1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 #ifndef __UBIFS_H__
12 #define __UBIFS_H__
13
14 #include <asm/div64.h>
15 #include <linux/statfs.h>
16 #include <linux/fs.h>
17 #include <linux/err.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 #include <linux/spinlock.h>
22 #include <linux/mutex.h>
23 #include <linux/rwsem.h>
24 #include <linux/mtd/ubi.h>
25 #include <linux/pagemap.h>
26 #include <linux/backing-dev.h>
27 #include <linux/security.h>
28 #include <linux/xattr.h>
29 #include <linux/random.h>
30 #include <crypto/hash_info.h>
31 #include <crypto/hash.h>
32 #include <crypto/algapi.h>
33
34 #include <linux/fscrypt.h>
35
36 #include "ubifs-media.h"
37
38 /* Version of this UBIFS implementation */
39 #define UBIFS_VERSION 1
40
41 /* UBIFS file system VFS magic number */
42 #define UBIFS_SUPER_MAGIC 0x24051905
43
44 /* Number of UBIFS blocks per VFS page */
45 #define UBIFS_BLOCKS_PER_PAGE (PAGE_SIZE / UBIFS_BLOCK_SIZE)
46 #define UBIFS_BLOCKS_PER_PAGE_SHIFT (PAGE_SHIFT - UBIFS_BLOCK_SHIFT)
47
48 /* "File system end of life" sequence number watermark */
49 #define SQNUM_WARN_WATERMARK 0xFFFFFFFF00000000ULL
50 #define SQNUM_WATERMARK 0xFFFFFFFFFF000000ULL
51
52 /*
53 * Minimum amount of LEBs reserved for the index. At present the index needs at
54 * least 2 LEBs: one for the index head and one for in-the-gaps method (which
55 * currently does not cater for the index head and so excludes it from
56 * consideration).
57 */
58 #define MIN_INDEX_LEBS 2
59
60 /* Minimum amount of data UBIFS writes to the flash */
61 #define MIN_WRITE_SZ (UBIFS_DATA_NODE_SZ + 8)
62
63 /*
64 * Currently we do not support inode number overlapping and re-using, so this
65 * watermark defines dangerous inode number level. This should be fixed later,
66 * although it is difficult to exceed current limit. Another option is to use
67 * 64-bit inode numbers, but this means more overhead.
68 */
69 #define INUM_WARN_WATERMARK 0xFFF00000
70 #define INUM_WATERMARK 0xFFFFFF00
71
72 /* Maximum number of entries in each LPT (LEB category) heap */
73 #define LPT_HEAP_SZ 256
74
75 /*
76 * Background thread name pattern. The numbers are UBI device and volume
77 * numbers.
78 */
79 #define BGT_NAME_PATTERN "ubifs_bgt%d_%d"
80
81 /* Maximum possible inode number (only 32-bit inodes are supported now) */
82 #define MAX_INUM 0xFFFFFFFF
83
84 /* Number of non-data journal heads */
85 #define NONDATA_JHEADS_CNT 2
86
87 /* Shorter names for journal head numbers for internal usage */
88 #define GCHD UBIFS_GC_HEAD
89 #define BASEHD UBIFS_BASE_HEAD
90 #define DATAHD UBIFS_DATA_HEAD
91
92 /* 'No change' value for 'ubifs_change_lp()' */
93 #define LPROPS_NC 0x80000001
94
95 /*
96 * There is no notion of truncation key because truncation nodes do not exist
97 * in TNC. However, when replaying, it is handy to introduce fake "truncation"
98 * keys for truncation nodes because the code becomes simpler. So we define
99 * %UBIFS_TRUN_KEY type.
100 *
101 * But otherwise, out of the journal reply scope, the truncation keys are
102 * invalid.
103 */
104 #define UBIFS_TRUN_KEY UBIFS_KEY_TYPES_CNT
105 #define UBIFS_INVALID_KEY UBIFS_KEY_TYPES_CNT
106
107 /*
108 * How much a directory entry/extended attribute entry adds to the parent/host
109 * inode.
110 */
111 #define CALC_DENT_SIZE(name_len) ALIGN(UBIFS_DENT_NODE_SZ + (name_len) + 1, 8)
112
113 /* How much an extended attribute adds to the host inode */
114 #define CALC_XATTR_BYTES(data_len) ALIGN(UBIFS_INO_NODE_SZ + (data_len) + 1, 8)
115
116 /*
117 * Znodes which were not touched for 'OLD_ZNODE_AGE' seconds are considered
118 * "old", and znode which were touched last 'YOUNG_ZNODE_AGE' seconds ago are
119 * considered "young". This is used by shrinker when selecting znode to trim
120 * off.
121 */
122 #define OLD_ZNODE_AGE 20
123 #define YOUNG_ZNODE_AGE 5
124
125 /*
126 * Some compressors, like LZO, may end up with more data then the input buffer.
127 * So UBIFS always allocates larger output buffer, to be sure the compressor
128 * will not corrupt memory in case of worst case compression.
129 */
130 #define WORST_COMPR_FACTOR 2
131
132 #ifdef CONFIG_FS_ENCRYPTION
133 #define UBIFS_CIPHER_BLOCK_SIZE FS_CRYPTO_BLOCK_SIZE
134 #else
135 #define UBIFS_CIPHER_BLOCK_SIZE 0
136 #endif
137
138 /*
139 * How much memory is needed for a buffer where we compress a data node.
140 */
141 #define COMPRESSED_DATA_NODE_BUF_SZ \
142 (UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR)
143
144 /* Maximum expected tree height for use by bottom_up_buf */
145 #define BOTTOM_UP_HEIGHT 64
146
147 /* Maximum number of data nodes to bulk-read */
148 #define UBIFS_MAX_BULK_READ 32
149
150 #ifdef CONFIG_UBIFS_FS_AUTHENTICATION
151 #define UBIFS_HASH_ARR_SZ UBIFS_MAX_HASH_LEN
152 #define UBIFS_HMAC_ARR_SZ UBIFS_MAX_HMAC_LEN
153 #else
154 #define UBIFS_HASH_ARR_SZ 0
155 #define UBIFS_HMAC_ARR_SZ 0
156 #endif
157
158 /*
159 * Lockdep classes for UBIFS inode @ui_mutex.
160 */
161 enum {
162 WB_MUTEX_1 = 0,
163 WB_MUTEX_2 = 1,
164 WB_MUTEX_3 = 2,
165 WB_MUTEX_4 = 3,
166 };
167
168 /*
169 * Znode flags (actually, bit numbers which store the flags).
170 *
171 * DIRTY_ZNODE: znode is dirty
172 * COW_ZNODE: znode is being committed and a new instance of this znode has to
173 * be created before changing this znode
174 * OBSOLETE_ZNODE: znode is obsolete, which means it was deleted, but it is
175 * still in the commit list and the ongoing commit operation
176 * will commit it, and delete this znode after it is done
177 */
178 enum {
179 DIRTY_ZNODE = 0,
180 COW_ZNODE = 1,
181 OBSOLETE_ZNODE = 2,
182 };
183
184 /*
185 * Commit states.
186 *
187 * COMMIT_RESTING: commit is not wanted
188 * COMMIT_BACKGROUND: background commit has been requested
189 * COMMIT_REQUIRED: commit is required
190 * COMMIT_RUNNING_BACKGROUND: background commit is running
191 * COMMIT_RUNNING_REQUIRED: commit is running and it is required
192 * COMMIT_BROKEN: commit failed
193 */
194 enum {
195 COMMIT_RESTING = 0,
196 COMMIT_BACKGROUND,
197 COMMIT_REQUIRED,
198 COMMIT_RUNNING_BACKGROUND,
199 COMMIT_RUNNING_REQUIRED,
200 COMMIT_BROKEN,
201 };
202
203 /*
204 * 'ubifs_scan_a_node()' return values.
205 *
206 * SCANNED_GARBAGE: scanned garbage
207 * SCANNED_EMPTY_SPACE: scanned empty space
208 * SCANNED_A_NODE: scanned a valid node
209 * SCANNED_A_CORRUPT_NODE: scanned a corrupted node
210 * SCANNED_A_BAD_PAD_NODE: scanned a padding node with invalid pad length
211 *
212 * Greater than zero means: 'scanned that number of padding bytes'
213 */
214 enum {
215 SCANNED_GARBAGE = 0,
216 SCANNED_EMPTY_SPACE = -1,
217 SCANNED_A_NODE = -2,
218 SCANNED_A_CORRUPT_NODE = -3,
219 SCANNED_A_BAD_PAD_NODE = -4,
220 };
221
222 /*
223 * LPT cnode flag bits.
224 *
225 * DIRTY_CNODE: cnode is dirty
226 * OBSOLETE_CNODE: cnode is being committed and has been copied (or deleted),
227 * so it can (and must) be freed when the commit is finished
228 * COW_CNODE: cnode is being committed and must be copied before writing
229 */
230 enum {
231 DIRTY_CNODE = 0,
232 OBSOLETE_CNODE = 1,
233 COW_CNODE = 2,
234 };
235
236 /*
237 * Dirty flag bits (lpt_drty_flgs) for LPT special nodes.
238 *
239 * LTAB_DIRTY: ltab node is dirty
240 * LSAVE_DIRTY: lsave node is dirty
241 */
242 enum {
243 LTAB_DIRTY = 1,
244 LSAVE_DIRTY = 2,
245 };
246
247 /*
248 * Return codes used by the garbage collector.
249 * @LEB_FREED: the logical eraseblock was freed and is ready to use
250 * @LEB_FREED_IDX: indexing LEB was freed and can be used only after the commit
251 * @LEB_RETAINED: the logical eraseblock was freed and retained for GC purposes
252 */
253 enum {
254 LEB_FREED,
255 LEB_FREED_IDX,
256 LEB_RETAINED,
257 };
258
259 /*
260 * Action taken upon a failed ubifs_assert().
261 * @ASSACT_REPORT: just report the failed assertion
262 * @ASSACT_RO: switch to read-only mode
263 * @ASSACT_PANIC: call BUG() and possible panic the kernel
264 */
265 enum {
266 ASSACT_REPORT = 0,
267 ASSACT_RO,
268 ASSACT_PANIC,
269 };
270
271 /**
272 * struct ubifs_old_idx - index node obsoleted since last commit start.
273 * @rb: rb-tree node
274 * @lnum: LEB number of obsoleted index node
275 * @offs: offset of obsoleted index node
276 */
277 struct ubifs_old_idx {
278 struct rb_node rb;
279 int lnum;
280 int offs;
281 };
282
283 /* The below union makes it easier to deal with keys */
284 union ubifs_key {
285 uint8_t u8[UBIFS_SK_LEN];
286 uint32_t u32[UBIFS_SK_LEN/4];
287 uint64_t u64[UBIFS_SK_LEN/8];
288 __le32 j32[UBIFS_SK_LEN/4];
289 };
290
291 /**
292 * struct ubifs_scan_node - UBIFS scanned node information.
293 * @list: list of scanned nodes
294 * @key: key of node scanned (if it has one)
295 * @sqnum: sequence number
296 * @type: type of node scanned
297 * @offs: offset with LEB of node scanned
298 * @len: length of node scanned
299 * @node: raw node
300 */
301 struct ubifs_scan_node {
302 struct list_head list;
303 union ubifs_key key;
304 unsigned long long sqnum;
305 int type;
306 int offs;
307 int len;
308 void *node;
309 };
310
311 /**
312 * struct ubifs_scan_leb - UBIFS scanned LEB information.
313 * @lnum: logical eraseblock number
314 * @nodes_cnt: number of nodes scanned
315 * @nodes: list of struct ubifs_scan_node
316 * @endpt: end point (and therefore the start of empty space)
317 * @buf: buffer containing entire LEB scanned
318 */
319 struct ubifs_scan_leb {
320 int lnum;
321 int nodes_cnt;
322 struct list_head nodes;
323 int endpt;
324 void *buf;
325 };
326
327 /**
328 * struct ubifs_gced_idx_leb - garbage-collected indexing LEB.
329 * @list: list
330 * @lnum: LEB number
331 * @unmap: OK to unmap this LEB
332 *
333 * This data structure is used to temporary store garbage-collected indexing
334 * LEBs - they are not released immediately, but only after the next commit.
335 * This is needed to guarantee recoverability.
336 */
337 struct ubifs_gced_idx_leb {
338 struct list_head list;
339 int lnum;
340 int unmap;
341 };
342
343 /**
344 * struct ubifs_inode - UBIFS in-memory inode description.
345 * @vfs_inode: VFS inode description object
346 * @creat_sqnum: sequence number at time of creation
347 * @del_cmtno: commit number corresponding to the time the inode was deleted,
348 * protected by @c->commit_sem;
349 * @xattr_size: summarized size of all extended attributes in bytes
350 * @xattr_cnt: count of extended attributes this inode has
351 * @xattr_names: sum of lengths of all extended attribute names belonging to
352 * this inode
353 * @dirty: non-zero if the inode is dirty
354 * @xattr: non-zero if this is an extended attribute inode
355 * @bulk_read: non-zero if bulk-read should be used
356 * @ui_mutex: serializes inode write-back with the rest of VFS operations,
357 * serializes "clean <-> dirty" state changes, serializes bulk-read,
358 * protects @dirty, @bulk_read, @ui_size, and @xattr_size
359 * @xattr_sem: serilizes write operations (remove|set|create) on xattr
360 * @ui_lock: protects @synced_i_size
361 * @synced_i_size: synchronized size of inode, i.e. the value of inode size
362 * currently stored on the flash; used only for regular file
363 * inodes
364 * @ui_size: inode size used by UBIFS when writing to flash
365 * @flags: inode flags (@UBIFS_COMPR_FL, etc)
366 * @compr_type: default compression type used for this inode
367 * @last_page_read: page number of last page read (for bulk read)
368 * @read_in_a_row: number of consecutive pages read in a row (for bulk read)
369 * @data_len: length of the data attached to the inode
370 * @data: inode's data
371 *
372 * @ui_mutex exists for two main reasons. At first it prevents inodes from
373 * being written back while UBIFS changing them, being in the middle of an VFS
374 * operation. This way UBIFS makes sure the inode fields are consistent. For
375 * example, in 'ubifs_rename()' we change 3 inodes simultaneously, and
376 * write-back must not write any of them before we have finished.
377 *
378 * The second reason is budgeting - UBIFS has to budget all operations. If an
379 * operation is going to mark an inode dirty, it has to allocate budget for
380 * this. It cannot just mark it dirty because there is no guarantee there will
381 * be enough flash space to write the inode back later. This means UBIFS has
382 * to have full control over inode "clean <-> dirty" transitions (and pages
383 * actually). But unfortunately, VFS marks inodes dirty in many places, and it
384 * does not ask the file-system if it is allowed to do so (there is a notifier,
385 * but it is not enough), i.e., there is no mechanism to synchronize with this.
386 * So UBIFS has its own inode dirty flag and its own mutex to serialize
387 * "clean <-> dirty" transitions.
388 *
389 * The @synced_i_size field is used to make sure we never write pages which are
390 * beyond last synchronized inode size. See 'ubifs_writepage()' for more
391 * information.
392 *
393 * The @ui_size is a "shadow" variable for @inode->i_size and UBIFS uses
394 * @ui_size instead of @inode->i_size. The reason for this is that UBIFS cannot
395 * make sure @inode->i_size is always changed under @ui_mutex, because it
396 * cannot call 'truncate_setsize()' with @ui_mutex locked, because it would
397 * deadlock with 'ubifs_writepage()' (see file.c). All the other inode fields
398 * are changed under @ui_mutex, so they do not need "shadow" fields. Note, one
399 * could consider to rework locking and base it on "shadow" fields.
400 */
401 struct ubifs_inode {
402 struct inode vfs_inode;
403 unsigned long long creat_sqnum;
404 unsigned long long del_cmtno;
405 unsigned int xattr_size;
406 unsigned int xattr_cnt;
407 unsigned int xattr_names;
408 unsigned int dirty:1;
409 unsigned int xattr:1;
410 unsigned int bulk_read:1;
411 unsigned int compr_type:2;
412 struct mutex ui_mutex;
413 struct rw_semaphore xattr_sem;
414 spinlock_t ui_lock;
415 loff_t synced_i_size;
416 loff_t ui_size;
417 int flags;
418 pgoff_t last_page_read;
419 pgoff_t read_in_a_row;
420 int data_len;
421 void *data;
422 };
423
424 /**
425 * struct ubifs_unclean_leb - records a LEB recovered under read-only mode.
426 * @list: list
427 * @lnum: LEB number of recovered LEB
428 * @endpt: offset where recovery ended
429 *
430 * This structure records a LEB identified during recovery that needs to be
431 * cleaned but was not because UBIFS was mounted read-only. The information
432 * is used to clean the LEB when remounting to read-write mode.
433 */
434 struct ubifs_unclean_leb {
435 struct list_head list;
436 int lnum;
437 int endpt;
438 };
439
440 /*
441 * LEB properties flags.
442 *
443 * LPROPS_UNCAT: not categorized
444 * LPROPS_DIRTY: dirty > free, dirty >= @c->dead_wm, not index
445 * LPROPS_DIRTY_IDX: dirty + free > @c->min_idx_node_sze and index
446 * LPROPS_FREE: free > 0, dirty < @c->dead_wm, not empty, not index
447 * LPROPS_HEAP_CNT: number of heaps used for storing categorized LEBs
448 * LPROPS_EMPTY: LEB is empty, not taken
449 * LPROPS_FREEABLE: free + dirty == leb_size, not index, not taken
450 * LPROPS_FRDI_IDX: free + dirty == leb_size and index, may be taken
451 * LPROPS_CAT_MASK: mask for the LEB categories above
452 * LPROPS_TAKEN: LEB was taken (this flag is not saved on the media)
453 * LPROPS_INDEX: LEB contains indexing nodes (this flag also exists on flash)
454 */
455 enum {
456 LPROPS_UNCAT = 0,
457 LPROPS_DIRTY = 1,
458 LPROPS_DIRTY_IDX = 2,
459 LPROPS_FREE = 3,
460 LPROPS_HEAP_CNT = 3,
461 LPROPS_EMPTY = 4,
462 LPROPS_FREEABLE = 5,
463 LPROPS_FRDI_IDX = 6,
464 LPROPS_CAT_MASK = 15,
465 LPROPS_TAKEN = 16,
466 LPROPS_INDEX = 32,
467 };
468
469 /**
470 * struct ubifs_lprops - logical eraseblock properties.
471 * @free: amount of free space in bytes
472 * @dirty: amount of dirty space in bytes
473 * @flags: LEB properties flags (see above)
474 * @lnum: LEB number
475 * @list: list of same-category lprops (for LPROPS_EMPTY and LPROPS_FREEABLE)
476 * @hpos: heap position in heap of same-category lprops (other categories)
477 */
478 struct ubifs_lprops {
479 int free;
480 int dirty;
481 int flags;
482 int lnum;
483 union {
484 struct list_head list;
485 int hpos;
486 };
487 };
488
489 /**
490 * struct ubifs_lpt_lprops - LPT logical eraseblock properties.
491 * @free: amount of free space in bytes
492 * @dirty: amount of dirty space in bytes
493 * @tgc: trivial GC flag (1 => unmap after commit end)
494 * @cmt: commit flag (1 => reserved for commit)
495 */
496 struct ubifs_lpt_lprops {
497 int free;
498 int dirty;
499 unsigned tgc:1;
500 unsigned cmt:1;
501 };
502
503 /**
504 * struct ubifs_lp_stats - statistics of eraseblocks in the main area.
505 * @empty_lebs: number of empty LEBs
506 * @taken_empty_lebs: number of taken LEBs
507 * @idx_lebs: number of indexing LEBs
508 * @total_free: total free space in bytes (includes all LEBs)
509 * @total_dirty: total dirty space in bytes (includes all LEBs)
510 * @total_used: total used space in bytes (does not include index LEBs)
511 * @total_dead: total dead space in bytes (does not include index LEBs)
512 * @total_dark: total dark space in bytes (does not include index LEBs)
513 *
514 * The @taken_empty_lebs field counts the LEBs that are in the transient state
515 * of having been "taken" for use but not yet written to. @taken_empty_lebs is
516 * needed to account correctly for @gc_lnum, otherwise @empty_lebs could be
517 * used by itself (in which case 'unused_lebs' would be a better name). In the
518 * case of @gc_lnum, it is "taken" at mount time or whenever a LEB is retained
519 * by GC, but unlike other empty LEBs that are "taken", it may not be written
520 * straight away (i.e. before the next commit start or unmount), so either
521 * @gc_lnum must be specially accounted for, or the current approach followed
522 * i.e. count it under @taken_empty_lebs.
523 *
524 * @empty_lebs includes @taken_empty_lebs.
525 *
526 * @total_used, @total_dead and @total_dark fields do not account indexing
527 * LEBs.
528 */
529 struct ubifs_lp_stats {
530 int empty_lebs;
531 int taken_empty_lebs;
532 int idx_lebs;
533 long long total_free;
534 long long total_dirty;
535 long long total_used;
536 long long total_dead;
537 long long total_dark;
538 };
539
540 struct ubifs_nnode;
541
542 /**
543 * struct ubifs_cnode - LEB Properties Tree common node.
544 * @parent: parent nnode
545 * @cnext: next cnode to commit
546 * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE)
547 * @iip: index in parent
548 * @level: level in the tree (zero for pnodes, greater than zero for nnodes)
549 * @num: node number
550 */
551 struct ubifs_cnode {
552 struct ubifs_nnode *parent;
553 struct ubifs_cnode *cnext;
554 unsigned long flags;
555 int iip;
556 int level;
557 int num;
558 };
559
560 /**
561 * struct ubifs_pnode - LEB Properties Tree leaf node.
562 * @parent: parent nnode
563 * @cnext: next cnode to commit
564 * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE)
565 * @iip: index in parent
566 * @level: level in the tree (always zero for pnodes)
567 * @num: node number
568 * @lprops: LEB properties array
569 */
570 struct ubifs_pnode {
571 struct ubifs_nnode *parent;
572 struct ubifs_cnode *cnext;
573 unsigned long flags;
574 int iip;
575 int level;
576 int num;
577 struct ubifs_lprops lprops[UBIFS_LPT_FANOUT];
578 };
579
580 /**
581 * struct ubifs_nbranch - LEB Properties Tree internal node branch.
582 * @lnum: LEB number of child
583 * @offs: offset of child
584 * @nnode: nnode child
585 * @pnode: pnode child
586 * @cnode: cnode child
587 */
588 struct ubifs_nbranch {
589 int lnum;
590 int offs;
591 union {
592 struct ubifs_nnode *nnode;
593 struct ubifs_pnode *pnode;
594 struct ubifs_cnode *cnode;
595 };
596 };
597
598 /**
599 * struct ubifs_nnode - LEB Properties Tree internal node.
600 * @parent: parent nnode
601 * @cnext: next cnode to commit
602 * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE)
603 * @iip: index in parent
604 * @level: level in the tree (always greater than zero for nnodes)
605 * @num: node number
606 * @nbranch: branches to child nodes
607 */
608 struct ubifs_nnode {
609 struct ubifs_nnode *parent;
610 struct ubifs_cnode *cnext;
611 unsigned long flags;
612 int iip;
613 int level;
614 int num;
615 struct ubifs_nbranch nbranch[UBIFS_LPT_FANOUT];
616 };
617
618 /**
619 * struct ubifs_lpt_heap - heap of categorized lprops.
620 * @arr: heap array
621 * @cnt: number in heap
622 * @max_cnt: maximum number allowed in heap
623 *
624 * There are %LPROPS_HEAP_CNT heaps.
625 */
626 struct ubifs_lpt_heap {
627 struct ubifs_lprops **arr;
628 int cnt;
629 int max_cnt;
630 };
631
632 /*
633 * Return codes for LPT scan callback function.
634 *
635 * LPT_SCAN_CONTINUE: continue scanning
636 * LPT_SCAN_ADD: add the LEB properties scanned to the tree in memory
637 * LPT_SCAN_STOP: stop scanning
638 */
639 enum {
640 LPT_SCAN_CONTINUE = 0,
641 LPT_SCAN_ADD = 1,
642 LPT_SCAN_STOP = 2,
643 };
644
645 struct ubifs_info;
646
647 /* Callback used by the 'ubifs_lpt_scan_nolock()' function */
648 typedef int (*ubifs_lpt_scan_callback)(struct ubifs_info *c,
649 const struct ubifs_lprops *lprops,
650 int in_tree, void *data);
651
652 /**
653 * struct ubifs_wbuf - UBIFS write-buffer.
654 * @c: UBIFS file-system description object
655 * @buf: write-buffer (of min. flash I/O unit size)
656 * @lnum: logical eraseblock number the write-buffer points to
657 * @offs: write-buffer offset in this logical eraseblock
658 * @avail: number of bytes available in the write-buffer
659 * @used: number of used bytes in the write-buffer
660 * @size: write-buffer size (in [@c->min_io_size, @c->max_write_size] range)
661 * @jhead: journal head the mutex belongs to (note, needed only to shut lockdep
662 * up by 'mutex_lock_nested()).
663 * @sync_callback: write-buffer synchronization callback
664 * @io_mutex: serializes write-buffer I/O
665 * @lock: serializes @buf, @lnum, @offs, @avail, @used, @next_ino and @inodes
666 * fields
667 * @timer: write-buffer timer
668 * @no_timer: non-zero if this write-buffer does not have a timer
669 * @need_sync: non-zero if the timer expired and the wbuf needs sync'ing
670 * @next_ino: points to the next position of the following inode number
671 * @inodes: stores the inode numbers of the nodes which are in wbuf
672 *
673 * The write-buffer synchronization callback is called when the write-buffer is
674 * synchronized in order to notify how much space was wasted due to
675 * write-buffer padding and how much free space is left in the LEB.
676 *
677 * Note: the fields @buf, @lnum, @offs, @avail and @used can be read under
678 * spin-lock or mutex because they are written under both mutex and spin-lock.
679 * @buf is appended to under mutex but overwritten under both mutex and
680 * spin-lock. Thus the data between @buf and @buf + @used can be read under
681 * spinlock.
682 */
683 struct ubifs_wbuf {
684 struct ubifs_info *c;
685 void *buf;
686 int lnum;
687 int offs;
688 int avail;
689 int used;
690 int size;
691 int jhead;
692 int (*sync_callback)(struct ubifs_info *c, int lnum, int free, int pad);
693 struct mutex io_mutex;
694 spinlock_t lock;
695 struct hrtimer timer;
696 unsigned int no_timer:1;
697 unsigned int need_sync:1;
698 int next_ino;
699 ino_t *inodes;
700 };
701
702 /**
703 * struct ubifs_bud - bud logical eraseblock.
704 * @lnum: logical eraseblock number
705 * @start: where the (uncommitted) bud data starts
706 * @jhead: journal head number this bud belongs to
707 * @list: link in the list buds belonging to the same journal head
708 * @rb: link in the tree of all buds
709 * @log_hash: the log hash from the commit start node up to this bud
710 */
711 struct ubifs_bud {
712 int lnum;
713 int start;
714 int jhead;
715 struct list_head list;
716 struct rb_node rb;
717 struct shash_desc *log_hash;
718 };
719
720 /**
721 * struct ubifs_jhead - journal head.
722 * @wbuf: head's write-buffer
723 * @buds_list: list of bud LEBs belonging to this journal head
724 * @grouped: non-zero if UBIFS groups nodes when writing to this journal head
725 * @log_hash: the log hash from the commit start node up to this journal head
726 *
727 * Note, the @buds list is protected by the @c->buds_lock.
728 */
729 struct ubifs_jhead {
730 struct ubifs_wbuf wbuf;
731 struct list_head buds_list;
732 unsigned int grouped:1;
733 struct shash_desc *log_hash;
734 };
735
736 /**
737 * struct ubifs_zbranch - key/coordinate/length branch stored in znodes.
738 * @key: key
739 * @znode: znode address in memory
740 * @lnum: LEB number of the target node (indexing node or data node)
741 * @offs: target node offset within @lnum
742 * @len: target node length
743 * @hash: the hash of the target node
744 */
745 struct ubifs_zbranch {
746 union ubifs_key key;
747 union {
748 struct ubifs_znode *znode;
749 void *leaf;
750 };
751 int lnum;
752 int offs;
753 int len;
754 u8 hash[UBIFS_HASH_ARR_SZ];
755 };
756
757 /**
758 * struct ubifs_znode - in-memory representation of an indexing node.
759 * @parent: parent znode or NULL if it is the root
760 * @cnext: next znode to commit
761 * @cparent: parent node for this commit
762 * @ciip: index in cparent's zbranch array
763 * @flags: znode flags (%DIRTY_ZNODE, %COW_ZNODE or %OBSOLETE_ZNODE)
764 * @time: last access time (seconds)
765 * @level: level of the entry in the TNC tree
766 * @child_cnt: count of child znodes
767 * @iip: index in parent's zbranch array
768 * @alt: lower bound of key range has altered i.e. child inserted at slot 0
769 * @lnum: LEB number of the corresponding indexing node
770 * @offs: offset of the corresponding indexing node
771 * @len: length of the corresponding indexing node
772 * @zbranch: array of znode branches (@c->fanout elements)
773 *
774 * Note! The @lnum, @offs, and @len fields are not really needed - we have them
775 * only for internal consistency check. They could be removed to save some RAM.
776 */
777 struct ubifs_znode {
778 struct ubifs_znode *parent;
779 struct ubifs_znode *cnext;
780 struct ubifs_znode *cparent;
781 int ciip;
782 unsigned long flags;
783 time64_t time;
784 int level;
785 int child_cnt;
786 int iip;
787 int alt;
788 int lnum;
789 int offs;
790 int len;
791 struct ubifs_zbranch zbranch[];
792 };
793
794 /**
795 * struct bu_info - bulk-read information.
796 * @key: first data node key
797 * @zbranch: zbranches of data nodes to bulk read
798 * @buf: buffer to read into
799 * @buf_len: buffer length
800 * @gc_seq: GC sequence number to detect races with GC
801 * @cnt: number of data nodes for bulk read
802 * @blk_cnt: number of data blocks including holes
803 * @oef: end of file reached
804 */
805 struct bu_info {
806 union ubifs_key key;
807 struct ubifs_zbranch zbranch[UBIFS_MAX_BULK_READ];
808 void *buf;
809 int buf_len;
810 int gc_seq;
811 int cnt;
812 int blk_cnt;
813 int eof;
814 };
815
816 /**
817 * struct ubifs_node_range - node length range description data structure.
818 * @len: fixed node length
819 * @min_len: minimum possible node length
820 * @max_len: maximum possible node length
821 *
822 * If @max_len is %0, the node has fixed length @len.
823 */
824 struct ubifs_node_range {
825 union {
826 int len;
827 int min_len;
828 };
829 int max_len;
830 };
831
832 /**
833 * struct ubifs_compressor - UBIFS compressor description structure.
834 * @compr_type: compressor type (%UBIFS_COMPR_LZO, etc)
835 * @cc: cryptoapi compressor handle
836 * @comp_mutex: mutex used during compression
837 * @decomp_mutex: mutex used during decompression
838 * @name: compressor name
839 * @capi_name: cryptoapi compressor name
840 */
841 struct ubifs_compressor {
842 int compr_type;
843 struct crypto_comp *cc;
844 struct mutex *comp_mutex;
845 struct mutex *decomp_mutex;
846 const char *name;
847 const char *capi_name;
848 };
849
850 /**
851 * struct ubifs_budget_req - budget requirements of an operation.
852 *
853 * @fast: non-zero if the budgeting should try to acquire budget quickly and
854 * should not try to call write-back
855 * @recalculate: non-zero if @idx_growth, @data_growth, and @dd_growth fields
856 * have to be re-calculated
857 * @new_page: non-zero if the operation adds a new page
858 * @dirtied_page: non-zero if the operation makes a page dirty
859 * @new_dent: non-zero if the operation adds a new directory entry
860 * @mod_dent: non-zero if the operation removes or modifies an existing
861 * directory entry
862 * @new_ino: non-zero if the operation adds a new inode
863 * @new_ino_d: how much data newly created inode contains
864 * @dirtied_ino: how many inodes the operation makes dirty
865 * @dirtied_ino_d: how much data dirtied inode contains
866 * @idx_growth: how much the index will supposedly grow
867 * @data_growth: how much new data the operation will supposedly add
868 * @dd_growth: how much data that makes other data dirty the operation will
869 * supposedly add
870 *
871 * @idx_growth, @data_growth and @dd_growth are not used in budget request. The
872 * budgeting subsystem caches index and data growth values there to avoid
873 * re-calculating them when the budget is released. However, if @idx_growth is
874 * %-1, it is calculated by the release function using other fields.
875 *
876 * An inode may contain 4KiB of data at max., thus the widths of @new_ino_d
877 * is 13 bits, and @dirtied_ino_d - 15, because up to 4 inodes may be made
878 * dirty by the re-name operation.
879 *
880 * Note, UBIFS aligns node lengths to 8-bytes boundary, so the requester has to
881 * make sure the amount of inode data which contribute to @new_ino_d and
882 * @dirtied_ino_d fields are aligned.
883 */
884 struct ubifs_budget_req {
885 unsigned int fast:1;
886 unsigned int recalculate:1;
887 #ifndef UBIFS_DEBUG
888 unsigned int new_page:1;
889 unsigned int dirtied_page:1;
890 unsigned int new_dent:1;
891 unsigned int mod_dent:1;
892 unsigned int new_ino:1;
893 unsigned int new_ino_d:13;
894 unsigned int dirtied_ino:4;
895 unsigned int dirtied_ino_d:15;
896 #else
897 /* Not bit-fields to check for overflows */
898 unsigned int new_page;
899 unsigned int dirtied_page;
900 unsigned int new_dent;
901 unsigned int mod_dent;
902 unsigned int new_ino;
903 unsigned int new_ino_d;
904 unsigned int dirtied_ino;
905 unsigned int dirtied_ino_d;
906 #endif
907 int idx_growth;
908 int data_growth;
909 int dd_growth;
910 };
911
912 /**
913 * struct ubifs_orphan - stores the inode number of an orphan.
914 * @rb: rb-tree node of rb-tree of orphans sorted by inode number
915 * @list: list head of list of orphans in order added
916 * @new_list: list head of list of orphans added since the last commit
917 * @child_list: list of xattr children if this orphan hosts xattrs, list head
918 * if this orphan is a xattr, not used otherwise.
919 * @cnext: next orphan to commit
920 * @dnext: next orphan to delete
921 * @inum: inode number
922 * @new: %1 => added since the last commit, otherwise %0
923 * @cmt: %1 => commit pending, otherwise %0
924 * @del: %1 => delete pending, otherwise %0
925 */
926 struct ubifs_orphan {
927 struct rb_node rb;
928 struct list_head list;
929 struct list_head new_list;
930 struct list_head child_list;
931 struct ubifs_orphan *cnext;
932 struct ubifs_orphan *dnext;
933 ino_t inum;
934 unsigned new:1;
935 unsigned cmt:1;
936 unsigned del:1;
937 };
938
939 /**
940 * struct ubifs_mount_opts - UBIFS-specific mount options information.
941 * @unmount_mode: selected unmount mode (%0 default, %1 normal, %2 fast)
942 * @bulk_read: enable/disable bulk-reads (%0 default, %1 disable, %2 enable)
943 * @chk_data_crc: enable/disable CRC data checking when reading data nodes
944 * (%0 default, %1 disable, %2 enable)
945 * @override_compr: override default compressor (%0 - do not override and use
946 * superblock compressor, %1 - override and use compressor
947 * specified in @compr_type)
948 * @compr_type: compressor type to override the superblock compressor with
949 * (%UBIFS_COMPR_NONE, etc)
950 */
951 struct ubifs_mount_opts {
952 unsigned int unmount_mode:2;
953 unsigned int bulk_read:2;
954 unsigned int chk_data_crc:2;
955 unsigned int override_compr:1;
956 unsigned int compr_type:2;
957 };
958
959 /**
960 * struct ubifs_budg_info - UBIFS budgeting information.
961 * @idx_growth: amount of bytes budgeted for index growth
962 * @data_growth: amount of bytes budgeted for cached data
963 * @dd_growth: amount of bytes budgeted for cached data that will make
964 * other data dirty
965 * @uncommitted_idx: amount of bytes were budgeted for growth of the index, but
966 * which still have to be taken into account because the index
967 * has not been committed so far
968 * @old_idx_sz: size of index on flash
969 * @min_idx_lebs: minimum number of LEBs required for the index
970 * @nospace: non-zero if the file-system does not have flash space (used as
971 * optimization)
972 * @nospace_rp: the same as @nospace, but additionally means that even reserved
973 * pool is full
974 * @page_budget: budget for a page (constant, never changed after mount)
975 * @inode_budget: budget for an inode (constant, never changed after mount)
976 * @dent_budget: budget for a directory entry (constant, never changed after
977 * mount)
978 */
979 struct ubifs_budg_info {
980 long long idx_growth;
981 long long data_growth;
982 long long dd_growth;
983 long long uncommitted_idx;
984 unsigned long long old_idx_sz;
985 int min_idx_lebs;
986 unsigned int nospace:1;
987 unsigned int nospace_rp:1;
988 int page_budget;
989 int inode_budget;
990 int dent_budget;
991 };
992
993 struct ubifs_debug_info;
994
995 /**
996 * struct ubifs_info - UBIFS file-system description data structure
997 * (per-superblock).
998 * @vfs_sb: VFS @struct super_block object
999 * @sup_node: The super block node as read from the device
1000 *
1001 * @highest_inum: highest used inode number
1002 * @max_sqnum: current global sequence number
1003 * @cmt_no: commit number of the last successfully completed commit, protected
1004 * by @commit_sem
1005 * @cnt_lock: protects @highest_inum and @max_sqnum counters
1006 * @fmt_version: UBIFS on-flash format version
1007 * @ro_compat_version: R/O compatibility version
1008 * @uuid: UUID from super block
1009 *
1010 * @lhead_lnum: log head logical eraseblock number
1011 * @lhead_offs: log head offset
1012 * @ltail_lnum: log tail logical eraseblock number (offset is always 0)
1013 * @log_mutex: protects the log, @lhead_lnum, @lhead_offs, @ltail_lnum, and
1014 * @bud_bytes
1015 * @min_log_bytes: minimum required number of bytes in the log
1016 * @cmt_bud_bytes: used during commit to temporarily amount of bytes in
1017 * committed buds
1018 *
1019 * @buds: tree of all buds indexed by bud LEB number
1020 * @bud_bytes: how many bytes of flash is used by buds
1021 * @buds_lock: protects the @buds tree, @bud_bytes, and per-journal head bud
1022 * lists
1023 * @jhead_cnt: count of journal heads
1024 * @jheads: journal heads (head zero is base head)
1025 * @max_bud_bytes: maximum number of bytes allowed in buds
1026 * @bg_bud_bytes: number of bud bytes when background commit is initiated
1027 * @old_buds: buds to be released after commit ends
1028 * @max_bud_cnt: maximum number of buds
1029 *
1030 * @commit_sem: synchronizes committer with other processes
1031 * @cmt_state: commit state
1032 * @cs_lock: commit state lock
1033 * @cmt_wq: wait queue to sleep on if the log is full and a commit is running
1034 *
1035 * @big_lpt: flag that LPT is too big to write whole during commit
1036 * @space_fixup: flag indicating that free space in LEBs needs to be cleaned up
1037 * @double_hash: flag indicating that we can do lookups by hash
1038 * @encrypted: flag indicating that this file system contains encrypted files
1039 * @no_chk_data_crc: do not check CRCs when reading data nodes (except during
1040 * recovery)
1041 * @bulk_read: enable bulk-reads
1042 * @default_compr: default compression algorithm (%UBIFS_COMPR_LZO, etc)
1043 * @rw_incompat: the media is not R/W compatible
1044 * @assert_action: action to take when a ubifs_assert() fails
1045 * @authenticated: flag indigating the FS is mounted in authenticated mode
1046 *
1047 * @tnc_mutex: protects the Tree Node Cache (TNC), @zroot, @cnext, @enext, and
1048 * @calc_idx_sz
1049 * @zroot: zbranch which points to the root index node and znode
1050 * @cnext: next znode to commit
1051 * @enext: next znode to commit to empty space
1052 * @gap_lebs: array of LEBs used by the in-gaps commit method
1053 * @cbuf: commit buffer
1054 * @ileb_buf: buffer for commit in-the-gaps method
1055 * @ileb_len: length of data in ileb_buf
1056 * @ihead_lnum: LEB number of index head
1057 * @ihead_offs: offset of index head
1058 * @ilebs: pre-allocated index LEBs
1059 * @ileb_cnt: number of pre-allocated index LEBs
1060 * @ileb_nxt: next pre-allocated index LEBs
1061 * @old_idx: tree of index nodes obsoleted since the last commit start
1062 * @bottom_up_buf: a buffer which is used by 'dirty_cow_bottom_up()' in tnc.c
1063 *
1064 * @mst_node: master node
1065 * @mst_offs: offset of valid master node
1066 *
1067 * @max_bu_buf_len: maximum bulk-read buffer length
1068 * @bu_mutex: protects the pre-allocated bulk-read buffer and @c->bu
1069 * @bu: pre-allocated bulk-read information
1070 *
1071 * @write_reserve_mutex: protects @write_reserve_buf
1072 * @write_reserve_buf: on the write path we allocate memory, which might
1073 * sometimes be unavailable, in which case we use this
1074 * write reserve buffer
1075 *
1076 * @log_lebs: number of logical eraseblocks in the log
1077 * @log_bytes: log size in bytes
1078 * @log_last: last LEB of the log
1079 * @lpt_lebs: number of LEBs used for lprops table
1080 * @lpt_first: first LEB of the lprops table area
1081 * @lpt_last: last LEB of the lprops table area
1082 * @orph_lebs: number of LEBs used for the orphan area
1083 * @orph_first: first LEB of the orphan area
1084 * @orph_last: last LEB of the orphan area
1085 * @main_lebs: count of LEBs in the main area
1086 * @main_first: first LEB of the main area
1087 * @main_bytes: main area size in bytes
1088 *
1089 * @key_hash_type: type of the key hash
1090 * @key_hash: direntry key hash function
1091 * @key_fmt: key format
1092 * @key_len: key length
1093 * @hash_len: The length of the index node hashes
1094 * @fanout: fanout of the index tree (number of links per indexing node)
1095 *
1096 * @min_io_size: minimal input/output unit size
1097 * @min_io_shift: number of bits in @min_io_size minus one
1098 * @max_write_size: maximum amount of bytes the underlying flash can write at a
1099 * time (MTD write buffer size)
1100 * @max_write_shift: number of bits in @max_write_size minus one
1101 * @leb_size: logical eraseblock size in bytes
1102 * @leb_start: starting offset of logical eraseblocks within physical
1103 * eraseblocks
1104 * @half_leb_size: half LEB size
1105 * @idx_leb_size: how many bytes of an LEB are effectively available when it is
1106 * used to store indexing nodes (@leb_size - @max_idx_node_sz)
1107 * @leb_cnt: count of logical eraseblocks
1108 * @max_leb_cnt: maximum count of logical eraseblocks
1109 * @ro_media: the underlying UBI volume is read-only
1110 * @ro_mount: the file-system was mounted as read-only
1111 * @ro_error: UBIFS switched to R/O mode because an error happened
1112 *
1113 * @dirty_pg_cnt: number of dirty pages (not used)
1114 * @dirty_zn_cnt: number of dirty znodes
1115 * @clean_zn_cnt: number of clean znodes
1116 *
1117 * @space_lock: protects @bi and @lst
1118 * @lst: lprops statistics
1119 * @bi: budgeting information
1120 * @calc_idx_sz: temporary variable which is used to calculate new index size
1121 * (contains accurate new index size at end of TNC commit start)
1122 *
1123 * @ref_node_alsz: size of the LEB reference node aligned to the min. flash
1124 * I/O unit
1125 * @mst_node_alsz: master node aligned size
1126 * @min_idx_node_sz: minimum indexing node aligned on 8-bytes boundary
1127 * @max_idx_node_sz: maximum indexing node aligned on 8-bytes boundary
1128 * @max_inode_sz: maximum possible inode size in bytes
1129 * @max_znode_sz: size of znode in bytes
1130 *
1131 * @leb_overhead: how many bytes are wasted in an LEB when it is filled with
1132 * data nodes of maximum size - used in free space reporting
1133 * @dead_wm: LEB dead space watermark
1134 * @dark_wm: LEB dark space watermark
1135 * @block_cnt: count of 4KiB blocks on the FS
1136 *
1137 * @ranges: UBIFS node length ranges
1138 * @ubi: UBI volume descriptor
1139 * @di: UBI device information
1140 * @vi: UBI volume information
1141 *
1142 * @orph_tree: rb-tree of orphan inode numbers
1143 * @orph_list: list of orphan inode numbers in order added
1144 * @orph_new: list of orphan inode numbers added since last commit
1145 * @orph_cnext: next orphan to commit
1146 * @orph_dnext: next orphan to delete
1147 * @orphan_lock: lock for orph_tree and orph_new
1148 * @orph_buf: buffer for orphan nodes
1149 * @new_orphans: number of orphans since last commit
1150 * @cmt_orphans: number of orphans being committed
1151 * @tot_orphans: number of orphans in the rb_tree
1152 * @max_orphans: maximum number of orphans allowed
1153 * @ohead_lnum: orphan head LEB number
1154 * @ohead_offs: orphan head offset
1155 * @no_orphs: non-zero if there are no orphans
1156 *
1157 * @bgt: UBIFS background thread
1158 * @bgt_name: background thread name
1159 * @need_bgt: if background thread should run
1160 * @need_wbuf_sync: if write-buffers have to be synchronized
1161 *
1162 * @gc_lnum: LEB number used for garbage collection
1163 * @sbuf: a buffer of LEB size used by GC and replay for scanning
1164 * @idx_gc: list of index LEBs that have been garbage collected
1165 * @idx_gc_cnt: number of elements on the idx_gc list
1166 * @gc_seq: incremented for every non-index LEB garbage collected
1167 * @gced_lnum: last non-index LEB that was garbage collected
1168 *
1169 * @infos_list: links all 'ubifs_info' objects
1170 * @umount_mutex: serializes shrinker and un-mount
1171 * @shrinker_run_no: shrinker run number
1172 *
1173 * @space_bits: number of bits needed to record free or dirty space
1174 * @lpt_lnum_bits: number of bits needed to record a LEB number in the LPT
1175 * @lpt_offs_bits: number of bits needed to record an offset in the LPT
1176 * @lpt_spc_bits: number of bits needed to space in the LPT
1177 * @pcnt_bits: number of bits needed to record pnode or nnode number
1178 * @lnum_bits: number of bits needed to record LEB number
1179 * @nnode_sz: size of on-flash nnode
1180 * @pnode_sz: size of on-flash pnode
1181 * @ltab_sz: size of on-flash LPT lprops table
1182 * @lsave_sz: size of on-flash LPT save table
1183 * @pnode_cnt: number of pnodes
1184 * @nnode_cnt: number of nnodes
1185 * @lpt_hght: height of the LPT
1186 * @pnodes_have: number of pnodes in memory
1187 *
1188 * @lp_mutex: protects lprops table and all the other lprops-related fields
1189 * @lpt_lnum: LEB number of the root nnode of the LPT
1190 * @lpt_offs: offset of the root nnode of the LPT
1191 * @nhead_lnum: LEB number of LPT head
1192 * @nhead_offs: offset of LPT head
1193 * @lpt_drty_flgs: dirty flags for LPT special nodes e.g. ltab
1194 * @dirty_nn_cnt: number of dirty nnodes
1195 * @dirty_pn_cnt: number of dirty pnodes
1196 * @check_lpt_free: flag that indicates LPT GC may be needed
1197 * @lpt_sz: LPT size
1198 * @lpt_nod_buf: buffer for an on-flash nnode or pnode
1199 * @lpt_buf: buffer of LEB size used by LPT
1200 * @nroot: address in memory of the root nnode of the LPT
1201 * @lpt_cnext: next LPT node to commit
1202 * @lpt_heap: array of heaps of categorized lprops
1203 * @dirty_idx: a (reverse sorted) copy of the LPROPS_DIRTY_IDX heap as at
1204 * previous commit start
1205 * @uncat_list: list of un-categorized LEBs
1206 * @empty_list: list of empty LEBs
1207 * @freeable_list: list of freeable non-index LEBs (free + dirty == @leb_size)
1208 * @frdi_idx_list: list of freeable index LEBs (free + dirty == @leb_size)
1209 * @freeable_cnt: number of freeable LEBs in @freeable_list
1210 * @in_a_category_cnt: count of lprops which are in a certain category, which
1211 * basically meants that they were loaded from the flash
1212 *
1213 * @ltab_lnum: LEB number of LPT's own lprops table
1214 * @ltab_offs: offset of LPT's own lprops table
1215 * @ltab: LPT's own lprops table
1216 * @ltab_cmt: LPT's own lprops table (commit copy)
1217 * @lsave_cnt: number of LEB numbers in LPT's save table
1218 * @lsave_lnum: LEB number of LPT's save table
1219 * @lsave_offs: offset of LPT's save table
1220 * @lsave: LPT's save table
1221 * @lscan_lnum: LEB number of last LPT scan
1222 *
1223 * @rp_size: size of the reserved pool in bytes
1224 * @report_rp_size: size of the reserved pool reported to user-space
1225 * @rp_uid: reserved pool user ID
1226 * @rp_gid: reserved pool group ID
1227 *
1228 * @hash_tfm: the hash transformation used for hashing nodes
1229 * @hmac_tfm: the HMAC transformation for this filesystem
1230 * @hmac_desc_len: length of the HMAC used for authentication
1231 * @auth_key_name: the authentication key name
1232 * @auth_hash_name: the name of the hash algorithm used for authentication
1233 * @auth_hash_algo: the authentication hash used for this fs
1234 * @log_hash: the log hash from the commit start node up to the latest reference
1235 * node.
1236 *
1237 * @empty: %1 if the UBI device is empty
1238 * @need_recovery: %1 if the file-system needs recovery
1239 * @replaying: %1 during journal replay
1240 * @mounting: %1 while mounting
1241 * @probing: %1 while attempting to mount if SB_SILENT mount flag is set
1242 * @remounting_rw: %1 while re-mounting from R/O mode to R/W mode
1243 * @replay_list: temporary list used during journal replay
1244 * @replay_buds: list of buds to replay
1245 * @cs_sqnum: sequence number of first node in the log (commit start node)
1246 * @unclean_leb_list: LEBs to recover when re-mounting R/O mounted FS to R/W
1247 * mode
1248 * @rcvrd_mst_node: recovered master node to write when re-mounting R/O mounted
1249 * FS to R/W mode
1250 * @size_tree: inode size information for recovery
1251 * @mount_opts: UBIFS-specific mount options
1252 *
1253 * @dbg: debugging-related information
1254 */
1255 struct ubifs_info {
1256 struct super_block *vfs_sb;
1257 struct ubifs_sb_node *sup_node;
1258
1259 ino_t highest_inum;
1260 unsigned long long max_sqnum;
1261 unsigned long long cmt_no;
1262 spinlock_t cnt_lock;
1263 int fmt_version;
1264 int ro_compat_version;
1265 unsigned char uuid[16];
1266
1267 int lhead_lnum;
1268 int lhead_offs;
1269 int ltail_lnum;
1270 struct mutex log_mutex;
1271 int min_log_bytes;
1272 long long cmt_bud_bytes;
1273
1274 struct rb_root buds;
1275 long long bud_bytes;
1276 spinlock_t buds_lock;
1277 int jhead_cnt;
1278 struct ubifs_jhead *jheads;
1279 long long max_bud_bytes;
1280 long long bg_bud_bytes;
1281 struct list_head old_buds;
1282 int max_bud_cnt;
1283
1284 struct rw_semaphore commit_sem;
1285 int cmt_state;
1286 spinlock_t cs_lock;
1287 wait_queue_head_t cmt_wq;
1288
1289 unsigned int big_lpt:1;
1290 unsigned int space_fixup:1;
1291 unsigned int double_hash:1;
1292 unsigned int encrypted:1;
1293 unsigned int no_chk_data_crc:1;
1294 unsigned int bulk_read:1;
1295 unsigned int default_compr:2;
1296 unsigned int rw_incompat:1;
1297 unsigned int assert_action:2;
1298 unsigned int authenticated:1;
1299 unsigned int superblock_need_write:1;
1300
1301 struct mutex tnc_mutex;
1302 struct ubifs_zbranch zroot;
1303 struct ubifs_znode *cnext;
1304 struct ubifs_znode *enext;
1305 int *gap_lebs;
1306 void *cbuf;
1307 void *ileb_buf;
1308 int ileb_len;
1309 int ihead_lnum;
1310 int ihead_offs;
1311 int *ilebs;
1312 int ileb_cnt;
1313 int ileb_nxt;
1314 struct rb_root old_idx;
1315 int *bottom_up_buf;
1316
1317 struct ubifs_mst_node *mst_node;
1318 int mst_offs;
1319
1320 int max_bu_buf_len;
1321 struct mutex bu_mutex;
1322 struct bu_info bu;
1323
1324 struct mutex write_reserve_mutex;
1325 void *write_reserve_buf;
1326
1327 int log_lebs;
1328 long long log_bytes;
1329 int log_last;
1330 int lpt_lebs;
1331 int lpt_first;
1332 int lpt_last;
1333 int orph_lebs;
1334 int orph_first;
1335 int orph_last;
1336 int main_lebs;
1337 int main_first;
1338 long long main_bytes;
1339
1340 uint8_t key_hash_type;
1341 uint32_t (*key_hash)(const char *str, int len);
1342 int key_fmt;
1343 int key_len;
1344 int hash_len;
1345 int fanout;
1346
1347 int min_io_size;
1348 int min_io_shift;
1349 int max_write_size;
1350 int max_write_shift;
1351 int leb_size;
1352 int leb_start;
1353 int half_leb_size;
1354 int idx_leb_size;
1355 int leb_cnt;
1356 int max_leb_cnt;
1357 unsigned int ro_media:1;
1358 unsigned int ro_mount:1;
1359 unsigned int ro_error:1;
1360
1361 atomic_long_t dirty_pg_cnt;
1362 atomic_long_t dirty_zn_cnt;
1363 atomic_long_t clean_zn_cnt;
1364
1365 spinlock_t space_lock;
1366 struct ubifs_lp_stats lst;
1367 struct ubifs_budg_info bi;
1368 unsigned long long calc_idx_sz;
1369
1370 int ref_node_alsz;
1371 int mst_node_alsz;
1372 int min_idx_node_sz;
1373 int max_idx_node_sz;
1374 long long max_inode_sz;
1375 int max_znode_sz;
1376
1377 int leb_overhead;
1378 int dead_wm;
1379 int dark_wm;
1380 int block_cnt;
1381
1382 struct ubifs_node_range ranges[UBIFS_NODE_TYPES_CNT];
1383 struct ubi_volume_desc *ubi;
1384 struct ubi_device_info di;
1385 struct ubi_volume_info vi;
1386
1387 struct rb_root orph_tree;
1388 struct list_head orph_list;
1389 struct list_head orph_new;
1390 struct ubifs_orphan *orph_cnext;
1391 struct ubifs_orphan *orph_dnext;
1392 spinlock_t orphan_lock;
1393 void *orph_buf;
1394 int new_orphans;
1395 int cmt_orphans;
1396 int tot_orphans;
1397 int max_orphans;
1398 int ohead_lnum;
1399 int ohead_offs;
1400 int no_orphs;
1401
1402 struct task_struct *bgt;
1403 char bgt_name[sizeof(BGT_NAME_PATTERN) + 9];
1404 int need_bgt;
1405 int need_wbuf_sync;
1406
1407 int gc_lnum;
1408 void *sbuf;
1409 struct list_head idx_gc;
1410 int idx_gc_cnt;
1411 int gc_seq;
1412 int gced_lnum;
1413
1414 struct list_head infos_list;
1415 struct mutex umount_mutex;
1416 unsigned int shrinker_run_no;
1417
1418 int space_bits;
1419 int lpt_lnum_bits;
1420 int lpt_offs_bits;
1421 int lpt_spc_bits;
1422 int pcnt_bits;
1423 int lnum_bits;
1424 int nnode_sz;
1425 int pnode_sz;
1426 int ltab_sz;
1427 int lsave_sz;
1428 int pnode_cnt;
1429 int nnode_cnt;
1430 int lpt_hght;
1431 int pnodes_have;
1432
1433 struct mutex lp_mutex;
1434 int lpt_lnum;
1435 int lpt_offs;
1436 int nhead_lnum;
1437 int nhead_offs;
1438 int lpt_drty_flgs;
1439 int dirty_nn_cnt;
1440 int dirty_pn_cnt;
1441 int check_lpt_free;
1442 long long lpt_sz;
1443 void *lpt_nod_buf;
1444 void *lpt_buf;
1445 struct ubifs_nnode *nroot;
1446 struct ubifs_cnode *lpt_cnext;
1447 struct ubifs_lpt_heap lpt_heap[LPROPS_HEAP_CNT];
1448 struct ubifs_lpt_heap dirty_idx;
1449 struct list_head uncat_list;
1450 struct list_head empty_list;
1451 struct list_head freeable_list;
1452 struct list_head frdi_idx_list;
1453 int freeable_cnt;
1454 int in_a_category_cnt;
1455
1456 int ltab_lnum;
1457 int ltab_offs;
1458 struct ubifs_lpt_lprops *ltab;
1459 struct ubifs_lpt_lprops *ltab_cmt;
1460 int lsave_cnt;
1461 int lsave_lnum;
1462 int lsave_offs;
1463 int *lsave;
1464 int lscan_lnum;
1465
1466 long long rp_size;
1467 long long report_rp_size;
1468 kuid_t rp_uid;
1469 kgid_t rp_gid;
1470
1471 struct crypto_shash *hash_tfm;
1472 struct crypto_shash *hmac_tfm;
1473 int hmac_desc_len;
1474 char *auth_key_name;
1475 char *auth_hash_name;
1476 enum hash_algo auth_hash_algo;
1477
1478 struct shash_desc *log_hash;
1479
1480 /* The below fields are used only during mounting and re-mounting */
1481 unsigned int empty:1;
1482 unsigned int need_recovery:1;
1483 unsigned int replaying:1;
1484 unsigned int mounting:1;
1485 unsigned int remounting_rw:1;
1486 unsigned int probing:1;
1487 struct list_head replay_list;
1488 struct list_head replay_buds;
1489 unsigned long long cs_sqnum;
1490 struct list_head unclean_leb_list;
1491 struct ubifs_mst_node *rcvrd_mst_node;
1492 struct rb_root size_tree;
1493 struct ubifs_mount_opts mount_opts;
1494
1495 struct ubifs_debug_info *dbg;
1496 };
1497
1498 extern struct list_head ubifs_infos;
1499 extern spinlock_t ubifs_infos_lock;
1500 extern atomic_long_t ubifs_clean_zn_cnt;
1501 extern const struct super_operations ubifs_super_operations;
1502 extern const struct address_space_operations ubifs_file_address_operations;
1503 extern const struct file_operations ubifs_file_operations;
1504 extern const struct inode_operations ubifs_file_inode_operations;
1505 extern const struct file_operations ubifs_dir_operations;
1506 extern const struct inode_operations ubifs_dir_inode_operations;
1507 extern const struct inode_operations ubifs_symlink_inode_operations;
1508 extern struct ubifs_compressor *ubifs_compressors[UBIFS_COMPR_TYPES_CNT];
1509 extern int ubifs_default_version;
1510
1511 /* auth.c */
ubifs_authenticated(const struct ubifs_info * c)1512 static inline int ubifs_authenticated(const struct ubifs_info *c)
1513 {
1514 return (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) && c->authenticated;
1515 }
1516
1517 struct shash_desc *__ubifs_hash_get_desc(const struct ubifs_info *c);
ubifs_hash_get_desc(const struct ubifs_info * c)1518 static inline struct shash_desc *ubifs_hash_get_desc(const struct ubifs_info *c)
1519 {
1520 return ubifs_authenticated(c) ? __ubifs_hash_get_desc(c) : NULL;
1521 }
1522
ubifs_shash_init(const struct ubifs_info * c,struct shash_desc * desc)1523 static inline int ubifs_shash_init(const struct ubifs_info *c,
1524 struct shash_desc *desc)
1525 {
1526 if (ubifs_authenticated(c))
1527 return crypto_shash_init(desc);
1528 else
1529 return 0;
1530 }
1531
ubifs_shash_update(const struct ubifs_info * c,struct shash_desc * desc,const void * buf,unsigned int len)1532 static inline int ubifs_shash_update(const struct ubifs_info *c,
1533 struct shash_desc *desc, const void *buf,
1534 unsigned int len)
1535 {
1536 int err = 0;
1537
1538 if (ubifs_authenticated(c)) {
1539 err = crypto_shash_update(desc, buf, len);
1540 if (err < 0)
1541 return err;
1542 }
1543
1544 return 0;
1545 }
1546
ubifs_shash_final(const struct ubifs_info * c,struct shash_desc * desc,u8 * out)1547 static inline int ubifs_shash_final(const struct ubifs_info *c,
1548 struct shash_desc *desc, u8 *out)
1549 {
1550 return ubifs_authenticated(c) ? crypto_shash_final(desc, out) : 0;
1551 }
1552
1553 int __ubifs_node_calc_hash(const struct ubifs_info *c, const void *buf,
1554 u8 *hash);
ubifs_node_calc_hash(const struct ubifs_info * c,const void * buf,u8 * hash)1555 static inline int ubifs_node_calc_hash(const struct ubifs_info *c,
1556 const void *buf, u8 *hash)
1557 {
1558 if (ubifs_authenticated(c))
1559 return __ubifs_node_calc_hash(c, buf, hash);
1560 else
1561 return 0;
1562 }
1563
1564 int ubifs_prepare_auth_node(struct ubifs_info *c, void *node,
1565 struct shash_desc *inhash);
1566
1567 /**
1568 * ubifs_check_hash - compare two hashes
1569 * @c: UBIFS file-system description object
1570 * @expected: first hash
1571 * @got: second hash
1572 *
1573 * Compare two hashes @expected and @got. Returns 0 when they are equal, a
1574 * negative error code otherwise.
1575 */
ubifs_check_hash(const struct ubifs_info * c,const u8 * expected,const u8 * got)1576 static inline int ubifs_check_hash(const struct ubifs_info *c,
1577 const u8 *expected, const u8 *got)
1578 {
1579 return crypto_memneq(expected, got, c->hash_len);
1580 }
1581
1582 /**
1583 * ubifs_check_hmac - compare two HMACs
1584 * @c: UBIFS file-system description object
1585 * @expected: first HMAC
1586 * @got: second HMAC
1587 *
1588 * Compare two hashes @expected and @got. Returns 0 when they are equal, a
1589 * negative error code otherwise.
1590 */
ubifs_check_hmac(const struct ubifs_info * c,const u8 * expected,const u8 * got)1591 static inline int ubifs_check_hmac(const struct ubifs_info *c,
1592 const u8 *expected, const u8 *got)
1593 {
1594 return crypto_memneq(expected, got, c->hmac_desc_len);
1595 }
1596
1597 #ifdef CONFIG_UBIFS_FS_AUTHENTICATION
1598 void ubifs_bad_hash(const struct ubifs_info *c, const void *node,
1599 const u8 *hash, int lnum, int offs);
1600 #else
ubifs_bad_hash(const struct ubifs_info * c,const void * node,const u8 * hash,int lnum,int offs)1601 static inline void ubifs_bad_hash(const struct ubifs_info *c, const void *node,
1602 const u8 *hash, int lnum, int offs) {};
1603 #endif
1604
1605 int __ubifs_node_check_hash(const struct ubifs_info *c, const void *buf,
1606 const u8 *expected);
ubifs_node_check_hash(const struct ubifs_info * c,const void * buf,const u8 * expected)1607 static inline int ubifs_node_check_hash(const struct ubifs_info *c,
1608 const void *buf, const u8 *expected)
1609 {
1610 if (ubifs_authenticated(c))
1611 return __ubifs_node_check_hash(c, buf, expected);
1612 else
1613 return 0;
1614 }
1615
1616 int ubifs_init_authentication(struct ubifs_info *c);
1617 void __ubifs_exit_authentication(struct ubifs_info *c);
ubifs_exit_authentication(struct ubifs_info * c)1618 static inline void ubifs_exit_authentication(struct ubifs_info *c)
1619 {
1620 if (ubifs_authenticated(c))
1621 __ubifs_exit_authentication(c);
1622 }
1623
1624 /**
1625 * ubifs_branch_hash - returns a pointer to the hash of a branch
1626 * @c: UBIFS file-system description object
1627 * @br: branch to get the hash from
1628 *
1629 * This returns a pointer to the hash of a branch. Since the key already is a
1630 * dynamically sized object we cannot use a struct member here.
1631 */
ubifs_branch_hash(struct ubifs_info * c,struct ubifs_branch * br)1632 static inline u8 *ubifs_branch_hash(struct ubifs_info *c,
1633 struct ubifs_branch *br)
1634 {
1635 return (void *)br + sizeof(*br) + c->key_len;
1636 }
1637
1638 /**
1639 * ubifs_copy_hash - copy a hash
1640 * @c: UBIFS file-system description object
1641 * @from: source hash
1642 * @to: destination hash
1643 *
1644 * With authentication this copies a hash, otherwise does nothing.
1645 */
ubifs_copy_hash(const struct ubifs_info * c,const u8 * from,u8 * to)1646 static inline void ubifs_copy_hash(const struct ubifs_info *c, const u8 *from,
1647 u8 *to)
1648 {
1649 if (ubifs_authenticated(c))
1650 memcpy(to, from, c->hash_len);
1651 }
1652
1653 int __ubifs_node_insert_hmac(const struct ubifs_info *c, void *buf,
1654 int len, int ofs_hmac);
ubifs_node_insert_hmac(const struct ubifs_info * c,void * buf,int len,int ofs_hmac)1655 static inline int ubifs_node_insert_hmac(const struct ubifs_info *c, void *buf,
1656 int len, int ofs_hmac)
1657 {
1658 if (ubifs_authenticated(c))
1659 return __ubifs_node_insert_hmac(c, buf, len, ofs_hmac);
1660 else
1661 return 0;
1662 }
1663
1664 int __ubifs_node_verify_hmac(const struct ubifs_info *c, const void *buf,
1665 int len, int ofs_hmac);
ubifs_node_verify_hmac(const struct ubifs_info * c,const void * buf,int len,int ofs_hmac)1666 static inline int ubifs_node_verify_hmac(const struct ubifs_info *c,
1667 const void *buf, int len, int ofs_hmac)
1668 {
1669 if (ubifs_authenticated(c))
1670 return __ubifs_node_verify_hmac(c, buf, len, ofs_hmac);
1671 else
1672 return 0;
1673 }
1674
1675 /**
1676 * ubifs_auth_node_sz - returns the size of an authentication node
1677 * @c: UBIFS file-system description object
1678 *
1679 * This function returns the size of an authentication node which can
1680 * be 0 for unauthenticated filesystems or the real size of an auth node
1681 * authentication is enabled.
1682 */
ubifs_auth_node_sz(const struct ubifs_info * c)1683 static inline int ubifs_auth_node_sz(const struct ubifs_info *c)
1684 {
1685 if (ubifs_authenticated(c))
1686 return sizeof(struct ubifs_auth_node) + c->hmac_desc_len;
1687 else
1688 return 0;
1689 }
1690 int ubifs_sb_verify_signature(struct ubifs_info *c,
1691 const struct ubifs_sb_node *sup);
1692 bool ubifs_hmac_zero(struct ubifs_info *c, const u8 *hmac);
1693
1694 int ubifs_hmac_wkm(struct ubifs_info *c, u8 *hmac);
1695
1696 int __ubifs_shash_copy_state(const struct ubifs_info *c, struct shash_desc *src,
1697 struct shash_desc *target);
ubifs_shash_copy_state(const struct ubifs_info * c,struct shash_desc * src,struct shash_desc * target)1698 static inline int ubifs_shash_copy_state(const struct ubifs_info *c,
1699 struct shash_desc *src,
1700 struct shash_desc *target)
1701 {
1702 if (ubifs_authenticated(c))
1703 return __ubifs_shash_copy_state(c, src, target);
1704 else
1705 return 0;
1706 }
1707
1708 /* io.c */
1709 void ubifs_ro_mode(struct ubifs_info *c, int err);
1710 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
1711 int len, int even_ebadmsg);
1712 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
1713 int len);
1714 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len);
1715 int ubifs_leb_unmap(struct ubifs_info *c, int lnum);
1716 int ubifs_leb_map(struct ubifs_info *c, int lnum);
1717 int ubifs_is_mapped(const struct ubifs_info *c, int lnum);
1718 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len);
1719 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs);
1720 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf);
1721 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
1722 int lnum, int offs);
1723 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
1724 int lnum, int offs);
1725 int ubifs_write_node(struct ubifs_info *c, void *node, int len, int lnum,
1726 int offs);
1727 int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum,
1728 int offs, int hmac_offs);
1729 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int len,
1730 int lnum, int offs, int quiet, int must_chk_crc);
1731 void ubifs_init_node(struct ubifs_info *c, void *buf, int len, int pad);
1732 void ubifs_crc_node(struct ubifs_info *c, void *buf, int len);
1733 void ubifs_prepare_node(struct ubifs_info *c, void *buf, int len, int pad);
1734 int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len,
1735 int hmac_offs, int pad);
1736 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last);
1737 int ubifs_io_init(struct ubifs_info *c);
1738 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad);
1739 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf);
1740 int ubifs_bg_wbufs_sync(struct ubifs_info *c);
1741 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum);
1742 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode);
1743
1744 /* scan.c */
1745 struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum,
1746 int offs, void *sbuf, int quiet);
1747 void ubifs_scan_destroy(struct ubifs_scan_leb *sleb);
1748 int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum,
1749 int offs, int quiet);
1750 struct ubifs_scan_leb *ubifs_start_scan(const struct ubifs_info *c, int lnum,
1751 int offs, void *sbuf);
1752 void ubifs_end_scan(const struct ubifs_info *c, struct ubifs_scan_leb *sleb,
1753 int lnum, int offs);
1754 int ubifs_add_snod(const struct ubifs_info *c, struct ubifs_scan_leb *sleb,
1755 void *buf, int offs);
1756 void ubifs_scanned_corruption(const struct ubifs_info *c, int lnum, int offs,
1757 void *buf);
1758
1759 /* log.c */
1760 void ubifs_add_bud(struct ubifs_info *c, struct ubifs_bud *bud);
1761 void ubifs_create_buds_lists(struct ubifs_info *c);
1762 int ubifs_add_bud_to_log(struct ubifs_info *c, int jhead, int lnum, int offs);
1763 struct ubifs_bud *ubifs_search_bud(struct ubifs_info *c, int lnum);
1764 struct ubifs_wbuf *ubifs_get_wbuf(struct ubifs_info *c, int lnum);
1765 int ubifs_log_start_commit(struct ubifs_info *c, int *ltail_lnum);
1766 int ubifs_log_end_commit(struct ubifs_info *c, int new_ltail_lnum);
1767 int ubifs_log_post_commit(struct ubifs_info *c, int old_ltail_lnum);
1768 int ubifs_consolidate_log(struct ubifs_info *c);
1769
1770 /* journal.c */
1771 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
1772 const struct fscrypt_name *nm, const struct inode *inode,
1773 int deletion, int xent);
1774 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
1775 const union ubifs_key *key, const void *buf, int len);
1776 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode);
1777 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode);
1778 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1779 const struct inode *fst_inode,
1780 const struct fscrypt_name *fst_nm,
1781 const struct inode *snd_dir,
1782 const struct inode *snd_inode,
1783 const struct fscrypt_name *snd_nm, int sync);
1784 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1785 const struct inode *old_inode,
1786 const struct fscrypt_name *old_nm,
1787 const struct inode *new_dir,
1788 const struct inode *new_inode,
1789 const struct fscrypt_name *new_nm,
1790 const struct inode *whiteout, int sync);
1791 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1792 loff_t old_size, loff_t new_size);
1793 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1794 const struct inode *inode, const struct fscrypt_name *nm);
1795 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode1,
1796 const struct inode *inode2);
1797
1798 /* budget.c */
1799 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req);
1800 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req);
1801 void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
1802 struct ubifs_inode *ui);
1803 int ubifs_budget_inode_op(struct ubifs_info *c, struct inode *inode,
1804 struct ubifs_budget_req *req);
1805 void ubifs_release_ino_dirty(struct ubifs_info *c, struct inode *inode,
1806 struct ubifs_budget_req *req);
1807 void ubifs_cancel_ino_op(struct ubifs_info *c, struct inode *inode,
1808 struct ubifs_budget_req *req);
1809 long long ubifs_get_free_space(struct ubifs_info *c);
1810 long long ubifs_get_free_space_nolock(struct ubifs_info *c);
1811 int ubifs_calc_min_idx_lebs(struct ubifs_info *c);
1812 void ubifs_convert_page_budget(struct ubifs_info *c);
1813 long long ubifs_reported_space(const struct ubifs_info *c, long long free);
1814 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs);
1815
1816 /* find.c */
1817 int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs,
1818 int squeeze);
1819 int ubifs_find_free_leb_for_idx(struct ubifs_info *c);
1820 int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp,
1821 int min_space, int pick_free);
1822 int ubifs_find_dirty_idx_leb(struct ubifs_info *c);
1823 int ubifs_save_dirty_idx_lnums(struct ubifs_info *c);
1824
1825 /* tnc.c */
1826 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1827 struct ubifs_znode **zn, int *n);
1828 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1829 void *node, const struct fscrypt_name *nm);
1830 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1831 void *node, uint32_t secondary_hash);
1832 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1833 void *node, int *lnum, int *offs);
1834 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
1835 int offs, int len, const u8 *hash);
1836 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
1837 int old_lnum, int old_offs, int lnum, int offs, int len);
1838 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
1839 int lnum, int offs, int len, const u8 *hash,
1840 const struct fscrypt_name *nm);
1841 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key);
1842 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
1843 const struct fscrypt_name *nm);
1844 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
1845 uint32_t cookie);
1846 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
1847 union ubifs_key *to_key);
1848 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum);
1849 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
1850 union ubifs_key *key,
1851 const struct fscrypt_name *nm);
1852 void ubifs_tnc_close(struct ubifs_info *c);
1853 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
1854 int lnum, int offs, int is_idx);
1855 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
1856 int lnum, int offs);
1857 /* Shared by tnc.c for tnc_commit.c */
1858 void destroy_old_idx(struct ubifs_info *c);
1859 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
1860 int lnum, int offs);
1861 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode);
1862 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu);
1863 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu);
1864
1865 /* tnc_misc.c */
1866 struct ubifs_znode *ubifs_tnc_levelorder_next(const struct ubifs_info *c,
1867 struct ubifs_znode *zr,
1868 struct ubifs_znode *znode);
1869 int ubifs_search_zbranch(const struct ubifs_info *c,
1870 const struct ubifs_znode *znode,
1871 const union ubifs_key *key, int *n);
1872 struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode);
1873 struct ubifs_znode *ubifs_tnc_postorder_next(const struct ubifs_info *c,
1874 struct ubifs_znode *znode);
1875 long ubifs_destroy_tnc_subtree(const struct ubifs_info *c,
1876 struct ubifs_znode *zr);
1877 struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
1878 struct ubifs_zbranch *zbr,
1879 struct ubifs_znode *parent, int iip);
1880 int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1881 void *node);
1882
1883 /* tnc_commit.c */
1884 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot);
1885 int ubifs_tnc_end_commit(struct ubifs_info *c);
1886
1887 /* shrinker.c */
1888 unsigned long ubifs_shrink_scan(struct shrinker *shrink,
1889 struct shrink_control *sc);
1890 unsigned long ubifs_shrink_count(struct shrinker *shrink,
1891 struct shrink_control *sc);
1892
1893 /* commit.c */
1894 int ubifs_bg_thread(void *info);
1895 void ubifs_commit_required(struct ubifs_info *c);
1896 void ubifs_request_bg_commit(struct ubifs_info *c);
1897 int ubifs_run_commit(struct ubifs_info *c);
1898 void ubifs_recovery_commit(struct ubifs_info *c);
1899 int ubifs_gc_should_commit(struct ubifs_info *c);
1900 void ubifs_wait_for_commit(struct ubifs_info *c);
1901
1902 /* master.c */
1903 int ubifs_compare_master_node(struct ubifs_info *c, void *m1, void *m2);
1904 int ubifs_read_master(struct ubifs_info *c);
1905 int ubifs_write_master(struct ubifs_info *c);
1906
1907 /* sb.c */
1908 int ubifs_read_superblock(struct ubifs_info *c);
1909 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup);
1910 int ubifs_fixup_free_space(struct ubifs_info *c);
1911 int ubifs_enable_encryption(struct ubifs_info *c);
1912
1913 /* replay.c */
1914 int ubifs_validate_entry(struct ubifs_info *c,
1915 const struct ubifs_dent_node *dent);
1916 int ubifs_replay_journal(struct ubifs_info *c);
1917
1918 /* gc.c */
1919 int ubifs_garbage_collect(struct ubifs_info *c, int anyway);
1920 int ubifs_gc_start_commit(struct ubifs_info *c);
1921 int ubifs_gc_end_commit(struct ubifs_info *c);
1922 void ubifs_destroy_idx_gc(struct ubifs_info *c);
1923 int ubifs_get_idx_gc_leb(struct ubifs_info *c);
1924 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp);
1925
1926 /* orphan.c */
1927 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum);
1928 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum);
1929 int ubifs_orphan_start_commit(struct ubifs_info *c);
1930 int ubifs_orphan_end_commit(struct ubifs_info *c);
1931 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only);
1932 int ubifs_clear_orphans(struct ubifs_info *c);
1933
1934 /* lpt.c */
1935 int ubifs_calc_lpt_geom(struct ubifs_info *c);
1936 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
1937 int *lpt_lebs, int *big_lpt, u8 *hash);
1938 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr);
1939 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum);
1940 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum);
1941 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1942 ubifs_lpt_scan_callback scan_cb, void *data);
1943
1944 /* Shared by lpt.c for lpt_commit.c */
1945 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave);
1946 void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
1947 struct ubifs_lpt_lprops *ltab);
1948 void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
1949 struct ubifs_pnode *pnode);
1950 void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
1951 struct ubifs_nnode *nnode);
1952 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1953 struct ubifs_nnode *parent, int iip);
1954 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1955 struct ubifs_nnode *parent, int iip);
1956 struct ubifs_pnode *ubifs_pnode_lookup(struct ubifs_info *c, int i);
1957 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip);
1958 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty);
1959 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode);
1960 uint32_t ubifs_unpack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, int nrbits);
1961 struct ubifs_nnode *ubifs_first_nnode(struct ubifs_info *c, int *hght);
1962 /* Needed only in debugging code in lpt_commit.c */
1963 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1964 struct ubifs_nnode *nnode);
1965 int ubifs_lpt_calc_hash(struct ubifs_info *c, u8 *hash);
1966
1967 /* lpt_commit.c */
1968 int ubifs_lpt_start_commit(struct ubifs_info *c);
1969 int ubifs_lpt_end_commit(struct ubifs_info *c);
1970 int ubifs_lpt_post_commit(struct ubifs_info *c);
1971 void ubifs_lpt_free(struct ubifs_info *c, int wr_only);
1972
1973 /* lprops.c */
1974 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
1975 const struct ubifs_lprops *lp,
1976 int free, int dirty, int flags,
1977 int idx_gc_cnt);
1978 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst);
1979 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
1980 int cat);
1981 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
1982 struct ubifs_lprops *new_lprops);
1983 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops);
1984 int ubifs_categorize_lprops(const struct ubifs_info *c,
1985 const struct ubifs_lprops *lprops);
1986 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
1987 int flags_set, int flags_clean, int idx_gc_cnt);
1988 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
1989 int flags_set, int flags_clean);
1990 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp);
1991 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c);
1992 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c);
1993 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c);
1994 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c);
1995 int ubifs_calc_dark(const struct ubifs_info *c, int spc);
1996
1997 /* file.c */
1998 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync);
1999 int ubifs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
2000 struct iattr *attr);
2001 int ubifs_update_time(struct inode *inode, struct timespec64 *time, int flags);
2002
2003 /* dir.c */
2004 struct inode *ubifs_new_inode(struct ubifs_info *c, struct inode *dir,
2005 umode_t mode, bool is_xattr);
2006 int ubifs_getattr(struct user_namespace *mnt_userns, const struct path *path, struct kstat *stat,
2007 u32 request_mask, unsigned int flags);
2008 int ubifs_check_dir_empty(struct inode *dir);
2009
2010 /* xattr.c */
2011 int ubifs_xattr_set(struct inode *host, const char *name, const void *value,
2012 size_t size, int flags, bool check_lock);
2013 ssize_t ubifs_xattr_get(struct inode *host, const char *name, void *buf,
2014 size_t size);
2015
2016 #ifdef CONFIG_UBIFS_FS_XATTR
2017 extern const struct xattr_handler *ubifs_xattr_handlers[];
2018 ssize_t ubifs_listxattr(struct dentry *dentry, char *buffer, size_t size);
2019 void ubifs_evict_xattr_inode(struct ubifs_info *c, ino_t xattr_inum);
2020 int ubifs_purge_xattrs(struct inode *host);
2021 #else
2022 #define ubifs_listxattr NULL
2023 #define ubifs_xattr_handlers NULL
ubifs_evict_xattr_inode(struct ubifs_info * c,ino_t xattr_inum)2024 static inline void ubifs_evict_xattr_inode(struct ubifs_info *c,
2025 ino_t xattr_inum) { }
ubifs_purge_xattrs(struct inode * host)2026 static inline int ubifs_purge_xattrs(struct inode *host)
2027 {
2028 return 0;
2029 }
2030 #endif
2031
2032 #ifdef CONFIG_UBIFS_FS_SECURITY
2033 extern int ubifs_init_security(struct inode *dentry, struct inode *inode,
2034 const struct qstr *qstr);
2035 #else
ubifs_init_security(struct inode * dentry,struct inode * inode,const struct qstr * qstr)2036 static inline int ubifs_init_security(struct inode *dentry,
2037 struct inode *inode, const struct qstr *qstr)
2038 {
2039 return 0;
2040 }
2041 #endif
2042
2043
2044 /* super.c */
2045 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum);
2046
2047 /* recovery.c */
2048 int ubifs_recover_master_node(struct ubifs_info *c);
2049 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c);
2050 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
2051 int offs, void *sbuf, int jhead);
2052 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
2053 int offs, void *sbuf);
2054 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf);
2055 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf);
2056 int ubifs_rcvry_gc_commit(struct ubifs_info *c);
2057 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
2058 int deletion, loff_t new_size);
2059 int ubifs_recover_size(struct ubifs_info *c, bool in_place);
2060 void ubifs_destroy_size_tree(struct ubifs_info *c);
2061
2062 /* ioctl.c */
2063 int ubifs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
2064 int ubifs_fileattr_set(struct user_namespace *mnt_userns,
2065 struct dentry *dentry, struct fileattr *fa);
2066 long ubifs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2067 void ubifs_set_inode_flags(struct inode *inode);
2068 #ifdef CONFIG_COMPAT
2069 long ubifs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2070 #endif
2071
2072 /* compressor.c */
2073 int __init ubifs_compressors_init(void);
2074 void ubifs_compressors_exit(void);
2075 void ubifs_compress(const struct ubifs_info *c, const void *in_buf, int in_len,
2076 void *out_buf, int *out_len, int *compr_type);
2077 int ubifs_decompress(const struct ubifs_info *c, const void *buf, int len,
2078 void *out, int *out_len, int compr_type);
2079
2080 #include "debug.h"
2081 #include "misc.h"
2082 #include "key.h"
2083
2084 #ifndef CONFIG_FS_ENCRYPTION
ubifs_encrypt(const struct inode * inode,struct ubifs_data_node * dn,unsigned int in_len,unsigned int * out_len,int block)2085 static inline int ubifs_encrypt(const struct inode *inode,
2086 struct ubifs_data_node *dn,
2087 unsigned int in_len, unsigned int *out_len,
2088 int block)
2089 {
2090 struct ubifs_info *c = inode->i_sb->s_fs_info;
2091 ubifs_assert(c, 0);
2092 return -EOPNOTSUPP;
2093 }
ubifs_decrypt(const struct inode * inode,struct ubifs_data_node * dn,unsigned int * out_len,int block)2094 static inline int ubifs_decrypt(const struct inode *inode,
2095 struct ubifs_data_node *dn,
2096 unsigned int *out_len, int block)
2097 {
2098 struct ubifs_info *c = inode->i_sb->s_fs_info;
2099 ubifs_assert(c, 0);
2100 return -EOPNOTSUPP;
2101 }
2102 #else
2103 /* crypto.c */
2104 int ubifs_encrypt(const struct inode *inode, struct ubifs_data_node *dn,
2105 unsigned int in_len, unsigned int *out_len, int block);
2106 int ubifs_decrypt(const struct inode *inode, struct ubifs_data_node *dn,
2107 unsigned int *out_len, int block);
2108 #endif
2109
2110 extern const struct fscrypt_operations ubifs_crypt_operations;
2111
2112 /* Normal UBIFS messages */
2113 __printf(2, 3)
2114 void ubifs_msg(const struct ubifs_info *c, const char *fmt, ...);
2115 __printf(2, 3)
2116 void ubifs_err(const struct ubifs_info *c, const char *fmt, ...);
2117 __printf(2, 3)
2118 void ubifs_warn(const struct ubifs_info *c, const char *fmt, ...);
2119 /*
2120 * A conditional variant of 'ubifs_err()' which doesn't output anything
2121 * if probing (ie. SB_SILENT set).
2122 */
2123 #define ubifs_errc(c, fmt, ...) \
2124 do { \
2125 if (!(c)->probing) \
2126 ubifs_err(c, fmt, ##__VA_ARGS__); \
2127 } while (0)
2128
2129 #endif /* !__UBIFS_H__ */
2130