• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
12 #include "ctree.h"
13 #include "volumes.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "block-group.h"
18 
19 #undef DEBUG
20 
21 /*
22  * This is the implementation for the generic read ahead framework.
23  *
24  * To trigger a readahead, btrfs_reada_add must be called. It will start
25  * a read ahead for the given range [start, end) on tree root. The returned
26  * handle can either be used to wait on the readahead to finish
27  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
28  *
29  * The read ahead works as follows:
30  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
31  * reada_start_machine will then search for extents to prefetch and trigger
32  * some reads. When a read finishes for a node, all contained node/leaf
33  * pointers that lie in the given range will also be enqueued. The reads will
34  * be triggered in sequential order, thus giving a big win over a naive
35  * enumeration. It will also make use of multi-device layouts. Each disk
36  * will have its on read pointer and all disks will by utilized in parallel.
37  * Also will no two disks read both sides of a mirror simultaneously, as this
38  * would waste seeking capacity. Instead both disks will read different parts
39  * of the filesystem.
40  * Any number of readaheads can be started in parallel. The read order will be
41  * determined globally, i.e. 2 parallel readaheads will normally finish faster
42  * than the 2 started one after another.
43  */
44 
45 #define MAX_IN_FLIGHT 6
46 
47 struct reada_extctl {
48 	struct list_head	list;
49 	struct reada_control	*rc;
50 	u64			generation;
51 };
52 
53 struct reada_extent {
54 	u64			logical;
55 	u64			owner_root;
56 	struct btrfs_key	top;
57 	struct list_head	extctl;
58 	int 			refcnt;
59 	spinlock_t		lock;
60 	struct reada_zone	*zones[BTRFS_MAX_MIRRORS];
61 	int			nzones;
62 	int			scheduled;
63 	int			level;
64 };
65 
66 struct reada_zone {
67 	u64			start;
68 	u64			end;
69 	u64			elems;
70 	struct list_head	list;
71 	spinlock_t		lock;
72 	int			locked;
73 	struct btrfs_device	*device;
74 	struct btrfs_device	*devs[BTRFS_MAX_MIRRORS]; /* full list, incl
75 							   * self */
76 	int			ndevs;
77 	struct kref		refcnt;
78 };
79 
80 struct reada_machine_work {
81 	struct btrfs_work	work;
82 	struct btrfs_fs_info	*fs_info;
83 };
84 
85 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
86 static void reada_control_release(struct kref *kref);
87 static void reada_zone_release(struct kref *kref);
88 static void reada_start_machine(struct btrfs_fs_info *fs_info);
89 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
90 
91 static int reada_add_block(struct reada_control *rc, u64 logical,
92 			   struct btrfs_key *top, u64 owner_root,
93 			   u64 generation, int level);
94 
95 /* recurses */
96 /* in case of err, eb might be NULL */
__readahead_hook(struct btrfs_fs_info * fs_info,struct reada_extent * re,struct extent_buffer * eb,int err)97 static void __readahead_hook(struct btrfs_fs_info *fs_info,
98 			     struct reada_extent *re, struct extent_buffer *eb,
99 			     int err)
100 {
101 	int nritems;
102 	int i;
103 	u64 bytenr;
104 	u64 generation;
105 	struct list_head list;
106 
107 	spin_lock(&re->lock);
108 	/*
109 	 * just take the full list from the extent. afterwards we
110 	 * don't need the lock anymore
111 	 */
112 	list_replace_init(&re->extctl, &list);
113 	re->scheduled = 0;
114 	spin_unlock(&re->lock);
115 
116 	/*
117 	 * this is the error case, the extent buffer has not been
118 	 * read correctly. We won't access anything from it and
119 	 * just cleanup our data structures. Effectively this will
120 	 * cut the branch below this node from read ahead.
121 	 */
122 	if (err)
123 		goto cleanup;
124 
125 	/*
126 	 * FIXME: currently we just set nritems to 0 if this is a leaf,
127 	 * effectively ignoring the content. In a next step we could
128 	 * trigger more readahead depending from the content, e.g.
129 	 * fetch the checksums for the extents in the leaf.
130 	 */
131 	if (!btrfs_header_level(eb))
132 		goto cleanup;
133 
134 	nritems = btrfs_header_nritems(eb);
135 	generation = btrfs_header_generation(eb);
136 	for (i = 0; i < nritems; i++) {
137 		struct reada_extctl *rec;
138 		u64 n_gen;
139 		struct btrfs_key key;
140 		struct btrfs_key next_key;
141 
142 		btrfs_node_key_to_cpu(eb, &key, i);
143 		if (i + 1 < nritems)
144 			btrfs_node_key_to_cpu(eb, &next_key, i + 1);
145 		else
146 			next_key = re->top;
147 		bytenr = btrfs_node_blockptr(eb, i);
148 		n_gen = btrfs_node_ptr_generation(eb, i);
149 
150 		list_for_each_entry(rec, &list, list) {
151 			struct reada_control *rc = rec->rc;
152 
153 			/*
154 			 * if the generation doesn't match, just ignore this
155 			 * extctl. This will probably cut off a branch from
156 			 * prefetch. Alternatively one could start a new (sub-)
157 			 * prefetch for this branch, starting again from root.
158 			 * FIXME: move the generation check out of this loop
159 			 */
160 #ifdef DEBUG
161 			if (rec->generation != generation) {
162 				btrfs_debug(fs_info,
163 					    "generation mismatch for (%llu,%d,%llu) %llu != %llu",
164 					    key.objectid, key.type, key.offset,
165 					    rec->generation, generation);
166 			}
167 #endif
168 			if (rec->generation == generation &&
169 			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
170 			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
171 				reada_add_block(rc, bytenr, &next_key,
172 						btrfs_header_owner(eb), n_gen,
173 						btrfs_header_level(eb) - 1);
174 		}
175 	}
176 
177 cleanup:
178 	/*
179 	 * free extctl records
180 	 */
181 	while (!list_empty(&list)) {
182 		struct reada_control *rc;
183 		struct reada_extctl *rec;
184 
185 		rec = list_first_entry(&list, struct reada_extctl, list);
186 		list_del(&rec->list);
187 		rc = rec->rc;
188 		kfree(rec);
189 
190 		kref_get(&rc->refcnt);
191 		if (atomic_dec_and_test(&rc->elems)) {
192 			kref_put(&rc->refcnt, reada_control_release);
193 			wake_up(&rc->wait);
194 		}
195 		kref_put(&rc->refcnt, reada_control_release);
196 
197 		reada_extent_put(fs_info, re);	/* one ref for each entry */
198 	}
199 
200 	return;
201 }
202 
btree_readahead_hook(struct extent_buffer * eb,int err)203 int btree_readahead_hook(struct extent_buffer *eb, int err)
204 {
205 	struct btrfs_fs_info *fs_info = eb->fs_info;
206 	int ret = 0;
207 	struct reada_extent *re;
208 
209 	/* find extent */
210 	spin_lock(&fs_info->reada_lock);
211 	re = radix_tree_lookup(&fs_info->reada_tree,
212 			       eb->start >> fs_info->sectorsize_bits);
213 	if (re)
214 		re->refcnt++;
215 	spin_unlock(&fs_info->reada_lock);
216 	if (!re) {
217 		ret = -1;
218 		goto start_machine;
219 	}
220 
221 	__readahead_hook(fs_info, re, eb, err);
222 	reada_extent_put(fs_info, re);	/* our ref */
223 
224 start_machine:
225 	reada_start_machine(fs_info);
226 	return ret;
227 }
228 
reada_find_zone(struct btrfs_device * dev,u64 logical,struct btrfs_io_context * bioc)229 static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
230 					  struct btrfs_io_context *bioc)
231 {
232 	struct btrfs_fs_info *fs_info = dev->fs_info;
233 	int ret;
234 	struct reada_zone *zone;
235 	struct btrfs_block_group *cache = NULL;
236 	u64 start;
237 	u64 end;
238 	int i;
239 
240 	zone = NULL;
241 	spin_lock(&fs_info->reada_lock);
242 	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
243 				     logical >> fs_info->sectorsize_bits, 1);
244 	if (ret == 1 && logical >= zone->start && logical <= zone->end) {
245 		kref_get(&zone->refcnt);
246 		spin_unlock(&fs_info->reada_lock);
247 		return zone;
248 	}
249 
250 	spin_unlock(&fs_info->reada_lock);
251 
252 	cache = btrfs_lookup_block_group(fs_info, logical);
253 	if (!cache)
254 		return NULL;
255 
256 	start = cache->start;
257 	end = start + cache->length - 1;
258 	btrfs_put_block_group(cache);
259 
260 	zone = kzalloc(sizeof(*zone), GFP_KERNEL);
261 	if (!zone)
262 		return NULL;
263 
264 	ret = radix_tree_preload(GFP_KERNEL);
265 	if (ret) {
266 		kfree(zone);
267 		return NULL;
268 	}
269 
270 	zone->start = start;
271 	zone->end = end;
272 	INIT_LIST_HEAD(&zone->list);
273 	spin_lock_init(&zone->lock);
274 	zone->locked = 0;
275 	kref_init(&zone->refcnt);
276 	zone->elems = 0;
277 	zone->device = dev; /* our device always sits at index 0 */
278 	for (i = 0; i < bioc->num_stripes; ++i) {
279 		/* bounds have already been checked */
280 		zone->devs[i] = bioc->stripes[i].dev;
281 	}
282 	zone->ndevs = bioc->num_stripes;
283 
284 	spin_lock(&fs_info->reada_lock);
285 	ret = radix_tree_insert(&dev->reada_zones,
286 			(unsigned long)(zone->end >> fs_info->sectorsize_bits),
287 			zone);
288 
289 	if (ret == -EEXIST) {
290 		kfree(zone);
291 		ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
292 					logical >> fs_info->sectorsize_bits, 1);
293 		if (ret == 1 && logical >= zone->start && logical <= zone->end)
294 			kref_get(&zone->refcnt);
295 		else
296 			zone = NULL;
297 	}
298 	spin_unlock(&fs_info->reada_lock);
299 	radix_tree_preload_end();
300 
301 	return zone;
302 }
303 
reada_find_extent(struct btrfs_fs_info * fs_info,u64 logical,struct btrfs_key * top,u64 owner_root,int level)304 static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
305 					      u64 logical,
306 					      struct btrfs_key *top,
307 					      u64 owner_root, int level)
308 {
309 	int ret;
310 	struct reada_extent *re = NULL;
311 	struct reada_extent *re_exist = NULL;
312 	struct btrfs_io_context *bioc = NULL;
313 	struct btrfs_device *dev;
314 	struct btrfs_device *prev_dev;
315 	u64 length;
316 	int real_stripes;
317 	int nzones = 0;
318 	unsigned long index = logical >> fs_info->sectorsize_bits;
319 	int dev_replace_is_ongoing;
320 	int have_zone = 0;
321 
322 	spin_lock(&fs_info->reada_lock);
323 	re = radix_tree_lookup(&fs_info->reada_tree, index);
324 	if (re)
325 		re->refcnt++;
326 	spin_unlock(&fs_info->reada_lock);
327 
328 	if (re)
329 		return re;
330 
331 	re = kzalloc(sizeof(*re), GFP_KERNEL);
332 	if (!re)
333 		return NULL;
334 
335 	re->logical = logical;
336 	re->top = *top;
337 	INIT_LIST_HEAD(&re->extctl);
338 	spin_lock_init(&re->lock);
339 	re->refcnt = 1;
340 	re->owner_root = owner_root;
341 	re->level = level;
342 
343 	/*
344 	 * map block
345 	 */
346 	length = fs_info->nodesize;
347 	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
348 			      &length, &bioc, 0);
349 	if (ret || !bioc || length < fs_info->nodesize)
350 		goto error;
351 
352 	if (bioc->num_stripes > BTRFS_MAX_MIRRORS) {
353 		btrfs_err(fs_info,
354 			   "readahead: more than %d copies not supported",
355 			   BTRFS_MAX_MIRRORS);
356 		goto error;
357 	}
358 
359 	real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
360 	for (nzones = 0; nzones < real_stripes; ++nzones) {
361 		struct reada_zone *zone;
362 
363 		dev = bioc->stripes[nzones].dev;
364 
365 		/* cannot read ahead on missing device. */
366 		if (!dev->bdev)
367 			continue;
368 
369 		zone = reada_find_zone(dev, logical, bioc);
370 		if (!zone)
371 			continue;
372 
373 		re->zones[re->nzones++] = zone;
374 		spin_lock(&zone->lock);
375 		if (!zone->elems)
376 			kref_get(&zone->refcnt);
377 		++zone->elems;
378 		spin_unlock(&zone->lock);
379 		spin_lock(&fs_info->reada_lock);
380 		kref_put(&zone->refcnt, reada_zone_release);
381 		spin_unlock(&fs_info->reada_lock);
382 	}
383 	if (re->nzones == 0) {
384 		/* not a single zone found, error and out */
385 		goto error;
386 	}
387 
388 	/* Insert extent in reada tree + all per-device trees, all or nothing */
389 	down_read(&fs_info->dev_replace.rwsem);
390 	ret = radix_tree_preload(GFP_KERNEL);
391 	if (ret) {
392 		up_read(&fs_info->dev_replace.rwsem);
393 		goto error;
394 	}
395 
396 	spin_lock(&fs_info->reada_lock);
397 	ret = radix_tree_insert(&fs_info->reada_tree, index, re);
398 	if (ret == -EEXIST) {
399 		re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
400 		re_exist->refcnt++;
401 		spin_unlock(&fs_info->reada_lock);
402 		radix_tree_preload_end();
403 		up_read(&fs_info->dev_replace.rwsem);
404 		goto error;
405 	}
406 	if (ret) {
407 		spin_unlock(&fs_info->reada_lock);
408 		radix_tree_preload_end();
409 		up_read(&fs_info->dev_replace.rwsem);
410 		goto error;
411 	}
412 	radix_tree_preload_end();
413 	prev_dev = NULL;
414 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
415 			&fs_info->dev_replace);
416 	for (nzones = 0; nzones < re->nzones; ++nzones) {
417 		dev = re->zones[nzones]->device;
418 
419 		if (dev == prev_dev) {
420 			/*
421 			 * in case of DUP, just add the first zone. As both
422 			 * are on the same device, there's nothing to gain
423 			 * from adding both.
424 			 * Also, it wouldn't work, as the tree is per device
425 			 * and adding would fail with EEXIST
426 			 */
427 			continue;
428 		}
429 		if (!dev->bdev)
430 			continue;
431 
432 		if (test_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state))
433 			continue;
434 
435 		if (dev_replace_is_ongoing &&
436 		    dev == fs_info->dev_replace.tgtdev) {
437 			/*
438 			 * as this device is selected for reading only as
439 			 * a last resort, skip it for read ahead.
440 			 */
441 			continue;
442 		}
443 		prev_dev = dev;
444 		ret = radix_tree_insert(&dev->reada_extents, index, re);
445 		if (ret) {
446 			while (--nzones >= 0) {
447 				dev = re->zones[nzones]->device;
448 				BUG_ON(dev == NULL);
449 				/* ignore whether the entry was inserted */
450 				radix_tree_delete(&dev->reada_extents, index);
451 			}
452 			radix_tree_delete(&fs_info->reada_tree, index);
453 			spin_unlock(&fs_info->reada_lock);
454 			up_read(&fs_info->dev_replace.rwsem);
455 			goto error;
456 		}
457 		have_zone = 1;
458 	}
459 	if (!have_zone)
460 		radix_tree_delete(&fs_info->reada_tree, index);
461 	spin_unlock(&fs_info->reada_lock);
462 	up_read(&fs_info->dev_replace.rwsem);
463 
464 	if (!have_zone)
465 		goto error;
466 
467 	btrfs_put_bioc(bioc);
468 	return re;
469 
470 error:
471 	for (nzones = 0; nzones < re->nzones; ++nzones) {
472 		struct reada_zone *zone;
473 
474 		zone = re->zones[nzones];
475 		kref_get(&zone->refcnt);
476 		spin_lock(&zone->lock);
477 		--zone->elems;
478 		if (zone->elems == 0) {
479 			/*
480 			 * no fs_info->reada_lock needed, as this can't be
481 			 * the last ref
482 			 */
483 			kref_put(&zone->refcnt, reada_zone_release);
484 		}
485 		spin_unlock(&zone->lock);
486 
487 		spin_lock(&fs_info->reada_lock);
488 		kref_put(&zone->refcnt, reada_zone_release);
489 		spin_unlock(&fs_info->reada_lock);
490 	}
491 	btrfs_put_bioc(bioc);
492 	kfree(re);
493 	return re_exist;
494 }
495 
reada_extent_put(struct btrfs_fs_info * fs_info,struct reada_extent * re)496 static void reada_extent_put(struct btrfs_fs_info *fs_info,
497 			     struct reada_extent *re)
498 {
499 	int i;
500 	unsigned long index = re->logical >> fs_info->sectorsize_bits;
501 
502 	spin_lock(&fs_info->reada_lock);
503 	if (--re->refcnt) {
504 		spin_unlock(&fs_info->reada_lock);
505 		return;
506 	}
507 
508 	radix_tree_delete(&fs_info->reada_tree, index);
509 	for (i = 0; i < re->nzones; ++i) {
510 		struct reada_zone *zone = re->zones[i];
511 
512 		radix_tree_delete(&zone->device->reada_extents, index);
513 	}
514 
515 	spin_unlock(&fs_info->reada_lock);
516 
517 	for (i = 0; i < re->nzones; ++i) {
518 		struct reada_zone *zone = re->zones[i];
519 
520 		kref_get(&zone->refcnt);
521 		spin_lock(&zone->lock);
522 		--zone->elems;
523 		if (zone->elems == 0) {
524 			/* no fs_info->reada_lock needed, as this can't be
525 			 * the last ref */
526 			kref_put(&zone->refcnt, reada_zone_release);
527 		}
528 		spin_unlock(&zone->lock);
529 
530 		spin_lock(&fs_info->reada_lock);
531 		kref_put(&zone->refcnt, reada_zone_release);
532 		spin_unlock(&fs_info->reada_lock);
533 	}
534 
535 	kfree(re);
536 }
537 
reada_zone_release(struct kref * kref)538 static void reada_zone_release(struct kref *kref)
539 {
540 	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
541 	struct btrfs_fs_info *fs_info = zone->device->fs_info;
542 
543 	lockdep_assert_held(&fs_info->reada_lock);
544 
545 	radix_tree_delete(&zone->device->reada_zones,
546 			  zone->end >> fs_info->sectorsize_bits);
547 
548 	kfree(zone);
549 }
550 
reada_control_release(struct kref * kref)551 static void reada_control_release(struct kref *kref)
552 {
553 	struct reada_control *rc = container_of(kref, struct reada_control,
554 						refcnt);
555 
556 	kfree(rc);
557 }
558 
reada_add_block(struct reada_control * rc,u64 logical,struct btrfs_key * top,u64 owner_root,u64 generation,int level)559 static int reada_add_block(struct reada_control *rc, u64 logical,
560 			   struct btrfs_key *top, u64 owner_root,
561 			   u64 generation, int level)
562 {
563 	struct btrfs_fs_info *fs_info = rc->fs_info;
564 	struct reada_extent *re;
565 	struct reada_extctl *rec;
566 
567 	/* takes one ref */
568 	re = reada_find_extent(fs_info, logical, top, owner_root, level);
569 	if (!re)
570 		return -1;
571 
572 	rec = kzalloc(sizeof(*rec), GFP_KERNEL);
573 	if (!rec) {
574 		reada_extent_put(fs_info, re);
575 		return -ENOMEM;
576 	}
577 
578 	rec->rc = rc;
579 	rec->generation = generation;
580 	atomic_inc(&rc->elems);
581 
582 	spin_lock(&re->lock);
583 	list_add_tail(&rec->list, &re->extctl);
584 	spin_unlock(&re->lock);
585 
586 	/* leave the ref on the extent */
587 
588 	return 0;
589 }
590 
591 /*
592  * called with fs_info->reada_lock held
593  */
reada_peer_zones_set_lock(struct reada_zone * zone,int lock)594 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
595 {
596 	int i;
597 	unsigned long index = zone->end >> zone->device->fs_info->sectorsize_bits;
598 
599 	for (i = 0; i < zone->ndevs; ++i) {
600 		struct reada_zone *peer;
601 		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
602 		if (peer && peer->device != zone->device)
603 			peer->locked = lock;
604 	}
605 }
606 
607 /*
608  * called with fs_info->reada_lock held
609  */
reada_pick_zone(struct btrfs_device * dev)610 static int reada_pick_zone(struct btrfs_device *dev)
611 {
612 	struct reada_zone *top_zone = NULL;
613 	struct reada_zone *top_locked_zone = NULL;
614 	u64 top_elems = 0;
615 	u64 top_locked_elems = 0;
616 	unsigned long index = 0;
617 	int ret;
618 
619 	if (dev->reada_curr_zone) {
620 		reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
621 		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
622 		dev->reada_curr_zone = NULL;
623 	}
624 	/* pick the zone with the most elements */
625 	while (1) {
626 		struct reada_zone *zone;
627 
628 		ret = radix_tree_gang_lookup(&dev->reada_zones,
629 					     (void **)&zone, index, 1);
630 		if (ret == 0)
631 			break;
632 		index = (zone->end >> dev->fs_info->sectorsize_bits) + 1;
633 		if (zone->locked) {
634 			if (zone->elems > top_locked_elems) {
635 				top_locked_elems = zone->elems;
636 				top_locked_zone = zone;
637 			}
638 		} else {
639 			if (zone->elems > top_elems) {
640 				top_elems = zone->elems;
641 				top_zone = zone;
642 			}
643 		}
644 	}
645 	if (top_zone)
646 		dev->reada_curr_zone = top_zone;
647 	else if (top_locked_zone)
648 		dev->reada_curr_zone = top_locked_zone;
649 	else
650 		return 0;
651 
652 	dev->reada_next = dev->reada_curr_zone->start;
653 	kref_get(&dev->reada_curr_zone->refcnt);
654 	reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
655 
656 	return 1;
657 }
658 
reada_tree_block_flagged(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level,int mirror_num,struct extent_buffer ** eb)659 static int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
660 				    u64 owner_root, int level, int mirror_num,
661 				    struct extent_buffer **eb)
662 {
663 	struct extent_buffer *buf = NULL;
664 	int ret;
665 
666 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
667 	if (IS_ERR(buf))
668 		return 0;
669 
670 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
671 
672 	ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
673 	if (ret) {
674 		free_extent_buffer_stale(buf);
675 		return ret;
676 	}
677 
678 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
679 		free_extent_buffer_stale(buf);
680 		return -EIO;
681 	} else if (extent_buffer_uptodate(buf)) {
682 		*eb = buf;
683 	} else {
684 		free_extent_buffer(buf);
685 	}
686 	return 0;
687 }
688 
reada_start_machine_dev(struct btrfs_device * dev)689 static int reada_start_machine_dev(struct btrfs_device *dev)
690 {
691 	struct btrfs_fs_info *fs_info = dev->fs_info;
692 	struct reada_extent *re = NULL;
693 	int mirror_num = 0;
694 	struct extent_buffer *eb = NULL;
695 	u64 logical;
696 	int ret;
697 	int i;
698 
699 	spin_lock(&fs_info->reada_lock);
700 	if (dev->reada_curr_zone == NULL) {
701 		ret = reada_pick_zone(dev);
702 		if (!ret) {
703 			spin_unlock(&fs_info->reada_lock);
704 			return 0;
705 		}
706 	}
707 	/*
708 	 * FIXME currently we issue the reads one extent at a time. If we have
709 	 * a contiguous block of extents, we could also coagulate them or use
710 	 * plugging to speed things up
711 	 */
712 	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
713 				dev->reada_next >> fs_info->sectorsize_bits, 1);
714 	if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
715 		ret = reada_pick_zone(dev);
716 		if (!ret) {
717 			spin_unlock(&fs_info->reada_lock);
718 			return 0;
719 		}
720 		re = NULL;
721 		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
722 				dev->reada_next >> fs_info->sectorsize_bits, 1);
723 	}
724 	if (ret == 0) {
725 		spin_unlock(&fs_info->reada_lock);
726 		return 0;
727 	}
728 	dev->reada_next = re->logical + fs_info->nodesize;
729 	re->refcnt++;
730 
731 	spin_unlock(&fs_info->reada_lock);
732 
733 	spin_lock(&re->lock);
734 	if (re->scheduled || list_empty(&re->extctl)) {
735 		spin_unlock(&re->lock);
736 		reada_extent_put(fs_info, re);
737 		return 0;
738 	}
739 	re->scheduled = 1;
740 	spin_unlock(&re->lock);
741 
742 	/*
743 	 * find mirror num
744 	 */
745 	for (i = 0; i < re->nzones; ++i) {
746 		if (re->zones[i]->device == dev) {
747 			mirror_num = i + 1;
748 			break;
749 		}
750 	}
751 	logical = re->logical;
752 
753 	atomic_inc(&dev->reada_in_flight);
754 	ret = reada_tree_block_flagged(fs_info, logical, re->owner_root,
755 				       re->level, mirror_num, &eb);
756 	if (ret)
757 		__readahead_hook(fs_info, re, NULL, ret);
758 	else if (eb)
759 		__readahead_hook(fs_info, re, eb, ret);
760 
761 	if (eb)
762 		free_extent_buffer(eb);
763 
764 	atomic_dec(&dev->reada_in_flight);
765 	reada_extent_put(fs_info, re);
766 
767 	return 1;
768 
769 }
770 
reada_start_machine_worker(struct btrfs_work * work)771 static void reada_start_machine_worker(struct btrfs_work *work)
772 {
773 	struct reada_machine_work *rmw;
774 	int old_ioprio;
775 
776 	rmw = container_of(work, struct reada_machine_work, work);
777 
778 	old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
779 				       task_nice_ioprio(current));
780 	set_task_ioprio(current, BTRFS_IOPRIO_READA);
781 	__reada_start_machine(rmw->fs_info);
782 	set_task_ioprio(current, old_ioprio);
783 
784 	atomic_dec(&rmw->fs_info->reada_works_cnt);
785 
786 	kfree(rmw);
787 }
788 
789 /* Try to start up to 10k READA requests for a group of devices */
reada_start_for_fsdevs(struct btrfs_fs_devices * fs_devices)790 static int reada_start_for_fsdevs(struct btrfs_fs_devices *fs_devices)
791 {
792 	u64 enqueued;
793 	u64 total = 0;
794 	struct btrfs_device *device;
795 
796 	do {
797 		enqueued = 0;
798 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
799 			if (atomic_read(&device->reada_in_flight) <
800 			    MAX_IN_FLIGHT)
801 				enqueued += reada_start_machine_dev(device);
802 		}
803 		total += enqueued;
804 	} while (enqueued && total < 10000);
805 
806 	return total;
807 }
808 
__reada_start_machine(struct btrfs_fs_info * fs_info)809 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
810 {
811 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
812 	int i;
813 	u64 enqueued = 0;
814 
815 	mutex_lock(&fs_devices->device_list_mutex);
816 
817 	enqueued += reada_start_for_fsdevs(fs_devices);
818 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
819 		enqueued += reada_start_for_fsdevs(seed_devs);
820 
821 	mutex_unlock(&fs_devices->device_list_mutex);
822 	if (enqueued == 0)
823 		return;
824 
825 	/*
826 	 * If everything is already in the cache, this is effectively single
827 	 * threaded. To a) not hold the caller for too long and b) to utilize
828 	 * more cores, we broke the loop above after 10000 iterations and now
829 	 * enqueue to workers to finish it. This will distribute the load to
830 	 * the cores.
831 	 */
832 	for (i = 0; i < 2; ++i) {
833 		reada_start_machine(fs_info);
834 		if (atomic_read(&fs_info->reada_works_cnt) >
835 		    BTRFS_MAX_MIRRORS * 2)
836 			break;
837 	}
838 }
839 
reada_start_machine(struct btrfs_fs_info * fs_info)840 static void reada_start_machine(struct btrfs_fs_info *fs_info)
841 {
842 	struct reada_machine_work *rmw;
843 
844 	rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
845 	if (!rmw) {
846 		/* FIXME we cannot handle this properly right now */
847 		BUG();
848 	}
849 	btrfs_init_work(&rmw->work, reada_start_machine_worker, NULL, NULL);
850 	rmw->fs_info = fs_info;
851 
852 	btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
853 	atomic_inc(&fs_info->reada_works_cnt);
854 }
855 
856 #ifdef DEBUG
dump_devs(struct btrfs_fs_info * fs_info,int all)857 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
858 {
859 	struct btrfs_device *device;
860 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
861 	unsigned long index;
862 	int ret;
863 	int i;
864 	int j;
865 	int cnt;
866 
867 	spin_lock(&fs_info->reada_lock);
868 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
869 		btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
870 			atomic_read(&device->reada_in_flight));
871 		index = 0;
872 		while (1) {
873 			struct reada_zone *zone;
874 			ret = radix_tree_gang_lookup(&device->reada_zones,
875 						     (void **)&zone, index, 1);
876 			if (ret == 0)
877 				break;
878 			pr_debug("  zone %llu-%llu elems %llu locked %d devs",
879 				    zone->start, zone->end, zone->elems,
880 				    zone->locked);
881 			for (j = 0; j < zone->ndevs; ++j) {
882 				pr_cont(" %lld",
883 					zone->devs[j]->devid);
884 			}
885 			if (device->reada_curr_zone == zone)
886 				pr_cont(" curr off %llu",
887 					device->reada_next - zone->start);
888 			pr_cont("\n");
889 			index = (zone->end >> fs_info->sectorsize_bits) + 1;
890 		}
891 		cnt = 0;
892 		index = 0;
893 		while (all) {
894 			struct reada_extent *re = NULL;
895 
896 			ret = radix_tree_gang_lookup(&device->reada_extents,
897 						     (void **)&re, index, 1);
898 			if (ret == 0)
899 				break;
900 			pr_debug("  re: logical %llu size %u empty %d scheduled %d",
901 				re->logical, fs_info->nodesize,
902 				list_empty(&re->extctl), re->scheduled);
903 
904 			for (i = 0; i < re->nzones; ++i) {
905 				pr_cont(" zone %llu-%llu devs",
906 					re->zones[i]->start,
907 					re->zones[i]->end);
908 				for (j = 0; j < re->zones[i]->ndevs; ++j) {
909 					pr_cont(" %lld",
910 						re->zones[i]->devs[j]->devid);
911 				}
912 			}
913 			pr_cont("\n");
914 			index = (re->logical >> fs_info->sectorsize_bits) + 1;
915 			if (++cnt > 15)
916 				break;
917 		}
918 	}
919 
920 	index = 0;
921 	cnt = 0;
922 	while (all) {
923 		struct reada_extent *re = NULL;
924 
925 		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
926 					     index, 1);
927 		if (ret == 0)
928 			break;
929 		if (!re->scheduled) {
930 			index = (re->logical >> fs_info->sectorsize_bits) + 1;
931 			continue;
932 		}
933 		pr_debug("re: logical %llu size %u list empty %d scheduled %d",
934 			re->logical, fs_info->nodesize,
935 			list_empty(&re->extctl), re->scheduled);
936 		for (i = 0; i < re->nzones; ++i) {
937 			pr_cont(" zone %llu-%llu devs",
938 				re->zones[i]->start,
939 				re->zones[i]->end);
940 			for (j = 0; j < re->zones[i]->ndevs; ++j) {
941 				pr_cont(" %lld",
942 				       re->zones[i]->devs[j]->devid);
943 			}
944 		}
945 		pr_cont("\n");
946 		index = (re->logical >> fs_info->sectorsize_bits) + 1;
947 	}
948 	spin_unlock(&fs_info->reada_lock);
949 }
950 #endif
951 
952 /*
953  * interface
954  */
btrfs_reada_add(struct btrfs_root * root,struct btrfs_key * key_start,struct btrfs_key * key_end)955 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
956 			struct btrfs_key *key_start, struct btrfs_key *key_end)
957 {
958 	struct reada_control *rc;
959 	u64 start;
960 	u64 generation;
961 	int ret;
962 	int level;
963 	struct extent_buffer *node;
964 	static struct btrfs_key max_key = {
965 		.objectid = (u64)-1,
966 		.type = (u8)-1,
967 		.offset = (u64)-1
968 	};
969 
970 	rc = kzalloc(sizeof(*rc), GFP_KERNEL);
971 	if (!rc)
972 		return ERR_PTR(-ENOMEM);
973 
974 	rc->fs_info = root->fs_info;
975 	rc->key_start = *key_start;
976 	rc->key_end = *key_end;
977 	atomic_set(&rc->elems, 0);
978 	init_waitqueue_head(&rc->wait);
979 	kref_init(&rc->refcnt);
980 	kref_get(&rc->refcnt); /* one ref for having elements */
981 
982 	node = btrfs_root_node(root);
983 	start = node->start;
984 	generation = btrfs_header_generation(node);
985 	level = btrfs_header_level(node);
986 	free_extent_buffer(node);
987 
988 	ret = reada_add_block(rc, start, &max_key, root->root_key.objectid,
989 			      generation, level);
990 	if (ret) {
991 		kfree(rc);
992 		return ERR_PTR(ret);
993 	}
994 
995 	reada_start_machine(root->fs_info);
996 
997 	return rc;
998 }
999 
1000 #ifdef DEBUG
btrfs_reada_wait(void * handle)1001 int btrfs_reada_wait(void *handle)
1002 {
1003 	struct reada_control *rc = handle;
1004 	struct btrfs_fs_info *fs_info = rc->fs_info;
1005 
1006 	while (atomic_read(&rc->elems)) {
1007 		if (!atomic_read(&fs_info->reada_works_cnt))
1008 			reada_start_machine(fs_info);
1009 		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1010 				   5 * HZ);
1011 		dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
1012 	}
1013 
1014 	dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
1015 
1016 	kref_put(&rc->refcnt, reada_control_release);
1017 
1018 	return 0;
1019 }
1020 #else
btrfs_reada_wait(void * handle)1021 int btrfs_reada_wait(void *handle)
1022 {
1023 	struct reada_control *rc = handle;
1024 	struct btrfs_fs_info *fs_info = rc->fs_info;
1025 
1026 	while (atomic_read(&rc->elems)) {
1027 		if (!atomic_read(&fs_info->reada_works_cnt))
1028 			reada_start_machine(fs_info);
1029 		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1030 				   (HZ + 9) / 10);
1031 	}
1032 
1033 	kref_put(&rc->refcnt, reada_control_release);
1034 
1035 	return 0;
1036 }
1037 #endif
1038 
btrfs_reada_detach(void * handle)1039 void btrfs_reada_detach(void *handle)
1040 {
1041 	struct reada_control *rc = handle;
1042 
1043 	kref_put(&rc->refcnt, reada_control_release);
1044 }
1045 
1046 /*
1047  * Before removing a device (device replace or device remove ioctls), call this
1048  * function to wait for all existing readahead requests on the device and to
1049  * make sure no one queues more readahead requests for the device.
1050  *
1051  * Must be called without holding neither the device list mutex nor the device
1052  * replace semaphore, otherwise it will deadlock.
1053  */
btrfs_reada_remove_dev(struct btrfs_device * dev)1054 void btrfs_reada_remove_dev(struct btrfs_device *dev)
1055 {
1056 	struct btrfs_fs_info *fs_info = dev->fs_info;
1057 
1058 	/* Serialize with readahead extent creation at reada_find_extent(). */
1059 	spin_lock(&fs_info->reada_lock);
1060 	set_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state);
1061 	spin_unlock(&fs_info->reada_lock);
1062 
1063 	/*
1064 	 * There might be readahead requests added to the radix trees which
1065 	 * were not yet added to the readahead work queue. We need to start
1066 	 * them and wait for their completion, otherwise we can end up with
1067 	 * use-after-free problems when dropping the last reference on the
1068 	 * readahead extents and their zones, as they need to access the
1069 	 * device structure.
1070 	 */
1071 	reada_start_machine(fs_info);
1072 	btrfs_flush_workqueue(fs_info->readahead_workers);
1073 }
1074 
1075 /*
1076  * If when removing a device (device replace or device remove ioctls) an error
1077  * happens after calling btrfs_reada_remove_dev(), call this to undo what that
1078  * function did. This is safe to call even if btrfs_reada_remove_dev() was not
1079  * called before.
1080  */
btrfs_reada_undo_remove_dev(struct btrfs_device * dev)1081 void btrfs_reada_undo_remove_dev(struct btrfs_device *dev)
1082 {
1083 	spin_lock(&dev->fs_info->reada_lock);
1084 	clear_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state);
1085 	spin_unlock(&dev->fs_info->reada_lock);
1086 }
1087