• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "export.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "volumes.h"
38 #include "locking.h"
39 #include "backref.h"
40 #include "rcu-string.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "delalloc-space.h"
50 #include "block-group.h"
51 
52 #ifdef CONFIG_64BIT
53 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
54  * structures are incorrect, as the timespec structure from userspace
55  * is 4 bytes too small. We define these alternatives here to teach
56  * the kernel about the 32-bit struct packing.
57  */
58 struct btrfs_ioctl_timespec_32 {
59 	__u64 sec;
60 	__u32 nsec;
61 } __attribute__ ((__packed__));
62 
63 struct btrfs_ioctl_received_subvol_args_32 {
64 	char	uuid[BTRFS_UUID_SIZE];	/* in */
65 	__u64	stransid;		/* in */
66 	__u64	rtransid;		/* out */
67 	struct btrfs_ioctl_timespec_32 stime; /* in */
68 	struct btrfs_ioctl_timespec_32 rtime; /* out */
69 	__u64	flags;			/* in */
70 	__u64	reserved[16];		/* in */
71 } __attribute__ ((__packed__));
72 
73 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
74 				struct btrfs_ioctl_received_subvol_args_32)
75 #endif
76 
77 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
78 struct btrfs_ioctl_send_args_32 {
79 	__s64 send_fd;			/* in */
80 	__u64 clone_sources_count;	/* in */
81 	compat_uptr_t clone_sources;	/* in */
82 	__u64 parent_root;		/* in */
83 	__u64 flags;			/* in */
84 	__u64 reserved[4];		/* in */
85 } __attribute__ ((__packed__));
86 
87 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
88 			       struct btrfs_ioctl_send_args_32)
89 #endif
90 
91 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)92 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
93 		unsigned int flags)
94 {
95 	if (S_ISDIR(inode->i_mode))
96 		return flags;
97 	else if (S_ISREG(inode->i_mode))
98 		return flags & ~FS_DIRSYNC_FL;
99 	else
100 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
101 }
102 
103 /*
104  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
105  * ioctl.
106  */
btrfs_inode_flags_to_fsflags(struct btrfs_inode * binode)107 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
108 {
109 	unsigned int iflags = 0;
110 	u32 flags = binode->flags;
111 	u32 ro_flags = binode->ro_flags;
112 
113 	if (flags & BTRFS_INODE_SYNC)
114 		iflags |= FS_SYNC_FL;
115 	if (flags & BTRFS_INODE_IMMUTABLE)
116 		iflags |= FS_IMMUTABLE_FL;
117 	if (flags & BTRFS_INODE_APPEND)
118 		iflags |= FS_APPEND_FL;
119 	if (flags & BTRFS_INODE_NODUMP)
120 		iflags |= FS_NODUMP_FL;
121 	if (flags & BTRFS_INODE_NOATIME)
122 		iflags |= FS_NOATIME_FL;
123 	if (flags & BTRFS_INODE_DIRSYNC)
124 		iflags |= FS_DIRSYNC_FL;
125 	if (flags & BTRFS_INODE_NODATACOW)
126 		iflags |= FS_NOCOW_FL;
127 	if (ro_flags & BTRFS_INODE_RO_VERITY)
128 		iflags |= FS_VERITY_FL;
129 
130 	if (flags & BTRFS_INODE_NOCOMPRESS)
131 		iflags |= FS_NOCOMP_FL;
132 	else if (flags & BTRFS_INODE_COMPRESS)
133 		iflags |= FS_COMPR_FL;
134 
135 	return iflags;
136 }
137 
138 /*
139  * Update inode->i_flags based on the btrfs internal flags.
140  */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)141 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
142 {
143 	struct btrfs_inode *binode = BTRFS_I(inode);
144 	unsigned int new_fl = 0;
145 
146 	if (binode->flags & BTRFS_INODE_SYNC)
147 		new_fl |= S_SYNC;
148 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
149 		new_fl |= S_IMMUTABLE;
150 	if (binode->flags & BTRFS_INODE_APPEND)
151 		new_fl |= S_APPEND;
152 	if (binode->flags & BTRFS_INODE_NOATIME)
153 		new_fl |= S_NOATIME;
154 	if (binode->flags & BTRFS_INODE_DIRSYNC)
155 		new_fl |= S_DIRSYNC;
156 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
157 		new_fl |= S_VERITY;
158 
159 	set_mask_bits(&inode->i_flags,
160 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
161 		      S_VERITY, new_fl);
162 }
163 
164 /*
165  * Check if @flags are a supported and valid set of FS_*_FL flags and that
166  * the old and new flags are not conflicting
167  */
check_fsflags(unsigned int old_flags,unsigned int flags)168 static int check_fsflags(unsigned int old_flags, unsigned int flags)
169 {
170 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
171 		      FS_NOATIME_FL | FS_NODUMP_FL | \
172 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
173 		      FS_NOCOMP_FL | FS_COMPR_FL |
174 		      FS_NOCOW_FL))
175 		return -EOPNOTSUPP;
176 
177 	/* COMPR and NOCOMP on new/old are valid */
178 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
179 		return -EINVAL;
180 
181 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
182 		return -EINVAL;
183 
184 	/* NOCOW and compression options are mutually exclusive */
185 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
186 		return -EINVAL;
187 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
188 		return -EINVAL;
189 
190 	return 0;
191 }
192 
check_fsflags_compatible(struct btrfs_fs_info * fs_info,unsigned int flags)193 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
194 				    unsigned int flags)
195 {
196 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
197 		return -EPERM;
198 
199 	return 0;
200 }
201 
202 /*
203  * Set flags/xflags from the internal inode flags. The remaining items of
204  * fsxattr are zeroed.
205  */
btrfs_fileattr_get(struct dentry * dentry,struct fileattr * fa)206 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
207 {
208 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
209 
210 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
211 	return 0;
212 }
213 
btrfs_fileattr_set(struct user_namespace * mnt_userns,struct dentry * dentry,struct fileattr * fa)214 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
215 		       struct dentry *dentry, struct fileattr *fa)
216 {
217 	struct inode *inode = d_inode(dentry);
218 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
219 	struct btrfs_inode *binode = BTRFS_I(inode);
220 	struct btrfs_root *root = binode->root;
221 	struct btrfs_trans_handle *trans;
222 	unsigned int fsflags, old_fsflags;
223 	int ret;
224 	const char *comp = NULL;
225 	u32 binode_flags;
226 
227 	if (btrfs_root_readonly(root))
228 		return -EROFS;
229 
230 	if (fileattr_has_fsx(fa))
231 		return -EOPNOTSUPP;
232 
233 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
234 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
235 	ret = check_fsflags(old_fsflags, fsflags);
236 	if (ret)
237 		return ret;
238 
239 	ret = check_fsflags_compatible(fs_info, fsflags);
240 	if (ret)
241 		return ret;
242 
243 	binode_flags = binode->flags;
244 	if (fsflags & FS_SYNC_FL)
245 		binode_flags |= BTRFS_INODE_SYNC;
246 	else
247 		binode_flags &= ~BTRFS_INODE_SYNC;
248 	if (fsflags & FS_IMMUTABLE_FL)
249 		binode_flags |= BTRFS_INODE_IMMUTABLE;
250 	else
251 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
252 	if (fsflags & FS_APPEND_FL)
253 		binode_flags |= BTRFS_INODE_APPEND;
254 	else
255 		binode_flags &= ~BTRFS_INODE_APPEND;
256 	if (fsflags & FS_NODUMP_FL)
257 		binode_flags |= BTRFS_INODE_NODUMP;
258 	else
259 		binode_flags &= ~BTRFS_INODE_NODUMP;
260 	if (fsflags & FS_NOATIME_FL)
261 		binode_flags |= BTRFS_INODE_NOATIME;
262 	else
263 		binode_flags &= ~BTRFS_INODE_NOATIME;
264 
265 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
266 	if (!fa->flags_valid) {
267 		/* 1 item for the inode */
268 		trans = btrfs_start_transaction(root, 1);
269 		if (IS_ERR(trans))
270 			return PTR_ERR(trans);
271 		goto update_flags;
272 	}
273 
274 	if (fsflags & FS_DIRSYNC_FL)
275 		binode_flags |= BTRFS_INODE_DIRSYNC;
276 	else
277 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
278 	if (fsflags & FS_NOCOW_FL) {
279 		if (S_ISREG(inode->i_mode)) {
280 			/*
281 			 * It's safe to turn csums off here, no extents exist.
282 			 * Otherwise we want the flag to reflect the real COW
283 			 * status of the file and will not set it.
284 			 */
285 			if (inode->i_size == 0)
286 				binode_flags |= BTRFS_INODE_NODATACOW |
287 						BTRFS_INODE_NODATASUM;
288 		} else {
289 			binode_flags |= BTRFS_INODE_NODATACOW;
290 		}
291 	} else {
292 		/*
293 		 * Revert back under same assumptions as above
294 		 */
295 		if (S_ISREG(inode->i_mode)) {
296 			if (inode->i_size == 0)
297 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
298 						  BTRFS_INODE_NODATASUM);
299 		} else {
300 			binode_flags &= ~BTRFS_INODE_NODATACOW;
301 		}
302 	}
303 
304 	/*
305 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
306 	 * flag may be changed automatically if compression code won't make
307 	 * things smaller.
308 	 */
309 	if (fsflags & FS_NOCOMP_FL) {
310 		binode_flags &= ~BTRFS_INODE_COMPRESS;
311 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
312 	} else if (fsflags & FS_COMPR_FL) {
313 
314 		if (IS_SWAPFILE(inode))
315 			return -ETXTBSY;
316 
317 		binode_flags |= BTRFS_INODE_COMPRESS;
318 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
319 
320 		comp = btrfs_compress_type2str(fs_info->compress_type);
321 		if (!comp || comp[0] == 0)
322 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
323 	} else {
324 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
325 	}
326 
327 	/*
328 	 * 1 for inode item
329 	 * 2 for properties
330 	 */
331 	trans = btrfs_start_transaction(root, 3);
332 	if (IS_ERR(trans))
333 		return PTR_ERR(trans);
334 
335 	if (comp) {
336 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
337 				     strlen(comp), 0);
338 		if (ret) {
339 			btrfs_abort_transaction(trans, ret);
340 			goto out_end_trans;
341 		}
342 	} else {
343 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
344 				     0, 0);
345 		if (ret && ret != -ENODATA) {
346 			btrfs_abort_transaction(trans, ret);
347 			goto out_end_trans;
348 		}
349 	}
350 
351 update_flags:
352 	binode->flags = binode_flags;
353 	btrfs_sync_inode_flags_to_i_flags(inode);
354 	inode_inc_iversion(inode);
355 	inode->i_ctime = current_time(inode);
356 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
357 
358  out_end_trans:
359 	btrfs_end_transaction(trans);
360 	return ret;
361 }
362 
363 /*
364  * Start exclusive operation @type, return true on success
365  */
btrfs_exclop_start(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)366 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
367 			enum btrfs_exclusive_operation type)
368 {
369 	bool ret = false;
370 
371 	spin_lock(&fs_info->super_lock);
372 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
373 		fs_info->exclusive_operation = type;
374 		ret = true;
375 	}
376 	spin_unlock(&fs_info->super_lock);
377 
378 	return ret;
379 }
380 
381 /*
382  * Conditionally allow to enter the exclusive operation in case it's compatible
383  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
384  * btrfs_exclop_finish.
385  *
386  * Compatibility:
387  * - the same type is already running
388  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
389  *   must check the condition first that would allow none -> @type
390  */
btrfs_exclop_start_try_lock(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)391 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
392 				 enum btrfs_exclusive_operation type)
393 {
394 	spin_lock(&fs_info->super_lock);
395 	if (fs_info->exclusive_operation == type)
396 		return true;
397 
398 	spin_unlock(&fs_info->super_lock);
399 	return false;
400 }
401 
btrfs_exclop_start_unlock(struct btrfs_fs_info * fs_info)402 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
403 {
404 	spin_unlock(&fs_info->super_lock);
405 }
406 
btrfs_exclop_finish(struct btrfs_fs_info * fs_info)407 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
408 {
409 	spin_lock(&fs_info->super_lock);
410 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
411 	spin_unlock(&fs_info->super_lock);
412 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
413 }
414 
btrfs_ioctl_getversion(struct file * file,int __user * arg)415 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
416 {
417 	struct inode *inode = file_inode(file);
418 
419 	return put_user(inode->i_generation, arg);
420 }
421 
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)422 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
423 					void __user *arg)
424 {
425 	struct btrfs_device *device;
426 	struct request_queue *q;
427 	struct fstrim_range range;
428 	u64 minlen = ULLONG_MAX;
429 	u64 num_devices = 0;
430 	int ret;
431 
432 	if (!capable(CAP_SYS_ADMIN))
433 		return -EPERM;
434 
435 	/*
436 	 * btrfs_trim_block_group() depends on space cache, which is not
437 	 * available in zoned filesystem. So, disallow fitrim on a zoned
438 	 * filesystem for now.
439 	 */
440 	if (btrfs_is_zoned(fs_info))
441 		return -EOPNOTSUPP;
442 
443 	/*
444 	 * If the fs is mounted with nologreplay, which requires it to be
445 	 * mounted in RO mode as well, we can not allow discard on free space
446 	 * inside block groups, because log trees refer to extents that are not
447 	 * pinned in a block group's free space cache (pinning the extents is
448 	 * precisely the first phase of replaying a log tree).
449 	 */
450 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
451 		return -EROFS;
452 
453 	rcu_read_lock();
454 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
455 				dev_list) {
456 		if (!device->bdev)
457 			continue;
458 		q = bdev_get_queue(device->bdev);
459 		if (blk_queue_discard(q)) {
460 			num_devices++;
461 			minlen = min_t(u64, q->limits.discard_granularity,
462 				     minlen);
463 		}
464 	}
465 	rcu_read_unlock();
466 
467 	if (!num_devices)
468 		return -EOPNOTSUPP;
469 	if (copy_from_user(&range, arg, sizeof(range)))
470 		return -EFAULT;
471 
472 	/*
473 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
474 	 * block group is in the logical address space, which can be any
475 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
476 	 */
477 	if (range.len < fs_info->sb->s_blocksize)
478 		return -EINVAL;
479 
480 	range.minlen = max(range.minlen, minlen);
481 	ret = btrfs_trim_fs(fs_info, &range);
482 	if (ret < 0)
483 		return ret;
484 
485 	if (copy_to_user(arg, &range, sizeof(range)))
486 		return -EFAULT;
487 
488 	return 0;
489 }
490 
btrfs_is_empty_uuid(u8 * uuid)491 int __pure btrfs_is_empty_uuid(u8 *uuid)
492 {
493 	int i;
494 
495 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
496 		if (uuid[i])
497 			return 0;
498 	}
499 	return 1;
500 }
501 
create_subvol(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * name,int namelen,struct btrfs_qgroup_inherit * inherit)502 static noinline int create_subvol(struct user_namespace *mnt_userns,
503 				  struct inode *dir, struct dentry *dentry,
504 				  const char *name, int namelen,
505 				  struct btrfs_qgroup_inherit *inherit)
506 {
507 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
508 	struct btrfs_trans_handle *trans;
509 	struct btrfs_key key;
510 	struct btrfs_root_item *root_item;
511 	struct btrfs_inode_item *inode_item;
512 	struct extent_buffer *leaf;
513 	struct btrfs_root *root = BTRFS_I(dir)->root;
514 	struct btrfs_root *new_root;
515 	struct btrfs_block_rsv block_rsv;
516 	struct timespec64 cur_time = current_time(dir);
517 	struct inode *inode;
518 	int ret;
519 	int err;
520 	dev_t anon_dev = 0;
521 	u64 objectid;
522 	u64 index = 0;
523 
524 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
525 	if (!root_item)
526 		return -ENOMEM;
527 
528 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
529 	if (ret)
530 		goto fail_free;
531 
532 	ret = get_anon_bdev(&anon_dev);
533 	if (ret < 0)
534 		goto fail_free;
535 
536 	/*
537 	 * Don't create subvolume whose level is not zero. Or qgroup will be
538 	 * screwed up since it assumes subvolume qgroup's level to be 0.
539 	 */
540 	if (btrfs_qgroup_level(objectid)) {
541 		ret = -ENOSPC;
542 		goto fail_free;
543 	}
544 
545 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
546 	/*
547 	 * The same as the snapshot creation, please see the comment
548 	 * of create_snapshot().
549 	 */
550 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
551 	if (ret)
552 		goto fail_free;
553 
554 	trans = btrfs_start_transaction(root, 0);
555 	if (IS_ERR(trans)) {
556 		ret = PTR_ERR(trans);
557 		btrfs_subvolume_release_metadata(root, &block_rsv);
558 		goto fail_free;
559 	}
560 	trans->block_rsv = &block_rsv;
561 	trans->bytes_reserved = block_rsv.size;
562 
563 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
564 	if (ret)
565 		goto fail;
566 
567 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
568 				      BTRFS_NESTING_NORMAL);
569 	if (IS_ERR(leaf)) {
570 		ret = PTR_ERR(leaf);
571 		goto fail;
572 	}
573 
574 	btrfs_mark_buffer_dirty(leaf);
575 
576 	inode_item = &root_item->inode;
577 	btrfs_set_stack_inode_generation(inode_item, 1);
578 	btrfs_set_stack_inode_size(inode_item, 3);
579 	btrfs_set_stack_inode_nlink(inode_item, 1);
580 	btrfs_set_stack_inode_nbytes(inode_item,
581 				     fs_info->nodesize);
582 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
583 
584 	btrfs_set_root_flags(root_item, 0);
585 	btrfs_set_root_limit(root_item, 0);
586 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
587 
588 	btrfs_set_root_bytenr(root_item, leaf->start);
589 	btrfs_set_root_generation(root_item, trans->transid);
590 	btrfs_set_root_level(root_item, 0);
591 	btrfs_set_root_refs(root_item, 1);
592 	btrfs_set_root_used(root_item, leaf->len);
593 	btrfs_set_root_last_snapshot(root_item, 0);
594 
595 	btrfs_set_root_generation_v2(root_item,
596 			btrfs_root_generation(root_item));
597 	generate_random_guid(root_item->uuid);
598 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
599 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
600 	root_item->ctime = root_item->otime;
601 	btrfs_set_root_ctransid(root_item, trans->transid);
602 	btrfs_set_root_otransid(root_item, trans->transid);
603 
604 	btrfs_tree_unlock(leaf);
605 
606 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
607 
608 	key.objectid = objectid;
609 	key.offset = 0;
610 	key.type = BTRFS_ROOT_ITEM_KEY;
611 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
612 				root_item);
613 	if (ret) {
614 		/*
615 		 * Since we don't abort the transaction in this case, free the
616 		 * tree block so that we don't leak space and leave the
617 		 * filesystem in an inconsistent state (an extent item in the
618 		 * extent tree with a backreference for a root that does not
619 		 * exists).
620 		 */
621 		btrfs_tree_lock(leaf);
622 		btrfs_clean_tree_block(leaf);
623 		btrfs_tree_unlock(leaf);
624 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
625 		free_extent_buffer(leaf);
626 		goto fail;
627 	}
628 
629 	free_extent_buffer(leaf);
630 	leaf = NULL;
631 
632 	key.offset = (u64)-1;
633 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
634 	if (IS_ERR(new_root)) {
635 		free_anon_bdev(anon_dev);
636 		ret = PTR_ERR(new_root);
637 		btrfs_abort_transaction(trans, ret);
638 		goto fail;
639 	}
640 	/* Freeing will be done in btrfs_put_root() of new_root */
641 	anon_dev = 0;
642 
643 	ret = btrfs_record_root_in_trans(trans, new_root);
644 	if (ret) {
645 		btrfs_put_root(new_root);
646 		btrfs_abort_transaction(trans, ret);
647 		goto fail;
648 	}
649 
650 	ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
651 	btrfs_put_root(new_root);
652 	if (ret) {
653 		/* We potentially lose an unused inode item here */
654 		btrfs_abort_transaction(trans, ret);
655 		goto fail;
656 	}
657 
658 	/*
659 	 * insert the directory item
660 	 */
661 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
662 	if (ret) {
663 		btrfs_abort_transaction(trans, ret);
664 		goto fail;
665 	}
666 
667 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
668 				    BTRFS_FT_DIR, index);
669 	if (ret) {
670 		btrfs_abort_transaction(trans, ret);
671 		goto fail;
672 	}
673 
674 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
675 	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
676 	if (ret) {
677 		btrfs_abort_transaction(trans, ret);
678 		goto fail;
679 	}
680 
681 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
682 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
683 	if (ret) {
684 		btrfs_abort_transaction(trans, ret);
685 		goto fail;
686 	}
687 
688 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
689 				  BTRFS_UUID_KEY_SUBVOL, objectid);
690 	if (ret)
691 		btrfs_abort_transaction(trans, ret);
692 
693 fail:
694 	kfree(root_item);
695 	trans->block_rsv = NULL;
696 	trans->bytes_reserved = 0;
697 	btrfs_subvolume_release_metadata(root, &block_rsv);
698 
699 	err = btrfs_commit_transaction(trans);
700 	if (err && !ret)
701 		ret = err;
702 
703 	if (!ret) {
704 		inode = btrfs_lookup_dentry(dir, dentry);
705 		if (IS_ERR(inode))
706 			return PTR_ERR(inode);
707 		d_instantiate(dentry, inode);
708 	}
709 	return ret;
710 
711 fail_free:
712 	if (anon_dev)
713 		free_anon_bdev(anon_dev);
714 	kfree(root_item);
715 	return ret;
716 }
717 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)718 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
719 			   struct dentry *dentry, bool readonly,
720 			   struct btrfs_qgroup_inherit *inherit)
721 {
722 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
723 	struct inode *inode;
724 	struct btrfs_pending_snapshot *pending_snapshot;
725 	struct btrfs_trans_handle *trans;
726 	int ret;
727 
728 	if (btrfs_root_refs(&root->root_item) == 0)
729 		return -ENOENT;
730 
731 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
732 		return -EINVAL;
733 
734 	if (atomic_read(&root->nr_swapfiles)) {
735 		btrfs_warn(fs_info,
736 			   "cannot snapshot subvolume with active swapfile");
737 		return -ETXTBSY;
738 	}
739 
740 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
741 	if (!pending_snapshot)
742 		return -ENOMEM;
743 
744 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
745 	if (ret < 0)
746 		goto free_pending;
747 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
748 			GFP_KERNEL);
749 	pending_snapshot->path = btrfs_alloc_path();
750 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
751 		ret = -ENOMEM;
752 		goto free_pending;
753 	}
754 
755 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
756 			     BTRFS_BLOCK_RSV_TEMP);
757 	/*
758 	 * 1 - parent dir inode
759 	 * 2 - dir entries
760 	 * 1 - root item
761 	 * 2 - root ref/backref
762 	 * 1 - root of snapshot
763 	 * 1 - UUID item
764 	 */
765 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
766 					&pending_snapshot->block_rsv, 8,
767 					false);
768 	if (ret)
769 		goto free_pending;
770 
771 	pending_snapshot->dentry = dentry;
772 	pending_snapshot->root = root;
773 	pending_snapshot->readonly = readonly;
774 	pending_snapshot->dir = dir;
775 	pending_snapshot->inherit = inherit;
776 
777 	trans = btrfs_start_transaction(root, 0);
778 	if (IS_ERR(trans)) {
779 		ret = PTR_ERR(trans);
780 		goto fail;
781 	}
782 
783 	trans->pending_snapshot = pending_snapshot;
784 
785 	ret = btrfs_commit_transaction(trans);
786 	if (ret)
787 		goto fail;
788 
789 	ret = pending_snapshot->error;
790 	if (ret)
791 		goto fail;
792 
793 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
794 	if (ret)
795 		goto fail;
796 
797 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
798 	if (IS_ERR(inode)) {
799 		ret = PTR_ERR(inode);
800 		goto fail;
801 	}
802 
803 	d_instantiate(dentry, inode);
804 	ret = 0;
805 	pending_snapshot->anon_dev = 0;
806 fail:
807 	/* Prevent double freeing of anon_dev */
808 	if (ret && pending_snapshot->snap)
809 		pending_snapshot->snap->anon_dev = 0;
810 	btrfs_put_root(pending_snapshot->snap);
811 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
812 free_pending:
813 	if (pending_snapshot->anon_dev)
814 		free_anon_bdev(pending_snapshot->anon_dev);
815 	kfree(pending_snapshot->root_item);
816 	btrfs_free_path(pending_snapshot->path);
817 	kfree(pending_snapshot);
818 
819 	return ret;
820 }
821 
822 /*  copy of may_delete in fs/namei.c()
823  *	Check whether we can remove a link victim from directory dir, check
824  *  whether the type of victim is right.
825  *  1. We can't do it if dir is read-only (done in permission())
826  *  2. We should have write and exec permissions on dir
827  *  3. We can't remove anything from append-only dir
828  *  4. We can't do anything with immutable dir (done in permission())
829  *  5. If the sticky bit on dir is set we should either
830  *	a. be owner of dir, or
831  *	b. be owner of victim, or
832  *	c. have CAP_FOWNER capability
833  *  6. If the victim is append-only or immutable we can't do anything with
834  *     links pointing to it.
835  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
836  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
837  *  9. We can't remove a root or mountpoint.
838  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
839  *     nfs_async_unlink().
840  */
841 
btrfs_may_delete(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * victim,int isdir)842 static int btrfs_may_delete(struct user_namespace *mnt_userns,
843 			    struct inode *dir, struct dentry *victim, int isdir)
844 {
845 	int error;
846 
847 	if (d_really_is_negative(victim))
848 		return -ENOENT;
849 
850 	BUG_ON(d_inode(victim->d_parent) != dir);
851 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
852 
853 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
854 	if (error)
855 		return error;
856 	if (IS_APPEND(dir))
857 		return -EPERM;
858 	if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
859 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
860 	    IS_SWAPFILE(d_inode(victim)))
861 		return -EPERM;
862 	if (isdir) {
863 		if (!d_is_dir(victim))
864 			return -ENOTDIR;
865 		if (IS_ROOT(victim))
866 			return -EBUSY;
867 	} else if (d_is_dir(victim))
868 		return -EISDIR;
869 	if (IS_DEADDIR(dir))
870 		return -ENOENT;
871 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
872 		return -EBUSY;
873 	return 0;
874 }
875 
876 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * child)877 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
878 				   struct inode *dir, struct dentry *child)
879 {
880 	if (d_really_is_positive(child))
881 		return -EEXIST;
882 	if (IS_DEADDIR(dir))
883 		return -ENOENT;
884 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
885 		return -EOVERFLOW;
886 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
887 }
888 
889 /*
890  * Create a new subvolume below @parent.  This is largely modeled after
891  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
892  * inside this filesystem so it's quite a bit simpler.
893  */
btrfs_mksubvol(const struct path * parent,struct user_namespace * mnt_userns,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)894 static noinline int btrfs_mksubvol(const struct path *parent,
895 				   struct user_namespace *mnt_userns,
896 				   const char *name, int namelen,
897 				   struct btrfs_root *snap_src,
898 				   bool readonly,
899 				   struct btrfs_qgroup_inherit *inherit)
900 {
901 	struct inode *dir = d_inode(parent->dentry);
902 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
903 	struct dentry *dentry;
904 	int error;
905 
906 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
907 	if (error == -EINTR)
908 		return error;
909 
910 	dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
911 	error = PTR_ERR(dentry);
912 	if (IS_ERR(dentry))
913 		goto out_unlock;
914 
915 	error = btrfs_may_create(mnt_userns, dir, dentry);
916 	if (error)
917 		goto out_dput;
918 
919 	/*
920 	 * even if this name doesn't exist, we may get hash collisions.
921 	 * check for them now when we can safely fail
922 	 */
923 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
924 					       dir->i_ino, name,
925 					       namelen);
926 	if (error)
927 		goto out_dput;
928 
929 	down_read(&fs_info->subvol_sem);
930 
931 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
932 		goto out_up_read;
933 
934 	if (snap_src)
935 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
936 	else
937 		error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
938 
939 	if (!error)
940 		fsnotify_mkdir(dir, dentry);
941 out_up_read:
942 	up_read(&fs_info->subvol_sem);
943 out_dput:
944 	dput(dentry);
945 out_unlock:
946 	btrfs_inode_unlock(dir, 0);
947 	return error;
948 }
949 
btrfs_mksnapshot(const struct path * parent,struct user_namespace * mnt_userns,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)950 static noinline int btrfs_mksnapshot(const struct path *parent,
951 				   struct user_namespace *mnt_userns,
952 				   const char *name, int namelen,
953 				   struct btrfs_root *root,
954 				   bool readonly,
955 				   struct btrfs_qgroup_inherit *inherit)
956 {
957 	int ret;
958 	bool snapshot_force_cow = false;
959 
960 	/*
961 	 * Force new buffered writes to reserve space even when NOCOW is
962 	 * possible. This is to avoid later writeback (running dealloc) to
963 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
964 	 */
965 	btrfs_drew_read_lock(&root->snapshot_lock);
966 
967 	ret = btrfs_start_delalloc_snapshot(root, false);
968 	if (ret)
969 		goto out;
970 
971 	/*
972 	 * All previous writes have started writeback in NOCOW mode, so now
973 	 * we force future writes to fallback to COW mode during snapshot
974 	 * creation.
975 	 */
976 	atomic_inc(&root->snapshot_force_cow);
977 	snapshot_force_cow = true;
978 
979 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
980 
981 	ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
982 			     root, readonly, inherit);
983 out:
984 	if (snapshot_force_cow)
985 		atomic_dec(&root->snapshot_force_cow);
986 	btrfs_drew_read_unlock(&root->snapshot_lock);
987 	return ret;
988 }
989 
990 /*
991  * When we're defragging a range, we don't want to kick it off again
992  * if it is really just waiting for delalloc to send it down.
993  * If we find a nice big extent or delalloc range for the bytes in the
994  * file you want to defrag, we return 0 to let you know to skip this
995  * part of the file
996  */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)997 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
998 {
999 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1000 	struct extent_map *em = NULL;
1001 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1002 	u64 end;
1003 
1004 	read_lock(&em_tree->lock);
1005 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1006 	read_unlock(&em_tree->lock);
1007 
1008 	if (em) {
1009 		end = extent_map_end(em);
1010 		free_extent_map(em);
1011 		if (end - offset > thresh)
1012 			return 0;
1013 	}
1014 	/* if we already have a nice delalloc here, just stop */
1015 	thresh /= 2;
1016 	end = count_range_bits(io_tree, &offset, offset + thresh,
1017 			       thresh, EXTENT_DELALLOC, 1);
1018 	if (end >= thresh)
1019 		return 0;
1020 	return 1;
1021 }
1022 
1023 /*
1024  * helper function to walk through a file and find extents
1025  * newer than a specific transid, and smaller than thresh.
1026  *
1027  * This is used by the defragging code to find new and small
1028  * extents
1029  */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)1030 static int find_new_extents(struct btrfs_root *root,
1031 			    struct inode *inode, u64 newer_than,
1032 			    u64 *off, u32 thresh)
1033 {
1034 	struct btrfs_path *path;
1035 	struct btrfs_key min_key;
1036 	struct extent_buffer *leaf;
1037 	struct btrfs_file_extent_item *extent;
1038 	int type;
1039 	int ret;
1040 	u64 ino = btrfs_ino(BTRFS_I(inode));
1041 
1042 	path = btrfs_alloc_path();
1043 	if (!path)
1044 		return -ENOMEM;
1045 
1046 	min_key.objectid = ino;
1047 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1048 	min_key.offset = *off;
1049 
1050 	while (1) {
1051 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1052 		if (ret != 0)
1053 			goto none;
1054 process_slot:
1055 		if (min_key.objectid != ino)
1056 			goto none;
1057 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1058 			goto none;
1059 
1060 		leaf = path->nodes[0];
1061 		extent = btrfs_item_ptr(leaf, path->slots[0],
1062 					struct btrfs_file_extent_item);
1063 
1064 		type = btrfs_file_extent_type(leaf, extent);
1065 		if (type == BTRFS_FILE_EXTENT_REG &&
1066 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1067 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1068 			*off = min_key.offset;
1069 			btrfs_free_path(path);
1070 			return 0;
1071 		}
1072 
1073 		path->slots[0]++;
1074 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1075 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1076 			goto process_slot;
1077 		}
1078 
1079 		if (min_key.offset == (u64)-1)
1080 			goto none;
1081 
1082 		min_key.offset++;
1083 		btrfs_release_path(path);
1084 	}
1085 none:
1086 	btrfs_free_path(path);
1087 	return -ENOENT;
1088 }
1089 
defrag_lookup_extent(struct inode * inode,u64 start)1090 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1091 {
1092 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1093 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1094 	struct extent_map *em;
1095 	u64 len = PAGE_SIZE;
1096 
1097 	/*
1098 	 * hopefully we have this extent in the tree already, try without
1099 	 * the full extent lock
1100 	 */
1101 	read_lock(&em_tree->lock);
1102 	em = lookup_extent_mapping(em_tree, start, len);
1103 	read_unlock(&em_tree->lock);
1104 
1105 	if (!em) {
1106 		struct extent_state *cached = NULL;
1107 		u64 end = start + len - 1;
1108 
1109 		/* get the big lock and read metadata off disk */
1110 		lock_extent_bits(io_tree, start, end, &cached);
1111 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1112 		unlock_extent_cached(io_tree, start, end, &cached);
1113 
1114 		if (IS_ERR(em))
1115 			return NULL;
1116 	}
1117 
1118 	return em;
1119 }
1120 
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1121 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1122 {
1123 	struct extent_map *next;
1124 	bool ret = true;
1125 
1126 	/* this is the last extent */
1127 	if (em->start + em->len >= i_size_read(inode))
1128 		return false;
1129 
1130 	next = defrag_lookup_extent(inode, em->start + em->len);
1131 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1132 		ret = false;
1133 	else if ((em->block_start + em->block_len == next->block_start) &&
1134 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1135 		ret = false;
1136 
1137 	free_extent_map(next);
1138 	return ret;
1139 }
1140 
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1141 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1142 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1143 			       int compress)
1144 {
1145 	struct extent_map *em;
1146 	int ret = 1;
1147 	bool next_mergeable = true;
1148 	bool prev_mergeable = true;
1149 
1150 	/*
1151 	 * make sure that once we start defragging an extent, we keep on
1152 	 * defragging it
1153 	 */
1154 	if (start < *defrag_end)
1155 		return 1;
1156 
1157 	*skip = 0;
1158 
1159 	em = defrag_lookup_extent(inode, start);
1160 	if (!em)
1161 		return 0;
1162 
1163 	/* this will cover holes, and inline extents */
1164 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1165 		ret = 0;
1166 		goto out;
1167 	}
1168 
1169 	if (!*defrag_end)
1170 		prev_mergeable = false;
1171 
1172 	next_mergeable = defrag_check_next_extent(inode, em);
1173 	/*
1174 	 * we hit a real extent, if it is big or the next extent is not a
1175 	 * real extent, don't bother defragging it
1176 	 */
1177 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1178 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1179 		ret = 0;
1180 out:
1181 	/*
1182 	 * last_len ends up being a counter of how many bytes we've defragged.
1183 	 * every time we choose not to defrag an extent, we reset *last_len
1184 	 * so that the next tiny extent will force a defrag.
1185 	 *
1186 	 * The end result of this is that tiny extents before a single big
1187 	 * extent will force at least part of that big extent to be defragged.
1188 	 */
1189 	if (ret) {
1190 		*defrag_end = extent_map_end(em);
1191 	} else {
1192 		*last_len = 0;
1193 		*skip = extent_map_end(em);
1194 		*defrag_end = 0;
1195 	}
1196 
1197 	free_extent_map(em);
1198 	return ret;
1199 }
1200 
1201 /*
1202  * it doesn't do much good to defrag one or two pages
1203  * at a time.  This pulls in a nice chunk of pages
1204  * to COW and defrag.
1205  *
1206  * It also makes sure the delalloc code has enough
1207  * dirty data to avoid making new small extents as part
1208  * of the defrag
1209  *
1210  * It's a good idea to start RA on this range
1211  * before calling this.
1212  */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1213 static int cluster_pages_for_defrag(struct inode *inode,
1214 				    struct page **pages,
1215 				    unsigned long start_index,
1216 				    unsigned long num_pages)
1217 {
1218 	unsigned long file_end;
1219 	u64 isize = i_size_read(inode);
1220 	u64 page_start;
1221 	u64 page_end;
1222 	u64 page_cnt;
1223 	u64 start = (u64)start_index << PAGE_SHIFT;
1224 	u64 search_start;
1225 	int ret;
1226 	int i;
1227 	int i_done;
1228 	struct btrfs_ordered_extent *ordered;
1229 	struct extent_state *cached_state = NULL;
1230 	struct extent_io_tree *tree;
1231 	struct extent_changeset *data_reserved = NULL;
1232 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1233 
1234 	file_end = (isize - 1) >> PAGE_SHIFT;
1235 	if (!isize || start_index > file_end)
1236 		return 0;
1237 
1238 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1239 
1240 	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1241 			start, page_cnt << PAGE_SHIFT);
1242 	if (ret)
1243 		return ret;
1244 	i_done = 0;
1245 	tree = &BTRFS_I(inode)->io_tree;
1246 
1247 	/* step one, lock all the pages */
1248 	for (i = 0; i < page_cnt; i++) {
1249 		struct page *page;
1250 again:
1251 		page = find_or_create_page(inode->i_mapping,
1252 					   start_index + i, mask);
1253 		if (!page)
1254 			break;
1255 
1256 		ret = set_page_extent_mapped(page);
1257 		if (ret < 0) {
1258 			unlock_page(page);
1259 			put_page(page);
1260 			break;
1261 		}
1262 
1263 		page_start = page_offset(page);
1264 		page_end = page_start + PAGE_SIZE - 1;
1265 		while (1) {
1266 			lock_extent_bits(tree, page_start, page_end,
1267 					 &cached_state);
1268 			ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1269 							      page_start);
1270 			unlock_extent_cached(tree, page_start, page_end,
1271 					     &cached_state);
1272 			if (!ordered)
1273 				break;
1274 
1275 			unlock_page(page);
1276 			btrfs_start_ordered_extent(ordered, 1);
1277 			btrfs_put_ordered_extent(ordered);
1278 			lock_page(page);
1279 			/*
1280 			 * we unlocked the page above, so we need check if
1281 			 * it was released or not.
1282 			 */
1283 			if (page->mapping != inode->i_mapping) {
1284 				unlock_page(page);
1285 				put_page(page);
1286 				goto again;
1287 			}
1288 		}
1289 
1290 		if (!PageUptodate(page)) {
1291 			btrfs_readpage(NULL, page);
1292 			lock_page(page);
1293 			if (!PageUptodate(page)) {
1294 				unlock_page(page);
1295 				put_page(page);
1296 				ret = -EIO;
1297 				break;
1298 			}
1299 		}
1300 
1301 		if (page->mapping != inode->i_mapping) {
1302 			unlock_page(page);
1303 			put_page(page);
1304 			goto again;
1305 		}
1306 
1307 		pages[i] = page;
1308 		i_done++;
1309 	}
1310 	if (!i_done || ret)
1311 		goto out;
1312 
1313 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1314 		goto out;
1315 
1316 	/*
1317 	 * so now we have a nice long stream of locked
1318 	 * and up to date pages, lets wait on them
1319 	 */
1320 	for (i = 0; i < i_done; i++)
1321 		wait_on_page_writeback(pages[i]);
1322 
1323 	page_start = page_offset(pages[0]);
1324 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1325 
1326 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1327 			 page_start, page_end - 1, &cached_state);
1328 
1329 	/*
1330 	 * When defragmenting we skip ranges that have holes or inline extents,
1331 	 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1332 	 * space. At btrfs_defrag_file(), we check if a range should be defragged
1333 	 * before locking the inode and then, if it should, we trigger a sync
1334 	 * page cache readahead - we lock the inode only after that to avoid
1335 	 * blocking for too long other tasks that possibly want to operate on
1336 	 * other file ranges. But before we were able to get the inode lock,
1337 	 * some other task may have punched a hole in the range, or we may have
1338 	 * now an inline extent, in which case we should not defrag. So check
1339 	 * for that here, where we have the inode and the range locked, and bail
1340 	 * out if that happened.
1341 	 */
1342 	search_start = page_start;
1343 	while (search_start < page_end) {
1344 		struct extent_map *em;
1345 
1346 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1347 				      page_end - search_start);
1348 		if (IS_ERR(em)) {
1349 			ret = PTR_ERR(em);
1350 			goto out_unlock_range;
1351 		}
1352 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1353 			free_extent_map(em);
1354 			/* Ok, 0 means we did not defrag anything */
1355 			ret = 0;
1356 			goto out_unlock_range;
1357 		}
1358 		search_start = extent_map_end(em);
1359 		free_extent_map(em);
1360 	}
1361 
1362 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1363 			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1364 			  EXTENT_DEFRAG, 0, 0, &cached_state);
1365 
1366 	if (i_done != page_cnt) {
1367 		spin_lock(&BTRFS_I(inode)->lock);
1368 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1369 		spin_unlock(&BTRFS_I(inode)->lock);
1370 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1371 				start, (page_cnt - i_done) << PAGE_SHIFT, true);
1372 	}
1373 
1374 
1375 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1376 			  &cached_state);
1377 
1378 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1379 			     page_start, page_end - 1, &cached_state);
1380 
1381 	for (i = 0; i < i_done; i++) {
1382 		clear_page_dirty_for_io(pages[i]);
1383 		ClearPageChecked(pages[i]);
1384 		set_page_dirty(pages[i]);
1385 		unlock_page(pages[i]);
1386 		put_page(pages[i]);
1387 	}
1388 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1389 	extent_changeset_free(data_reserved);
1390 	return i_done;
1391 
1392 out_unlock_range:
1393 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1394 			     page_start, page_end - 1, &cached_state);
1395 out:
1396 	for (i = 0; i < i_done; i++) {
1397 		unlock_page(pages[i]);
1398 		put_page(pages[i]);
1399 	}
1400 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1401 			start, page_cnt << PAGE_SHIFT, true);
1402 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1403 	extent_changeset_free(data_reserved);
1404 	return ret;
1405 
1406 }
1407 
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1408 int btrfs_defrag_file(struct inode *inode, struct file *file,
1409 		      struct btrfs_ioctl_defrag_range_args *range,
1410 		      u64 newer_than, unsigned long max_to_defrag)
1411 {
1412 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1413 	struct btrfs_root *root = BTRFS_I(inode)->root;
1414 	struct file_ra_state *ra = NULL;
1415 	unsigned long last_index;
1416 	u64 isize = i_size_read(inode);
1417 	u64 last_len = 0;
1418 	u64 skip = 0;
1419 	u64 defrag_end = 0;
1420 	u64 newer_off = range->start;
1421 	unsigned long i;
1422 	unsigned long ra_index = 0;
1423 	int ret;
1424 	int defrag_count = 0;
1425 	int compress_type = BTRFS_COMPRESS_ZLIB;
1426 	u32 extent_thresh = range->extent_thresh;
1427 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1428 	unsigned long cluster = max_cluster;
1429 	u64 new_align = ~((u64)SZ_128K - 1);
1430 	struct page **pages = NULL;
1431 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1432 
1433 	if (isize == 0)
1434 		return 0;
1435 
1436 	if (range->start >= isize)
1437 		return -EINVAL;
1438 
1439 	if (do_compress) {
1440 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1441 			return -EINVAL;
1442 		if (range->compress_type)
1443 			compress_type = range->compress_type;
1444 	}
1445 
1446 	if (extent_thresh == 0)
1447 		extent_thresh = SZ_256K;
1448 
1449 	/*
1450 	 * If we were not given a file, allocate a readahead context. As
1451 	 * readahead is just an optimization, defrag will work without it so
1452 	 * we don't error out.
1453 	 */
1454 	if (!file) {
1455 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1456 		if (ra)
1457 			file_ra_state_init(ra, inode->i_mapping);
1458 	} else {
1459 		ra = &file->f_ra;
1460 	}
1461 
1462 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1463 	if (!pages) {
1464 		ret = -ENOMEM;
1465 		goto out_ra;
1466 	}
1467 
1468 	/* find the last page to defrag */
1469 	if (range->start + range->len > range->start) {
1470 		last_index = min_t(u64, isize - 1,
1471 			 range->start + range->len - 1) >> PAGE_SHIFT;
1472 	} else {
1473 		last_index = (isize - 1) >> PAGE_SHIFT;
1474 	}
1475 
1476 	if (newer_than) {
1477 		ret = find_new_extents(root, inode, newer_than,
1478 				       &newer_off, SZ_64K);
1479 		if (!ret) {
1480 			range->start = newer_off;
1481 			/*
1482 			 * we always align our defrag to help keep
1483 			 * the extents in the file evenly spaced
1484 			 */
1485 			i = (newer_off & new_align) >> PAGE_SHIFT;
1486 		} else
1487 			goto out_ra;
1488 	} else {
1489 		i = range->start >> PAGE_SHIFT;
1490 	}
1491 	if (!max_to_defrag)
1492 		max_to_defrag = last_index - i + 1;
1493 
1494 	/*
1495 	 * make writeback starts from i, so the defrag range can be
1496 	 * written sequentially.
1497 	 */
1498 	if (i < inode->i_mapping->writeback_index)
1499 		inode->i_mapping->writeback_index = i;
1500 
1501 	while (i <= last_index && defrag_count < max_to_defrag &&
1502 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1503 		/*
1504 		 * make sure we stop running if someone unmounts
1505 		 * the FS
1506 		 */
1507 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1508 			break;
1509 
1510 		if (btrfs_defrag_cancelled(fs_info)) {
1511 			btrfs_debug(fs_info, "defrag_file cancelled");
1512 			ret = -EAGAIN;
1513 			goto error;
1514 		}
1515 
1516 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1517 					 extent_thresh, &last_len, &skip,
1518 					 &defrag_end, do_compress)){
1519 			unsigned long next;
1520 			/*
1521 			 * the should_defrag function tells us how much to skip
1522 			 * bump our counter by the suggested amount
1523 			 */
1524 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1525 			i = max(i + 1, next);
1526 			continue;
1527 		}
1528 
1529 		if (!newer_than) {
1530 			cluster = (PAGE_ALIGN(defrag_end) >>
1531 				   PAGE_SHIFT) - i;
1532 			cluster = min(cluster, max_cluster);
1533 		} else {
1534 			cluster = max_cluster;
1535 		}
1536 
1537 		if (i + cluster > ra_index) {
1538 			ra_index = max(i, ra_index);
1539 			if (ra)
1540 				page_cache_sync_readahead(inode->i_mapping, ra,
1541 						file, ra_index, cluster);
1542 			ra_index += cluster;
1543 		}
1544 
1545 		btrfs_inode_lock(inode, 0);
1546 		if (IS_SWAPFILE(inode)) {
1547 			ret = -ETXTBSY;
1548 		} else {
1549 			if (do_compress)
1550 				BTRFS_I(inode)->defrag_compress = compress_type;
1551 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1552 		}
1553 		if (ret < 0) {
1554 			btrfs_inode_unlock(inode, 0);
1555 			goto out_ra;
1556 		}
1557 
1558 		defrag_count += ret;
1559 		balance_dirty_pages_ratelimited(inode->i_mapping);
1560 		btrfs_inode_unlock(inode, 0);
1561 
1562 		if (newer_than) {
1563 			if (newer_off == (u64)-1)
1564 				break;
1565 
1566 			if (ret > 0)
1567 				i += ret;
1568 
1569 			newer_off = max(newer_off + 1,
1570 					(u64)i << PAGE_SHIFT);
1571 
1572 			ret = find_new_extents(root, inode, newer_than,
1573 					       &newer_off, SZ_64K);
1574 			if (!ret) {
1575 				range->start = newer_off;
1576 				i = (newer_off & new_align) >> PAGE_SHIFT;
1577 			} else {
1578 				break;
1579 			}
1580 		} else {
1581 			if (ret > 0) {
1582 				i += ret;
1583 				last_len += ret << PAGE_SHIFT;
1584 			} else {
1585 				i++;
1586 				last_len = 0;
1587 			}
1588 		}
1589 	}
1590 
1591 	ret = defrag_count;
1592 error:
1593 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1594 		filemap_flush(inode->i_mapping);
1595 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1596 			     &BTRFS_I(inode)->runtime_flags))
1597 			filemap_flush(inode->i_mapping);
1598 	}
1599 
1600 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1601 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1602 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1603 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1604 	}
1605 
1606 out_ra:
1607 	if (do_compress) {
1608 		btrfs_inode_lock(inode, 0);
1609 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1610 		btrfs_inode_unlock(inode, 0);
1611 	}
1612 	if (!file)
1613 		kfree(ra);
1614 	kfree(pages);
1615 	return ret;
1616 }
1617 
1618 /*
1619  * Try to start exclusive operation @type or cancel it if it's running.
1620  *
1621  * Return:
1622  *   0        - normal mode, newly claimed op started
1623  *  >0        - normal mode, something else is running,
1624  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1625  * ECANCELED  - cancel mode, successful cancel
1626  * ENOTCONN   - cancel mode, operation not running anymore
1627  */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)1628 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1629 			enum btrfs_exclusive_operation type, bool cancel)
1630 {
1631 	if (!cancel) {
1632 		/* Start normal op */
1633 		if (!btrfs_exclop_start(fs_info, type))
1634 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1635 		/* Exclusive operation is now claimed */
1636 		return 0;
1637 	}
1638 
1639 	/* Cancel running op */
1640 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1641 		/*
1642 		 * This blocks any exclop finish from setting it to NONE, so we
1643 		 * request cancellation. Either it runs and we will wait for it,
1644 		 * or it has finished and no waiting will happen.
1645 		 */
1646 		atomic_inc(&fs_info->reloc_cancel_req);
1647 		btrfs_exclop_start_unlock(fs_info);
1648 
1649 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1650 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1651 				    TASK_INTERRUPTIBLE);
1652 
1653 		return -ECANCELED;
1654 	}
1655 
1656 	/* Something else is running or none */
1657 	return -ENOTCONN;
1658 }
1659 
btrfs_ioctl_resize(struct file * file,void __user * arg)1660 static noinline int btrfs_ioctl_resize(struct file *file,
1661 					void __user *arg)
1662 {
1663 	BTRFS_DEV_LOOKUP_ARGS(args);
1664 	struct inode *inode = file_inode(file);
1665 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1666 	u64 new_size;
1667 	u64 old_size;
1668 	u64 devid = 1;
1669 	struct btrfs_root *root = BTRFS_I(inode)->root;
1670 	struct btrfs_ioctl_vol_args *vol_args;
1671 	struct btrfs_trans_handle *trans;
1672 	struct btrfs_device *device = NULL;
1673 	char *sizestr;
1674 	char *retptr;
1675 	char *devstr = NULL;
1676 	int ret = 0;
1677 	int mod = 0;
1678 	bool cancel;
1679 
1680 	if (!capable(CAP_SYS_ADMIN))
1681 		return -EPERM;
1682 
1683 	ret = mnt_want_write_file(file);
1684 	if (ret)
1685 		return ret;
1686 
1687 	/*
1688 	 * Read the arguments before checking exclusivity to be able to
1689 	 * distinguish regular resize and cancel
1690 	 */
1691 	vol_args = memdup_user(arg, sizeof(*vol_args));
1692 	if (IS_ERR(vol_args)) {
1693 		ret = PTR_ERR(vol_args);
1694 		goto out_drop;
1695 	}
1696 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1697 	sizestr = vol_args->name;
1698 	cancel = (strcmp("cancel", sizestr) == 0);
1699 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1700 	if (ret)
1701 		goto out_free;
1702 	/* Exclusive operation is now claimed */
1703 
1704 	devstr = strchr(sizestr, ':');
1705 	if (devstr) {
1706 		sizestr = devstr + 1;
1707 		*devstr = '\0';
1708 		devstr = vol_args->name;
1709 		ret = kstrtoull(devstr, 10, &devid);
1710 		if (ret)
1711 			goto out_finish;
1712 		if (!devid) {
1713 			ret = -EINVAL;
1714 			goto out_finish;
1715 		}
1716 		btrfs_info(fs_info, "resizing devid %llu", devid);
1717 	}
1718 
1719 	args.devid = devid;
1720 	device = btrfs_find_device(fs_info->fs_devices, &args);
1721 	if (!device) {
1722 		btrfs_info(fs_info, "resizer unable to find device %llu",
1723 			   devid);
1724 		ret = -ENODEV;
1725 		goto out_finish;
1726 	}
1727 
1728 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1729 		btrfs_info(fs_info,
1730 			   "resizer unable to apply on readonly device %llu",
1731 		       devid);
1732 		ret = -EPERM;
1733 		goto out_finish;
1734 	}
1735 
1736 	if (!strcmp(sizestr, "max"))
1737 		new_size = device->bdev->bd_inode->i_size;
1738 	else {
1739 		if (sizestr[0] == '-') {
1740 			mod = -1;
1741 			sizestr++;
1742 		} else if (sizestr[0] == '+') {
1743 			mod = 1;
1744 			sizestr++;
1745 		}
1746 		new_size = memparse(sizestr, &retptr);
1747 		if (*retptr != '\0' || new_size == 0) {
1748 			ret = -EINVAL;
1749 			goto out_finish;
1750 		}
1751 	}
1752 
1753 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1754 		ret = -EPERM;
1755 		goto out_finish;
1756 	}
1757 
1758 	old_size = btrfs_device_get_total_bytes(device);
1759 
1760 	if (mod < 0) {
1761 		if (new_size > old_size) {
1762 			ret = -EINVAL;
1763 			goto out_finish;
1764 		}
1765 		new_size = old_size - new_size;
1766 	} else if (mod > 0) {
1767 		if (new_size > ULLONG_MAX - old_size) {
1768 			ret = -ERANGE;
1769 			goto out_finish;
1770 		}
1771 		new_size = old_size + new_size;
1772 	}
1773 
1774 	if (new_size < SZ_256M) {
1775 		ret = -EINVAL;
1776 		goto out_finish;
1777 	}
1778 	if (new_size > device->bdev->bd_inode->i_size) {
1779 		ret = -EFBIG;
1780 		goto out_finish;
1781 	}
1782 
1783 	new_size = round_down(new_size, fs_info->sectorsize);
1784 
1785 	if (new_size > old_size) {
1786 		trans = btrfs_start_transaction(root, 0);
1787 		if (IS_ERR(trans)) {
1788 			ret = PTR_ERR(trans);
1789 			goto out_finish;
1790 		}
1791 		ret = btrfs_grow_device(trans, device, new_size);
1792 		btrfs_commit_transaction(trans);
1793 	} else if (new_size < old_size) {
1794 		ret = btrfs_shrink_device(device, new_size);
1795 	} /* equal, nothing need to do */
1796 
1797 	if (ret == 0 && new_size != old_size)
1798 		btrfs_info_in_rcu(fs_info,
1799 			"resize device %s (devid %llu) from %llu to %llu",
1800 			rcu_str_deref(device->name), device->devid,
1801 			old_size, new_size);
1802 out_finish:
1803 	btrfs_exclop_finish(fs_info);
1804 out_free:
1805 	kfree(vol_args);
1806 out_drop:
1807 	mnt_drop_write_file(file);
1808 	return ret;
1809 }
1810 
__btrfs_ioctl_snap_create(struct file * file,struct user_namespace * mnt_userns,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1811 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1812 				struct user_namespace *mnt_userns,
1813 				const char *name, unsigned long fd, int subvol,
1814 				bool readonly,
1815 				struct btrfs_qgroup_inherit *inherit)
1816 {
1817 	int namelen;
1818 	int ret = 0;
1819 
1820 	if (!S_ISDIR(file_inode(file)->i_mode))
1821 		return -ENOTDIR;
1822 
1823 	ret = mnt_want_write_file(file);
1824 	if (ret)
1825 		goto out;
1826 
1827 	namelen = strlen(name);
1828 	if (strchr(name, '/')) {
1829 		ret = -EINVAL;
1830 		goto out_drop_write;
1831 	}
1832 
1833 	if (name[0] == '.' &&
1834 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1835 		ret = -EEXIST;
1836 		goto out_drop_write;
1837 	}
1838 
1839 	if (subvol) {
1840 		ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
1841 				     namelen, NULL, readonly, inherit);
1842 	} else {
1843 		struct fd src = fdget(fd);
1844 		struct inode *src_inode;
1845 		if (!src.file) {
1846 			ret = -EINVAL;
1847 			goto out_drop_write;
1848 		}
1849 
1850 		src_inode = file_inode(src.file);
1851 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1852 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1853 				   "Snapshot src from another FS");
1854 			ret = -EXDEV;
1855 		} else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
1856 			/*
1857 			 * Subvolume creation is not restricted, but snapshots
1858 			 * are limited to own subvolumes only
1859 			 */
1860 			ret = -EPERM;
1861 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1862 			/*
1863 			 * Snapshots must be made with the src_inode referring
1864 			 * to the subvolume inode, otherwise the permission
1865 			 * checking above is useless because we may have
1866 			 * permission on a lower directory but not the subvol
1867 			 * itself.
1868 			 */
1869 			ret = -EINVAL;
1870 		} else {
1871 			ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
1872 					       name, namelen,
1873 					       BTRFS_I(src_inode)->root,
1874 					       readonly, inherit);
1875 		}
1876 		fdput(src);
1877 	}
1878 out_drop_write:
1879 	mnt_drop_write_file(file);
1880 out:
1881 	return ret;
1882 }
1883 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1884 static noinline int btrfs_ioctl_snap_create(struct file *file,
1885 					    void __user *arg, int subvol)
1886 {
1887 	struct btrfs_ioctl_vol_args *vol_args;
1888 	int ret;
1889 
1890 	if (!S_ISDIR(file_inode(file)->i_mode))
1891 		return -ENOTDIR;
1892 
1893 	vol_args = memdup_user(arg, sizeof(*vol_args));
1894 	if (IS_ERR(vol_args))
1895 		return PTR_ERR(vol_args);
1896 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1897 
1898 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1899 					vol_args->name, vol_args->fd, subvol,
1900 					false, NULL);
1901 
1902 	kfree(vol_args);
1903 	return ret;
1904 }
1905 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1906 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1907 					       void __user *arg, int subvol)
1908 {
1909 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1910 	int ret;
1911 	bool readonly = false;
1912 	struct btrfs_qgroup_inherit *inherit = NULL;
1913 
1914 	if (!S_ISDIR(file_inode(file)->i_mode))
1915 		return -ENOTDIR;
1916 
1917 	vol_args = memdup_user(arg, sizeof(*vol_args));
1918 	if (IS_ERR(vol_args))
1919 		return PTR_ERR(vol_args);
1920 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1921 
1922 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1923 		ret = -EOPNOTSUPP;
1924 		goto free_args;
1925 	}
1926 
1927 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1928 		readonly = true;
1929 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1930 		u64 nums;
1931 
1932 		if (vol_args->size < sizeof(*inherit) ||
1933 		    vol_args->size > PAGE_SIZE) {
1934 			ret = -EINVAL;
1935 			goto free_args;
1936 		}
1937 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1938 		if (IS_ERR(inherit)) {
1939 			ret = PTR_ERR(inherit);
1940 			goto free_args;
1941 		}
1942 
1943 		if (inherit->num_qgroups > PAGE_SIZE ||
1944 		    inherit->num_ref_copies > PAGE_SIZE ||
1945 		    inherit->num_excl_copies > PAGE_SIZE) {
1946 			ret = -EINVAL;
1947 			goto free_inherit;
1948 		}
1949 
1950 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1951 		       2 * inherit->num_excl_copies;
1952 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1953 			ret = -EINVAL;
1954 			goto free_inherit;
1955 		}
1956 	}
1957 
1958 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1959 					vol_args->name, vol_args->fd, subvol,
1960 					readonly, inherit);
1961 	if (ret)
1962 		goto free_inherit;
1963 free_inherit:
1964 	kfree(inherit);
1965 free_args:
1966 	kfree(vol_args);
1967 	return ret;
1968 }
1969 
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1970 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1971 						void __user *arg)
1972 {
1973 	struct inode *inode = file_inode(file);
1974 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1975 	struct btrfs_root *root = BTRFS_I(inode)->root;
1976 	int ret = 0;
1977 	u64 flags = 0;
1978 
1979 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1980 		return -EINVAL;
1981 
1982 	down_read(&fs_info->subvol_sem);
1983 	if (btrfs_root_readonly(root))
1984 		flags |= BTRFS_SUBVOL_RDONLY;
1985 	up_read(&fs_info->subvol_sem);
1986 
1987 	if (copy_to_user(arg, &flags, sizeof(flags)))
1988 		ret = -EFAULT;
1989 
1990 	return ret;
1991 }
1992 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1993 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1994 					      void __user *arg)
1995 {
1996 	struct inode *inode = file_inode(file);
1997 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1998 	struct btrfs_root *root = BTRFS_I(inode)->root;
1999 	struct btrfs_trans_handle *trans;
2000 	u64 root_flags;
2001 	u64 flags;
2002 	int ret = 0;
2003 
2004 	if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
2005 		return -EPERM;
2006 
2007 	ret = mnt_want_write_file(file);
2008 	if (ret)
2009 		goto out;
2010 
2011 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2012 		ret = -EINVAL;
2013 		goto out_drop_write;
2014 	}
2015 
2016 	if (copy_from_user(&flags, arg, sizeof(flags))) {
2017 		ret = -EFAULT;
2018 		goto out_drop_write;
2019 	}
2020 
2021 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
2022 		ret = -EOPNOTSUPP;
2023 		goto out_drop_write;
2024 	}
2025 
2026 	down_write(&fs_info->subvol_sem);
2027 
2028 	/* nothing to do */
2029 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2030 		goto out_drop_sem;
2031 
2032 	root_flags = btrfs_root_flags(&root->root_item);
2033 	if (flags & BTRFS_SUBVOL_RDONLY) {
2034 		btrfs_set_root_flags(&root->root_item,
2035 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2036 	} else {
2037 		/*
2038 		 * Block RO -> RW transition if this subvolume is involved in
2039 		 * send
2040 		 */
2041 		spin_lock(&root->root_item_lock);
2042 		if (root->send_in_progress == 0) {
2043 			btrfs_set_root_flags(&root->root_item,
2044 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2045 			spin_unlock(&root->root_item_lock);
2046 		} else {
2047 			spin_unlock(&root->root_item_lock);
2048 			btrfs_warn(fs_info,
2049 				   "Attempt to set subvolume %llu read-write during send",
2050 				   root->root_key.objectid);
2051 			ret = -EPERM;
2052 			goto out_drop_sem;
2053 		}
2054 	}
2055 
2056 	trans = btrfs_start_transaction(root, 1);
2057 	if (IS_ERR(trans)) {
2058 		ret = PTR_ERR(trans);
2059 		goto out_reset;
2060 	}
2061 
2062 	ret = btrfs_update_root(trans, fs_info->tree_root,
2063 				&root->root_key, &root->root_item);
2064 	if (ret < 0) {
2065 		btrfs_end_transaction(trans);
2066 		goto out_reset;
2067 	}
2068 
2069 	ret = btrfs_commit_transaction(trans);
2070 
2071 out_reset:
2072 	if (ret)
2073 		btrfs_set_root_flags(&root->root_item, root_flags);
2074 out_drop_sem:
2075 	up_write(&fs_info->subvol_sem);
2076 out_drop_write:
2077 	mnt_drop_write_file(file);
2078 out:
2079 	return ret;
2080 }
2081 
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)2082 static noinline int key_in_sk(struct btrfs_key *key,
2083 			      struct btrfs_ioctl_search_key *sk)
2084 {
2085 	struct btrfs_key test;
2086 	int ret;
2087 
2088 	test.objectid = sk->min_objectid;
2089 	test.type = sk->min_type;
2090 	test.offset = sk->min_offset;
2091 
2092 	ret = btrfs_comp_cpu_keys(key, &test);
2093 	if (ret < 0)
2094 		return 0;
2095 
2096 	test.objectid = sk->max_objectid;
2097 	test.type = sk->max_type;
2098 	test.offset = sk->max_offset;
2099 
2100 	ret = btrfs_comp_cpu_keys(key, &test);
2101 	if (ret > 0)
2102 		return 0;
2103 	return 1;
2104 }
2105 
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2106 static noinline int copy_to_sk(struct btrfs_path *path,
2107 			       struct btrfs_key *key,
2108 			       struct btrfs_ioctl_search_key *sk,
2109 			       u64 *buf_size,
2110 			       char __user *ubuf,
2111 			       unsigned long *sk_offset,
2112 			       int *num_found)
2113 {
2114 	u64 found_transid;
2115 	struct extent_buffer *leaf;
2116 	struct btrfs_ioctl_search_header sh;
2117 	struct btrfs_key test;
2118 	unsigned long item_off;
2119 	unsigned long item_len;
2120 	int nritems;
2121 	int i;
2122 	int slot;
2123 	int ret = 0;
2124 
2125 	leaf = path->nodes[0];
2126 	slot = path->slots[0];
2127 	nritems = btrfs_header_nritems(leaf);
2128 
2129 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2130 		i = nritems;
2131 		goto advance_key;
2132 	}
2133 	found_transid = btrfs_header_generation(leaf);
2134 
2135 	for (i = slot; i < nritems; i++) {
2136 		item_off = btrfs_item_ptr_offset(leaf, i);
2137 		item_len = btrfs_item_size_nr(leaf, i);
2138 
2139 		btrfs_item_key_to_cpu(leaf, key, i);
2140 		if (!key_in_sk(key, sk))
2141 			continue;
2142 
2143 		if (sizeof(sh) + item_len > *buf_size) {
2144 			if (*num_found) {
2145 				ret = 1;
2146 				goto out;
2147 			}
2148 
2149 			/*
2150 			 * return one empty item back for v1, which does not
2151 			 * handle -EOVERFLOW
2152 			 */
2153 
2154 			*buf_size = sizeof(sh) + item_len;
2155 			item_len = 0;
2156 			ret = -EOVERFLOW;
2157 		}
2158 
2159 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2160 			ret = 1;
2161 			goto out;
2162 		}
2163 
2164 		sh.objectid = key->objectid;
2165 		sh.offset = key->offset;
2166 		sh.type = key->type;
2167 		sh.len = item_len;
2168 		sh.transid = found_transid;
2169 
2170 		/*
2171 		 * Copy search result header. If we fault then loop again so we
2172 		 * can fault in the pages and -EFAULT there if there's a
2173 		 * problem. Otherwise we'll fault and then copy the buffer in
2174 		 * properly this next time through
2175 		 */
2176 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2177 			ret = 0;
2178 			goto out;
2179 		}
2180 
2181 		*sk_offset += sizeof(sh);
2182 
2183 		if (item_len) {
2184 			char __user *up = ubuf + *sk_offset;
2185 			/*
2186 			 * Copy the item, same behavior as above, but reset the
2187 			 * * sk_offset so we copy the full thing again.
2188 			 */
2189 			if (read_extent_buffer_to_user_nofault(leaf, up,
2190 						item_off, item_len)) {
2191 				ret = 0;
2192 				*sk_offset -= sizeof(sh);
2193 				goto out;
2194 			}
2195 
2196 			*sk_offset += item_len;
2197 		}
2198 		(*num_found)++;
2199 
2200 		if (ret) /* -EOVERFLOW from above */
2201 			goto out;
2202 
2203 		if (*num_found >= sk->nr_items) {
2204 			ret = 1;
2205 			goto out;
2206 		}
2207 	}
2208 advance_key:
2209 	ret = 0;
2210 	test.objectid = sk->max_objectid;
2211 	test.type = sk->max_type;
2212 	test.offset = sk->max_offset;
2213 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2214 		ret = 1;
2215 	else if (key->offset < (u64)-1)
2216 		key->offset++;
2217 	else if (key->type < (u8)-1) {
2218 		key->offset = 0;
2219 		key->type++;
2220 	} else if (key->objectid < (u64)-1) {
2221 		key->offset = 0;
2222 		key->type = 0;
2223 		key->objectid++;
2224 	} else
2225 		ret = 1;
2226 out:
2227 	/*
2228 	 *  0: all items from this leaf copied, continue with next
2229 	 *  1: * more items can be copied, but unused buffer is too small
2230 	 *     * all items were found
2231 	 *     Either way, it will stops the loop which iterates to the next
2232 	 *     leaf
2233 	 *  -EOVERFLOW: item was to large for buffer
2234 	 *  -EFAULT: could not copy extent buffer back to userspace
2235 	 */
2236 	return ret;
2237 }
2238 
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)2239 static noinline int search_ioctl(struct inode *inode,
2240 				 struct btrfs_ioctl_search_key *sk,
2241 				 u64 *buf_size,
2242 				 char __user *ubuf)
2243 {
2244 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2245 	struct btrfs_root *root;
2246 	struct btrfs_key key;
2247 	struct btrfs_path *path;
2248 	int ret;
2249 	int num_found = 0;
2250 	unsigned long sk_offset = 0;
2251 
2252 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2253 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2254 		return -EOVERFLOW;
2255 	}
2256 
2257 	path = btrfs_alloc_path();
2258 	if (!path)
2259 		return -ENOMEM;
2260 
2261 	if (sk->tree_id == 0) {
2262 		/* search the root of the inode that was passed */
2263 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2264 	} else {
2265 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2266 		if (IS_ERR(root)) {
2267 			btrfs_free_path(path);
2268 			return PTR_ERR(root);
2269 		}
2270 	}
2271 
2272 	key.objectid = sk->min_objectid;
2273 	key.type = sk->min_type;
2274 	key.offset = sk->min_offset;
2275 
2276 	while (1) {
2277 		ret = -EFAULT;
2278 		if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset))
2279 			break;
2280 
2281 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2282 		if (ret != 0) {
2283 			if (ret > 0)
2284 				ret = 0;
2285 			goto err;
2286 		}
2287 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2288 				 &sk_offset, &num_found);
2289 		btrfs_release_path(path);
2290 		if (ret)
2291 			break;
2292 
2293 	}
2294 	if (ret > 0)
2295 		ret = 0;
2296 err:
2297 	sk->nr_items = num_found;
2298 	btrfs_put_root(root);
2299 	btrfs_free_path(path);
2300 	return ret;
2301 }
2302 
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2303 static noinline int btrfs_ioctl_tree_search(struct file *file,
2304 					   void __user *argp)
2305 {
2306 	struct btrfs_ioctl_search_args __user *uargs;
2307 	struct btrfs_ioctl_search_key sk;
2308 	struct inode *inode;
2309 	int ret;
2310 	u64 buf_size;
2311 
2312 	if (!capable(CAP_SYS_ADMIN))
2313 		return -EPERM;
2314 
2315 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2316 
2317 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2318 		return -EFAULT;
2319 
2320 	buf_size = sizeof(uargs->buf);
2321 
2322 	inode = file_inode(file);
2323 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2324 
2325 	/*
2326 	 * In the origin implementation an overflow is handled by returning a
2327 	 * search header with a len of zero, so reset ret.
2328 	 */
2329 	if (ret == -EOVERFLOW)
2330 		ret = 0;
2331 
2332 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2333 		ret = -EFAULT;
2334 	return ret;
2335 }
2336 
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2337 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2338 					       void __user *argp)
2339 {
2340 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2341 	struct btrfs_ioctl_search_args_v2 args;
2342 	struct inode *inode;
2343 	int ret;
2344 	u64 buf_size;
2345 	const u64 buf_limit = SZ_16M;
2346 
2347 	if (!capable(CAP_SYS_ADMIN))
2348 		return -EPERM;
2349 
2350 	/* copy search header and buffer size */
2351 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2352 	if (copy_from_user(&args, uarg, sizeof(args)))
2353 		return -EFAULT;
2354 
2355 	buf_size = args.buf_size;
2356 
2357 	/* limit result size to 16MB */
2358 	if (buf_size > buf_limit)
2359 		buf_size = buf_limit;
2360 
2361 	inode = file_inode(file);
2362 	ret = search_ioctl(inode, &args.key, &buf_size,
2363 			   (char __user *)(&uarg->buf[0]));
2364 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2365 		ret = -EFAULT;
2366 	else if (ret == -EOVERFLOW &&
2367 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2368 		ret = -EFAULT;
2369 
2370 	return ret;
2371 }
2372 
2373 /*
2374  * Search INODE_REFs to identify path name of 'dirid' directory
2375  * in a 'tree_id' tree. and sets path name to 'name'.
2376  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2377 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2378 				u64 tree_id, u64 dirid, char *name)
2379 {
2380 	struct btrfs_root *root;
2381 	struct btrfs_key key;
2382 	char *ptr;
2383 	int ret = -1;
2384 	int slot;
2385 	int len;
2386 	int total_len = 0;
2387 	struct btrfs_inode_ref *iref;
2388 	struct extent_buffer *l;
2389 	struct btrfs_path *path;
2390 
2391 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2392 		name[0]='\0';
2393 		return 0;
2394 	}
2395 
2396 	path = btrfs_alloc_path();
2397 	if (!path)
2398 		return -ENOMEM;
2399 
2400 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2401 
2402 	root = btrfs_get_fs_root(info, tree_id, true);
2403 	if (IS_ERR(root)) {
2404 		ret = PTR_ERR(root);
2405 		root = NULL;
2406 		goto out;
2407 	}
2408 
2409 	key.objectid = dirid;
2410 	key.type = BTRFS_INODE_REF_KEY;
2411 	key.offset = (u64)-1;
2412 
2413 	while (1) {
2414 		ret = btrfs_search_backwards(root, &key, path);
2415 		if (ret < 0)
2416 			goto out;
2417 		else if (ret > 0) {
2418 			ret = -ENOENT;
2419 			goto out;
2420 		}
2421 
2422 		l = path->nodes[0];
2423 		slot = path->slots[0];
2424 
2425 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2426 		len = btrfs_inode_ref_name_len(l, iref);
2427 		ptr -= len + 1;
2428 		total_len += len + 1;
2429 		if (ptr < name) {
2430 			ret = -ENAMETOOLONG;
2431 			goto out;
2432 		}
2433 
2434 		*(ptr + len) = '/';
2435 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2436 
2437 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2438 			break;
2439 
2440 		btrfs_release_path(path);
2441 		key.objectid = key.offset;
2442 		key.offset = (u64)-1;
2443 		dirid = key.objectid;
2444 	}
2445 	memmove(name, ptr, total_len);
2446 	name[total_len] = '\0';
2447 	ret = 0;
2448 out:
2449 	btrfs_put_root(root);
2450 	btrfs_free_path(path);
2451 	return ret;
2452 }
2453 
btrfs_search_path_in_tree_user(struct user_namespace * mnt_userns,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2454 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2455 				struct inode *inode,
2456 				struct btrfs_ioctl_ino_lookup_user_args *args)
2457 {
2458 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2459 	struct super_block *sb = inode->i_sb;
2460 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2461 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2462 	u64 dirid = args->dirid;
2463 	unsigned long item_off;
2464 	unsigned long item_len;
2465 	struct btrfs_inode_ref *iref;
2466 	struct btrfs_root_ref *rref;
2467 	struct btrfs_root *root = NULL;
2468 	struct btrfs_path *path;
2469 	struct btrfs_key key, key2;
2470 	struct extent_buffer *leaf;
2471 	struct inode *temp_inode;
2472 	char *ptr;
2473 	int slot;
2474 	int len;
2475 	int total_len = 0;
2476 	int ret;
2477 
2478 	path = btrfs_alloc_path();
2479 	if (!path)
2480 		return -ENOMEM;
2481 
2482 	/*
2483 	 * If the bottom subvolume does not exist directly under upper_limit,
2484 	 * construct the path in from the bottom up.
2485 	 */
2486 	if (dirid != upper_limit.objectid) {
2487 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2488 
2489 		root = btrfs_get_fs_root(fs_info, treeid, true);
2490 		if (IS_ERR(root)) {
2491 			ret = PTR_ERR(root);
2492 			goto out;
2493 		}
2494 
2495 		key.objectid = dirid;
2496 		key.type = BTRFS_INODE_REF_KEY;
2497 		key.offset = (u64)-1;
2498 		while (1) {
2499 			ret = btrfs_search_backwards(root, &key, path);
2500 			if (ret < 0)
2501 				goto out_put;
2502 			else if (ret > 0) {
2503 				ret = -ENOENT;
2504 				goto out_put;
2505 			}
2506 
2507 			leaf = path->nodes[0];
2508 			slot = path->slots[0];
2509 
2510 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2511 			len = btrfs_inode_ref_name_len(leaf, iref);
2512 			ptr -= len + 1;
2513 			total_len += len + 1;
2514 			if (ptr < args->path) {
2515 				ret = -ENAMETOOLONG;
2516 				goto out_put;
2517 			}
2518 
2519 			*(ptr + len) = '/';
2520 			read_extent_buffer(leaf, ptr,
2521 					(unsigned long)(iref + 1), len);
2522 
2523 			/* Check the read+exec permission of this directory */
2524 			ret = btrfs_previous_item(root, path, dirid,
2525 						  BTRFS_INODE_ITEM_KEY);
2526 			if (ret < 0) {
2527 				goto out_put;
2528 			} else if (ret > 0) {
2529 				ret = -ENOENT;
2530 				goto out_put;
2531 			}
2532 
2533 			leaf = path->nodes[0];
2534 			slot = path->slots[0];
2535 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2536 			if (key2.objectid != dirid) {
2537 				ret = -ENOENT;
2538 				goto out_put;
2539 			}
2540 
2541 			/*
2542 			 * We don't need the path anymore, so release it and
2543 			 * avoid deadlocks and lockdep warnings in case
2544 			 * btrfs_iget() needs to lookup the inode from its root
2545 			 * btree and lock the same leaf.
2546 			 */
2547 			btrfs_release_path(path);
2548 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2549 			if (IS_ERR(temp_inode)) {
2550 				ret = PTR_ERR(temp_inode);
2551 				goto out_put;
2552 			}
2553 			ret = inode_permission(mnt_userns, temp_inode,
2554 					       MAY_READ | MAY_EXEC);
2555 			iput(temp_inode);
2556 			if (ret) {
2557 				ret = -EACCES;
2558 				goto out_put;
2559 			}
2560 
2561 			if (key.offset == upper_limit.objectid)
2562 				break;
2563 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2564 				ret = -EACCES;
2565 				goto out_put;
2566 			}
2567 
2568 			key.objectid = key.offset;
2569 			key.offset = (u64)-1;
2570 			dirid = key.objectid;
2571 		}
2572 
2573 		memmove(args->path, ptr, total_len);
2574 		args->path[total_len] = '\0';
2575 		btrfs_put_root(root);
2576 		root = NULL;
2577 		btrfs_release_path(path);
2578 	}
2579 
2580 	/* Get the bottom subvolume's name from ROOT_REF */
2581 	key.objectid = treeid;
2582 	key.type = BTRFS_ROOT_REF_KEY;
2583 	key.offset = args->treeid;
2584 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2585 	if (ret < 0) {
2586 		goto out;
2587 	} else if (ret > 0) {
2588 		ret = -ENOENT;
2589 		goto out;
2590 	}
2591 
2592 	leaf = path->nodes[0];
2593 	slot = path->slots[0];
2594 	btrfs_item_key_to_cpu(leaf, &key, slot);
2595 
2596 	item_off = btrfs_item_ptr_offset(leaf, slot);
2597 	item_len = btrfs_item_size_nr(leaf, slot);
2598 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2599 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2600 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2601 		ret = -EINVAL;
2602 		goto out;
2603 	}
2604 
2605 	/* Copy subvolume's name */
2606 	item_off += sizeof(struct btrfs_root_ref);
2607 	item_len -= sizeof(struct btrfs_root_ref);
2608 	read_extent_buffer(leaf, args->name, item_off, item_len);
2609 	args->name[item_len] = 0;
2610 
2611 out_put:
2612 	btrfs_put_root(root);
2613 out:
2614 	btrfs_free_path(path);
2615 	return ret;
2616 }
2617 
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2618 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2619 					   void __user *argp)
2620 {
2621 	struct btrfs_ioctl_ino_lookup_args *args;
2622 	struct inode *inode;
2623 	int ret = 0;
2624 
2625 	args = memdup_user(argp, sizeof(*args));
2626 	if (IS_ERR(args))
2627 		return PTR_ERR(args);
2628 
2629 	inode = file_inode(file);
2630 
2631 	/*
2632 	 * Unprivileged query to obtain the containing subvolume root id. The
2633 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2634 	 */
2635 	if (args->treeid == 0)
2636 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2637 
2638 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2639 		args->name[0] = 0;
2640 		goto out;
2641 	}
2642 
2643 	if (!capable(CAP_SYS_ADMIN)) {
2644 		ret = -EPERM;
2645 		goto out;
2646 	}
2647 
2648 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2649 					args->treeid, args->objectid,
2650 					args->name);
2651 
2652 out:
2653 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2654 		ret = -EFAULT;
2655 
2656 	kfree(args);
2657 	return ret;
2658 }
2659 
2660 /*
2661  * Version of ino_lookup ioctl (unprivileged)
2662  *
2663  * The main differences from ino_lookup ioctl are:
2664  *
2665  *   1. Read + Exec permission will be checked using inode_permission() during
2666  *      path construction. -EACCES will be returned in case of failure.
2667  *   2. Path construction will be stopped at the inode number which corresponds
2668  *      to the fd with which this ioctl is called. If constructed path does not
2669  *      exist under fd's inode, -EACCES will be returned.
2670  *   3. The name of bottom subvolume is also searched and filled.
2671  */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2672 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2673 {
2674 	struct btrfs_ioctl_ino_lookup_user_args *args;
2675 	struct inode *inode;
2676 	int ret;
2677 
2678 	args = memdup_user(argp, sizeof(*args));
2679 	if (IS_ERR(args))
2680 		return PTR_ERR(args);
2681 
2682 	inode = file_inode(file);
2683 
2684 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2685 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2686 		/*
2687 		 * The subvolume does not exist under fd with which this is
2688 		 * called
2689 		 */
2690 		kfree(args);
2691 		return -EACCES;
2692 	}
2693 
2694 	ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2695 
2696 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2697 		ret = -EFAULT;
2698 
2699 	kfree(args);
2700 	return ret;
2701 }
2702 
2703 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct file * file,void __user * argp)2704 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2705 {
2706 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2707 	struct btrfs_fs_info *fs_info;
2708 	struct btrfs_root *root;
2709 	struct btrfs_path *path;
2710 	struct btrfs_key key;
2711 	struct btrfs_root_item *root_item;
2712 	struct btrfs_root_ref *rref;
2713 	struct extent_buffer *leaf;
2714 	unsigned long item_off;
2715 	unsigned long item_len;
2716 	struct inode *inode;
2717 	int slot;
2718 	int ret = 0;
2719 
2720 	path = btrfs_alloc_path();
2721 	if (!path)
2722 		return -ENOMEM;
2723 
2724 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2725 	if (!subvol_info) {
2726 		btrfs_free_path(path);
2727 		return -ENOMEM;
2728 	}
2729 
2730 	inode = file_inode(file);
2731 	fs_info = BTRFS_I(inode)->root->fs_info;
2732 
2733 	/* Get root_item of inode's subvolume */
2734 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2735 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2736 	if (IS_ERR(root)) {
2737 		ret = PTR_ERR(root);
2738 		goto out_free;
2739 	}
2740 	root_item = &root->root_item;
2741 
2742 	subvol_info->treeid = key.objectid;
2743 
2744 	subvol_info->generation = btrfs_root_generation(root_item);
2745 	subvol_info->flags = btrfs_root_flags(root_item);
2746 
2747 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2748 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2749 						    BTRFS_UUID_SIZE);
2750 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2751 						    BTRFS_UUID_SIZE);
2752 
2753 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2754 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2755 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2756 
2757 	subvol_info->otransid = btrfs_root_otransid(root_item);
2758 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2759 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2760 
2761 	subvol_info->stransid = btrfs_root_stransid(root_item);
2762 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2763 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2764 
2765 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2766 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2767 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2768 
2769 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2770 		/* Search root tree for ROOT_BACKREF of this subvolume */
2771 		key.type = BTRFS_ROOT_BACKREF_KEY;
2772 		key.offset = 0;
2773 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2774 		if (ret < 0) {
2775 			goto out;
2776 		} else if (path->slots[0] >=
2777 			   btrfs_header_nritems(path->nodes[0])) {
2778 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2779 			if (ret < 0) {
2780 				goto out;
2781 			} else if (ret > 0) {
2782 				ret = -EUCLEAN;
2783 				goto out;
2784 			}
2785 		}
2786 
2787 		leaf = path->nodes[0];
2788 		slot = path->slots[0];
2789 		btrfs_item_key_to_cpu(leaf, &key, slot);
2790 		if (key.objectid == subvol_info->treeid &&
2791 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2792 			subvol_info->parent_id = key.offset;
2793 
2794 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2795 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2796 
2797 			item_off = btrfs_item_ptr_offset(leaf, slot)
2798 					+ sizeof(struct btrfs_root_ref);
2799 			item_len = btrfs_item_size_nr(leaf, slot)
2800 					- sizeof(struct btrfs_root_ref);
2801 			read_extent_buffer(leaf, subvol_info->name,
2802 					   item_off, item_len);
2803 		} else {
2804 			ret = -ENOENT;
2805 			goto out;
2806 		}
2807 	}
2808 
2809 	btrfs_free_path(path);
2810 	path = NULL;
2811 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2812 		ret = -EFAULT;
2813 
2814 out:
2815 	btrfs_put_root(root);
2816 out_free:
2817 	btrfs_free_path(path);
2818 	kfree(subvol_info);
2819 	return ret;
2820 }
2821 
2822 /*
2823  * Return ROOT_REF information of the subvolume containing this inode
2824  * except the subvolume name.
2825  */
btrfs_ioctl_get_subvol_rootref(struct file * file,void __user * argp)2826 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2827 {
2828 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2829 	struct btrfs_root_ref *rref;
2830 	struct btrfs_root *root;
2831 	struct btrfs_path *path;
2832 	struct btrfs_key key;
2833 	struct extent_buffer *leaf;
2834 	struct inode *inode;
2835 	u64 objectid;
2836 	int slot;
2837 	int ret;
2838 	u8 found;
2839 
2840 	path = btrfs_alloc_path();
2841 	if (!path)
2842 		return -ENOMEM;
2843 
2844 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2845 	if (IS_ERR(rootrefs)) {
2846 		btrfs_free_path(path);
2847 		return PTR_ERR(rootrefs);
2848 	}
2849 
2850 	inode = file_inode(file);
2851 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2852 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2853 
2854 	key.objectid = objectid;
2855 	key.type = BTRFS_ROOT_REF_KEY;
2856 	key.offset = rootrefs->min_treeid;
2857 	found = 0;
2858 
2859 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2860 	if (ret < 0) {
2861 		goto out;
2862 	} else if (path->slots[0] >=
2863 		   btrfs_header_nritems(path->nodes[0])) {
2864 		ret = btrfs_next_leaf(root, path);
2865 		if (ret < 0) {
2866 			goto out;
2867 		} else if (ret > 0) {
2868 			ret = -EUCLEAN;
2869 			goto out;
2870 		}
2871 	}
2872 	while (1) {
2873 		leaf = path->nodes[0];
2874 		slot = path->slots[0];
2875 
2876 		btrfs_item_key_to_cpu(leaf, &key, slot);
2877 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2878 			ret = 0;
2879 			goto out;
2880 		}
2881 
2882 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2883 			ret = -EOVERFLOW;
2884 			goto out;
2885 		}
2886 
2887 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2888 		rootrefs->rootref[found].treeid = key.offset;
2889 		rootrefs->rootref[found].dirid =
2890 				  btrfs_root_ref_dirid(leaf, rref);
2891 		found++;
2892 
2893 		ret = btrfs_next_item(root, path);
2894 		if (ret < 0) {
2895 			goto out;
2896 		} else if (ret > 0) {
2897 			ret = -EUCLEAN;
2898 			goto out;
2899 		}
2900 	}
2901 
2902 out:
2903 	btrfs_free_path(path);
2904 
2905 	if (!ret || ret == -EOVERFLOW) {
2906 		rootrefs->num_items = found;
2907 		/* update min_treeid for next search */
2908 		if (found)
2909 			rootrefs->min_treeid =
2910 				rootrefs->rootref[found - 1].treeid + 1;
2911 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2912 			ret = -EFAULT;
2913 	}
2914 
2915 	kfree(rootrefs);
2916 
2917 	return ret;
2918 }
2919 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2920 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2921 					     void __user *arg,
2922 					     bool destroy_v2)
2923 {
2924 	struct dentry *parent = file->f_path.dentry;
2925 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2926 	struct dentry *dentry;
2927 	struct inode *dir = d_inode(parent);
2928 	struct inode *inode;
2929 	struct btrfs_root *root = BTRFS_I(dir)->root;
2930 	struct btrfs_root *dest = NULL;
2931 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2932 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2933 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
2934 	char *subvol_name, *subvol_name_ptr = NULL;
2935 	int subvol_namelen;
2936 	int err = 0;
2937 	bool destroy_parent = false;
2938 
2939 	if (destroy_v2) {
2940 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2941 		if (IS_ERR(vol_args2))
2942 			return PTR_ERR(vol_args2);
2943 
2944 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2945 			err = -EOPNOTSUPP;
2946 			goto out;
2947 		}
2948 
2949 		/*
2950 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2951 		 * name, same as v1 currently does.
2952 		 */
2953 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2954 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2955 			subvol_name = vol_args2->name;
2956 
2957 			err = mnt_want_write_file(file);
2958 			if (err)
2959 				goto out;
2960 		} else {
2961 			struct inode *old_dir;
2962 
2963 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2964 				err = -EINVAL;
2965 				goto out;
2966 			}
2967 
2968 			err = mnt_want_write_file(file);
2969 			if (err)
2970 				goto out;
2971 
2972 			dentry = btrfs_get_dentry(fs_info->sb,
2973 					BTRFS_FIRST_FREE_OBJECTID,
2974 					vol_args2->subvolid, 0, 0);
2975 			if (IS_ERR(dentry)) {
2976 				err = PTR_ERR(dentry);
2977 				goto out_drop_write;
2978 			}
2979 
2980 			/*
2981 			 * Change the default parent since the subvolume being
2982 			 * deleted can be outside of the current mount point.
2983 			 */
2984 			parent = btrfs_get_parent(dentry);
2985 
2986 			/*
2987 			 * At this point dentry->d_name can point to '/' if the
2988 			 * subvolume we want to destroy is outsite of the
2989 			 * current mount point, so we need to release the
2990 			 * current dentry and execute the lookup to return a new
2991 			 * one with ->d_name pointing to the
2992 			 * <mount point>/subvol_name.
2993 			 */
2994 			dput(dentry);
2995 			if (IS_ERR(parent)) {
2996 				err = PTR_ERR(parent);
2997 				goto out_drop_write;
2998 			}
2999 			old_dir = dir;
3000 			dir = d_inode(parent);
3001 
3002 			/*
3003 			 * If v2 was used with SPEC_BY_ID, a new parent was
3004 			 * allocated since the subvolume can be outside of the
3005 			 * current mount point. Later on we need to release this
3006 			 * new parent dentry.
3007 			 */
3008 			destroy_parent = true;
3009 
3010 			/*
3011 			 * On idmapped mounts, deletion via subvolid is
3012 			 * restricted to subvolumes that are immediate
3013 			 * ancestors of the inode referenced by the file
3014 			 * descriptor in the ioctl. Otherwise the idmapping
3015 			 * could potentially be abused to delete subvolumes
3016 			 * anywhere in the filesystem the user wouldn't be able
3017 			 * to delete without an idmapped mount.
3018 			 */
3019 			if (old_dir != dir && mnt_userns != &init_user_ns) {
3020 				err = -EOPNOTSUPP;
3021 				goto free_parent;
3022 			}
3023 
3024 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3025 						fs_info, vol_args2->subvolid);
3026 			if (IS_ERR(subvol_name_ptr)) {
3027 				err = PTR_ERR(subvol_name_ptr);
3028 				goto free_parent;
3029 			}
3030 			/* subvol_name_ptr is already nul terminated */
3031 			subvol_name = (char *)kbasename(subvol_name_ptr);
3032 		}
3033 	} else {
3034 		vol_args = memdup_user(arg, sizeof(*vol_args));
3035 		if (IS_ERR(vol_args))
3036 			return PTR_ERR(vol_args);
3037 
3038 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3039 		subvol_name = vol_args->name;
3040 
3041 		err = mnt_want_write_file(file);
3042 		if (err)
3043 			goto out;
3044 	}
3045 
3046 	subvol_namelen = strlen(subvol_name);
3047 
3048 	if (strchr(subvol_name, '/') ||
3049 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3050 		err = -EINVAL;
3051 		goto free_subvol_name;
3052 	}
3053 
3054 	if (!S_ISDIR(dir->i_mode)) {
3055 		err = -ENOTDIR;
3056 		goto free_subvol_name;
3057 	}
3058 
3059 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3060 	if (err == -EINTR)
3061 		goto free_subvol_name;
3062 	dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3063 	if (IS_ERR(dentry)) {
3064 		err = PTR_ERR(dentry);
3065 		goto out_unlock_dir;
3066 	}
3067 
3068 	if (d_really_is_negative(dentry)) {
3069 		err = -ENOENT;
3070 		goto out_dput;
3071 	}
3072 
3073 	inode = d_inode(dentry);
3074 	dest = BTRFS_I(inode)->root;
3075 	if (!capable(CAP_SYS_ADMIN)) {
3076 		/*
3077 		 * Regular user.  Only allow this with a special mount
3078 		 * option, when the user has write+exec access to the
3079 		 * subvol root, and when rmdir(2) would have been
3080 		 * allowed.
3081 		 *
3082 		 * Note that this is _not_ check that the subvol is
3083 		 * empty or doesn't contain data that we wouldn't
3084 		 * otherwise be able to delete.
3085 		 *
3086 		 * Users who want to delete empty subvols should try
3087 		 * rmdir(2).
3088 		 */
3089 		err = -EPERM;
3090 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3091 			goto out_dput;
3092 
3093 		/*
3094 		 * Do not allow deletion if the parent dir is the same
3095 		 * as the dir to be deleted.  That means the ioctl
3096 		 * must be called on the dentry referencing the root
3097 		 * of the subvol, not a random directory contained
3098 		 * within it.
3099 		 */
3100 		err = -EINVAL;
3101 		if (root == dest)
3102 			goto out_dput;
3103 
3104 		err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3105 		if (err)
3106 			goto out_dput;
3107 	}
3108 
3109 	/* check if subvolume may be deleted by a user */
3110 	err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3111 	if (err)
3112 		goto out_dput;
3113 
3114 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3115 		err = -EINVAL;
3116 		goto out_dput;
3117 	}
3118 
3119 	btrfs_inode_lock(inode, 0);
3120 	err = btrfs_delete_subvolume(dir, dentry);
3121 	btrfs_inode_unlock(inode, 0);
3122 	if (!err)
3123 		d_delete_notify(dir, dentry);
3124 
3125 out_dput:
3126 	dput(dentry);
3127 out_unlock_dir:
3128 	btrfs_inode_unlock(dir, 0);
3129 free_subvol_name:
3130 	kfree(subvol_name_ptr);
3131 free_parent:
3132 	if (destroy_parent)
3133 		dput(parent);
3134 out_drop_write:
3135 	mnt_drop_write_file(file);
3136 out:
3137 	kfree(vol_args2);
3138 	kfree(vol_args);
3139 	return err;
3140 }
3141 
btrfs_ioctl_defrag(struct file * file,void __user * argp)3142 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3143 {
3144 	struct inode *inode = file_inode(file);
3145 	struct btrfs_root *root = BTRFS_I(inode)->root;
3146 	struct btrfs_ioctl_defrag_range_args range = {0};
3147 	int ret;
3148 
3149 	ret = mnt_want_write_file(file);
3150 	if (ret)
3151 		return ret;
3152 
3153 	if (btrfs_root_readonly(root)) {
3154 		ret = -EROFS;
3155 		goto out;
3156 	}
3157 
3158 	/* Subpage defrag will be supported in later commits */
3159 	if (root->fs_info->sectorsize < PAGE_SIZE) {
3160 		ret = -ENOTTY;
3161 		goto out;
3162 	}
3163 
3164 	switch (inode->i_mode & S_IFMT) {
3165 	case S_IFDIR:
3166 		if (!capable(CAP_SYS_ADMIN)) {
3167 			ret = -EPERM;
3168 			goto out;
3169 		}
3170 		ret = btrfs_defrag_root(root);
3171 		break;
3172 	case S_IFREG:
3173 		/*
3174 		 * Note that this does not check the file descriptor for write
3175 		 * access. This prevents defragmenting executables that are
3176 		 * running and allows defrag on files open in read-only mode.
3177 		 */
3178 		if (!capable(CAP_SYS_ADMIN) &&
3179 		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3180 			ret = -EPERM;
3181 			goto out;
3182 		}
3183 
3184 		if (argp) {
3185 			if (copy_from_user(&range, argp, sizeof(range))) {
3186 				ret = -EFAULT;
3187 				goto out;
3188 			}
3189 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
3190 				ret = -EOPNOTSUPP;
3191 				goto out;
3192 			}
3193 			/* compression requires us to start the IO */
3194 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3195 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3196 				range.extent_thresh = (u32)-1;
3197 			}
3198 		} else {
3199 			/* the rest are all set to zero by kzalloc */
3200 			range.len = (u64)-1;
3201 		}
3202 		ret = btrfs_defrag_file(file_inode(file), file,
3203 					&range, BTRFS_OLDEST_GENERATION, 0);
3204 		if (ret > 0)
3205 			ret = 0;
3206 		break;
3207 	default:
3208 		ret = -EINVAL;
3209 	}
3210 out:
3211 	mnt_drop_write_file(file);
3212 	return ret;
3213 }
3214 
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3215 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3216 {
3217 	struct btrfs_ioctl_vol_args *vol_args;
3218 	int ret;
3219 
3220 	if (!capable(CAP_SYS_ADMIN))
3221 		return -EPERM;
3222 
3223 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3224 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3225 
3226 	vol_args = memdup_user(arg, sizeof(*vol_args));
3227 	if (IS_ERR(vol_args)) {
3228 		ret = PTR_ERR(vol_args);
3229 		goto out;
3230 	}
3231 
3232 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3233 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3234 
3235 	if (!ret)
3236 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3237 
3238 	kfree(vol_args);
3239 out:
3240 	btrfs_exclop_finish(fs_info);
3241 	return ret;
3242 }
3243 
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3244 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3245 {
3246 	BTRFS_DEV_LOOKUP_ARGS(args);
3247 	struct inode *inode = file_inode(file);
3248 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3249 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3250 	struct block_device *bdev = NULL;
3251 	fmode_t mode;
3252 	int ret;
3253 	bool cancel = false;
3254 
3255 	if (!capable(CAP_SYS_ADMIN))
3256 		return -EPERM;
3257 
3258 	vol_args = memdup_user(arg, sizeof(*vol_args));
3259 	if (IS_ERR(vol_args))
3260 		return PTR_ERR(vol_args);
3261 
3262 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3263 		ret = -EOPNOTSUPP;
3264 		goto out;
3265 	}
3266 
3267 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3268 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3269 		args.devid = vol_args->devid;
3270 	} else if (!strcmp("cancel", vol_args->name)) {
3271 		cancel = true;
3272 	} else {
3273 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3274 		if (ret)
3275 			goto out;
3276 	}
3277 
3278 	ret = mnt_want_write_file(file);
3279 	if (ret)
3280 		goto out;
3281 
3282 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3283 					   cancel);
3284 	if (ret)
3285 		goto err_drop;
3286 
3287 	/* Exclusive operation is now claimed */
3288 	ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3289 
3290 	btrfs_exclop_finish(fs_info);
3291 
3292 	if (!ret) {
3293 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3294 			btrfs_info(fs_info, "device deleted: id %llu",
3295 					vol_args->devid);
3296 		else
3297 			btrfs_info(fs_info, "device deleted: %s",
3298 					vol_args->name);
3299 	}
3300 err_drop:
3301 	mnt_drop_write_file(file);
3302 	if (bdev)
3303 		blkdev_put(bdev, mode);
3304 out:
3305 	btrfs_put_dev_args_from_path(&args);
3306 	kfree(vol_args);
3307 	return ret;
3308 }
3309 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3310 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3311 {
3312 	BTRFS_DEV_LOOKUP_ARGS(args);
3313 	struct inode *inode = file_inode(file);
3314 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3315 	struct btrfs_ioctl_vol_args *vol_args;
3316 	struct block_device *bdev = NULL;
3317 	fmode_t mode;
3318 	int ret;
3319 	bool cancel = false;
3320 
3321 	if (!capable(CAP_SYS_ADMIN))
3322 		return -EPERM;
3323 
3324 	vol_args = memdup_user(arg, sizeof(*vol_args));
3325 	if (IS_ERR(vol_args))
3326 		return PTR_ERR(vol_args);
3327 
3328 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3329 	if (!strcmp("cancel", vol_args->name)) {
3330 		cancel = true;
3331 	} else {
3332 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3333 		if (ret)
3334 			goto out;
3335 	}
3336 
3337 	ret = mnt_want_write_file(file);
3338 	if (ret)
3339 		goto out;
3340 
3341 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3342 					   cancel);
3343 	if (ret == 0) {
3344 		ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3345 		if (!ret)
3346 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3347 		btrfs_exclop_finish(fs_info);
3348 	}
3349 
3350 	mnt_drop_write_file(file);
3351 	if (bdev)
3352 		blkdev_put(bdev, mode);
3353 out:
3354 	btrfs_put_dev_args_from_path(&args);
3355 	kfree(vol_args);
3356 	return ret;
3357 }
3358 
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3359 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3360 				void __user *arg)
3361 {
3362 	struct btrfs_ioctl_fs_info_args *fi_args;
3363 	struct btrfs_device *device;
3364 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3365 	u64 flags_in;
3366 	int ret = 0;
3367 
3368 	fi_args = memdup_user(arg, sizeof(*fi_args));
3369 	if (IS_ERR(fi_args))
3370 		return PTR_ERR(fi_args);
3371 
3372 	flags_in = fi_args->flags;
3373 	memset(fi_args, 0, sizeof(*fi_args));
3374 
3375 	rcu_read_lock();
3376 	fi_args->num_devices = fs_devices->num_devices;
3377 
3378 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3379 		if (device->devid > fi_args->max_id)
3380 			fi_args->max_id = device->devid;
3381 	}
3382 	rcu_read_unlock();
3383 
3384 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3385 	fi_args->nodesize = fs_info->nodesize;
3386 	fi_args->sectorsize = fs_info->sectorsize;
3387 	fi_args->clone_alignment = fs_info->sectorsize;
3388 
3389 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3390 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3391 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3392 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3393 	}
3394 
3395 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3396 		fi_args->generation = fs_info->generation;
3397 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3398 	}
3399 
3400 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3401 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3402 		       sizeof(fi_args->metadata_uuid));
3403 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3404 	}
3405 
3406 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3407 		ret = -EFAULT;
3408 
3409 	kfree(fi_args);
3410 	return ret;
3411 }
3412 
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3413 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3414 				 void __user *arg)
3415 {
3416 	BTRFS_DEV_LOOKUP_ARGS(args);
3417 	struct btrfs_ioctl_dev_info_args *di_args;
3418 	struct btrfs_device *dev;
3419 	int ret = 0;
3420 
3421 	di_args = memdup_user(arg, sizeof(*di_args));
3422 	if (IS_ERR(di_args))
3423 		return PTR_ERR(di_args);
3424 
3425 	args.devid = di_args->devid;
3426 	if (!btrfs_is_empty_uuid(di_args->uuid))
3427 		args.uuid = di_args->uuid;
3428 
3429 	rcu_read_lock();
3430 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3431 	if (!dev) {
3432 		ret = -ENODEV;
3433 		goto out;
3434 	}
3435 
3436 	di_args->devid = dev->devid;
3437 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3438 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3439 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3440 	if (dev->name)
3441 		strscpy(di_args->path, rcu_str_deref(dev->name), sizeof(di_args->path));
3442 	else
3443 		di_args->path[0] = '\0';
3444 
3445 out:
3446 	rcu_read_unlock();
3447 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3448 		ret = -EFAULT;
3449 
3450 	kfree(di_args);
3451 	return ret;
3452 }
3453 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)3454 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3455 {
3456 	struct inode *inode = file_inode(file);
3457 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3458 	struct btrfs_root *root = BTRFS_I(inode)->root;
3459 	struct btrfs_root *new_root;
3460 	struct btrfs_dir_item *di;
3461 	struct btrfs_trans_handle *trans;
3462 	struct btrfs_path *path = NULL;
3463 	struct btrfs_disk_key disk_key;
3464 	u64 objectid = 0;
3465 	u64 dir_id;
3466 	int ret;
3467 
3468 	if (!capable(CAP_SYS_ADMIN))
3469 		return -EPERM;
3470 
3471 	ret = mnt_want_write_file(file);
3472 	if (ret)
3473 		return ret;
3474 
3475 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3476 		ret = -EFAULT;
3477 		goto out;
3478 	}
3479 
3480 	if (!objectid)
3481 		objectid = BTRFS_FS_TREE_OBJECTID;
3482 
3483 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3484 	if (IS_ERR(new_root)) {
3485 		ret = PTR_ERR(new_root);
3486 		goto out;
3487 	}
3488 	if (!is_fstree(new_root->root_key.objectid)) {
3489 		ret = -ENOENT;
3490 		goto out_free;
3491 	}
3492 
3493 	path = btrfs_alloc_path();
3494 	if (!path) {
3495 		ret = -ENOMEM;
3496 		goto out_free;
3497 	}
3498 
3499 	trans = btrfs_start_transaction(root, 1);
3500 	if (IS_ERR(trans)) {
3501 		ret = PTR_ERR(trans);
3502 		goto out_free;
3503 	}
3504 
3505 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3506 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3507 				   dir_id, "default", 7, 1);
3508 	if (IS_ERR_OR_NULL(di)) {
3509 		btrfs_release_path(path);
3510 		btrfs_end_transaction(trans);
3511 		btrfs_err(fs_info,
3512 			  "Umm, you don't have the default diritem, this isn't going to work");
3513 		ret = -ENOENT;
3514 		goto out_free;
3515 	}
3516 
3517 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3518 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3519 	btrfs_mark_buffer_dirty(path->nodes[0]);
3520 	btrfs_release_path(path);
3521 
3522 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3523 	btrfs_end_transaction(trans);
3524 out_free:
3525 	btrfs_put_root(new_root);
3526 	btrfs_free_path(path);
3527 out:
3528 	mnt_drop_write_file(file);
3529 	return ret;
3530 }
3531 
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)3532 static void get_block_group_info(struct list_head *groups_list,
3533 				 struct btrfs_ioctl_space_info *space)
3534 {
3535 	struct btrfs_block_group *block_group;
3536 
3537 	space->total_bytes = 0;
3538 	space->used_bytes = 0;
3539 	space->flags = 0;
3540 	list_for_each_entry(block_group, groups_list, list) {
3541 		space->flags = block_group->flags;
3542 		space->total_bytes += block_group->length;
3543 		space->used_bytes += block_group->used;
3544 	}
3545 }
3546 
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)3547 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3548 				   void __user *arg)
3549 {
3550 	struct btrfs_ioctl_space_args space_args = { 0 };
3551 	struct btrfs_ioctl_space_info space;
3552 	struct btrfs_ioctl_space_info *dest;
3553 	struct btrfs_ioctl_space_info *dest_orig;
3554 	struct btrfs_ioctl_space_info __user *user_dest;
3555 	struct btrfs_space_info *info;
3556 	static const u64 types[] = {
3557 		BTRFS_BLOCK_GROUP_DATA,
3558 		BTRFS_BLOCK_GROUP_SYSTEM,
3559 		BTRFS_BLOCK_GROUP_METADATA,
3560 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3561 	};
3562 	int num_types = 4;
3563 	int alloc_size;
3564 	int ret = 0;
3565 	u64 slot_count = 0;
3566 	int i, c;
3567 
3568 	if (copy_from_user(&space_args,
3569 			   (struct btrfs_ioctl_space_args __user *)arg,
3570 			   sizeof(space_args)))
3571 		return -EFAULT;
3572 
3573 	for (i = 0; i < num_types; i++) {
3574 		struct btrfs_space_info *tmp;
3575 
3576 		info = NULL;
3577 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3578 			if (tmp->flags == types[i]) {
3579 				info = tmp;
3580 				break;
3581 			}
3582 		}
3583 
3584 		if (!info)
3585 			continue;
3586 
3587 		down_read(&info->groups_sem);
3588 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3589 			if (!list_empty(&info->block_groups[c]))
3590 				slot_count++;
3591 		}
3592 		up_read(&info->groups_sem);
3593 	}
3594 
3595 	/*
3596 	 * Global block reserve, exported as a space_info
3597 	 */
3598 	slot_count++;
3599 
3600 	/* space_slots == 0 means they are asking for a count */
3601 	if (space_args.space_slots == 0) {
3602 		space_args.total_spaces = slot_count;
3603 		goto out;
3604 	}
3605 
3606 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3607 
3608 	alloc_size = sizeof(*dest) * slot_count;
3609 
3610 	/* we generally have at most 6 or so space infos, one for each raid
3611 	 * level.  So, a whole page should be more than enough for everyone
3612 	 */
3613 	if (alloc_size > PAGE_SIZE)
3614 		return -ENOMEM;
3615 
3616 	space_args.total_spaces = 0;
3617 	dest = kmalloc(alloc_size, GFP_KERNEL);
3618 	if (!dest)
3619 		return -ENOMEM;
3620 	dest_orig = dest;
3621 
3622 	/* now we have a buffer to copy into */
3623 	for (i = 0; i < num_types; i++) {
3624 		struct btrfs_space_info *tmp;
3625 
3626 		if (!slot_count)
3627 			break;
3628 
3629 		info = NULL;
3630 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3631 			if (tmp->flags == types[i]) {
3632 				info = tmp;
3633 				break;
3634 			}
3635 		}
3636 
3637 		if (!info)
3638 			continue;
3639 		down_read(&info->groups_sem);
3640 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3641 			if (!list_empty(&info->block_groups[c])) {
3642 				get_block_group_info(&info->block_groups[c],
3643 						     &space);
3644 				memcpy(dest, &space, sizeof(space));
3645 				dest++;
3646 				space_args.total_spaces++;
3647 				slot_count--;
3648 			}
3649 			if (!slot_count)
3650 				break;
3651 		}
3652 		up_read(&info->groups_sem);
3653 	}
3654 
3655 	/*
3656 	 * Add global block reserve
3657 	 */
3658 	if (slot_count) {
3659 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3660 
3661 		spin_lock(&block_rsv->lock);
3662 		space.total_bytes = block_rsv->size;
3663 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3664 		spin_unlock(&block_rsv->lock);
3665 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3666 		memcpy(dest, &space, sizeof(space));
3667 		space_args.total_spaces++;
3668 	}
3669 
3670 	user_dest = (struct btrfs_ioctl_space_info __user *)
3671 		(arg + sizeof(struct btrfs_ioctl_space_args));
3672 
3673 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3674 		ret = -EFAULT;
3675 
3676 	kfree(dest_orig);
3677 out:
3678 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3679 		ret = -EFAULT;
3680 
3681 	return ret;
3682 }
3683 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3684 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3685 					    void __user *argp)
3686 {
3687 	struct btrfs_trans_handle *trans;
3688 	u64 transid;
3689 	int ret;
3690 
3691 	trans = btrfs_attach_transaction_barrier(root);
3692 	if (IS_ERR(trans)) {
3693 		if (PTR_ERR(trans) != -ENOENT)
3694 			return PTR_ERR(trans);
3695 
3696 		/* No running transaction, don't bother */
3697 		transid = root->fs_info->last_trans_committed;
3698 		goto out;
3699 	}
3700 	transid = trans->transid;
3701 	ret = btrfs_commit_transaction_async(trans);
3702 	if (ret) {
3703 		btrfs_end_transaction(trans);
3704 		return ret;
3705 	}
3706 out:
3707 	if (argp)
3708 		if (copy_to_user(argp, &transid, sizeof(transid)))
3709 			return -EFAULT;
3710 	return 0;
3711 }
3712 
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3713 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3714 					   void __user *argp)
3715 {
3716 	u64 transid;
3717 
3718 	if (argp) {
3719 		if (copy_from_user(&transid, argp, sizeof(transid)))
3720 			return -EFAULT;
3721 	} else {
3722 		transid = 0;  /* current trans */
3723 	}
3724 	return btrfs_wait_for_commit(fs_info, transid);
3725 }
3726 
btrfs_ioctl_scrub(struct file * file,void __user * arg)3727 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3728 {
3729 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3730 	struct btrfs_ioctl_scrub_args *sa;
3731 	int ret;
3732 
3733 	if (!capable(CAP_SYS_ADMIN))
3734 		return -EPERM;
3735 
3736 	sa = memdup_user(arg, sizeof(*sa));
3737 	if (IS_ERR(sa))
3738 		return PTR_ERR(sa);
3739 
3740 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3741 		ret = -EOPNOTSUPP;
3742 		goto out;
3743 	}
3744 
3745 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3746 		ret = mnt_want_write_file(file);
3747 		if (ret)
3748 			goto out;
3749 	}
3750 
3751 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3752 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3753 			      0);
3754 
3755 	/*
3756 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3757 	 * error. This is important as it allows user space to know how much
3758 	 * progress scrub has done. For example, if scrub is canceled we get
3759 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3760 	 * space. Later user space can inspect the progress from the structure
3761 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3762 	 * previously (btrfs-progs does this).
3763 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3764 	 * then return -EFAULT to signal the structure was not copied or it may
3765 	 * be corrupt and unreliable due to a partial copy.
3766 	 */
3767 	if (copy_to_user(arg, sa, sizeof(*sa)))
3768 		ret = -EFAULT;
3769 
3770 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3771 		mnt_drop_write_file(file);
3772 out:
3773 	kfree(sa);
3774 	return ret;
3775 }
3776 
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3777 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3778 {
3779 	if (!capable(CAP_SYS_ADMIN))
3780 		return -EPERM;
3781 
3782 	return btrfs_scrub_cancel(fs_info);
3783 }
3784 
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3785 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3786 				       void __user *arg)
3787 {
3788 	struct btrfs_ioctl_scrub_args *sa;
3789 	int ret;
3790 
3791 	if (!capable(CAP_SYS_ADMIN))
3792 		return -EPERM;
3793 
3794 	sa = memdup_user(arg, sizeof(*sa));
3795 	if (IS_ERR(sa))
3796 		return PTR_ERR(sa);
3797 
3798 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3799 
3800 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3801 		ret = -EFAULT;
3802 
3803 	kfree(sa);
3804 	return ret;
3805 }
3806 
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3807 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3808 				      void __user *arg)
3809 {
3810 	struct btrfs_ioctl_get_dev_stats *sa;
3811 	int ret;
3812 
3813 	sa = memdup_user(arg, sizeof(*sa));
3814 	if (IS_ERR(sa))
3815 		return PTR_ERR(sa);
3816 
3817 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3818 		kfree(sa);
3819 		return -EPERM;
3820 	}
3821 
3822 	ret = btrfs_get_dev_stats(fs_info, sa);
3823 
3824 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3825 		ret = -EFAULT;
3826 
3827 	kfree(sa);
3828 	return ret;
3829 }
3830 
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3831 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3832 				    void __user *arg)
3833 {
3834 	struct btrfs_ioctl_dev_replace_args *p;
3835 	int ret;
3836 
3837 	if (!capable(CAP_SYS_ADMIN))
3838 		return -EPERM;
3839 
3840 	p = memdup_user(arg, sizeof(*p));
3841 	if (IS_ERR(p))
3842 		return PTR_ERR(p);
3843 
3844 	switch (p->cmd) {
3845 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3846 		if (sb_rdonly(fs_info->sb)) {
3847 			ret = -EROFS;
3848 			goto out;
3849 		}
3850 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3851 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3852 		} else {
3853 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3854 			btrfs_exclop_finish(fs_info);
3855 		}
3856 		break;
3857 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3858 		btrfs_dev_replace_status(fs_info, p);
3859 		ret = 0;
3860 		break;
3861 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3862 		p->result = btrfs_dev_replace_cancel(fs_info);
3863 		ret = 0;
3864 		break;
3865 	default:
3866 		ret = -EINVAL;
3867 		break;
3868 	}
3869 
3870 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3871 		ret = -EFAULT;
3872 out:
3873 	kfree(p);
3874 	return ret;
3875 }
3876 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3877 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3878 {
3879 	int ret = 0;
3880 	int i;
3881 	u64 rel_ptr;
3882 	int size;
3883 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3884 	struct inode_fs_paths *ipath = NULL;
3885 	struct btrfs_path *path;
3886 
3887 	if (!capable(CAP_DAC_READ_SEARCH))
3888 		return -EPERM;
3889 
3890 	path = btrfs_alloc_path();
3891 	if (!path) {
3892 		ret = -ENOMEM;
3893 		goto out;
3894 	}
3895 
3896 	ipa = memdup_user(arg, sizeof(*ipa));
3897 	if (IS_ERR(ipa)) {
3898 		ret = PTR_ERR(ipa);
3899 		ipa = NULL;
3900 		goto out;
3901 	}
3902 
3903 	size = min_t(u32, ipa->size, 4096);
3904 	ipath = init_ipath(size, root, path);
3905 	if (IS_ERR(ipath)) {
3906 		ret = PTR_ERR(ipath);
3907 		ipath = NULL;
3908 		goto out;
3909 	}
3910 
3911 	ret = paths_from_inode(ipa->inum, ipath);
3912 	if (ret < 0)
3913 		goto out;
3914 
3915 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3916 		rel_ptr = ipath->fspath->val[i] -
3917 			  (u64)(unsigned long)ipath->fspath->val;
3918 		ipath->fspath->val[i] = rel_ptr;
3919 	}
3920 
3921 	btrfs_free_path(path);
3922 	path = NULL;
3923 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3924 			   ipath->fspath, size);
3925 	if (ret) {
3926 		ret = -EFAULT;
3927 		goto out;
3928 	}
3929 
3930 out:
3931 	btrfs_free_path(path);
3932 	free_ipath(ipath);
3933 	kfree(ipa);
3934 
3935 	return ret;
3936 }
3937 
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3938 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3939 					void __user *arg, int version)
3940 {
3941 	int ret = 0;
3942 	int size;
3943 	struct btrfs_ioctl_logical_ino_args *loi;
3944 	struct btrfs_data_container *inodes = NULL;
3945 	struct btrfs_path *path = NULL;
3946 	bool ignore_offset;
3947 
3948 	if (!capable(CAP_SYS_ADMIN))
3949 		return -EPERM;
3950 
3951 	loi = memdup_user(arg, sizeof(*loi));
3952 	if (IS_ERR(loi))
3953 		return PTR_ERR(loi);
3954 
3955 	if (version == 1) {
3956 		ignore_offset = false;
3957 		size = min_t(u32, loi->size, SZ_64K);
3958 	} else {
3959 		/* All reserved bits must be 0 for now */
3960 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3961 			ret = -EINVAL;
3962 			goto out_loi;
3963 		}
3964 		/* Only accept flags we have defined so far */
3965 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3966 			ret = -EINVAL;
3967 			goto out_loi;
3968 		}
3969 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3970 		size = min_t(u32, loi->size, SZ_16M);
3971 	}
3972 
3973 	inodes = init_data_container(size);
3974 	if (IS_ERR(inodes)) {
3975 		ret = PTR_ERR(inodes);
3976 		goto out_loi;
3977 	}
3978 
3979 	path = btrfs_alloc_path();
3980 	if (!path) {
3981 		ret = -ENOMEM;
3982 		goto out;
3983 	}
3984 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3985 					  inodes, ignore_offset);
3986 	btrfs_free_path(path);
3987 	if (ret == -EINVAL)
3988 		ret = -ENOENT;
3989 	if (ret < 0)
3990 		goto out;
3991 
3992 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3993 			   size);
3994 	if (ret)
3995 		ret = -EFAULT;
3996 
3997 out:
3998 	kvfree(inodes);
3999 out_loi:
4000 	kfree(loi);
4001 
4002 	return ret;
4003 }
4004 
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)4005 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4006 			       struct btrfs_ioctl_balance_args *bargs)
4007 {
4008 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4009 
4010 	bargs->flags = bctl->flags;
4011 
4012 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4013 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4014 	if (atomic_read(&fs_info->balance_pause_req))
4015 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4016 	if (atomic_read(&fs_info->balance_cancel_req))
4017 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4018 
4019 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4020 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4021 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4022 
4023 	spin_lock(&fs_info->balance_lock);
4024 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4025 	spin_unlock(&fs_info->balance_lock);
4026 }
4027 
btrfs_ioctl_balance(struct file * file,void __user * arg)4028 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4029 {
4030 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4031 	struct btrfs_fs_info *fs_info = root->fs_info;
4032 	struct btrfs_ioctl_balance_args *bargs;
4033 	struct btrfs_balance_control *bctl;
4034 	bool need_unlock; /* for mut. excl. ops lock */
4035 	int ret;
4036 
4037 	if (!capable(CAP_SYS_ADMIN))
4038 		return -EPERM;
4039 
4040 	ret = mnt_want_write_file(file);
4041 	if (ret)
4042 		return ret;
4043 
4044 again:
4045 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4046 		mutex_lock(&fs_info->balance_mutex);
4047 		need_unlock = true;
4048 		goto locked;
4049 	}
4050 
4051 	/*
4052 	 * mut. excl. ops lock is locked.  Three possibilities:
4053 	 *   (1) some other op is running
4054 	 *   (2) balance is running
4055 	 *   (3) balance is paused -- special case (think resume)
4056 	 */
4057 	mutex_lock(&fs_info->balance_mutex);
4058 	if (fs_info->balance_ctl) {
4059 		/* this is either (2) or (3) */
4060 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4061 			mutex_unlock(&fs_info->balance_mutex);
4062 			/*
4063 			 * Lock released to allow other waiters to continue,
4064 			 * we'll reexamine the status again.
4065 			 */
4066 			mutex_lock(&fs_info->balance_mutex);
4067 
4068 			if (fs_info->balance_ctl &&
4069 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4070 				/* this is (3) */
4071 				need_unlock = false;
4072 				goto locked;
4073 			}
4074 
4075 			mutex_unlock(&fs_info->balance_mutex);
4076 			goto again;
4077 		} else {
4078 			/* this is (2) */
4079 			mutex_unlock(&fs_info->balance_mutex);
4080 			ret = -EINPROGRESS;
4081 			goto out;
4082 		}
4083 	} else {
4084 		/* this is (1) */
4085 		mutex_unlock(&fs_info->balance_mutex);
4086 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4087 		goto out;
4088 	}
4089 
4090 locked:
4091 
4092 	if (arg) {
4093 		bargs = memdup_user(arg, sizeof(*bargs));
4094 		if (IS_ERR(bargs)) {
4095 			ret = PTR_ERR(bargs);
4096 			goto out_unlock;
4097 		}
4098 
4099 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4100 			if (!fs_info->balance_ctl) {
4101 				ret = -ENOTCONN;
4102 				goto out_bargs;
4103 			}
4104 
4105 			bctl = fs_info->balance_ctl;
4106 			spin_lock(&fs_info->balance_lock);
4107 			bctl->flags |= BTRFS_BALANCE_RESUME;
4108 			spin_unlock(&fs_info->balance_lock);
4109 
4110 			goto do_balance;
4111 		}
4112 	} else {
4113 		bargs = NULL;
4114 	}
4115 
4116 	if (fs_info->balance_ctl) {
4117 		ret = -EINPROGRESS;
4118 		goto out_bargs;
4119 	}
4120 
4121 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4122 	if (!bctl) {
4123 		ret = -ENOMEM;
4124 		goto out_bargs;
4125 	}
4126 
4127 	if (arg) {
4128 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4129 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4130 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4131 
4132 		bctl->flags = bargs->flags;
4133 	} else {
4134 		/* balance everything - no filters */
4135 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4136 	}
4137 
4138 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4139 		ret = -EINVAL;
4140 		goto out_bctl;
4141 	}
4142 
4143 do_balance:
4144 	/*
4145 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4146 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4147 	 * all the way until unmount, in free_fs_info.  The flag should be
4148 	 * cleared after reset_balance_state.
4149 	 */
4150 	need_unlock = false;
4151 
4152 	ret = btrfs_balance(fs_info, bctl, bargs);
4153 	bctl = NULL;
4154 
4155 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4156 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4157 			ret = -EFAULT;
4158 	}
4159 
4160 out_bctl:
4161 	kfree(bctl);
4162 out_bargs:
4163 	kfree(bargs);
4164 out_unlock:
4165 	mutex_unlock(&fs_info->balance_mutex);
4166 	if (need_unlock)
4167 		btrfs_exclop_finish(fs_info);
4168 out:
4169 	mnt_drop_write_file(file);
4170 	return ret;
4171 }
4172 
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)4173 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4174 {
4175 	if (!capable(CAP_SYS_ADMIN))
4176 		return -EPERM;
4177 
4178 	switch (cmd) {
4179 	case BTRFS_BALANCE_CTL_PAUSE:
4180 		return btrfs_pause_balance(fs_info);
4181 	case BTRFS_BALANCE_CTL_CANCEL:
4182 		return btrfs_cancel_balance(fs_info);
4183 	}
4184 
4185 	return -EINVAL;
4186 }
4187 
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)4188 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4189 					 void __user *arg)
4190 {
4191 	struct btrfs_ioctl_balance_args *bargs;
4192 	int ret = 0;
4193 
4194 	if (!capable(CAP_SYS_ADMIN))
4195 		return -EPERM;
4196 
4197 	mutex_lock(&fs_info->balance_mutex);
4198 	if (!fs_info->balance_ctl) {
4199 		ret = -ENOTCONN;
4200 		goto out;
4201 	}
4202 
4203 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4204 	if (!bargs) {
4205 		ret = -ENOMEM;
4206 		goto out;
4207 	}
4208 
4209 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4210 
4211 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4212 		ret = -EFAULT;
4213 
4214 	kfree(bargs);
4215 out:
4216 	mutex_unlock(&fs_info->balance_mutex);
4217 	return ret;
4218 }
4219 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4220 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4221 {
4222 	struct inode *inode = file_inode(file);
4223 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4224 	struct btrfs_ioctl_quota_ctl_args *sa;
4225 	int ret;
4226 
4227 	if (!capable(CAP_SYS_ADMIN))
4228 		return -EPERM;
4229 
4230 	ret = mnt_want_write_file(file);
4231 	if (ret)
4232 		return ret;
4233 
4234 	sa = memdup_user(arg, sizeof(*sa));
4235 	if (IS_ERR(sa)) {
4236 		ret = PTR_ERR(sa);
4237 		goto drop_write;
4238 	}
4239 
4240 	down_write(&fs_info->subvol_sem);
4241 
4242 	switch (sa->cmd) {
4243 	case BTRFS_QUOTA_CTL_ENABLE:
4244 		ret = btrfs_quota_enable(fs_info);
4245 		break;
4246 	case BTRFS_QUOTA_CTL_DISABLE:
4247 		ret = btrfs_quota_disable(fs_info);
4248 		break;
4249 	default:
4250 		ret = -EINVAL;
4251 		break;
4252 	}
4253 
4254 	kfree(sa);
4255 	up_write(&fs_info->subvol_sem);
4256 drop_write:
4257 	mnt_drop_write_file(file);
4258 	return ret;
4259 }
4260 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4261 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4262 {
4263 	struct inode *inode = file_inode(file);
4264 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4265 	struct btrfs_root *root = BTRFS_I(inode)->root;
4266 	struct btrfs_ioctl_qgroup_assign_args *sa;
4267 	struct btrfs_trans_handle *trans;
4268 	int ret;
4269 	int err;
4270 
4271 	if (!capable(CAP_SYS_ADMIN))
4272 		return -EPERM;
4273 
4274 	ret = mnt_want_write_file(file);
4275 	if (ret)
4276 		return ret;
4277 
4278 	sa = memdup_user(arg, sizeof(*sa));
4279 	if (IS_ERR(sa)) {
4280 		ret = PTR_ERR(sa);
4281 		goto drop_write;
4282 	}
4283 
4284 	trans = btrfs_join_transaction(root);
4285 	if (IS_ERR(trans)) {
4286 		ret = PTR_ERR(trans);
4287 		goto out;
4288 	}
4289 
4290 	if (sa->assign) {
4291 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4292 	} else {
4293 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4294 	}
4295 
4296 	/* update qgroup status and info */
4297 	mutex_lock(&fs_info->qgroup_ioctl_lock);
4298 	err = btrfs_run_qgroups(trans);
4299 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
4300 	if (err < 0)
4301 		btrfs_handle_fs_error(fs_info, err,
4302 				      "failed to update qgroup status and info");
4303 	err = btrfs_end_transaction(trans);
4304 	if (err && !ret)
4305 		ret = err;
4306 
4307 out:
4308 	kfree(sa);
4309 drop_write:
4310 	mnt_drop_write_file(file);
4311 	return ret;
4312 }
4313 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4314 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4315 {
4316 	struct inode *inode = file_inode(file);
4317 	struct btrfs_root *root = BTRFS_I(inode)->root;
4318 	struct btrfs_ioctl_qgroup_create_args *sa;
4319 	struct btrfs_trans_handle *trans;
4320 	int ret;
4321 	int err;
4322 
4323 	if (!capable(CAP_SYS_ADMIN))
4324 		return -EPERM;
4325 
4326 	ret = mnt_want_write_file(file);
4327 	if (ret)
4328 		return ret;
4329 
4330 	sa = memdup_user(arg, sizeof(*sa));
4331 	if (IS_ERR(sa)) {
4332 		ret = PTR_ERR(sa);
4333 		goto drop_write;
4334 	}
4335 
4336 	if (!sa->qgroupid) {
4337 		ret = -EINVAL;
4338 		goto out;
4339 	}
4340 
4341 	if (sa->create && is_fstree(sa->qgroupid)) {
4342 		ret = -EINVAL;
4343 		goto out;
4344 	}
4345 
4346 	trans = btrfs_join_transaction(root);
4347 	if (IS_ERR(trans)) {
4348 		ret = PTR_ERR(trans);
4349 		goto out;
4350 	}
4351 
4352 	if (sa->create) {
4353 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4354 	} else {
4355 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4356 	}
4357 
4358 	err = btrfs_end_transaction(trans);
4359 	if (err && !ret)
4360 		ret = err;
4361 
4362 out:
4363 	kfree(sa);
4364 drop_write:
4365 	mnt_drop_write_file(file);
4366 	return ret;
4367 }
4368 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)4369 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4370 {
4371 	struct inode *inode = file_inode(file);
4372 	struct btrfs_root *root = BTRFS_I(inode)->root;
4373 	struct btrfs_ioctl_qgroup_limit_args *sa;
4374 	struct btrfs_trans_handle *trans;
4375 	int ret;
4376 	int err;
4377 	u64 qgroupid;
4378 
4379 	if (!capable(CAP_SYS_ADMIN))
4380 		return -EPERM;
4381 
4382 	ret = mnt_want_write_file(file);
4383 	if (ret)
4384 		return ret;
4385 
4386 	sa = memdup_user(arg, sizeof(*sa));
4387 	if (IS_ERR(sa)) {
4388 		ret = PTR_ERR(sa);
4389 		goto drop_write;
4390 	}
4391 
4392 	trans = btrfs_join_transaction(root);
4393 	if (IS_ERR(trans)) {
4394 		ret = PTR_ERR(trans);
4395 		goto out;
4396 	}
4397 
4398 	qgroupid = sa->qgroupid;
4399 	if (!qgroupid) {
4400 		/* take the current subvol as qgroup */
4401 		qgroupid = root->root_key.objectid;
4402 	}
4403 
4404 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4405 
4406 	err = btrfs_end_transaction(trans);
4407 	if (err && !ret)
4408 		ret = err;
4409 
4410 out:
4411 	kfree(sa);
4412 drop_write:
4413 	mnt_drop_write_file(file);
4414 	return ret;
4415 }
4416 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4417 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4418 {
4419 	struct inode *inode = file_inode(file);
4420 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4421 	struct btrfs_ioctl_quota_rescan_args *qsa;
4422 	int ret;
4423 
4424 	if (!capable(CAP_SYS_ADMIN))
4425 		return -EPERM;
4426 
4427 	ret = mnt_want_write_file(file);
4428 	if (ret)
4429 		return ret;
4430 
4431 	qsa = memdup_user(arg, sizeof(*qsa));
4432 	if (IS_ERR(qsa)) {
4433 		ret = PTR_ERR(qsa);
4434 		goto drop_write;
4435 	}
4436 
4437 	if (qsa->flags) {
4438 		ret = -EINVAL;
4439 		goto out;
4440 	}
4441 
4442 	ret = btrfs_qgroup_rescan(fs_info);
4443 
4444 out:
4445 	kfree(qsa);
4446 drop_write:
4447 	mnt_drop_write_file(file);
4448 	return ret;
4449 }
4450 
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)4451 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4452 						void __user *arg)
4453 {
4454 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
4455 	int ret = 0;
4456 
4457 	if (!capable(CAP_SYS_ADMIN))
4458 		return -EPERM;
4459 
4460 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4461 		qsa.flags = 1;
4462 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4463 	}
4464 
4465 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4466 		ret = -EFAULT;
4467 
4468 	return ret;
4469 }
4470 
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info,void __user * arg)4471 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4472 						void __user *arg)
4473 {
4474 	if (!capable(CAP_SYS_ADMIN))
4475 		return -EPERM;
4476 
4477 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4478 }
4479 
_btrfs_ioctl_set_received_subvol(struct file * file,struct user_namespace * mnt_userns,struct btrfs_ioctl_received_subvol_args * sa)4480 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4481 					    struct user_namespace *mnt_userns,
4482 					    struct btrfs_ioctl_received_subvol_args *sa)
4483 {
4484 	struct inode *inode = file_inode(file);
4485 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4486 	struct btrfs_root *root = BTRFS_I(inode)->root;
4487 	struct btrfs_root_item *root_item = &root->root_item;
4488 	struct btrfs_trans_handle *trans;
4489 	struct timespec64 ct = current_time(inode);
4490 	int ret = 0;
4491 	int received_uuid_changed;
4492 
4493 	if (!inode_owner_or_capable(mnt_userns, inode))
4494 		return -EPERM;
4495 
4496 	ret = mnt_want_write_file(file);
4497 	if (ret < 0)
4498 		return ret;
4499 
4500 	down_write(&fs_info->subvol_sem);
4501 
4502 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4503 		ret = -EINVAL;
4504 		goto out;
4505 	}
4506 
4507 	if (btrfs_root_readonly(root)) {
4508 		ret = -EROFS;
4509 		goto out;
4510 	}
4511 
4512 	/*
4513 	 * 1 - root item
4514 	 * 2 - uuid items (received uuid + subvol uuid)
4515 	 */
4516 	trans = btrfs_start_transaction(root, 3);
4517 	if (IS_ERR(trans)) {
4518 		ret = PTR_ERR(trans);
4519 		trans = NULL;
4520 		goto out;
4521 	}
4522 
4523 	sa->rtransid = trans->transid;
4524 	sa->rtime.sec = ct.tv_sec;
4525 	sa->rtime.nsec = ct.tv_nsec;
4526 
4527 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4528 				       BTRFS_UUID_SIZE);
4529 	if (received_uuid_changed &&
4530 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4531 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4532 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4533 					  root->root_key.objectid);
4534 		if (ret && ret != -ENOENT) {
4535 		        btrfs_abort_transaction(trans, ret);
4536 		        btrfs_end_transaction(trans);
4537 		        goto out;
4538 		}
4539 	}
4540 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4541 	btrfs_set_root_stransid(root_item, sa->stransid);
4542 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4543 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4544 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4545 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4546 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4547 
4548 	ret = btrfs_update_root(trans, fs_info->tree_root,
4549 				&root->root_key, &root->root_item);
4550 	if (ret < 0) {
4551 		btrfs_end_transaction(trans);
4552 		goto out;
4553 	}
4554 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4555 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4556 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4557 					  root->root_key.objectid);
4558 		if (ret < 0 && ret != -EEXIST) {
4559 			btrfs_abort_transaction(trans, ret);
4560 			btrfs_end_transaction(trans);
4561 			goto out;
4562 		}
4563 	}
4564 	ret = btrfs_commit_transaction(trans);
4565 out:
4566 	up_write(&fs_info->subvol_sem);
4567 	mnt_drop_write_file(file);
4568 	return ret;
4569 }
4570 
4571 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4572 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4573 						void __user *arg)
4574 {
4575 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4576 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4577 	int ret = 0;
4578 
4579 	args32 = memdup_user(arg, sizeof(*args32));
4580 	if (IS_ERR(args32))
4581 		return PTR_ERR(args32);
4582 
4583 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4584 	if (!args64) {
4585 		ret = -ENOMEM;
4586 		goto out;
4587 	}
4588 
4589 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4590 	args64->stransid = args32->stransid;
4591 	args64->rtransid = args32->rtransid;
4592 	args64->stime.sec = args32->stime.sec;
4593 	args64->stime.nsec = args32->stime.nsec;
4594 	args64->rtime.sec = args32->rtime.sec;
4595 	args64->rtime.nsec = args32->rtime.nsec;
4596 	args64->flags = args32->flags;
4597 
4598 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4599 	if (ret)
4600 		goto out;
4601 
4602 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4603 	args32->stransid = args64->stransid;
4604 	args32->rtransid = args64->rtransid;
4605 	args32->stime.sec = args64->stime.sec;
4606 	args32->stime.nsec = args64->stime.nsec;
4607 	args32->rtime.sec = args64->rtime.sec;
4608 	args32->rtime.nsec = args64->rtime.nsec;
4609 	args32->flags = args64->flags;
4610 
4611 	ret = copy_to_user(arg, args32, sizeof(*args32));
4612 	if (ret)
4613 		ret = -EFAULT;
4614 
4615 out:
4616 	kfree(args32);
4617 	kfree(args64);
4618 	return ret;
4619 }
4620 #endif
4621 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4622 static long btrfs_ioctl_set_received_subvol(struct file *file,
4623 					    void __user *arg)
4624 {
4625 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4626 	int ret = 0;
4627 
4628 	sa = memdup_user(arg, sizeof(*sa));
4629 	if (IS_ERR(sa))
4630 		return PTR_ERR(sa);
4631 
4632 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4633 
4634 	if (ret)
4635 		goto out;
4636 
4637 	ret = copy_to_user(arg, sa, sizeof(*sa));
4638 	if (ret)
4639 		ret = -EFAULT;
4640 
4641 out:
4642 	kfree(sa);
4643 	return ret;
4644 }
4645 
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4646 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4647 					void __user *arg)
4648 {
4649 	size_t len;
4650 	int ret;
4651 	char label[BTRFS_LABEL_SIZE];
4652 
4653 	spin_lock(&fs_info->super_lock);
4654 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4655 	spin_unlock(&fs_info->super_lock);
4656 
4657 	len = strnlen(label, BTRFS_LABEL_SIZE);
4658 
4659 	if (len == BTRFS_LABEL_SIZE) {
4660 		btrfs_warn(fs_info,
4661 			   "label is too long, return the first %zu bytes",
4662 			   --len);
4663 	}
4664 
4665 	ret = copy_to_user(arg, label, len);
4666 
4667 	return ret ? -EFAULT : 0;
4668 }
4669 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4670 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4671 {
4672 	struct inode *inode = file_inode(file);
4673 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4674 	struct btrfs_root *root = BTRFS_I(inode)->root;
4675 	struct btrfs_super_block *super_block = fs_info->super_copy;
4676 	struct btrfs_trans_handle *trans;
4677 	char label[BTRFS_LABEL_SIZE];
4678 	int ret;
4679 
4680 	if (!capable(CAP_SYS_ADMIN))
4681 		return -EPERM;
4682 
4683 	if (copy_from_user(label, arg, sizeof(label)))
4684 		return -EFAULT;
4685 
4686 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4687 		btrfs_err(fs_info,
4688 			  "unable to set label with more than %d bytes",
4689 			  BTRFS_LABEL_SIZE - 1);
4690 		return -EINVAL;
4691 	}
4692 
4693 	ret = mnt_want_write_file(file);
4694 	if (ret)
4695 		return ret;
4696 
4697 	trans = btrfs_start_transaction(root, 0);
4698 	if (IS_ERR(trans)) {
4699 		ret = PTR_ERR(trans);
4700 		goto out_unlock;
4701 	}
4702 
4703 	spin_lock(&fs_info->super_lock);
4704 	strcpy(super_block->label, label);
4705 	spin_unlock(&fs_info->super_lock);
4706 	ret = btrfs_commit_transaction(trans);
4707 
4708 out_unlock:
4709 	mnt_drop_write_file(file);
4710 	return ret;
4711 }
4712 
4713 #define INIT_FEATURE_FLAGS(suffix) \
4714 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4715 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4716 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4717 
btrfs_ioctl_get_supported_features(void __user * arg)4718 int btrfs_ioctl_get_supported_features(void __user *arg)
4719 {
4720 	static const struct btrfs_ioctl_feature_flags features[3] = {
4721 		INIT_FEATURE_FLAGS(SUPP),
4722 		INIT_FEATURE_FLAGS(SAFE_SET),
4723 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4724 	};
4725 
4726 	if (copy_to_user(arg, &features, sizeof(features)))
4727 		return -EFAULT;
4728 
4729 	return 0;
4730 }
4731 
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4732 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4733 					void __user *arg)
4734 {
4735 	struct btrfs_super_block *super_block = fs_info->super_copy;
4736 	struct btrfs_ioctl_feature_flags features;
4737 
4738 	features.compat_flags = btrfs_super_compat_flags(super_block);
4739 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4740 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4741 
4742 	if (copy_to_user(arg, &features, sizeof(features)))
4743 		return -EFAULT;
4744 
4745 	return 0;
4746 }
4747 
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4748 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4749 			      enum btrfs_feature_set set,
4750 			      u64 change_mask, u64 flags, u64 supported_flags,
4751 			      u64 safe_set, u64 safe_clear)
4752 {
4753 	const char *type = btrfs_feature_set_name(set);
4754 	char *names;
4755 	u64 disallowed, unsupported;
4756 	u64 set_mask = flags & change_mask;
4757 	u64 clear_mask = ~flags & change_mask;
4758 
4759 	unsupported = set_mask & ~supported_flags;
4760 	if (unsupported) {
4761 		names = btrfs_printable_features(set, unsupported);
4762 		if (names) {
4763 			btrfs_warn(fs_info,
4764 				   "this kernel does not support the %s feature bit%s",
4765 				   names, strchr(names, ',') ? "s" : "");
4766 			kfree(names);
4767 		} else
4768 			btrfs_warn(fs_info,
4769 				   "this kernel does not support %s bits 0x%llx",
4770 				   type, unsupported);
4771 		return -EOPNOTSUPP;
4772 	}
4773 
4774 	disallowed = set_mask & ~safe_set;
4775 	if (disallowed) {
4776 		names = btrfs_printable_features(set, disallowed);
4777 		if (names) {
4778 			btrfs_warn(fs_info,
4779 				   "can't set the %s feature bit%s while mounted",
4780 				   names, strchr(names, ',') ? "s" : "");
4781 			kfree(names);
4782 		} else
4783 			btrfs_warn(fs_info,
4784 				   "can't set %s bits 0x%llx while mounted",
4785 				   type, disallowed);
4786 		return -EPERM;
4787 	}
4788 
4789 	disallowed = clear_mask & ~safe_clear;
4790 	if (disallowed) {
4791 		names = btrfs_printable_features(set, disallowed);
4792 		if (names) {
4793 			btrfs_warn(fs_info,
4794 				   "can't clear the %s feature bit%s while mounted",
4795 				   names, strchr(names, ',') ? "s" : "");
4796 			kfree(names);
4797 		} else
4798 			btrfs_warn(fs_info,
4799 				   "can't clear %s bits 0x%llx while mounted",
4800 				   type, disallowed);
4801 		return -EPERM;
4802 	}
4803 
4804 	return 0;
4805 }
4806 
4807 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4808 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4809 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4810 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4811 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4812 
btrfs_ioctl_set_features(struct file * file,void __user * arg)4813 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4814 {
4815 	struct inode *inode = file_inode(file);
4816 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4817 	struct btrfs_root *root = BTRFS_I(inode)->root;
4818 	struct btrfs_super_block *super_block = fs_info->super_copy;
4819 	struct btrfs_ioctl_feature_flags flags[2];
4820 	struct btrfs_trans_handle *trans;
4821 	u64 newflags;
4822 	int ret;
4823 
4824 	if (!capable(CAP_SYS_ADMIN))
4825 		return -EPERM;
4826 
4827 	if (copy_from_user(flags, arg, sizeof(flags)))
4828 		return -EFAULT;
4829 
4830 	/* Nothing to do */
4831 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4832 	    !flags[0].incompat_flags)
4833 		return 0;
4834 
4835 	ret = check_feature(fs_info, flags[0].compat_flags,
4836 			    flags[1].compat_flags, COMPAT);
4837 	if (ret)
4838 		return ret;
4839 
4840 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4841 			    flags[1].compat_ro_flags, COMPAT_RO);
4842 	if (ret)
4843 		return ret;
4844 
4845 	ret = check_feature(fs_info, flags[0].incompat_flags,
4846 			    flags[1].incompat_flags, INCOMPAT);
4847 	if (ret)
4848 		return ret;
4849 
4850 	ret = mnt_want_write_file(file);
4851 	if (ret)
4852 		return ret;
4853 
4854 	trans = btrfs_start_transaction(root, 0);
4855 	if (IS_ERR(trans)) {
4856 		ret = PTR_ERR(trans);
4857 		goto out_drop_write;
4858 	}
4859 
4860 	spin_lock(&fs_info->super_lock);
4861 	newflags = btrfs_super_compat_flags(super_block);
4862 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4863 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4864 	btrfs_set_super_compat_flags(super_block, newflags);
4865 
4866 	newflags = btrfs_super_compat_ro_flags(super_block);
4867 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4868 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4869 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4870 
4871 	newflags = btrfs_super_incompat_flags(super_block);
4872 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4873 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4874 	btrfs_set_super_incompat_flags(super_block, newflags);
4875 	spin_unlock(&fs_info->super_lock);
4876 
4877 	ret = btrfs_commit_transaction(trans);
4878 out_drop_write:
4879 	mnt_drop_write_file(file);
4880 
4881 	return ret;
4882 }
4883 
_btrfs_ioctl_send(struct file * file,void __user * argp,bool compat)4884 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4885 {
4886 	struct btrfs_ioctl_send_args *arg;
4887 	int ret;
4888 
4889 	if (compat) {
4890 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4891 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4892 
4893 		ret = copy_from_user(&args32, argp, sizeof(args32));
4894 		if (ret)
4895 			return -EFAULT;
4896 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4897 		if (!arg)
4898 			return -ENOMEM;
4899 		arg->send_fd = args32.send_fd;
4900 		arg->clone_sources_count = args32.clone_sources_count;
4901 		arg->clone_sources = compat_ptr(args32.clone_sources);
4902 		arg->parent_root = args32.parent_root;
4903 		arg->flags = args32.flags;
4904 		memcpy(arg->reserved, args32.reserved,
4905 		       sizeof(args32.reserved));
4906 #else
4907 		return -ENOTTY;
4908 #endif
4909 	} else {
4910 		arg = memdup_user(argp, sizeof(*arg));
4911 		if (IS_ERR(arg))
4912 			return PTR_ERR(arg);
4913 	}
4914 	ret = btrfs_ioctl_send(file, arg);
4915 	kfree(arg);
4916 	return ret;
4917 }
4918 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4919 long btrfs_ioctl(struct file *file, unsigned int
4920 		cmd, unsigned long arg)
4921 {
4922 	struct inode *inode = file_inode(file);
4923 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4924 	struct btrfs_root *root = BTRFS_I(inode)->root;
4925 	void __user *argp = (void __user *)arg;
4926 
4927 	switch (cmd) {
4928 	case FS_IOC_GETVERSION:
4929 		return btrfs_ioctl_getversion(file, argp);
4930 	case FS_IOC_GETFSLABEL:
4931 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4932 	case FS_IOC_SETFSLABEL:
4933 		return btrfs_ioctl_set_fslabel(file, argp);
4934 	case FITRIM:
4935 		return btrfs_ioctl_fitrim(fs_info, argp);
4936 	case BTRFS_IOC_SNAP_CREATE:
4937 		return btrfs_ioctl_snap_create(file, argp, 0);
4938 	case BTRFS_IOC_SNAP_CREATE_V2:
4939 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4940 	case BTRFS_IOC_SUBVOL_CREATE:
4941 		return btrfs_ioctl_snap_create(file, argp, 1);
4942 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4943 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4944 	case BTRFS_IOC_SNAP_DESTROY:
4945 		return btrfs_ioctl_snap_destroy(file, argp, false);
4946 	case BTRFS_IOC_SNAP_DESTROY_V2:
4947 		return btrfs_ioctl_snap_destroy(file, argp, true);
4948 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4949 		return btrfs_ioctl_subvol_getflags(file, argp);
4950 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4951 		return btrfs_ioctl_subvol_setflags(file, argp);
4952 	case BTRFS_IOC_DEFAULT_SUBVOL:
4953 		return btrfs_ioctl_default_subvol(file, argp);
4954 	case BTRFS_IOC_DEFRAG:
4955 		return btrfs_ioctl_defrag(file, NULL);
4956 	case BTRFS_IOC_DEFRAG_RANGE:
4957 		return btrfs_ioctl_defrag(file, argp);
4958 	case BTRFS_IOC_RESIZE:
4959 		return btrfs_ioctl_resize(file, argp);
4960 	case BTRFS_IOC_ADD_DEV:
4961 		return btrfs_ioctl_add_dev(fs_info, argp);
4962 	case BTRFS_IOC_RM_DEV:
4963 		return btrfs_ioctl_rm_dev(file, argp);
4964 	case BTRFS_IOC_RM_DEV_V2:
4965 		return btrfs_ioctl_rm_dev_v2(file, argp);
4966 	case BTRFS_IOC_FS_INFO:
4967 		return btrfs_ioctl_fs_info(fs_info, argp);
4968 	case BTRFS_IOC_DEV_INFO:
4969 		return btrfs_ioctl_dev_info(fs_info, argp);
4970 	case BTRFS_IOC_BALANCE:
4971 		return btrfs_ioctl_balance(file, NULL);
4972 	case BTRFS_IOC_TREE_SEARCH:
4973 		return btrfs_ioctl_tree_search(file, argp);
4974 	case BTRFS_IOC_TREE_SEARCH_V2:
4975 		return btrfs_ioctl_tree_search_v2(file, argp);
4976 	case BTRFS_IOC_INO_LOOKUP:
4977 		return btrfs_ioctl_ino_lookup(file, argp);
4978 	case BTRFS_IOC_INO_PATHS:
4979 		return btrfs_ioctl_ino_to_path(root, argp);
4980 	case BTRFS_IOC_LOGICAL_INO:
4981 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4982 	case BTRFS_IOC_LOGICAL_INO_V2:
4983 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4984 	case BTRFS_IOC_SPACE_INFO:
4985 		return btrfs_ioctl_space_info(fs_info, argp);
4986 	case BTRFS_IOC_SYNC: {
4987 		int ret;
4988 
4989 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4990 		if (ret)
4991 			return ret;
4992 		ret = btrfs_sync_fs(inode->i_sb, 1);
4993 		/*
4994 		 * The transaction thread may want to do more work,
4995 		 * namely it pokes the cleaner kthread that will start
4996 		 * processing uncleaned subvols.
4997 		 */
4998 		wake_up_process(fs_info->transaction_kthread);
4999 		return ret;
5000 	}
5001 	case BTRFS_IOC_START_SYNC:
5002 		return btrfs_ioctl_start_sync(root, argp);
5003 	case BTRFS_IOC_WAIT_SYNC:
5004 		return btrfs_ioctl_wait_sync(fs_info, argp);
5005 	case BTRFS_IOC_SCRUB:
5006 		return btrfs_ioctl_scrub(file, argp);
5007 	case BTRFS_IOC_SCRUB_CANCEL:
5008 		return btrfs_ioctl_scrub_cancel(fs_info);
5009 	case BTRFS_IOC_SCRUB_PROGRESS:
5010 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5011 	case BTRFS_IOC_BALANCE_V2:
5012 		return btrfs_ioctl_balance(file, argp);
5013 	case BTRFS_IOC_BALANCE_CTL:
5014 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5015 	case BTRFS_IOC_BALANCE_PROGRESS:
5016 		return btrfs_ioctl_balance_progress(fs_info, argp);
5017 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5018 		return btrfs_ioctl_set_received_subvol(file, argp);
5019 #ifdef CONFIG_64BIT
5020 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5021 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5022 #endif
5023 	case BTRFS_IOC_SEND:
5024 		return _btrfs_ioctl_send(file, argp, false);
5025 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5026 	case BTRFS_IOC_SEND_32:
5027 		return _btrfs_ioctl_send(file, argp, true);
5028 #endif
5029 	case BTRFS_IOC_GET_DEV_STATS:
5030 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5031 	case BTRFS_IOC_QUOTA_CTL:
5032 		return btrfs_ioctl_quota_ctl(file, argp);
5033 	case BTRFS_IOC_QGROUP_ASSIGN:
5034 		return btrfs_ioctl_qgroup_assign(file, argp);
5035 	case BTRFS_IOC_QGROUP_CREATE:
5036 		return btrfs_ioctl_qgroup_create(file, argp);
5037 	case BTRFS_IOC_QGROUP_LIMIT:
5038 		return btrfs_ioctl_qgroup_limit(file, argp);
5039 	case BTRFS_IOC_QUOTA_RESCAN:
5040 		return btrfs_ioctl_quota_rescan(file, argp);
5041 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5042 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5043 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5044 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5045 	case BTRFS_IOC_DEV_REPLACE:
5046 		return btrfs_ioctl_dev_replace(fs_info, argp);
5047 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5048 		return btrfs_ioctl_get_supported_features(argp);
5049 	case BTRFS_IOC_GET_FEATURES:
5050 		return btrfs_ioctl_get_features(fs_info, argp);
5051 	case BTRFS_IOC_SET_FEATURES:
5052 		return btrfs_ioctl_set_features(file, argp);
5053 	case BTRFS_IOC_GET_SUBVOL_INFO:
5054 		return btrfs_ioctl_get_subvol_info(file, argp);
5055 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5056 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5057 	case BTRFS_IOC_INO_LOOKUP_USER:
5058 		return btrfs_ioctl_ino_lookup_user(file, argp);
5059 	case FS_IOC_ENABLE_VERITY:
5060 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5061 	case FS_IOC_MEASURE_VERITY:
5062 		return fsverity_ioctl_measure(file, argp);
5063 	}
5064 
5065 	return -ENOTTY;
5066 }
5067 
5068 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5069 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5070 {
5071 	/*
5072 	 * These all access 32-bit values anyway so no further
5073 	 * handling is necessary.
5074 	 */
5075 	switch (cmd) {
5076 	case FS_IOC32_GETVERSION:
5077 		cmd = FS_IOC_GETVERSION;
5078 		break;
5079 	}
5080 
5081 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5082 }
5083 #endif
5084