• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 
47 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
48 				 BTRFS_HEADER_FLAG_RELOC |\
49 				 BTRFS_SUPER_FLAG_ERROR |\
50 				 BTRFS_SUPER_FLAG_SEEDING |\
51 				 BTRFS_SUPER_FLAG_METADUMP |\
52 				 BTRFS_SUPER_FLAG_METADUMP_V2)
53 
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 				       struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66 
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73 	struct bio *bio;
74 	bio_end_io_t *end_io;
75 	void *private;
76 	struct btrfs_fs_info *info;
77 	blk_status_t status;
78 	enum btrfs_wq_endio_type metadata;
79 	struct btrfs_work work;
80 };
81 
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83 
btrfs_end_io_wq_init(void)84 int __init btrfs_end_io_wq_init(void)
85 {
86 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 					sizeof(struct btrfs_end_io_wq),
88 					0,
89 					SLAB_MEM_SPREAD,
90 					NULL);
91 	if (!btrfs_end_io_wq_cache)
92 		return -ENOMEM;
93 	return 0;
94 }
95 
btrfs_end_io_wq_exit(void)96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100 
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 	if (fs_info->csum_shash)
104 		crypto_free_shash(fs_info->csum_shash);
105 }
106 
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113 	struct inode *inode;
114 	struct bio *bio;
115 	extent_submit_bio_start_t *submit_bio_start;
116 	int mirror_num;
117 
118 	/* Optional parameter for submit_bio_start used by direct io */
119 	u64 dio_file_offset;
120 	struct btrfs_work work;
121 	blk_status_t status;
122 };
123 
124 /*
125  * Compute the csum of a btree block and store the result to provided buffer.
126  */
csum_tree_block(struct extent_buffer * buf,u8 * result)127 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
128 {
129 	struct btrfs_fs_info *fs_info = buf->fs_info;
130 	const int num_pages = num_extent_pages(buf);
131 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
132 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
133 	char *kaddr;
134 	int i;
135 
136 	shash->tfm = fs_info->csum_shash;
137 	crypto_shash_init(shash);
138 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
139 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
140 			    first_page_part - BTRFS_CSUM_SIZE);
141 
142 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
143 		kaddr = page_address(buf->pages[i]);
144 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
145 	}
146 	memset(result, 0, BTRFS_CSUM_SIZE);
147 	crypto_shash_final(shash, result);
148 }
149 
150 /*
151  * we can't consider a given block up to date unless the transid of the
152  * block matches the transid in the parent node's pointer.  This is how we
153  * detect blocks that either didn't get written at all or got written
154  * in the wrong place.
155  */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)156 static int verify_parent_transid(struct extent_io_tree *io_tree,
157 				 struct extent_buffer *eb, u64 parent_transid,
158 				 int atomic)
159 {
160 	struct extent_state *cached_state = NULL;
161 	int ret;
162 
163 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
164 		return 0;
165 
166 	if (atomic)
167 		return -EAGAIN;
168 
169 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
170 			 &cached_state);
171 	if (extent_buffer_uptodate(eb) &&
172 	    btrfs_header_generation(eb) == parent_transid) {
173 		ret = 0;
174 		goto out;
175 	}
176 	btrfs_err_rl(eb->fs_info,
177 		"parent transid verify failed on %llu wanted %llu found %llu",
178 			eb->start,
179 			parent_transid, btrfs_header_generation(eb));
180 	ret = 1;
181 	clear_extent_buffer_uptodate(eb);
182 out:
183 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
184 			     &cached_state);
185 	return ret;
186 }
187 
btrfs_supported_super_csum(u16 csum_type)188 static bool btrfs_supported_super_csum(u16 csum_type)
189 {
190 	switch (csum_type) {
191 	case BTRFS_CSUM_TYPE_CRC32:
192 	case BTRFS_CSUM_TYPE_XXHASH:
193 	case BTRFS_CSUM_TYPE_SHA256:
194 	case BTRFS_CSUM_TYPE_BLAKE2:
195 		return true;
196 	default:
197 		return false;
198 	}
199 }
200 
201 /*
202  * Return 0 if the superblock checksum type matches the checksum value of that
203  * algorithm. Pass the raw disk superblock data.
204  */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)205 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
206 			   const struct btrfs_super_block *disk_sb)
207 {
208 	char result[BTRFS_CSUM_SIZE];
209 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
210 
211 	shash->tfm = fs_info->csum_shash;
212 
213 	/*
214 	 * The super_block structure does not span the whole
215 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
216 	 * filled with zeros and is included in the checksum.
217 	 */
218 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
219 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
220 
221 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
222 		return 1;
223 
224 	return 0;
225 }
226 
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)227 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
228 			   struct btrfs_key *first_key, u64 parent_transid)
229 {
230 	struct btrfs_fs_info *fs_info = eb->fs_info;
231 	int found_level;
232 	struct btrfs_key found_key;
233 	int ret;
234 
235 	found_level = btrfs_header_level(eb);
236 	if (found_level != level) {
237 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
238 		     KERN_ERR "BTRFS: tree level check failed\n");
239 		btrfs_err(fs_info,
240 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
241 			  eb->start, level, found_level);
242 		return -EIO;
243 	}
244 
245 	if (!first_key)
246 		return 0;
247 
248 	/*
249 	 * For live tree block (new tree blocks in current transaction),
250 	 * we need proper lock context to avoid race, which is impossible here.
251 	 * So we only checks tree blocks which is read from disk, whose
252 	 * generation <= fs_info->last_trans_committed.
253 	 */
254 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
255 		return 0;
256 
257 	/* We have @first_key, so this @eb must have at least one item */
258 	if (btrfs_header_nritems(eb) == 0) {
259 		btrfs_err(fs_info,
260 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
261 			  eb->start);
262 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
263 		return -EUCLEAN;
264 	}
265 
266 	if (found_level)
267 		btrfs_node_key_to_cpu(eb, &found_key, 0);
268 	else
269 		btrfs_item_key_to_cpu(eb, &found_key, 0);
270 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
271 
272 	if (ret) {
273 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
274 		     KERN_ERR "BTRFS: tree first key check failed\n");
275 		btrfs_err(fs_info,
276 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
277 			  eb->start, parent_transid, first_key->objectid,
278 			  first_key->type, first_key->offset,
279 			  found_key.objectid, found_key.type,
280 			  found_key.offset);
281 	}
282 	return ret;
283 }
284 
285 /*
286  * helper to read a given tree block, doing retries as required when
287  * the checksums don't match and we have alternate mirrors to try.
288  *
289  * @parent_transid:	expected transid, skip check if 0
290  * @level:		expected level, mandatory check
291  * @first_key:		expected key of first slot, skip check if NULL
292  */
btree_read_extent_buffer_pages(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)293 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
294 					  u64 parent_transid, int level,
295 					  struct btrfs_key *first_key)
296 {
297 	struct btrfs_fs_info *fs_info = eb->fs_info;
298 	struct extent_io_tree *io_tree;
299 	int failed = 0;
300 	int ret;
301 	int num_copies = 0;
302 	int mirror_num = 0;
303 	int failed_mirror = 0;
304 
305 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
306 	while (1) {
307 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
308 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
309 		if (!ret) {
310 			if (verify_parent_transid(io_tree, eb,
311 						   parent_transid, 0))
312 				ret = -EIO;
313 			else if (btrfs_verify_level_key(eb, level,
314 						first_key, parent_transid))
315 				ret = -EUCLEAN;
316 			else
317 				break;
318 		}
319 
320 		num_copies = btrfs_num_copies(fs_info,
321 					      eb->start, eb->len);
322 		if (num_copies == 1)
323 			break;
324 
325 		if (!failed_mirror) {
326 			failed = 1;
327 			failed_mirror = eb->read_mirror;
328 		}
329 
330 		mirror_num++;
331 		if (mirror_num == failed_mirror)
332 			mirror_num++;
333 
334 		if (mirror_num > num_copies)
335 			break;
336 	}
337 
338 	if (failed && !ret && failed_mirror)
339 		btrfs_repair_eb_io_failure(eb, failed_mirror);
340 
341 	return ret;
342 }
343 
csum_one_extent_buffer(struct extent_buffer * eb)344 static int csum_one_extent_buffer(struct extent_buffer *eb)
345 {
346 	struct btrfs_fs_info *fs_info = eb->fs_info;
347 	u8 result[BTRFS_CSUM_SIZE];
348 	int ret;
349 
350 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
351 				    offsetof(struct btrfs_header, fsid),
352 				    BTRFS_FSID_SIZE) == 0);
353 	csum_tree_block(eb, result);
354 
355 	if (btrfs_header_level(eb))
356 		ret = btrfs_check_node(eb);
357 	else
358 		ret = btrfs_check_leaf_full(eb);
359 
360 	if (ret < 0)
361 		goto error;
362 
363 	/*
364 	 * Also check the generation, the eb reached here must be newer than
365 	 * last committed. Or something seriously wrong happened.
366 	 */
367 	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
368 		ret = -EUCLEAN;
369 		btrfs_err(fs_info,
370 			"block=%llu bad generation, have %llu expect > %llu",
371 			  eb->start, btrfs_header_generation(eb),
372 			  fs_info->last_trans_committed);
373 		goto error;
374 	}
375 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
376 
377 	return 0;
378 
379 error:
380 	btrfs_print_tree(eb, 0);
381 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
382 		  eb->start);
383 	/*
384 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
385 	 * a transaction in case there's a bad log tree extent buffer, we just
386 	 * fallback to a transaction commit. Still we want to know when there is
387 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
388 	 */
389 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
390 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
391 	return ret;
392 }
393 
394 /* Checksum all dirty extent buffers in one bio_vec */
csum_dirty_subpage_buffers(struct btrfs_fs_info * fs_info,struct bio_vec * bvec)395 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
396 				      struct bio_vec *bvec)
397 {
398 	struct page *page = bvec->bv_page;
399 	u64 bvec_start = page_offset(page) + bvec->bv_offset;
400 	u64 cur;
401 	int ret = 0;
402 
403 	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
404 	     cur += fs_info->nodesize) {
405 		struct extent_buffer *eb;
406 		bool uptodate;
407 
408 		eb = find_extent_buffer(fs_info, cur);
409 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
410 						       fs_info->nodesize);
411 
412 		/* A dirty eb shouldn't disappear from buffer_radix */
413 		if (WARN_ON(!eb))
414 			return -EUCLEAN;
415 
416 		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
417 			free_extent_buffer(eb);
418 			return -EUCLEAN;
419 		}
420 		if (WARN_ON(!uptodate)) {
421 			free_extent_buffer(eb);
422 			return -EUCLEAN;
423 		}
424 
425 		ret = csum_one_extent_buffer(eb);
426 		free_extent_buffer(eb);
427 		if (ret < 0)
428 			return ret;
429 	}
430 	return ret;
431 }
432 
433 /*
434  * Checksum a dirty tree block before IO.  This has extra checks to make sure
435  * we only fill in the checksum field in the first page of a multi-page block.
436  * For subpage extent buffers we need bvec to also read the offset in the page.
437  */
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct bio_vec * bvec)438 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
439 {
440 	struct page *page = bvec->bv_page;
441 	u64 start = page_offset(page);
442 	u64 found_start;
443 	struct extent_buffer *eb;
444 
445 	if (fs_info->sectorsize < PAGE_SIZE)
446 		return csum_dirty_subpage_buffers(fs_info, bvec);
447 
448 	eb = (struct extent_buffer *)page->private;
449 	if (page != eb->pages[0])
450 		return 0;
451 
452 	found_start = btrfs_header_bytenr(eb);
453 
454 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
455 		WARN_ON(found_start != 0);
456 		return 0;
457 	}
458 
459 	/*
460 	 * Please do not consolidate these warnings into a single if.
461 	 * It is useful to know what went wrong.
462 	 */
463 	if (WARN_ON(found_start != start))
464 		return -EUCLEAN;
465 	if (WARN_ON(!PageUptodate(page)))
466 		return -EUCLEAN;
467 
468 	return csum_one_extent_buffer(eb);
469 }
470 
check_tree_block_fsid(struct extent_buffer * eb)471 static int check_tree_block_fsid(struct extent_buffer *eb)
472 {
473 	struct btrfs_fs_info *fs_info = eb->fs_info;
474 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
475 	u8 fsid[BTRFS_FSID_SIZE];
476 	u8 *metadata_uuid;
477 
478 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
479 			   BTRFS_FSID_SIZE);
480 	/*
481 	 * Checking the incompat flag is only valid for the current fs. For
482 	 * seed devices it's forbidden to have their uuid changed so reading
483 	 * ->fsid in this case is fine
484 	 */
485 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
486 		metadata_uuid = fs_devices->metadata_uuid;
487 	else
488 		metadata_uuid = fs_devices->fsid;
489 
490 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
491 		return 0;
492 
493 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
494 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
495 			return 0;
496 
497 	return 1;
498 }
499 
500 /* Do basic extent buffer checks at read time */
validate_extent_buffer(struct extent_buffer * eb)501 static int validate_extent_buffer(struct extent_buffer *eb)
502 {
503 	struct btrfs_fs_info *fs_info = eb->fs_info;
504 	u64 found_start;
505 	const u32 csum_size = fs_info->csum_size;
506 	u8 found_level;
507 	u8 result[BTRFS_CSUM_SIZE];
508 	const u8 *header_csum;
509 	int ret = 0;
510 
511 	found_start = btrfs_header_bytenr(eb);
512 	if (found_start != eb->start) {
513 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
514 			     eb->start, found_start);
515 		ret = -EIO;
516 		goto out;
517 	}
518 	if (check_tree_block_fsid(eb)) {
519 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
520 			     eb->start);
521 		ret = -EIO;
522 		goto out;
523 	}
524 	found_level = btrfs_header_level(eb);
525 	if (found_level >= BTRFS_MAX_LEVEL) {
526 		btrfs_err(fs_info, "bad tree block level %d on %llu",
527 			  (int)btrfs_header_level(eb), eb->start);
528 		ret = -EIO;
529 		goto out;
530 	}
531 
532 	csum_tree_block(eb, result);
533 	header_csum = page_address(eb->pages[0]) +
534 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
535 
536 	if (memcmp(result, header_csum, csum_size) != 0) {
537 		btrfs_warn_rl(fs_info,
538 	"checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
539 			      eb->start,
540 			      CSUM_FMT_VALUE(csum_size, header_csum),
541 			      CSUM_FMT_VALUE(csum_size, result),
542 			      btrfs_header_level(eb));
543 		ret = -EUCLEAN;
544 		goto out;
545 	}
546 
547 	/*
548 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
549 	 * that we don't try and read the other copies of this block, just
550 	 * return -EIO.
551 	 */
552 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
553 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
554 		ret = -EIO;
555 	}
556 
557 	if (found_level > 0 && btrfs_check_node(eb))
558 		ret = -EIO;
559 
560 	if (!ret)
561 		set_extent_buffer_uptodate(eb);
562 	else
563 		btrfs_err(fs_info,
564 			  "block=%llu read time tree block corruption detected",
565 			  eb->start);
566 out:
567 	return ret;
568 }
569 
validate_subpage_buffer(struct page * page,u64 start,u64 end,int mirror)570 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
571 				   int mirror)
572 {
573 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
574 	struct extent_buffer *eb;
575 	bool reads_done;
576 	int ret = 0;
577 
578 	/*
579 	 * We don't allow bio merge for subpage metadata read, so we should
580 	 * only get one eb for each endio hook.
581 	 */
582 	ASSERT(end == start + fs_info->nodesize - 1);
583 	ASSERT(PagePrivate(page));
584 
585 	eb = find_extent_buffer(fs_info, start);
586 	/*
587 	 * When we are reading one tree block, eb must have been inserted into
588 	 * the radix tree. If not, something is wrong.
589 	 */
590 	ASSERT(eb);
591 
592 	reads_done = atomic_dec_and_test(&eb->io_pages);
593 	/* Subpage read must finish in page read */
594 	ASSERT(reads_done);
595 
596 	eb->read_mirror = mirror;
597 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
598 		ret = -EIO;
599 		goto err;
600 	}
601 	ret = validate_extent_buffer(eb);
602 	if (ret < 0)
603 		goto err;
604 
605 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
606 		btree_readahead_hook(eb, ret);
607 
608 	set_extent_buffer_uptodate(eb);
609 
610 	free_extent_buffer(eb);
611 	return ret;
612 err:
613 	/*
614 	 * end_bio_extent_readpage decrements io_pages in case of error,
615 	 * make sure it has something to decrement.
616 	 */
617 	atomic_inc(&eb->io_pages);
618 	clear_extent_buffer_uptodate(eb);
619 	free_extent_buffer(eb);
620 	return ret;
621 }
622 
btrfs_validate_metadata_buffer(struct btrfs_io_bio * io_bio,struct page * page,u64 start,u64 end,int mirror)623 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
624 				   struct page *page, u64 start, u64 end,
625 				   int mirror)
626 {
627 	struct extent_buffer *eb;
628 	int ret = 0;
629 	int reads_done;
630 
631 	ASSERT(page->private);
632 
633 	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
634 		return validate_subpage_buffer(page, start, end, mirror);
635 
636 	eb = (struct extent_buffer *)page->private;
637 
638 	/*
639 	 * The pending IO might have been the only thing that kept this buffer
640 	 * in memory.  Make sure we have a ref for all this other checks
641 	 */
642 	atomic_inc(&eb->refs);
643 
644 	reads_done = atomic_dec_and_test(&eb->io_pages);
645 	if (!reads_done)
646 		goto err;
647 
648 	eb->read_mirror = mirror;
649 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
650 		ret = -EIO;
651 		goto err;
652 	}
653 	ret = validate_extent_buffer(eb);
654 err:
655 	if (reads_done &&
656 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
657 		btree_readahead_hook(eb, ret);
658 
659 	if (ret) {
660 		/*
661 		 * our io error hook is going to dec the io pages
662 		 * again, we have to make sure it has something
663 		 * to decrement
664 		 */
665 		atomic_inc(&eb->io_pages);
666 		clear_extent_buffer_uptodate(eb);
667 	}
668 	free_extent_buffer(eb);
669 
670 	return ret;
671 }
672 
end_workqueue_bio(struct bio * bio)673 static void end_workqueue_bio(struct bio *bio)
674 {
675 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
676 	struct btrfs_fs_info *fs_info;
677 	struct btrfs_workqueue *wq;
678 
679 	fs_info = end_io_wq->info;
680 	end_io_wq->status = bio->bi_status;
681 
682 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
683 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
684 			wq = fs_info->endio_meta_write_workers;
685 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
686 			wq = fs_info->endio_freespace_worker;
687 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
688 			wq = fs_info->endio_raid56_workers;
689 		else
690 			wq = fs_info->endio_write_workers;
691 	} else {
692 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
693 			wq = fs_info->endio_raid56_workers;
694 		else if (end_io_wq->metadata)
695 			wq = fs_info->endio_meta_workers;
696 		else
697 			wq = fs_info->endio_workers;
698 	}
699 
700 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
701 	btrfs_queue_work(wq, &end_io_wq->work);
702 }
703 
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)704 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 			enum btrfs_wq_endio_type metadata)
706 {
707 	struct btrfs_end_io_wq *end_io_wq;
708 
709 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
710 	if (!end_io_wq)
711 		return BLK_STS_RESOURCE;
712 
713 	end_io_wq->private = bio->bi_private;
714 	end_io_wq->end_io = bio->bi_end_io;
715 	end_io_wq->info = info;
716 	end_io_wq->status = 0;
717 	end_io_wq->bio = bio;
718 	end_io_wq->metadata = metadata;
719 
720 	bio->bi_private = end_io_wq;
721 	bio->bi_end_io = end_workqueue_bio;
722 	return 0;
723 }
724 
run_one_async_start(struct btrfs_work * work)725 static void run_one_async_start(struct btrfs_work *work)
726 {
727 	struct async_submit_bio *async;
728 	blk_status_t ret;
729 
730 	async = container_of(work, struct  async_submit_bio, work);
731 	ret = async->submit_bio_start(async->inode, async->bio,
732 				      async->dio_file_offset);
733 	if (ret)
734 		async->status = ret;
735 }
736 
737 /*
738  * In order to insert checksums into the metadata in large chunks, we wait
739  * until bio submission time.   All the pages in the bio are checksummed and
740  * sums are attached onto the ordered extent record.
741  *
742  * At IO completion time the csums attached on the ordered extent record are
743  * inserted into the tree.
744  */
run_one_async_done(struct btrfs_work * work)745 static void run_one_async_done(struct btrfs_work *work)
746 {
747 	struct async_submit_bio *async;
748 	struct inode *inode;
749 	blk_status_t ret;
750 
751 	async = container_of(work, struct  async_submit_bio, work);
752 	inode = async->inode;
753 
754 	/* If an error occurred we just want to clean up the bio and move on */
755 	if (async->status) {
756 		async->bio->bi_status = async->status;
757 		bio_endio(async->bio);
758 		return;
759 	}
760 
761 	/*
762 	 * All of the bios that pass through here are from async helpers.
763 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
764 	 * This changes nothing when cgroups aren't in use.
765 	 */
766 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
767 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
768 	if (ret) {
769 		async->bio->bi_status = ret;
770 		bio_endio(async->bio);
771 	}
772 }
773 
run_one_async_free(struct btrfs_work * work)774 static void run_one_async_free(struct btrfs_work *work)
775 {
776 	struct async_submit_bio *async;
777 
778 	async = container_of(work, struct  async_submit_bio, work);
779 	kfree(async);
780 }
781 
btrfs_wq_submit_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 dio_file_offset,extent_submit_bio_start_t * submit_bio_start)782 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
783 				 int mirror_num, unsigned long bio_flags,
784 				 u64 dio_file_offset,
785 				 extent_submit_bio_start_t *submit_bio_start)
786 {
787 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
788 	struct async_submit_bio *async;
789 
790 	async = kmalloc(sizeof(*async), GFP_NOFS);
791 	if (!async)
792 		return BLK_STS_RESOURCE;
793 
794 	async->inode = inode;
795 	async->bio = bio;
796 	async->mirror_num = mirror_num;
797 	async->submit_bio_start = submit_bio_start;
798 
799 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
800 			run_one_async_free);
801 
802 	async->dio_file_offset = dio_file_offset;
803 
804 	async->status = 0;
805 
806 	if (op_is_sync(bio->bi_opf))
807 		btrfs_set_work_high_priority(&async->work);
808 
809 	btrfs_queue_work(fs_info->workers, &async->work);
810 	return 0;
811 }
812 
btree_csum_one_bio(struct bio * bio)813 static blk_status_t btree_csum_one_bio(struct bio *bio)
814 {
815 	struct bio_vec *bvec;
816 	struct btrfs_root *root;
817 	int ret = 0;
818 	struct bvec_iter_all iter_all;
819 
820 	ASSERT(!bio_flagged(bio, BIO_CLONED));
821 	bio_for_each_segment_all(bvec, bio, iter_all) {
822 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
823 		ret = csum_dirty_buffer(root->fs_info, bvec);
824 		if (ret)
825 			break;
826 	}
827 
828 	return errno_to_blk_status(ret);
829 }
830 
btree_submit_bio_start(struct inode * inode,struct bio * bio,u64 dio_file_offset)831 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
832 					   u64 dio_file_offset)
833 {
834 	/*
835 	 * when we're called for a write, we're already in the async
836 	 * submission context.  Just jump into btrfs_map_bio
837 	 */
838 	return btree_csum_one_bio(bio);
839 }
840 
should_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)841 static bool should_async_write(struct btrfs_fs_info *fs_info,
842 			     struct btrfs_inode *bi)
843 {
844 	if (btrfs_is_zoned(fs_info))
845 		return false;
846 	if (atomic_read(&bi->sync_writers))
847 		return false;
848 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
849 		return false;
850 	return true;
851 }
852 
btrfs_submit_metadata_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)853 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
854 				       int mirror_num, unsigned long bio_flags)
855 {
856 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
857 	blk_status_t ret;
858 
859 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
860 		/*
861 		 * called for a read, do the setup so that checksum validation
862 		 * can happen in the async kernel threads
863 		 */
864 		ret = btrfs_bio_wq_end_io(fs_info, bio,
865 					  BTRFS_WQ_ENDIO_METADATA);
866 		if (ret)
867 			goto out_w_error;
868 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
869 	} else if (!should_async_write(fs_info, BTRFS_I(inode))) {
870 		ret = btree_csum_one_bio(bio);
871 		if (ret)
872 			goto out_w_error;
873 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
874 	} else {
875 		/*
876 		 * kthread helpers are used to submit writes so that
877 		 * checksumming can happen in parallel across all CPUs
878 		 */
879 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
880 					  0, btree_submit_bio_start);
881 	}
882 
883 	if (ret)
884 		goto out_w_error;
885 	return 0;
886 
887 out_w_error:
888 	bio->bi_status = ret;
889 	bio_endio(bio);
890 	return ret;
891 }
892 
893 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)894 static int btree_migratepage(struct address_space *mapping,
895 			struct page *newpage, struct page *page,
896 			enum migrate_mode mode)
897 {
898 	/*
899 	 * we can't safely write a btree page from here,
900 	 * we haven't done the locking hook
901 	 */
902 	if (PageDirty(page))
903 		return -EAGAIN;
904 	/*
905 	 * Buffers may be managed in a filesystem specific way.
906 	 * We must have no buffers or drop them.
907 	 */
908 	if (page_has_private(page) &&
909 	    !try_to_release_page(page, GFP_KERNEL))
910 		return -EAGAIN;
911 	return migrate_page(mapping, newpage, page, mode);
912 }
913 #endif
914 
915 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)916 static int btree_writepages(struct address_space *mapping,
917 			    struct writeback_control *wbc)
918 {
919 	struct btrfs_fs_info *fs_info;
920 	int ret;
921 
922 	if (wbc->sync_mode == WB_SYNC_NONE) {
923 
924 		if (wbc->for_kupdate)
925 			return 0;
926 
927 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
928 		/* this is a bit racy, but that's ok */
929 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
930 					     BTRFS_DIRTY_METADATA_THRESH,
931 					     fs_info->dirty_metadata_batch);
932 		if (ret < 0)
933 			return 0;
934 	}
935 	return btree_write_cache_pages(mapping, wbc);
936 }
937 
btree_releasepage(struct page * page,gfp_t gfp_flags)938 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
939 {
940 	if (PageWriteback(page) || PageDirty(page))
941 		return 0;
942 
943 	return try_release_extent_buffer(page);
944 }
945 
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)946 static void btree_invalidatepage(struct page *page, unsigned int offset,
947 				 unsigned int length)
948 {
949 	struct extent_io_tree *tree;
950 	tree = &BTRFS_I(page->mapping->host)->io_tree;
951 	extent_invalidatepage(tree, page, offset);
952 	btree_releasepage(page, GFP_NOFS);
953 	if (PagePrivate(page)) {
954 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
955 			   "page private not zero on page %llu",
956 			   (unsigned long long)page_offset(page));
957 		detach_page_private(page);
958 	}
959 }
960 
btree_set_page_dirty(struct page * page)961 static int btree_set_page_dirty(struct page *page)
962 {
963 #ifdef DEBUG
964 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
965 	struct btrfs_subpage *subpage;
966 	struct extent_buffer *eb;
967 	int cur_bit = 0;
968 	u64 page_start = page_offset(page);
969 
970 	if (fs_info->sectorsize == PAGE_SIZE) {
971 		BUG_ON(!PagePrivate(page));
972 		eb = (struct extent_buffer *)page->private;
973 		BUG_ON(!eb);
974 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
975 		BUG_ON(!atomic_read(&eb->refs));
976 		btrfs_assert_tree_locked(eb);
977 		return __set_page_dirty_nobuffers(page);
978 	}
979 	ASSERT(PagePrivate(page) && page->private);
980 	subpage = (struct btrfs_subpage *)page->private;
981 
982 	ASSERT(subpage->dirty_bitmap);
983 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
984 		unsigned long flags;
985 		u64 cur;
986 		u16 tmp = (1 << cur_bit);
987 
988 		spin_lock_irqsave(&subpage->lock, flags);
989 		if (!(tmp & subpage->dirty_bitmap)) {
990 			spin_unlock_irqrestore(&subpage->lock, flags);
991 			cur_bit++;
992 			continue;
993 		}
994 		spin_unlock_irqrestore(&subpage->lock, flags);
995 		cur = page_start + cur_bit * fs_info->sectorsize;
996 
997 		eb = find_extent_buffer(fs_info, cur);
998 		ASSERT(eb);
999 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1000 		ASSERT(atomic_read(&eb->refs));
1001 		btrfs_assert_tree_locked(eb);
1002 		free_extent_buffer(eb);
1003 
1004 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1005 	}
1006 #endif
1007 	return __set_page_dirty_nobuffers(page);
1008 }
1009 
1010 static const struct address_space_operations btree_aops = {
1011 	.writepages	= btree_writepages,
1012 	.releasepage	= btree_releasepage,
1013 	.invalidatepage = btree_invalidatepage,
1014 #ifdef CONFIG_MIGRATION
1015 	.migratepage	= btree_migratepage,
1016 #endif
1017 	.set_page_dirty = btree_set_page_dirty,
1018 };
1019 
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)1020 struct extent_buffer *btrfs_find_create_tree_block(
1021 						struct btrfs_fs_info *fs_info,
1022 						u64 bytenr, u64 owner_root,
1023 						int level)
1024 {
1025 	if (btrfs_is_testing(fs_info))
1026 		return alloc_test_extent_buffer(fs_info, bytenr);
1027 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1028 }
1029 
1030 /*
1031  * Read tree block at logical address @bytenr and do variant basic but critical
1032  * verification.
1033  *
1034  * @owner_root:		the objectid of the root owner for this block.
1035  * @parent_transid:	expected transid of this tree block, skip check if 0
1036  * @level:		expected level, mandatory check
1037  * @first_key:		expected key in slot 0, skip check if NULL
1038  */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 parent_transid,int level,struct btrfs_key * first_key)1039 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1040 				      u64 owner_root, u64 parent_transid,
1041 				      int level, struct btrfs_key *first_key)
1042 {
1043 	struct extent_buffer *buf = NULL;
1044 	int ret;
1045 
1046 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1047 	if (IS_ERR(buf))
1048 		return buf;
1049 
1050 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1051 					     level, first_key);
1052 	if (ret) {
1053 		free_extent_buffer_stale(buf);
1054 		return ERR_PTR(ret);
1055 	}
1056 	return buf;
1057 
1058 }
1059 
btrfs_clean_tree_block(struct extent_buffer * buf)1060 void btrfs_clean_tree_block(struct extent_buffer *buf)
1061 {
1062 	struct btrfs_fs_info *fs_info = buf->fs_info;
1063 	if (btrfs_header_generation(buf) ==
1064 	    fs_info->running_transaction->transid) {
1065 		btrfs_assert_tree_locked(buf);
1066 
1067 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1068 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1069 						 -buf->len,
1070 						 fs_info->dirty_metadata_batch);
1071 			clear_extent_buffer_dirty(buf);
1072 		}
1073 	}
1074 }
1075 
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1076 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1077 			 u64 objectid)
1078 {
1079 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1080 	root->fs_info = fs_info;
1081 	root->node = NULL;
1082 	root->commit_root = NULL;
1083 	root->state = 0;
1084 	root->orphan_cleanup_state = 0;
1085 
1086 	root->last_trans = 0;
1087 	root->free_objectid = 0;
1088 	root->nr_delalloc_inodes = 0;
1089 	root->nr_ordered_extents = 0;
1090 	root->inode_tree = RB_ROOT;
1091 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1092 	root->block_rsv = NULL;
1093 
1094 	INIT_LIST_HEAD(&root->dirty_list);
1095 	INIT_LIST_HEAD(&root->root_list);
1096 	INIT_LIST_HEAD(&root->delalloc_inodes);
1097 	INIT_LIST_HEAD(&root->delalloc_root);
1098 	INIT_LIST_HEAD(&root->ordered_extents);
1099 	INIT_LIST_HEAD(&root->ordered_root);
1100 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1101 	INIT_LIST_HEAD(&root->logged_list[0]);
1102 	INIT_LIST_HEAD(&root->logged_list[1]);
1103 	spin_lock_init(&root->inode_lock);
1104 	spin_lock_init(&root->delalloc_lock);
1105 	spin_lock_init(&root->ordered_extent_lock);
1106 	spin_lock_init(&root->accounting_lock);
1107 	spin_lock_init(&root->log_extents_lock[0]);
1108 	spin_lock_init(&root->log_extents_lock[1]);
1109 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1110 	mutex_init(&root->objectid_mutex);
1111 	mutex_init(&root->log_mutex);
1112 	mutex_init(&root->ordered_extent_mutex);
1113 	mutex_init(&root->delalloc_mutex);
1114 	init_waitqueue_head(&root->qgroup_flush_wait);
1115 	init_waitqueue_head(&root->log_writer_wait);
1116 	init_waitqueue_head(&root->log_commit_wait[0]);
1117 	init_waitqueue_head(&root->log_commit_wait[1]);
1118 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1119 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1120 	atomic_set(&root->log_commit[0], 0);
1121 	atomic_set(&root->log_commit[1], 0);
1122 	atomic_set(&root->log_writers, 0);
1123 	atomic_set(&root->log_batch, 0);
1124 	refcount_set(&root->refs, 1);
1125 	atomic_set(&root->snapshot_force_cow, 0);
1126 	atomic_set(&root->nr_swapfiles, 0);
1127 	root->log_transid = 0;
1128 	root->log_transid_committed = -1;
1129 	root->last_log_commit = 0;
1130 	if (!dummy) {
1131 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1132 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1133 		extent_io_tree_init(fs_info, &root->log_csum_range,
1134 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1135 	}
1136 
1137 	memset(&root->root_key, 0, sizeof(root->root_key));
1138 	memset(&root->root_item, 0, sizeof(root->root_item));
1139 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1140 	root->root_key.objectid = objectid;
1141 	root->anon_dev = 0;
1142 
1143 	spin_lock_init(&root->root_item_lock);
1144 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1145 #ifdef CONFIG_BTRFS_DEBUG
1146 	INIT_LIST_HEAD(&root->leak_list);
1147 	spin_lock(&fs_info->fs_roots_radix_lock);
1148 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1149 	spin_unlock(&fs_info->fs_roots_radix_lock);
1150 #endif
1151 }
1152 
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)1153 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1154 					   u64 objectid, gfp_t flags)
1155 {
1156 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1157 	if (root)
1158 		__setup_root(root, fs_info, objectid);
1159 	return root;
1160 }
1161 
1162 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1163 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1164 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1165 {
1166 	struct btrfs_root *root;
1167 
1168 	if (!fs_info)
1169 		return ERR_PTR(-EINVAL);
1170 
1171 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1172 	if (!root)
1173 		return ERR_PTR(-ENOMEM);
1174 
1175 	/* We don't use the stripesize in selftest, set it as sectorsize */
1176 	root->alloc_bytenr = 0;
1177 
1178 	return root;
1179 }
1180 #endif
1181 
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1182 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1183 				     u64 objectid)
1184 {
1185 	struct btrfs_fs_info *fs_info = trans->fs_info;
1186 	struct extent_buffer *leaf;
1187 	struct btrfs_root *tree_root = fs_info->tree_root;
1188 	struct btrfs_root *root;
1189 	struct btrfs_key key;
1190 	unsigned int nofs_flag;
1191 	int ret = 0;
1192 
1193 	/*
1194 	 * We're holding a transaction handle, so use a NOFS memory allocation
1195 	 * context to avoid deadlock if reclaim happens.
1196 	 */
1197 	nofs_flag = memalloc_nofs_save();
1198 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1199 	memalloc_nofs_restore(nofs_flag);
1200 	if (!root)
1201 		return ERR_PTR(-ENOMEM);
1202 
1203 	root->root_key.objectid = objectid;
1204 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1205 	root->root_key.offset = 0;
1206 
1207 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1208 				      BTRFS_NESTING_NORMAL);
1209 	if (IS_ERR(leaf)) {
1210 		ret = PTR_ERR(leaf);
1211 		leaf = NULL;
1212 		goto fail_unlock;
1213 	}
1214 
1215 	root->node = leaf;
1216 	btrfs_mark_buffer_dirty(leaf);
1217 
1218 	root->commit_root = btrfs_root_node(root);
1219 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1220 
1221 	btrfs_set_root_flags(&root->root_item, 0);
1222 	btrfs_set_root_limit(&root->root_item, 0);
1223 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1224 	btrfs_set_root_generation(&root->root_item, trans->transid);
1225 	btrfs_set_root_level(&root->root_item, 0);
1226 	btrfs_set_root_refs(&root->root_item, 1);
1227 	btrfs_set_root_used(&root->root_item, leaf->len);
1228 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1229 	btrfs_set_root_dirid(&root->root_item, 0);
1230 	if (is_fstree(objectid))
1231 		generate_random_guid(root->root_item.uuid);
1232 	else
1233 		export_guid(root->root_item.uuid, &guid_null);
1234 	btrfs_set_root_drop_level(&root->root_item, 0);
1235 
1236 	btrfs_tree_unlock(leaf);
1237 
1238 	key.objectid = objectid;
1239 	key.type = BTRFS_ROOT_ITEM_KEY;
1240 	key.offset = 0;
1241 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1242 	if (ret)
1243 		goto fail;
1244 
1245 	return root;
1246 
1247 fail_unlock:
1248 	if (leaf)
1249 		btrfs_tree_unlock(leaf);
1250 fail:
1251 	btrfs_put_root(root);
1252 
1253 	return ERR_PTR(ret);
1254 }
1255 
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1256 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1257 					 struct btrfs_fs_info *fs_info)
1258 {
1259 	struct btrfs_root *root;
1260 
1261 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1262 	if (!root)
1263 		return ERR_PTR(-ENOMEM);
1264 
1265 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1266 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1267 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1268 
1269 	return root;
1270 }
1271 
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)1272 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1273 			      struct btrfs_root *root)
1274 {
1275 	struct extent_buffer *leaf;
1276 
1277 	/*
1278 	 * DON'T set SHAREABLE bit for log trees.
1279 	 *
1280 	 * Log trees are not exposed to user space thus can't be snapshotted,
1281 	 * and they go away before a real commit is actually done.
1282 	 *
1283 	 * They do store pointers to file data extents, and those reference
1284 	 * counts still get updated (along with back refs to the log tree).
1285 	 */
1286 
1287 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1288 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1289 	if (IS_ERR(leaf))
1290 		return PTR_ERR(leaf);
1291 
1292 	root->node = leaf;
1293 
1294 	btrfs_mark_buffer_dirty(root->node);
1295 	btrfs_tree_unlock(root->node);
1296 
1297 	return 0;
1298 }
1299 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1300 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1301 			     struct btrfs_fs_info *fs_info)
1302 {
1303 	struct btrfs_root *log_root;
1304 
1305 	log_root = alloc_log_tree(trans, fs_info);
1306 	if (IS_ERR(log_root))
1307 		return PTR_ERR(log_root);
1308 
1309 	if (!btrfs_is_zoned(fs_info)) {
1310 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1311 
1312 		if (ret) {
1313 			btrfs_put_root(log_root);
1314 			return ret;
1315 		}
1316 	}
1317 
1318 	WARN_ON(fs_info->log_root_tree);
1319 	fs_info->log_root_tree = log_root;
1320 	return 0;
1321 }
1322 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1323 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1324 		       struct btrfs_root *root)
1325 {
1326 	struct btrfs_fs_info *fs_info = root->fs_info;
1327 	struct btrfs_root *log_root;
1328 	struct btrfs_inode_item *inode_item;
1329 	int ret;
1330 
1331 	log_root = alloc_log_tree(trans, fs_info);
1332 	if (IS_ERR(log_root))
1333 		return PTR_ERR(log_root);
1334 
1335 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1336 	if (ret) {
1337 		btrfs_put_root(log_root);
1338 		return ret;
1339 	}
1340 
1341 	log_root->last_trans = trans->transid;
1342 	log_root->root_key.offset = root->root_key.objectid;
1343 
1344 	inode_item = &log_root->root_item.inode;
1345 	btrfs_set_stack_inode_generation(inode_item, 1);
1346 	btrfs_set_stack_inode_size(inode_item, 3);
1347 	btrfs_set_stack_inode_nlink(inode_item, 1);
1348 	btrfs_set_stack_inode_nbytes(inode_item,
1349 				     fs_info->nodesize);
1350 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1351 
1352 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1353 
1354 	WARN_ON(root->log_root);
1355 	root->log_root = log_root;
1356 	root->log_transid = 0;
1357 	root->log_transid_committed = -1;
1358 	root->last_log_commit = 0;
1359 	return 0;
1360 }
1361 
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1362 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1363 					      struct btrfs_path *path,
1364 					      struct btrfs_key *key)
1365 {
1366 	struct btrfs_root *root;
1367 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1368 	u64 generation;
1369 	int ret;
1370 	int level;
1371 
1372 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1373 	if (!root)
1374 		return ERR_PTR(-ENOMEM);
1375 
1376 	ret = btrfs_find_root(tree_root, key, path,
1377 			      &root->root_item, &root->root_key);
1378 	if (ret) {
1379 		if (ret > 0)
1380 			ret = -ENOENT;
1381 		goto fail;
1382 	}
1383 
1384 	generation = btrfs_root_generation(&root->root_item);
1385 	level = btrfs_root_level(&root->root_item);
1386 	root->node = read_tree_block(fs_info,
1387 				     btrfs_root_bytenr(&root->root_item),
1388 				     key->objectid, generation, level, NULL);
1389 	if (IS_ERR(root->node)) {
1390 		ret = PTR_ERR(root->node);
1391 		root->node = NULL;
1392 		goto fail;
1393 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1394 		ret = -EIO;
1395 		goto fail;
1396 	}
1397 	root->commit_root = btrfs_root_node(root);
1398 	return root;
1399 fail:
1400 	btrfs_put_root(root);
1401 	return ERR_PTR(ret);
1402 }
1403 
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1404 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1405 					struct btrfs_key *key)
1406 {
1407 	struct btrfs_root *root;
1408 	struct btrfs_path *path;
1409 
1410 	path = btrfs_alloc_path();
1411 	if (!path)
1412 		return ERR_PTR(-ENOMEM);
1413 	root = read_tree_root_path(tree_root, path, key);
1414 	btrfs_free_path(path);
1415 
1416 	return root;
1417 }
1418 
1419 /*
1420  * Initialize subvolume root in-memory structure
1421  *
1422  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1423  */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1424 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1425 {
1426 	int ret;
1427 	unsigned int nofs_flag;
1428 
1429 	/*
1430 	 * We might be called under a transaction (e.g. indirect backref
1431 	 * resolution) which could deadlock if it triggers memory reclaim
1432 	 */
1433 	nofs_flag = memalloc_nofs_save();
1434 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1435 	memalloc_nofs_restore(nofs_flag);
1436 	if (ret)
1437 		goto fail;
1438 
1439 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1440 	    !btrfs_is_data_reloc_root(root) &&
1441 	    is_fstree(root->root_key.objectid)) {
1442 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1443 		btrfs_check_and_init_root_item(&root->root_item);
1444 	}
1445 
1446 	/*
1447 	 * Don't assign anonymous block device to roots that are not exposed to
1448 	 * userspace, the id pool is limited to 1M
1449 	 */
1450 	if (is_fstree(root->root_key.objectid) &&
1451 	    btrfs_root_refs(&root->root_item) > 0) {
1452 		if (!anon_dev) {
1453 			ret = get_anon_bdev(&root->anon_dev);
1454 			if (ret)
1455 				goto fail;
1456 		} else {
1457 			root->anon_dev = anon_dev;
1458 		}
1459 	}
1460 
1461 	mutex_lock(&root->objectid_mutex);
1462 	ret = btrfs_init_root_free_objectid(root);
1463 	if (ret) {
1464 		mutex_unlock(&root->objectid_mutex);
1465 		goto fail;
1466 	}
1467 
1468 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1469 
1470 	mutex_unlock(&root->objectid_mutex);
1471 
1472 	return 0;
1473 fail:
1474 	/* The caller is responsible to call btrfs_free_fs_root */
1475 	return ret;
1476 }
1477 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1478 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1479 					       u64 root_id)
1480 {
1481 	struct btrfs_root *root;
1482 
1483 	spin_lock(&fs_info->fs_roots_radix_lock);
1484 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1485 				 (unsigned long)root_id);
1486 	if (root)
1487 		root = btrfs_grab_root(root);
1488 	spin_unlock(&fs_info->fs_roots_radix_lock);
1489 	return root;
1490 }
1491 
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1492 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1493 						u64 objectid)
1494 {
1495 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1496 		return btrfs_grab_root(fs_info->tree_root);
1497 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1498 		return btrfs_grab_root(fs_info->extent_root);
1499 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1500 		return btrfs_grab_root(fs_info->chunk_root);
1501 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1502 		return btrfs_grab_root(fs_info->dev_root);
1503 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1504 		return btrfs_grab_root(fs_info->csum_root);
1505 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1506 		return btrfs_grab_root(fs_info->quota_root) ?
1507 			fs_info->quota_root : ERR_PTR(-ENOENT);
1508 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1509 		return btrfs_grab_root(fs_info->uuid_root) ?
1510 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1511 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1512 		return btrfs_grab_root(fs_info->free_space_root) ?
1513 			fs_info->free_space_root : ERR_PTR(-ENOENT);
1514 	return NULL;
1515 }
1516 
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1517 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1518 			 struct btrfs_root *root)
1519 {
1520 	int ret;
1521 
1522 	ret = radix_tree_preload(GFP_NOFS);
1523 	if (ret)
1524 		return ret;
1525 
1526 	spin_lock(&fs_info->fs_roots_radix_lock);
1527 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1528 				(unsigned long)root->root_key.objectid,
1529 				root);
1530 	if (ret == 0) {
1531 		btrfs_grab_root(root);
1532 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1533 	}
1534 	spin_unlock(&fs_info->fs_roots_radix_lock);
1535 	radix_tree_preload_end();
1536 
1537 	return ret;
1538 }
1539 
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1540 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1541 {
1542 #ifdef CONFIG_BTRFS_DEBUG
1543 	struct btrfs_root *root;
1544 
1545 	while (!list_empty(&fs_info->allocated_roots)) {
1546 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1547 
1548 		root = list_first_entry(&fs_info->allocated_roots,
1549 					struct btrfs_root, leak_list);
1550 		btrfs_err(fs_info, "leaked root %s refcount %d",
1551 			  btrfs_root_name(&root->root_key, buf),
1552 			  refcount_read(&root->refs));
1553 		while (refcount_read(&root->refs) > 1)
1554 			btrfs_put_root(root);
1555 		btrfs_put_root(root);
1556 	}
1557 #endif
1558 }
1559 
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1560 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1561 {
1562 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1563 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1564 	percpu_counter_destroy(&fs_info->ordered_bytes);
1565 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1566 	btrfs_free_csum_hash(fs_info);
1567 	btrfs_free_stripe_hash_table(fs_info);
1568 	btrfs_free_ref_cache(fs_info);
1569 	kfree(fs_info->balance_ctl);
1570 	kfree(fs_info->delayed_root);
1571 	btrfs_put_root(fs_info->extent_root);
1572 	btrfs_put_root(fs_info->tree_root);
1573 	btrfs_put_root(fs_info->chunk_root);
1574 	btrfs_put_root(fs_info->dev_root);
1575 	btrfs_put_root(fs_info->csum_root);
1576 	btrfs_put_root(fs_info->quota_root);
1577 	btrfs_put_root(fs_info->uuid_root);
1578 	btrfs_put_root(fs_info->free_space_root);
1579 	btrfs_put_root(fs_info->fs_root);
1580 	btrfs_put_root(fs_info->data_reloc_root);
1581 	btrfs_check_leaked_roots(fs_info);
1582 	btrfs_extent_buffer_leak_debug_check(fs_info);
1583 	kfree(fs_info->super_copy);
1584 	kfree(fs_info->super_for_commit);
1585 	kvfree(fs_info);
1586 }
1587 
1588 
1589 /*
1590  * Get an in-memory reference of a root structure.
1591  *
1592  * For essential trees like root/extent tree, we grab it from fs_info directly.
1593  * For subvolume trees, we check the cached filesystem roots first. If not
1594  * found, then read it from disk and add it to cached fs roots.
1595  *
1596  * Caller should release the root by calling btrfs_put_root() after the usage.
1597  *
1598  * NOTE: Reloc and log trees can't be read by this function as they share the
1599  *	 same root objectid.
1600  *
1601  * @objectid:	root id
1602  * @anon_dev:	preallocated anonymous block device number for new roots,
1603  * 		pass 0 for new allocation.
1604  * @check_ref:	whether to check root item references, If true, return -ENOENT
1605  *		for orphan roots
1606  */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev,bool check_ref)1607 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1608 					     u64 objectid, dev_t anon_dev,
1609 					     bool check_ref)
1610 {
1611 	struct btrfs_root *root;
1612 	struct btrfs_path *path;
1613 	struct btrfs_key key;
1614 	int ret;
1615 
1616 	root = btrfs_get_global_root(fs_info, objectid);
1617 	if (root)
1618 		return root;
1619 again:
1620 	root = btrfs_lookup_fs_root(fs_info, objectid);
1621 	if (root) {
1622 		/*
1623 		 * Some other caller may have read out the newly inserted
1624 		 * subvolume already (for things like backref walk etc).  Not
1625 		 * that common but still possible.  In that case, we just need
1626 		 * to free the anon_dev.
1627 		 */
1628 		if (unlikely(anon_dev)) {
1629 			free_anon_bdev(anon_dev);
1630 			anon_dev = 0;
1631 		}
1632 
1633 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1634 			btrfs_put_root(root);
1635 			return ERR_PTR(-ENOENT);
1636 		}
1637 		return root;
1638 	}
1639 
1640 	key.objectid = objectid;
1641 	key.type = BTRFS_ROOT_ITEM_KEY;
1642 	key.offset = (u64)-1;
1643 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1644 	if (IS_ERR(root))
1645 		return root;
1646 
1647 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1648 		ret = -ENOENT;
1649 		goto fail;
1650 	}
1651 
1652 	ret = btrfs_init_fs_root(root, anon_dev);
1653 	if (ret)
1654 		goto fail;
1655 
1656 	path = btrfs_alloc_path();
1657 	if (!path) {
1658 		ret = -ENOMEM;
1659 		goto fail;
1660 	}
1661 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1662 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1663 	key.offset = objectid;
1664 
1665 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1666 	btrfs_free_path(path);
1667 	if (ret < 0)
1668 		goto fail;
1669 	if (ret == 0)
1670 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1671 
1672 	ret = btrfs_insert_fs_root(fs_info, root);
1673 	if (ret) {
1674 		if (ret == -EEXIST) {
1675 			btrfs_put_root(root);
1676 			goto again;
1677 		}
1678 		goto fail;
1679 	}
1680 	return root;
1681 fail:
1682 	/*
1683 	 * If our caller provided us an anonymous device, then it's his
1684 	 * responsability to free it in case we fail. So we have to set our
1685 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1686 	 * and once again by our caller.
1687 	 */
1688 	if (anon_dev)
1689 		root->anon_dev = 0;
1690 	btrfs_put_root(root);
1691 	return ERR_PTR(ret);
1692 }
1693 
1694 /*
1695  * Get in-memory reference of a root structure
1696  *
1697  * @objectid:	tree objectid
1698  * @check_ref:	if set, verify that the tree exists and the item has at least
1699  *		one reference
1700  */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1701 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1702 				     u64 objectid, bool check_ref)
1703 {
1704 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1705 }
1706 
1707 /*
1708  * Get in-memory reference of a root structure, created as new, optionally pass
1709  * the anonymous block device id
1710  *
1711  * @objectid:	tree objectid
1712  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1713  *		parameter value
1714  */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev)1715 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1716 					 u64 objectid, dev_t anon_dev)
1717 {
1718 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1719 }
1720 
1721 /*
1722  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1723  * @fs_info:	the fs_info
1724  * @objectid:	the objectid we need to lookup
1725  *
1726  * This is exclusively used for backref walking, and exists specifically because
1727  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1728  * creation time, which means we may have to read the tree_root in order to look
1729  * up a fs root that is not in memory.  If the root is not in memory we will
1730  * read the tree root commit root and look up the fs root from there.  This is a
1731  * temporary root, it will not be inserted into the radix tree as it doesn't
1732  * have the most uptodate information, it'll simply be discarded once the
1733  * backref code is finished using the root.
1734  */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1735 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1736 						 struct btrfs_path *path,
1737 						 u64 objectid)
1738 {
1739 	struct btrfs_root *root;
1740 	struct btrfs_key key;
1741 
1742 	ASSERT(path->search_commit_root && path->skip_locking);
1743 
1744 	/*
1745 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1746 	 * since this is called via the backref walking code we won't be looking
1747 	 * up a root that doesn't exist, unless there's corruption.  So if root
1748 	 * != NULL just return it.
1749 	 */
1750 	root = btrfs_get_global_root(fs_info, objectid);
1751 	if (root)
1752 		return root;
1753 
1754 	root = btrfs_lookup_fs_root(fs_info, objectid);
1755 	if (root)
1756 		return root;
1757 
1758 	key.objectid = objectid;
1759 	key.type = BTRFS_ROOT_ITEM_KEY;
1760 	key.offset = (u64)-1;
1761 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1762 	btrfs_release_path(path);
1763 
1764 	return root;
1765 }
1766 
1767 /*
1768  * called by the kthread helper functions to finally call the bio end_io
1769  * functions.  This is where read checksum verification actually happens
1770  */
end_workqueue_fn(struct btrfs_work * work)1771 static void end_workqueue_fn(struct btrfs_work *work)
1772 {
1773 	struct bio *bio;
1774 	struct btrfs_end_io_wq *end_io_wq;
1775 
1776 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1777 	bio = end_io_wq->bio;
1778 
1779 	bio->bi_status = end_io_wq->status;
1780 	bio->bi_private = end_io_wq->private;
1781 	bio->bi_end_io = end_io_wq->end_io;
1782 	bio_endio(bio);
1783 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1784 }
1785 
cleaner_kthread(void * arg)1786 static int cleaner_kthread(void *arg)
1787 {
1788 	struct btrfs_root *root = arg;
1789 	struct btrfs_fs_info *fs_info = root->fs_info;
1790 	int again;
1791 
1792 	while (1) {
1793 		again = 0;
1794 
1795 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1796 
1797 		/* Make the cleaner go to sleep early. */
1798 		if (btrfs_need_cleaner_sleep(fs_info))
1799 			goto sleep;
1800 
1801 		/*
1802 		 * Do not do anything if we might cause open_ctree() to block
1803 		 * before we have finished mounting the filesystem.
1804 		 */
1805 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1806 			goto sleep;
1807 
1808 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1809 			goto sleep;
1810 
1811 		/*
1812 		 * Avoid the problem that we change the status of the fs
1813 		 * during the above check and trylock.
1814 		 */
1815 		if (btrfs_need_cleaner_sleep(fs_info)) {
1816 			mutex_unlock(&fs_info->cleaner_mutex);
1817 			goto sleep;
1818 		}
1819 
1820 		btrfs_run_delayed_iputs(fs_info);
1821 
1822 		again = btrfs_clean_one_deleted_snapshot(root);
1823 		mutex_unlock(&fs_info->cleaner_mutex);
1824 
1825 		/*
1826 		 * The defragger has dealt with the R/O remount and umount,
1827 		 * needn't do anything special here.
1828 		 */
1829 		btrfs_run_defrag_inodes(fs_info);
1830 
1831 		/*
1832 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1833 		 * with relocation (btrfs_relocate_chunk) and relocation
1834 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1835 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1836 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1837 		 * unused block groups.
1838 		 */
1839 		btrfs_delete_unused_bgs(fs_info);
1840 
1841 		/*
1842 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1843 		 * all unused block_groups. This possibly gives us some more free
1844 		 * space.
1845 		 */
1846 		btrfs_reclaim_bgs(fs_info);
1847 sleep:
1848 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1849 		if (kthread_should_park())
1850 			kthread_parkme();
1851 		if (kthread_should_stop())
1852 			return 0;
1853 		if (!again) {
1854 			set_current_state(TASK_INTERRUPTIBLE);
1855 			schedule();
1856 			__set_current_state(TASK_RUNNING);
1857 		}
1858 	}
1859 }
1860 
transaction_kthread(void * arg)1861 static int transaction_kthread(void *arg)
1862 {
1863 	struct btrfs_root *root = arg;
1864 	struct btrfs_fs_info *fs_info = root->fs_info;
1865 	struct btrfs_trans_handle *trans;
1866 	struct btrfs_transaction *cur;
1867 	u64 transid;
1868 	time64_t delta;
1869 	unsigned long delay;
1870 	bool cannot_commit;
1871 
1872 	do {
1873 		cannot_commit = false;
1874 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1875 		mutex_lock(&fs_info->transaction_kthread_mutex);
1876 
1877 		spin_lock(&fs_info->trans_lock);
1878 		cur = fs_info->running_transaction;
1879 		if (!cur) {
1880 			spin_unlock(&fs_info->trans_lock);
1881 			goto sleep;
1882 		}
1883 
1884 		delta = ktime_get_seconds() - cur->start_time;
1885 		if (cur->state < TRANS_STATE_COMMIT_START &&
1886 		    delta < fs_info->commit_interval) {
1887 			spin_unlock(&fs_info->trans_lock);
1888 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1889 			delay = min(delay,
1890 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1891 			goto sleep;
1892 		}
1893 		transid = cur->transid;
1894 		spin_unlock(&fs_info->trans_lock);
1895 
1896 		/* If the file system is aborted, this will always fail. */
1897 		trans = btrfs_attach_transaction(root);
1898 		if (IS_ERR(trans)) {
1899 			if (PTR_ERR(trans) != -ENOENT)
1900 				cannot_commit = true;
1901 			goto sleep;
1902 		}
1903 		if (transid == trans->transid) {
1904 			btrfs_commit_transaction(trans);
1905 		} else {
1906 			btrfs_end_transaction(trans);
1907 		}
1908 sleep:
1909 		wake_up_process(fs_info->cleaner_kthread);
1910 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1911 
1912 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1913 				      &fs_info->fs_state)))
1914 			btrfs_cleanup_transaction(fs_info);
1915 		if (!kthread_should_stop() &&
1916 				(!btrfs_transaction_blocked(fs_info) ||
1917 				 cannot_commit))
1918 			schedule_timeout_interruptible(delay);
1919 	} while (!kthread_should_stop());
1920 	return 0;
1921 }
1922 
1923 /*
1924  * This will find the highest generation in the array of root backups.  The
1925  * index of the highest array is returned, or -EINVAL if we can't find
1926  * anything.
1927  *
1928  * We check to make sure the array is valid by comparing the
1929  * generation of the latest  root in the array with the generation
1930  * in the super block.  If they don't match we pitch it.
1931  */
find_newest_super_backup(struct btrfs_fs_info * info)1932 static int find_newest_super_backup(struct btrfs_fs_info *info)
1933 {
1934 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1935 	u64 cur;
1936 	struct btrfs_root_backup *root_backup;
1937 	int i;
1938 
1939 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1940 		root_backup = info->super_copy->super_roots + i;
1941 		cur = btrfs_backup_tree_root_gen(root_backup);
1942 		if (cur == newest_gen)
1943 			return i;
1944 	}
1945 
1946 	return -EINVAL;
1947 }
1948 
1949 /*
1950  * copy all the root pointers into the super backup array.
1951  * this will bump the backup pointer by one when it is
1952  * done
1953  */
backup_super_roots(struct btrfs_fs_info * info)1954 static void backup_super_roots(struct btrfs_fs_info *info)
1955 {
1956 	const int next_backup = info->backup_root_index;
1957 	struct btrfs_root_backup *root_backup;
1958 
1959 	root_backup = info->super_for_commit->super_roots + next_backup;
1960 
1961 	/*
1962 	 * make sure all of our padding and empty slots get zero filled
1963 	 * regardless of which ones we use today
1964 	 */
1965 	memset(root_backup, 0, sizeof(*root_backup));
1966 
1967 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1968 
1969 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1970 	btrfs_set_backup_tree_root_gen(root_backup,
1971 			       btrfs_header_generation(info->tree_root->node));
1972 
1973 	btrfs_set_backup_tree_root_level(root_backup,
1974 			       btrfs_header_level(info->tree_root->node));
1975 
1976 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1977 	btrfs_set_backup_chunk_root_gen(root_backup,
1978 			       btrfs_header_generation(info->chunk_root->node));
1979 	btrfs_set_backup_chunk_root_level(root_backup,
1980 			       btrfs_header_level(info->chunk_root->node));
1981 
1982 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1983 	btrfs_set_backup_extent_root_gen(root_backup,
1984 			       btrfs_header_generation(info->extent_root->node));
1985 	btrfs_set_backup_extent_root_level(root_backup,
1986 			       btrfs_header_level(info->extent_root->node));
1987 
1988 	/*
1989 	 * we might commit during log recovery, which happens before we set
1990 	 * the fs_root.  Make sure it is valid before we fill it in.
1991 	 */
1992 	if (info->fs_root && info->fs_root->node) {
1993 		btrfs_set_backup_fs_root(root_backup,
1994 					 info->fs_root->node->start);
1995 		btrfs_set_backup_fs_root_gen(root_backup,
1996 			       btrfs_header_generation(info->fs_root->node));
1997 		btrfs_set_backup_fs_root_level(root_backup,
1998 			       btrfs_header_level(info->fs_root->node));
1999 	}
2000 
2001 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2002 	btrfs_set_backup_dev_root_gen(root_backup,
2003 			       btrfs_header_generation(info->dev_root->node));
2004 	btrfs_set_backup_dev_root_level(root_backup,
2005 				       btrfs_header_level(info->dev_root->node));
2006 
2007 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2008 	btrfs_set_backup_csum_root_gen(root_backup,
2009 			       btrfs_header_generation(info->csum_root->node));
2010 	btrfs_set_backup_csum_root_level(root_backup,
2011 			       btrfs_header_level(info->csum_root->node));
2012 
2013 	btrfs_set_backup_total_bytes(root_backup,
2014 			     btrfs_super_total_bytes(info->super_copy));
2015 	btrfs_set_backup_bytes_used(root_backup,
2016 			     btrfs_super_bytes_used(info->super_copy));
2017 	btrfs_set_backup_num_devices(root_backup,
2018 			     btrfs_super_num_devices(info->super_copy));
2019 
2020 	/*
2021 	 * if we don't copy this out to the super_copy, it won't get remembered
2022 	 * for the next commit
2023 	 */
2024 	memcpy(&info->super_copy->super_roots,
2025 	       &info->super_for_commit->super_roots,
2026 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2027 }
2028 
2029 /*
2030  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2031  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2032  *
2033  * fs_info - filesystem whose backup roots need to be read
2034  * priority - priority of backup root required
2035  *
2036  * Returns backup root index on success and -EINVAL otherwise.
2037  */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)2038 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2039 {
2040 	int backup_index = find_newest_super_backup(fs_info);
2041 	struct btrfs_super_block *super = fs_info->super_copy;
2042 	struct btrfs_root_backup *root_backup;
2043 
2044 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2045 		if (priority == 0)
2046 			return backup_index;
2047 
2048 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2049 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2050 	} else {
2051 		return -EINVAL;
2052 	}
2053 
2054 	root_backup = super->super_roots + backup_index;
2055 
2056 	btrfs_set_super_generation(super,
2057 				   btrfs_backup_tree_root_gen(root_backup));
2058 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2059 	btrfs_set_super_root_level(super,
2060 				   btrfs_backup_tree_root_level(root_backup));
2061 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2062 
2063 	/*
2064 	 * Fixme: the total bytes and num_devices need to match or we should
2065 	 * need a fsck
2066 	 */
2067 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2068 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2069 
2070 	return backup_index;
2071 }
2072 
2073 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2074 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2075 {
2076 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2077 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2078 	btrfs_destroy_workqueue(fs_info->workers);
2079 	btrfs_destroy_workqueue(fs_info->endio_workers);
2080 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2081 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2082 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2083 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2084 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2085 	btrfs_destroy_workqueue(fs_info->caching_workers);
2086 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2087 	btrfs_destroy_workqueue(fs_info->flush_workers);
2088 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2089 	if (fs_info->discard_ctl.discard_workers)
2090 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2091 	/*
2092 	 * Now that all other work queues are destroyed, we can safely destroy
2093 	 * the queues used for metadata I/O, since tasks from those other work
2094 	 * queues can do metadata I/O operations.
2095 	 */
2096 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2097 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2098 }
2099 
free_root_extent_buffers(struct btrfs_root * root)2100 static void free_root_extent_buffers(struct btrfs_root *root)
2101 {
2102 	if (root) {
2103 		free_extent_buffer(root->node);
2104 		free_extent_buffer(root->commit_root);
2105 		root->node = NULL;
2106 		root->commit_root = NULL;
2107 	}
2108 }
2109 
2110 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2111 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2112 {
2113 	free_root_extent_buffers(info->tree_root);
2114 
2115 	free_root_extent_buffers(info->dev_root);
2116 	free_root_extent_buffers(info->extent_root);
2117 	free_root_extent_buffers(info->csum_root);
2118 	free_root_extent_buffers(info->quota_root);
2119 	free_root_extent_buffers(info->uuid_root);
2120 	free_root_extent_buffers(info->fs_root);
2121 	free_root_extent_buffers(info->data_reloc_root);
2122 	if (free_chunk_root)
2123 		free_root_extent_buffers(info->chunk_root);
2124 	free_root_extent_buffers(info->free_space_root);
2125 }
2126 
btrfs_put_root(struct btrfs_root * root)2127 void btrfs_put_root(struct btrfs_root *root)
2128 {
2129 	if (!root)
2130 		return;
2131 
2132 	if (refcount_dec_and_test(&root->refs)) {
2133 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2134 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2135 		if (root->anon_dev)
2136 			free_anon_bdev(root->anon_dev);
2137 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2138 		free_root_extent_buffers(root);
2139 #ifdef CONFIG_BTRFS_DEBUG
2140 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2141 		list_del_init(&root->leak_list);
2142 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2143 #endif
2144 		kfree(root);
2145 	}
2146 }
2147 
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2148 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2149 {
2150 	int ret;
2151 	struct btrfs_root *gang[8];
2152 	int i;
2153 
2154 	while (!list_empty(&fs_info->dead_roots)) {
2155 		gang[0] = list_entry(fs_info->dead_roots.next,
2156 				     struct btrfs_root, root_list);
2157 		list_del(&gang[0]->root_list);
2158 
2159 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2160 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2161 		btrfs_put_root(gang[0]);
2162 	}
2163 
2164 	while (1) {
2165 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2166 					     (void **)gang, 0,
2167 					     ARRAY_SIZE(gang));
2168 		if (!ret)
2169 			break;
2170 		for (i = 0; i < ret; i++)
2171 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2172 	}
2173 }
2174 
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2175 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2176 {
2177 	mutex_init(&fs_info->scrub_lock);
2178 	atomic_set(&fs_info->scrubs_running, 0);
2179 	atomic_set(&fs_info->scrub_pause_req, 0);
2180 	atomic_set(&fs_info->scrubs_paused, 0);
2181 	atomic_set(&fs_info->scrub_cancel_req, 0);
2182 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2183 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2184 }
2185 
btrfs_init_balance(struct btrfs_fs_info * fs_info)2186 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2187 {
2188 	spin_lock_init(&fs_info->balance_lock);
2189 	mutex_init(&fs_info->balance_mutex);
2190 	atomic_set(&fs_info->balance_pause_req, 0);
2191 	atomic_set(&fs_info->balance_cancel_req, 0);
2192 	fs_info->balance_ctl = NULL;
2193 	init_waitqueue_head(&fs_info->balance_wait_q);
2194 	atomic_set(&fs_info->reloc_cancel_req, 0);
2195 }
2196 
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2197 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2198 {
2199 	struct inode *inode = fs_info->btree_inode;
2200 
2201 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2202 	set_nlink(inode, 1);
2203 	/*
2204 	 * we set the i_size on the btree inode to the max possible int.
2205 	 * the real end of the address space is determined by all of
2206 	 * the devices in the system
2207 	 */
2208 	inode->i_size = OFFSET_MAX;
2209 	inode->i_mapping->a_ops = &btree_aops;
2210 
2211 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2212 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2213 			    IO_TREE_BTREE_INODE_IO, inode);
2214 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2215 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2216 
2217 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2218 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2219 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2220 	btrfs_insert_inode_hash(inode);
2221 }
2222 
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2223 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2224 {
2225 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2226 	init_rwsem(&fs_info->dev_replace.rwsem);
2227 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2228 }
2229 
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2230 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2231 {
2232 	spin_lock_init(&fs_info->qgroup_lock);
2233 	mutex_init(&fs_info->qgroup_ioctl_lock);
2234 	fs_info->qgroup_tree = RB_ROOT;
2235 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2236 	fs_info->qgroup_seq = 1;
2237 	fs_info->qgroup_ulist = NULL;
2238 	fs_info->qgroup_rescan_running = false;
2239 	mutex_init(&fs_info->qgroup_rescan_lock);
2240 }
2241 
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2242 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2243 		struct btrfs_fs_devices *fs_devices)
2244 {
2245 	u32 max_active = fs_info->thread_pool_size;
2246 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2247 
2248 	fs_info->workers =
2249 		btrfs_alloc_workqueue(fs_info, "worker",
2250 				      flags | WQ_HIGHPRI, max_active, 16);
2251 
2252 	fs_info->delalloc_workers =
2253 		btrfs_alloc_workqueue(fs_info, "delalloc",
2254 				      flags, max_active, 2);
2255 
2256 	fs_info->flush_workers =
2257 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2258 				      flags, max_active, 0);
2259 
2260 	fs_info->caching_workers =
2261 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2262 
2263 	fs_info->fixup_workers =
2264 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2265 
2266 	/*
2267 	 * endios are largely parallel and should have a very
2268 	 * low idle thresh
2269 	 */
2270 	fs_info->endio_workers =
2271 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2272 	fs_info->endio_meta_workers =
2273 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2274 				      max_active, 4);
2275 	fs_info->endio_meta_write_workers =
2276 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2277 				      max_active, 2);
2278 	fs_info->endio_raid56_workers =
2279 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2280 				      max_active, 4);
2281 	fs_info->rmw_workers =
2282 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2283 	fs_info->endio_write_workers =
2284 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2285 				      max_active, 2);
2286 	fs_info->endio_freespace_worker =
2287 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2288 				      max_active, 0);
2289 	fs_info->delayed_workers =
2290 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2291 				      max_active, 0);
2292 	fs_info->readahead_workers =
2293 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2294 				      max_active, 2);
2295 	fs_info->qgroup_rescan_workers =
2296 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2297 	fs_info->discard_ctl.discard_workers =
2298 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2299 
2300 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2301 	      fs_info->flush_workers &&
2302 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2303 	      fs_info->endio_meta_write_workers &&
2304 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2305 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2306 	      fs_info->caching_workers && fs_info->readahead_workers &&
2307 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2308 	      fs_info->qgroup_rescan_workers &&
2309 	      fs_info->discard_ctl.discard_workers)) {
2310 		return -ENOMEM;
2311 	}
2312 
2313 	return 0;
2314 }
2315 
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2316 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2317 {
2318 	struct crypto_shash *csum_shash;
2319 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2320 
2321 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2322 
2323 	if (IS_ERR(csum_shash)) {
2324 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2325 			  csum_driver);
2326 		return PTR_ERR(csum_shash);
2327 	}
2328 
2329 	fs_info->csum_shash = csum_shash;
2330 
2331 	/*
2332 	 * Check if the checksum implementation is a fast accelerated one.
2333 	 * As-is this is a bit of a hack and should be replaced once the csum
2334 	 * implementations provide that information themselves.
2335 	 */
2336 	switch (csum_type) {
2337 	case BTRFS_CSUM_TYPE_CRC32:
2338 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2339 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2340 		break;
2341 	default:
2342 		break;
2343 	}
2344 
2345 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2346 			btrfs_super_csum_name(csum_type),
2347 			crypto_shash_driver_name(csum_shash));
2348 	return 0;
2349 }
2350 
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2351 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2352 			    struct btrfs_fs_devices *fs_devices)
2353 {
2354 	int ret;
2355 	struct btrfs_root *log_tree_root;
2356 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2357 	u64 bytenr = btrfs_super_log_root(disk_super);
2358 	int level = btrfs_super_log_root_level(disk_super);
2359 
2360 	if (fs_devices->rw_devices == 0) {
2361 		btrfs_warn(fs_info, "log replay required on RO media");
2362 		return -EIO;
2363 	}
2364 
2365 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2366 					 GFP_KERNEL);
2367 	if (!log_tree_root)
2368 		return -ENOMEM;
2369 
2370 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2371 					      BTRFS_TREE_LOG_OBJECTID,
2372 					      fs_info->generation + 1, level,
2373 					      NULL);
2374 	if (IS_ERR(log_tree_root->node)) {
2375 		btrfs_warn(fs_info, "failed to read log tree");
2376 		ret = PTR_ERR(log_tree_root->node);
2377 		log_tree_root->node = NULL;
2378 		btrfs_put_root(log_tree_root);
2379 		return ret;
2380 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2381 		btrfs_err(fs_info, "failed to read log tree");
2382 		btrfs_put_root(log_tree_root);
2383 		return -EIO;
2384 	}
2385 	/* returns with log_tree_root freed on success */
2386 	ret = btrfs_recover_log_trees(log_tree_root);
2387 	if (ret) {
2388 		btrfs_handle_fs_error(fs_info, ret,
2389 				      "Failed to recover log tree");
2390 		btrfs_put_root(log_tree_root);
2391 		return ret;
2392 	}
2393 
2394 	if (sb_rdonly(fs_info->sb)) {
2395 		ret = btrfs_commit_super(fs_info);
2396 		if (ret)
2397 			return ret;
2398 	}
2399 
2400 	return 0;
2401 }
2402 
btrfs_read_roots(struct btrfs_fs_info * fs_info)2403 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2404 {
2405 	struct btrfs_root *tree_root = fs_info->tree_root;
2406 	struct btrfs_root *root;
2407 	struct btrfs_key location;
2408 	int ret;
2409 
2410 	BUG_ON(!fs_info->tree_root);
2411 
2412 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2413 	location.type = BTRFS_ROOT_ITEM_KEY;
2414 	location.offset = 0;
2415 
2416 	root = btrfs_read_tree_root(tree_root, &location);
2417 	if (IS_ERR(root)) {
2418 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2419 			ret = PTR_ERR(root);
2420 			goto out;
2421 		}
2422 	} else {
2423 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2424 		fs_info->extent_root = root;
2425 	}
2426 
2427 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2428 	root = btrfs_read_tree_root(tree_root, &location);
2429 	if (IS_ERR(root)) {
2430 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2431 			ret = PTR_ERR(root);
2432 			goto out;
2433 		}
2434 	} else {
2435 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2436 		fs_info->dev_root = root;
2437 	}
2438 	/* Initialize fs_info for all devices in any case */
2439 	ret = btrfs_init_devices_late(fs_info);
2440 	if (ret)
2441 		goto out;
2442 
2443 	/* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2444 	if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2445 		location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2446 		root = btrfs_read_tree_root(tree_root, &location);
2447 		if (IS_ERR(root)) {
2448 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2449 				ret = PTR_ERR(root);
2450 				goto out;
2451 			}
2452 		} else {
2453 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2454 			fs_info->csum_root = root;
2455 		}
2456 	}
2457 
2458 	/*
2459 	 * This tree can share blocks with some other fs tree during relocation
2460 	 * and we need a proper setup by btrfs_get_fs_root
2461 	 */
2462 	root = btrfs_get_fs_root(tree_root->fs_info,
2463 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2464 	if (IS_ERR(root)) {
2465 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2466 			ret = PTR_ERR(root);
2467 			goto out;
2468 		}
2469 	} else {
2470 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2471 		fs_info->data_reloc_root = root;
2472 	}
2473 
2474 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2475 	root = btrfs_read_tree_root(tree_root, &location);
2476 	if (!IS_ERR(root)) {
2477 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2478 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2479 		fs_info->quota_root = root;
2480 	}
2481 
2482 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2483 	root = btrfs_read_tree_root(tree_root, &location);
2484 	if (IS_ERR(root)) {
2485 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2486 			ret = PTR_ERR(root);
2487 			if (ret != -ENOENT)
2488 				goto out;
2489 		}
2490 	} else {
2491 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2492 		fs_info->uuid_root = root;
2493 	}
2494 
2495 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2496 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2497 		root = btrfs_read_tree_root(tree_root, &location);
2498 		if (IS_ERR(root)) {
2499 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2500 				ret = PTR_ERR(root);
2501 				goto out;
2502 			}
2503 		}  else {
2504 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2505 			fs_info->free_space_root = root;
2506 		}
2507 	}
2508 
2509 	return 0;
2510 out:
2511 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2512 		   location.objectid, ret);
2513 	return ret;
2514 }
2515 
2516 /*
2517  * Real super block validation
2518  * NOTE: super csum type and incompat features will not be checked here.
2519  *
2520  * @sb:		super block to check
2521  * @mirror_num:	the super block number to check its bytenr:
2522  * 		0	the primary (1st) sb
2523  * 		1, 2	2nd and 3rd backup copy
2524  * 	       -1	skip bytenr check
2525  */
btrfs_validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2526 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2527 			 struct btrfs_super_block *sb, int mirror_num)
2528 {
2529 	u64 nodesize = btrfs_super_nodesize(sb);
2530 	u64 sectorsize = btrfs_super_sectorsize(sb);
2531 	int ret = 0;
2532 
2533 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2534 		btrfs_err(fs_info, "no valid FS found");
2535 		ret = -EINVAL;
2536 	}
2537 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2538 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2539 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2540 		ret = -EINVAL;
2541 	}
2542 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2543 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2544 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2545 		ret = -EINVAL;
2546 	}
2547 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2548 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2549 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2550 		ret = -EINVAL;
2551 	}
2552 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2553 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2554 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2555 		ret = -EINVAL;
2556 	}
2557 
2558 	/*
2559 	 * Check sectorsize and nodesize first, other check will need it.
2560 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2561 	 */
2562 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2563 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2564 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2565 		ret = -EINVAL;
2566 	}
2567 
2568 	/*
2569 	 * For 4K page size, we only support 4K sector size.
2570 	 * For 64K page size, we support read-write for 64K sector size, and
2571 	 * read-only for 4K sector size.
2572 	 */
2573 	if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2574 	    (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2575 				     sectorsize != SZ_64K))) {
2576 		btrfs_err(fs_info,
2577 			"sectorsize %llu not yet supported for page size %lu",
2578 			sectorsize, PAGE_SIZE);
2579 		ret = -EINVAL;
2580 	}
2581 
2582 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2583 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2584 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2585 		ret = -EINVAL;
2586 	}
2587 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2588 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2589 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2590 		ret = -EINVAL;
2591 	}
2592 
2593 	/* Root alignment check */
2594 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2595 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2596 			   btrfs_super_root(sb));
2597 		ret = -EINVAL;
2598 	}
2599 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2600 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2601 			   btrfs_super_chunk_root(sb));
2602 		ret = -EINVAL;
2603 	}
2604 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2605 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2606 			   btrfs_super_log_root(sb));
2607 		ret = -EINVAL;
2608 	}
2609 
2610 	if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2611 		btrfs_err(fs_info,
2612 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2613 			  sb->fsid, fs_info->fs_devices->fsid);
2614 		ret = -EINVAL;
2615 	}
2616 
2617 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2618 		   BTRFS_FSID_SIZE) != 0) {
2619 		btrfs_err(fs_info,
2620 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2621 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2622 		ret = -EINVAL;
2623 	}
2624 
2625 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2626 		   BTRFS_FSID_SIZE) != 0) {
2627 		btrfs_err(fs_info,
2628 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2629 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2630 		ret = -EINVAL;
2631 	}
2632 
2633 	/*
2634 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2635 	 * done later
2636 	 */
2637 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2638 		btrfs_err(fs_info, "bytes_used is too small %llu",
2639 			  btrfs_super_bytes_used(sb));
2640 		ret = -EINVAL;
2641 	}
2642 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2643 		btrfs_err(fs_info, "invalid stripesize %u",
2644 			  btrfs_super_stripesize(sb));
2645 		ret = -EINVAL;
2646 	}
2647 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2648 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2649 			   btrfs_super_num_devices(sb));
2650 	if (btrfs_super_num_devices(sb) == 0) {
2651 		btrfs_err(fs_info, "number of devices is 0");
2652 		ret = -EINVAL;
2653 	}
2654 
2655 	if (mirror_num >= 0 &&
2656 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2657 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2658 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2659 		ret = -EINVAL;
2660 	}
2661 
2662 	/*
2663 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2664 	 * and one chunk
2665 	 */
2666 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2667 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2668 			  btrfs_super_sys_array_size(sb),
2669 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2670 		ret = -EINVAL;
2671 	}
2672 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2673 			+ sizeof(struct btrfs_chunk)) {
2674 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2675 			  btrfs_super_sys_array_size(sb),
2676 			  sizeof(struct btrfs_disk_key)
2677 			  + sizeof(struct btrfs_chunk));
2678 		ret = -EINVAL;
2679 	}
2680 
2681 	/*
2682 	 * The generation is a global counter, we'll trust it more than the others
2683 	 * but it's still possible that it's the one that's wrong.
2684 	 */
2685 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2686 		btrfs_warn(fs_info,
2687 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2688 			btrfs_super_generation(sb),
2689 			btrfs_super_chunk_root_generation(sb));
2690 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2691 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2692 		btrfs_warn(fs_info,
2693 			"suspicious: generation < cache_generation: %llu < %llu",
2694 			btrfs_super_generation(sb),
2695 			btrfs_super_cache_generation(sb));
2696 
2697 	return ret;
2698 }
2699 
2700 /*
2701  * Validation of super block at mount time.
2702  * Some checks already done early at mount time, like csum type and incompat
2703  * flags will be skipped.
2704  */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2705 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2706 {
2707 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2708 }
2709 
2710 /*
2711  * Validation of super block at write time.
2712  * Some checks like bytenr check will be skipped as their values will be
2713  * overwritten soon.
2714  * Extra checks like csum type and incompat flags will be done here.
2715  */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2716 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2717 				      struct btrfs_super_block *sb)
2718 {
2719 	int ret;
2720 
2721 	ret = btrfs_validate_super(fs_info, sb, -1);
2722 	if (ret < 0)
2723 		goto out;
2724 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2725 		ret = -EUCLEAN;
2726 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2727 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2728 		goto out;
2729 	}
2730 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2731 		ret = -EUCLEAN;
2732 		btrfs_err(fs_info,
2733 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2734 			  btrfs_super_incompat_flags(sb),
2735 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2736 		goto out;
2737 	}
2738 out:
2739 	if (ret < 0)
2740 		btrfs_err(fs_info,
2741 		"super block corruption detected before writing it to disk");
2742 	return ret;
2743 }
2744 
init_tree_roots(struct btrfs_fs_info * fs_info)2745 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2746 {
2747 	int backup_index = find_newest_super_backup(fs_info);
2748 	struct btrfs_super_block *sb = fs_info->super_copy;
2749 	struct btrfs_root *tree_root = fs_info->tree_root;
2750 	bool handle_error = false;
2751 	int ret = 0;
2752 	int i;
2753 
2754 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2755 		u64 generation;
2756 		int level;
2757 
2758 		if (handle_error) {
2759 			if (!IS_ERR(tree_root->node))
2760 				free_extent_buffer(tree_root->node);
2761 			tree_root->node = NULL;
2762 
2763 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2764 				break;
2765 
2766 			free_root_pointers(fs_info, 0);
2767 
2768 			/*
2769 			 * Don't use the log in recovery mode, it won't be
2770 			 * valid
2771 			 */
2772 			btrfs_set_super_log_root(sb, 0);
2773 
2774 			/* We can't trust the free space cache either */
2775 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2776 
2777 			ret = read_backup_root(fs_info, i);
2778 			backup_index = ret;
2779 			if (ret < 0)
2780 				return ret;
2781 		}
2782 		generation = btrfs_super_generation(sb);
2783 		level = btrfs_super_root_level(sb);
2784 		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2785 						  BTRFS_ROOT_TREE_OBJECTID,
2786 						  generation, level, NULL);
2787 		if (IS_ERR(tree_root->node)) {
2788 			handle_error = true;
2789 			ret = PTR_ERR(tree_root->node);
2790 			tree_root->node = NULL;
2791 			btrfs_warn(fs_info, "couldn't read tree root");
2792 			continue;
2793 
2794 		} else if (!extent_buffer_uptodate(tree_root->node)) {
2795 			handle_error = true;
2796 			ret = -EIO;
2797 			btrfs_warn(fs_info, "error while reading tree root");
2798 			continue;
2799 		}
2800 
2801 		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2802 		tree_root->commit_root = btrfs_root_node(tree_root);
2803 		btrfs_set_root_refs(&tree_root->root_item, 1);
2804 
2805 		/*
2806 		 * No need to hold btrfs_root::objectid_mutex since the fs
2807 		 * hasn't been fully initialised and we are the only user
2808 		 */
2809 		ret = btrfs_init_root_free_objectid(tree_root);
2810 		if (ret < 0) {
2811 			handle_error = true;
2812 			continue;
2813 		}
2814 
2815 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2816 
2817 		ret = btrfs_read_roots(fs_info);
2818 		if (ret < 0) {
2819 			handle_error = true;
2820 			continue;
2821 		}
2822 
2823 		/* All successful */
2824 		fs_info->generation = generation;
2825 		fs_info->last_trans_committed = generation;
2826 		fs_info->last_reloc_trans = 0;
2827 
2828 		/* Always begin writing backup roots after the one being used */
2829 		if (backup_index < 0) {
2830 			fs_info->backup_root_index = 0;
2831 		} else {
2832 			fs_info->backup_root_index = backup_index + 1;
2833 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2834 		}
2835 		break;
2836 	}
2837 
2838 	return ret;
2839 }
2840 
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2841 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2842 {
2843 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2844 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2845 	INIT_LIST_HEAD(&fs_info->trans_list);
2846 	INIT_LIST_HEAD(&fs_info->dead_roots);
2847 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2848 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2849 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2850 	spin_lock_init(&fs_info->delalloc_root_lock);
2851 	spin_lock_init(&fs_info->trans_lock);
2852 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2853 	spin_lock_init(&fs_info->delayed_iput_lock);
2854 	spin_lock_init(&fs_info->defrag_inodes_lock);
2855 	spin_lock_init(&fs_info->super_lock);
2856 	spin_lock_init(&fs_info->buffer_lock);
2857 	spin_lock_init(&fs_info->unused_bgs_lock);
2858 	spin_lock_init(&fs_info->treelog_bg_lock);
2859 	spin_lock_init(&fs_info->relocation_bg_lock);
2860 	rwlock_init(&fs_info->tree_mod_log_lock);
2861 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2862 	mutex_init(&fs_info->reclaim_bgs_lock);
2863 	mutex_init(&fs_info->reloc_mutex);
2864 	mutex_init(&fs_info->delalloc_root_mutex);
2865 	mutex_init(&fs_info->zoned_meta_io_lock);
2866 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2867 	seqlock_init(&fs_info->profiles_lock);
2868 
2869 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2870 	INIT_LIST_HEAD(&fs_info->space_info);
2871 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2872 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2873 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2874 #ifdef CONFIG_BTRFS_DEBUG
2875 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2876 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2877 	spin_lock_init(&fs_info->eb_leak_lock);
2878 #endif
2879 	extent_map_tree_init(&fs_info->mapping_tree);
2880 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2881 			     BTRFS_BLOCK_RSV_GLOBAL);
2882 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2883 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2884 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2885 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2886 			     BTRFS_BLOCK_RSV_DELOPS);
2887 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2888 			     BTRFS_BLOCK_RSV_DELREFS);
2889 
2890 	atomic_set(&fs_info->async_delalloc_pages, 0);
2891 	atomic_set(&fs_info->defrag_running, 0);
2892 	atomic_set(&fs_info->reada_works_cnt, 0);
2893 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2894 	atomic64_set(&fs_info->tree_mod_seq, 0);
2895 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2896 	fs_info->metadata_ratio = 0;
2897 	fs_info->defrag_inodes = RB_ROOT;
2898 	atomic64_set(&fs_info->free_chunk_space, 0);
2899 	fs_info->tree_mod_log = RB_ROOT;
2900 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2901 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2902 	/* readahead state */
2903 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2904 	spin_lock_init(&fs_info->reada_lock);
2905 	btrfs_init_ref_verify(fs_info);
2906 
2907 	fs_info->thread_pool_size = min_t(unsigned long,
2908 					  num_online_cpus() + 2, 8);
2909 
2910 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2911 	spin_lock_init(&fs_info->ordered_root_lock);
2912 
2913 	btrfs_init_scrub(fs_info);
2914 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2915 	fs_info->check_integrity_print_mask = 0;
2916 #endif
2917 	btrfs_init_balance(fs_info);
2918 	btrfs_init_async_reclaim_work(fs_info);
2919 
2920 	spin_lock_init(&fs_info->block_group_cache_lock);
2921 	fs_info->block_group_cache_tree = RB_ROOT;
2922 	fs_info->first_logical_byte = (u64)-1;
2923 
2924 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2925 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2926 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2927 
2928 	mutex_init(&fs_info->ordered_operations_mutex);
2929 	mutex_init(&fs_info->tree_log_mutex);
2930 	mutex_init(&fs_info->chunk_mutex);
2931 	mutex_init(&fs_info->transaction_kthread_mutex);
2932 	mutex_init(&fs_info->cleaner_mutex);
2933 	mutex_init(&fs_info->ro_block_group_mutex);
2934 	init_rwsem(&fs_info->commit_root_sem);
2935 	init_rwsem(&fs_info->cleanup_work_sem);
2936 	init_rwsem(&fs_info->subvol_sem);
2937 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2938 
2939 	btrfs_init_dev_replace_locks(fs_info);
2940 	btrfs_init_qgroup(fs_info);
2941 	btrfs_discard_init(fs_info);
2942 
2943 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2944 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2945 
2946 	init_waitqueue_head(&fs_info->transaction_throttle);
2947 	init_waitqueue_head(&fs_info->transaction_wait);
2948 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2949 	init_waitqueue_head(&fs_info->async_submit_wait);
2950 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2951 
2952 	/* Usable values until the real ones are cached from the superblock */
2953 	fs_info->nodesize = 4096;
2954 	fs_info->sectorsize = 4096;
2955 	fs_info->sectorsize_bits = ilog2(4096);
2956 	fs_info->stripesize = 4096;
2957 
2958 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2959 
2960 	spin_lock_init(&fs_info->swapfile_pins_lock);
2961 	fs_info->swapfile_pins = RB_ROOT;
2962 
2963 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2964 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2965 }
2966 
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2967 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2968 {
2969 	int ret;
2970 
2971 	fs_info->sb = sb;
2972 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2973 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2974 
2975 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2976 	if (ret)
2977 		return ret;
2978 
2979 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2980 	if (ret)
2981 		return ret;
2982 
2983 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2984 					(1 + ilog2(nr_cpu_ids));
2985 
2986 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2987 	if (ret)
2988 		return ret;
2989 
2990 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2991 			GFP_KERNEL);
2992 	if (ret)
2993 		return ret;
2994 
2995 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2996 					GFP_KERNEL);
2997 	if (!fs_info->delayed_root)
2998 		return -ENOMEM;
2999 	btrfs_init_delayed_root(fs_info->delayed_root);
3000 
3001 	if (sb_rdonly(sb))
3002 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3003 
3004 	return btrfs_alloc_stripe_hash_table(fs_info);
3005 }
3006 
btrfs_uuid_rescan_kthread(void * data)3007 static int btrfs_uuid_rescan_kthread(void *data)
3008 {
3009 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3010 	int ret;
3011 
3012 	/*
3013 	 * 1st step is to iterate through the existing UUID tree and
3014 	 * to delete all entries that contain outdated data.
3015 	 * 2nd step is to add all missing entries to the UUID tree.
3016 	 */
3017 	ret = btrfs_uuid_tree_iterate(fs_info);
3018 	if (ret < 0) {
3019 		if (ret != -EINTR)
3020 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3021 				   ret);
3022 		up(&fs_info->uuid_tree_rescan_sem);
3023 		return ret;
3024 	}
3025 	return btrfs_uuid_scan_kthread(data);
3026 }
3027 
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)3028 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3029 {
3030 	struct task_struct *task;
3031 
3032 	down(&fs_info->uuid_tree_rescan_sem);
3033 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3034 	if (IS_ERR(task)) {
3035 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3036 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3037 		up(&fs_info->uuid_tree_rescan_sem);
3038 		return PTR_ERR(task);
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 /*
3045  * Some options only have meaning at mount time and shouldn't persist across
3046  * remounts, or be displayed. Clear these at the end of mount and remount
3047  * code paths.
3048  */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)3049 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3050 {
3051 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3052 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3053 }
3054 
3055 /*
3056  * Mounting logic specific to read-write file systems. Shared by open_ctree
3057  * and btrfs_remount when remounting from read-only to read-write.
3058  */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)3059 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3060 {
3061 	int ret;
3062 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3063 	bool clear_free_space_tree = false;
3064 
3065 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3066 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3067 		clear_free_space_tree = true;
3068 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3069 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3070 		btrfs_warn(fs_info, "free space tree is invalid");
3071 		clear_free_space_tree = true;
3072 	}
3073 
3074 	if (clear_free_space_tree) {
3075 		btrfs_info(fs_info, "clearing free space tree");
3076 		ret = btrfs_clear_free_space_tree(fs_info);
3077 		if (ret) {
3078 			btrfs_warn(fs_info,
3079 				   "failed to clear free space tree: %d", ret);
3080 			goto out;
3081 		}
3082 	}
3083 
3084 	/*
3085 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3086 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3087 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3088 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3089 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3090 	 * item before the root's tree is deleted - this means that if we unmount
3091 	 * or crash before the deletion completes, on the next mount we will not
3092 	 * delete what remains of the tree because the orphan item does not
3093 	 * exists anymore, which is what tells us we have a pending deletion.
3094 	 */
3095 	ret = btrfs_find_orphan_roots(fs_info);
3096 	if (ret)
3097 		goto out;
3098 
3099 	ret = btrfs_cleanup_fs_roots(fs_info);
3100 	if (ret)
3101 		goto out;
3102 
3103 	down_read(&fs_info->cleanup_work_sem);
3104 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3105 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3106 		up_read(&fs_info->cleanup_work_sem);
3107 		goto out;
3108 	}
3109 	up_read(&fs_info->cleanup_work_sem);
3110 
3111 	mutex_lock(&fs_info->cleaner_mutex);
3112 	ret = btrfs_recover_relocation(fs_info->tree_root);
3113 	mutex_unlock(&fs_info->cleaner_mutex);
3114 	if (ret < 0) {
3115 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3116 		goto out;
3117 	}
3118 
3119 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3120 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3121 		btrfs_info(fs_info, "creating free space tree");
3122 		ret = btrfs_create_free_space_tree(fs_info);
3123 		if (ret) {
3124 			btrfs_warn(fs_info,
3125 				"failed to create free space tree: %d", ret);
3126 			goto out;
3127 		}
3128 	}
3129 
3130 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3131 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3132 		if (ret)
3133 			goto out;
3134 	}
3135 
3136 	ret = btrfs_resume_balance_async(fs_info);
3137 	if (ret)
3138 		goto out;
3139 
3140 	ret = btrfs_resume_dev_replace_async(fs_info);
3141 	if (ret) {
3142 		btrfs_warn(fs_info, "failed to resume dev_replace");
3143 		goto out;
3144 	}
3145 
3146 	btrfs_qgroup_rescan_resume(fs_info);
3147 
3148 	if (!fs_info->uuid_root) {
3149 		btrfs_info(fs_info, "creating UUID tree");
3150 		ret = btrfs_create_uuid_tree(fs_info);
3151 		if (ret) {
3152 			btrfs_warn(fs_info,
3153 				   "failed to create the UUID tree %d", ret);
3154 			goto out;
3155 		}
3156 	}
3157 
3158 out:
3159 	return ret;
3160 }
3161 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)3162 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3163 		      char *options)
3164 {
3165 	u32 sectorsize;
3166 	u32 nodesize;
3167 	u32 stripesize;
3168 	u64 generation;
3169 	u64 features;
3170 	u16 csum_type;
3171 	struct btrfs_super_block *disk_super;
3172 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3173 	struct btrfs_root *tree_root;
3174 	struct btrfs_root *chunk_root;
3175 	int ret;
3176 	int err = -EINVAL;
3177 	int level;
3178 
3179 	ret = init_mount_fs_info(fs_info, sb);
3180 	if (ret) {
3181 		err = ret;
3182 		goto fail;
3183 	}
3184 
3185 	/* These need to be init'ed before we start creating inodes and such. */
3186 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3187 				     GFP_KERNEL);
3188 	fs_info->tree_root = tree_root;
3189 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3190 				      GFP_KERNEL);
3191 	fs_info->chunk_root = chunk_root;
3192 	if (!tree_root || !chunk_root) {
3193 		err = -ENOMEM;
3194 		goto fail;
3195 	}
3196 
3197 	fs_info->btree_inode = new_inode(sb);
3198 	if (!fs_info->btree_inode) {
3199 		err = -ENOMEM;
3200 		goto fail;
3201 	}
3202 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3203 	btrfs_init_btree_inode(fs_info);
3204 
3205 	invalidate_bdev(fs_devices->latest_dev->bdev);
3206 
3207 	/*
3208 	 * Read super block and check the signature bytes only
3209 	 */
3210 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3211 	if (IS_ERR(disk_super)) {
3212 		err = PTR_ERR(disk_super);
3213 		goto fail_alloc;
3214 	}
3215 
3216 	/*
3217 	 * Verify the type first, if that or the checksum value are
3218 	 * corrupted, we'll find out
3219 	 */
3220 	csum_type = btrfs_super_csum_type(disk_super);
3221 	if (!btrfs_supported_super_csum(csum_type)) {
3222 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3223 			  csum_type);
3224 		err = -EINVAL;
3225 		btrfs_release_disk_super(disk_super);
3226 		goto fail_alloc;
3227 	}
3228 
3229 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3230 
3231 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3232 	if (ret) {
3233 		err = ret;
3234 		btrfs_release_disk_super(disk_super);
3235 		goto fail_alloc;
3236 	}
3237 
3238 	/*
3239 	 * We want to check superblock checksum, the type is stored inside.
3240 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3241 	 */
3242 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3243 		btrfs_err(fs_info, "superblock checksum mismatch");
3244 		err = -EINVAL;
3245 		btrfs_release_disk_super(disk_super);
3246 		goto fail_alloc;
3247 	}
3248 
3249 	/*
3250 	 * super_copy is zeroed at allocation time and we never touch the
3251 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3252 	 * the whole block of INFO_SIZE
3253 	 */
3254 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3255 	btrfs_release_disk_super(disk_super);
3256 
3257 	disk_super = fs_info->super_copy;
3258 
3259 
3260 	features = btrfs_super_flags(disk_super);
3261 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3262 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3263 		btrfs_set_super_flags(disk_super, features);
3264 		btrfs_info(fs_info,
3265 			"found metadata UUID change in progress flag, clearing");
3266 	}
3267 
3268 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3269 	       sizeof(*fs_info->super_for_commit));
3270 
3271 	ret = btrfs_validate_mount_super(fs_info);
3272 	if (ret) {
3273 		btrfs_err(fs_info, "superblock contains fatal errors");
3274 		err = -EINVAL;
3275 		goto fail_alloc;
3276 	}
3277 
3278 	if (!btrfs_super_root(disk_super))
3279 		goto fail_alloc;
3280 
3281 	/* check FS state, whether FS is broken. */
3282 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3283 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3284 
3285 	/*
3286 	 * In the long term, we'll store the compression type in the super
3287 	 * block, and it'll be used for per file compression control.
3288 	 */
3289 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3290 
3291 
3292 	/* Set up fs_info before parsing mount options */
3293 	nodesize = btrfs_super_nodesize(disk_super);
3294 	sectorsize = btrfs_super_sectorsize(disk_super);
3295 	stripesize = sectorsize;
3296 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3297 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3298 
3299 	fs_info->nodesize = nodesize;
3300 	fs_info->sectorsize = sectorsize;
3301 	fs_info->sectorsize_bits = ilog2(sectorsize);
3302 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3303 	fs_info->stripesize = stripesize;
3304 
3305 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3306 	if (ret) {
3307 		err = ret;
3308 		goto fail_alloc;
3309 	}
3310 
3311 	features = btrfs_super_incompat_flags(disk_super) &
3312 		~BTRFS_FEATURE_INCOMPAT_SUPP;
3313 	if (features) {
3314 		btrfs_err(fs_info,
3315 		    "cannot mount because of unsupported optional features (0x%llx)",
3316 		    features);
3317 		err = -EINVAL;
3318 		goto fail_alloc;
3319 	}
3320 
3321 	features = btrfs_super_incompat_flags(disk_super);
3322 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3323 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3324 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3325 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3326 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3327 
3328 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3329 		btrfs_info(fs_info, "has skinny extents");
3330 
3331 	/*
3332 	 * Flag our filesystem as having big metadata blocks if they are bigger
3333 	 * than the page size.
3334 	 */
3335 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3336 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3337 			btrfs_info(fs_info,
3338 				"flagging fs with big metadata feature");
3339 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3340 	}
3341 
3342 	/*
3343 	 * mixed block groups end up with duplicate but slightly offset
3344 	 * extent buffers for the same range.  It leads to corruptions
3345 	 */
3346 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3347 	    (sectorsize != nodesize)) {
3348 		btrfs_err(fs_info,
3349 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3350 			nodesize, sectorsize);
3351 		goto fail_alloc;
3352 	}
3353 
3354 	/*
3355 	 * Needn't use the lock because there is no other task which will
3356 	 * update the flag.
3357 	 */
3358 	btrfs_set_super_incompat_flags(disk_super, features);
3359 
3360 	features = btrfs_super_compat_ro_flags(disk_super) &
3361 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3362 	if (!sb_rdonly(sb) && features) {
3363 		btrfs_err(fs_info,
3364 	"cannot mount read-write because of unsupported optional features (0x%llx)",
3365 		       features);
3366 		err = -EINVAL;
3367 		goto fail_alloc;
3368 	}
3369 
3370 	if (sectorsize != PAGE_SIZE) {
3371 		/*
3372 		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3373 		 * going to be deprecated.
3374 		 *
3375 		 * Force to use v2 cache for subpage case.
3376 		 */
3377 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3378 		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3379 			"forcing free space tree for sector size %u with page size %lu",
3380 			sectorsize, PAGE_SIZE);
3381 
3382 		btrfs_warn(fs_info,
3383 		"read-write for sector size %u with page size %lu is experimental",
3384 			   sectorsize, PAGE_SIZE);
3385 	}
3386 	if (sectorsize != PAGE_SIZE) {
3387 		if (btrfs_super_incompat_flags(fs_info->super_copy) &
3388 			BTRFS_FEATURE_INCOMPAT_RAID56) {
3389 			btrfs_err(fs_info,
3390 		"RAID56 is not yet supported for sector size %u with page size %lu",
3391 				sectorsize, PAGE_SIZE);
3392 			err = -EINVAL;
3393 			goto fail_alloc;
3394 		}
3395 	}
3396 
3397 	ret = btrfs_init_workqueues(fs_info, fs_devices);
3398 	if (ret) {
3399 		err = ret;
3400 		goto fail_sb_buffer;
3401 	}
3402 
3403 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3404 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3405 
3406 	sb->s_blocksize = sectorsize;
3407 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3408 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3409 
3410 	mutex_lock(&fs_info->chunk_mutex);
3411 	ret = btrfs_read_sys_array(fs_info);
3412 	mutex_unlock(&fs_info->chunk_mutex);
3413 	if (ret) {
3414 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3415 		goto fail_sb_buffer;
3416 	}
3417 
3418 	generation = btrfs_super_chunk_root_generation(disk_super);
3419 	level = btrfs_super_chunk_root_level(disk_super);
3420 
3421 	chunk_root->node = read_tree_block(fs_info,
3422 					   btrfs_super_chunk_root(disk_super),
3423 					   BTRFS_CHUNK_TREE_OBJECTID,
3424 					   generation, level, NULL);
3425 	if (IS_ERR(chunk_root->node) ||
3426 	    !extent_buffer_uptodate(chunk_root->node)) {
3427 		btrfs_err(fs_info, "failed to read chunk root");
3428 		if (!IS_ERR(chunk_root->node))
3429 			free_extent_buffer(chunk_root->node);
3430 		chunk_root->node = NULL;
3431 		goto fail_tree_roots;
3432 	}
3433 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3434 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3435 
3436 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3437 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3438 			   BTRFS_UUID_SIZE);
3439 
3440 	ret = btrfs_read_chunk_tree(fs_info);
3441 	if (ret) {
3442 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3443 		goto fail_tree_roots;
3444 	}
3445 
3446 	/*
3447 	 * At this point we know all the devices that make this filesystem,
3448 	 * including the seed devices but we don't know yet if the replace
3449 	 * target is required. So free devices that are not part of this
3450 	 * filesystem but skip the replace target device which is checked
3451 	 * below in btrfs_init_dev_replace().
3452 	 */
3453 	btrfs_free_extra_devids(fs_devices);
3454 	if (!fs_devices->latest_dev->bdev) {
3455 		btrfs_err(fs_info, "failed to read devices");
3456 		goto fail_tree_roots;
3457 	}
3458 
3459 	ret = init_tree_roots(fs_info);
3460 	if (ret)
3461 		goto fail_tree_roots;
3462 
3463 	/*
3464 	 * Get zone type information of zoned block devices. This will also
3465 	 * handle emulation of a zoned filesystem if a regular device has the
3466 	 * zoned incompat feature flag set.
3467 	 */
3468 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3469 	if (ret) {
3470 		btrfs_err(fs_info,
3471 			  "zoned: failed to read device zone info: %d",
3472 			  ret);
3473 		goto fail_block_groups;
3474 	}
3475 
3476 	/*
3477 	 * If we have a uuid root and we're not being told to rescan we need to
3478 	 * check the generation here so we can set the
3479 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3480 	 * transaction during a balance or the log replay without updating the
3481 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3482 	 * even though it was perfectly fine.
3483 	 */
3484 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3485 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3486 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3487 
3488 	ret = btrfs_verify_dev_extents(fs_info);
3489 	if (ret) {
3490 		btrfs_err(fs_info,
3491 			  "failed to verify dev extents against chunks: %d",
3492 			  ret);
3493 		goto fail_block_groups;
3494 	}
3495 	ret = btrfs_recover_balance(fs_info);
3496 	if (ret) {
3497 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3498 		goto fail_block_groups;
3499 	}
3500 
3501 	ret = btrfs_init_dev_stats(fs_info);
3502 	if (ret) {
3503 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3504 		goto fail_block_groups;
3505 	}
3506 
3507 	ret = btrfs_init_dev_replace(fs_info);
3508 	if (ret) {
3509 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3510 		goto fail_block_groups;
3511 	}
3512 	/*
3513 	 * We have unsupported RO compat features, although RO mounted, we
3514 	 * should not cause any metadata write, including log replay.
3515 	 * Or we could screw up whatever the new feature requires.
3516 	 */
3517 	if (unlikely(features && btrfs_super_log_root(disk_super) &&
3518 		     !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3519 		btrfs_err(fs_info,
3520 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3521 			  features);
3522 		err = -EINVAL;
3523 		goto fail_alloc;
3524 	}
3525 
3526 
3527 	ret = btrfs_check_zoned_mode(fs_info);
3528 	if (ret) {
3529 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3530 			  ret);
3531 		goto fail_block_groups;
3532 	}
3533 
3534 	ret = btrfs_sysfs_add_fsid(fs_devices);
3535 	if (ret) {
3536 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3537 				ret);
3538 		goto fail_block_groups;
3539 	}
3540 
3541 	ret = btrfs_sysfs_add_mounted(fs_info);
3542 	if (ret) {
3543 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3544 		goto fail_fsdev_sysfs;
3545 	}
3546 
3547 	ret = btrfs_init_space_info(fs_info);
3548 	if (ret) {
3549 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3550 		goto fail_sysfs;
3551 	}
3552 
3553 	ret = btrfs_read_block_groups(fs_info);
3554 	if (ret) {
3555 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3556 		goto fail_sysfs;
3557 	}
3558 
3559 	btrfs_free_zone_cache(fs_info);
3560 
3561 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3562 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3563 		btrfs_warn(fs_info,
3564 		"writable mount is not allowed due to too many missing devices");
3565 		goto fail_sysfs;
3566 	}
3567 
3568 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3569 					       "btrfs-cleaner");
3570 	if (IS_ERR(fs_info->cleaner_kthread))
3571 		goto fail_sysfs;
3572 
3573 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3574 						   tree_root,
3575 						   "btrfs-transaction");
3576 	if (IS_ERR(fs_info->transaction_kthread))
3577 		goto fail_cleaner;
3578 
3579 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3580 	    !fs_info->fs_devices->rotating) {
3581 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3582 	}
3583 
3584 	/*
3585 	 * Mount does not set all options immediately, we can do it now and do
3586 	 * not have to wait for transaction commit
3587 	 */
3588 	btrfs_apply_pending_changes(fs_info);
3589 
3590 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3591 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3592 		ret = btrfsic_mount(fs_info, fs_devices,
3593 				    btrfs_test_opt(fs_info,
3594 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3595 				    fs_info->check_integrity_print_mask);
3596 		if (ret)
3597 			btrfs_warn(fs_info,
3598 				"failed to initialize integrity check module: %d",
3599 				ret);
3600 	}
3601 #endif
3602 	ret = btrfs_read_qgroup_config(fs_info);
3603 	if (ret)
3604 		goto fail_trans_kthread;
3605 
3606 	if (btrfs_build_ref_tree(fs_info))
3607 		btrfs_err(fs_info, "couldn't build ref tree");
3608 
3609 	/* do not make disk changes in broken FS or nologreplay is given */
3610 	if (btrfs_super_log_root(disk_super) != 0 &&
3611 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3612 		btrfs_info(fs_info, "start tree-log replay");
3613 		ret = btrfs_replay_log(fs_info, fs_devices);
3614 		if (ret) {
3615 			err = ret;
3616 			goto fail_qgroup;
3617 		}
3618 	}
3619 
3620 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3621 	if (IS_ERR(fs_info->fs_root)) {
3622 		err = PTR_ERR(fs_info->fs_root);
3623 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3624 		fs_info->fs_root = NULL;
3625 		goto fail_qgroup;
3626 	}
3627 
3628 	if (sb_rdonly(sb))
3629 		goto clear_oneshot;
3630 
3631 	ret = btrfs_start_pre_rw_mount(fs_info);
3632 	if (ret) {
3633 		close_ctree(fs_info);
3634 		return ret;
3635 	}
3636 	btrfs_discard_resume(fs_info);
3637 
3638 	if (fs_info->uuid_root &&
3639 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3640 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3641 		btrfs_info(fs_info, "checking UUID tree");
3642 		ret = btrfs_check_uuid_tree(fs_info);
3643 		if (ret) {
3644 			btrfs_warn(fs_info,
3645 				"failed to check the UUID tree: %d", ret);
3646 			close_ctree(fs_info);
3647 			return ret;
3648 		}
3649 	}
3650 
3651 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3652 
3653 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3654 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3655 		wake_up_process(fs_info->cleaner_kthread);
3656 
3657 clear_oneshot:
3658 	btrfs_clear_oneshot_options(fs_info);
3659 	return 0;
3660 
3661 fail_qgroup:
3662 	btrfs_free_qgroup_config(fs_info);
3663 fail_trans_kthread:
3664 	kthread_stop(fs_info->transaction_kthread);
3665 	btrfs_cleanup_transaction(fs_info);
3666 	btrfs_free_fs_roots(fs_info);
3667 fail_cleaner:
3668 	kthread_stop(fs_info->cleaner_kthread);
3669 
3670 	/*
3671 	 * make sure we're done with the btree inode before we stop our
3672 	 * kthreads
3673 	 */
3674 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3675 
3676 fail_sysfs:
3677 	btrfs_sysfs_remove_mounted(fs_info);
3678 
3679 fail_fsdev_sysfs:
3680 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3681 
3682 fail_block_groups:
3683 	btrfs_put_block_group_cache(fs_info);
3684 
3685 fail_tree_roots:
3686 	if (fs_info->data_reloc_root)
3687 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3688 	free_root_pointers(fs_info, true);
3689 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3690 
3691 fail_sb_buffer:
3692 	btrfs_stop_all_workers(fs_info);
3693 	btrfs_free_block_groups(fs_info);
3694 fail_alloc:
3695 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3696 
3697 	iput(fs_info->btree_inode);
3698 fail:
3699 	btrfs_close_devices(fs_info->fs_devices);
3700 	return err;
3701 }
3702 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3703 
btrfs_end_super_write(struct bio * bio)3704 static void btrfs_end_super_write(struct bio *bio)
3705 {
3706 	struct btrfs_device *device = bio->bi_private;
3707 	struct bio_vec *bvec;
3708 	struct bvec_iter_all iter_all;
3709 	struct page *page;
3710 
3711 	bio_for_each_segment_all(bvec, bio, iter_all) {
3712 		page = bvec->bv_page;
3713 
3714 		if (bio->bi_status) {
3715 			btrfs_warn_rl_in_rcu(device->fs_info,
3716 				"lost page write due to IO error on %s (%d)",
3717 				rcu_str_deref(device->name),
3718 				blk_status_to_errno(bio->bi_status));
3719 			ClearPageUptodate(page);
3720 			SetPageError(page);
3721 			btrfs_dev_stat_inc_and_print(device,
3722 						     BTRFS_DEV_STAT_WRITE_ERRS);
3723 		} else {
3724 			SetPageUptodate(page);
3725 		}
3726 
3727 		put_page(page);
3728 		unlock_page(page);
3729 	}
3730 
3731 	bio_put(bio);
3732 }
3733 
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,bool drop_cache)3734 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3735 						   int copy_num, bool drop_cache)
3736 {
3737 	struct btrfs_super_block *super;
3738 	struct page *page;
3739 	u64 bytenr, bytenr_orig;
3740 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3741 	int ret;
3742 
3743 	bytenr_orig = btrfs_sb_offset(copy_num);
3744 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3745 	if (ret == -ENOENT)
3746 		return ERR_PTR(-EINVAL);
3747 	else if (ret)
3748 		return ERR_PTR(ret);
3749 
3750 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3751 		return ERR_PTR(-EINVAL);
3752 
3753 	if (drop_cache) {
3754 		/* This should only be called with the primary sb. */
3755 		ASSERT(copy_num == 0);
3756 
3757 		/*
3758 		 * Drop the page of the primary superblock, so later read will
3759 		 * always read from the device.
3760 		 */
3761 		invalidate_inode_pages2_range(mapping,
3762 				bytenr >> PAGE_SHIFT,
3763 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3764 	}
3765 
3766 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3767 	if (IS_ERR(page))
3768 		return ERR_CAST(page);
3769 
3770 	super = page_address(page);
3771 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3772 		btrfs_release_disk_super(super);
3773 		return ERR_PTR(-ENODATA);
3774 	}
3775 
3776 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3777 		btrfs_release_disk_super(super);
3778 		return ERR_PTR(-EINVAL);
3779 	}
3780 
3781 	return super;
3782 }
3783 
3784 
btrfs_read_dev_super(struct block_device * bdev)3785 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3786 {
3787 	struct btrfs_super_block *super, *latest = NULL;
3788 	int i;
3789 	u64 transid = 0;
3790 
3791 	/* we would like to check all the supers, but that would make
3792 	 * a btrfs mount succeed after a mkfs from a different FS.
3793 	 * So, we need to add a special mount option to scan for
3794 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3795 	 */
3796 	for (i = 0; i < 1; i++) {
3797 		super = btrfs_read_dev_one_super(bdev, i, false);
3798 		if (IS_ERR(super))
3799 			continue;
3800 
3801 		if (!latest || btrfs_super_generation(super) > transid) {
3802 			if (latest)
3803 				btrfs_release_disk_super(super);
3804 
3805 			latest = super;
3806 			transid = btrfs_super_generation(super);
3807 		}
3808 	}
3809 
3810 	return super;
3811 }
3812 
3813 /*
3814  * Write superblock @sb to the @device. Do not wait for completion, all the
3815  * pages we use for writing are locked.
3816  *
3817  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3818  * the expected device size at commit time. Note that max_mirrors must be
3819  * same for write and wait phases.
3820  *
3821  * Return number of errors when page is not found or submission fails.
3822  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3823 static int write_dev_supers(struct btrfs_device *device,
3824 			    struct btrfs_super_block *sb, int max_mirrors)
3825 {
3826 	struct btrfs_fs_info *fs_info = device->fs_info;
3827 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3828 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3829 	int i;
3830 	int errors = 0;
3831 	int ret;
3832 	u64 bytenr, bytenr_orig;
3833 
3834 	if (max_mirrors == 0)
3835 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3836 
3837 	shash->tfm = fs_info->csum_shash;
3838 
3839 	for (i = 0; i < max_mirrors; i++) {
3840 		struct page *page;
3841 		struct bio *bio;
3842 		struct btrfs_super_block *disk_super;
3843 
3844 		bytenr_orig = btrfs_sb_offset(i);
3845 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3846 		if (ret == -ENOENT) {
3847 			continue;
3848 		} else if (ret < 0) {
3849 			btrfs_err(device->fs_info,
3850 				"couldn't get super block location for mirror %d",
3851 				i);
3852 			errors++;
3853 			continue;
3854 		}
3855 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3856 		    device->commit_total_bytes)
3857 			break;
3858 
3859 		btrfs_set_super_bytenr(sb, bytenr_orig);
3860 
3861 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3862 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3863 				    sb->csum);
3864 
3865 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3866 					   GFP_NOFS);
3867 		if (!page) {
3868 			btrfs_err(device->fs_info,
3869 			    "couldn't get super block page for bytenr %llu",
3870 			    bytenr);
3871 			errors++;
3872 			continue;
3873 		}
3874 
3875 		/* Bump the refcount for wait_dev_supers() */
3876 		get_page(page);
3877 
3878 		disk_super = page_address(page);
3879 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3880 
3881 		/*
3882 		 * Directly use bios here instead of relying on the page cache
3883 		 * to do I/O, so we don't lose the ability to do integrity
3884 		 * checking.
3885 		 */
3886 		bio = bio_alloc(GFP_NOFS, 1);
3887 		bio_set_dev(bio, device->bdev);
3888 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3889 		bio->bi_private = device;
3890 		bio->bi_end_io = btrfs_end_super_write;
3891 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3892 			       offset_in_page(bytenr));
3893 
3894 		/*
3895 		 * We FUA only the first super block.  The others we allow to
3896 		 * go down lazy and there's a short window where the on-disk
3897 		 * copies might still contain the older version.
3898 		 */
3899 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3900 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3901 			bio->bi_opf |= REQ_FUA;
3902 
3903 		btrfsic_submit_bio(bio);
3904 		btrfs_advance_sb_log(device, i);
3905 	}
3906 	return errors < i ? 0 : -1;
3907 }
3908 
3909 /*
3910  * Wait for write completion of superblocks done by write_dev_supers,
3911  * @max_mirrors same for write and wait phases.
3912  *
3913  * Return number of errors when page is not found or not marked up to
3914  * date.
3915  */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3916 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3917 {
3918 	int i;
3919 	int errors = 0;
3920 	bool primary_failed = false;
3921 	int ret;
3922 	u64 bytenr;
3923 
3924 	if (max_mirrors == 0)
3925 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3926 
3927 	for (i = 0; i < max_mirrors; i++) {
3928 		struct page *page;
3929 
3930 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3931 		if (ret == -ENOENT) {
3932 			break;
3933 		} else if (ret < 0) {
3934 			errors++;
3935 			if (i == 0)
3936 				primary_failed = true;
3937 			continue;
3938 		}
3939 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3940 		    device->commit_total_bytes)
3941 			break;
3942 
3943 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3944 				     bytenr >> PAGE_SHIFT);
3945 		if (!page) {
3946 			errors++;
3947 			if (i == 0)
3948 				primary_failed = true;
3949 			continue;
3950 		}
3951 		/* Page is submitted locked and unlocked once the IO completes */
3952 		wait_on_page_locked(page);
3953 		if (PageError(page)) {
3954 			errors++;
3955 			if (i == 0)
3956 				primary_failed = true;
3957 		}
3958 
3959 		/* Drop our reference */
3960 		put_page(page);
3961 
3962 		/* Drop the reference from the writing run */
3963 		put_page(page);
3964 	}
3965 
3966 	/* log error, force error return */
3967 	if (primary_failed) {
3968 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3969 			  device->devid);
3970 		return -1;
3971 	}
3972 
3973 	return errors < i ? 0 : -1;
3974 }
3975 
3976 /*
3977  * endio for the write_dev_flush, this will wake anyone waiting
3978  * for the barrier when it is done
3979  */
btrfs_end_empty_barrier(struct bio * bio)3980 static void btrfs_end_empty_barrier(struct bio *bio)
3981 {
3982 	complete(bio->bi_private);
3983 }
3984 
3985 /*
3986  * Submit a flush request to the device if it supports it. Error handling is
3987  * done in the waiting counterpart.
3988  */
write_dev_flush(struct btrfs_device * device)3989 static void write_dev_flush(struct btrfs_device *device)
3990 {
3991 	struct bio *bio = device->flush_bio;
3992 
3993 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3994 	/*
3995 	 * When a disk has write caching disabled, we skip submission of a bio
3996 	 * with flush and sync requests before writing the superblock, since
3997 	 * it's not needed. However when the integrity checker is enabled, this
3998 	 * results in reports that there are metadata blocks referred by a
3999 	 * superblock that were not properly flushed. So don't skip the bio
4000 	 * submission only when the integrity checker is enabled for the sake
4001 	 * of simplicity, since this is a debug tool and not meant for use in
4002 	 * non-debug builds.
4003 	 */
4004 	struct request_queue *q = bdev_get_queue(device->bdev);
4005 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4006 		return;
4007 #endif
4008 
4009 	bio_reset(bio);
4010 	bio->bi_end_io = btrfs_end_empty_barrier;
4011 	bio_set_dev(bio, device->bdev);
4012 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
4013 	init_completion(&device->flush_wait);
4014 	bio->bi_private = &device->flush_wait;
4015 
4016 	btrfsic_submit_bio(bio);
4017 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4018 }
4019 
4020 /*
4021  * If the flush bio has been submitted by write_dev_flush, wait for it.
4022  */
wait_dev_flush(struct btrfs_device * device)4023 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4024 {
4025 	struct bio *bio = device->flush_bio;
4026 
4027 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4028 		return BLK_STS_OK;
4029 
4030 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4031 	wait_for_completion_io(&device->flush_wait);
4032 
4033 	return bio->bi_status;
4034 }
4035 
check_barrier_error(struct btrfs_fs_info * fs_info)4036 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4037 {
4038 	if (!btrfs_check_rw_degradable(fs_info, NULL))
4039 		return -EIO;
4040 	return 0;
4041 }
4042 
4043 /*
4044  * send an empty flush down to each device in parallel,
4045  * then wait for them
4046  */
barrier_all_devices(struct btrfs_fs_info * info)4047 static int barrier_all_devices(struct btrfs_fs_info *info)
4048 {
4049 	struct list_head *head;
4050 	struct btrfs_device *dev;
4051 	int errors_wait = 0;
4052 	blk_status_t ret;
4053 
4054 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4055 	/* send down all the barriers */
4056 	head = &info->fs_devices->devices;
4057 	list_for_each_entry(dev, head, dev_list) {
4058 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4059 			continue;
4060 		if (!dev->bdev)
4061 			continue;
4062 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4063 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4064 			continue;
4065 
4066 		write_dev_flush(dev);
4067 		dev->last_flush_error = BLK_STS_OK;
4068 	}
4069 
4070 	/* wait for all the barriers */
4071 	list_for_each_entry(dev, head, dev_list) {
4072 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4073 			continue;
4074 		if (!dev->bdev) {
4075 			errors_wait++;
4076 			continue;
4077 		}
4078 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4079 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4080 			continue;
4081 
4082 		ret = wait_dev_flush(dev);
4083 		if (ret) {
4084 			dev->last_flush_error = ret;
4085 			btrfs_dev_stat_inc_and_print(dev,
4086 					BTRFS_DEV_STAT_FLUSH_ERRS);
4087 			errors_wait++;
4088 		}
4089 	}
4090 
4091 	if (errors_wait) {
4092 		/*
4093 		 * At some point we need the status of all disks
4094 		 * to arrive at the volume status. So error checking
4095 		 * is being pushed to a separate loop.
4096 		 */
4097 		return check_barrier_error(info);
4098 	}
4099 	return 0;
4100 }
4101 
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)4102 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4103 {
4104 	int raid_type;
4105 	int min_tolerated = INT_MAX;
4106 
4107 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4108 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4109 		min_tolerated = min_t(int, min_tolerated,
4110 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4111 				    tolerated_failures);
4112 
4113 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4114 		if (raid_type == BTRFS_RAID_SINGLE)
4115 			continue;
4116 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4117 			continue;
4118 		min_tolerated = min_t(int, min_tolerated,
4119 				    btrfs_raid_array[raid_type].
4120 				    tolerated_failures);
4121 	}
4122 
4123 	if (min_tolerated == INT_MAX) {
4124 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4125 		min_tolerated = 0;
4126 	}
4127 
4128 	return min_tolerated;
4129 }
4130 
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4131 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4132 {
4133 	struct list_head *head;
4134 	struct btrfs_device *dev;
4135 	struct btrfs_super_block *sb;
4136 	struct btrfs_dev_item *dev_item;
4137 	int ret;
4138 	int do_barriers;
4139 	int max_errors;
4140 	int total_errors = 0;
4141 	u64 flags;
4142 
4143 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4144 
4145 	/*
4146 	 * max_mirrors == 0 indicates we're from commit_transaction,
4147 	 * not from fsync where the tree roots in fs_info have not
4148 	 * been consistent on disk.
4149 	 */
4150 	if (max_mirrors == 0)
4151 		backup_super_roots(fs_info);
4152 
4153 	sb = fs_info->super_for_commit;
4154 	dev_item = &sb->dev_item;
4155 
4156 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4157 	head = &fs_info->fs_devices->devices;
4158 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4159 
4160 	if (do_barriers) {
4161 		ret = barrier_all_devices(fs_info);
4162 		if (ret) {
4163 			mutex_unlock(
4164 				&fs_info->fs_devices->device_list_mutex);
4165 			btrfs_handle_fs_error(fs_info, ret,
4166 					      "errors while submitting device barriers.");
4167 			return ret;
4168 		}
4169 	}
4170 
4171 	list_for_each_entry(dev, head, dev_list) {
4172 		if (!dev->bdev) {
4173 			total_errors++;
4174 			continue;
4175 		}
4176 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4177 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4178 			continue;
4179 
4180 		btrfs_set_stack_device_generation(dev_item, 0);
4181 		btrfs_set_stack_device_type(dev_item, dev->type);
4182 		btrfs_set_stack_device_id(dev_item, dev->devid);
4183 		btrfs_set_stack_device_total_bytes(dev_item,
4184 						   dev->commit_total_bytes);
4185 		btrfs_set_stack_device_bytes_used(dev_item,
4186 						  dev->commit_bytes_used);
4187 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4188 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4189 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4190 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4191 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4192 		       BTRFS_FSID_SIZE);
4193 
4194 		flags = btrfs_super_flags(sb);
4195 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4196 
4197 		ret = btrfs_validate_write_super(fs_info, sb);
4198 		if (ret < 0) {
4199 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4200 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4201 				"unexpected superblock corruption detected");
4202 			return -EUCLEAN;
4203 		}
4204 
4205 		ret = write_dev_supers(dev, sb, max_mirrors);
4206 		if (ret)
4207 			total_errors++;
4208 	}
4209 	if (total_errors > max_errors) {
4210 		btrfs_err(fs_info, "%d errors while writing supers",
4211 			  total_errors);
4212 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4213 
4214 		/* FUA is masked off if unsupported and can't be the reason */
4215 		btrfs_handle_fs_error(fs_info, -EIO,
4216 				      "%d errors while writing supers",
4217 				      total_errors);
4218 		return -EIO;
4219 	}
4220 
4221 	total_errors = 0;
4222 	list_for_each_entry(dev, head, dev_list) {
4223 		if (!dev->bdev)
4224 			continue;
4225 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4226 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4227 			continue;
4228 
4229 		ret = wait_dev_supers(dev, max_mirrors);
4230 		if (ret)
4231 			total_errors++;
4232 	}
4233 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4234 	if (total_errors > max_errors) {
4235 		btrfs_handle_fs_error(fs_info, -EIO,
4236 				      "%d errors while writing supers",
4237 				      total_errors);
4238 		return -EIO;
4239 	}
4240 	return 0;
4241 }
4242 
4243 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4244 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4245 				  struct btrfs_root *root)
4246 {
4247 	bool drop_ref = false;
4248 
4249 	spin_lock(&fs_info->fs_roots_radix_lock);
4250 	radix_tree_delete(&fs_info->fs_roots_radix,
4251 			  (unsigned long)root->root_key.objectid);
4252 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4253 		drop_ref = true;
4254 	spin_unlock(&fs_info->fs_roots_radix_lock);
4255 
4256 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4257 		ASSERT(root->log_root == NULL);
4258 		if (root->reloc_root) {
4259 			btrfs_put_root(root->reloc_root);
4260 			root->reloc_root = NULL;
4261 		}
4262 	}
4263 
4264 	if (drop_ref)
4265 		btrfs_put_root(root);
4266 }
4267 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)4268 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4269 {
4270 	u64 root_objectid = 0;
4271 	struct btrfs_root *gang[8];
4272 	int i = 0;
4273 	int err = 0;
4274 	unsigned int ret = 0;
4275 
4276 	while (1) {
4277 		spin_lock(&fs_info->fs_roots_radix_lock);
4278 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4279 					     (void **)gang, root_objectid,
4280 					     ARRAY_SIZE(gang));
4281 		if (!ret) {
4282 			spin_unlock(&fs_info->fs_roots_radix_lock);
4283 			break;
4284 		}
4285 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4286 
4287 		for (i = 0; i < ret; i++) {
4288 			/* Avoid to grab roots in dead_roots */
4289 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4290 				gang[i] = NULL;
4291 				continue;
4292 			}
4293 			/* grab all the search result for later use */
4294 			gang[i] = btrfs_grab_root(gang[i]);
4295 		}
4296 		spin_unlock(&fs_info->fs_roots_radix_lock);
4297 
4298 		for (i = 0; i < ret; i++) {
4299 			if (!gang[i])
4300 				continue;
4301 			root_objectid = gang[i]->root_key.objectid;
4302 			err = btrfs_orphan_cleanup(gang[i]);
4303 			if (err)
4304 				break;
4305 			btrfs_put_root(gang[i]);
4306 		}
4307 		root_objectid++;
4308 	}
4309 
4310 	/* release the uncleaned roots due to error */
4311 	for (; i < ret; i++) {
4312 		if (gang[i])
4313 			btrfs_put_root(gang[i]);
4314 	}
4315 	return err;
4316 }
4317 
btrfs_commit_super(struct btrfs_fs_info * fs_info)4318 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4319 {
4320 	struct btrfs_root *root = fs_info->tree_root;
4321 	struct btrfs_trans_handle *trans;
4322 
4323 	mutex_lock(&fs_info->cleaner_mutex);
4324 	btrfs_run_delayed_iputs(fs_info);
4325 	mutex_unlock(&fs_info->cleaner_mutex);
4326 	wake_up_process(fs_info->cleaner_kthread);
4327 
4328 	/* wait until ongoing cleanup work done */
4329 	down_write(&fs_info->cleanup_work_sem);
4330 	up_write(&fs_info->cleanup_work_sem);
4331 
4332 	trans = btrfs_join_transaction(root);
4333 	if (IS_ERR(trans))
4334 		return PTR_ERR(trans);
4335 	return btrfs_commit_transaction(trans);
4336 }
4337 
close_ctree(struct btrfs_fs_info * fs_info)4338 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4339 {
4340 	int ret;
4341 
4342 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4343 
4344 	/*
4345 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4346 	 * clear that bit and wake up relocation so it can stop.
4347 	 * We must do this before stopping the block group reclaim task, because
4348 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4349 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4350 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4351 	 * return 1.
4352 	 */
4353 	btrfs_wake_unfinished_drop(fs_info);
4354 
4355 	/*
4356 	 * We may have the reclaim task running and relocating a data block group,
4357 	 * in which case it may create delayed iputs. So stop it before we park
4358 	 * the cleaner kthread otherwise we can get new delayed iputs after
4359 	 * parking the cleaner, and that can make the async reclaim task to hang
4360 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4361 	 * parked and can not run delayed iputs - this will make us hang when
4362 	 * trying to stop the async reclaim task.
4363 	 */
4364 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4365 	/*
4366 	 * We don't want the cleaner to start new transactions, add more delayed
4367 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4368 	 * because that frees the task_struct, and the transaction kthread might
4369 	 * still try to wake up the cleaner.
4370 	 */
4371 	kthread_park(fs_info->cleaner_kthread);
4372 
4373 	/* wait for the qgroup rescan worker to stop */
4374 	btrfs_qgroup_wait_for_completion(fs_info, false);
4375 
4376 	/* wait for the uuid_scan task to finish */
4377 	down(&fs_info->uuid_tree_rescan_sem);
4378 	/* avoid complains from lockdep et al., set sem back to initial state */
4379 	up(&fs_info->uuid_tree_rescan_sem);
4380 
4381 	/* pause restriper - we want to resume on mount */
4382 	btrfs_pause_balance(fs_info);
4383 
4384 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4385 
4386 	btrfs_scrub_cancel(fs_info);
4387 
4388 	/* wait for any defraggers to finish */
4389 	wait_event(fs_info->transaction_wait,
4390 		   (atomic_read(&fs_info->defrag_running) == 0));
4391 
4392 	/* clear out the rbtree of defraggable inodes */
4393 	btrfs_cleanup_defrag_inodes(fs_info);
4394 
4395 	/*
4396 	 * After we parked the cleaner kthread, ordered extents may have
4397 	 * completed and created new delayed iputs. If one of the async reclaim
4398 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4399 	 * can hang forever trying to stop it, because if a delayed iput is
4400 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4401 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4402 	 * no one else to run iputs.
4403 	 *
4404 	 * So wait for all ongoing ordered extents to complete and then run
4405 	 * delayed iputs. This works because once we reach this point no one
4406 	 * can either create new ordered extents nor create delayed iputs
4407 	 * through some other means.
4408 	 *
4409 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4410 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4411 	 * but the delayed iput for the respective inode is made only when doing
4412 	 * the final btrfs_put_ordered_extent() (which must happen at
4413 	 * btrfs_finish_ordered_io() when we are unmounting).
4414 	 */
4415 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4416 	/* Ordered extents for free space inodes. */
4417 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4418 	btrfs_run_delayed_iputs(fs_info);
4419 
4420 	cancel_work_sync(&fs_info->async_reclaim_work);
4421 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4422 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4423 
4424 	/* Cancel or finish ongoing discard work */
4425 	btrfs_discard_cleanup(fs_info);
4426 
4427 	if (!sb_rdonly(fs_info->sb)) {
4428 		/*
4429 		 * The cleaner kthread is stopped, so do one final pass over
4430 		 * unused block groups.
4431 		 */
4432 		btrfs_delete_unused_bgs(fs_info);
4433 
4434 		/*
4435 		 * There might be existing delayed inode workers still running
4436 		 * and holding an empty delayed inode item. We must wait for
4437 		 * them to complete first because they can create a transaction.
4438 		 * This happens when someone calls btrfs_balance_delayed_items()
4439 		 * and then a transaction commit runs the same delayed nodes
4440 		 * before any delayed worker has done something with the nodes.
4441 		 * We must wait for any worker here and not at transaction
4442 		 * commit time since that could cause a deadlock.
4443 		 * This is a very rare case.
4444 		 */
4445 		btrfs_flush_workqueue(fs_info->delayed_workers);
4446 
4447 		ret = btrfs_commit_super(fs_info);
4448 		if (ret)
4449 			btrfs_err(fs_info, "commit super ret %d", ret);
4450 	}
4451 
4452 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4453 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4454 		btrfs_error_commit_super(fs_info);
4455 
4456 	kthread_stop(fs_info->transaction_kthread);
4457 	kthread_stop(fs_info->cleaner_kthread);
4458 
4459 	ASSERT(list_empty(&fs_info->delayed_iputs));
4460 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4461 
4462 	if (btrfs_check_quota_leak(fs_info)) {
4463 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4464 		btrfs_err(fs_info, "qgroup reserved space leaked");
4465 	}
4466 
4467 	btrfs_free_qgroup_config(fs_info);
4468 	ASSERT(list_empty(&fs_info->delalloc_roots));
4469 
4470 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4471 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4472 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4473 	}
4474 
4475 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4476 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4477 			   percpu_counter_sum(&fs_info->ordered_bytes));
4478 
4479 	btrfs_sysfs_remove_mounted(fs_info);
4480 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4481 
4482 	btrfs_put_block_group_cache(fs_info);
4483 
4484 	/*
4485 	 * we must make sure there is not any read request to
4486 	 * submit after we stopping all workers.
4487 	 */
4488 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4489 	btrfs_stop_all_workers(fs_info);
4490 
4491 	/* We shouldn't have any transaction open at this point */
4492 	ASSERT(list_empty(&fs_info->trans_list));
4493 
4494 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4495 	free_root_pointers(fs_info, true);
4496 	btrfs_free_fs_roots(fs_info);
4497 
4498 	/*
4499 	 * We must free the block groups after dropping the fs_roots as we could
4500 	 * have had an IO error and have left over tree log blocks that aren't
4501 	 * cleaned up until the fs roots are freed.  This makes the block group
4502 	 * accounting appear to be wrong because there's pending reserved bytes,
4503 	 * so make sure we do the block group cleanup afterwards.
4504 	 */
4505 	btrfs_free_block_groups(fs_info);
4506 
4507 	iput(fs_info->btree_inode);
4508 
4509 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4510 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4511 		btrfsic_unmount(fs_info->fs_devices);
4512 #endif
4513 
4514 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4515 	btrfs_close_devices(fs_info->fs_devices);
4516 }
4517 
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4518 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4519 			  int atomic)
4520 {
4521 	int ret;
4522 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4523 
4524 	ret = extent_buffer_uptodate(buf);
4525 	if (!ret)
4526 		return ret;
4527 
4528 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4529 				    parent_transid, atomic);
4530 	if (ret == -EAGAIN)
4531 		return ret;
4532 	return !ret;
4533 }
4534 
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4535 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4536 {
4537 	struct btrfs_fs_info *fs_info = buf->fs_info;
4538 	u64 transid = btrfs_header_generation(buf);
4539 	int was_dirty;
4540 
4541 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4542 	/*
4543 	 * This is a fast path so only do this check if we have sanity tests
4544 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4545 	 * outside of the sanity tests.
4546 	 */
4547 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4548 		return;
4549 #endif
4550 	btrfs_assert_tree_locked(buf);
4551 	if (transid != fs_info->generation)
4552 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4553 			buf->start, transid, fs_info->generation);
4554 	was_dirty = set_extent_buffer_dirty(buf);
4555 	if (!was_dirty)
4556 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4557 					 buf->len,
4558 					 fs_info->dirty_metadata_batch);
4559 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4560 	/*
4561 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4562 	 * but item data not updated.
4563 	 * So here we should only check item pointers, not item data.
4564 	 */
4565 	if (btrfs_header_level(buf) == 0 &&
4566 	    btrfs_check_leaf_relaxed(buf)) {
4567 		btrfs_print_leaf(buf);
4568 		ASSERT(0);
4569 	}
4570 #endif
4571 }
4572 
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4573 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4574 					int flush_delayed)
4575 {
4576 	/*
4577 	 * looks as though older kernels can get into trouble with
4578 	 * this code, they end up stuck in balance_dirty_pages forever
4579 	 */
4580 	int ret;
4581 
4582 	if (current->flags & PF_MEMALLOC)
4583 		return;
4584 
4585 	if (flush_delayed)
4586 		btrfs_balance_delayed_items(fs_info);
4587 
4588 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4589 				     BTRFS_DIRTY_METADATA_THRESH,
4590 				     fs_info->dirty_metadata_batch);
4591 	if (ret > 0) {
4592 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4593 	}
4594 }
4595 
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4596 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4597 {
4598 	__btrfs_btree_balance_dirty(fs_info, 1);
4599 }
4600 
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4601 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4602 {
4603 	__btrfs_btree_balance_dirty(fs_info, 0);
4604 }
4605 
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4606 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4607 		      struct btrfs_key *first_key)
4608 {
4609 	return btree_read_extent_buffer_pages(buf, parent_transid,
4610 					      level, first_key);
4611 }
4612 
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4613 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4614 {
4615 	/* cleanup FS via transaction */
4616 	btrfs_cleanup_transaction(fs_info);
4617 
4618 	mutex_lock(&fs_info->cleaner_mutex);
4619 	btrfs_run_delayed_iputs(fs_info);
4620 	mutex_unlock(&fs_info->cleaner_mutex);
4621 
4622 	down_write(&fs_info->cleanup_work_sem);
4623 	up_write(&fs_info->cleanup_work_sem);
4624 }
4625 
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4626 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4627 {
4628 	struct btrfs_root *gang[8];
4629 	u64 root_objectid = 0;
4630 	int ret;
4631 
4632 	spin_lock(&fs_info->fs_roots_radix_lock);
4633 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4634 					     (void **)gang, root_objectid,
4635 					     ARRAY_SIZE(gang))) != 0) {
4636 		int i;
4637 
4638 		for (i = 0; i < ret; i++)
4639 			gang[i] = btrfs_grab_root(gang[i]);
4640 		spin_unlock(&fs_info->fs_roots_radix_lock);
4641 
4642 		for (i = 0; i < ret; i++) {
4643 			if (!gang[i])
4644 				continue;
4645 			root_objectid = gang[i]->root_key.objectid;
4646 			btrfs_free_log(NULL, gang[i]);
4647 			btrfs_put_root(gang[i]);
4648 		}
4649 		root_objectid++;
4650 		spin_lock(&fs_info->fs_roots_radix_lock);
4651 	}
4652 	spin_unlock(&fs_info->fs_roots_radix_lock);
4653 	btrfs_free_log_root_tree(NULL, fs_info);
4654 }
4655 
btrfs_destroy_ordered_extents(struct btrfs_root * root)4656 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4657 {
4658 	struct btrfs_ordered_extent *ordered;
4659 
4660 	spin_lock(&root->ordered_extent_lock);
4661 	/*
4662 	 * This will just short circuit the ordered completion stuff which will
4663 	 * make sure the ordered extent gets properly cleaned up.
4664 	 */
4665 	list_for_each_entry(ordered, &root->ordered_extents,
4666 			    root_extent_list)
4667 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4668 	spin_unlock(&root->ordered_extent_lock);
4669 }
4670 
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4671 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4672 {
4673 	struct btrfs_root *root;
4674 	struct list_head splice;
4675 
4676 	INIT_LIST_HEAD(&splice);
4677 
4678 	spin_lock(&fs_info->ordered_root_lock);
4679 	list_splice_init(&fs_info->ordered_roots, &splice);
4680 	while (!list_empty(&splice)) {
4681 		root = list_first_entry(&splice, struct btrfs_root,
4682 					ordered_root);
4683 		list_move_tail(&root->ordered_root,
4684 			       &fs_info->ordered_roots);
4685 
4686 		spin_unlock(&fs_info->ordered_root_lock);
4687 		btrfs_destroy_ordered_extents(root);
4688 
4689 		cond_resched();
4690 		spin_lock(&fs_info->ordered_root_lock);
4691 	}
4692 	spin_unlock(&fs_info->ordered_root_lock);
4693 
4694 	/*
4695 	 * We need this here because if we've been flipped read-only we won't
4696 	 * get sync() from the umount, so we need to make sure any ordered
4697 	 * extents that haven't had their dirty pages IO start writeout yet
4698 	 * actually get run and error out properly.
4699 	 */
4700 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4701 }
4702 
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4703 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4704 				      struct btrfs_fs_info *fs_info)
4705 {
4706 	struct rb_node *node;
4707 	struct btrfs_delayed_ref_root *delayed_refs;
4708 	struct btrfs_delayed_ref_node *ref;
4709 	int ret = 0;
4710 
4711 	delayed_refs = &trans->delayed_refs;
4712 
4713 	spin_lock(&delayed_refs->lock);
4714 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4715 		spin_unlock(&delayed_refs->lock);
4716 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4717 		return ret;
4718 	}
4719 
4720 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4721 		struct btrfs_delayed_ref_head *head;
4722 		struct rb_node *n;
4723 		bool pin_bytes = false;
4724 
4725 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4726 				href_node);
4727 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4728 			continue;
4729 
4730 		spin_lock(&head->lock);
4731 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4732 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4733 				       ref_node);
4734 			ref->in_tree = 0;
4735 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4736 			RB_CLEAR_NODE(&ref->ref_node);
4737 			if (!list_empty(&ref->add_list))
4738 				list_del(&ref->add_list);
4739 			atomic_dec(&delayed_refs->num_entries);
4740 			btrfs_put_delayed_ref(ref);
4741 		}
4742 		if (head->must_insert_reserved)
4743 			pin_bytes = true;
4744 		btrfs_free_delayed_extent_op(head->extent_op);
4745 		btrfs_delete_ref_head(delayed_refs, head);
4746 		spin_unlock(&head->lock);
4747 		spin_unlock(&delayed_refs->lock);
4748 		mutex_unlock(&head->mutex);
4749 
4750 		if (pin_bytes) {
4751 			struct btrfs_block_group *cache;
4752 
4753 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4754 			BUG_ON(!cache);
4755 
4756 			spin_lock(&cache->space_info->lock);
4757 			spin_lock(&cache->lock);
4758 			cache->pinned += head->num_bytes;
4759 			btrfs_space_info_update_bytes_pinned(fs_info,
4760 				cache->space_info, head->num_bytes);
4761 			cache->reserved -= head->num_bytes;
4762 			cache->space_info->bytes_reserved -= head->num_bytes;
4763 			spin_unlock(&cache->lock);
4764 			spin_unlock(&cache->space_info->lock);
4765 
4766 			btrfs_put_block_group(cache);
4767 
4768 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4769 				head->bytenr + head->num_bytes - 1);
4770 		}
4771 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4772 		btrfs_put_delayed_ref_head(head);
4773 		cond_resched();
4774 		spin_lock(&delayed_refs->lock);
4775 	}
4776 	btrfs_qgroup_destroy_extent_records(trans);
4777 
4778 	spin_unlock(&delayed_refs->lock);
4779 
4780 	return ret;
4781 }
4782 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4783 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4784 {
4785 	struct btrfs_inode *btrfs_inode;
4786 	struct list_head splice;
4787 
4788 	INIT_LIST_HEAD(&splice);
4789 
4790 	spin_lock(&root->delalloc_lock);
4791 	list_splice_init(&root->delalloc_inodes, &splice);
4792 
4793 	while (!list_empty(&splice)) {
4794 		struct inode *inode = NULL;
4795 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4796 					       delalloc_inodes);
4797 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4798 		spin_unlock(&root->delalloc_lock);
4799 
4800 		/*
4801 		 * Make sure we get a live inode and that it'll not disappear
4802 		 * meanwhile.
4803 		 */
4804 		inode = igrab(&btrfs_inode->vfs_inode);
4805 		if (inode) {
4806 			unsigned int nofs_flag;
4807 
4808 			nofs_flag = memalloc_nofs_save();
4809 			invalidate_inode_pages2(inode->i_mapping);
4810 			memalloc_nofs_restore(nofs_flag);
4811 			iput(inode);
4812 		}
4813 		spin_lock(&root->delalloc_lock);
4814 	}
4815 	spin_unlock(&root->delalloc_lock);
4816 }
4817 
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4818 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4819 {
4820 	struct btrfs_root *root;
4821 	struct list_head splice;
4822 
4823 	INIT_LIST_HEAD(&splice);
4824 
4825 	spin_lock(&fs_info->delalloc_root_lock);
4826 	list_splice_init(&fs_info->delalloc_roots, &splice);
4827 	while (!list_empty(&splice)) {
4828 		root = list_first_entry(&splice, struct btrfs_root,
4829 					 delalloc_root);
4830 		root = btrfs_grab_root(root);
4831 		BUG_ON(!root);
4832 		spin_unlock(&fs_info->delalloc_root_lock);
4833 
4834 		btrfs_destroy_delalloc_inodes(root);
4835 		btrfs_put_root(root);
4836 
4837 		spin_lock(&fs_info->delalloc_root_lock);
4838 	}
4839 	spin_unlock(&fs_info->delalloc_root_lock);
4840 }
4841 
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4842 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4843 					struct extent_io_tree *dirty_pages,
4844 					int mark)
4845 {
4846 	int ret;
4847 	struct extent_buffer *eb;
4848 	u64 start = 0;
4849 	u64 end;
4850 
4851 	while (1) {
4852 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4853 					    mark, NULL);
4854 		if (ret)
4855 			break;
4856 
4857 		clear_extent_bits(dirty_pages, start, end, mark);
4858 		while (start <= end) {
4859 			eb = find_extent_buffer(fs_info, start);
4860 			start += fs_info->nodesize;
4861 			if (!eb)
4862 				continue;
4863 			wait_on_extent_buffer_writeback(eb);
4864 
4865 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4866 					       &eb->bflags))
4867 				clear_extent_buffer_dirty(eb);
4868 			free_extent_buffer_stale(eb);
4869 		}
4870 	}
4871 
4872 	return ret;
4873 }
4874 
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4875 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4876 				       struct extent_io_tree *unpin)
4877 {
4878 	u64 start;
4879 	u64 end;
4880 	int ret;
4881 
4882 	while (1) {
4883 		struct extent_state *cached_state = NULL;
4884 
4885 		/*
4886 		 * The btrfs_finish_extent_commit() may get the same range as
4887 		 * ours between find_first_extent_bit and clear_extent_dirty.
4888 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4889 		 * the same extent range.
4890 		 */
4891 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4892 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4893 					    EXTENT_DIRTY, &cached_state);
4894 		if (ret) {
4895 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4896 			break;
4897 		}
4898 
4899 		clear_extent_dirty(unpin, start, end, &cached_state);
4900 		free_extent_state(cached_state);
4901 		btrfs_error_unpin_extent_range(fs_info, start, end);
4902 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4903 		cond_resched();
4904 	}
4905 
4906 	return 0;
4907 }
4908 
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4909 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4910 {
4911 	struct inode *inode;
4912 
4913 	inode = cache->io_ctl.inode;
4914 	if (inode) {
4915 		unsigned int nofs_flag;
4916 
4917 		nofs_flag = memalloc_nofs_save();
4918 		invalidate_inode_pages2(inode->i_mapping);
4919 		memalloc_nofs_restore(nofs_flag);
4920 
4921 		BTRFS_I(inode)->generation = 0;
4922 		cache->io_ctl.inode = NULL;
4923 		iput(inode);
4924 	}
4925 	ASSERT(cache->io_ctl.pages == NULL);
4926 	btrfs_put_block_group(cache);
4927 }
4928 
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4929 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4930 			     struct btrfs_fs_info *fs_info)
4931 {
4932 	struct btrfs_block_group *cache;
4933 
4934 	spin_lock(&cur_trans->dirty_bgs_lock);
4935 	while (!list_empty(&cur_trans->dirty_bgs)) {
4936 		cache = list_first_entry(&cur_trans->dirty_bgs,
4937 					 struct btrfs_block_group,
4938 					 dirty_list);
4939 
4940 		if (!list_empty(&cache->io_list)) {
4941 			spin_unlock(&cur_trans->dirty_bgs_lock);
4942 			list_del_init(&cache->io_list);
4943 			btrfs_cleanup_bg_io(cache);
4944 			spin_lock(&cur_trans->dirty_bgs_lock);
4945 		}
4946 
4947 		list_del_init(&cache->dirty_list);
4948 		spin_lock(&cache->lock);
4949 		cache->disk_cache_state = BTRFS_DC_ERROR;
4950 		spin_unlock(&cache->lock);
4951 
4952 		spin_unlock(&cur_trans->dirty_bgs_lock);
4953 		btrfs_put_block_group(cache);
4954 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4955 		spin_lock(&cur_trans->dirty_bgs_lock);
4956 	}
4957 	spin_unlock(&cur_trans->dirty_bgs_lock);
4958 
4959 	/*
4960 	 * Refer to the definition of io_bgs member for details why it's safe
4961 	 * to use it without any locking
4962 	 */
4963 	while (!list_empty(&cur_trans->io_bgs)) {
4964 		cache = list_first_entry(&cur_trans->io_bgs,
4965 					 struct btrfs_block_group,
4966 					 io_list);
4967 
4968 		list_del_init(&cache->io_list);
4969 		spin_lock(&cache->lock);
4970 		cache->disk_cache_state = BTRFS_DC_ERROR;
4971 		spin_unlock(&cache->lock);
4972 		btrfs_cleanup_bg_io(cache);
4973 	}
4974 }
4975 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4976 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4977 				   struct btrfs_fs_info *fs_info)
4978 {
4979 	struct btrfs_device *dev, *tmp;
4980 
4981 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4982 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4983 	ASSERT(list_empty(&cur_trans->io_bgs));
4984 
4985 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4986 				 post_commit_list) {
4987 		list_del_init(&dev->post_commit_list);
4988 	}
4989 
4990 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4991 
4992 	cur_trans->state = TRANS_STATE_COMMIT_START;
4993 	wake_up(&fs_info->transaction_blocked_wait);
4994 
4995 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4996 	wake_up(&fs_info->transaction_wait);
4997 
4998 	btrfs_destroy_delayed_inodes(fs_info);
4999 
5000 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5001 				     EXTENT_DIRTY);
5002 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5003 
5004 	btrfs_free_redirty_list(cur_trans);
5005 
5006 	cur_trans->state =TRANS_STATE_COMPLETED;
5007 	wake_up(&cur_trans->commit_wait);
5008 }
5009 
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)5010 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5011 {
5012 	struct btrfs_transaction *t;
5013 
5014 	mutex_lock(&fs_info->transaction_kthread_mutex);
5015 
5016 	spin_lock(&fs_info->trans_lock);
5017 	while (!list_empty(&fs_info->trans_list)) {
5018 		t = list_first_entry(&fs_info->trans_list,
5019 				     struct btrfs_transaction, list);
5020 		if (t->state >= TRANS_STATE_COMMIT_START) {
5021 			refcount_inc(&t->use_count);
5022 			spin_unlock(&fs_info->trans_lock);
5023 			btrfs_wait_for_commit(fs_info, t->transid);
5024 			btrfs_put_transaction(t);
5025 			spin_lock(&fs_info->trans_lock);
5026 			continue;
5027 		}
5028 		if (t == fs_info->running_transaction) {
5029 			t->state = TRANS_STATE_COMMIT_DOING;
5030 			spin_unlock(&fs_info->trans_lock);
5031 			/*
5032 			 * We wait for 0 num_writers since we don't hold a trans
5033 			 * handle open currently for this transaction.
5034 			 */
5035 			wait_event(t->writer_wait,
5036 				   atomic_read(&t->num_writers) == 0);
5037 		} else {
5038 			spin_unlock(&fs_info->trans_lock);
5039 		}
5040 		btrfs_cleanup_one_transaction(t, fs_info);
5041 
5042 		spin_lock(&fs_info->trans_lock);
5043 		if (t == fs_info->running_transaction)
5044 			fs_info->running_transaction = NULL;
5045 		list_del_init(&t->list);
5046 		spin_unlock(&fs_info->trans_lock);
5047 
5048 		btrfs_put_transaction(t);
5049 		trace_btrfs_transaction_commit(fs_info->tree_root);
5050 		spin_lock(&fs_info->trans_lock);
5051 	}
5052 	spin_unlock(&fs_info->trans_lock);
5053 	btrfs_destroy_all_ordered_extents(fs_info);
5054 	btrfs_destroy_delayed_inodes(fs_info);
5055 	btrfs_assert_delayed_root_empty(fs_info);
5056 	btrfs_destroy_all_delalloc_inodes(fs_info);
5057 	btrfs_drop_all_logs(fs_info);
5058 	mutex_unlock(&fs_info->transaction_kthread_mutex);
5059 
5060 	return 0;
5061 }
5062 
btrfs_init_root_free_objectid(struct btrfs_root * root)5063 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5064 {
5065 	struct btrfs_path *path;
5066 	int ret;
5067 	struct extent_buffer *l;
5068 	struct btrfs_key search_key;
5069 	struct btrfs_key found_key;
5070 	int slot;
5071 
5072 	path = btrfs_alloc_path();
5073 	if (!path)
5074 		return -ENOMEM;
5075 
5076 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5077 	search_key.type = -1;
5078 	search_key.offset = (u64)-1;
5079 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5080 	if (ret < 0)
5081 		goto error;
5082 	BUG_ON(ret == 0); /* Corruption */
5083 	if (path->slots[0] > 0) {
5084 		slot = path->slots[0] - 1;
5085 		l = path->nodes[0];
5086 		btrfs_item_key_to_cpu(l, &found_key, slot);
5087 		root->free_objectid = max_t(u64, found_key.objectid + 1,
5088 					    BTRFS_FIRST_FREE_OBJECTID);
5089 	} else {
5090 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5091 	}
5092 	ret = 0;
5093 error:
5094 	btrfs_free_path(path);
5095 	return ret;
5096 }
5097 
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)5098 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5099 {
5100 	int ret;
5101 	mutex_lock(&root->objectid_mutex);
5102 
5103 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5104 		btrfs_warn(root->fs_info,
5105 			   "the objectid of root %llu reaches its highest value",
5106 			   root->root_key.objectid);
5107 		ret = -ENOSPC;
5108 		goto out;
5109 	}
5110 
5111 	*objectid = root->free_objectid++;
5112 	ret = 0;
5113 out:
5114 	mutex_unlock(&root->objectid_mutex);
5115 	return ret;
5116 }
5117