same for write and wait phases.
3912 *
3913 * Return number of errors when page is not found or not marked up to
3914 * date.
3915 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3916 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3917 {
3918 int i;
3919 int errors = 0;
3920 bool primary_failed = false;
3921 int ret;
3922 u64 bytenr;
3923
3924 if (max_mirrors == 0)
3925 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3926
3927 for (i = 0; i < max_mirrors; i++) {
3928 struct page *page;
3929
3930 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3931 if (ret == -ENOENT) {
3932 break;
3933 } else if (ret < 0) {
3934 errors++;
3935 if (i == 0)
3936 primary_failed = true;
3937 continue;
3938 }
3939 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3940 device->commit_total_bytes)
3941 break;
3942
3943 page = find_get_page(device->bdev->bd_inode->i_mapping,
3944 bytenr >> PAGE_SHIFT);
3945 if (!page) {
3946 errors++;
3947 if (i == 0)
3948 primary_failed = true;
3949 continue;
3950 }
3951 /* Page is submitted locked and unlocked once the IO completes */
3952 wait_on_page_locked(page);
3953 if (PageError(page)) {
3954 errors++;
3955 if (i == 0)
3956 primary_failed = true;
3957 }
3958
3959 /* Drop our reference */
3960 put_page(page);
3961
3962 /* Drop the reference from the writing run */
3963 put_page(page);
3964 }
3965
3966 /* log error, force error return */
3967 if (primary_failed) {
3968 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3969 device->devid);
3970 return -1;
3971 }
3972
3973 return errors < i ? 0 : -1;
3974 }
3975
3976 /*
3977 * endio for the write_dev_flush, this will wake anyone waiting
3978 * for the barrier when it is done
3979 */
btrfs_end_empty_barrier(struct bio * bio)3980 static void btrfs_end_empty_barrier(struct bio *bio)
3981 {
3982 complete(bio->bi_private);
3983 }
3984
3985 /*
3986 * Submit a flush request to the device if it supports it. Error handling is
3987 * done in the waiting counterpart.
3988 */
write_dev_flush(struct btrfs_device * device)3989 static void write_dev_flush(struct btrfs_device *device)
3990 {
3991 struct bio *bio = device->flush_bio;
3992
3993 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3994 /*
3995 * When a disk has write caching disabled, we skip submission of a bio
3996 * with flush and sync requests before writing the superblock, since
3997 * it's not needed. However when the integrity checker is enabled, this
3998 * results in reports that there are metadata blocks referred by a
3999 * superblock that were not properly flushed. So don't skip the bio
4000 * submission only when the integrity checker is enabled for the sake
4001 * of simplicity, since this is a debug tool and not meant for use in
4002 * non-debug builds.
4003 */
4004 struct request_queue *q = bdev_get_queue(device->bdev);
4005 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4006 return;
4007 #endif
4008
4009 bio_reset(bio);
4010 bio->bi_end_io = btrfs_end_empty_barrier;
4011 bio_set_dev(bio, device->bdev);
4012 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
4013 init_completion(&device->flush_wait);
4014 bio->bi_private = &device->flush_wait;
4015
4016 btrfsic_submit_bio(bio);
4017 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4018 }
4019
4020 /*
4021 * If the flush bio has been submitted by write_dev_flush, wait for it.
4022 */
wait_dev_flush(struct btrfs_device * device)4023 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4024 {
4025 struct bio *bio = device->flush_bio;
4026
4027 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4028 return BLK_STS_OK;
4029
4030 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4031 wait_for_completion_io(&device->flush_wait);
4032
4033 return bio->bi_status;
4034 }
4035
check_barrier_error(struct btrfs_fs_info * fs_info)4036 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4037 {
4038 if (!btrfs_check_rw_degradable(fs_info, NULL))
4039 return -EIO;
4040 return 0;
4041 }
4042
4043 /*
4044 * send an empty flush down to each device in parallel,
4045 * then wait for them
4046 */
barrier_all_devices(struct btrfs_fs_info * info)4047 static int barrier_all_devices(struct btrfs_fs_info *info)
4048 {
4049 struct list_head *head;
4050 struct btrfs_device *dev;
4051 int errors_wait = 0;
4052 blk_status_t ret;
4053
4054 lockdep_assert_held(&info->fs_devices->device_list_mutex);
4055 /* send down all the barriers */
4056 head = &info->fs_devices->devices;
4057 list_for_each_entry(dev, head, dev_list) {
4058 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4059 continue;
4060 if (!dev->bdev)
4061 continue;
4062 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4063 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4064 continue;
4065
4066 write_dev_flush(dev);
4067 dev->last_flush_error = BLK_STS_OK;
4068 }
4069
4070 /* wait for all the barriers */
4071 list_for_each_entry(dev, head, dev_list) {
4072 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4073 continue;
4074 if (!dev->bdev) {
4075 errors_wait++;
4076 continue;
4077 }
4078 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4079 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4080 continue;
4081
4082 ret = wait_dev_flush(dev);
4083 if (ret) {
4084 dev->last_flush_error = ret;
4085 btrfs_dev_stat_inc_and_print(dev,
4086 BTRFS_DEV_STAT_FLUSH_ERRS);
4087 errors_wait++;
4088 }
4089 }
4090
4091 if (errors_wait) {
4092 /*
4093 * At some point we need the status of all disks
4094 * to arrive at the volume status. So error checking
4095 * is being pushed to a separate loop.
4096 */
4097 return check_barrier_error(info);
4098 }
4099 return 0;
4100 }
4101
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)4102 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4103 {
4104 int raid_type;
4105 int min_tolerated = INT_MAX;
4106
4107 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4108 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4109 min_tolerated = min_t(int, min_tolerated,
4110 btrfs_raid_array[BTRFS_RAID_SINGLE].
4111 tolerated_failures);
4112
4113 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4114 if (raid_type == BTRFS_RAID_SINGLE)
4115 continue;
4116 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4117 continue;
4118 min_tolerated = min_t(int, min_tolerated,
4119 btrfs_raid_array[raid_type].
4120 tolerated_failures);
4121 }
4122
4123 if (min_tolerated == INT_MAX) {
4124 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4125 min_tolerated = 0;
4126 }
4127
4128 return min_tolerated;
4129 }
4130
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4131 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4132 {
4133 struct list_head *head;
4134 struct btrfs_device *dev;
4135 struct btrfs_super_block *sb;
4136 struct btrfs_dev_item *dev_item;
4137 int ret;
4138 int do_barriers;
4139 int max_errors;
4140 int total_errors = 0;
4141 u64 flags;
4142
4143 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4144
4145 /*
4146 * max_mirrors == 0 indicates we're from commit_transaction,
4147 * not from fsync where the tree roots in fs_info have not
4148 * been consistent on disk.
4149 */
4150 if (max_mirrors == 0)
4151 backup_super_roots(fs_info);
4152
4153 sb = fs_info->super_for_commit;
4154 dev_item = &sb->dev_item;
4155
4156 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4157 head = &fs_info->fs_devices->devices;
4158 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4159
4160 if (do_barriers) {
4161 ret = barrier_all_devices(fs_info);
4162 if (ret) {
4163 mutex_unlock(
4164 &fs_info->fs_devices->device_list_mutex);
4165 btrfs_handle_fs_error(fs_info, ret,
4166 "errors while submitting device barriers.");
4167 return ret;
4168 }
4169 }
4170
4171 list_for_each_entry(dev, head, dev_list) {
4172 if (!dev->bdev) {
4173 total_errors++;
4174 continue;
4175 }
4176 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4177 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4178 continue;
4179
4180 btrfs_set_stack_device_generation(dev_item, 0);
4181 btrfs_set_stack_device_type(dev_item, dev->type);
4182 btrfs_set_stack_device_id(dev_item, dev->devid);
4183 btrfs_set_stack_device_total_bytes(dev_item,
4184 dev->commit_total_bytes);
4185 btrfs_set_stack_device_bytes_used(dev_item,
4186 dev->commit_bytes_used);
4187 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4188 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4189 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4190 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4191 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4192 BTRFS_FSID_SIZE);
4193
4194 flags = btrfs_super_flags(sb);
4195 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4196
4197 ret = btrfs_validate_write_super(fs_info, sb);
4198 if (ret < 0) {
4199 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4200 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4201 "unexpected superblock corruption detected");
4202 return -EUCLEAN;
4203 }
4204
4205 ret = write_dev_supers(dev, sb, max_mirrors);
4206 if (ret)
4207 total_errors++;
4208 }
4209 if (total_errors > max_errors) {
4210 btrfs_err(fs_info, "%d errors while writing supers",
4211 total_errors);
4212 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4213
4214 /* FUA is masked off if unsupported and can't be the reason */
4215 btrfs_handle_fs_error(fs_info, -EIO,
4216 "%d errors while writing supers",
4217 total_errors);
4218 return -EIO;
4219 }
4220
4221 total_errors = 0;
4222 list_for_each_entry(dev, head, dev_list) {
4223 if (!dev->bdev)
4224 continue;
4225 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4226 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4227 continue;
4228
4229 ret = wait_dev_supers(dev, max_mirrors);
4230 if (ret)
4231 total_errors++;
4232 }
4233 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4234 if (total_errors > max_errors) {
4235 btrfs_handle_fs_error(fs_info, -EIO,
4236 "%d errors while writing supers",
4237 total_errors);
4238 return -EIO;
4239 }
4240 return 0;
4241 }
4242
4243 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4244 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4245 struct btrfs_root *root)
4246 {
4247 bool drop_ref = false;
4248
4249 spin_lock(&fs_info->fs_roots_radix_lock);
4250 radix_tree_delete(&fs_info->fs_roots_radix,
4251 (unsigned long)root->root_key.objectid);
4252 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4253 drop_ref = true;
4254 spin_unlock(&fs_info->fs_roots_radix_lock);
4255
4256 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4257 ASSERT(root->log_root == NULL);
4258 if (root->reloc_root) {
4259 btrfs_put_root(root->reloc_root);
4260 root->reloc_root = NULL;
4261 }
4262 }
4263
4264 if (drop_ref)
4265 btrfs_put_root(root);
4266 }
4267
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)4268 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4269 {
4270 u64 root_objectid = 0;
4271 struct btrfs_root *gang[8];
4272 int i = 0;
4273 int err = 0;
4274 unsigned int ret = 0;
4275
4276 while (1) {
4277 spin_lock(&fs_info->fs_roots_radix_lock);
4278 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4279 (void **)gang, root_objectid,
4280 ARRAY_SIZE(gang));
4281 if (!ret) {
4282 spin_unlock(&fs_info->fs_roots_radix_lock);
4283 break;
4284 }
4285 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4286
4287 for (i = 0; i < ret; i++) {
4288 /* Avoid to grab roots in dead_roots */
4289 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4290 gang[i] = NULL;
4291 continue;
4292 }
4293 /* grab all the search result for later use */
4294 gang[i] = btrfs_grab_root(gang[i]);
4295 }
4296 spin_unlock(&fs_info->fs_roots_radix_lock);
4297
4298 for (i = 0; i < ret; i++) {
4299 if (!gang[i])
4300 continue;
4301 root_objectid = gang[i]->root_key.objectid;
4302 err = btrfs_orphan_cleanup(gang[i]);
4303 if (err)
4304 break;
4305 btrfs_put_root(gang[i]);
4306 }
4307 root_objectid++;
4308 }
4309
4310 /* release the uncleaned roots due to error */
4311 for (; i < ret; i++) {
4312 if (gang[i])
4313 btrfs_put_root(gang[i]);
4314 }
4315 return err;
4316 }
4317
btrfs_commit_super(struct btrfs_fs_info * fs_info)4318 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4319 {
4320 struct btrfs_root *root = fs_info->tree_root;
4321 struct btrfs_trans_handle *trans;
4322
4323 mutex_lock(&fs_info->cleaner_mutex);
4324 btrfs_run_delayed_iputs(fs_info);
4325 mutex_unlock(&fs_info->cleaner_mutex);
4326 wake_up_process(fs_info->cleaner_kthread);
4327
4328 /* wait until ongoing cleanup work done */
4329 down_write(&fs_info->cleanup_work_sem);
4330 up_write(&fs_info->cleanup_work_sem);
4331
4332 trans = btrfs_join_transaction(root);
4333 if (IS_ERR(trans))
4334 return PTR_ERR(trans);
4335 return btrfs_commit_transaction(trans);
4336 }
4337
close_ctree(struct btrfs_fs_info * fs_info)4338 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4339 {
4340 int ret;
4341
4342 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4343
4344 /*
4345 * If we had UNFINISHED_DROPS we could still be processing them, so
4346 * clear that bit and wake up relocation so it can stop.
4347 * We must do this before stopping the block group reclaim task, because
4348 * at btrfs_relocate_block_group() we wait for this bit, and after the
4349 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4350 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4351 * return 1.
4352 */
4353 btrfs_wake_unfinished_drop(fs_info);
4354
4355 /*
4356 * We may have the reclaim task running and relocating a data block group,
4357 * in which case it may create delayed iputs. So stop it before we park
4358 * the cleaner kthread otherwise we can get new delayed iputs after
4359 * parking the cleaner, and that can make the async reclaim task to hang
4360 * if it's waiting for delayed iputs to complete, since the cleaner is
4361 * parked and can not run delayed iputs - this will make us hang when
4362 * trying to stop the async reclaim task.
4363 */
4364 cancel_work_sync(&fs_info->reclaim_bgs_work);
4365 /*
4366 * We don't want the cleaner to start new transactions, add more delayed
4367 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4368 * because that frees the task_struct, and the transaction kthread might
4369 * still try to wake up the cleaner.
4370 */
4371 kthread_park(fs_info->cleaner_kthread);
4372
4373 /* wait for the qgroup rescan worker to stop */
4374 btrfs_qgroup_wait_for_completion(fs_info, false);
4375
4376 /* wait for the uuid_scan task to finish */
4377 down(&fs_info->uuid_tree_rescan_sem);
4378 /* avoid complains from lockdep et al., set sem back to initial state */
4379 up(&fs_info->uuid_tree_rescan_sem);
4380
4381 /* pause restriper - we want to resume on mount */
4382 btrfs_pause_balance(fs_info);
4383
4384 btrfs_dev_replace_suspend_for_unmount(fs_info);
4385
4386 btrfs_scrub_cancel(fs_info);
4387
4388 /* wait for any defraggers to finish */
4389 wait_event(fs_info->transaction_wait,
4390 (atomic_read(&fs_info->defrag_running) == 0));
4391
4392 /* clear out the rbtree of defraggable inodes */
4393 btrfs_cleanup_defrag_inodes(fs_info);
4394
4395 /*
4396 * After we parked the cleaner kthread, ordered extents may have
4397 * completed and created new delayed iputs. If one of the async reclaim
4398 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4399 * can hang forever trying to stop it, because if a delayed iput is
4400 * added after it ran btrfs_run_delayed_iputs() and before it called
4401 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4402 * no one else to run iputs.
4403 *
4404 * So wait for all ongoing ordered extents to complete and then run
4405 * delayed iputs. This works because once we reach this point no one
4406 * can either create new ordered extents nor create delayed iputs
4407 * through some other means.
4408 *
4409 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4410 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4411 * but the delayed iput for the respective inode is made only when doing
4412 * the final btrfs_put_ordered_extent() (which must happen at
4413 * btrfs_finish_ordered_io() when we are unmounting).
4414 */
4415 btrfs_flush_workqueue(fs_info->endio_write_workers);
4416 /* Ordered extents for free space inodes. */
4417 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4418 btrfs_run_delayed_iputs(fs_info);
4419
4420 cancel_work_sync(&fs_info->async_reclaim_work);
4421 cancel_work_sync(&fs_info->async_data_reclaim_work);
4422 cancel_work_sync(&fs_info->preempt_reclaim_work);
4423
4424 /* Cancel or finish ongoing discard work */
4425 btrfs_discard_cleanup(fs_info);
4426
4427 if (!sb_rdonly(fs_info->sb)) {
4428 /*
4429 * The cleaner kthread is stopped, so do one final pass over
4430 * unused block groups.
4431 */
4432 btrfs_delete_unused_bgs(fs_info);
4433
4434 /*
4435 * There might be existing delayed inode workers still running
4436 * and holding an empty delayed inode item. We must wait for
4437 * them to complete first because they can create a transaction.
4438 * This happens when someone calls btrfs_balance_delayed_items()
4439 * and then a transaction commit runs the same delayed nodes
4440 * before any delayed worker has done something with the nodes.
4441 * We must wait for any worker here and not at transaction
4442 * commit time since that could cause a deadlock.
4443 * This is a very rare case.
4444 */
4445 btrfs_flush_workqueue(fs_info->delayed_workers);
4446
4447 ret = btrfs_commit_super(fs_info);
4448 if (ret)
4449 btrfs_err(fs_info, "commit super ret %d", ret);
4450 }
4451
4452 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4453 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4454 btrfs_error_commit_super(fs_info);
4455
4456 kthread_stop(fs_info->transaction_kthread);
4457 kthread_stop(fs_info->cleaner_kthread);
4458
4459 ASSERT(list_empty(&fs_info->delayed_iputs));
4460 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4461
4462 if (btrfs_check_quota_leak(fs_info)) {
4463 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4464 btrfs_err(fs_info, "qgroup reserved space leaked");
4465 }
4466
4467 btrfs_free_qgroup_config(fs_info);
4468 ASSERT(list_empty(&fs_info->delalloc_roots));
4469
4470 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4471 btrfs_info(fs_info, "at unmount delalloc count %lld",
4472 percpu_counter_sum(&fs_info->delalloc_bytes));
4473 }
4474
4475 if (percpu_counter_sum(&fs_info->ordered_bytes))
4476 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4477 percpu_counter_sum(&fs_info->ordered_bytes));
4478
4479 btrfs_sysfs_remove_mounted(fs_info);
4480 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4481
4482 btrfs_put_block_group_cache(fs_info);
4483
4484 /*
4485 * we must make sure there is not any read request to
4486 * submit after we stopping all workers.
4487 */
4488 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4489 btrfs_stop_all_workers(fs_info);
4490
4491 /* We shouldn't have any transaction open at this point */
4492 ASSERT(list_empty(&fs_info->trans_list));
4493
4494 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4495 free_root_pointers(fs_info, true);
4496 btrfs_free_fs_roots(fs_info);
4497
4498 /*
4499 * We must free the block groups after dropping the fs_roots as we could
4500 * have had an IO error and have left over tree log blocks that aren't
4501 * cleaned up until the fs roots are freed. This makes the block group
4502 * accounting appear to be wrong because there's pending reserved bytes,
4503 * so make sure we do the block group cleanup afterwards.
4504 */
4505 btrfs_free_block_groups(fs_info);
4506
4507 iput(fs_info->btree_inode);
4508
4509 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4510 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4511 btrfsic_unmount(fs_info->fs_devices);
4512 #endif
4513
4514 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4515 btrfs_close_devices(fs_info->fs_devices);
4516 }
4517
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4518 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4519 int atomic)
4520 {
4521 int ret;
4522 struct inode *btree_inode = buf->pages[0]->mapping->host;
4523
4524 ret = extent_buffer_uptodate(buf);
4525 if (!ret)
4526 return ret;
4527
4528 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4529 parent_transid, atomic);
4530 if (ret == -EAGAIN)
4531 return ret;
4532 return !ret;
4533 }
4534
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4535 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4536 {
4537 struct btrfs_fs_info *fs_info = buf->fs_info;
4538 u64 transid = btrfs_header_generation(buf);
4539 int was_dirty;
4540
4541 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4542 /*
4543 * This is a fast path so only do this check if we have sanity tests
4544 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4545 * outside of the sanity tests.
4546 */
4547 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4548 return;
4549 #endif
4550 btrfs_assert_tree_locked(buf);
4551 if (transid != fs_info->generation)
4552 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4553 buf->start, transid, fs_info->generation);
4554 was_dirty = set_extent_buffer_dirty(buf);
4555 if (!was_dirty)
4556 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4557 buf->len,
4558 fs_info->dirty_metadata_batch);
4559 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4560 /*
4561 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4562 * but item data not updated.
4563 * So here we should only check item pointers, not item data.
4564 */
4565 if (btrfs_header_level(buf) == 0 &&
4566 btrfs_check_leaf_relaxed(buf)) {
4567 btrfs_print_leaf(buf);
4568 ASSERT(0);
4569 }
4570 #endif
4571 }
4572
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4573 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4574 int flush_delayed)
4575 {
4576 /*
4577 * looks as though older kernels can get into trouble with
4578 * this code, they end up stuck in balance_dirty_pages forever
4579 */
4580 int ret;
4581
4582 if (current->flags & PF_MEMALLOC)
4583 return;
4584
4585 if (flush_delayed)
4586 btrfs_balance_delayed_items(fs_info);
4587
4588 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4589 BTRFS_DIRTY_METADATA_THRESH,
4590 fs_info->dirty_metadata_batch);
4591 if (ret > 0) {
4592 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4593 }
4594 }
4595
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4596 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4597 {
4598 __btrfs_btree_balance_dirty(fs_info, 1);
4599 }
4600
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4601 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4602 {
4603 __btrfs_btree_balance_dirty(fs_info, 0);
4604 }
4605
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4606 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4607 struct btrfs_key *first_key)
4608 {
4609 return btree_read_extent_buffer_pages(buf, parent_transid,
4610 level, first_key);
4611 }
4612
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4613 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4614 {
4615 /* cleanup FS via transaction */
4616 btrfs_cleanup_transaction(fs_info);
4617
4618 mutex_lock(&fs_info->cleaner_mutex);
4619 btrfs_run_delayed_iputs(fs_info);
4620 mutex_unlock(&fs_info->cleaner_mutex);
4621
4622 down_write(&fs_info->cleanup_work_sem);
4623 up_write(&fs_info->cleanup_work_sem);
4624 }
4625
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4626 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4627 {
4628 struct btrfs_root *gang[8];
4629 u64 root_objectid = 0;
4630 int ret;
4631
4632 spin_lock(&fs_info->fs_roots_radix_lock);
4633 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4634 (void **)gang, root_objectid,
4635 ARRAY_SIZE(gang))) != 0) {
4636 int i;
4637
4638 for (i = 0; i < ret; i++)
4639 gang[i] = btrfs_grab_root(gang[i]);
4640 spin_unlock(&fs_info->fs_roots_radix_lock);
4641
4642 for (i = 0; i < ret; i++) {
4643 if (!gang[i])
4644 continue;
4645 root_objectid = gang[i]->root_key.objectid;
4646 btrfs_free_log(NULL, gang[i]);
4647 btrfs_put_root(gang[i]);
4648 }
4649 root_objectid++;
4650 spin_lock(&fs_info->fs_roots_radix_lock);
4651 }
4652 spin_unlock(&fs_info->fs_roots_radix_lock);
4653 btrfs_free_log_root_tree(NULL, fs_info);
4654 }
4655
btrfs_destroy_ordered_extents(struct btrfs_root * root)4656 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4657 {
4658 struct btrfs_ordered_extent *ordered;
4659
4660 spin_lock(&root->ordered_extent_lock);
4661 /*
4662 * This will just short circuit the ordered completion stuff which will
4663 * make sure the ordered extent gets properly cleaned up.
4664 */
4665 list_for_each_entry(ordered, &root->ordered_extents,
4666 root_extent_list)
4667 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4668 spin_unlock(&root->ordered_extent_lock);
4669 }
4670
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4671 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4672 {
4673 struct btrfs_root *root;
4674 struct list_head splice;
4675
4676 INIT_LIST_HEAD(&splice);
4677
4678 spin_lock(&fs_info->ordered_root_lock);
4679 list_splice_init(&fs_info->ordered_roots, &splice);
4680 while (!list_empty(&splice)) {
4681 root = list_first_entry(&splice, struct btrfs_root,
4682 ordered_root);
4683 list_move_tail(&root->ordered_root,
4684 &fs_info->ordered_roots);
4685
4686 spin_unlock(&fs_info->ordered_root_lock);
4687 btrfs_destroy_ordered_extents(root);
4688
4689 cond_resched();
4690 spin_lock(&fs_info->ordered_root_lock);
4691 }
4692 spin_unlock(&fs_info->ordered_root_lock);
4693
4694 /*
4695 * We need this here because if we've been flipped read-only we won't
4696 * get sync() from the umount, so we need to make sure any ordered
4697 * extents that haven't had their dirty pages IO start writeout yet
4698 * actually get run and error out properly.
4699 */
4700 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4701 }
4702
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4703 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4704 struct btrfs_fs_info *fs_info)
4705 {
4706 struct rb_node *node;
4707 struct btrfs_delayed_ref_root *delayed_refs;
4708 struct btrfs_delayed_ref_node *ref;
4709 int ret = 0;
4710
4711 delayed_refs = &trans->delayed_refs;
4712
4713 spin_lock(&delayed_refs->lock);
4714 if (atomic_read(&delayed_refs->num_entries) == 0) {
4715 spin_unlock(&delayed_refs->lock);
4716 btrfs_debug(fs_info, "delayed_refs has NO entry");
4717 return ret;
4718 }
4719
4720 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4721 struct btrfs_delayed_ref_head *head;
4722 struct rb_node *n;
4723 bool pin_bytes = false;
4724
4725 head = rb_entry(node, struct btrfs_delayed_ref_head,
4726 href_node);
4727 if (btrfs_delayed_ref_lock(delayed_refs, head))
4728 continue;
4729
4730 spin_lock(&head->lock);
4731 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4732 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4733 ref_node);
4734 ref->in_tree = 0;
4735 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4736 RB_CLEAR_NODE(&ref->ref_node);
4737 if (!list_empty(&ref->add_list))
4738 list_del(&ref->add_list);
4739 atomic_dec(&delayed_refs->num_entries);
4740 btrfs_put_delayed_ref(ref);
4741 }
4742 if (head->must_insert_reserved)
4743 pin_bytes = true;
4744 btrfs_free_delayed_extent_op(head->extent_op);
4745 btrfs_delete_ref_head(delayed_refs, head);
4746 spin_unlock(&head->lock);
4747 spin_unlock(&delayed_refs->lock);
4748 mutex_unlock(&head->mutex);
4749
4750 if (pin_bytes) {
4751 struct btrfs_block_group *cache;
4752
4753 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4754 BUG_ON(!cache);
4755
4756 spin_lock(&cache->space_info->lock);
4757 spin_lock(&cache->lock);
4758 cache->pinned += head->num_bytes;
4759 btrfs_space_info_update_bytes_pinned(fs_info,
4760 cache->space_info, head->num_bytes);
4761 cache->reserved -= head->num_bytes;
4762 cache->space_info->bytes_reserved -= head->num_bytes;
4763 spin_unlock(&cache->lock);
4764 spin_unlock(&cache->space_info->lock);
4765
4766 btrfs_put_block_group(cache);
4767
4768 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4769 head->bytenr + head->num_bytes - 1);
4770 }
4771 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4772 btrfs_put_delayed_ref_head(head);
4773 cond_resched();
4774 spin_lock(&delayed_refs->lock);
4775 }
4776 btrfs_qgroup_destroy_extent_records(trans);
4777
4778 spin_unlock(&delayed_refs->lock);
4779
4780 return ret;
4781 }
4782
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4783 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4784 {
4785 struct btrfs_inode *btrfs_inode;
4786 struct list_head splice;
4787
4788 INIT_LIST_HEAD(&splice);
4789
4790 spin_lock(&root->delalloc_lock);
4791 list_splice_init(&root->delalloc_inodes, &splice);
4792
4793 while (!list_empty(&splice)) {
4794 struct inode *inode = NULL;
4795 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4796 delalloc_inodes);
4797 __btrfs_del_delalloc_inode(root, btrfs_inode);
4798 spin_unlock(&root->delalloc_lock);
4799
4800 /*
4801 * Make sure we get a live inode and that it'll not disappear
4802 * meanwhile.
4803 */
4804 inode = igrab(&btrfs_inode->vfs_inode);
4805 if (inode) {
4806 unsigned int nofs_flag;
4807
4808 nofs_flag = memalloc_nofs_save();
4809 invalidate_inode_pages2(inode->i_mapping);
4810 memalloc_nofs_restore(nofs_flag);
4811 iput(inode);
4812 }
4813 spin_lock(&root->delalloc_lock);
4814 }
4815 spin_unlock(&root->delalloc_lock);
4816 }
4817
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4818 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4819 {
4820 struct btrfs_root *root;
4821 struct list_head splice;
4822
4823 INIT_LIST_HEAD(&splice);
4824
4825 spin_lock(&fs_info->delalloc_root_lock);
4826 list_splice_init(&fs_info->delalloc_roots, &splice);
4827 while (!list_empty(&splice)) {
4828 root = list_first_entry(&splice, struct btrfs_root,
4829 delalloc_root);
4830 root = btrfs_grab_root(root);
4831 BUG_ON(!root);
4832 spin_unlock(&fs_info->delalloc_root_lock);
4833
4834 btrfs_destroy_delalloc_inodes(root);
4835 btrfs_put_root(root);
4836
4837 spin_lock(&fs_info->delalloc_root_lock);
4838 }
4839 spin_unlock(&fs_info->delalloc_root_lock);
4840 }
4841
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4842 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4843 struct extent_io_tree *dirty_pages,
4844 int mark)
4845 {
4846 int ret;
4847 struct extent_buffer *eb;
4848 u64 start = 0;
4849 u64 end;
4850
4851 while (1) {
4852 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4853 mark, NULL);
4854 if (ret)
4855 break;
4856
4857 clear_extent_bits(dirty_pages, start, end, mark);
4858 while (start <= end) {
4859 eb = find_extent_buffer(fs_info, start);
4860 start += fs_info->nodesize;
4861 if (!eb)
4862 continue;
4863 wait_on_extent_buffer_writeback(eb);
4864
4865 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4866 &eb->bflags))
4867 clear_extent_buffer_dirty(eb);
4868 free_extent_buffer_stale(eb);
4869 }
4870 }
4871
4872 return ret;
4873 }
4874
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4875 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4876 struct extent_io_tree *unpin)
4877 {
4878 u64 start;
4879 u64 end;
4880 int ret;
4881
4882 while (1) {
4883 struct extent_state *cached_state = NULL;
4884
4885 /*
4886 * The btrfs_finish_extent_commit() may get the same range as
4887 * ours between find_first_extent_bit and clear_extent_dirty.
4888 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4889 * the same extent range.
4890 */
4891 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4892 ret = find_first_extent_bit(unpin, 0, &start, &end,
4893 EXTENT_DIRTY, &cached_state);
4894 if (ret) {
4895 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4896 break;
4897 }
4898
4899 clear_extent_dirty(unpin, start, end, &cached_state);
4900 free_extent_state(cached_state);
4901 btrfs_error_unpin_extent_range(fs_info, start, end);
4902 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4903 cond_resched();
4904 }
4905
4906 return 0;
4907 }
4908
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4909 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4910 {
4911 struct inode *inode;
4912
4913 inode = cache->io_ctl.inode;
4914 if (inode) {
4915 unsigned int nofs_flag;
4916
4917 nofs_flag = memalloc_nofs_save();
4918 invalidate_inode_pages2(inode->i_mapping);
4919 memalloc_nofs_restore(nofs_flag);
4920
4921 BTRFS_I(inode)->generation = 0;
4922 cache->io_ctl.inode = NULL;
4923 iput(inode);
4924 }
4925 ASSERT(cache->io_ctl.pages == NULL);
4926 btrfs_put_block_group(cache);
4927 }
4928
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4929 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4930 struct btrfs_fs_info *fs_info)
4931 {
4932 struct btrfs_block_group *cache;
4933
4934 spin_lock(&cur_trans->dirty_bgs_lock);
4935 while (!list_empty(&cur_trans->dirty_bgs)) {
4936 cache = list_first_entry(&cur_trans->dirty_bgs,
4937 struct btrfs_block_group,
4938 dirty_list);
4939
4940 if (!list_empty(&cache->io_list)) {
4941 spin_unlock(&cur_trans->dirty_bgs_lock);
4942 list_del_init(&cache->io_list);
4943 btrfs_cleanup_bg_io(cache);
4944 spin_lock(&cur_trans->dirty_bgs_lock);
4945 }
4946
4947 list_del_init(&cache->dirty_list);
4948 spin_lock(&cache->lock);
4949 cache->disk_cache_state = BTRFS_DC_ERROR;
4950 spin_unlock(&cache->lock);
4951
4952 spin_unlock(&cur_trans->dirty_bgs_lock);
4953 btrfs_put_block_group(cache);
4954 btrfs_delayed_refs_rsv_release(fs_info, 1);
4955 spin_lock(&cur_trans->dirty_bgs_lock);
4956 }
4957 spin_unlock(&cur_trans->dirty_bgs_lock);
4958
4959 /*
4960 * Refer to the definition of io_bgs member for details why it's safe
4961 * to use it without any locking
4962 */
4963 while (!list_empty(&cur_trans->io_bgs)) {
4964 cache = list_first_entry(&cur_trans->io_bgs,
4965 struct btrfs_block_group,
4966 io_list);
4967
4968 list_del_init(&cache->io_list);
4969 spin_lock(&cache->lock);
4970 cache->disk_cache_state = BTRFS_DC_ERROR;
4971 spin_unlock(&cache->lock);
4972 btrfs_cleanup_bg_io(cache);
4973 }
4974 }
4975
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4976 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4977 struct btrfs_fs_info *fs_info)
4978 {
4979 struct btrfs_device *dev, *tmp;
4980
4981 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4982 ASSERT(list_empty(&cur_trans->dirty_bgs));
4983 ASSERT(list_empty(&cur_trans->io_bgs));
4984
4985 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4986 post_commit_list) {
4987 list_del_init(&dev->post_commit_list);
4988 }
4989
4990 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4991
4992 cur_trans->state = TRANS_STATE_COMMIT_START;
4993 wake_up(&fs_info->transaction_blocked_wait);
4994
4995 cur_trans->state = TRANS_STATE_UNBLOCKED;
4996 wake_up(&fs_info->transaction_wait);
4997
4998 btrfs_destroy_delayed_inodes(fs_info);
4999
5000 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5001 EXTENT_DIRTY);
5002 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5003
5004 btrfs_free_redirty_list(cur_trans);
5005
5006 cur_trans->state =TRANS_STATE_COMPLETED;
5007 wake_up(&cur_trans->commit_wait);
5008 }
5009
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)5010 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5011 {
5012 struct btrfs_transaction *t;
5013
5014 mutex_lock(&fs_info->transaction_kthread_mutex);
5015
5016 spin_lock(&fs_info->trans_lock);
5017 while (!list_empty(&fs_info->trans_list)) {
5018 t = list_first_entry(&fs_info->trans_list,
5019 struct btrfs_transaction, list);
5020 if (t->state >= TRANS_STATE_COMMIT_START) {
5021 refcount_inc(&t->use_count);
5022 spin_unlock(&fs_info->trans_lock);
5023 btrfs_wait_for_commit(fs_info, t->transid);
5024 btrfs_put_transaction(t);
5025 spin_lock(&fs_info->trans_lock);
5026 continue;
5027 }
5028 if (t == fs_info->running_transaction) {
5029 t->state = TRANS_STATE_COMMIT_DOING;
5030 spin_unlock(&fs_info->trans_lock);
5031 /*
5032 * We wait for 0 num_writers since we don't hold a trans
5033 * handle open currently for this transaction.
5034 */
5035 wait_event(t->writer_wait,
5036 atomic_read(&t->num_writers) == 0);
5037 } else {
5038 spin_unlock(&fs_info->trans_lock);
5039 }
5040 btrfs_cleanup_one_transaction(t, fs_info);
5041
5042 spin_lock(&fs_info->trans_lock);
5043 if (t == fs_info->running_transaction)
5044 fs_info->running_transaction = NULL;
5045 list_del_init(&t->list);
5046 spin_unlock(&fs_info->trans_lock);
5047
5048 btrfs_put_transaction(t);
5049 trace_btrfs_transaction_commit(fs_info->tree_root);
5050 spin_lock(&fs_info->trans_lock);
5051 }
5052 spin_unlock(&fs_info->trans_lock);
5053 btrfs_destroy_all_ordered_extents(fs_info);
5054 btrfs_destroy_delayed_inodes(fs_info);
5055 btrfs_assert_delayed_root_empty(fs_info);
5056 btrfs_destroy_all_delalloc_inodes(fs_info);
5057 btrfs_drop_all_logs(fs_info);
5058 mutex_unlock(&fs_info->transaction_kthread_mutex);
5059
5060 return 0;
5061 }
5062
btrfs_init_root_free_objectid(struct btrfs_root * root)5063 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5064 {
5065 struct btrfs_path *path;
5066 int ret;
5067 struct extent_buffer *l;
5068 struct btrfs_key search_key;
5069 struct btrfs_key found_key;
5070 int slot;
5071
5072 path = btrfs_alloc_path();
5073 if (!path)
5074 return -ENOMEM;
5075
5076 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5077 search_key.type = -1;
5078 search_key.offset = (u64)-1;
5079 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5080 if (ret < 0)
5081 goto error;
5082 BUG_ON(ret == 0); /* Corruption */
5083 if (path->slots[0] > 0) {
5084 slot = path->slots[0] - 1;
5085 l = path->nodes[0];
5086 btrfs_item_key_to_cpu(l, &found_key, slot);
5087 root->free_objectid = max_t(u64, found_key.objectid + 1,
5088 BTRFS_FIRST_FREE_OBJECTID);
5089 } else {
5090 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5091 }
5092 ret = 0;
5093 error:
5094 btrfs_free_path(path);
5095 return ret;
5096 }
5097
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)5098 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5099 {
5100 int ret;
5101 mutex_lock(&root->objectid_mutex);
5102
5103 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5104 btrfs_warn(root->fs_info,
5105 "the objectid of root %llu reaches its highest value",
5106 root->root_key.objectid);
5107 ret = -ENOSPC;
5108 goto out;
5109 }
5110
5111 *objectid = root->free_objectid++;
5112 ret = 0;
5113 out:
5114 mutex_unlock(&root->objectid_mutex);
5115 return ret;
5116 }
5117