1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) STRATO AG 2011. All rights reserved.
4 */
5
6 /*
7 * This module can be used to catch cases when the btrfs kernel
8 * code executes write requests to the disk that bring the file
9 * system in an inconsistent state. In such a state, a power-loss
10 * or kernel panic event would cause that the data on disk is
11 * lost or at least damaged.
12 *
13 * Code is added that examines all block write requests during
14 * runtime (including writes of the super block). Three rules
15 * are verified and an error is printed on violation of the
16 * rules:
17 * 1. It is not allowed to write a disk block which is
18 * currently referenced by the super block (either directly
19 * or indirectly).
20 * 2. When a super block is written, it is verified that all
21 * referenced (directly or indirectly) blocks fulfill the
22 * following requirements:
23 * 2a. All referenced blocks have either been present when
24 * the file system was mounted, (i.e., they have been
25 * referenced by the super block) or they have been
26 * written since then and the write completion callback
27 * was called and no write error was indicated and a
28 * FLUSH request to the device where these blocks are
29 * located was received and completed.
30 * 2b. All referenced blocks need to have a generation
31 * number which is equal to the parent's number.
32 *
33 * One issue that was found using this module was that the log
34 * tree on disk became temporarily corrupted because disk blocks
35 * that had been in use for the log tree had been freed and
36 * reused too early, while being referenced by the written super
37 * block.
38 *
39 * The search term in the kernel log that can be used to filter
40 * on the existence of detected integrity issues is
41 * "btrfs: attempt".
42 *
43 * The integrity check is enabled via mount options. These
44 * mount options are only supported if the integrity check
45 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
46 *
47 * Example #1, apply integrity checks to all metadata:
48 * mount /dev/sdb1 /mnt -o check_int
49 *
50 * Example #2, apply integrity checks to all metadata and
51 * to data extents:
52 * mount /dev/sdb1 /mnt -o check_int_data
53 *
54 * Example #3, apply integrity checks to all metadata and dump
55 * the tree that the super block references to kernel messages
56 * each time after a super block was written:
57 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
58 *
59 * If the integrity check tool is included and activated in
60 * the mount options, plenty of kernel memory is used, and
61 * plenty of additional CPU cycles are spent. Enabling this
62 * functionality is not intended for normal use. In most
63 * cases, unless you are a btrfs developer who needs to verify
64 * the integrity of (super)-block write requests, do not
65 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
66 * include and compile the integrity check tool.
67 *
68 * Expect millions of lines of information in the kernel log with an
69 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
70 * kernel config to at least 26 (which is 64MB). Usually the value is
71 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
72 * changed like this before LOG_BUF_SHIFT can be set to a high value:
73 * config LOG_BUF_SHIFT
74 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
75 * range 12 30
76 */
77
78 #include <linux/sched.h>
79 #include <linux/slab.h>
80 #include <linux/mutex.h>
81 #include <linux/genhd.h>
82 #include <linux/blkdev.h>
83 #include <linux/mm.h>
84 #include <linux/string.h>
85 #include <crypto/hash.h>
86 #include "ctree.h"
87 #include "disk-io.h"
88 #include "transaction.h"
89 #include "extent_io.h"
90 #include "volumes.h"
91 #include "print-tree.h"
92 #include "locking.h"
93 #include "check-integrity.h"
94 #include "rcu-string.h"
95 #include "compression.h"
96
97 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
98 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
99 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
100 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
101 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
102 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
103 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
104 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
105 * excluding " [...]" */
106 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
107
108 /*
109 * The definition of the bitmask fields for the print_mask.
110 * They are specified with the mount option check_integrity_print_mask.
111 */
112 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
113 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
114 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
115 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
116 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
117 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
118 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
119 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
120 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
121 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
122 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
123 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
124 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
125 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
126
127 struct btrfsic_dev_state;
128 struct btrfsic_state;
129
130 struct btrfsic_block {
131 u32 magic_num; /* only used for debug purposes */
132 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
133 unsigned int is_superblock:1; /* if it is one of the superblocks */
134 unsigned int is_iodone:1; /* if is done by lower subsystem */
135 unsigned int iodone_w_error:1; /* error was indicated to endio */
136 unsigned int never_written:1; /* block was added because it was
137 * referenced, not because it was
138 * written */
139 unsigned int mirror_num; /* large enough to hold
140 * BTRFS_SUPER_MIRROR_MAX */
141 struct btrfsic_dev_state *dev_state;
142 u64 dev_bytenr; /* key, physical byte num on disk */
143 u64 logical_bytenr; /* logical byte num on disk */
144 u64 generation;
145 struct btrfs_disk_key disk_key; /* extra info to print in case of
146 * issues, will not always be correct */
147 struct list_head collision_resolving_node; /* list node */
148 struct list_head all_blocks_node; /* list node */
149
150 /* the following two lists contain block_link items */
151 struct list_head ref_to_list; /* list */
152 struct list_head ref_from_list; /* list */
153 struct btrfsic_block *next_in_same_bio;
154 void *orig_bio_private;
155 bio_end_io_t *orig_bio_end_io;
156 int submit_bio_bh_rw;
157 u64 flush_gen; /* only valid if !never_written */
158 };
159
160 /*
161 * Elements of this type are allocated dynamically and required because
162 * each block object can refer to and can be ref from multiple blocks.
163 * The key to lookup them in the hashtable is the dev_bytenr of
164 * the block ref to plus the one from the block referred from.
165 * The fact that they are searchable via a hashtable and that a
166 * ref_cnt is maintained is not required for the btrfs integrity
167 * check algorithm itself, it is only used to make the output more
168 * beautiful in case that an error is detected (an error is defined
169 * as a write operation to a block while that block is still referenced).
170 */
171 struct btrfsic_block_link {
172 u32 magic_num; /* only used for debug purposes */
173 u32 ref_cnt;
174 struct list_head node_ref_to; /* list node */
175 struct list_head node_ref_from; /* list node */
176 struct list_head collision_resolving_node; /* list node */
177 struct btrfsic_block *block_ref_to;
178 struct btrfsic_block *block_ref_from;
179 u64 parent_generation;
180 };
181
182 struct btrfsic_dev_state {
183 u32 magic_num; /* only used for debug purposes */
184 struct block_device *bdev;
185 struct btrfsic_state *state;
186 struct list_head collision_resolving_node; /* list node */
187 struct btrfsic_block dummy_block_for_bio_bh_flush;
188 u64 last_flush_gen;
189 char name[BDEVNAME_SIZE];
190 };
191
192 struct btrfsic_block_hashtable {
193 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
194 };
195
196 struct btrfsic_block_link_hashtable {
197 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
198 };
199
200 struct btrfsic_dev_state_hashtable {
201 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
202 };
203
204 struct btrfsic_block_data_ctx {
205 u64 start; /* virtual bytenr */
206 u64 dev_bytenr; /* physical bytenr on device */
207 u32 len;
208 struct btrfsic_dev_state *dev;
209 char **datav;
210 struct page **pagev;
211 void *mem_to_free;
212 };
213
214 /* This structure is used to implement recursion without occupying
215 * any stack space, refer to btrfsic_process_metablock() */
216 struct btrfsic_stack_frame {
217 u32 magic;
218 u32 nr;
219 int error;
220 int i;
221 int limit_nesting;
222 int num_copies;
223 int mirror_num;
224 struct btrfsic_block *block;
225 struct btrfsic_block_data_ctx *block_ctx;
226 struct btrfsic_block *next_block;
227 struct btrfsic_block_data_ctx next_block_ctx;
228 struct btrfs_header *hdr;
229 struct btrfsic_stack_frame *prev;
230 };
231
232 /* Some state per mounted filesystem */
233 struct btrfsic_state {
234 u32 print_mask;
235 int include_extent_data;
236 struct list_head all_blocks_list;
237 struct btrfsic_block_hashtable block_hashtable;
238 struct btrfsic_block_link_hashtable block_link_hashtable;
239 struct btrfs_fs_info *fs_info;
240 u64 max_superblock_generation;
241 struct btrfsic_block *latest_superblock;
242 u32 metablock_size;
243 u32 datablock_size;
244 };
245
246 static int btrfsic_process_metablock(struct btrfsic_state *state,
247 struct btrfsic_block *block,
248 struct btrfsic_block_data_ctx *block_ctx,
249 int limit_nesting, int force_iodone_flag);
250 static void btrfsic_read_from_block_data(
251 struct btrfsic_block_data_ctx *block_ctx,
252 void *dst, u32 offset, size_t len);
253 static int btrfsic_create_link_to_next_block(
254 struct btrfsic_state *state,
255 struct btrfsic_block *block,
256 struct btrfsic_block_data_ctx
257 *block_ctx, u64 next_bytenr,
258 int limit_nesting,
259 struct btrfsic_block_data_ctx *next_block_ctx,
260 struct btrfsic_block **next_blockp,
261 int force_iodone_flag,
262 int *num_copiesp, int *mirror_nump,
263 struct btrfs_disk_key *disk_key,
264 u64 parent_generation);
265 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
266 struct btrfsic_block *block,
267 struct btrfsic_block_data_ctx *block_ctx,
268 u32 item_offset, int force_iodone_flag);
269 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
270 struct btrfsic_block_data_ctx *block_ctx_out,
271 int mirror_num);
272 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
273 static int btrfsic_read_block(struct btrfsic_state *state,
274 struct btrfsic_block_data_ctx *block_ctx);
275 static int btrfsic_process_written_superblock(
276 struct btrfsic_state *state,
277 struct btrfsic_block *const block,
278 struct btrfs_super_block *const super_hdr);
279 static void btrfsic_bio_end_io(struct bio *bp);
280 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
281 const struct btrfsic_block *block,
282 int recursion_level);
283 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
284 struct btrfsic_block *const block,
285 int recursion_level);
286 static void btrfsic_print_add_link(const struct btrfsic_state *state,
287 const struct btrfsic_block_link *l);
288 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
289 const struct btrfsic_block_link *l);
290 static char btrfsic_get_block_type(const struct btrfsic_state *state,
291 const struct btrfsic_block *block);
292 static void btrfsic_dump_tree(const struct btrfsic_state *state);
293 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
294 const struct btrfsic_block *block,
295 int indent_level);
296 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
297 struct btrfsic_state *state,
298 struct btrfsic_block_data_ctx *next_block_ctx,
299 struct btrfsic_block *next_block,
300 struct btrfsic_block *from_block,
301 u64 parent_generation);
302 static struct btrfsic_block *btrfsic_block_lookup_or_add(
303 struct btrfsic_state *state,
304 struct btrfsic_block_data_ctx *block_ctx,
305 const char *additional_string,
306 int is_metadata,
307 int is_iodone,
308 int never_written,
309 int mirror_num,
310 int *was_created);
311 static int btrfsic_process_superblock_dev_mirror(
312 struct btrfsic_state *state,
313 struct btrfsic_dev_state *dev_state,
314 struct btrfs_device *device,
315 int superblock_mirror_num,
316 struct btrfsic_dev_state **selected_dev_state,
317 struct btrfs_super_block *selected_super);
318 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev);
319 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
320 u64 bytenr,
321 struct btrfsic_dev_state *dev_state,
322 u64 dev_bytenr);
323
324 static struct mutex btrfsic_mutex;
325 static int btrfsic_is_initialized;
326 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
327
328
btrfsic_block_init(struct btrfsic_block * b)329 static void btrfsic_block_init(struct btrfsic_block *b)
330 {
331 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
332 b->dev_state = NULL;
333 b->dev_bytenr = 0;
334 b->logical_bytenr = 0;
335 b->generation = BTRFSIC_GENERATION_UNKNOWN;
336 b->disk_key.objectid = 0;
337 b->disk_key.type = 0;
338 b->disk_key.offset = 0;
339 b->is_metadata = 0;
340 b->is_superblock = 0;
341 b->is_iodone = 0;
342 b->iodone_w_error = 0;
343 b->never_written = 0;
344 b->mirror_num = 0;
345 b->next_in_same_bio = NULL;
346 b->orig_bio_private = NULL;
347 b->orig_bio_end_io = NULL;
348 INIT_LIST_HEAD(&b->collision_resolving_node);
349 INIT_LIST_HEAD(&b->all_blocks_node);
350 INIT_LIST_HEAD(&b->ref_to_list);
351 INIT_LIST_HEAD(&b->ref_from_list);
352 b->submit_bio_bh_rw = 0;
353 b->flush_gen = 0;
354 }
355
btrfsic_block_alloc(void)356 static struct btrfsic_block *btrfsic_block_alloc(void)
357 {
358 struct btrfsic_block *b;
359
360 b = kzalloc(sizeof(*b), GFP_NOFS);
361 if (NULL != b)
362 btrfsic_block_init(b);
363
364 return b;
365 }
366
btrfsic_block_free(struct btrfsic_block * b)367 static void btrfsic_block_free(struct btrfsic_block *b)
368 {
369 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
370 kfree(b);
371 }
372
btrfsic_block_link_init(struct btrfsic_block_link * l)373 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
374 {
375 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
376 l->ref_cnt = 1;
377 INIT_LIST_HEAD(&l->node_ref_to);
378 INIT_LIST_HEAD(&l->node_ref_from);
379 INIT_LIST_HEAD(&l->collision_resolving_node);
380 l->block_ref_to = NULL;
381 l->block_ref_from = NULL;
382 }
383
btrfsic_block_link_alloc(void)384 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
385 {
386 struct btrfsic_block_link *l;
387
388 l = kzalloc(sizeof(*l), GFP_NOFS);
389 if (NULL != l)
390 btrfsic_block_link_init(l);
391
392 return l;
393 }
394
btrfsic_block_link_free(struct btrfsic_block_link * l)395 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
396 {
397 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
398 kfree(l);
399 }
400
btrfsic_dev_state_init(struct btrfsic_dev_state * ds)401 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
402 {
403 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
404 ds->bdev = NULL;
405 ds->state = NULL;
406 ds->name[0] = '\0';
407 INIT_LIST_HEAD(&ds->collision_resolving_node);
408 ds->last_flush_gen = 0;
409 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
410 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
411 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
412 }
413
btrfsic_dev_state_alloc(void)414 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
415 {
416 struct btrfsic_dev_state *ds;
417
418 ds = kzalloc(sizeof(*ds), GFP_NOFS);
419 if (NULL != ds)
420 btrfsic_dev_state_init(ds);
421
422 return ds;
423 }
424
btrfsic_dev_state_free(struct btrfsic_dev_state * ds)425 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
426 {
427 BUG_ON(!(NULL == ds ||
428 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
429 kfree(ds);
430 }
431
btrfsic_block_hashtable_init(struct btrfsic_block_hashtable * h)432 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
433 {
434 int i;
435
436 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
437 INIT_LIST_HEAD(h->table + i);
438 }
439
btrfsic_block_hashtable_add(struct btrfsic_block * b,struct btrfsic_block_hashtable * h)440 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
441 struct btrfsic_block_hashtable *h)
442 {
443 const unsigned int hashval =
444 (((unsigned int)(b->dev_bytenr >> 16)) ^
445 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
446 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
447
448 list_add(&b->collision_resolving_node, h->table + hashval);
449 }
450
btrfsic_block_hashtable_remove(struct btrfsic_block * b)451 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
452 {
453 list_del(&b->collision_resolving_node);
454 }
455
btrfsic_block_hashtable_lookup(struct block_device * bdev,u64 dev_bytenr,struct btrfsic_block_hashtable * h)456 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
457 struct block_device *bdev,
458 u64 dev_bytenr,
459 struct btrfsic_block_hashtable *h)
460 {
461 const unsigned int hashval =
462 (((unsigned int)(dev_bytenr >> 16)) ^
463 ((unsigned int)((uintptr_t)bdev))) &
464 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
465 struct btrfsic_block *b;
466
467 list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
468 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
469 return b;
470 }
471
472 return NULL;
473 }
474
btrfsic_block_link_hashtable_init(struct btrfsic_block_link_hashtable * h)475 static void btrfsic_block_link_hashtable_init(
476 struct btrfsic_block_link_hashtable *h)
477 {
478 int i;
479
480 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
481 INIT_LIST_HEAD(h->table + i);
482 }
483
btrfsic_block_link_hashtable_add(struct btrfsic_block_link * l,struct btrfsic_block_link_hashtable * h)484 static void btrfsic_block_link_hashtable_add(
485 struct btrfsic_block_link *l,
486 struct btrfsic_block_link_hashtable *h)
487 {
488 const unsigned int hashval =
489 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
490 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
491 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
492 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
493 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
494
495 BUG_ON(NULL == l->block_ref_to);
496 BUG_ON(NULL == l->block_ref_from);
497 list_add(&l->collision_resolving_node, h->table + hashval);
498 }
499
btrfsic_block_link_hashtable_remove(struct btrfsic_block_link * l)500 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
501 {
502 list_del(&l->collision_resolving_node);
503 }
504
btrfsic_block_link_hashtable_lookup(struct block_device * bdev_ref_to,u64 dev_bytenr_ref_to,struct block_device * bdev_ref_from,u64 dev_bytenr_ref_from,struct btrfsic_block_link_hashtable * h)505 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
506 struct block_device *bdev_ref_to,
507 u64 dev_bytenr_ref_to,
508 struct block_device *bdev_ref_from,
509 u64 dev_bytenr_ref_from,
510 struct btrfsic_block_link_hashtable *h)
511 {
512 const unsigned int hashval =
513 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
514 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
515 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
516 ((unsigned int)((uintptr_t)bdev_ref_from))) &
517 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
518 struct btrfsic_block_link *l;
519
520 list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
521 BUG_ON(NULL == l->block_ref_to);
522 BUG_ON(NULL == l->block_ref_from);
523 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
524 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
525 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
526 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
527 return l;
528 }
529
530 return NULL;
531 }
532
btrfsic_dev_state_hashtable_init(struct btrfsic_dev_state_hashtable * h)533 static void btrfsic_dev_state_hashtable_init(
534 struct btrfsic_dev_state_hashtable *h)
535 {
536 int i;
537
538 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
539 INIT_LIST_HEAD(h->table + i);
540 }
541
btrfsic_dev_state_hashtable_add(struct btrfsic_dev_state * ds,struct btrfsic_dev_state_hashtable * h)542 static void btrfsic_dev_state_hashtable_add(
543 struct btrfsic_dev_state *ds,
544 struct btrfsic_dev_state_hashtable *h)
545 {
546 const unsigned int hashval =
547 (((unsigned int)((uintptr_t)ds->bdev->bd_dev)) &
548 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
549
550 list_add(&ds->collision_resolving_node, h->table + hashval);
551 }
552
btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state * ds)553 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
554 {
555 list_del(&ds->collision_resolving_node);
556 }
557
btrfsic_dev_state_hashtable_lookup(dev_t dev,struct btrfsic_dev_state_hashtable * h)558 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
559 struct btrfsic_dev_state_hashtable *h)
560 {
561 const unsigned int hashval =
562 dev & (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1);
563 struct btrfsic_dev_state *ds;
564
565 list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
566 if (ds->bdev->bd_dev == dev)
567 return ds;
568 }
569
570 return NULL;
571 }
572
btrfsic_process_superblock(struct btrfsic_state * state,struct btrfs_fs_devices * fs_devices)573 static int btrfsic_process_superblock(struct btrfsic_state *state,
574 struct btrfs_fs_devices *fs_devices)
575 {
576 struct btrfs_super_block *selected_super;
577 struct list_head *dev_head = &fs_devices->devices;
578 struct btrfs_device *device;
579 struct btrfsic_dev_state *selected_dev_state = NULL;
580 int ret = 0;
581 int pass;
582
583 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
584 if (!selected_super)
585 return -ENOMEM;
586
587 list_for_each_entry(device, dev_head, dev_list) {
588 int i;
589 struct btrfsic_dev_state *dev_state;
590
591 if (!device->bdev || !device->name)
592 continue;
593
594 dev_state = btrfsic_dev_state_lookup(device->bdev->bd_dev);
595 BUG_ON(NULL == dev_state);
596 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
597 ret = btrfsic_process_superblock_dev_mirror(
598 state, dev_state, device, i,
599 &selected_dev_state, selected_super);
600 if (0 != ret && 0 == i) {
601 kfree(selected_super);
602 return ret;
603 }
604 }
605 }
606
607 if (NULL == state->latest_superblock) {
608 pr_info("btrfsic: no superblock found!\n");
609 kfree(selected_super);
610 return -1;
611 }
612
613 for (pass = 0; pass < 3; pass++) {
614 int num_copies;
615 int mirror_num;
616 u64 next_bytenr;
617
618 switch (pass) {
619 case 0:
620 next_bytenr = btrfs_super_root(selected_super);
621 if (state->print_mask &
622 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
623 pr_info("root@%llu\n", next_bytenr);
624 break;
625 case 1:
626 next_bytenr = btrfs_super_chunk_root(selected_super);
627 if (state->print_mask &
628 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
629 pr_info("chunk@%llu\n", next_bytenr);
630 break;
631 case 2:
632 next_bytenr = btrfs_super_log_root(selected_super);
633 if (0 == next_bytenr)
634 continue;
635 if (state->print_mask &
636 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
637 pr_info("log@%llu\n", next_bytenr);
638 break;
639 }
640
641 num_copies = btrfs_num_copies(state->fs_info, next_bytenr,
642 state->metablock_size);
643 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
644 pr_info("num_copies(log_bytenr=%llu) = %d\n",
645 next_bytenr, num_copies);
646
647 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
648 struct btrfsic_block *next_block;
649 struct btrfsic_block_data_ctx tmp_next_block_ctx;
650 struct btrfsic_block_link *l;
651
652 ret = btrfsic_map_block(state, next_bytenr,
653 state->metablock_size,
654 &tmp_next_block_ctx,
655 mirror_num);
656 if (ret) {
657 pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
658 next_bytenr, mirror_num);
659 kfree(selected_super);
660 return -1;
661 }
662
663 next_block = btrfsic_block_hashtable_lookup(
664 tmp_next_block_ctx.dev->bdev,
665 tmp_next_block_ctx.dev_bytenr,
666 &state->block_hashtable);
667 BUG_ON(NULL == next_block);
668
669 l = btrfsic_block_link_hashtable_lookup(
670 tmp_next_block_ctx.dev->bdev,
671 tmp_next_block_ctx.dev_bytenr,
672 state->latest_superblock->dev_state->
673 bdev,
674 state->latest_superblock->dev_bytenr,
675 &state->block_link_hashtable);
676 BUG_ON(NULL == l);
677
678 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
679 if (ret < (int)PAGE_SIZE) {
680 pr_info("btrfsic: read @logical %llu failed!\n",
681 tmp_next_block_ctx.start);
682 btrfsic_release_block_ctx(&tmp_next_block_ctx);
683 kfree(selected_super);
684 return -1;
685 }
686
687 ret = btrfsic_process_metablock(state,
688 next_block,
689 &tmp_next_block_ctx,
690 BTRFS_MAX_LEVEL + 3, 1);
691 btrfsic_release_block_ctx(&tmp_next_block_ctx);
692 }
693 }
694
695 kfree(selected_super);
696 return ret;
697 }
698
btrfsic_process_superblock_dev_mirror(struct btrfsic_state * state,struct btrfsic_dev_state * dev_state,struct btrfs_device * device,int superblock_mirror_num,struct btrfsic_dev_state ** selected_dev_state,struct btrfs_super_block * selected_super)699 static int btrfsic_process_superblock_dev_mirror(
700 struct btrfsic_state *state,
701 struct btrfsic_dev_state *dev_state,
702 struct btrfs_device *device,
703 int superblock_mirror_num,
704 struct btrfsic_dev_state **selected_dev_state,
705 struct btrfs_super_block *selected_super)
706 {
707 struct btrfs_fs_info *fs_info = state->fs_info;
708 struct btrfs_super_block *super_tmp;
709 u64 dev_bytenr;
710 struct btrfsic_block *superblock_tmp;
711 int pass;
712 struct block_device *const superblock_bdev = device->bdev;
713 struct page *page;
714 struct address_space *mapping = superblock_bdev->bd_inode->i_mapping;
715 int ret = 0;
716
717 /* super block bytenr is always the unmapped device bytenr */
718 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
719 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
720 return -1;
721
722 page = read_cache_page_gfp(mapping, dev_bytenr >> PAGE_SHIFT, GFP_NOFS);
723 if (IS_ERR(page))
724 return -1;
725
726 super_tmp = page_address(page);
727
728 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
729 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
730 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
731 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
732 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
733 ret = 0;
734 goto out;
735 }
736
737 superblock_tmp =
738 btrfsic_block_hashtable_lookup(superblock_bdev,
739 dev_bytenr,
740 &state->block_hashtable);
741 if (NULL == superblock_tmp) {
742 superblock_tmp = btrfsic_block_alloc();
743 if (NULL == superblock_tmp) {
744 ret = -1;
745 goto out;
746 }
747 /* for superblock, only the dev_bytenr makes sense */
748 superblock_tmp->dev_bytenr = dev_bytenr;
749 superblock_tmp->dev_state = dev_state;
750 superblock_tmp->logical_bytenr = dev_bytenr;
751 superblock_tmp->generation = btrfs_super_generation(super_tmp);
752 superblock_tmp->is_metadata = 1;
753 superblock_tmp->is_superblock = 1;
754 superblock_tmp->is_iodone = 1;
755 superblock_tmp->never_written = 0;
756 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
757 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
758 btrfs_info_in_rcu(fs_info,
759 "new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
760 superblock_bdev,
761 rcu_str_deref(device->name), dev_bytenr,
762 dev_state->name, dev_bytenr,
763 superblock_mirror_num);
764 list_add(&superblock_tmp->all_blocks_node,
765 &state->all_blocks_list);
766 btrfsic_block_hashtable_add(superblock_tmp,
767 &state->block_hashtable);
768 }
769
770 /* select the one with the highest generation field */
771 if (btrfs_super_generation(super_tmp) >
772 state->max_superblock_generation ||
773 0 == state->max_superblock_generation) {
774 memcpy(selected_super, super_tmp, sizeof(*selected_super));
775 *selected_dev_state = dev_state;
776 state->max_superblock_generation =
777 btrfs_super_generation(super_tmp);
778 state->latest_superblock = superblock_tmp;
779 }
780
781 for (pass = 0; pass < 3; pass++) {
782 u64 next_bytenr;
783 int num_copies;
784 int mirror_num;
785 const char *additional_string = NULL;
786 struct btrfs_disk_key tmp_disk_key;
787
788 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
789 tmp_disk_key.offset = 0;
790 switch (pass) {
791 case 0:
792 btrfs_set_disk_key_objectid(&tmp_disk_key,
793 BTRFS_ROOT_TREE_OBJECTID);
794 additional_string = "initial root ";
795 next_bytenr = btrfs_super_root(super_tmp);
796 break;
797 case 1:
798 btrfs_set_disk_key_objectid(&tmp_disk_key,
799 BTRFS_CHUNK_TREE_OBJECTID);
800 additional_string = "initial chunk ";
801 next_bytenr = btrfs_super_chunk_root(super_tmp);
802 break;
803 case 2:
804 btrfs_set_disk_key_objectid(&tmp_disk_key,
805 BTRFS_TREE_LOG_OBJECTID);
806 additional_string = "initial log ";
807 next_bytenr = btrfs_super_log_root(super_tmp);
808 if (0 == next_bytenr)
809 continue;
810 break;
811 }
812
813 num_copies = btrfs_num_copies(fs_info, next_bytenr,
814 state->metablock_size);
815 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
816 pr_info("num_copies(log_bytenr=%llu) = %d\n",
817 next_bytenr, num_copies);
818 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
819 struct btrfsic_block *next_block;
820 struct btrfsic_block_data_ctx tmp_next_block_ctx;
821 struct btrfsic_block_link *l;
822
823 if (btrfsic_map_block(state, next_bytenr,
824 state->metablock_size,
825 &tmp_next_block_ctx,
826 mirror_num)) {
827 pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
828 next_bytenr, mirror_num);
829 ret = -1;
830 goto out;
831 }
832
833 next_block = btrfsic_block_lookup_or_add(
834 state, &tmp_next_block_ctx,
835 additional_string, 1, 1, 0,
836 mirror_num, NULL);
837 if (NULL == next_block) {
838 btrfsic_release_block_ctx(&tmp_next_block_ctx);
839 ret = -1;
840 goto out;
841 }
842
843 next_block->disk_key = tmp_disk_key;
844 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
845 l = btrfsic_block_link_lookup_or_add(
846 state, &tmp_next_block_ctx,
847 next_block, superblock_tmp,
848 BTRFSIC_GENERATION_UNKNOWN);
849 btrfsic_release_block_ctx(&tmp_next_block_ctx);
850 if (NULL == l) {
851 ret = -1;
852 goto out;
853 }
854 }
855 }
856 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
857 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
858
859 out:
860 put_page(page);
861 return ret;
862 }
863
btrfsic_stack_frame_alloc(void)864 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
865 {
866 struct btrfsic_stack_frame *sf;
867
868 sf = kzalloc(sizeof(*sf), GFP_NOFS);
869 if (sf)
870 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
871 return sf;
872 }
873
btrfsic_stack_frame_free(struct btrfsic_stack_frame * sf)874 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
875 {
876 BUG_ON(!(NULL == sf ||
877 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
878 kfree(sf);
879 }
880
btrfsic_process_metablock(struct btrfsic_state * state,struct btrfsic_block * const first_block,struct btrfsic_block_data_ctx * const first_block_ctx,int first_limit_nesting,int force_iodone_flag)881 static noinline_for_stack int btrfsic_process_metablock(
882 struct btrfsic_state *state,
883 struct btrfsic_block *const first_block,
884 struct btrfsic_block_data_ctx *const first_block_ctx,
885 int first_limit_nesting, int force_iodone_flag)
886 {
887 struct btrfsic_stack_frame initial_stack_frame = { 0 };
888 struct btrfsic_stack_frame *sf;
889 struct btrfsic_stack_frame *next_stack;
890 struct btrfs_header *const first_hdr =
891 (struct btrfs_header *)first_block_ctx->datav[0];
892
893 BUG_ON(!first_hdr);
894 sf = &initial_stack_frame;
895 sf->error = 0;
896 sf->i = -1;
897 sf->limit_nesting = first_limit_nesting;
898 sf->block = first_block;
899 sf->block_ctx = first_block_ctx;
900 sf->next_block = NULL;
901 sf->hdr = first_hdr;
902 sf->prev = NULL;
903
904 continue_with_new_stack_frame:
905 sf->block->generation = btrfs_stack_header_generation(sf->hdr);
906 if (0 == sf->hdr->level) {
907 struct btrfs_leaf *const leafhdr =
908 (struct btrfs_leaf *)sf->hdr;
909
910 if (-1 == sf->i) {
911 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
912
913 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
914 pr_info("leaf %llu items %d generation %llu owner %llu\n",
915 sf->block_ctx->start, sf->nr,
916 btrfs_stack_header_generation(
917 &leafhdr->header),
918 btrfs_stack_header_owner(
919 &leafhdr->header));
920 }
921
922 continue_with_current_leaf_stack_frame:
923 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
924 sf->i++;
925 sf->num_copies = 0;
926 }
927
928 if (sf->i < sf->nr) {
929 struct btrfs_item disk_item;
930 u32 disk_item_offset =
931 (uintptr_t)(leafhdr->items + sf->i) -
932 (uintptr_t)leafhdr;
933 struct btrfs_disk_key *disk_key;
934 u8 type;
935 u32 item_offset;
936 u32 item_size;
937
938 if (disk_item_offset + sizeof(struct btrfs_item) >
939 sf->block_ctx->len) {
940 leaf_item_out_of_bounce_error:
941 pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
942 sf->block_ctx->start,
943 sf->block_ctx->dev->name);
944 goto one_stack_frame_backwards;
945 }
946 btrfsic_read_from_block_data(sf->block_ctx,
947 &disk_item,
948 disk_item_offset,
949 sizeof(struct btrfs_item));
950 item_offset = btrfs_stack_item_offset(&disk_item);
951 item_size = btrfs_stack_item_size(&disk_item);
952 disk_key = &disk_item.key;
953 type = btrfs_disk_key_type(disk_key);
954
955 if (BTRFS_ROOT_ITEM_KEY == type) {
956 struct btrfs_root_item root_item;
957 u32 root_item_offset;
958 u64 next_bytenr;
959
960 root_item_offset = item_offset +
961 offsetof(struct btrfs_leaf, items);
962 if (root_item_offset + item_size >
963 sf->block_ctx->len)
964 goto leaf_item_out_of_bounce_error;
965 btrfsic_read_from_block_data(
966 sf->block_ctx, &root_item,
967 root_item_offset,
968 item_size);
969 next_bytenr = btrfs_root_bytenr(&root_item);
970
971 sf->error =
972 btrfsic_create_link_to_next_block(
973 state,
974 sf->block,
975 sf->block_ctx,
976 next_bytenr,
977 sf->limit_nesting,
978 &sf->next_block_ctx,
979 &sf->next_block,
980 force_iodone_flag,
981 &sf->num_copies,
982 &sf->mirror_num,
983 disk_key,
984 btrfs_root_generation(
985 &root_item));
986 if (sf->error)
987 goto one_stack_frame_backwards;
988
989 if (NULL != sf->next_block) {
990 struct btrfs_header *const next_hdr =
991 (struct btrfs_header *)
992 sf->next_block_ctx.datav[0];
993
994 next_stack =
995 btrfsic_stack_frame_alloc();
996 if (NULL == next_stack) {
997 sf->error = -1;
998 btrfsic_release_block_ctx(
999 &sf->
1000 next_block_ctx);
1001 goto one_stack_frame_backwards;
1002 }
1003
1004 next_stack->i = -1;
1005 next_stack->block = sf->next_block;
1006 next_stack->block_ctx =
1007 &sf->next_block_ctx;
1008 next_stack->next_block = NULL;
1009 next_stack->hdr = next_hdr;
1010 next_stack->limit_nesting =
1011 sf->limit_nesting - 1;
1012 next_stack->prev = sf;
1013 sf = next_stack;
1014 goto continue_with_new_stack_frame;
1015 }
1016 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1017 state->include_extent_data) {
1018 sf->error = btrfsic_handle_extent_data(
1019 state,
1020 sf->block,
1021 sf->block_ctx,
1022 item_offset,
1023 force_iodone_flag);
1024 if (sf->error)
1025 goto one_stack_frame_backwards;
1026 }
1027
1028 goto continue_with_current_leaf_stack_frame;
1029 }
1030 } else {
1031 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1032
1033 if (-1 == sf->i) {
1034 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1035
1036 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1037 pr_info("node %llu level %d items %d generation %llu owner %llu\n",
1038 sf->block_ctx->start,
1039 nodehdr->header.level, sf->nr,
1040 btrfs_stack_header_generation(
1041 &nodehdr->header),
1042 btrfs_stack_header_owner(
1043 &nodehdr->header));
1044 }
1045
1046 continue_with_current_node_stack_frame:
1047 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1048 sf->i++;
1049 sf->num_copies = 0;
1050 }
1051
1052 if (sf->i < sf->nr) {
1053 struct btrfs_key_ptr key_ptr;
1054 u32 key_ptr_offset;
1055 u64 next_bytenr;
1056
1057 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1058 (uintptr_t)nodehdr;
1059 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1060 sf->block_ctx->len) {
1061 pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n",
1062 sf->block_ctx->start,
1063 sf->block_ctx->dev->name);
1064 goto one_stack_frame_backwards;
1065 }
1066 btrfsic_read_from_block_data(
1067 sf->block_ctx, &key_ptr, key_ptr_offset,
1068 sizeof(struct btrfs_key_ptr));
1069 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1070
1071 sf->error = btrfsic_create_link_to_next_block(
1072 state,
1073 sf->block,
1074 sf->block_ctx,
1075 next_bytenr,
1076 sf->limit_nesting,
1077 &sf->next_block_ctx,
1078 &sf->next_block,
1079 force_iodone_flag,
1080 &sf->num_copies,
1081 &sf->mirror_num,
1082 &key_ptr.key,
1083 btrfs_stack_key_generation(&key_ptr));
1084 if (sf->error)
1085 goto one_stack_frame_backwards;
1086
1087 if (NULL != sf->next_block) {
1088 struct btrfs_header *const next_hdr =
1089 (struct btrfs_header *)
1090 sf->next_block_ctx.datav[0];
1091
1092 next_stack = btrfsic_stack_frame_alloc();
1093 if (NULL == next_stack) {
1094 sf->error = -1;
1095 goto one_stack_frame_backwards;
1096 }
1097
1098 next_stack->i = -1;
1099 next_stack->block = sf->next_block;
1100 next_stack->block_ctx = &sf->next_block_ctx;
1101 next_stack->next_block = NULL;
1102 next_stack->hdr = next_hdr;
1103 next_stack->limit_nesting =
1104 sf->limit_nesting - 1;
1105 next_stack->prev = sf;
1106 sf = next_stack;
1107 goto continue_with_new_stack_frame;
1108 }
1109
1110 goto continue_with_current_node_stack_frame;
1111 }
1112 }
1113
1114 one_stack_frame_backwards:
1115 if (NULL != sf->prev) {
1116 struct btrfsic_stack_frame *const prev = sf->prev;
1117
1118 /* the one for the initial block is freed in the caller */
1119 btrfsic_release_block_ctx(sf->block_ctx);
1120
1121 if (sf->error) {
1122 prev->error = sf->error;
1123 btrfsic_stack_frame_free(sf);
1124 sf = prev;
1125 goto one_stack_frame_backwards;
1126 }
1127
1128 btrfsic_stack_frame_free(sf);
1129 sf = prev;
1130 goto continue_with_new_stack_frame;
1131 } else {
1132 BUG_ON(&initial_stack_frame != sf);
1133 }
1134
1135 return sf->error;
1136 }
1137
btrfsic_read_from_block_data(struct btrfsic_block_data_ctx * block_ctx,void * dstv,u32 offset,size_t len)1138 static void btrfsic_read_from_block_data(
1139 struct btrfsic_block_data_ctx *block_ctx,
1140 void *dstv, u32 offset, size_t len)
1141 {
1142 size_t cur;
1143 size_t pgoff;
1144 char *kaddr;
1145 char *dst = (char *)dstv;
1146 size_t start_offset = offset_in_page(block_ctx->start);
1147 unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1148
1149 WARN_ON(offset + len > block_ctx->len);
1150 pgoff = offset_in_page(start_offset + offset);
1151
1152 while (len > 0) {
1153 cur = min(len, ((size_t)PAGE_SIZE - pgoff));
1154 BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1155 kaddr = block_ctx->datav[i];
1156 memcpy(dst, kaddr + pgoff, cur);
1157
1158 dst += cur;
1159 len -= cur;
1160 pgoff = 0;
1161 i++;
1162 }
1163 }
1164
btrfsic_create_link_to_next_block(struct btrfsic_state * state,struct btrfsic_block * block,struct btrfsic_block_data_ctx * block_ctx,u64 next_bytenr,int limit_nesting,struct btrfsic_block_data_ctx * next_block_ctx,struct btrfsic_block ** next_blockp,int force_iodone_flag,int * num_copiesp,int * mirror_nump,struct btrfs_disk_key * disk_key,u64 parent_generation)1165 static int btrfsic_create_link_to_next_block(
1166 struct btrfsic_state *state,
1167 struct btrfsic_block *block,
1168 struct btrfsic_block_data_ctx *block_ctx,
1169 u64 next_bytenr,
1170 int limit_nesting,
1171 struct btrfsic_block_data_ctx *next_block_ctx,
1172 struct btrfsic_block **next_blockp,
1173 int force_iodone_flag,
1174 int *num_copiesp, int *mirror_nump,
1175 struct btrfs_disk_key *disk_key,
1176 u64 parent_generation)
1177 {
1178 struct btrfs_fs_info *fs_info = state->fs_info;
1179 struct btrfsic_block *next_block = NULL;
1180 int ret;
1181 struct btrfsic_block_link *l;
1182 int did_alloc_block_link;
1183 int block_was_created;
1184
1185 *next_blockp = NULL;
1186 if (0 == *num_copiesp) {
1187 *num_copiesp = btrfs_num_copies(fs_info, next_bytenr,
1188 state->metablock_size);
1189 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1190 pr_info("num_copies(log_bytenr=%llu) = %d\n",
1191 next_bytenr, *num_copiesp);
1192 *mirror_nump = 1;
1193 }
1194
1195 if (*mirror_nump > *num_copiesp)
1196 return 0;
1197
1198 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1199 pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1200 *mirror_nump);
1201 ret = btrfsic_map_block(state, next_bytenr,
1202 state->metablock_size,
1203 next_block_ctx, *mirror_nump);
1204 if (ret) {
1205 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1206 next_bytenr, *mirror_nump);
1207 btrfsic_release_block_ctx(next_block_ctx);
1208 *next_blockp = NULL;
1209 return -1;
1210 }
1211
1212 next_block = btrfsic_block_lookup_or_add(state,
1213 next_block_ctx, "referenced ",
1214 1, force_iodone_flag,
1215 !force_iodone_flag,
1216 *mirror_nump,
1217 &block_was_created);
1218 if (NULL == next_block) {
1219 btrfsic_release_block_ctx(next_block_ctx);
1220 *next_blockp = NULL;
1221 return -1;
1222 }
1223 if (block_was_created) {
1224 l = NULL;
1225 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1226 } else {
1227 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1228 if (next_block->logical_bytenr != next_bytenr &&
1229 !(!next_block->is_metadata &&
1230 0 == next_block->logical_bytenr))
1231 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1232 next_bytenr, next_block_ctx->dev->name,
1233 next_block_ctx->dev_bytenr, *mirror_nump,
1234 btrfsic_get_block_type(state,
1235 next_block),
1236 next_block->logical_bytenr);
1237 else
1238 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1239 next_bytenr, next_block_ctx->dev->name,
1240 next_block_ctx->dev_bytenr, *mirror_nump,
1241 btrfsic_get_block_type(state,
1242 next_block));
1243 }
1244 next_block->logical_bytenr = next_bytenr;
1245
1246 next_block->mirror_num = *mirror_nump;
1247 l = btrfsic_block_link_hashtable_lookup(
1248 next_block_ctx->dev->bdev,
1249 next_block_ctx->dev_bytenr,
1250 block_ctx->dev->bdev,
1251 block_ctx->dev_bytenr,
1252 &state->block_link_hashtable);
1253 }
1254
1255 next_block->disk_key = *disk_key;
1256 if (NULL == l) {
1257 l = btrfsic_block_link_alloc();
1258 if (NULL == l) {
1259 btrfsic_release_block_ctx(next_block_ctx);
1260 *next_blockp = NULL;
1261 return -1;
1262 }
1263
1264 did_alloc_block_link = 1;
1265 l->block_ref_to = next_block;
1266 l->block_ref_from = block;
1267 l->ref_cnt = 1;
1268 l->parent_generation = parent_generation;
1269
1270 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1271 btrfsic_print_add_link(state, l);
1272
1273 list_add(&l->node_ref_to, &block->ref_to_list);
1274 list_add(&l->node_ref_from, &next_block->ref_from_list);
1275
1276 btrfsic_block_link_hashtable_add(l,
1277 &state->block_link_hashtable);
1278 } else {
1279 did_alloc_block_link = 0;
1280 if (0 == limit_nesting) {
1281 l->ref_cnt++;
1282 l->parent_generation = parent_generation;
1283 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1284 btrfsic_print_add_link(state, l);
1285 }
1286 }
1287
1288 if (limit_nesting > 0 && did_alloc_block_link) {
1289 ret = btrfsic_read_block(state, next_block_ctx);
1290 if (ret < (int)next_block_ctx->len) {
1291 pr_info("btrfsic: read block @logical %llu failed!\n",
1292 next_bytenr);
1293 btrfsic_release_block_ctx(next_block_ctx);
1294 *next_blockp = NULL;
1295 return -1;
1296 }
1297
1298 *next_blockp = next_block;
1299 } else {
1300 *next_blockp = NULL;
1301 }
1302 (*mirror_nump)++;
1303
1304 return 0;
1305 }
1306
btrfsic_handle_extent_data(struct btrfsic_state * state,struct btrfsic_block * block,struct btrfsic_block_data_ctx * block_ctx,u32 item_offset,int force_iodone_flag)1307 static int btrfsic_handle_extent_data(
1308 struct btrfsic_state *state,
1309 struct btrfsic_block *block,
1310 struct btrfsic_block_data_ctx *block_ctx,
1311 u32 item_offset, int force_iodone_flag)
1312 {
1313 struct btrfs_fs_info *fs_info = state->fs_info;
1314 struct btrfs_file_extent_item file_extent_item;
1315 u64 file_extent_item_offset;
1316 u64 next_bytenr;
1317 u64 num_bytes;
1318 u64 generation;
1319 struct btrfsic_block_link *l;
1320 int ret;
1321
1322 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1323 item_offset;
1324 if (file_extent_item_offset +
1325 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1326 block_ctx->len) {
1327 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1328 block_ctx->start, block_ctx->dev->name);
1329 return -1;
1330 }
1331
1332 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1333 file_extent_item_offset,
1334 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1335 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1336 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1337 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1338 pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1339 file_extent_item.type,
1340 btrfs_stack_file_extent_disk_bytenr(
1341 &file_extent_item));
1342 return 0;
1343 }
1344
1345 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1346 block_ctx->len) {
1347 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1348 block_ctx->start, block_ctx->dev->name);
1349 return -1;
1350 }
1351 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1352 file_extent_item_offset,
1353 sizeof(struct btrfs_file_extent_item));
1354 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1355 if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1356 BTRFS_COMPRESS_NONE) {
1357 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1358 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1359 } else {
1360 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1361 }
1362 generation = btrfs_stack_file_extent_generation(&file_extent_item);
1363
1364 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1365 pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1366 file_extent_item.type,
1367 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1368 btrfs_stack_file_extent_offset(&file_extent_item),
1369 num_bytes);
1370 while (num_bytes > 0) {
1371 u32 chunk_len;
1372 int num_copies;
1373 int mirror_num;
1374
1375 if (num_bytes > state->datablock_size)
1376 chunk_len = state->datablock_size;
1377 else
1378 chunk_len = num_bytes;
1379
1380 num_copies = btrfs_num_copies(fs_info, next_bytenr,
1381 state->datablock_size);
1382 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1383 pr_info("num_copies(log_bytenr=%llu) = %d\n",
1384 next_bytenr, num_copies);
1385 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1386 struct btrfsic_block_data_ctx next_block_ctx;
1387 struct btrfsic_block *next_block;
1388 int block_was_created;
1389
1390 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1391 pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
1392 mirror_num);
1393 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1394 pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
1395 next_bytenr, chunk_len);
1396 ret = btrfsic_map_block(state, next_bytenr,
1397 chunk_len, &next_block_ctx,
1398 mirror_num);
1399 if (ret) {
1400 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1401 next_bytenr, mirror_num);
1402 return -1;
1403 }
1404
1405 next_block = btrfsic_block_lookup_or_add(
1406 state,
1407 &next_block_ctx,
1408 "referenced ",
1409 0,
1410 force_iodone_flag,
1411 !force_iodone_flag,
1412 mirror_num,
1413 &block_was_created);
1414 if (NULL == next_block) {
1415 btrfsic_release_block_ctx(&next_block_ctx);
1416 return -1;
1417 }
1418 if (!block_was_created) {
1419 if ((state->print_mask &
1420 BTRFSIC_PRINT_MASK_VERBOSE) &&
1421 next_block->logical_bytenr != next_bytenr &&
1422 !(!next_block->is_metadata &&
1423 0 == next_block->logical_bytenr)) {
1424 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
1425 next_bytenr,
1426 next_block_ctx.dev->name,
1427 next_block_ctx.dev_bytenr,
1428 mirror_num,
1429 next_block->logical_bytenr);
1430 }
1431 next_block->logical_bytenr = next_bytenr;
1432 next_block->mirror_num = mirror_num;
1433 }
1434
1435 l = btrfsic_block_link_lookup_or_add(state,
1436 &next_block_ctx,
1437 next_block, block,
1438 generation);
1439 btrfsic_release_block_ctx(&next_block_ctx);
1440 if (NULL == l)
1441 return -1;
1442 }
1443
1444 next_bytenr += chunk_len;
1445 num_bytes -= chunk_len;
1446 }
1447
1448 return 0;
1449 }
1450
btrfsic_map_block(struct btrfsic_state * state,u64 bytenr,u32 len,struct btrfsic_block_data_ctx * block_ctx_out,int mirror_num)1451 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1452 struct btrfsic_block_data_ctx *block_ctx_out,
1453 int mirror_num)
1454 {
1455 struct btrfs_fs_info *fs_info = state->fs_info;
1456 int ret;
1457 u64 length;
1458 struct btrfs_io_context *multi = NULL;
1459 struct btrfs_device *device;
1460
1461 length = len;
1462 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
1463 bytenr, &length, &multi, mirror_num);
1464
1465 if (ret) {
1466 block_ctx_out->start = 0;
1467 block_ctx_out->dev_bytenr = 0;
1468 block_ctx_out->len = 0;
1469 block_ctx_out->dev = NULL;
1470 block_ctx_out->datav = NULL;
1471 block_ctx_out->pagev = NULL;
1472 block_ctx_out->mem_to_free = NULL;
1473
1474 return ret;
1475 }
1476
1477 device = multi->stripes[0].dev;
1478 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
1479 !device->bdev || !device->name)
1480 block_ctx_out->dev = NULL;
1481 else
1482 block_ctx_out->dev = btrfsic_dev_state_lookup(
1483 device->bdev->bd_dev);
1484 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1485 block_ctx_out->start = bytenr;
1486 block_ctx_out->len = len;
1487 block_ctx_out->datav = NULL;
1488 block_ctx_out->pagev = NULL;
1489 block_ctx_out->mem_to_free = NULL;
1490
1491 kfree(multi);
1492 if (NULL == block_ctx_out->dev) {
1493 ret = -ENXIO;
1494 pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1495 }
1496
1497 return ret;
1498 }
1499
btrfsic_release_block_ctx(struct btrfsic_block_data_ctx * block_ctx)1500 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1501 {
1502 if (block_ctx->mem_to_free) {
1503 unsigned int num_pages;
1504
1505 BUG_ON(!block_ctx->datav);
1506 BUG_ON(!block_ctx->pagev);
1507 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1508 PAGE_SHIFT;
1509 /* Pages must be unmapped in reverse order */
1510 while (num_pages > 0) {
1511 num_pages--;
1512 if (block_ctx->datav[num_pages])
1513 block_ctx->datav[num_pages] = NULL;
1514 if (block_ctx->pagev[num_pages]) {
1515 __free_page(block_ctx->pagev[num_pages]);
1516 block_ctx->pagev[num_pages] = NULL;
1517 }
1518 }
1519
1520 kfree(block_ctx->mem_to_free);
1521 block_ctx->mem_to_free = NULL;
1522 block_ctx->pagev = NULL;
1523 block_ctx->datav = NULL;
1524 }
1525 }
1526
btrfsic_read_block(struct btrfsic_state * state,struct btrfsic_block_data_ctx * block_ctx)1527 static int btrfsic_read_block(struct btrfsic_state *state,
1528 struct btrfsic_block_data_ctx *block_ctx)
1529 {
1530 unsigned int num_pages;
1531 unsigned int i;
1532 size_t size;
1533 u64 dev_bytenr;
1534 int ret;
1535
1536 BUG_ON(block_ctx->datav);
1537 BUG_ON(block_ctx->pagev);
1538 BUG_ON(block_ctx->mem_to_free);
1539 if (!PAGE_ALIGNED(block_ctx->dev_bytenr)) {
1540 pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
1541 block_ctx->dev_bytenr);
1542 return -1;
1543 }
1544
1545 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1546 PAGE_SHIFT;
1547 size = sizeof(*block_ctx->datav) + sizeof(*block_ctx->pagev);
1548 block_ctx->mem_to_free = kcalloc(num_pages, size, GFP_NOFS);
1549 if (!block_ctx->mem_to_free)
1550 return -ENOMEM;
1551 block_ctx->datav = block_ctx->mem_to_free;
1552 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1553 for (i = 0; i < num_pages; i++) {
1554 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1555 if (!block_ctx->pagev[i])
1556 return -1;
1557 }
1558
1559 dev_bytenr = block_ctx->dev_bytenr;
1560 for (i = 0; i < num_pages;) {
1561 struct bio *bio;
1562 unsigned int j;
1563
1564 bio = btrfs_io_bio_alloc(num_pages - i);
1565 bio_set_dev(bio, block_ctx->dev->bdev);
1566 bio->bi_iter.bi_sector = dev_bytenr >> 9;
1567 bio->bi_opf = REQ_OP_READ;
1568
1569 for (j = i; j < num_pages; j++) {
1570 ret = bio_add_page(bio, block_ctx->pagev[j],
1571 PAGE_SIZE, 0);
1572 if (PAGE_SIZE != ret)
1573 break;
1574 }
1575 if (j == i) {
1576 pr_info("btrfsic: error, failed to add a single page!\n");
1577 return -1;
1578 }
1579 if (submit_bio_wait(bio)) {
1580 pr_info("btrfsic: read error at logical %llu dev %s!\n",
1581 block_ctx->start, block_ctx->dev->name);
1582 bio_put(bio);
1583 return -1;
1584 }
1585 bio_put(bio);
1586 dev_bytenr += (j - i) * PAGE_SIZE;
1587 i = j;
1588 }
1589 for (i = 0; i < num_pages; i++)
1590 block_ctx->datav[i] = page_address(block_ctx->pagev[i]);
1591
1592 return block_ctx->len;
1593 }
1594
btrfsic_dump_database(struct btrfsic_state * state)1595 static void btrfsic_dump_database(struct btrfsic_state *state)
1596 {
1597 const struct btrfsic_block *b_all;
1598
1599 BUG_ON(NULL == state);
1600
1601 pr_info("all_blocks_list:\n");
1602 list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1603 const struct btrfsic_block_link *l;
1604
1605 pr_info("%c-block @%llu (%s/%llu/%d)\n",
1606 btrfsic_get_block_type(state, b_all),
1607 b_all->logical_bytenr, b_all->dev_state->name,
1608 b_all->dev_bytenr, b_all->mirror_num);
1609
1610 list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1611 pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
1612 btrfsic_get_block_type(state, b_all),
1613 b_all->logical_bytenr, b_all->dev_state->name,
1614 b_all->dev_bytenr, b_all->mirror_num,
1615 l->ref_cnt,
1616 btrfsic_get_block_type(state, l->block_ref_to),
1617 l->block_ref_to->logical_bytenr,
1618 l->block_ref_to->dev_state->name,
1619 l->block_ref_to->dev_bytenr,
1620 l->block_ref_to->mirror_num);
1621 }
1622
1623 list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1624 pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
1625 btrfsic_get_block_type(state, b_all),
1626 b_all->logical_bytenr, b_all->dev_state->name,
1627 b_all->dev_bytenr, b_all->mirror_num,
1628 l->ref_cnt,
1629 btrfsic_get_block_type(state, l->block_ref_from),
1630 l->block_ref_from->logical_bytenr,
1631 l->block_ref_from->dev_state->name,
1632 l->block_ref_from->dev_bytenr,
1633 l->block_ref_from->mirror_num);
1634 }
1635
1636 pr_info("\n");
1637 }
1638 }
1639
1640 /*
1641 * Test whether the disk block contains a tree block (leaf or node)
1642 * (note that this test fails for the super block)
1643 */
btrfsic_test_for_metadata(struct btrfsic_state * state,char ** datav,unsigned int num_pages)1644 static noinline_for_stack int btrfsic_test_for_metadata(
1645 struct btrfsic_state *state,
1646 char **datav, unsigned int num_pages)
1647 {
1648 struct btrfs_fs_info *fs_info = state->fs_info;
1649 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1650 struct btrfs_header *h;
1651 u8 csum[BTRFS_CSUM_SIZE];
1652 unsigned int i;
1653
1654 if (num_pages * PAGE_SIZE < state->metablock_size)
1655 return 1; /* not metadata */
1656 num_pages = state->metablock_size >> PAGE_SHIFT;
1657 h = (struct btrfs_header *)datav[0];
1658
1659 if (memcmp(h->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE))
1660 return 1;
1661
1662 shash->tfm = fs_info->csum_shash;
1663 crypto_shash_init(shash);
1664
1665 for (i = 0; i < num_pages; i++) {
1666 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1667 size_t sublen = i ? PAGE_SIZE :
1668 (PAGE_SIZE - BTRFS_CSUM_SIZE);
1669
1670 crypto_shash_update(shash, data, sublen);
1671 }
1672 crypto_shash_final(shash, csum);
1673 if (memcmp(csum, h->csum, fs_info->csum_size))
1674 return 1;
1675
1676 return 0; /* is metadata */
1677 }
1678
btrfsic_process_written_block(struct btrfsic_dev_state * dev_state,u64 dev_bytenr,char ** mapped_datav,unsigned int num_pages,struct bio * bio,int * bio_is_patched,int submit_bio_bh_rw)1679 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1680 u64 dev_bytenr, char **mapped_datav,
1681 unsigned int num_pages,
1682 struct bio *bio, int *bio_is_patched,
1683 int submit_bio_bh_rw)
1684 {
1685 int is_metadata;
1686 struct btrfsic_block *block;
1687 struct btrfsic_block_data_ctx block_ctx;
1688 int ret;
1689 struct btrfsic_state *state = dev_state->state;
1690 struct block_device *bdev = dev_state->bdev;
1691 unsigned int processed_len;
1692
1693 if (NULL != bio_is_patched)
1694 *bio_is_patched = 0;
1695
1696 again:
1697 if (num_pages == 0)
1698 return;
1699
1700 processed_len = 0;
1701 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1702 num_pages));
1703
1704 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1705 &state->block_hashtable);
1706 if (NULL != block) {
1707 u64 bytenr = 0;
1708 struct btrfsic_block_link *l, *tmp;
1709
1710 if (block->is_superblock) {
1711 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1712 mapped_datav[0]);
1713 if (num_pages * PAGE_SIZE <
1714 BTRFS_SUPER_INFO_SIZE) {
1715 pr_info("btrfsic: cannot work with too short bios!\n");
1716 return;
1717 }
1718 is_metadata = 1;
1719 BUG_ON(!PAGE_ALIGNED(BTRFS_SUPER_INFO_SIZE));
1720 processed_len = BTRFS_SUPER_INFO_SIZE;
1721 if (state->print_mask &
1722 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1723 pr_info("[before new superblock is written]:\n");
1724 btrfsic_dump_tree_sub(state, block, 0);
1725 }
1726 }
1727 if (is_metadata) {
1728 if (!block->is_superblock) {
1729 if (num_pages * PAGE_SIZE <
1730 state->metablock_size) {
1731 pr_info("btrfsic: cannot work with too short bios!\n");
1732 return;
1733 }
1734 processed_len = state->metablock_size;
1735 bytenr = btrfs_stack_header_bytenr(
1736 (struct btrfs_header *)
1737 mapped_datav[0]);
1738 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1739 dev_state,
1740 dev_bytenr);
1741 }
1742 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1743 if (block->logical_bytenr != bytenr &&
1744 !(!block->is_metadata &&
1745 block->logical_bytenr == 0))
1746 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1747 bytenr, dev_state->name,
1748 dev_bytenr,
1749 block->mirror_num,
1750 btrfsic_get_block_type(state,
1751 block),
1752 block->logical_bytenr);
1753 else
1754 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1755 bytenr, dev_state->name,
1756 dev_bytenr, block->mirror_num,
1757 btrfsic_get_block_type(state,
1758 block));
1759 }
1760 block->logical_bytenr = bytenr;
1761 } else {
1762 if (num_pages * PAGE_SIZE <
1763 state->datablock_size) {
1764 pr_info("btrfsic: cannot work with too short bios!\n");
1765 return;
1766 }
1767 processed_len = state->datablock_size;
1768 bytenr = block->logical_bytenr;
1769 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1770 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1771 bytenr, dev_state->name, dev_bytenr,
1772 block->mirror_num,
1773 btrfsic_get_block_type(state, block));
1774 }
1775
1776 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1777 pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
1778 list_empty(&block->ref_to_list) ? ' ' : '!',
1779 list_empty(&block->ref_from_list) ? ' ' : '!');
1780 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1781 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1782 btrfsic_get_block_type(state, block), bytenr,
1783 dev_state->name, dev_bytenr, block->mirror_num,
1784 block->generation,
1785 btrfs_disk_key_objectid(&block->disk_key),
1786 block->disk_key.type,
1787 btrfs_disk_key_offset(&block->disk_key),
1788 btrfs_stack_header_generation(
1789 (struct btrfs_header *) mapped_datav[0]),
1790 state->max_superblock_generation);
1791 btrfsic_dump_tree(state);
1792 }
1793
1794 if (!block->is_iodone && !block->never_written) {
1795 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1796 btrfsic_get_block_type(state, block), bytenr,
1797 dev_state->name, dev_bytenr, block->mirror_num,
1798 block->generation,
1799 btrfs_stack_header_generation(
1800 (struct btrfs_header *)
1801 mapped_datav[0]));
1802 /* it would not be safe to go on */
1803 btrfsic_dump_tree(state);
1804 goto continue_loop;
1805 }
1806
1807 /*
1808 * Clear all references of this block. Do not free
1809 * the block itself even if is not referenced anymore
1810 * because it still carries valuable information
1811 * like whether it was ever written and IO completed.
1812 */
1813 list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1814 node_ref_to) {
1815 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1816 btrfsic_print_rem_link(state, l);
1817 l->ref_cnt--;
1818 if (0 == l->ref_cnt) {
1819 list_del(&l->node_ref_to);
1820 list_del(&l->node_ref_from);
1821 btrfsic_block_link_hashtable_remove(l);
1822 btrfsic_block_link_free(l);
1823 }
1824 }
1825
1826 block_ctx.dev = dev_state;
1827 block_ctx.dev_bytenr = dev_bytenr;
1828 block_ctx.start = bytenr;
1829 block_ctx.len = processed_len;
1830 block_ctx.pagev = NULL;
1831 block_ctx.mem_to_free = NULL;
1832 block_ctx.datav = mapped_datav;
1833
1834 if (is_metadata || state->include_extent_data) {
1835 block->never_written = 0;
1836 block->iodone_w_error = 0;
1837 if (NULL != bio) {
1838 block->is_iodone = 0;
1839 BUG_ON(NULL == bio_is_patched);
1840 if (!*bio_is_patched) {
1841 block->orig_bio_private =
1842 bio->bi_private;
1843 block->orig_bio_end_io =
1844 bio->bi_end_io;
1845 block->next_in_same_bio = NULL;
1846 bio->bi_private = block;
1847 bio->bi_end_io = btrfsic_bio_end_io;
1848 *bio_is_patched = 1;
1849 } else {
1850 struct btrfsic_block *chained_block =
1851 (struct btrfsic_block *)
1852 bio->bi_private;
1853
1854 BUG_ON(NULL == chained_block);
1855 block->orig_bio_private =
1856 chained_block->orig_bio_private;
1857 block->orig_bio_end_io =
1858 chained_block->orig_bio_end_io;
1859 block->next_in_same_bio = chained_block;
1860 bio->bi_private = block;
1861 }
1862 } else {
1863 block->is_iodone = 1;
1864 block->orig_bio_private = NULL;
1865 block->orig_bio_end_io = NULL;
1866 block->next_in_same_bio = NULL;
1867 }
1868 }
1869
1870 block->flush_gen = dev_state->last_flush_gen + 1;
1871 block->submit_bio_bh_rw = submit_bio_bh_rw;
1872 if (is_metadata) {
1873 block->logical_bytenr = bytenr;
1874 block->is_metadata = 1;
1875 if (block->is_superblock) {
1876 BUG_ON(PAGE_SIZE !=
1877 BTRFS_SUPER_INFO_SIZE);
1878 ret = btrfsic_process_written_superblock(
1879 state,
1880 block,
1881 (struct btrfs_super_block *)
1882 mapped_datav[0]);
1883 if (state->print_mask &
1884 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1885 pr_info("[after new superblock is written]:\n");
1886 btrfsic_dump_tree_sub(state, block, 0);
1887 }
1888 } else {
1889 block->mirror_num = 0; /* unknown */
1890 ret = btrfsic_process_metablock(
1891 state,
1892 block,
1893 &block_ctx,
1894 0, 0);
1895 }
1896 if (ret)
1897 pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
1898 dev_bytenr);
1899 } else {
1900 block->is_metadata = 0;
1901 block->mirror_num = 0; /* unknown */
1902 block->generation = BTRFSIC_GENERATION_UNKNOWN;
1903 if (!state->include_extent_data
1904 && list_empty(&block->ref_from_list)) {
1905 /*
1906 * disk block is overwritten with extent
1907 * data (not meta data) and we are configured
1908 * to not include extent data: take the
1909 * chance and free the block's memory
1910 */
1911 btrfsic_block_hashtable_remove(block);
1912 list_del(&block->all_blocks_node);
1913 btrfsic_block_free(block);
1914 }
1915 }
1916 btrfsic_release_block_ctx(&block_ctx);
1917 } else {
1918 /* block has not been found in hash table */
1919 u64 bytenr;
1920
1921 if (!is_metadata) {
1922 processed_len = state->datablock_size;
1923 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1924 pr_info("Written block (%s/%llu/?) !found in hash table, D.\n",
1925 dev_state->name, dev_bytenr);
1926 if (!state->include_extent_data) {
1927 /* ignore that written D block */
1928 goto continue_loop;
1929 }
1930
1931 /* this is getting ugly for the
1932 * include_extent_data case... */
1933 bytenr = 0; /* unknown */
1934 } else {
1935 processed_len = state->metablock_size;
1936 bytenr = btrfs_stack_header_bytenr(
1937 (struct btrfs_header *)
1938 mapped_datav[0]);
1939 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
1940 dev_bytenr);
1941 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1942 pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
1943 bytenr, dev_state->name, dev_bytenr);
1944 }
1945
1946 block_ctx.dev = dev_state;
1947 block_ctx.dev_bytenr = dev_bytenr;
1948 block_ctx.start = bytenr;
1949 block_ctx.len = processed_len;
1950 block_ctx.pagev = NULL;
1951 block_ctx.mem_to_free = NULL;
1952 block_ctx.datav = mapped_datav;
1953
1954 block = btrfsic_block_alloc();
1955 if (NULL == block) {
1956 btrfsic_release_block_ctx(&block_ctx);
1957 goto continue_loop;
1958 }
1959 block->dev_state = dev_state;
1960 block->dev_bytenr = dev_bytenr;
1961 block->logical_bytenr = bytenr;
1962 block->is_metadata = is_metadata;
1963 block->never_written = 0;
1964 block->iodone_w_error = 0;
1965 block->mirror_num = 0; /* unknown */
1966 block->flush_gen = dev_state->last_flush_gen + 1;
1967 block->submit_bio_bh_rw = submit_bio_bh_rw;
1968 if (NULL != bio) {
1969 block->is_iodone = 0;
1970 BUG_ON(NULL == bio_is_patched);
1971 if (!*bio_is_patched) {
1972 block->orig_bio_private = bio->bi_private;
1973 block->orig_bio_end_io = bio->bi_end_io;
1974 block->next_in_same_bio = NULL;
1975 bio->bi_private = block;
1976 bio->bi_end_io = btrfsic_bio_end_io;
1977 *bio_is_patched = 1;
1978 } else {
1979 struct btrfsic_block *chained_block =
1980 (struct btrfsic_block *)
1981 bio->bi_private;
1982
1983 BUG_ON(NULL == chained_block);
1984 block->orig_bio_private =
1985 chained_block->orig_bio_private;
1986 block->orig_bio_end_io =
1987 chained_block->orig_bio_end_io;
1988 block->next_in_same_bio = chained_block;
1989 bio->bi_private = block;
1990 }
1991 } else {
1992 block->is_iodone = 1;
1993 block->orig_bio_private = NULL;
1994 block->orig_bio_end_io = NULL;
1995 block->next_in_same_bio = NULL;
1996 }
1997 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1998 pr_info("New written %c-block @%llu (%s/%llu/%d)\n",
1999 is_metadata ? 'M' : 'D',
2000 block->logical_bytenr, block->dev_state->name,
2001 block->dev_bytenr, block->mirror_num);
2002 list_add(&block->all_blocks_node, &state->all_blocks_list);
2003 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2004
2005 if (is_metadata) {
2006 ret = btrfsic_process_metablock(state, block,
2007 &block_ctx, 0, 0);
2008 if (ret)
2009 pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
2010 dev_bytenr);
2011 }
2012 btrfsic_release_block_ctx(&block_ctx);
2013 }
2014
2015 continue_loop:
2016 BUG_ON(!processed_len);
2017 dev_bytenr += processed_len;
2018 mapped_datav += processed_len >> PAGE_SHIFT;
2019 num_pages -= processed_len >> PAGE_SHIFT;
2020 goto again;
2021 }
2022
btrfsic_bio_end_io(struct bio * bp)2023 static void btrfsic_bio_end_io(struct bio *bp)
2024 {
2025 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2026 int iodone_w_error;
2027
2028 /* mutex is not held! This is not save if IO is not yet completed
2029 * on umount */
2030 iodone_w_error = 0;
2031 if (bp->bi_status)
2032 iodone_w_error = 1;
2033
2034 BUG_ON(NULL == block);
2035 bp->bi_private = block->orig_bio_private;
2036 bp->bi_end_io = block->orig_bio_end_io;
2037
2038 do {
2039 struct btrfsic_block *next_block;
2040 struct btrfsic_dev_state *const dev_state = block->dev_state;
2041
2042 if ((dev_state->state->print_mask &
2043 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2044 pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2045 bp->bi_status,
2046 btrfsic_get_block_type(dev_state->state, block),
2047 block->logical_bytenr, dev_state->name,
2048 block->dev_bytenr, block->mirror_num);
2049 next_block = block->next_in_same_bio;
2050 block->iodone_w_error = iodone_w_error;
2051 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2052 dev_state->last_flush_gen++;
2053 if ((dev_state->state->print_mask &
2054 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2055 pr_info("bio_end_io() new %s flush_gen=%llu\n",
2056 dev_state->name,
2057 dev_state->last_flush_gen);
2058 }
2059 if (block->submit_bio_bh_rw & REQ_FUA)
2060 block->flush_gen = 0; /* FUA completed means block is
2061 * on disk */
2062 block->is_iodone = 1; /* for FLUSH, this releases the block */
2063 block = next_block;
2064 } while (NULL != block);
2065
2066 bp->bi_end_io(bp);
2067 }
2068
btrfsic_process_written_superblock(struct btrfsic_state * state,struct btrfsic_block * const superblock,struct btrfs_super_block * const super_hdr)2069 static int btrfsic_process_written_superblock(
2070 struct btrfsic_state *state,
2071 struct btrfsic_block *const superblock,
2072 struct btrfs_super_block *const super_hdr)
2073 {
2074 struct btrfs_fs_info *fs_info = state->fs_info;
2075 int pass;
2076
2077 superblock->generation = btrfs_super_generation(super_hdr);
2078 if (!(superblock->generation > state->max_superblock_generation ||
2079 0 == state->max_superblock_generation)) {
2080 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2081 pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
2082 superblock->logical_bytenr,
2083 superblock->dev_state->name,
2084 superblock->dev_bytenr, superblock->mirror_num,
2085 btrfs_super_generation(super_hdr),
2086 state->max_superblock_generation);
2087 } else {
2088 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2089 pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
2090 superblock->logical_bytenr,
2091 superblock->dev_state->name,
2092 superblock->dev_bytenr, superblock->mirror_num,
2093 btrfs_super_generation(super_hdr),
2094 state->max_superblock_generation);
2095
2096 state->max_superblock_generation =
2097 btrfs_super_generation(super_hdr);
2098 state->latest_superblock = superblock;
2099 }
2100
2101 for (pass = 0; pass < 3; pass++) {
2102 int ret;
2103 u64 next_bytenr;
2104 struct btrfsic_block *next_block;
2105 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2106 struct btrfsic_block_link *l;
2107 int num_copies;
2108 int mirror_num;
2109 const char *additional_string = NULL;
2110 struct btrfs_disk_key tmp_disk_key = {0};
2111
2112 btrfs_set_disk_key_objectid(&tmp_disk_key,
2113 BTRFS_ROOT_ITEM_KEY);
2114 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2115
2116 switch (pass) {
2117 case 0:
2118 btrfs_set_disk_key_objectid(&tmp_disk_key,
2119 BTRFS_ROOT_TREE_OBJECTID);
2120 additional_string = "root ";
2121 next_bytenr = btrfs_super_root(super_hdr);
2122 if (state->print_mask &
2123 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2124 pr_info("root@%llu\n", next_bytenr);
2125 break;
2126 case 1:
2127 btrfs_set_disk_key_objectid(&tmp_disk_key,
2128 BTRFS_CHUNK_TREE_OBJECTID);
2129 additional_string = "chunk ";
2130 next_bytenr = btrfs_super_chunk_root(super_hdr);
2131 if (state->print_mask &
2132 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2133 pr_info("chunk@%llu\n", next_bytenr);
2134 break;
2135 case 2:
2136 btrfs_set_disk_key_objectid(&tmp_disk_key,
2137 BTRFS_TREE_LOG_OBJECTID);
2138 additional_string = "log ";
2139 next_bytenr = btrfs_super_log_root(super_hdr);
2140 if (0 == next_bytenr)
2141 continue;
2142 if (state->print_mask &
2143 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2144 pr_info("log@%llu\n", next_bytenr);
2145 break;
2146 }
2147
2148 num_copies = btrfs_num_copies(fs_info, next_bytenr,
2149 BTRFS_SUPER_INFO_SIZE);
2150 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2151 pr_info("num_copies(log_bytenr=%llu) = %d\n",
2152 next_bytenr, num_copies);
2153 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2154 int was_created;
2155
2156 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2157 pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2158 ret = btrfsic_map_block(state, next_bytenr,
2159 BTRFS_SUPER_INFO_SIZE,
2160 &tmp_next_block_ctx,
2161 mirror_num);
2162 if (ret) {
2163 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2164 next_bytenr, mirror_num);
2165 return -1;
2166 }
2167
2168 next_block = btrfsic_block_lookup_or_add(
2169 state,
2170 &tmp_next_block_ctx,
2171 additional_string,
2172 1, 0, 1,
2173 mirror_num,
2174 &was_created);
2175 if (NULL == next_block) {
2176 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2177 return -1;
2178 }
2179
2180 next_block->disk_key = tmp_disk_key;
2181 if (was_created)
2182 next_block->generation =
2183 BTRFSIC_GENERATION_UNKNOWN;
2184 l = btrfsic_block_link_lookup_or_add(
2185 state,
2186 &tmp_next_block_ctx,
2187 next_block,
2188 superblock,
2189 BTRFSIC_GENERATION_UNKNOWN);
2190 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2191 if (NULL == l)
2192 return -1;
2193 }
2194 }
2195
2196 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2197 btrfsic_dump_tree(state);
2198
2199 return 0;
2200 }
2201
btrfsic_check_all_ref_blocks(struct btrfsic_state * state,struct btrfsic_block * const block,int recursion_level)2202 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2203 struct btrfsic_block *const block,
2204 int recursion_level)
2205 {
2206 const struct btrfsic_block_link *l;
2207 int ret = 0;
2208
2209 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2210 /*
2211 * Note that this situation can happen and does not
2212 * indicate an error in regular cases. It happens
2213 * when disk blocks are freed and later reused.
2214 * The check-integrity module is not aware of any
2215 * block free operations, it just recognizes block
2216 * write operations. Therefore it keeps the linkage
2217 * information for a block until a block is
2218 * rewritten. This can temporarily cause incorrect
2219 * and even circular linkage information. This
2220 * causes no harm unless such blocks are referenced
2221 * by the most recent super block.
2222 */
2223 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2224 pr_info("btrfsic: abort cyclic linkage (case 1).\n");
2225
2226 return ret;
2227 }
2228
2229 /*
2230 * This algorithm is recursive because the amount of used stack
2231 * space is very small and the max recursion depth is limited.
2232 */
2233 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2234 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2235 pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
2236 recursion_level,
2237 btrfsic_get_block_type(state, block),
2238 block->logical_bytenr, block->dev_state->name,
2239 block->dev_bytenr, block->mirror_num,
2240 l->ref_cnt,
2241 btrfsic_get_block_type(state, l->block_ref_to),
2242 l->block_ref_to->logical_bytenr,
2243 l->block_ref_to->dev_state->name,
2244 l->block_ref_to->dev_bytenr,
2245 l->block_ref_to->mirror_num);
2246 if (l->block_ref_to->never_written) {
2247 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
2248 btrfsic_get_block_type(state, l->block_ref_to),
2249 l->block_ref_to->logical_bytenr,
2250 l->block_ref_to->dev_state->name,
2251 l->block_ref_to->dev_bytenr,
2252 l->block_ref_to->mirror_num);
2253 ret = -1;
2254 } else if (!l->block_ref_to->is_iodone) {
2255 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
2256 btrfsic_get_block_type(state, l->block_ref_to),
2257 l->block_ref_to->logical_bytenr,
2258 l->block_ref_to->dev_state->name,
2259 l->block_ref_to->dev_bytenr,
2260 l->block_ref_to->mirror_num);
2261 ret = -1;
2262 } else if (l->block_ref_to->iodone_w_error) {
2263 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
2264 btrfsic_get_block_type(state, l->block_ref_to),
2265 l->block_ref_to->logical_bytenr,
2266 l->block_ref_to->dev_state->name,
2267 l->block_ref_to->dev_bytenr,
2268 l->block_ref_to->mirror_num);
2269 ret = -1;
2270 } else if (l->parent_generation !=
2271 l->block_ref_to->generation &&
2272 BTRFSIC_GENERATION_UNKNOWN !=
2273 l->parent_generation &&
2274 BTRFSIC_GENERATION_UNKNOWN !=
2275 l->block_ref_to->generation) {
2276 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
2277 btrfsic_get_block_type(state, l->block_ref_to),
2278 l->block_ref_to->logical_bytenr,
2279 l->block_ref_to->dev_state->name,
2280 l->block_ref_to->dev_bytenr,
2281 l->block_ref_to->mirror_num,
2282 l->block_ref_to->generation,
2283 l->parent_generation);
2284 ret = -1;
2285 } else if (l->block_ref_to->flush_gen >
2286 l->block_ref_to->dev_state->last_flush_gen) {
2287 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2288 btrfsic_get_block_type(state, l->block_ref_to),
2289 l->block_ref_to->logical_bytenr,
2290 l->block_ref_to->dev_state->name,
2291 l->block_ref_to->dev_bytenr,
2292 l->block_ref_to->mirror_num, block->flush_gen,
2293 l->block_ref_to->dev_state->last_flush_gen);
2294 ret = -1;
2295 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2296 l->block_ref_to,
2297 recursion_level +
2298 1)) {
2299 ret = -1;
2300 }
2301 }
2302
2303 return ret;
2304 }
2305
btrfsic_is_block_ref_by_superblock(const struct btrfsic_state * state,const struct btrfsic_block * block,int recursion_level)2306 static int btrfsic_is_block_ref_by_superblock(
2307 const struct btrfsic_state *state,
2308 const struct btrfsic_block *block,
2309 int recursion_level)
2310 {
2311 const struct btrfsic_block_link *l;
2312
2313 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2314 /* refer to comment at "abort cyclic linkage (case 1)" */
2315 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2316 pr_info("btrfsic: abort cyclic linkage (case 2).\n");
2317
2318 return 0;
2319 }
2320
2321 /*
2322 * This algorithm is recursive because the amount of used stack space
2323 * is very small and the max recursion depth is limited.
2324 */
2325 list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2326 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2327 pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
2328 recursion_level,
2329 btrfsic_get_block_type(state, block),
2330 block->logical_bytenr, block->dev_state->name,
2331 block->dev_bytenr, block->mirror_num,
2332 l->ref_cnt,
2333 btrfsic_get_block_type(state, l->block_ref_from),
2334 l->block_ref_from->logical_bytenr,
2335 l->block_ref_from->dev_state->name,
2336 l->block_ref_from->dev_bytenr,
2337 l->block_ref_from->mirror_num);
2338 if (l->block_ref_from->is_superblock &&
2339 state->latest_superblock->dev_bytenr ==
2340 l->block_ref_from->dev_bytenr &&
2341 state->latest_superblock->dev_state->bdev ==
2342 l->block_ref_from->dev_state->bdev)
2343 return 1;
2344 else if (btrfsic_is_block_ref_by_superblock(state,
2345 l->block_ref_from,
2346 recursion_level +
2347 1))
2348 return 1;
2349 }
2350
2351 return 0;
2352 }
2353
btrfsic_print_add_link(const struct btrfsic_state * state,const struct btrfsic_block_link * l)2354 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2355 const struct btrfsic_block_link *l)
2356 {
2357 pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2358 l->ref_cnt,
2359 btrfsic_get_block_type(state, l->block_ref_from),
2360 l->block_ref_from->logical_bytenr,
2361 l->block_ref_from->dev_state->name,
2362 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2363 btrfsic_get_block_type(state, l->block_ref_to),
2364 l->block_ref_to->logical_bytenr,
2365 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2366 l->block_ref_to->mirror_num);
2367 }
2368
btrfsic_print_rem_link(const struct btrfsic_state * state,const struct btrfsic_block_link * l)2369 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2370 const struct btrfsic_block_link *l)
2371 {
2372 pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2373 l->ref_cnt,
2374 btrfsic_get_block_type(state, l->block_ref_from),
2375 l->block_ref_from->logical_bytenr,
2376 l->block_ref_from->dev_state->name,
2377 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2378 btrfsic_get_block_type(state, l->block_ref_to),
2379 l->block_ref_to->logical_bytenr,
2380 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2381 l->block_ref_to->mirror_num);
2382 }
2383
btrfsic_get_block_type(const struct btrfsic_state * state,const struct btrfsic_block * block)2384 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2385 const struct btrfsic_block *block)
2386 {
2387 if (block->is_superblock &&
2388 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2389 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2390 return 'S';
2391 else if (block->is_superblock)
2392 return 's';
2393 else if (block->is_metadata)
2394 return 'M';
2395 else
2396 return 'D';
2397 }
2398
btrfsic_dump_tree(const struct btrfsic_state * state)2399 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2400 {
2401 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2402 }
2403
btrfsic_dump_tree_sub(const struct btrfsic_state * state,const struct btrfsic_block * block,int indent_level)2404 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2405 const struct btrfsic_block *block,
2406 int indent_level)
2407 {
2408 const struct btrfsic_block_link *l;
2409 int indent_add;
2410 static char buf[80];
2411 int cursor_position;
2412
2413 /*
2414 * Should better fill an on-stack buffer with a complete line and
2415 * dump it at once when it is time to print a newline character.
2416 */
2417
2418 /*
2419 * This algorithm is recursive because the amount of used stack space
2420 * is very small and the max recursion depth is limited.
2421 */
2422 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2423 btrfsic_get_block_type(state, block),
2424 block->logical_bytenr, block->dev_state->name,
2425 block->dev_bytenr, block->mirror_num);
2426 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2427 printk("[...]\n");
2428 return;
2429 }
2430 printk(buf);
2431 indent_level += indent_add;
2432 if (list_empty(&block->ref_to_list)) {
2433 printk("\n");
2434 return;
2435 }
2436 if (block->mirror_num > 1 &&
2437 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2438 printk(" [...]\n");
2439 return;
2440 }
2441
2442 cursor_position = indent_level;
2443 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2444 while (cursor_position < indent_level) {
2445 printk(" ");
2446 cursor_position++;
2447 }
2448 if (l->ref_cnt > 1)
2449 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2450 else
2451 indent_add = sprintf(buf, " --> ");
2452 if (indent_level + indent_add >
2453 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2454 printk("[...]\n");
2455 cursor_position = 0;
2456 continue;
2457 }
2458
2459 printk(buf);
2460
2461 btrfsic_dump_tree_sub(state, l->block_ref_to,
2462 indent_level + indent_add);
2463 cursor_position = 0;
2464 }
2465 }
2466
btrfsic_block_link_lookup_or_add(struct btrfsic_state * state,struct btrfsic_block_data_ctx * next_block_ctx,struct btrfsic_block * next_block,struct btrfsic_block * from_block,u64 parent_generation)2467 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2468 struct btrfsic_state *state,
2469 struct btrfsic_block_data_ctx *next_block_ctx,
2470 struct btrfsic_block *next_block,
2471 struct btrfsic_block *from_block,
2472 u64 parent_generation)
2473 {
2474 struct btrfsic_block_link *l;
2475
2476 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2477 next_block_ctx->dev_bytenr,
2478 from_block->dev_state->bdev,
2479 from_block->dev_bytenr,
2480 &state->block_link_hashtable);
2481 if (NULL == l) {
2482 l = btrfsic_block_link_alloc();
2483 if (!l)
2484 return NULL;
2485
2486 l->block_ref_to = next_block;
2487 l->block_ref_from = from_block;
2488 l->ref_cnt = 1;
2489 l->parent_generation = parent_generation;
2490
2491 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2492 btrfsic_print_add_link(state, l);
2493
2494 list_add(&l->node_ref_to, &from_block->ref_to_list);
2495 list_add(&l->node_ref_from, &next_block->ref_from_list);
2496
2497 btrfsic_block_link_hashtable_add(l,
2498 &state->block_link_hashtable);
2499 } else {
2500 l->ref_cnt++;
2501 l->parent_generation = parent_generation;
2502 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2503 btrfsic_print_add_link(state, l);
2504 }
2505
2506 return l;
2507 }
2508
btrfsic_block_lookup_or_add(struct btrfsic_state * state,struct btrfsic_block_data_ctx * block_ctx,const char * additional_string,int is_metadata,int is_iodone,int never_written,int mirror_num,int * was_created)2509 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2510 struct btrfsic_state *state,
2511 struct btrfsic_block_data_ctx *block_ctx,
2512 const char *additional_string,
2513 int is_metadata,
2514 int is_iodone,
2515 int never_written,
2516 int mirror_num,
2517 int *was_created)
2518 {
2519 struct btrfsic_block *block;
2520
2521 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2522 block_ctx->dev_bytenr,
2523 &state->block_hashtable);
2524 if (NULL == block) {
2525 struct btrfsic_dev_state *dev_state;
2526
2527 block = btrfsic_block_alloc();
2528 if (!block)
2529 return NULL;
2530
2531 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev->bd_dev);
2532 if (NULL == dev_state) {
2533 pr_info("btrfsic: error, lookup dev_state failed!\n");
2534 btrfsic_block_free(block);
2535 return NULL;
2536 }
2537 block->dev_state = dev_state;
2538 block->dev_bytenr = block_ctx->dev_bytenr;
2539 block->logical_bytenr = block_ctx->start;
2540 block->is_metadata = is_metadata;
2541 block->is_iodone = is_iodone;
2542 block->never_written = never_written;
2543 block->mirror_num = mirror_num;
2544 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2545 pr_info("New %s%c-block @%llu (%s/%llu/%d)\n",
2546 additional_string,
2547 btrfsic_get_block_type(state, block),
2548 block->logical_bytenr, dev_state->name,
2549 block->dev_bytenr, mirror_num);
2550 list_add(&block->all_blocks_node, &state->all_blocks_list);
2551 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2552 if (NULL != was_created)
2553 *was_created = 1;
2554 } else {
2555 if (NULL != was_created)
2556 *was_created = 0;
2557 }
2558
2559 return block;
2560 }
2561
btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state * state,u64 bytenr,struct btrfsic_dev_state * dev_state,u64 dev_bytenr)2562 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2563 u64 bytenr,
2564 struct btrfsic_dev_state *dev_state,
2565 u64 dev_bytenr)
2566 {
2567 struct btrfs_fs_info *fs_info = state->fs_info;
2568 struct btrfsic_block_data_ctx block_ctx;
2569 int num_copies;
2570 int mirror_num;
2571 int match = 0;
2572 int ret;
2573
2574 num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size);
2575
2576 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2577 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2578 &block_ctx, mirror_num);
2579 if (ret) {
2580 pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2581 bytenr, mirror_num);
2582 continue;
2583 }
2584
2585 if (dev_state->bdev == block_ctx.dev->bdev &&
2586 dev_bytenr == block_ctx.dev_bytenr) {
2587 match++;
2588 btrfsic_release_block_ctx(&block_ctx);
2589 break;
2590 }
2591 btrfsic_release_block_ctx(&block_ctx);
2592 }
2593
2594 if (WARN_ON(!match)) {
2595 pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
2596 bytenr, dev_state->name, dev_bytenr);
2597 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2598 ret = btrfsic_map_block(state, bytenr,
2599 state->metablock_size,
2600 &block_ctx, mirror_num);
2601 if (ret)
2602 continue;
2603
2604 pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
2605 bytenr, block_ctx.dev->name,
2606 block_ctx.dev_bytenr, mirror_num);
2607 }
2608 }
2609 }
2610
btrfsic_dev_state_lookup(dev_t dev)2611 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev)
2612 {
2613 return btrfsic_dev_state_hashtable_lookup(dev,
2614 &btrfsic_dev_state_hashtable);
2615 }
2616
__btrfsic_submit_bio(struct bio * bio)2617 static void __btrfsic_submit_bio(struct bio *bio)
2618 {
2619 struct btrfsic_dev_state *dev_state;
2620
2621 if (!btrfsic_is_initialized)
2622 return;
2623
2624 mutex_lock(&btrfsic_mutex);
2625 /* since btrfsic_submit_bio() is also called before
2626 * btrfsic_mount(), this might return NULL */
2627 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev->bd_dev);
2628 if (NULL != dev_state &&
2629 (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) {
2630 int i = 0;
2631 u64 dev_bytenr;
2632 u64 cur_bytenr;
2633 struct bio_vec bvec;
2634 struct bvec_iter iter;
2635 int bio_is_patched;
2636 char **mapped_datav;
2637 unsigned int segs = bio_segments(bio);
2638
2639 dev_bytenr = 512 * bio->bi_iter.bi_sector;
2640 bio_is_patched = 0;
2641 if (dev_state->state->print_mask &
2642 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2643 pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2644 bio_op(bio), bio->bi_opf, segs,
2645 bio->bi_iter.bi_sector, dev_bytenr, bio->bi_bdev);
2646
2647 mapped_datav = kmalloc_array(segs,
2648 sizeof(*mapped_datav), GFP_NOFS);
2649 if (!mapped_datav)
2650 goto leave;
2651 cur_bytenr = dev_bytenr;
2652
2653 bio_for_each_segment(bvec, bio, iter) {
2654 BUG_ON(bvec.bv_len != PAGE_SIZE);
2655 mapped_datav[i] = page_address(bvec.bv_page);
2656 i++;
2657
2658 if (dev_state->state->print_mask &
2659 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2660 pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2661 i, cur_bytenr, bvec.bv_len, bvec.bv_offset);
2662 cur_bytenr += bvec.bv_len;
2663 }
2664 btrfsic_process_written_block(dev_state, dev_bytenr,
2665 mapped_datav, segs,
2666 bio, &bio_is_patched,
2667 bio->bi_opf);
2668 kfree(mapped_datav);
2669 } else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2670 if (dev_state->state->print_mask &
2671 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2672 pr_info("submit_bio(rw=%d,0x%x FLUSH, bdev=%p)\n",
2673 bio_op(bio), bio->bi_opf, bio->bi_bdev);
2674 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2675 if ((dev_state->state->print_mask &
2676 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2677 BTRFSIC_PRINT_MASK_VERBOSE)))
2678 pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
2679 dev_state->name);
2680 } else {
2681 struct btrfsic_block *const block =
2682 &dev_state->dummy_block_for_bio_bh_flush;
2683
2684 block->is_iodone = 0;
2685 block->never_written = 0;
2686 block->iodone_w_error = 0;
2687 block->flush_gen = dev_state->last_flush_gen + 1;
2688 block->submit_bio_bh_rw = bio->bi_opf;
2689 block->orig_bio_private = bio->bi_private;
2690 block->orig_bio_end_io = bio->bi_end_io;
2691 block->next_in_same_bio = NULL;
2692 bio->bi_private = block;
2693 bio->bi_end_io = btrfsic_bio_end_io;
2694 }
2695 }
2696 leave:
2697 mutex_unlock(&btrfsic_mutex);
2698 }
2699
btrfsic_submit_bio(struct bio * bio)2700 void btrfsic_submit_bio(struct bio *bio)
2701 {
2702 __btrfsic_submit_bio(bio);
2703 submit_bio(bio);
2704 }
2705
btrfsic_submit_bio_wait(struct bio * bio)2706 int btrfsic_submit_bio_wait(struct bio *bio)
2707 {
2708 __btrfsic_submit_bio(bio);
2709 return submit_bio_wait(bio);
2710 }
2711
btrfsic_mount(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices,int including_extent_data,u32 print_mask)2712 int btrfsic_mount(struct btrfs_fs_info *fs_info,
2713 struct btrfs_fs_devices *fs_devices,
2714 int including_extent_data, u32 print_mask)
2715 {
2716 int ret;
2717 struct btrfsic_state *state;
2718 struct list_head *dev_head = &fs_devices->devices;
2719 struct btrfs_device *device;
2720
2721 if (!PAGE_ALIGNED(fs_info->nodesize)) {
2722 pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2723 fs_info->nodesize, PAGE_SIZE);
2724 return -1;
2725 }
2726 if (!PAGE_ALIGNED(fs_info->sectorsize)) {
2727 pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2728 fs_info->sectorsize, PAGE_SIZE);
2729 return -1;
2730 }
2731 state = kvzalloc(sizeof(*state), GFP_KERNEL);
2732 if (!state)
2733 return -ENOMEM;
2734
2735 if (!btrfsic_is_initialized) {
2736 mutex_init(&btrfsic_mutex);
2737 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2738 btrfsic_is_initialized = 1;
2739 }
2740 mutex_lock(&btrfsic_mutex);
2741 state->fs_info = fs_info;
2742 state->print_mask = print_mask;
2743 state->include_extent_data = including_extent_data;
2744 state->metablock_size = fs_info->nodesize;
2745 state->datablock_size = fs_info->sectorsize;
2746 INIT_LIST_HEAD(&state->all_blocks_list);
2747 btrfsic_block_hashtable_init(&state->block_hashtable);
2748 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2749 state->max_superblock_generation = 0;
2750 state->latest_superblock = NULL;
2751
2752 list_for_each_entry(device, dev_head, dev_list) {
2753 struct btrfsic_dev_state *ds;
2754 const char *p;
2755
2756 if (!device->bdev || !device->name)
2757 continue;
2758
2759 ds = btrfsic_dev_state_alloc();
2760 if (NULL == ds) {
2761 mutex_unlock(&btrfsic_mutex);
2762 return -ENOMEM;
2763 }
2764 ds->bdev = device->bdev;
2765 ds->state = state;
2766 bdevname(ds->bdev, ds->name);
2767 ds->name[BDEVNAME_SIZE - 1] = '\0';
2768 p = kbasename(ds->name);
2769 strlcpy(ds->name, p, sizeof(ds->name));
2770 btrfsic_dev_state_hashtable_add(ds,
2771 &btrfsic_dev_state_hashtable);
2772 }
2773
2774 ret = btrfsic_process_superblock(state, fs_devices);
2775 if (0 != ret) {
2776 mutex_unlock(&btrfsic_mutex);
2777 btrfsic_unmount(fs_devices);
2778 return ret;
2779 }
2780
2781 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2782 btrfsic_dump_database(state);
2783 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2784 btrfsic_dump_tree(state);
2785
2786 mutex_unlock(&btrfsic_mutex);
2787 return 0;
2788 }
2789
btrfsic_unmount(struct btrfs_fs_devices * fs_devices)2790 void btrfsic_unmount(struct btrfs_fs_devices *fs_devices)
2791 {
2792 struct btrfsic_block *b_all, *tmp_all;
2793 struct btrfsic_state *state;
2794 struct list_head *dev_head = &fs_devices->devices;
2795 struct btrfs_device *device;
2796
2797 if (!btrfsic_is_initialized)
2798 return;
2799
2800 mutex_lock(&btrfsic_mutex);
2801
2802 state = NULL;
2803 list_for_each_entry(device, dev_head, dev_list) {
2804 struct btrfsic_dev_state *ds;
2805
2806 if (!device->bdev || !device->name)
2807 continue;
2808
2809 ds = btrfsic_dev_state_hashtable_lookup(
2810 device->bdev->bd_dev,
2811 &btrfsic_dev_state_hashtable);
2812 if (NULL != ds) {
2813 state = ds->state;
2814 btrfsic_dev_state_hashtable_remove(ds);
2815 btrfsic_dev_state_free(ds);
2816 }
2817 }
2818
2819 if (NULL == state) {
2820 pr_info("btrfsic: error, cannot find state information on umount!\n");
2821 mutex_unlock(&btrfsic_mutex);
2822 return;
2823 }
2824
2825 /*
2826 * Don't care about keeping the lists' state up to date,
2827 * just free all memory that was allocated dynamically.
2828 * Free the blocks and the block_links.
2829 */
2830 list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
2831 all_blocks_node) {
2832 struct btrfsic_block_link *l, *tmp;
2833
2834 list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
2835 node_ref_to) {
2836 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2837 btrfsic_print_rem_link(state, l);
2838
2839 l->ref_cnt--;
2840 if (0 == l->ref_cnt)
2841 btrfsic_block_link_free(l);
2842 }
2843
2844 if (b_all->is_iodone || b_all->never_written)
2845 btrfsic_block_free(b_all);
2846 else
2847 pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
2848 btrfsic_get_block_type(state, b_all),
2849 b_all->logical_bytenr, b_all->dev_state->name,
2850 b_all->dev_bytenr, b_all->mirror_num);
2851 }
2852
2853 mutex_unlock(&btrfsic_mutex);
2854
2855 kvfree(state);
2856 }
2857