• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
atomic_inc_return_safe(atomic_t * v)60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
atomic_dec_return_safe(atomic_t * v)74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
rbd_dev_id_to_minor(int dev_id)503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
minor_to_rbd_dev_id(int minor)508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
rbd_is_ro(struct rbd_device * rbd_dev)513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
rbd_is_snap(struct rbd_device * rbd_dev)518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
__rbd_is_lock_owner(struct rbd_device * rbd_dev)523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
rbd_is_lock_owner(struct rbd_device * rbd_dev)531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
supported_features_show(struct bus_type * bus,char * buf)541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
rbd_bus_is_visible(struct kobject * kobj,struct attribute * attr,int index)561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
rbd_root_dev_release(struct device * dev)583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
rbd_warn(struct rbd_device * rbd_dev,const char * fmt,...)593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636 				     struct rbd_image_header *header);
637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638 					u64 snap_id);
639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640 				u8 *order, u64 *snap_size);
641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642 
643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645 
646 /*
647  * Return true if nothing else is pending.
648  */
pending_result_dec(struct pending_result * pending,int * result)649 static bool pending_result_dec(struct pending_result *pending, int *result)
650 {
651 	rbd_assert(pending->num_pending > 0);
652 
653 	if (*result && !pending->result)
654 		pending->result = *result;
655 	if (--pending->num_pending)
656 		return false;
657 
658 	*result = pending->result;
659 	return true;
660 }
661 
rbd_open(struct block_device * bdev,fmode_t mode)662 static int rbd_open(struct block_device *bdev, fmode_t mode)
663 {
664 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
665 	bool removing = false;
666 
667 	spin_lock_irq(&rbd_dev->lock);
668 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669 		removing = true;
670 	else
671 		rbd_dev->open_count++;
672 	spin_unlock_irq(&rbd_dev->lock);
673 	if (removing)
674 		return -ENOENT;
675 
676 	(void) get_device(&rbd_dev->dev);
677 
678 	return 0;
679 }
680 
rbd_release(struct gendisk * disk,fmode_t mode)681 static void rbd_release(struct gendisk *disk, fmode_t mode)
682 {
683 	struct rbd_device *rbd_dev = disk->private_data;
684 	unsigned long open_count_before;
685 
686 	spin_lock_irq(&rbd_dev->lock);
687 	open_count_before = rbd_dev->open_count--;
688 	spin_unlock_irq(&rbd_dev->lock);
689 	rbd_assert(open_count_before > 0);
690 
691 	put_device(&rbd_dev->dev);
692 }
693 
694 static const struct block_device_operations rbd_bd_ops = {
695 	.owner			= THIS_MODULE,
696 	.open			= rbd_open,
697 	.release		= rbd_release,
698 };
699 
700 /*
701  * Initialize an rbd client instance.  Success or not, this function
702  * consumes ceph_opts.  Caller holds client_mutex.
703  */
rbd_client_create(struct ceph_options * ceph_opts)704 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
705 {
706 	struct rbd_client *rbdc;
707 	int ret = -ENOMEM;
708 
709 	dout("%s:\n", __func__);
710 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
711 	if (!rbdc)
712 		goto out_opt;
713 
714 	kref_init(&rbdc->kref);
715 	INIT_LIST_HEAD(&rbdc->node);
716 
717 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
718 	if (IS_ERR(rbdc->client))
719 		goto out_rbdc;
720 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
721 
722 	ret = ceph_open_session(rbdc->client);
723 	if (ret < 0)
724 		goto out_client;
725 
726 	spin_lock(&rbd_client_list_lock);
727 	list_add_tail(&rbdc->node, &rbd_client_list);
728 	spin_unlock(&rbd_client_list_lock);
729 
730 	dout("%s: rbdc %p\n", __func__, rbdc);
731 
732 	return rbdc;
733 out_client:
734 	ceph_destroy_client(rbdc->client);
735 out_rbdc:
736 	kfree(rbdc);
737 out_opt:
738 	if (ceph_opts)
739 		ceph_destroy_options(ceph_opts);
740 	dout("%s: error %d\n", __func__, ret);
741 
742 	return ERR_PTR(ret);
743 }
744 
__rbd_get_client(struct rbd_client * rbdc)745 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
746 {
747 	kref_get(&rbdc->kref);
748 
749 	return rbdc;
750 }
751 
752 /*
753  * Find a ceph client with specific addr and configuration.  If
754  * found, bump its reference count.
755  */
rbd_client_find(struct ceph_options * ceph_opts)756 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
757 {
758 	struct rbd_client *client_node;
759 	bool found = false;
760 
761 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
762 		return NULL;
763 
764 	spin_lock(&rbd_client_list_lock);
765 	list_for_each_entry(client_node, &rbd_client_list, node) {
766 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
767 			__rbd_get_client(client_node);
768 
769 			found = true;
770 			break;
771 		}
772 	}
773 	spin_unlock(&rbd_client_list_lock);
774 
775 	return found ? client_node : NULL;
776 }
777 
778 /*
779  * (Per device) rbd map options
780  */
781 enum {
782 	Opt_queue_depth,
783 	Opt_alloc_size,
784 	Opt_lock_timeout,
785 	/* int args above */
786 	Opt_pool_ns,
787 	Opt_compression_hint,
788 	/* string args above */
789 	Opt_read_only,
790 	Opt_read_write,
791 	Opt_lock_on_read,
792 	Opt_exclusive,
793 	Opt_notrim,
794 };
795 
796 enum {
797 	Opt_compression_hint_none,
798 	Opt_compression_hint_compressible,
799 	Opt_compression_hint_incompressible,
800 };
801 
802 static const struct constant_table rbd_param_compression_hint[] = {
803 	{"none",		Opt_compression_hint_none},
804 	{"compressible",	Opt_compression_hint_compressible},
805 	{"incompressible",	Opt_compression_hint_incompressible},
806 	{}
807 };
808 
809 static const struct fs_parameter_spec rbd_parameters[] = {
810 	fsparam_u32	("alloc_size",			Opt_alloc_size),
811 	fsparam_enum	("compression_hint",		Opt_compression_hint,
812 			 rbd_param_compression_hint),
813 	fsparam_flag	("exclusive",			Opt_exclusive),
814 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
815 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
816 	fsparam_flag	("notrim",			Opt_notrim),
817 	fsparam_string	("_pool_ns",			Opt_pool_ns),
818 	fsparam_u32	("queue_depth",			Opt_queue_depth),
819 	fsparam_flag	("read_only",			Opt_read_only),
820 	fsparam_flag	("read_write",			Opt_read_write),
821 	fsparam_flag	("ro",				Opt_read_only),
822 	fsparam_flag	("rw",				Opt_read_write),
823 	{}
824 };
825 
826 struct rbd_options {
827 	int	queue_depth;
828 	int	alloc_size;
829 	unsigned long	lock_timeout;
830 	bool	read_only;
831 	bool	lock_on_read;
832 	bool	exclusive;
833 	bool	trim;
834 
835 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
836 };
837 
838 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
839 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
840 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
841 #define RBD_READ_ONLY_DEFAULT	false
842 #define RBD_LOCK_ON_READ_DEFAULT false
843 #define RBD_EXCLUSIVE_DEFAULT	false
844 #define RBD_TRIM_DEFAULT	true
845 
846 struct rbd_parse_opts_ctx {
847 	struct rbd_spec		*spec;
848 	struct ceph_options	*copts;
849 	struct rbd_options	*opts;
850 };
851 
obj_op_name(enum obj_operation_type op_type)852 static char* obj_op_name(enum obj_operation_type op_type)
853 {
854 	switch (op_type) {
855 	case OBJ_OP_READ:
856 		return "read";
857 	case OBJ_OP_WRITE:
858 		return "write";
859 	case OBJ_OP_DISCARD:
860 		return "discard";
861 	case OBJ_OP_ZEROOUT:
862 		return "zeroout";
863 	default:
864 		return "???";
865 	}
866 }
867 
868 /*
869  * Destroy ceph client
870  *
871  * Caller must hold rbd_client_list_lock.
872  */
rbd_client_release(struct kref * kref)873 static void rbd_client_release(struct kref *kref)
874 {
875 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
876 
877 	dout("%s: rbdc %p\n", __func__, rbdc);
878 	spin_lock(&rbd_client_list_lock);
879 	list_del(&rbdc->node);
880 	spin_unlock(&rbd_client_list_lock);
881 
882 	ceph_destroy_client(rbdc->client);
883 	kfree(rbdc);
884 }
885 
886 /*
887  * Drop reference to ceph client node. If it's not referenced anymore, release
888  * it.
889  */
rbd_put_client(struct rbd_client * rbdc)890 static void rbd_put_client(struct rbd_client *rbdc)
891 {
892 	if (rbdc)
893 		kref_put(&rbdc->kref, rbd_client_release);
894 }
895 
896 /*
897  * Get a ceph client with specific addr and configuration, if one does
898  * not exist create it.  Either way, ceph_opts is consumed by this
899  * function.
900  */
rbd_get_client(struct ceph_options * ceph_opts)901 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
902 {
903 	struct rbd_client *rbdc;
904 	int ret;
905 
906 	mutex_lock(&client_mutex);
907 	rbdc = rbd_client_find(ceph_opts);
908 	if (rbdc) {
909 		ceph_destroy_options(ceph_opts);
910 
911 		/*
912 		 * Using an existing client.  Make sure ->pg_pools is up to
913 		 * date before we look up the pool id in do_rbd_add().
914 		 */
915 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
916 					rbdc->client->options->mount_timeout);
917 		if (ret) {
918 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
919 			rbd_put_client(rbdc);
920 			rbdc = ERR_PTR(ret);
921 		}
922 	} else {
923 		rbdc = rbd_client_create(ceph_opts);
924 	}
925 	mutex_unlock(&client_mutex);
926 
927 	return rbdc;
928 }
929 
rbd_image_format_valid(u32 image_format)930 static bool rbd_image_format_valid(u32 image_format)
931 {
932 	return image_format == 1 || image_format == 2;
933 }
934 
rbd_dev_ondisk_valid(struct rbd_image_header_ondisk * ondisk)935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
936 {
937 	size_t size;
938 	u32 snap_count;
939 
940 	/* The header has to start with the magic rbd header text */
941 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
942 		return false;
943 
944 	/* The bio layer requires at least sector-sized I/O */
945 
946 	if (ondisk->options.order < SECTOR_SHIFT)
947 		return false;
948 
949 	/* If we use u64 in a few spots we may be able to loosen this */
950 
951 	if (ondisk->options.order > 8 * sizeof (int) - 1)
952 		return false;
953 
954 	/*
955 	 * The size of a snapshot header has to fit in a size_t, and
956 	 * that limits the number of snapshots.
957 	 */
958 	snap_count = le32_to_cpu(ondisk->snap_count);
959 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
960 	if (snap_count > size / sizeof (__le64))
961 		return false;
962 
963 	/*
964 	 * Not only that, but the size of the entire the snapshot
965 	 * header must also be representable in a size_t.
966 	 */
967 	size -= snap_count * sizeof (__le64);
968 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
969 		return false;
970 
971 	return true;
972 }
973 
974 /*
975  * returns the size of an object in the image
976  */
rbd_obj_bytes(struct rbd_image_header * header)977 static u32 rbd_obj_bytes(struct rbd_image_header *header)
978 {
979 	return 1U << header->obj_order;
980 }
981 
rbd_init_layout(struct rbd_device * rbd_dev)982 static void rbd_init_layout(struct rbd_device *rbd_dev)
983 {
984 	if (rbd_dev->header.stripe_unit == 0 ||
985 	    rbd_dev->header.stripe_count == 0) {
986 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
987 		rbd_dev->header.stripe_count = 1;
988 	}
989 
990 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
991 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
992 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
993 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
994 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
995 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
996 }
997 
rbd_image_header_cleanup(struct rbd_image_header * header)998 static void rbd_image_header_cleanup(struct rbd_image_header *header)
999 {
1000 	kfree(header->object_prefix);
1001 	ceph_put_snap_context(header->snapc);
1002 	kfree(header->snap_sizes);
1003 	kfree(header->snap_names);
1004 
1005 	memset(header, 0, sizeof(*header));
1006 }
1007 
1008 /*
1009  * Fill an rbd image header with information from the given format 1
1010  * on-disk header.
1011  */
rbd_header_from_disk(struct rbd_image_header * header,struct rbd_image_header_ondisk * ondisk,bool first_time)1012 static int rbd_header_from_disk(struct rbd_image_header *header,
1013 				struct rbd_image_header_ondisk *ondisk,
1014 				bool first_time)
1015 {
1016 	struct ceph_snap_context *snapc;
1017 	char *object_prefix = NULL;
1018 	char *snap_names = NULL;
1019 	u64 *snap_sizes = NULL;
1020 	u32 snap_count;
1021 	int ret = -ENOMEM;
1022 	u32 i;
1023 
1024 	/* Allocate this now to avoid having to handle failure below */
1025 
1026 	if (first_time) {
1027 		object_prefix = kstrndup(ondisk->object_prefix,
1028 					 sizeof(ondisk->object_prefix),
1029 					 GFP_KERNEL);
1030 		if (!object_prefix)
1031 			return -ENOMEM;
1032 	}
1033 
1034 	/* Allocate the snapshot context and fill it in */
1035 
1036 	snap_count = le32_to_cpu(ondisk->snap_count);
1037 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1038 	if (!snapc)
1039 		goto out_err;
1040 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1041 	if (snap_count) {
1042 		struct rbd_image_snap_ondisk *snaps;
1043 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1044 
1045 		/* We'll keep a copy of the snapshot names... */
1046 
1047 		if (snap_names_len > (u64)SIZE_MAX)
1048 			goto out_2big;
1049 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1050 		if (!snap_names)
1051 			goto out_err;
1052 
1053 		/* ...as well as the array of their sizes. */
1054 		snap_sizes = kmalloc_array(snap_count,
1055 					   sizeof(*header->snap_sizes),
1056 					   GFP_KERNEL);
1057 		if (!snap_sizes)
1058 			goto out_err;
1059 
1060 		/*
1061 		 * Copy the names, and fill in each snapshot's id
1062 		 * and size.
1063 		 *
1064 		 * Note that rbd_dev_v1_header_info() guarantees the
1065 		 * ondisk buffer we're working with has
1066 		 * snap_names_len bytes beyond the end of the
1067 		 * snapshot id array, this memcpy() is safe.
1068 		 */
1069 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1070 		snaps = ondisk->snaps;
1071 		for (i = 0; i < snap_count; i++) {
1072 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1073 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1074 		}
1075 	}
1076 
1077 	/* We won't fail any more, fill in the header */
1078 
1079 	if (first_time) {
1080 		header->object_prefix = object_prefix;
1081 		header->obj_order = ondisk->options.order;
1082 	}
1083 
1084 	/* The remaining fields always get updated (when we refresh) */
1085 
1086 	header->image_size = le64_to_cpu(ondisk->image_size);
1087 	header->snapc = snapc;
1088 	header->snap_names = snap_names;
1089 	header->snap_sizes = snap_sizes;
1090 
1091 	return 0;
1092 out_2big:
1093 	ret = -EIO;
1094 out_err:
1095 	kfree(snap_sizes);
1096 	kfree(snap_names);
1097 	ceph_put_snap_context(snapc);
1098 	kfree(object_prefix);
1099 
1100 	return ret;
1101 }
1102 
_rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u32 which)1103 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1104 {
1105 	const char *snap_name;
1106 
1107 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1108 
1109 	/* Skip over names until we find the one we are looking for */
1110 
1111 	snap_name = rbd_dev->header.snap_names;
1112 	while (which--)
1113 		snap_name += strlen(snap_name) + 1;
1114 
1115 	return kstrdup(snap_name, GFP_KERNEL);
1116 }
1117 
1118 /*
1119  * Snapshot id comparison function for use with qsort()/bsearch().
1120  * Note that result is for snapshots in *descending* order.
1121  */
snapid_compare_reverse(const void * s1,const void * s2)1122 static int snapid_compare_reverse(const void *s1, const void *s2)
1123 {
1124 	u64 snap_id1 = *(u64 *)s1;
1125 	u64 snap_id2 = *(u64 *)s2;
1126 
1127 	if (snap_id1 < snap_id2)
1128 		return 1;
1129 	return snap_id1 == snap_id2 ? 0 : -1;
1130 }
1131 
1132 /*
1133  * Search a snapshot context to see if the given snapshot id is
1134  * present.
1135  *
1136  * Returns the position of the snapshot id in the array if it's found,
1137  * or BAD_SNAP_INDEX otherwise.
1138  *
1139  * Note: The snapshot array is in kept sorted (by the osd) in
1140  * reverse order, highest snapshot id first.
1141  */
rbd_dev_snap_index(struct rbd_device * rbd_dev,u64 snap_id)1142 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1143 {
1144 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1145 	u64 *found;
1146 
1147 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1148 				sizeof (snap_id), snapid_compare_reverse);
1149 
1150 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1151 }
1152 
rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1153 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1154 					u64 snap_id)
1155 {
1156 	u32 which;
1157 	const char *snap_name;
1158 
1159 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1160 	if (which == BAD_SNAP_INDEX)
1161 		return ERR_PTR(-ENOENT);
1162 
1163 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1164 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1165 }
1166 
rbd_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1167 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1168 {
1169 	if (snap_id == CEPH_NOSNAP)
1170 		return RBD_SNAP_HEAD_NAME;
1171 
1172 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1173 	if (rbd_dev->image_format == 1)
1174 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1175 
1176 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1177 }
1178 
rbd_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_size)1179 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1180 				u64 *snap_size)
1181 {
1182 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1183 	if (snap_id == CEPH_NOSNAP) {
1184 		*snap_size = rbd_dev->header.image_size;
1185 	} else if (rbd_dev->image_format == 1) {
1186 		u32 which;
1187 
1188 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1189 		if (which == BAD_SNAP_INDEX)
1190 			return -ENOENT;
1191 
1192 		*snap_size = rbd_dev->header.snap_sizes[which];
1193 	} else {
1194 		u64 size = 0;
1195 		int ret;
1196 
1197 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1198 		if (ret)
1199 			return ret;
1200 
1201 		*snap_size = size;
1202 	}
1203 	return 0;
1204 }
1205 
rbd_dev_mapping_set(struct rbd_device * rbd_dev)1206 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1207 {
1208 	u64 snap_id = rbd_dev->spec->snap_id;
1209 	u64 size = 0;
1210 	int ret;
1211 
1212 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1213 	if (ret)
1214 		return ret;
1215 
1216 	rbd_dev->mapping.size = size;
1217 	return 0;
1218 }
1219 
rbd_dev_mapping_clear(struct rbd_device * rbd_dev)1220 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1221 {
1222 	rbd_dev->mapping.size = 0;
1223 }
1224 
zero_bios(struct ceph_bio_iter * bio_pos,u32 off,u32 bytes)1225 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1226 {
1227 	struct ceph_bio_iter it = *bio_pos;
1228 
1229 	ceph_bio_iter_advance(&it, off);
1230 	ceph_bio_iter_advance_step(&it, bytes, ({
1231 		memzero_bvec(&bv);
1232 	}));
1233 }
1234 
zero_bvecs(struct ceph_bvec_iter * bvec_pos,u32 off,u32 bytes)1235 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1236 {
1237 	struct ceph_bvec_iter it = *bvec_pos;
1238 
1239 	ceph_bvec_iter_advance(&it, off);
1240 	ceph_bvec_iter_advance_step(&it, bytes, ({
1241 		memzero_bvec(&bv);
1242 	}));
1243 }
1244 
1245 /*
1246  * Zero a range in @obj_req data buffer defined by a bio (list) or
1247  * (private) bio_vec array.
1248  *
1249  * @off is relative to the start of the data buffer.
1250  */
rbd_obj_zero_range(struct rbd_obj_request * obj_req,u32 off,u32 bytes)1251 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1252 			       u32 bytes)
1253 {
1254 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1255 
1256 	switch (obj_req->img_request->data_type) {
1257 	case OBJ_REQUEST_BIO:
1258 		zero_bios(&obj_req->bio_pos, off, bytes);
1259 		break;
1260 	case OBJ_REQUEST_BVECS:
1261 	case OBJ_REQUEST_OWN_BVECS:
1262 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1263 		break;
1264 	default:
1265 		BUG();
1266 	}
1267 }
1268 
1269 static void rbd_obj_request_destroy(struct kref *kref);
rbd_obj_request_put(struct rbd_obj_request * obj_request)1270 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1271 {
1272 	rbd_assert(obj_request != NULL);
1273 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1274 		kref_read(&obj_request->kref));
1275 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1276 }
1277 
rbd_img_obj_request_add(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1278 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1279 					struct rbd_obj_request *obj_request)
1280 {
1281 	rbd_assert(obj_request->img_request == NULL);
1282 
1283 	/* Image request now owns object's original reference */
1284 	obj_request->img_request = img_request;
1285 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1286 }
1287 
rbd_img_obj_request_del(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1288 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1289 					struct rbd_obj_request *obj_request)
1290 {
1291 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1292 	list_del(&obj_request->ex.oe_item);
1293 	rbd_assert(obj_request->img_request == img_request);
1294 	rbd_obj_request_put(obj_request);
1295 }
1296 
rbd_osd_submit(struct ceph_osd_request * osd_req)1297 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1298 {
1299 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1300 
1301 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1302 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1303 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1304 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1305 }
1306 
1307 /*
1308  * The default/initial value for all image request flags is 0.  Each
1309  * is conditionally set to 1 at image request initialization time
1310  * and currently never change thereafter.
1311  */
img_request_layered_set(struct rbd_img_request * img_request)1312 static void img_request_layered_set(struct rbd_img_request *img_request)
1313 {
1314 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1315 }
1316 
img_request_layered_test(struct rbd_img_request * img_request)1317 static bool img_request_layered_test(struct rbd_img_request *img_request)
1318 {
1319 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1320 }
1321 
rbd_obj_is_entire(struct rbd_obj_request * obj_req)1322 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1323 {
1324 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1325 
1326 	return !obj_req->ex.oe_off &&
1327 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1328 }
1329 
rbd_obj_is_tail(struct rbd_obj_request * obj_req)1330 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1331 {
1332 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1333 
1334 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1335 					rbd_dev->layout.object_size;
1336 }
1337 
1338 /*
1339  * Must be called after rbd_obj_calc_img_extents().
1340  */
rbd_obj_set_copyup_enabled(struct rbd_obj_request * obj_req)1341 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1342 {
1343 	rbd_assert(obj_req->img_request->snapc);
1344 
1345 	if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1346 		dout("%s %p objno %llu discard\n", __func__, obj_req,
1347 		     obj_req->ex.oe_objno);
1348 		return;
1349 	}
1350 
1351 	if (!obj_req->num_img_extents) {
1352 		dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1353 		     obj_req->ex.oe_objno);
1354 		return;
1355 	}
1356 
1357 	if (rbd_obj_is_entire(obj_req) &&
1358 	    !obj_req->img_request->snapc->num_snaps) {
1359 		dout("%s %p objno %llu entire\n", __func__, obj_req,
1360 		     obj_req->ex.oe_objno);
1361 		return;
1362 	}
1363 
1364 	obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1365 }
1366 
rbd_obj_img_extents_bytes(struct rbd_obj_request * obj_req)1367 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1368 {
1369 	return ceph_file_extents_bytes(obj_req->img_extents,
1370 				       obj_req->num_img_extents);
1371 }
1372 
rbd_img_is_write(struct rbd_img_request * img_req)1373 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1374 {
1375 	switch (img_req->op_type) {
1376 	case OBJ_OP_READ:
1377 		return false;
1378 	case OBJ_OP_WRITE:
1379 	case OBJ_OP_DISCARD:
1380 	case OBJ_OP_ZEROOUT:
1381 		return true;
1382 	default:
1383 		BUG();
1384 	}
1385 }
1386 
rbd_osd_req_callback(struct ceph_osd_request * osd_req)1387 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1388 {
1389 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1390 	int result;
1391 
1392 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1393 	     osd_req->r_result, obj_req);
1394 
1395 	/*
1396 	 * Writes aren't allowed to return a data payload.  In some
1397 	 * guarded write cases (e.g. stat + zero on an empty object)
1398 	 * a stat response makes it through, but we don't care.
1399 	 */
1400 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1401 		result = 0;
1402 	else
1403 		result = osd_req->r_result;
1404 
1405 	rbd_obj_handle_request(obj_req, result);
1406 }
1407 
rbd_osd_format_read(struct ceph_osd_request * osd_req)1408 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1409 {
1410 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1411 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1412 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1413 
1414 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1415 	osd_req->r_snapid = obj_request->img_request->snap_id;
1416 }
1417 
rbd_osd_format_write(struct ceph_osd_request * osd_req)1418 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1419 {
1420 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1421 
1422 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1423 	ktime_get_real_ts64(&osd_req->r_mtime);
1424 	osd_req->r_data_offset = obj_request->ex.oe_off;
1425 }
1426 
1427 static struct ceph_osd_request *
__rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,struct ceph_snap_context * snapc,int num_ops)1428 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1429 			  struct ceph_snap_context *snapc, int num_ops)
1430 {
1431 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1432 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1433 	struct ceph_osd_request *req;
1434 	const char *name_format = rbd_dev->image_format == 1 ?
1435 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1436 	int ret;
1437 
1438 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1439 	if (!req)
1440 		return ERR_PTR(-ENOMEM);
1441 
1442 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1443 	req->r_callback = rbd_osd_req_callback;
1444 	req->r_priv = obj_req;
1445 
1446 	/*
1447 	 * Data objects may be stored in a separate pool, but always in
1448 	 * the same namespace in that pool as the header in its pool.
1449 	 */
1450 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1451 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1452 
1453 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1454 			       rbd_dev->header.object_prefix,
1455 			       obj_req->ex.oe_objno);
1456 	if (ret)
1457 		return ERR_PTR(ret);
1458 
1459 	return req;
1460 }
1461 
1462 static struct ceph_osd_request *
rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,int num_ops)1463 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1464 {
1465 	rbd_assert(obj_req->img_request->snapc);
1466 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1467 					 num_ops);
1468 }
1469 
rbd_obj_request_create(void)1470 static struct rbd_obj_request *rbd_obj_request_create(void)
1471 {
1472 	struct rbd_obj_request *obj_request;
1473 
1474 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1475 	if (!obj_request)
1476 		return NULL;
1477 
1478 	ceph_object_extent_init(&obj_request->ex);
1479 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1480 	mutex_init(&obj_request->state_mutex);
1481 	kref_init(&obj_request->kref);
1482 
1483 	dout("%s %p\n", __func__, obj_request);
1484 	return obj_request;
1485 }
1486 
rbd_obj_request_destroy(struct kref * kref)1487 static void rbd_obj_request_destroy(struct kref *kref)
1488 {
1489 	struct rbd_obj_request *obj_request;
1490 	struct ceph_osd_request *osd_req;
1491 	u32 i;
1492 
1493 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1494 
1495 	dout("%s: obj %p\n", __func__, obj_request);
1496 
1497 	while (!list_empty(&obj_request->osd_reqs)) {
1498 		osd_req = list_first_entry(&obj_request->osd_reqs,
1499 				    struct ceph_osd_request, r_private_item);
1500 		list_del_init(&osd_req->r_private_item);
1501 		ceph_osdc_put_request(osd_req);
1502 	}
1503 
1504 	switch (obj_request->img_request->data_type) {
1505 	case OBJ_REQUEST_NODATA:
1506 	case OBJ_REQUEST_BIO:
1507 	case OBJ_REQUEST_BVECS:
1508 		break;		/* Nothing to do */
1509 	case OBJ_REQUEST_OWN_BVECS:
1510 		kfree(obj_request->bvec_pos.bvecs);
1511 		break;
1512 	default:
1513 		BUG();
1514 	}
1515 
1516 	kfree(obj_request->img_extents);
1517 	if (obj_request->copyup_bvecs) {
1518 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1519 			if (obj_request->copyup_bvecs[i].bv_page)
1520 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1521 		}
1522 		kfree(obj_request->copyup_bvecs);
1523 	}
1524 
1525 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1526 }
1527 
1528 /* It's OK to call this for a device with no parent */
1529 
1530 static void rbd_spec_put(struct rbd_spec *spec);
rbd_dev_unparent(struct rbd_device * rbd_dev)1531 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1532 {
1533 	rbd_dev_remove_parent(rbd_dev);
1534 	rbd_spec_put(rbd_dev->parent_spec);
1535 	rbd_dev->parent_spec = NULL;
1536 	rbd_dev->parent_overlap = 0;
1537 }
1538 
1539 /*
1540  * Parent image reference counting is used to determine when an
1541  * image's parent fields can be safely torn down--after there are no
1542  * more in-flight requests to the parent image.  When the last
1543  * reference is dropped, cleaning them up is safe.
1544  */
rbd_dev_parent_put(struct rbd_device * rbd_dev)1545 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1546 {
1547 	int counter;
1548 
1549 	if (!rbd_dev->parent_spec)
1550 		return;
1551 
1552 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1553 	if (counter > 0)
1554 		return;
1555 
1556 	/* Last reference; clean up parent data structures */
1557 
1558 	if (!counter)
1559 		rbd_dev_unparent(rbd_dev);
1560 	else
1561 		rbd_warn(rbd_dev, "parent reference underflow");
1562 }
1563 
1564 /*
1565  * If an image has a non-zero parent overlap, get a reference to its
1566  * parent.
1567  *
1568  * Returns true if the rbd device has a parent with a non-zero
1569  * overlap and a reference for it was successfully taken, or
1570  * false otherwise.
1571  */
rbd_dev_parent_get(struct rbd_device * rbd_dev)1572 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1573 {
1574 	int counter = 0;
1575 
1576 	if (!rbd_dev->parent_spec)
1577 		return false;
1578 
1579 	if (rbd_dev->parent_overlap)
1580 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1581 
1582 	if (counter < 0)
1583 		rbd_warn(rbd_dev, "parent reference overflow");
1584 
1585 	return counter > 0;
1586 }
1587 
rbd_img_request_init(struct rbd_img_request * img_request,struct rbd_device * rbd_dev,enum obj_operation_type op_type)1588 static void rbd_img_request_init(struct rbd_img_request *img_request,
1589 				 struct rbd_device *rbd_dev,
1590 				 enum obj_operation_type op_type)
1591 {
1592 	memset(img_request, 0, sizeof(*img_request));
1593 
1594 	img_request->rbd_dev = rbd_dev;
1595 	img_request->op_type = op_type;
1596 
1597 	INIT_LIST_HEAD(&img_request->lock_item);
1598 	INIT_LIST_HEAD(&img_request->object_extents);
1599 	mutex_init(&img_request->state_mutex);
1600 }
1601 
1602 /*
1603  * Only snap_id is captured here, for reads.  For writes, snapshot
1604  * context is captured in rbd_img_object_requests() after exclusive
1605  * lock is ensured to be held.
1606  */
rbd_img_capture_header(struct rbd_img_request * img_req)1607 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1608 {
1609 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1610 
1611 	lockdep_assert_held(&rbd_dev->header_rwsem);
1612 
1613 	if (!rbd_img_is_write(img_req))
1614 		img_req->snap_id = rbd_dev->spec->snap_id;
1615 
1616 	if (rbd_dev_parent_get(rbd_dev))
1617 		img_request_layered_set(img_req);
1618 }
1619 
rbd_img_request_destroy(struct rbd_img_request * img_request)1620 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1621 {
1622 	struct rbd_obj_request *obj_request;
1623 	struct rbd_obj_request *next_obj_request;
1624 
1625 	dout("%s: img %p\n", __func__, img_request);
1626 
1627 	WARN_ON(!list_empty(&img_request->lock_item));
1628 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1629 		rbd_img_obj_request_del(img_request, obj_request);
1630 
1631 	if (img_request_layered_test(img_request))
1632 		rbd_dev_parent_put(img_request->rbd_dev);
1633 
1634 	if (rbd_img_is_write(img_request))
1635 		ceph_put_snap_context(img_request->snapc);
1636 
1637 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1638 		kmem_cache_free(rbd_img_request_cache, img_request);
1639 }
1640 
1641 #define BITS_PER_OBJ	2
1642 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1643 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1644 
__rbd_object_map_index(struct rbd_device * rbd_dev,u64 objno,u64 * index,u8 * shift)1645 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1646 				   u64 *index, u8 *shift)
1647 {
1648 	u32 off;
1649 
1650 	rbd_assert(objno < rbd_dev->object_map_size);
1651 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1652 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1653 }
1654 
__rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1655 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1656 {
1657 	u64 index;
1658 	u8 shift;
1659 
1660 	lockdep_assert_held(&rbd_dev->object_map_lock);
1661 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1662 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1663 }
1664 
__rbd_object_map_set(struct rbd_device * rbd_dev,u64 objno,u8 val)1665 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1666 {
1667 	u64 index;
1668 	u8 shift;
1669 	u8 *p;
1670 
1671 	lockdep_assert_held(&rbd_dev->object_map_lock);
1672 	rbd_assert(!(val & ~OBJ_MASK));
1673 
1674 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1675 	p = &rbd_dev->object_map[index];
1676 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1677 }
1678 
rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1679 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1680 {
1681 	u8 state;
1682 
1683 	spin_lock(&rbd_dev->object_map_lock);
1684 	state = __rbd_object_map_get(rbd_dev, objno);
1685 	spin_unlock(&rbd_dev->object_map_lock);
1686 	return state;
1687 }
1688 
use_object_map(struct rbd_device * rbd_dev)1689 static bool use_object_map(struct rbd_device *rbd_dev)
1690 {
1691 	/*
1692 	 * An image mapped read-only can't use the object map -- it isn't
1693 	 * loaded because the header lock isn't acquired.  Someone else can
1694 	 * write to the image and update the object map behind our back.
1695 	 *
1696 	 * A snapshot can't be written to, so using the object map is always
1697 	 * safe.
1698 	 */
1699 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1700 		return false;
1701 
1702 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1703 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1704 }
1705 
rbd_object_map_may_exist(struct rbd_device * rbd_dev,u64 objno)1706 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1707 {
1708 	u8 state;
1709 
1710 	/* fall back to default logic if object map is disabled or invalid */
1711 	if (!use_object_map(rbd_dev))
1712 		return true;
1713 
1714 	state = rbd_object_map_get(rbd_dev, objno);
1715 	return state != OBJECT_NONEXISTENT;
1716 }
1717 
rbd_object_map_name(struct rbd_device * rbd_dev,u64 snap_id,struct ceph_object_id * oid)1718 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1719 				struct ceph_object_id *oid)
1720 {
1721 	if (snap_id == CEPH_NOSNAP)
1722 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1723 				rbd_dev->spec->image_id);
1724 	else
1725 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1726 				rbd_dev->spec->image_id, snap_id);
1727 }
1728 
rbd_object_map_lock(struct rbd_device * rbd_dev)1729 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1730 {
1731 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1732 	CEPH_DEFINE_OID_ONSTACK(oid);
1733 	u8 lock_type;
1734 	char *lock_tag;
1735 	struct ceph_locker *lockers;
1736 	u32 num_lockers;
1737 	bool broke_lock = false;
1738 	int ret;
1739 
1740 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1741 
1742 again:
1743 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1744 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1745 	if (ret != -EBUSY || broke_lock) {
1746 		if (ret == -EEXIST)
1747 			ret = 0; /* already locked by myself */
1748 		if (ret)
1749 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1750 		return ret;
1751 	}
1752 
1753 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1754 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1755 				 &lockers, &num_lockers);
1756 	if (ret) {
1757 		if (ret == -ENOENT)
1758 			goto again;
1759 
1760 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1761 		return ret;
1762 	}
1763 
1764 	kfree(lock_tag);
1765 	if (num_lockers == 0)
1766 		goto again;
1767 
1768 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1769 		 ENTITY_NAME(lockers[0].id.name));
1770 
1771 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1772 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1773 				  &lockers[0].id.name);
1774 	ceph_free_lockers(lockers, num_lockers);
1775 	if (ret) {
1776 		if (ret == -ENOENT)
1777 			goto again;
1778 
1779 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1780 		return ret;
1781 	}
1782 
1783 	broke_lock = true;
1784 	goto again;
1785 }
1786 
rbd_object_map_unlock(struct rbd_device * rbd_dev)1787 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1788 {
1789 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1790 	CEPH_DEFINE_OID_ONSTACK(oid);
1791 	int ret;
1792 
1793 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1794 
1795 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1796 			      "");
1797 	if (ret && ret != -ENOENT)
1798 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1799 }
1800 
decode_object_map_header(void ** p,void * end,u64 * object_map_size)1801 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1802 {
1803 	u8 struct_v;
1804 	u32 struct_len;
1805 	u32 header_len;
1806 	void *header_end;
1807 	int ret;
1808 
1809 	ceph_decode_32_safe(p, end, header_len, e_inval);
1810 	header_end = *p + header_len;
1811 
1812 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1813 				  &struct_len);
1814 	if (ret)
1815 		return ret;
1816 
1817 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1818 
1819 	*p = header_end;
1820 	return 0;
1821 
1822 e_inval:
1823 	return -EINVAL;
1824 }
1825 
__rbd_object_map_load(struct rbd_device * rbd_dev)1826 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1827 {
1828 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1829 	CEPH_DEFINE_OID_ONSTACK(oid);
1830 	struct page **pages;
1831 	void *p, *end;
1832 	size_t reply_len;
1833 	u64 num_objects;
1834 	u64 object_map_bytes;
1835 	u64 object_map_size;
1836 	int num_pages;
1837 	int ret;
1838 
1839 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1840 
1841 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1842 					   rbd_dev->mapping.size);
1843 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1844 					    BITS_PER_BYTE);
1845 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1846 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1847 	if (IS_ERR(pages))
1848 		return PTR_ERR(pages);
1849 
1850 	reply_len = num_pages * PAGE_SIZE;
1851 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1852 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1853 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1854 			     NULL, 0, pages, &reply_len);
1855 	if (ret)
1856 		goto out;
1857 
1858 	p = page_address(pages[0]);
1859 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1860 	ret = decode_object_map_header(&p, end, &object_map_size);
1861 	if (ret)
1862 		goto out;
1863 
1864 	if (object_map_size != num_objects) {
1865 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1866 			 object_map_size, num_objects);
1867 		ret = -EINVAL;
1868 		goto out;
1869 	}
1870 
1871 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1872 		ret = -EINVAL;
1873 		goto out;
1874 	}
1875 
1876 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1877 	if (!rbd_dev->object_map) {
1878 		ret = -ENOMEM;
1879 		goto out;
1880 	}
1881 
1882 	rbd_dev->object_map_size = object_map_size;
1883 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1884 				   offset_in_page(p), object_map_bytes);
1885 
1886 out:
1887 	ceph_release_page_vector(pages, num_pages);
1888 	return ret;
1889 }
1890 
rbd_object_map_free(struct rbd_device * rbd_dev)1891 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1892 {
1893 	kvfree(rbd_dev->object_map);
1894 	rbd_dev->object_map = NULL;
1895 	rbd_dev->object_map_size = 0;
1896 }
1897 
rbd_object_map_load(struct rbd_device * rbd_dev)1898 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1899 {
1900 	int ret;
1901 
1902 	ret = __rbd_object_map_load(rbd_dev);
1903 	if (ret)
1904 		return ret;
1905 
1906 	ret = rbd_dev_v2_get_flags(rbd_dev);
1907 	if (ret) {
1908 		rbd_object_map_free(rbd_dev);
1909 		return ret;
1910 	}
1911 
1912 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1913 		rbd_warn(rbd_dev, "object map is invalid");
1914 
1915 	return 0;
1916 }
1917 
rbd_object_map_open(struct rbd_device * rbd_dev)1918 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1919 {
1920 	int ret;
1921 
1922 	ret = rbd_object_map_lock(rbd_dev);
1923 	if (ret)
1924 		return ret;
1925 
1926 	ret = rbd_object_map_load(rbd_dev);
1927 	if (ret) {
1928 		rbd_object_map_unlock(rbd_dev);
1929 		return ret;
1930 	}
1931 
1932 	return 0;
1933 }
1934 
rbd_object_map_close(struct rbd_device * rbd_dev)1935 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1936 {
1937 	rbd_object_map_free(rbd_dev);
1938 	rbd_object_map_unlock(rbd_dev);
1939 }
1940 
1941 /*
1942  * This function needs snap_id (or more precisely just something to
1943  * distinguish between HEAD and snapshot object maps), new_state and
1944  * current_state that were passed to rbd_object_map_update().
1945  *
1946  * To avoid allocating and stashing a context we piggyback on the OSD
1947  * request.  A HEAD update has two ops (assert_locked).  For new_state
1948  * and current_state we decode our own object_map_update op, encoded in
1949  * rbd_cls_object_map_update().
1950  */
rbd_object_map_update_finish(struct rbd_obj_request * obj_req,struct ceph_osd_request * osd_req)1951 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1952 					struct ceph_osd_request *osd_req)
1953 {
1954 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1955 	struct ceph_osd_data *osd_data;
1956 	u64 objno;
1957 	u8 state, new_state, current_state;
1958 	bool has_current_state;
1959 	void *p;
1960 
1961 	if (osd_req->r_result)
1962 		return osd_req->r_result;
1963 
1964 	/*
1965 	 * Nothing to do for a snapshot object map.
1966 	 */
1967 	if (osd_req->r_num_ops == 1)
1968 		return 0;
1969 
1970 	/*
1971 	 * Update in-memory HEAD object map.
1972 	 */
1973 	rbd_assert(osd_req->r_num_ops == 2);
1974 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1975 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1976 
1977 	p = page_address(osd_data->pages[0]);
1978 	objno = ceph_decode_64(&p);
1979 	rbd_assert(objno == obj_req->ex.oe_objno);
1980 	rbd_assert(ceph_decode_64(&p) == objno + 1);
1981 	new_state = ceph_decode_8(&p);
1982 	has_current_state = ceph_decode_8(&p);
1983 	if (has_current_state)
1984 		current_state = ceph_decode_8(&p);
1985 
1986 	spin_lock(&rbd_dev->object_map_lock);
1987 	state = __rbd_object_map_get(rbd_dev, objno);
1988 	if (!has_current_state || current_state == state ||
1989 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1990 		__rbd_object_map_set(rbd_dev, objno, new_state);
1991 	spin_unlock(&rbd_dev->object_map_lock);
1992 
1993 	return 0;
1994 }
1995 
rbd_object_map_callback(struct ceph_osd_request * osd_req)1996 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1997 {
1998 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1999 	int result;
2000 
2001 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2002 	     osd_req->r_result, obj_req);
2003 
2004 	result = rbd_object_map_update_finish(obj_req, osd_req);
2005 	rbd_obj_handle_request(obj_req, result);
2006 }
2007 
update_needed(struct rbd_device * rbd_dev,u64 objno,u8 new_state)2008 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2009 {
2010 	u8 state = rbd_object_map_get(rbd_dev, objno);
2011 
2012 	if (state == new_state ||
2013 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2014 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2015 		return false;
2016 
2017 	return true;
2018 }
2019 
rbd_cls_object_map_update(struct ceph_osd_request * req,int which,u64 objno,u8 new_state,const u8 * current_state)2020 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2021 				     int which, u64 objno, u8 new_state,
2022 				     const u8 *current_state)
2023 {
2024 	struct page **pages;
2025 	void *p, *start;
2026 	int ret;
2027 
2028 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2029 	if (ret)
2030 		return ret;
2031 
2032 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2033 	if (IS_ERR(pages))
2034 		return PTR_ERR(pages);
2035 
2036 	p = start = page_address(pages[0]);
2037 	ceph_encode_64(&p, objno);
2038 	ceph_encode_64(&p, objno + 1);
2039 	ceph_encode_8(&p, new_state);
2040 	if (current_state) {
2041 		ceph_encode_8(&p, 1);
2042 		ceph_encode_8(&p, *current_state);
2043 	} else {
2044 		ceph_encode_8(&p, 0);
2045 	}
2046 
2047 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2048 					  false, true);
2049 	return 0;
2050 }
2051 
2052 /*
2053  * Return:
2054  *   0 - object map update sent
2055  *   1 - object map update isn't needed
2056  *  <0 - error
2057  */
rbd_object_map_update(struct rbd_obj_request * obj_req,u64 snap_id,u8 new_state,const u8 * current_state)2058 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2059 				 u8 new_state, const u8 *current_state)
2060 {
2061 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2062 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2063 	struct ceph_osd_request *req;
2064 	int num_ops = 1;
2065 	int which = 0;
2066 	int ret;
2067 
2068 	if (snap_id == CEPH_NOSNAP) {
2069 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2070 			return 1;
2071 
2072 		num_ops++; /* assert_locked */
2073 	}
2074 
2075 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2076 	if (!req)
2077 		return -ENOMEM;
2078 
2079 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2080 	req->r_callback = rbd_object_map_callback;
2081 	req->r_priv = obj_req;
2082 
2083 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2084 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2085 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2086 	ktime_get_real_ts64(&req->r_mtime);
2087 
2088 	if (snap_id == CEPH_NOSNAP) {
2089 		/*
2090 		 * Protect against possible race conditions during lock
2091 		 * ownership transitions.
2092 		 */
2093 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2094 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2095 		if (ret)
2096 			return ret;
2097 	}
2098 
2099 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2100 					new_state, current_state);
2101 	if (ret)
2102 		return ret;
2103 
2104 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2105 	if (ret)
2106 		return ret;
2107 
2108 	ceph_osdc_start_request(osdc, req, false);
2109 	return 0;
2110 }
2111 
prune_extents(struct ceph_file_extent * img_extents,u32 * num_img_extents,u64 overlap)2112 static void prune_extents(struct ceph_file_extent *img_extents,
2113 			  u32 *num_img_extents, u64 overlap)
2114 {
2115 	u32 cnt = *num_img_extents;
2116 
2117 	/* drop extents completely beyond the overlap */
2118 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2119 		cnt--;
2120 
2121 	if (cnt) {
2122 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2123 
2124 		/* trim final overlapping extent */
2125 		if (ex->fe_off + ex->fe_len > overlap)
2126 			ex->fe_len = overlap - ex->fe_off;
2127 	}
2128 
2129 	*num_img_extents = cnt;
2130 }
2131 
2132 /*
2133  * Determine the byte range(s) covered by either just the object extent
2134  * or the entire object in the parent image.
2135  */
rbd_obj_calc_img_extents(struct rbd_obj_request * obj_req,bool entire)2136 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2137 				    bool entire)
2138 {
2139 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2140 	int ret;
2141 
2142 	if (!rbd_dev->parent_overlap)
2143 		return 0;
2144 
2145 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2146 				  entire ? 0 : obj_req->ex.oe_off,
2147 				  entire ? rbd_dev->layout.object_size :
2148 							obj_req->ex.oe_len,
2149 				  &obj_req->img_extents,
2150 				  &obj_req->num_img_extents);
2151 	if (ret)
2152 		return ret;
2153 
2154 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2155 		      rbd_dev->parent_overlap);
2156 	return 0;
2157 }
2158 
rbd_osd_setup_data(struct ceph_osd_request * osd_req,int which)2159 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2160 {
2161 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2162 
2163 	switch (obj_req->img_request->data_type) {
2164 	case OBJ_REQUEST_BIO:
2165 		osd_req_op_extent_osd_data_bio(osd_req, which,
2166 					       &obj_req->bio_pos,
2167 					       obj_req->ex.oe_len);
2168 		break;
2169 	case OBJ_REQUEST_BVECS:
2170 	case OBJ_REQUEST_OWN_BVECS:
2171 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2172 							obj_req->ex.oe_len);
2173 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2174 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2175 						    &obj_req->bvec_pos);
2176 		break;
2177 	default:
2178 		BUG();
2179 	}
2180 }
2181 
rbd_osd_setup_stat(struct ceph_osd_request * osd_req,int which)2182 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2183 {
2184 	struct page **pages;
2185 
2186 	/*
2187 	 * The response data for a STAT call consists of:
2188 	 *     le64 length;
2189 	 *     struct {
2190 	 *         le32 tv_sec;
2191 	 *         le32 tv_nsec;
2192 	 *     } mtime;
2193 	 */
2194 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2195 	if (IS_ERR(pages))
2196 		return PTR_ERR(pages);
2197 
2198 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2199 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2200 				     8 + sizeof(struct ceph_timespec),
2201 				     0, false, true);
2202 	return 0;
2203 }
2204 
rbd_osd_setup_copyup(struct ceph_osd_request * osd_req,int which,u32 bytes)2205 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2206 				u32 bytes)
2207 {
2208 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2209 	int ret;
2210 
2211 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2212 	if (ret)
2213 		return ret;
2214 
2215 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2216 					  obj_req->copyup_bvec_count, bytes);
2217 	return 0;
2218 }
2219 
rbd_obj_init_read(struct rbd_obj_request * obj_req)2220 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2221 {
2222 	obj_req->read_state = RBD_OBJ_READ_START;
2223 	return 0;
2224 }
2225 
__rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2226 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2227 				      int which)
2228 {
2229 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2230 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2231 	u16 opcode;
2232 
2233 	if (!use_object_map(rbd_dev) ||
2234 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2235 		osd_req_op_alloc_hint_init(osd_req, which++,
2236 					   rbd_dev->layout.object_size,
2237 					   rbd_dev->layout.object_size,
2238 					   rbd_dev->opts->alloc_hint_flags);
2239 	}
2240 
2241 	if (rbd_obj_is_entire(obj_req))
2242 		opcode = CEPH_OSD_OP_WRITEFULL;
2243 	else
2244 		opcode = CEPH_OSD_OP_WRITE;
2245 
2246 	osd_req_op_extent_init(osd_req, which, opcode,
2247 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2248 	rbd_osd_setup_data(osd_req, which);
2249 }
2250 
rbd_obj_init_write(struct rbd_obj_request * obj_req)2251 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2252 {
2253 	int ret;
2254 
2255 	/* reverse map the entire object onto the parent */
2256 	ret = rbd_obj_calc_img_extents(obj_req, true);
2257 	if (ret)
2258 		return ret;
2259 
2260 	obj_req->write_state = RBD_OBJ_WRITE_START;
2261 	return 0;
2262 }
2263 
truncate_or_zero_opcode(struct rbd_obj_request * obj_req)2264 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2265 {
2266 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2267 					  CEPH_OSD_OP_ZERO;
2268 }
2269 
__rbd_osd_setup_discard_ops(struct ceph_osd_request * osd_req,int which)2270 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2271 					int which)
2272 {
2273 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2274 
2275 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2276 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2277 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2278 	} else {
2279 		osd_req_op_extent_init(osd_req, which,
2280 				       truncate_or_zero_opcode(obj_req),
2281 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2282 				       0, 0);
2283 	}
2284 }
2285 
rbd_obj_init_discard(struct rbd_obj_request * obj_req)2286 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2287 {
2288 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2289 	u64 off, next_off;
2290 	int ret;
2291 
2292 	/*
2293 	 * Align the range to alloc_size boundary and punt on discards
2294 	 * that are too small to free up any space.
2295 	 *
2296 	 * alloc_size == object_size && is_tail() is a special case for
2297 	 * filestore with filestore_punch_hole = false, needed to allow
2298 	 * truncate (in addition to delete).
2299 	 */
2300 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2301 	    !rbd_obj_is_tail(obj_req)) {
2302 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2303 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2304 				      rbd_dev->opts->alloc_size);
2305 		if (off >= next_off)
2306 			return 1;
2307 
2308 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2309 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2310 		     off, next_off - off);
2311 		obj_req->ex.oe_off = off;
2312 		obj_req->ex.oe_len = next_off - off;
2313 	}
2314 
2315 	/* reverse map the entire object onto the parent */
2316 	ret = rbd_obj_calc_img_extents(obj_req, true);
2317 	if (ret)
2318 		return ret;
2319 
2320 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2321 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2322 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2323 
2324 	obj_req->write_state = RBD_OBJ_WRITE_START;
2325 	return 0;
2326 }
2327 
__rbd_osd_setup_zeroout_ops(struct ceph_osd_request * osd_req,int which)2328 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2329 					int which)
2330 {
2331 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2332 	u16 opcode;
2333 
2334 	if (rbd_obj_is_entire(obj_req)) {
2335 		if (obj_req->num_img_extents) {
2336 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2337 				osd_req_op_init(osd_req, which++,
2338 						CEPH_OSD_OP_CREATE, 0);
2339 			opcode = CEPH_OSD_OP_TRUNCATE;
2340 		} else {
2341 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2342 			osd_req_op_init(osd_req, which++,
2343 					CEPH_OSD_OP_DELETE, 0);
2344 			opcode = 0;
2345 		}
2346 	} else {
2347 		opcode = truncate_or_zero_opcode(obj_req);
2348 	}
2349 
2350 	if (opcode)
2351 		osd_req_op_extent_init(osd_req, which, opcode,
2352 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2353 				       0, 0);
2354 }
2355 
rbd_obj_init_zeroout(struct rbd_obj_request * obj_req)2356 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2357 {
2358 	int ret;
2359 
2360 	/* reverse map the entire object onto the parent */
2361 	ret = rbd_obj_calc_img_extents(obj_req, true);
2362 	if (ret)
2363 		return ret;
2364 
2365 	if (!obj_req->num_img_extents) {
2366 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2367 		if (rbd_obj_is_entire(obj_req))
2368 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2369 	}
2370 
2371 	obj_req->write_state = RBD_OBJ_WRITE_START;
2372 	return 0;
2373 }
2374 
count_write_ops(struct rbd_obj_request * obj_req)2375 static int count_write_ops(struct rbd_obj_request *obj_req)
2376 {
2377 	struct rbd_img_request *img_req = obj_req->img_request;
2378 
2379 	switch (img_req->op_type) {
2380 	case OBJ_OP_WRITE:
2381 		if (!use_object_map(img_req->rbd_dev) ||
2382 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2383 			return 2; /* setallochint + write/writefull */
2384 
2385 		return 1; /* write/writefull */
2386 	case OBJ_OP_DISCARD:
2387 		return 1; /* delete/truncate/zero */
2388 	case OBJ_OP_ZEROOUT:
2389 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2390 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2391 			return 2; /* create + truncate */
2392 
2393 		return 1; /* delete/truncate/zero */
2394 	default:
2395 		BUG();
2396 	}
2397 }
2398 
rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2399 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2400 				    int which)
2401 {
2402 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2403 
2404 	switch (obj_req->img_request->op_type) {
2405 	case OBJ_OP_WRITE:
2406 		__rbd_osd_setup_write_ops(osd_req, which);
2407 		break;
2408 	case OBJ_OP_DISCARD:
2409 		__rbd_osd_setup_discard_ops(osd_req, which);
2410 		break;
2411 	case OBJ_OP_ZEROOUT:
2412 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2413 		break;
2414 	default:
2415 		BUG();
2416 	}
2417 }
2418 
2419 /*
2420  * Prune the list of object requests (adjust offset and/or length, drop
2421  * redundant requests).  Prepare object request state machines and image
2422  * request state machine for execution.
2423  */
__rbd_img_fill_request(struct rbd_img_request * img_req)2424 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2425 {
2426 	struct rbd_obj_request *obj_req, *next_obj_req;
2427 	int ret;
2428 
2429 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2430 		switch (img_req->op_type) {
2431 		case OBJ_OP_READ:
2432 			ret = rbd_obj_init_read(obj_req);
2433 			break;
2434 		case OBJ_OP_WRITE:
2435 			ret = rbd_obj_init_write(obj_req);
2436 			break;
2437 		case OBJ_OP_DISCARD:
2438 			ret = rbd_obj_init_discard(obj_req);
2439 			break;
2440 		case OBJ_OP_ZEROOUT:
2441 			ret = rbd_obj_init_zeroout(obj_req);
2442 			break;
2443 		default:
2444 			BUG();
2445 		}
2446 		if (ret < 0)
2447 			return ret;
2448 		if (ret > 0) {
2449 			rbd_img_obj_request_del(img_req, obj_req);
2450 			continue;
2451 		}
2452 	}
2453 
2454 	img_req->state = RBD_IMG_START;
2455 	return 0;
2456 }
2457 
2458 union rbd_img_fill_iter {
2459 	struct ceph_bio_iter	bio_iter;
2460 	struct ceph_bvec_iter	bvec_iter;
2461 };
2462 
2463 struct rbd_img_fill_ctx {
2464 	enum obj_request_type	pos_type;
2465 	union rbd_img_fill_iter	*pos;
2466 	union rbd_img_fill_iter	iter;
2467 	ceph_object_extent_fn_t	set_pos_fn;
2468 	ceph_object_extent_fn_t	count_fn;
2469 	ceph_object_extent_fn_t	copy_fn;
2470 };
2471 
alloc_object_extent(void * arg)2472 static struct ceph_object_extent *alloc_object_extent(void *arg)
2473 {
2474 	struct rbd_img_request *img_req = arg;
2475 	struct rbd_obj_request *obj_req;
2476 
2477 	obj_req = rbd_obj_request_create();
2478 	if (!obj_req)
2479 		return NULL;
2480 
2481 	rbd_img_obj_request_add(img_req, obj_req);
2482 	return &obj_req->ex;
2483 }
2484 
2485 /*
2486  * While su != os && sc == 1 is technically not fancy (it's the same
2487  * layout as su == os && sc == 1), we can't use the nocopy path for it
2488  * because ->set_pos_fn() should be called only once per object.
2489  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2490  * treat su != os && sc == 1 as fancy.
2491  */
rbd_layout_is_fancy(struct ceph_file_layout * l)2492 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2493 {
2494 	return l->stripe_unit != l->object_size;
2495 }
2496 
rbd_img_fill_request_nocopy(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2497 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2498 				       struct ceph_file_extent *img_extents,
2499 				       u32 num_img_extents,
2500 				       struct rbd_img_fill_ctx *fctx)
2501 {
2502 	u32 i;
2503 	int ret;
2504 
2505 	img_req->data_type = fctx->pos_type;
2506 
2507 	/*
2508 	 * Create object requests and set each object request's starting
2509 	 * position in the provided bio (list) or bio_vec array.
2510 	 */
2511 	fctx->iter = *fctx->pos;
2512 	for (i = 0; i < num_img_extents; i++) {
2513 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2514 					   img_extents[i].fe_off,
2515 					   img_extents[i].fe_len,
2516 					   &img_req->object_extents,
2517 					   alloc_object_extent, img_req,
2518 					   fctx->set_pos_fn, &fctx->iter);
2519 		if (ret)
2520 			return ret;
2521 	}
2522 
2523 	return __rbd_img_fill_request(img_req);
2524 }
2525 
2526 /*
2527  * Map a list of image extents to a list of object extents, create the
2528  * corresponding object requests (normally each to a different object,
2529  * but not always) and add them to @img_req.  For each object request,
2530  * set up its data descriptor to point to the corresponding chunk(s) of
2531  * @fctx->pos data buffer.
2532  *
2533  * Because ceph_file_to_extents() will merge adjacent object extents
2534  * together, each object request's data descriptor may point to multiple
2535  * different chunks of @fctx->pos data buffer.
2536  *
2537  * @fctx->pos data buffer is assumed to be large enough.
2538  */
rbd_img_fill_request(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2539 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2540 				struct ceph_file_extent *img_extents,
2541 				u32 num_img_extents,
2542 				struct rbd_img_fill_ctx *fctx)
2543 {
2544 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2545 	struct rbd_obj_request *obj_req;
2546 	u32 i;
2547 	int ret;
2548 
2549 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2550 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2551 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2552 						   num_img_extents, fctx);
2553 
2554 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2555 
2556 	/*
2557 	 * Create object requests and determine ->bvec_count for each object
2558 	 * request.  Note that ->bvec_count sum over all object requests may
2559 	 * be greater than the number of bio_vecs in the provided bio (list)
2560 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2561 	 * stripe unit boundaries.
2562 	 */
2563 	fctx->iter = *fctx->pos;
2564 	for (i = 0; i < num_img_extents; i++) {
2565 		ret = ceph_file_to_extents(&rbd_dev->layout,
2566 					   img_extents[i].fe_off,
2567 					   img_extents[i].fe_len,
2568 					   &img_req->object_extents,
2569 					   alloc_object_extent, img_req,
2570 					   fctx->count_fn, &fctx->iter);
2571 		if (ret)
2572 			return ret;
2573 	}
2574 
2575 	for_each_obj_request(img_req, obj_req) {
2576 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2577 					      sizeof(*obj_req->bvec_pos.bvecs),
2578 					      GFP_NOIO);
2579 		if (!obj_req->bvec_pos.bvecs)
2580 			return -ENOMEM;
2581 	}
2582 
2583 	/*
2584 	 * Fill in each object request's private bio_vec array, splitting and
2585 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2586 	 */
2587 	fctx->iter = *fctx->pos;
2588 	for (i = 0; i < num_img_extents; i++) {
2589 		ret = ceph_iterate_extents(&rbd_dev->layout,
2590 					   img_extents[i].fe_off,
2591 					   img_extents[i].fe_len,
2592 					   &img_req->object_extents,
2593 					   fctx->copy_fn, &fctx->iter);
2594 		if (ret)
2595 			return ret;
2596 	}
2597 
2598 	return __rbd_img_fill_request(img_req);
2599 }
2600 
rbd_img_fill_nodata(struct rbd_img_request * img_req,u64 off,u64 len)2601 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2602 			       u64 off, u64 len)
2603 {
2604 	struct ceph_file_extent ex = { off, len };
2605 	union rbd_img_fill_iter dummy = {};
2606 	struct rbd_img_fill_ctx fctx = {
2607 		.pos_type = OBJ_REQUEST_NODATA,
2608 		.pos = &dummy,
2609 	};
2610 
2611 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2612 }
2613 
set_bio_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2614 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2615 {
2616 	struct rbd_obj_request *obj_req =
2617 	    container_of(ex, struct rbd_obj_request, ex);
2618 	struct ceph_bio_iter *it = arg;
2619 
2620 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2621 	obj_req->bio_pos = *it;
2622 	ceph_bio_iter_advance(it, bytes);
2623 }
2624 
count_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2625 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2626 {
2627 	struct rbd_obj_request *obj_req =
2628 	    container_of(ex, struct rbd_obj_request, ex);
2629 	struct ceph_bio_iter *it = arg;
2630 
2631 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2632 	ceph_bio_iter_advance_step(it, bytes, ({
2633 		obj_req->bvec_count++;
2634 	}));
2635 
2636 }
2637 
copy_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2638 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2639 {
2640 	struct rbd_obj_request *obj_req =
2641 	    container_of(ex, struct rbd_obj_request, ex);
2642 	struct ceph_bio_iter *it = arg;
2643 
2644 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2645 	ceph_bio_iter_advance_step(it, bytes, ({
2646 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2647 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2648 	}));
2649 }
2650 
__rbd_img_fill_from_bio(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bio_iter * bio_pos)2651 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2652 				   struct ceph_file_extent *img_extents,
2653 				   u32 num_img_extents,
2654 				   struct ceph_bio_iter *bio_pos)
2655 {
2656 	struct rbd_img_fill_ctx fctx = {
2657 		.pos_type = OBJ_REQUEST_BIO,
2658 		.pos = (union rbd_img_fill_iter *)bio_pos,
2659 		.set_pos_fn = set_bio_pos,
2660 		.count_fn = count_bio_bvecs,
2661 		.copy_fn = copy_bio_bvecs,
2662 	};
2663 
2664 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2665 				    &fctx);
2666 }
2667 
rbd_img_fill_from_bio(struct rbd_img_request * img_req,u64 off,u64 len,struct bio * bio)2668 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2669 				 u64 off, u64 len, struct bio *bio)
2670 {
2671 	struct ceph_file_extent ex = { off, len };
2672 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2673 
2674 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2675 }
2676 
set_bvec_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2677 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2678 {
2679 	struct rbd_obj_request *obj_req =
2680 	    container_of(ex, struct rbd_obj_request, ex);
2681 	struct ceph_bvec_iter *it = arg;
2682 
2683 	obj_req->bvec_pos = *it;
2684 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2685 	ceph_bvec_iter_advance(it, bytes);
2686 }
2687 
count_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2688 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2689 {
2690 	struct rbd_obj_request *obj_req =
2691 	    container_of(ex, struct rbd_obj_request, ex);
2692 	struct ceph_bvec_iter *it = arg;
2693 
2694 	ceph_bvec_iter_advance_step(it, bytes, ({
2695 		obj_req->bvec_count++;
2696 	}));
2697 }
2698 
copy_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2699 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2700 {
2701 	struct rbd_obj_request *obj_req =
2702 	    container_of(ex, struct rbd_obj_request, ex);
2703 	struct ceph_bvec_iter *it = arg;
2704 
2705 	ceph_bvec_iter_advance_step(it, bytes, ({
2706 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2707 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2708 	}));
2709 }
2710 
__rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bvec_iter * bvec_pos)2711 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2712 				     struct ceph_file_extent *img_extents,
2713 				     u32 num_img_extents,
2714 				     struct ceph_bvec_iter *bvec_pos)
2715 {
2716 	struct rbd_img_fill_ctx fctx = {
2717 		.pos_type = OBJ_REQUEST_BVECS,
2718 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2719 		.set_pos_fn = set_bvec_pos,
2720 		.count_fn = count_bvecs,
2721 		.copy_fn = copy_bvecs,
2722 	};
2723 
2724 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2725 				    &fctx);
2726 }
2727 
rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct bio_vec * bvecs)2728 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2729 				   struct ceph_file_extent *img_extents,
2730 				   u32 num_img_extents,
2731 				   struct bio_vec *bvecs)
2732 {
2733 	struct ceph_bvec_iter it = {
2734 		.bvecs = bvecs,
2735 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2736 							     num_img_extents) },
2737 	};
2738 
2739 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2740 					 &it);
2741 }
2742 
rbd_img_handle_request_work(struct work_struct * work)2743 static void rbd_img_handle_request_work(struct work_struct *work)
2744 {
2745 	struct rbd_img_request *img_req =
2746 	    container_of(work, struct rbd_img_request, work);
2747 
2748 	rbd_img_handle_request(img_req, img_req->work_result);
2749 }
2750 
rbd_img_schedule(struct rbd_img_request * img_req,int result)2751 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2752 {
2753 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2754 	img_req->work_result = result;
2755 	queue_work(rbd_wq, &img_req->work);
2756 }
2757 
rbd_obj_may_exist(struct rbd_obj_request * obj_req)2758 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2759 {
2760 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2761 
2762 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2763 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2764 		return true;
2765 	}
2766 
2767 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2768 	     obj_req->ex.oe_objno);
2769 	return false;
2770 }
2771 
rbd_obj_read_object(struct rbd_obj_request * obj_req)2772 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2773 {
2774 	struct ceph_osd_request *osd_req;
2775 	int ret;
2776 
2777 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2778 	if (IS_ERR(osd_req))
2779 		return PTR_ERR(osd_req);
2780 
2781 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2782 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2783 	rbd_osd_setup_data(osd_req, 0);
2784 	rbd_osd_format_read(osd_req);
2785 
2786 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2787 	if (ret)
2788 		return ret;
2789 
2790 	rbd_osd_submit(osd_req);
2791 	return 0;
2792 }
2793 
rbd_obj_read_from_parent(struct rbd_obj_request * obj_req)2794 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2795 {
2796 	struct rbd_img_request *img_req = obj_req->img_request;
2797 	struct rbd_device *parent = img_req->rbd_dev->parent;
2798 	struct rbd_img_request *child_img_req;
2799 	int ret;
2800 
2801 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2802 	if (!child_img_req)
2803 		return -ENOMEM;
2804 
2805 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2806 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2807 	child_img_req->obj_request = obj_req;
2808 
2809 	down_read(&parent->header_rwsem);
2810 	rbd_img_capture_header(child_img_req);
2811 	up_read(&parent->header_rwsem);
2812 
2813 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2814 	     obj_req);
2815 
2816 	if (!rbd_img_is_write(img_req)) {
2817 		switch (img_req->data_type) {
2818 		case OBJ_REQUEST_BIO:
2819 			ret = __rbd_img_fill_from_bio(child_img_req,
2820 						      obj_req->img_extents,
2821 						      obj_req->num_img_extents,
2822 						      &obj_req->bio_pos);
2823 			break;
2824 		case OBJ_REQUEST_BVECS:
2825 		case OBJ_REQUEST_OWN_BVECS:
2826 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2827 						      obj_req->img_extents,
2828 						      obj_req->num_img_extents,
2829 						      &obj_req->bvec_pos);
2830 			break;
2831 		default:
2832 			BUG();
2833 		}
2834 	} else {
2835 		ret = rbd_img_fill_from_bvecs(child_img_req,
2836 					      obj_req->img_extents,
2837 					      obj_req->num_img_extents,
2838 					      obj_req->copyup_bvecs);
2839 	}
2840 	if (ret) {
2841 		rbd_img_request_destroy(child_img_req);
2842 		return ret;
2843 	}
2844 
2845 	/* avoid parent chain recursion */
2846 	rbd_img_schedule(child_img_req, 0);
2847 	return 0;
2848 }
2849 
rbd_obj_advance_read(struct rbd_obj_request * obj_req,int * result)2850 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2851 {
2852 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2853 	int ret;
2854 
2855 again:
2856 	switch (obj_req->read_state) {
2857 	case RBD_OBJ_READ_START:
2858 		rbd_assert(!*result);
2859 
2860 		if (!rbd_obj_may_exist(obj_req)) {
2861 			*result = -ENOENT;
2862 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2863 			goto again;
2864 		}
2865 
2866 		ret = rbd_obj_read_object(obj_req);
2867 		if (ret) {
2868 			*result = ret;
2869 			return true;
2870 		}
2871 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2872 		return false;
2873 	case RBD_OBJ_READ_OBJECT:
2874 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2875 			/* reverse map this object extent onto the parent */
2876 			ret = rbd_obj_calc_img_extents(obj_req, false);
2877 			if (ret) {
2878 				*result = ret;
2879 				return true;
2880 			}
2881 			if (obj_req->num_img_extents) {
2882 				ret = rbd_obj_read_from_parent(obj_req);
2883 				if (ret) {
2884 					*result = ret;
2885 					return true;
2886 				}
2887 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2888 				return false;
2889 			}
2890 		}
2891 
2892 		/*
2893 		 * -ENOENT means a hole in the image -- zero-fill the entire
2894 		 * length of the request.  A short read also implies zero-fill
2895 		 * to the end of the request.
2896 		 */
2897 		if (*result == -ENOENT) {
2898 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2899 			*result = 0;
2900 		} else if (*result >= 0) {
2901 			if (*result < obj_req->ex.oe_len)
2902 				rbd_obj_zero_range(obj_req, *result,
2903 						obj_req->ex.oe_len - *result);
2904 			else
2905 				rbd_assert(*result == obj_req->ex.oe_len);
2906 			*result = 0;
2907 		}
2908 		return true;
2909 	case RBD_OBJ_READ_PARENT:
2910 		/*
2911 		 * The parent image is read only up to the overlap -- zero-fill
2912 		 * from the overlap to the end of the request.
2913 		 */
2914 		if (!*result) {
2915 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2916 
2917 			if (obj_overlap < obj_req->ex.oe_len)
2918 				rbd_obj_zero_range(obj_req, obj_overlap,
2919 					    obj_req->ex.oe_len - obj_overlap);
2920 		}
2921 		return true;
2922 	default:
2923 		BUG();
2924 	}
2925 }
2926 
rbd_obj_write_is_noop(struct rbd_obj_request * obj_req)2927 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2928 {
2929 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2930 
2931 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2932 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2933 
2934 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2935 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2936 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2937 		return true;
2938 	}
2939 
2940 	return false;
2941 }
2942 
2943 /*
2944  * Return:
2945  *   0 - object map update sent
2946  *   1 - object map update isn't needed
2947  *  <0 - error
2948  */
rbd_obj_write_pre_object_map(struct rbd_obj_request * obj_req)2949 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2950 {
2951 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2952 	u8 new_state;
2953 
2954 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2955 		return 1;
2956 
2957 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2958 		new_state = OBJECT_PENDING;
2959 	else
2960 		new_state = OBJECT_EXISTS;
2961 
2962 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2963 }
2964 
rbd_obj_write_object(struct rbd_obj_request * obj_req)2965 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2966 {
2967 	struct ceph_osd_request *osd_req;
2968 	int num_ops = count_write_ops(obj_req);
2969 	int which = 0;
2970 	int ret;
2971 
2972 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2973 		num_ops++; /* stat */
2974 
2975 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2976 	if (IS_ERR(osd_req))
2977 		return PTR_ERR(osd_req);
2978 
2979 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2980 		ret = rbd_osd_setup_stat(osd_req, which++);
2981 		if (ret)
2982 			return ret;
2983 	}
2984 
2985 	rbd_osd_setup_write_ops(osd_req, which);
2986 	rbd_osd_format_write(osd_req);
2987 
2988 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2989 	if (ret)
2990 		return ret;
2991 
2992 	rbd_osd_submit(osd_req);
2993 	return 0;
2994 }
2995 
2996 /*
2997  * copyup_bvecs pages are never highmem pages
2998  */
is_zero_bvecs(struct bio_vec * bvecs,u32 bytes)2999 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3000 {
3001 	struct ceph_bvec_iter it = {
3002 		.bvecs = bvecs,
3003 		.iter = { .bi_size = bytes },
3004 	};
3005 
3006 	ceph_bvec_iter_advance_step(&it, bytes, ({
3007 		if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3008 			return false;
3009 	}));
3010 	return true;
3011 }
3012 
3013 #define MODS_ONLY	U32_MAX
3014 
rbd_obj_copyup_empty_snapc(struct rbd_obj_request * obj_req,u32 bytes)3015 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3016 				      u32 bytes)
3017 {
3018 	struct ceph_osd_request *osd_req;
3019 	int ret;
3020 
3021 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3022 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3023 
3024 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3025 	if (IS_ERR(osd_req))
3026 		return PTR_ERR(osd_req);
3027 
3028 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3029 	if (ret)
3030 		return ret;
3031 
3032 	rbd_osd_format_write(osd_req);
3033 
3034 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3035 	if (ret)
3036 		return ret;
3037 
3038 	rbd_osd_submit(osd_req);
3039 	return 0;
3040 }
3041 
rbd_obj_copyup_current_snapc(struct rbd_obj_request * obj_req,u32 bytes)3042 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3043 					u32 bytes)
3044 {
3045 	struct ceph_osd_request *osd_req;
3046 	int num_ops = count_write_ops(obj_req);
3047 	int which = 0;
3048 	int ret;
3049 
3050 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3051 
3052 	if (bytes != MODS_ONLY)
3053 		num_ops++; /* copyup */
3054 
3055 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3056 	if (IS_ERR(osd_req))
3057 		return PTR_ERR(osd_req);
3058 
3059 	if (bytes != MODS_ONLY) {
3060 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3061 		if (ret)
3062 			return ret;
3063 	}
3064 
3065 	rbd_osd_setup_write_ops(osd_req, which);
3066 	rbd_osd_format_write(osd_req);
3067 
3068 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3069 	if (ret)
3070 		return ret;
3071 
3072 	rbd_osd_submit(osd_req);
3073 	return 0;
3074 }
3075 
setup_copyup_bvecs(struct rbd_obj_request * obj_req,u64 obj_overlap)3076 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3077 {
3078 	u32 i;
3079 
3080 	rbd_assert(!obj_req->copyup_bvecs);
3081 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3082 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3083 					sizeof(*obj_req->copyup_bvecs),
3084 					GFP_NOIO);
3085 	if (!obj_req->copyup_bvecs)
3086 		return -ENOMEM;
3087 
3088 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3089 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3090 
3091 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3092 		if (!obj_req->copyup_bvecs[i].bv_page)
3093 			return -ENOMEM;
3094 
3095 		obj_req->copyup_bvecs[i].bv_offset = 0;
3096 		obj_req->copyup_bvecs[i].bv_len = len;
3097 		obj_overlap -= len;
3098 	}
3099 
3100 	rbd_assert(!obj_overlap);
3101 	return 0;
3102 }
3103 
3104 /*
3105  * The target object doesn't exist.  Read the data for the entire
3106  * target object up to the overlap point (if any) from the parent,
3107  * so we can use it for a copyup.
3108  */
rbd_obj_copyup_read_parent(struct rbd_obj_request * obj_req)3109 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3110 {
3111 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3112 	int ret;
3113 
3114 	rbd_assert(obj_req->num_img_extents);
3115 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3116 		      rbd_dev->parent_overlap);
3117 	if (!obj_req->num_img_extents) {
3118 		/*
3119 		 * The overlap has become 0 (most likely because the
3120 		 * image has been flattened).  Re-submit the original write
3121 		 * request -- pass MODS_ONLY since the copyup isn't needed
3122 		 * anymore.
3123 		 */
3124 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3125 	}
3126 
3127 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3128 	if (ret)
3129 		return ret;
3130 
3131 	return rbd_obj_read_from_parent(obj_req);
3132 }
3133 
rbd_obj_copyup_object_maps(struct rbd_obj_request * obj_req)3134 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3135 {
3136 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3137 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3138 	u8 new_state;
3139 	u32 i;
3140 	int ret;
3141 
3142 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3143 
3144 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3145 		return;
3146 
3147 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3148 		return;
3149 
3150 	for (i = 0; i < snapc->num_snaps; i++) {
3151 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3152 		    i + 1 < snapc->num_snaps)
3153 			new_state = OBJECT_EXISTS_CLEAN;
3154 		else
3155 			new_state = OBJECT_EXISTS;
3156 
3157 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3158 					    new_state, NULL);
3159 		if (ret < 0) {
3160 			obj_req->pending.result = ret;
3161 			return;
3162 		}
3163 
3164 		rbd_assert(!ret);
3165 		obj_req->pending.num_pending++;
3166 	}
3167 }
3168 
rbd_obj_copyup_write_object(struct rbd_obj_request * obj_req)3169 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3170 {
3171 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3172 	int ret;
3173 
3174 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3175 
3176 	/*
3177 	 * Only send non-zero copyup data to save some I/O and network
3178 	 * bandwidth -- zero copyup data is equivalent to the object not
3179 	 * existing.
3180 	 */
3181 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3182 		bytes = 0;
3183 
3184 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3185 		/*
3186 		 * Send a copyup request with an empty snapshot context to
3187 		 * deep-copyup the object through all existing snapshots.
3188 		 * A second request with the current snapshot context will be
3189 		 * sent for the actual modification.
3190 		 */
3191 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3192 		if (ret) {
3193 			obj_req->pending.result = ret;
3194 			return;
3195 		}
3196 
3197 		obj_req->pending.num_pending++;
3198 		bytes = MODS_ONLY;
3199 	}
3200 
3201 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3202 	if (ret) {
3203 		obj_req->pending.result = ret;
3204 		return;
3205 	}
3206 
3207 	obj_req->pending.num_pending++;
3208 }
3209 
rbd_obj_advance_copyup(struct rbd_obj_request * obj_req,int * result)3210 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3211 {
3212 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3213 	int ret;
3214 
3215 again:
3216 	switch (obj_req->copyup_state) {
3217 	case RBD_OBJ_COPYUP_START:
3218 		rbd_assert(!*result);
3219 
3220 		ret = rbd_obj_copyup_read_parent(obj_req);
3221 		if (ret) {
3222 			*result = ret;
3223 			return true;
3224 		}
3225 		if (obj_req->num_img_extents)
3226 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3227 		else
3228 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3229 		return false;
3230 	case RBD_OBJ_COPYUP_READ_PARENT:
3231 		if (*result)
3232 			return true;
3233 
3234 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3235 				  rbd_obj_img_extents_bytes(obj_req))) {
3236 			dout("%s %p detected zeros\n", __func__, obj_req);
3237 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3238 		}
3239 
3240 		rbd_obj_copyup_object_maps(obj_req);
3241 		if (!obj_req->pending.num_pending) {
3242 			*result = obj_req->pending.result;
3243 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3244 			goto again;
3245 		}
3246 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3247 		return false;
3248 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3249 		if (!pending_result_dec(&obj_req->pending, result))
3250 			return false;
3251 		fallthrough;
3252 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3253 		if (*result) {
3254 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3255 				 *result);
3256 			return true;
3257 		}
3258 
3259 		rbd_obj_copyup_write_object(obj_req);
3260 		if (!obj_req->pending.num_pending) {
3261 			*result = obj_req->pending.result;
3262 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3263 			goto again;
3264 		}
3265 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3266 		return false;
3267 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3268 		if (!pending_result_dec(&obj_req->pending, result))
3269 			return false;
3270 		fallthrough;
3271 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3272 		return true;
3273 	default:
3274 		BUG();
3275 	}
3276 }
3277 
3278 /*
3279  * Return:
3280  *   0 - object map update sent
3281  *   1 - object map update isn't needed
3282  *  <0 - error
3283  */
rbd_obj_write_post_object_map(struct rbd_obj_request * obj_req)3284 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3285 {
3286 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3287 	u8 current_state = OBJECT_PENDING;
3288 
3289 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3290 		return 1;
3291 
3292 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3293 		return 1;
3294 
3295 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3296 				     &current_state);
3297 }
3298 
rbd_obj_advance_write(struct rbd_obj_request * obj_req,int * result)3299 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3300 {
3301 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3302 	int ret;
3303 
3304 again:
3305 	switch (obj_req->write_state) {
3306 	case RBD_OBJ_WRITE_START:
3307 		rbd_assert(!*result);
3308 
3309 		rbd_obj_set_copyup_enabled(obj_req);
3310 		if (rbd_obj_write_is_noop(obj_req))
3311 			return true;
3312 
3313 		ret = rbd_obj_write_pre_object_map(obj_req);
3314 		if (ret < 0) {
3315 			*result = ret;
3316 			return true;
3317 		}
3318 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3319 		if (ret > 0)
3320 			goto again;
3321 		return false;
3322 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3323 		if (*result) {
3324 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3325 				 *result);
3326 			return true;
3327 		}
3328 		ret = rbd_obj_write_object(obj_req);
3329 		if (ret) {
3330 			*result = ret;
3331 			return true;
3332 		}
3333 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3334 		return false;
3335 	case RBD_OBJ_WRITE_OBJECT:
3336 		if (*result == -ENOENT) {
3337 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3338 				*result = 0;
3339 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3340 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3341 				goto again;
3342 			}
3343 			/*
3344 			 * On a non-existent object:
3345 			 *   delete - -ENOENT, truncate/zero - 0
3346 			 */
3347 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3348 				*result = 0;
3349 		}
3350 		if (*result)
3351 			return true;
3352 
3353 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3354 		goto again;
3355 	case __RBD_OBJ_WRITE_COPYUP:
3356 		if (!rbd_obj_advance_copyup(obj_req, result))
3357 			return false;
3358 		fallthrough;
3359 	case RBD_OBJ_WRITE_COPYUP:
3360 		if (*result) {
3361 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3362 			return true;
3363 		}
3364 		ret = rbd_obj_write_post_object_map(obj_req);
3365 		if (ret < 0) {
3366 			*result = ret;
3367 			return true;
3368 		}
3369 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3370 		if (ret > 0)
3371 			goto again;
3372 		return false;
3373 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3374 		if (*result)
3375 			rbd_warn(rbd_dev, "post object map update failed: %d",
3376 				 *result);
3377 		return true;
3378 	default:
3379 		BUG();
3380 	}
3381 }
3382 
3383 /*
3384  * Return true if @obj_req is completed.
3385  */
__rbd_obj_handle_request(struct rbd_obj_request * obj_req,int * result)3386 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3387 				     int *result)
3388 {
3389 	struct rbd_img_request *img_req = obj_req->img_request;
3390 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3391 	bool done;
3392 
3393 	mutex_lock(&obj_req->state_mutex);
3394 	if (!rbd_img_is_write(img_req))
3395 		done = rbd_obj_advance_read(obj_req, result);
3396 	else
3397 		done = rbd_obj_advance_write(obj_req, result);
3398 	mutex_unlock(&obj_req->state_mutex);
3399 
3400 	if (done && *result) {
3401 		rbd_assert(*result < 0);
3402 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3403 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3404 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3405 	}
3406 	return done;
3407 }
3408 
3409 /*
3410  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3411  * recursion.
3412  */
rbd_obj_handle_request(struct rbd_obj_request * obj_req,int result)3413 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3414 {
3415 	if (__rbd_obj_handle_request(obj_req, &result))
3416 		rbd_img_handle_request(obj_req->img_request, result);
3417 }
3418 
need_exclusive_lock(struct rbd_img_request * img_req)3419 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3420 {
3421 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3422 
3423 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3424 		return false;
3425 
3426 	if (rbd_is_ro(rbd_dev))
3427 		return false;
3428 
3429 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3430 	if (rbd_dev->opts->lock_on_read ||
3431 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3432 		return true;
3433 
3434 	return rbd_img_is_write(img_req);
3435 }
3436 
rbd_lock_add_request(struct rbd_img_request * img_req)3437 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3438 {
3439 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3440 	bool locked;
3441 
3442 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3443 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3444 	spin_lock(&rbd_dev->lock_lists_lock);
3445 	rbd_assert(list_empty(&img_req->lock_item));
3446 	if (!locked)
3447 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3448 	else
3449 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3450 	spin_unlock(&rbd_dev->lock_lists_lock);
3451 	return locked;
3452 }
3453 
rbd_lock_del_request(struct rbd_img_request * img_req)3454 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3455 {
3456 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3457 	bool need_wakeup = false;
3458 
3459 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3460 	spin_lock(&rbd_dev->lock_lists_lock);
3461 	if (!list_empty(&img_req->lock_item)) {
3462 		list_del_init(&img_req->lock_item);
3463 		need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3464 			       list_empty(&rbd_dev->running_list));
3465 	}
3466 	spin_unlock(&rbd_dev->lock_lists_lock);
3467 	if (need_wakeup)
3468 		complete(&rbd_dev->releasing_wait);
3469 }
3470 
rbd_img_exclusive_lock(struct rbd_img_request * img_req)3471 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3472 {
3473 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3474 
3475 	if (!need_exclusive_lock(img_req))
3476 		return 1;
3477 
3478 	if (rbd_lock_add_request(img_req))
3479 		return 1;
3480 
3481 	if (rbd_dev->opts->exclusive) {
3482 		WARN_ON(1); /* lock got released? */
3483 		return -EROFS;
3484 	}
3485 
3486 	/*
3487 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3488 	 * and cancel_delayed_work() in wake_lock_waiters().
3489 	 */
3490 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3491 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3492 	return 0;
3493 }
3494 
rbd_img_object_requests(struct rbd_img_request * img_req)3495 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3496 {
3497 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3498 	struct rbd_obj_request *obj_req;
3499 
3500 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3501 	rbd_assert(!need_exclusive_lock(img_req) ||
3502 		   __rbd_is_lock_owner(rbd_dev));
3503 
3504 	if (rbd_img_is_write(img_req)) {
3505 		rbd_assert(!img_req->snapc);
3506 		down_read(&rbd_dev->header_rwsem);
3507 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3508 		up_read(&rbd_dev->header_rwsem);
3509 	}
3510 
3511 	for_each_obj_request(img_req, obj_req) {
3512 		int result = 0;
3513 
3514 		if (__rbd_obj_handle_request(obj_req, &result)) {
3515 			if (result) {
3516 				img_req->pending.result = result;
3517 				return;
3518 			}
3519 		} else {
3520 			img_req->pending.num_pending++;
3521 		}
3522 	}
3523 }
3524 
rbd_img_advance(struct rbd_img_request * img_req,int * result)3525 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3526 {
3527 	int ret;
3528 
3529 again:
3530 	switch (img_req->state) {
3531 	case RBD_IMG_START:
3532 		rbd_assert(!*result);
3533 
3534 		ret = rbd_img_exclusive_lock(img_req);
3535 		if (ret < 0) {
3536 			*result = ret;
3537 			return true;
3538 		}
3539 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3540 		if (ret > 0)
3541 			goto again;
3542 		return false;
3543 	case RBD_IMG_EXCLUSIVE_LOCK:
3544 		if (*result)
3545 			return true;
3546 
3547 		rbd_img_object_requests(img_req);
3548 		if (!img_req->pending.num_pending) {
3549 			*result = img_req->pending.result;
3550 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3551 			goto again;
3552 		}
3553 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3554 		return false;
3555 	case __RBD_IMG_OBJECT_REQUESTS:
3556 		if (!pending_result_dec(&img_req->pending, result))
3557 			return false;
3558 		fallthrough;
3559 	case RBD_IMG_OBJECT_REQUESTS:
3560 		return true;
3561 	default:
3562 		BUG();
3563 	}
3564 }
3565 
3566 /*
3567  * Return true if @img_req is completed.
3568  */
__rbd_img_handle_request(struct rbd_img_request * img_req,int * result)3569 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3570 				     int *result)
3571 {
3572 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3573 	bool done;
3574 
3575 	if (need_exclusive_lock(img_req)) {
3576 		down_read(&rbd_dev->lock_rwsem);
3577 		mutex_lock(&img_req->state_mutex);
3578 		done = rbd_img_advance(img_req, result);
3579 		if (done)
3580 			rbd_lock_del_request(img_req);
3581 		mutex_unlock(&img_req->state_mutex);
3582 		up_read(&rbd_dev->lock_rwsem);
3583 	} else {
3584 		mutex_lock(&img_req->state_mutex);
3585 		done = rbd_img_advance(img_req, result);
3586 		mutex_unlock(&img_req->state_mutex);
3587 	}
3588 
3589 	if (done && *result) {
3590 		rbd_assert(*result < 0);
3591 		rbd_warn(rbd_dev, "%s%s result %d",
3592 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3593 		      obj_op_name(img_req->op_type), *result);
3594 	}
3595 	return done;
3596 }
3597 
rbd_img_handle_request(struct rbd_img_request * img_req,int result)3598 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3599 {
3600 again:
3601 	if (!__rbd_img_handle_request(img_req, &result))
3602 		return;
3603 
3604 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3605 		struct rbd_obj_request *obj_req = img_req->obj_request;
3606 
3607 		rbd_img_request_destroy(img_req);
3608 		if (__rbd_obj_handle_request(obj_req, &result)) {
3609 			img_req = obj_req->img_request;
3610 			goto again;
3611 		}
3612 	} else {
3613 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3614 
3615 		rbd_img_request_destroy(img_req);
3616 		blk_mq_end_request(rq, errno_to_blk_status(result));
3617 	}
3618 }
3619 
3620 static const struct rbd_client_id rbd_empty_cid;
3621 
rbd_cid_equal(const struct rbd_client_id * lhs,const struct rbd_client_id * rhs)3622 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3623 			  const struct rbd_client_id *rhs)
3624 {
3625 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3626 }
3627 
rbd_get_cid(struct rbd_device * rbd_dev)3628 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3629 {
3630 	struct rbd_client_id cid;
3631 
3632 	mutex_lock(&rbd_dev->watch_mutex);
3633 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3634 	cid.handle = rbd_dev->watch_cookie;
3635 	mutex_unlock(&rbd_dev->watch_mutex);
3636 	return cid;
3637 }
3638 
3639 /*
3640  * lock_rwsem must be held for write
3641  */
rbd_set_owner_cid(struct rbd_device * rbd_dev,const struct rbd_client_id * cid)3642 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3643 			      const struct rbd_client_id *cid)
3644 {
3645 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3646 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3647 	     cid->gid, cid->handle);
3648 	rbd_dev->owner_cid = *cid; /* struct */
3649 }
3650 
format_lock_cookie(struct rbd_device * rbd_dev,char * buf)3651 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3652 {
3653 	mutex_lock(&rbd_dev->watch_mutex);
3654 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3655 	mutex_unlock(&rbd_dev->watch_mutex);
3656 }
3657 
__rbd_lock(struct rbd_device * rbd_dev,const char * cookie)3658 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3659 {
3660 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3661 
3662 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3663 	strcpy(rbd_dev->lock_cookie, cookie);
3664 	rbd_set_owner_cid(rbd_dev, &cid);
3665 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3666 }
3667 
3668 /*
3669  * lock_rwsem must be held for write
3670  */
rbd_lock(struct rbd_device * rbd_dev)3671 static int rbd_lock(struct rbd_device *rbd_dev)
3672 {
3673 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3674 	char cookie[32];
3675 	int ret;
3676 
3677 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3678 		rbd_dev->lock_cookie[0] != '\0');
3679 
3680 	format_lock_cookie(rbd_dev, cookie);
3681 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3682 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3683 			    RBD_LOCK_TAG, "", 0);
3684 	if (ret && ret != -EEXIST)
3685 		return ret;
3686 
3687 	__rbd_lock(rbd_dev, cookie);
3688 	return 0;
3689 }
3690 
3691 /*
3692  * lock_rwsem must be held for write
3693  */
rbd_unlock(struct rbd_device * rbd_dev)3694 static void rbd_unlock(struct rbd_device *rbd_dev)
3695 {
3696 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3697 	int ret;
3698 
3699 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3700 		rbd_dev->lock_cookie[0] == '\0');
3701 
3702 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3703 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3704 	if (ret && ret != -ENOENT)
3705 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3706 
3707 	/* treat errors as the image is unlocked */
3708 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3709 	rbd_dev->lock_cookie[0] = '\0';
3710 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3711 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3712 }
3713 
__rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op,struct page *** preply_pages,size_t * preply_len)3714 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3715 				enum rbd_notify_op notify_op,
3716 				struct page ***preply_pages,
3717 				size_t *preply_len)
3718 {
3719 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3720 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3721 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3722 	int buf_size = sizeof(buf);
3723 	void *p = buf;
3724 
3725 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3726 
3727 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3728 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3729 	ceph_encode_32(&p, notify_op);
3730 	ceph_encode_64(&p, cid.gid);
3731 	ceph_encode_64(&p, cid.handle);
3732 
3733 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3734 				&rbd_dev->header_oloc, buf, buf_size,
3735 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3736 }
3737 
rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op)3738 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3739 			       enum rbd_notify_op notify_op)
3740 {
3741 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3742 }
3743 
rbd_notify_acquired_lock(struct work_struct * work)3744 static void rbd_notify_acquired_lock(struct work_struct *work)
3745 {
3746 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3747 						  acquired_lock_work);
3748 
3749 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3750 }
3751 
rbd_notify_released_lock(struct work_struct * work)3752 static void rbd_notify_released_lock(struct work_struct *work)
3753 {
3754 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3755 						  released_lock_work);
3756 
3757 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3758 }
3759 
rbd_request_lock(struct rbd_device * rbd_dev)3760 static int rbd_request_lock(struct rbd_device *rbd_dev)
3761 {
3762 	struct page **reply_pages;
3763 	size_t reply_len;
3764 	bool lock_owner_responded = false;
3765 	int ret;
3766 
3767 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3768 
3769 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3770 				   &reply_pages, &reply_len);
3771 	if (ret && ret != -ETIMEDOUT) {
3772 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3773 		goto out;
3774 	}
3775 
3776 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3777 		void *p = page_address(reply_pages[0]);
3778 		void *const end = p + reply_len;
3779 		u32 n;
3780 
3781 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3782 		while (n--) {
3783 			u8 struct_v;
3784 			u32 len;
3785 
3786 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3787 			p += 8 + 8; /* skip gid and cookie */
3788 
3789 			ceph_decode_32_safe(&p, end, len, e_inval);
3790 			if (!len)
3791 				continue;
3792 
3793 			if (lock_owner_responded) {
3794 				rbd_warn(rbd_dev,
3795 					 "duplicate lock owners detected");
3796 				ret = -EIO;
3797 				goto out;
3798 			}
3799 
3800 			lock_owner_responded = true;
3801 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3802 						  &struct_v, &len);
3803 			if (ret) {
3804 				rbd_warn(rbd_dev,
3805 					 "failed to decode ResponseMessage: %d",
3806 					 ret);
3807 				goto e_inval;
3808 			}
3809 
3810 			ret = ceph_decode_32(&p);
3811 		}
3812 	}
3813 
3814 	if (!lock_owner_responded) {
3815 		rbd_warn(rbd_dev, "no lock owners detected");
3816 		ret = -ETIMEDOUT;
3817 	}
3818 
3819 out:
3820 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3821 	return ret;
3822 
3823 e_inval:
3824 	ret = -EINVAL;
3825 	goto out;
3826 }
3827 
3828 /*
3829  * Either image request state machine(s) or rbd_add_acquire_lock()
3830  * (i.e. "rbd map").
3831  */
wake_lock_waiters(struct rbd_device * rbd_dev,int result)3832 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3833 {
3834 	struct rbd_img_request *img_req;
3835 
3836 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3837 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3838 
3839 	cancel_delayed_work(&rbd_dev->lock_dwork);
3840 	if (!completion_done(&rbd_dev->acquire_wait)) {
3841 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3842 			   list_empty(&rbd_dev->running_list));
3843 		rbd_dev->acquire_err = result;
3844 		complete_all(&rbd_dev->acquire_wait);
3845 		return;
3846 	}
3847 
3848 	while (!list_empty(&rbd_dev->acquiring_list)) {
3849 		img_req = list_first_entry(&rbd_dev->acquiring_list,
3850 					   struct rbd_img_request, lock_item);
3851 		mutex_lock(&img_req->state_mutex);
3852 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3853 		if (!result)
3854 			list_move_tail(&img_req->lock_item,
3855 				       &rbd_dev->running_list);
3856 		else
3857 			list_del_init(&img_req->lock_item);
3858 		rbd_img_schedule(img_req, result);
3859 		mutex_unlock(&img_req->state_mutex);
3860 	}
3861 }
3862 
locker_equal(const struct ceph_locker * lhs,const struct ceph_locker * rhs)3863 static bool locker_equal(const struct ceph_locker *lhs,
3864 			 const struct ceph_locker *rhs)
3865 {
3866 	return lhs->id.name.type == rhs->id.name.type &&
3867 	       lhs->id.name.num == rhs->id.name.num &&
3868 	       !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3869 	       ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3870 }
3871 
free_locker(struct ceph_locker * locker)3872 static void free_locker(struct ceph_locker *locker)
3873 {
3874 	if (locker)
3875 		ceph_free_lockers(locker, 1);
3876 }
3877 
get_lock_owner_info(struct rbd_device * rbd_dev)3878 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3879 {
3880 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3881 	struct ceph_locker *lockers;
3882 	u32 num_lockers;
3883 	u8 lock_type;
3884 	char *lock_tag;
3885 	u64 handle;
3886 	int ret;
3887 
3888 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3889 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3890 				 &lock_type, &lock_tag, &lockers, &num_lockers);
3891 	if (ret) {
3892 		rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3893 		return ERR_PTR(ret);
3894 	}
3895 
3896 	if (num_lockers == 0) {
3897 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3898 		lockers = NULL;
3899 		goto out;
3900 	}
3901 
3902 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3903 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3904 			 lock_tag);
3905 		goto err_busy;
3906 	}
3907 
3908 	if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3909 		rbd_warn(rbd_dev, "incompatible lock type detected");
3910 		goto err_busy;
3911 	}
3912 
3913 	WARN_ON(num_lockers != 1);
3914 	ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3915 		     &handle);
3916 	if (ret != 1) {
3917 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3918 			 lockers[0].id.cookie);
3919 		goto err_busy;
3920 	}
3921 	if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3922 		rbd_warn(rbd_dev, "locker has a blank address");
3923 		goto err_busy;
3924 	}
3925 
3926 	dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3927 	     __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3928 	     &lockers[0].info.addr.in_addr,
3929 	     le32_to_cpu(lockers[0].info.addr.nonce), handle);
3930 
3931 out:
3932 	kfree(lock_tag);
3933 	return lockers;
3934 
3935 err_busy:
3936 	kfree(lock_tag);
3937 	ceph_free_lockers(lockers, num_lockers);
3938 	return ERR_PTR(-EBUSY);
3939 }
3940 
find_watcher(struct rbd_device * rbd_dev,const struct ceph_locker * locker)3941 static int find_watcher(struct rbd_device *rbd_dev,
3942 			const struct ceph_locker *locker)
3943 {
3944 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3945 	struct ceph_watch_item *watchers;
3946 	u32 num_watchers;
3947 	u64 cookie;
3948 	int i;
3949 	int ret;
3950 
3951 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3952 				      &rbd_dev->header_oloc, &watchers,
3953 				      &num_watchers);
3954 	if (ret) {
3955 		rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
3956 		return ret;
3957 	}
3958 
3959 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3960 	for (i = 0; i < num_watchers; i++) {
3961 		/*
3962 		 * Ignore addr->type while comparing.  This mimics
3963 		 * entity_addr_t::get_legacy_str() + strcmp().
3964 		 */
3965 		if (ceph_addr_equal_no_type(&watchers[i].addr,
3966 					    &locker->info.addr) &&
3967 		    watchers[i].cookie == cookie) {
3968 			struct rbd_client_id cid = {
3969 				.gid = le64_to_cpu(watchers[i].name.num),
3970 				.handle = cookie,
3971 			};
3972 
3973 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3974 			     rbd_dev, cid.gid, cid.handle);
3975 			rbd_set_owner_cid(rbd_dev, &cid);
3976 			ret = 1;
3977 			goto out;
3978 		}
3979 	}
3980 
3981 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3982 	ret = 0;
3983 out:
3984 	kfree(watchers);
3985 	return ret;
3986 }
3987 
3988 /*
3989  * lock_rwsem must be held for write
3990  */
rbd_try_lock(struct rbd_device * rbd_dev)3991 static int rbd_try_lock(struct rbd_device *rbd_dev)
3992 {
3993 	struct ceph_client *client = rbd_dev->rbd_client->client;
3994 	struct ceph_locker *locker, *refreshed_locker;
3995 	int ret;
3996 
3997 	for (;;) {
3998 		locker = refreshed_locker = NULL;
3999 
4000 		ret = rbd_lock(rbd_dev);
4001 		if (!ret)
4002 			goto out;
4003 		if (ret != -EBUSY) {
4004 			rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4005 			goto out;
4006 		}
4007 
4008 		/* determine if the current lock holder is still alive */
4009 		locker = get_lock_owner_info(rbd_dev);
4010 		if (IS_ERR(locker)) {
4011 			ret = PTR_ERR(locker);
4012 			locker = NULL;
4013 			goto out;
4014 		}
4015 		if (!locker)
4016 			goto again;
4017 
4018 		ret = find_watcher(rbd_dev, locker);
4019 		if (ret)
4020 			goto out; /* request lock or error */
4021 
4022 		refreshed_locker = get_lock_owner_info(rbd_dev);
4023 		if (IS_ERR(refreshed_locker)) {
4024 			ret = PTR_ERR(refreshed_locker);
4025 			refreshed_locker = NULL;
4026 			goto out;
4027 		}
4028 		if (!refreshed_locker ||
4029 		    !locker_equal(locker, refreshed_locker))
4030 			goto again;
4031 
4032 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4033 			 ENTITY_NAME(locker->id.name));
4034 
4035 		ret = ceph_monc_blocklist_add(&client->monc,
4036 					      &locker->info.addr);
4037 		if (ret) {
4038 			rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4039 				 ENTITY_NAME(locker->id.name), ret);
4040 			goto out;
4041 		}
4042 
4043 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4044 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4045 					  locker->id.cookie, &locker->id.name);
4046 		if (ret && ret != -ENOENT) {
4047 			rbd_warn(rbd_dev, "failed to break header lock: %d",
4048 				 ret);
4049 			goto out;
4050 		}
4051 
4052 again:
4053 		free_locker(refreshed_locker);
4054 		free_locker(locker);
4055 	}
4056 
4057 out:
4058 	free_locker(refreshed_locker);
4059 	free_locker(locker);
4060 	return ret;
4061 }
4062 
rbd_post_acquire_action(struct rbd_device * rbd_dev)4063 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4064 {
4065 	int ret;
4066 
4067 	ret = rbd_dev_refresh(rbd_dev);
4068 	if (ret)
4069 		return ret;
4070 
4071 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4072 		ret = rbd_object_map_open(rbd_dev);
4073 		if (ret)
4074 			return ret;
4075 	}
4076 
4077 	return 0;
4078 }
4079 
4080 /*
4081  * Return:
4082  *   0 - lock acquired
4083  *   1 - caller should call rbd_request_lock()
4084  *  <0 - error
4085  */
rbd_try_acquire_lock(struct rbd_device * rbd_dev)4086 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4087 {
4088 	int ret;
4089 
4090 	down_read(&rbd_dev->lock_rwsem);
4091 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4092 	     rbd_dev->lock_state);
4093 	if (__rbd_is_lock_owner(rbd_dev)) {
4094 		up_read(&rbd_dev->lock_rwsem);
4095 		return 0;
4096 	}
4097 
4098 	up_read(&rbd_dev->lock_rwsem);
4099 	down_write(&rbd_dev->lock_rwsem);
4100 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4101 	     rbd_dev->lock_state);
4102 	if (__rbd_is_lock_owner(rbd_dev)) {
4103 		up_write(&rbd_dev->lock_rwsem);
4104 		return 0;
4105 	}
4106 
4107 	ret = rbd_try_lock(rbd_dev);
4108 	if (ret < 0) {
4109 		rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4110 		goto out;
4111 	}
4112 	if (ret > 0) {
4113 		up_write(&rbd_dev->lock_rwsem);
4114 		return ret;
4115 	}
4116 
4117 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4118 	rbd_assert(list_empty(&rbd_dev->running_list));
4119 
4120 	ret = rbd_post_acquire_action(rbd_dev);
4121 	if (ret) {
4122 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4123 		/*
4124 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4125 		 * rbd_lock_add_request() would let the request through,
4126 		 * assuming that e.g. object map is locked and loaded.
4127 		 */
4128 		rbd_unlock(rbd_dev);
4129 	}
4130 
4131 out:
4132 	wake_lock_waiters(rbd_dev, ret);
4133 	up_write(&rbd_dev->lock_rwsem);
4134 	return ret;
4135 }
4136 
rbd_acquire_lock(struct work_struct * work)4137 static void rbd_acquire_lock(struct work_struct *work)
4138 {
4139 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4140 					    struct rbd_device, lock_dwork);
4141 	int ret;
4142 
4143 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4144 again:
4145 	ret = rbd_try_acquire_lock(rbd_dev);
4146 	if (ret <= 0) {
4147 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4148 		return;
4149 	}
4150 
4151 	ret = rbd_request_lock(rbd_dev);
4152 	if (ret == -ETIMEDOUT) {
4153 		goto again; /* treat this as a dead client */
4154 	} else if (ret == -EROFS) {
4155 		rbd_warn(rbd_dev, "peer will not release lock");
4156 		down_write(&rbd_dev->lock_rwsem);
4157 		wake_lock_waiters(rbd_dev, ret);
4158 		up_write(&rbd_dev->lock_rwsem);
4159 	} else if (ret < 0) {
4160 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4161 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4162 				 RBD_RETRY_DELAY);
4163 	} else {
4164 		/*
4165 		 * lock owner acked, but resend if we don't see them
4166 		 * release the lock
4167 		 */
4168 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4169 		     rbd_dev);
4170 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4171 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4172 	}
4173 }
4174 
rbd_quiesce_lock(struct rbd_device * rbd_dev)4175 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4176 {
4177 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4178 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4179 
4180 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4181 		return false;
4182 
4183 	/*
4184 	 * Ensure that all in-flight IO is flushed.
4185 	 */
4186 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4187 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4188 	if (list_empty(&rbd_dev->running_list))
4189 		return true;
4190 
4191 	up_write(&rbd_dev->lock_rwsem);
4192 	wait_for_completion(&rbd_dev->releasing_wait);
4193 
4194 	down_write(&rbd_dev->lock_rwsem);
4195 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4196 		return false;
4197 
4198 	rbd_assert(list_empty(&rbd_dev->running_list));
4199 	return true;
4200 }
4201 
rbd_pre_release_action(struct rbd_device * rbd_dev)4202 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4203 {
4204 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4205 		rbd_object_map_close(rbd_dev);
4206 }
4207 
__rbd_release_lock(struct rbd_device * rbd_dev)4208 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4209 {
4210 	rbd_assert(list_empty(&rbd_dev->running_list));
4211 
4212 	rbd_pre_release_action(rbd_dev);
4213 	rbd_unlock(rbd_dev);
4214 }
4215 
4216 /*
4217  * lock_rwsem must be held for write
4218  */
rbd_release_lock(struct rbd_device * rbd_dev)4219 static void rbd_release_lock(struct rbd_device *rbd_dev)
4220 {
4221 	if (!rbd_quiesce_lock(rbd_dev))
4222 		return;
4223 
4224 	__rbd_release_lock(rbd_dev);
4225 
4226 	/*
4227 	 * Give others a chance to grab the lock - we would re-acquire
4228 	 * almost immediately if we got new IO while draining the running
4229 	 * list otherwise.  We need to ack our own notifications, so this
4230 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4231 	 * way of maybe_kick_acquire().
4232 	 */
4233 	cancel_delayed_work(&rbd_dev->lock_dwork);
4234 }
4235 
rbd_release_lock_work(struct work_struct * work)4236 static void rbd_release_lock_work(struct work_struct *work)
4237 {
4238 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4239 						  unlock_work);
4240 
4241 	down_write(&rbd_dev->lock_rwsem);
4242 	rbd_release_lock(rbd_dev);
4243 	up_write(&rbd_dev->lock_rwsem);
4244 }
4245 
maybe_kick_acquire(struct rbd_device * rbd_dev)4246 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4247 {
4248 	bool have_requests;
4249 
4250 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4251 	if (__rbd_is_lock_owner(rbd_dev))
4252 		return;
4253 
4254 	spin_lock(&rbd_dev->lock_lists_lock);
4255 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4256 	spin_unlock(&rbd_dev->lock_lists_lock);
4257 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4258 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4259 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4260 	}
4261 }
4262 
rbd_handle_acquired_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4263 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4264 				     void **p)
4265 {
4266 	struct rbd_client_id cid = { 0 };
4267 
4268 	if (struct_v >= 2) {
4269 		cid.gid = ceph_decode_64(p);
4270 		cid.handle = ceph_decode_64(p);
4271 	}
4272 
4273 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4274 	     cid.handle);
4275 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4276 		down_write(&rbd_dev->lock_rwsem);
4277 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4278 			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4279 			     __func__, rbd_dev, cid.gid, cid.handle);
4280 		} else {
4281 			rbd_set_owner_cid(rbd_dev, &cid);
4282 		}
4283 		downgrade_write(&rbd_dev->lock_rwsem);
4284 	} else {
4285 		down_read(&rbd_dev->lock_rwsem);
4286 	}
4287 
4288 	maybe_kick_acquire(rbd_dev);
4289 	up_read(&rbd_dev->lock_rwsem);
4290 }
4291 
rbd_handle_released_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4292 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4293 				     void **p)
4294 {
4295 	struct rbd_client_id cid = { 0 };
4296 
4297 	if (struct_v >= 2) {
4298 		cid.gid = ceph_decode_64(p);
4299 		cid.handle = ceph_decode_64(p);
4300 	}
4301 
4302 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4303 	     cid.handle);
4304 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4305 		down_write(&rbd_dev->lock_rwsem);
4306 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4307 			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4308 			     __func__, rbd_dev, cid.gid, cid.handle,
4309 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4310 		} else {
4311 			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4312 		}
4313 		downgrade_write(&rbd_dev->lock_rwsem);
4314 	} else {
4315 		down_read(&rbd_dev->lock_rwsem);
4316 	}
4317 
4318 	maybe_kick_acquire(rbd_dev);
4319 	up_read(&rbd_dev->lock_rwsem);
4320 }
4321 
4322 /*
4323  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4324  * ResponseMessage is needed.
4325  */
rbd_handle_request_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4326 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4327 				   void **p)
4328 {
4329 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4330 	struct rbd_client_id cid = { 0 };
4331 	int result = 1;
4332 
4333 	if (struct_v >= 2) {
4334 		cid.gid = ceph_decode_64(p);
4335 		cid.handle = ceph_decode_64(p);
4336 	}
4337 
4338 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4339 	     cid.handle);
4340 	if (rbd_cid_equal(&cid, &my_cid))
4341 		return result;
4342 
4343 	down_read(&rbd_dev->lock_rwsem);
4344 	if (__rbd_is_lock_owner(rbd_dev)) {
4345 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4346 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4347 			goto out_unlock;
4348 
4349 		/*
4350 		 * encode ResponseMessage(0) so the peer can detect
4351 		 * a missing owner
4352 		 */
4353 		result = 0;
4354 
4355 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4356 			if (!rbd_dev->opts->exclusive) {
4357 				dout("%s rbd_dev %p queueing unlock_work\n",
4358 				     __func__, rbd_dev);
4359 				queue_work(rbd_dev->task_wq,
4360 					   &rbd_dev->unlock_work);
4361 			} else {
4362 				/* refuse to release the lock */
4363 				result = -EROFS;
4364 			}
4365 		}
4366 	}
4367 
4368 out_unlock:
4369 	up_read(&rbd_dev->lock_rwsem);
4370 	return result;
4371 }
4372 
__rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 * result)4373 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4374 				     u64 notify_id, u64 cookie, s32 *result)
4375 {
4376 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4377 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4378 	int buf_size = sizeof(buf);
4379 	int ret;
4380 
4381 	if (result) {
4382 		void *p = buf;
4383 
4384 		/* encode ResponseMessage */
4385 		ceph_start_encoding(&p, 1, 1,
4386 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4387 		ceph_encode_32(&p, *result);
4388 	} else {
4389 		buf_size = 0;
4390 	}
4391 
4392 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4393 				   &rbd_dev->header_oloc, notify_id, cookie,
4394 				   buf, buf_size);
4395 	if (ret)
4396 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4397 }
4398 
rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie)4399 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4400 				   u64 cookie)
4401 {
4402 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4403 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4404 }
4405 
rbd_acknowledge_notify_result(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 result)4406 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4407 					  u64 notify_id, u64 cookie, s32 result)
4408 {
4409 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4410 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4411 }
4412 
rbd_watch_cb(void * arg,u64 notify_id,u64 cookie,u64 notifier_id,void * data,size_t data_len)4413 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4414 			 u64 notifier_id, void *data, size_t data_len)
4415 {
4416 	struct rbd_device *rbd_dev = arg;
4417 	void *p = data;
4418 	void *const end = p + data_len;
4419 	u8 struct_v = 0;
4420 	u32 len;
4421 	u32 notify_op;
4422 	int ret;
4423 
4424 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4425 	     __func__, rbd_dev, cookie, notify_id, data_len);
4426 	if (data_len) {
4427 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4428 					  &struct_v, &len);
4429 		if (ret) {
4430 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4431 				 ret);
4432 			return;
4433 		}
4434 
4435 		notify_op = ceph_decode_32(&p);
4436 	} else {
4437 		/* legacy notification for header updates */
4438 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4439 		len = 0;
4440 	}
4441 
4442 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4443 	switch (notify_op) {
4444 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4445 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4446 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4447 		break;
4448 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4449 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4450 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4451 		break;
4452 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4453 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4454 		if (ret <= 0)
4455 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4456 						      cookie, ret);
4457 		else
4458 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4459 		break;
4460 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4461 		ret = rbd_dev_refresh(rbd_dev);
4462 		if (ret)
4463 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4464 
4465 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4466 		break;
4467 	default:
4468 		if (rbd_is_lock_owner(rbd_dev))
4469 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4470 						      cookie, -EOPNOTSUPP);
4471 		else
4472 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4473 		break;
4474 	}
4475 }
4476 
4477 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4478 
rbd_watch_errcb(void * arg,u64 cookie,int err)4479 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4480 {
4481 	struct rbd_device *rbd_dev = arg;
4482 
4483 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4484 
4485 	down_write(&rbd_dev->lock_rwsem);
4486 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4487 	up_write(&rbd_dev->lock_rwsem);
4488 
4489 	mutex_lock(&rbd_dev->watch_mutex);
4490 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4491 		__rbd_unregister_watch(rbd_dev);
4492 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4493 
4494 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4495 	}
4496 	mutex_unlock(&rbd_dev->watch_mutex);
4497 }
4498 
4499 /*
4500  * watch_mutex must be locked
4501  */
__rbd_register_watch(struct rbd_device * rbd_dev)4502 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4503 {
4504 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4505 	struct ceph_osd_linger_request *handle;
4506 
4507 	rbd_assert(!rbd_dev->watch_handle);
4508 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4509 
4510 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4511 				 &rbd_dev->header_oloc, rbd_watch_cb,
4512 				 rbd_watch_errcb, rbd_dev);
4513 	if (IS_ERR(handle))
4514 		return PTR_ERR(handle);
4515 
4516 	rbd_dev->watch_handle = handle;
4517 	return 0;
4518 }
4519 
4520 /*
4521  * watch_mutex must be locked
4522  */
__rbd_unregister_watch(struct rbd_device * rbd_dev)4523 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4524 {
4525 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4526 	int ret;
4527 
4528 	rbd_assert(rbd_dev->watch_handle);
4529 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4530 
4531 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4532 	if (ret)
4533 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4534 
4535 	rbd_dev->watch_handle = NULL;
4536 }
4537 
rbd_register_watch(struct rbd_device * rbd_dev)4538 static int rbd_register_watch(struct rbd_device *rbd_dev)
4539 {
4540 	int ret;
4541 
4542 	mutex_lock(&rbd_dev->watch_mutex);
4543 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4544 	ret = __rbd_register_watch(rbd_dev);
4545 	if (ret)
4546 		goto out;
4547 
4548 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4549 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4550 
4551 out:
4552 	mutex_unlock(&rbd_dev->watch_mutex);
4553 	return ret;
4554 }
4555 
cancel_tasks_sync(struct rbd_device * rbd_dev)4556 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4557 {
4558 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4559 
4560 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4561 	cancel_work_sync(&rbd_dev->released_lock_work);
4562 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4563 	cancel_work_sync(&rbd_dev->unlock_work);
4564 }
4565 
4566 /*
4567  * header_rwsem must not be held to avoid a deadlock with
4568  * rbd_dev_refresh() when flushing notifies.
4569  */
rbd_unregister_watch(struct rbd_device * rbd_dev)4570 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4571 {
4572 	cancel_tasks_sync(rbd_dev);
4573 
4574 	mutex_lock(&rbd_dev->watch_mutex);
4575 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4576 		__rbd_unregister_watch(rbd_dev);
4577 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4578 	mutex_unlock(&rbd_dev->watch_mutex);
4579 
4580 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4581 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4582 }
4583 
4584 /*
4585  * lock_rwsem must be held for write
4586  */
rbd_reacquire_lock(struct rbd_device * rbd_dev)4587 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4588 {
4589 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4590 	char cookie[32];
4591 	int ret;
4592 
4593 	if (!rbd_quiesce_lock(rbd_dev))
4594 		return;
4595 
4596 	format_lock_cookie(rbd_dev, cookie);
4597 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4598 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4599 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4600 				  RBD_LOCK_TAG, cookie);
4601 	if (ret) {
4602 		if (ret != -EOPNOTSUPP)
4603 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4604 				 ret);
4605 
4606 		/*
4607 		 * Lock cookie cannot be updated on older OSDs, so do
4608 		 * a manual release and queue an acquire.
4609 		 */
4610 		__rbd_release_lock(rbd_dev);
4611 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4612 	} else {
4613 		__rbd_lock(rbd_dev, cookie);
4614 		wake_lock_waiters(rbd_dev, 0);
4615 	}
4616 }
4617 
rbd_reregister_watch(struct work_struct * work)4618 static void rbd_reregister_watch(struct work_struct *work)
4619 {
4620 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4621 					    struct rbd_device, watch_dwork);
4622 	int ret;
4623 
4624 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4625 
4626 	mutex_lock(&rbd_dev->watch_mutex);
4627 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4628 		mutex_unlock(&rbd_dev->watch_mutex);
4629 		return;
4630 	}
4631 
4632 	ret = __rbd_register_watch(rbd_dev);
4633 	if (ret) {
4634 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4635 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4636 			queue_delayed_work(rbd_dev->task_wq,
4637 					   &rbd_dev->watch_dwork,
4638 					   RBD_RETRY_DELAY);
4639 			mutex_unlock(&rbd_dev->watch_mutex);
4640 			return;
4641 		}
4642 
4643 		mutex_unlock(&rbd_dev->watch_mutex);
4644 		down_write(&rbd_dev->lock_rwsem);
4645 		wake_lock_waiters(rbd_dev, ret);
4646 		up_write(&rbd_dev->lock_rwsem);
4647 		return;
4648 	}
4649 
4650 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4651 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4652 	mutex_unlock(&rbd_dev->watch_mutex);
4653 
4654 	down_write(&rbd_dev->lock_rwsem);
4655 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4656 		rbd_reacquire_lock(rbd_dev);
4657 	up_write(&rbd_dev->lock_rwsem);
4658 
4659 	ret = rbd_dev_refresh(rbd_dev);
4660 	if (ret)
4661 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4662 }
4663 
4664 /*
4665  * Synchronous osd object method call.  Returns the number of bytes
4666  * returned in the outbound buffer, or a negative error code.
4667  */
rbd_obj_method_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,const char * method_name,const void * outbound,size_t outbound_size,void * inbound,size_t inbound_size)4668 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4669 			     struct ceph_object_id *oid,
4670 			     struct ceph_object_locator *oloc,
4671 			     const char *method_name,
4672 			     const void *outbound,
4673 			     size_t outbound_size,
4674 			     void *inbound,
4675 			     size_t inbound_size)
4676 {
4677 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4678 	struct page *req_page = NULL;
4679 	struct page *reply_page;
4680 	int ret;
4681 
4682 	/*
4683 	 * Method calls are ultimately read operations.  The result
4684 	 * should placed into the inbound buffer provided.  They
4685 	 * also supply outbound data--parameters for the object
4686 	 * method.  Currently if this is present it will be a
4687 	 * snapshot id.
4688 	 */
4689 	if (outbound) {
4690 		if (outbound_size > PAGE_SIZE)
4691 			return -E2BIG;
4692 
4693 		req_page = alloc_page(GFP_KERNEL);
4694 		if (!req_page)
4695 			return -ENOMEM;
4696 
4697 		memcpy(page_address(req_page), outbound, outbound_size);
4698 	}
4699 
4700 	reply_page = alloc_page(GFP_KERNEL);
4701 	if (!reply_page) {
4702 		if (req_page)
4703 			__free_page(req_page);
4704 		return -ENOMEM;
4705 	}
4706 
4707 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4708 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4709 			     &reply_page, &inbound_size);
4710 	if (!ret) {
4711 		memcpy(inbound, page_address(reply_page), inbound_size);
4712 		ret = inbound_size;
4713 	}
4714 
4715 	if (req_page)
4716 		__free_page(req_page);
4717 	__free_page(reply_page);
4718 	return ret;
4719 }
4720 
rbd_queue_workfn(struct work_struct * work)4721 static void rbd_queue_workfn(struct work_struct *work)
4722 {
4723 	struct rbd_img_request *img_request =
4724 	    container_of(work, struct rbd_img_request, work);
4725 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4726 	enum obj_operation_type op_type = img_request->op_type;
4727 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4728 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4729 	u64 length = blk_rq_bytes(rq);
4730 	u64 mapping_size;
4731 	int result;
4732 
4733 	/* Ignore/skip any zero-length requests */
4734 	if (!length) {
4735 		dout("%s: zero-length request\n", __func__);
4736 		result = 0;
4737 		goto err_img_request;
4738 	}
4739 
4740 	blk_mq_start_request(rq);
4741 
4742 	down_read(&rbd_dev->header_rwsem);
4743 	mapping_size = rbd_dev->mapping.size;
4744 	rbd_img_capture_header(img_request);
4745 	up_read(&rbd_dev->header_rwsem);
4746 
4747 	if (offset + length > mapping_size) {
4748 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4749 			 length, mapping_size);
4750 		result = -EIO;
4751 		goto err_img_request;
4752 	}
4753 
4754 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4755 	     img_request, obj_op_name(op_type), offset, length);
4756 
4757 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4758 		result = rbd_img_fill_nodata(img_request, offset, length);
4759 	else
4760 		result = rbd_img_fill_from_bio(img_request, offset, length,
4761 					       rq->bio);
4762 	if (result)
4763 		goto err_img_request;
4764 
4765 	rbd_img_handle_request(img_request, 0);
4766 	return;
4767 
4768 err_img_request:
4769 	rbd_img_request_destroy(img_request);
4770 	if (result)
4771 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4772 			 obj_op_name(op_type), length, offset, result);
4773 	blk_mq_end_request(rq, errno_to_blk_status(result));
4774 }
4775 
rbd_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)4776 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4777 		const struct blk_mq_queue_data *bd)
4778 {
4779 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4780 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4781 	enum obj_operation_type op_type;
4782 
4783 	switch (req_op(bd->rq)) {
4784 	case REQ_OP_DISCARD:
4785 		op_type = OBJ_OP_DISCARD;
4786 		break;
4787 	case REQ_OP_WRITE_ZEROES:
4788 		op_type = OBJ_OP_ZEROOUT;
4789 		break;
4790 	case REQ_OP_WRITE:
4791 		op_type = OBJ_OP_WRITE;
4792 		break;
4793 	case REQ_OP_READ:
4794 		op_type = OBJ_OP_READ;
4795 		break;
4796 	default:
4797 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4798 		return BLK_STS_IOERR;
4799 	}
4800 
4801 	rbd_img_request_init(img_req, rbd_dev, op_type);
4802 
4803 	if (rbd_img_is_write(img_req)) {
4804 		if (rbd_is_ro(rbd_dev)) {
4805 			rbd_warn(rbd_dev, "%s on read-only mapping",
4806 				 obj_op_name(img_req->op_type));
4807 			return BLK_STS_IOERR;
4808 		}
4809 		rbd_assert(!rbd_is_snap(rbd_dev));
4810 	}
4811 
4812 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4813 	queue_work(rbd_wq, &img_req->work);
4814 	return BLK_STS_OK;
4815 }
4816 
rbd_free_disk(struct rbd_device * rbd_dev)4817 static void rbd_free_disk(struct rbd_device *rbd_dev)
4818 {
4819 	blk_cleanup_disk(rbd_dev->disk);
4820 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4821 	rbd_dev->disk = NULL;
4822 }
4823 
rbd_obj_read_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,void * buf,int buf_len)4824 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4825 			     struct ceph_object_id *oid,
4826 			     struct ceph_object_locator *oloc,
4827 			     void *buf, int buf_len)
4828 
4829 {
4830 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4831 	struct ceph_osd_request *req;
4832 	struct page **pages;
4833 	int num_pages = calc_pages_for(0, buf_len);
4834 	int ret;
4835 
4836 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4837 	if (!req)
4838 		return -ENOMEM;
4839 
4840 	ceph_oid_copy(&req->r_base_oid, oid);
4841 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4842 	req->r_flags = CEPH_OSD_FLAG_READ;
4843 
4844 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4845 	if (IS_ERR(pages)) {
4846 		ret = PTR_ERR(pages);
4847 		goto out_req;
4848 	}
4849 
4850 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4851 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4852 					 true);
4853 
4854 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4855 	if (ret)
4856 		goto out_req;
4857 
4858 	ceph_osdc_start_request(osdc, req, false);
4859 	ret = ceph_osdc_wait_request(osdc, req);
4860 	if (ret >= 0)
4861 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4862 
4863 out_req:
4864 	ceph_osdc_put_request(req);
4865 	return ret;
4866 }
4867 
4868 /*
4869  * Read the complete header for the given rbd device.  On successful
4870  * return, the rbd_dev->header field will contain up-to-date
4871  * information about the image.
4872  */
rbd_dev_v1_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)4873 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4874 				  struct rbd_image_header *header,
4875 				  bool first_time)
4876 {
4877 	struct rbd_image_header_ondisk *ondisk = NULL;
4878 	u32 snap_count = 0;
4879 	u64 names_size = 0;
4880 	u32 want_count;
4881 	int ret;
4882 
4883 	/*
4884 	 * The complete header will include an array of its 64-bit
4885 	 * snapshot ids, followed by the names of those snapshots as
4886 	 * a contiguous block of NUL-terminated strings.  Note that
4887 	 * the number of snapshots could change by the time we read
4888 	 * it in, in which case we re-read it.
4889 	 */
4890 	do {
4891 		size_t size;
4892 
4893 		kfree(ondisk);
4894 
4895 		size = sizeof (*ondisk);
4896 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4897 		size += names_size;
4898 		ondisk = kmalloc(size, GFP_KERNEL);
4899 		if (!ondisk)
4900 			return -ENOMEM;
4901 
4902 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4903 					&rbd_dev->header_oloc, ondisk, size);
4904 		if (ret < 0)
4905 			goto out;
4906 		if ((size_t)ret < size) {
4907 			ret = -ENXIO;
4908 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4909 				size, ret);
4910 			goto out;
4911 		}
4912 		if (!rbd_dev_ondisk_valid(ondisk)) {
4913 			ret = -ENXIO;
4914 			rbd_warn(rbd_dev, "invalid header");
4915 			goto out;
4916 		}
4917 
4918 		names_size = le64_to_cpu(ondisk->snap_names_len);
4919 		want_count = snap_count;
4920 		snap_count = le32_to_cpu(ondisk->snap_count);
4921 	} while (snap_count != want_count);
4922 
4923 	ret = rbd_header_from_disk(header, ondisk, first_time);
4924 out:
4925 	kfree(ondisk);
4926 
4927 	return ret;
4928 }
4929 
rbd_dev_update_size(struct rbd_device * rbd_dev)4930 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4931 {
4932 	sector_t size;
4933 
4934 	/*
4935 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4936 	 * try to update its size.  If REMOVING is set, updating size
4937 	 * is just useless work since the device can't be opened.
4938 	 */
4939 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4940 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4941 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4942 		dout("setting size to %llu sectors", (unsigned long long)size);
4943 		set_capacity_and_notify(rbd_dev->disk, size);
4944 	}
4945 }
4946 
4947 static const struct blk_mq_ops rbd_mq_ops = {
4948 	.queue_rq	= rbd_queue_rq,
4949 };
4950 
rbd_init_disk(struct rbd_device * rbd_dev)4951 static int rbd_init_disk(struct rbd_device *rbd_dev)
4952 {
4953 	struct gendisk *disk;
4954 	struct request_queue *q;
4955 	unsigned int objset_bytes =
4956 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4957 	int err;
4958 
4959 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4960 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4961 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4962 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4963 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4964 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4965 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4966 
4967 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4968 	if (err)
4969 		return err;
4970 
4971 	disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4972 	if (IS_ERR(disk)) {
4973 		err = PTR_ERR(disk);
4974 		goto out_tag_set;
4975 	}
4976 	q = disk->queue;
4977 
4978 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4979 		 rbd_dev->dev_id);
4980 	disk->major = rbd_dev->major;
4981 	disk->first_minor = rbd_dev->minor;
4982 	if (single_major) {
4983 		disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4984 		disk->flags |= GENHD_FL_EXT_DEVT;
4985 	} else {
4986 		disk->minors = RBD_MINORS_PER_MAJOR;
4987 	}
4988 	disk->fops = &rbd_bd_ops;
4989 	disk->private_data = rbd_dev;
4990 
4991 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4992 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4993 
4994 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4995 	q->limits.max_sectors = queue_max_hw_sectors(q);
4996 	blk_queue_max_segments(q, USHRT_MAX);
4997 	blk_queue_max_segment_size(q, UINT_MAX);
4998 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4999 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5000 
5001 	if (rbd_dev->opts->trim) {
5002 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5003 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5004 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5005 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5006 	}
5007 
5008 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5009 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5010 
5011 	rbd_dev->disk = disk;
5012 
5013 	return 0;
5014 out_tag_set:
5015 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5016 	return err;
5017 }
5018 
5019 /*
5020   sysfs
5021 */
5022 
dev_to_rbd_dev(struct device * dev)5023 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5024 {
5025 	return container_of(dev, struct rbd_device, dev);
5026 }
5027 
rbd_size_show(struct device * dev,struct device_attribute * attr,char * buf)5028 static ssize_t rbd_size_show(struct device *dev,
5029 			     struct device_attribute *attr, char *buf)
5030 {
5031 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5032 
5033 	return sprintf(buf, "%llu\n",
5034 		(unsigned long long)rbd_dev->mapping.size);
5035 }
5036 
rbd_features_show(struct device * dev,struct device_attribute * attr,char * buf)5037 static ssize_t rbd_features_show(struct device *dev,
5038 			     struct device_attribute *attr, char *buf)
5039 {
5040 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5041 
5042 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5043 }
5044 
rbd_major_show(struct device * dev,struct device_attribute * attr,char * buf)5045 static ssize_t rbd_major_show(struct device *dev,
5046 			      struct device_attribute *attr, char *buf)
5047 {
5048 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5049 
5050 	if (rbd_dev->major)
5051 		return sprintf(buf, "%d\n", rbd_dev->major);
5052 
5053 	return sprintf(buf, "(none)\n");
5054 }
5055 
rbd_minor_show(struct device * dev,struct device_attribute * attr,char * buf)5056 static ssize_t rbd_minor_show(struct device *dev,
5057 			      struct device_attribute *attr, char *buf)
5058 {
5059 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5060 
5061 	return sprintf(buf, "%d\n", rbd_dev->minor);
5062 }
5063 
rbd_client_addr_show(struct device * dev,struct device_attribute * attr,char * buf)5064 static ssize_t rbd_client_addr_show(struct device *dev,
5065 				    struct device_attribute *attr, char *buf)
5066 {
5067 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5068 	struct ceph_entity_addr *client_addr =
5069 	    ceph_client_addr(rbd_dev->rbd_client->client);
5070 
5071 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5072 		       le32_to_cpu(client_addr->nonce));
5073 }
5074 
rbd_client_id_show(struct device * dev,struct device_attribute * attr,char * buf)5075 static ssize_t rbd_client_id_show(struct device *dev,
5076 				  struct device_attribute *attr, char *buf)
5077 {
5078 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5079 
5080 	return sprintf(buf, "client%lld\n",
5081 		       ceph_client_gid(rbd_dev->rbd_client->client));
5082 }
5083 
rbd_cluster_fsid_show(struct device * dev,struct device_attribute * attr,char * buf)5084 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5085 				     struct device_attribute *attr, char *buf)
5086 {
5087 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5088 
5089 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5090 }
5091 
rbd_config_info_show(struct device * dev,struct device_attribute * attr,char * buf)5092 static ssize_t rbd_config_info_show(struct device *dev,
5093 				    struct device_attribute *attr, char *buf)
5094 {
5095 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5096 
5097 	if (!capable(CAP_SYS_ADMIN))
5098 		return -EPERM;
5099 
5100 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5101 }
5102 
rbd_pool_show(struct device * dev,struct device_attribute * attr,char * buf)5103 static ssize_t rbd_pool_show(struct device *dev,
5104 			     struct device_attribute *attr, char *buf)
5105 {
5106 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5107 
5108 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5109 }
5110 
rbd_pool_id_show(struct device * dev,struct device_attribute * attr,char * buf)5111 static ssize_t rbd_pool_id_show(struct device *dev,
5112 			     struct device_attribute *attr, char *buf)
5113 {
5114 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5115 
5116 	return sprintf(buf, "%llu\n",
5117 			(unsigned long long) rbd_dev->spec->pool_id);
5118 }
5119 
rbd_pool_ns_show(struct device * dev,struct device_attribute * attr,char * buf)5120 static ssize_t rbd_pool_ns_show(struct device *dev,
5121 				struct device_attribute *attr, char *buf)
5122 {
5123 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5124 
5125 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5126 }
5127 
rbd_name_show(struct device * dev,struct device_attribute * attr,char * buf)5128 static ssize_t rbd_name_show(struct device *dev,
5129 			     struct device_attribute *attr, char *buf)
5130 {
5131 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5132 
5133 	if (rbd_dev->spec->image_name)
5134 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5135 
5136 	return sprintf(buf, "(unknown)\n");
5137 }
5138 
rbd_image_id_show(struct device * dev,struct device_attribute * attr,char * buf)5139 static ssize_t rbd_image_id_show(struct device *dev,
5140 			     struct device_attribute *attr, char *buf)
5141 {
5142 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5143 
5144 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5145 }
5146 
5147 /*
5148  * Shows the name of the currently-mapped snapshot (or
5149  * RBD_SNAP_HEAD_NAME for the base image).
5150  */
rbd_snap_show(struct device * dev,struct device_attribute * attr,char * buf)5151 static ssize_t rbd_snap_show(struct device *dev,
5152 			     struct device_attribute *attr,
5153 			     char *buf)
5154 {
5155 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5156 
5157 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5158 }
5159 
rbd_snap_id_show(struct device * dev,struct device_attribute * attr,char * buf)5160 static ssize_t rbd_snap_id_show(struct device *dev,
5161 				struct device_attribute *attr, char *buf)
5162 {
5163 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5164 
5165 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5166 }
5167 
5168 /*
5169  * For a v2 image, shows the chain of parent images, separated by empty
5170  * lines.  For v1 images or if there is no parent, shows "(no parent
5171  * image)".
5172  */
rbd_parent_show(struct device * dev,struct device_attribute * attr,char * buf)5173 static ssize_t rbd_parent_show(struct device *dev,
5174 			       struct device_attribute *attr,
5175 			       char *buf)
5176 {
5177 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5178 	ssize_t count = 0;
5179 
5180 	if (!rbd_dev->parent)
5181 		return sprintf(buf, "(no parent image)\n");
5182 
5183 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5184 		struct rbd_spec *spec = rbd_dev->parent_spec;
5185 
5186 		count += sprintf(&buf[count], "%s"
5187 			    "pool_id %llu\npool_name %s\n"
5188 			    "pool_ns %s\n"
5189 			    "image_id %s\nimage_name %s\n"
5190 			    "snap_id %llu\nsnap_name %s\n"
5191 			    "overlap %llu\n",
5192 			    !count ? "" : "\n", /* first? */
5193 			    spec->pool_id, spec->pool_name,
5194 			    spec->pool_ns ?: "",
5195 			    spec->image_id, spec->image_name ?: "(unknown)",
5196 			    spec->snap_id, spec->snap_name,
5197 			    rbd_dev->parent_overlap);
5198 	}
5199 
5200 	return count;
5201 }
5202 
rbd_image_refresh(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)5203 static ssize_t rbd_image_refresh(struct device *dev,
5204 				 struct device_attribute *attr,
5205 				 const char *buf,
5206 				 size_t size)
5207 {
5208 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5209 	int ret;
5210 
5211 	if (!capable(CAP_SYS_ADMIN))
5212 		return -EPERM;
5213 
5214 	ret = rbd_dev_refresh(rbd_dev);
5215 	if (ret)
5216 		return ret;
5217 
5218 	return size;
5219 }
5220 
5221 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5222 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5223 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5224 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5225 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5226 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5227 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5228 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5229 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5230 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5231 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5232 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5233 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5234 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5235 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5236 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5237 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5238 
5239 static struct attribute *rbd_attrs[] = {
5240 	&dev_attr_size.attr,
5241 	&dev_attr_features.attr,
5242 	&dev_attr_major.attr,
5243 	&dev_attr_minor.attr,
5244 	&dev_attr_client_addr.attr,
5245 	&dev_attr_client_id.attr,
5246 	&dev_attr_cluster_fsid.attr,
5247 	&dev_attr_config_info.attr,
5248 	&dev_attr_pool.attr,
5249 	&dev_attr_pool_id.attr,
5250 	&dev_attr_pool_ns.attr,
5251 	&dev_attr_name.attr,
5252 	&dev_attr_image_id.attr,
5253 	&dev_attr_current_snap.attr,
5254 	&dev_attr_snap_id.attr,
5255 	&dev_attr_parent.attr,
5256 	&dev_attr_refresh.attr,
5257 	NULL
5258 };
5259 
5260 static struct attribute_group rbd_attr_group = {
5261 	.attrs = rbd_attrs,
5262 };
5263 
5264 static const struct attribute_group *rbd_attr_groups[] = {
5265 	&rbd_attr_group,
5266 	NULL
5267 };
5268 
5269 static void rbd_dev_release(struct device *dev);
5270 
5271 static const struct device_type rbd_device_type = {
5272 	.name		= "rbd",
5273 	.groups		= rbd_attr_groups,
5274 	.release	= rbd_dev_release,
5275 };
5276 
rbd_spec_get(struct rbd_spec * spec)5277 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5278 {
5279 	kref_get(&spec->kref);
5280 
5281 	return spec;
5282 }
5283 
5284 static void rbd_spec_free(struct kref *kref);
rbd_spec_put(struct rbd_spec * spec)5285 static void rbd_spec_put(struct rbd_spec *spec)
5286 {
5287 	if (spec)
5288 		kref_put(&spec->kref, rbd_spec_free);
5289 }
5290 
rbd_spec_alloc(void)5291 static struct rbd_spec *rbd_spec_alloc(void)
5292 {
5293 	struct rbd_spec *spec;
5294 
5295 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5296 	if (!spec)
5297 		return NULL;
5298 
5299 	spec->pool_id = CEPH_NOPOOL;
5300 	spec->snap_id = CEPH_NOSNAP;
5301 	kref_init(&spec->kref);
5302 
5303 	return spec;
5304 }
5305 
rbd_spec_free(struct kref * kref)5306 static void rbd_spec_free(struct kref *kref)
5307 {
5308 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5309 
5310 	kfree(spec->pool_name);
5311 	kfree(spec->pool_ns);
5312 	kfree(spec->image_id);
5313 	kfree(spec->image_name);
5314 	kfree(spec->snap_name);
5315 	kfree(spec);
5316 }
5317 
rbd_dev_free(struct rbd_device * rbd_dev)5318 static void rbd_dev_free(struct rbd_device *rbd_dev)
5319 {
5320 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5321 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5322 
5323 	ceph_oid_destroy(&rbd_dev->header_oid);
5324 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5325 	kfree(rbd_dev->config_info);
5326 
5327 	rbd_put_client(rbd_dev->rbd_client);
5328 	rbd_spec_put(rbd_dev->spec);
5329 	kfree(rbd_dev->opts);
5330 	kfree(rbd_dev);
5331 }
5332 
rbd_dev_release(struct device * dev)5333 static void rbd_dev_release(struct device *dev)
5334 {
5335 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5336 	bool need_put = !!rbd_dev->opts;
5337 
5338 	if (need_put) {
5339 		destroy_workqueue(rbd_dev->task_wq);
5340 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5341 	}
5342 
5343 	rbd_dev_free(rbd_dev);
5344 
5345 	/*
5346 	 * This is racy, but way better than putting module outside of
5347 	 * the release callback.  The race window is pretty small, so
5348 	 * doing something similar to dm (dm-builtin.c) is overkill.
5349 	 */
5350 	if (need_put)
5351 		module_put(THIS_MODULE);
5352 }
5353 
__rbd_dev_create(struct rbd_spec * spec)5354 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5355 {
5356 	struct rbd_device *rbd_dev;
5357 
5358 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5359 	if (!rbd_dev)
5360 		return NULL;
5361 
5362 	spin_lock_init(&rbd_dev->lock);
5363 	INIT_LIST_HEAD(&rbd_dev->node);
5364 	init_rwsem(&rbd_dev->header_rwsem);
5365 
5366 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5367 	ceph_oid_init(&rbd_dev->header_oid);
5368 	rbd_dev->header_oloc.pool = spec->pool_id;
5369 	if (spec->pool_ns) {
5370 		WARN_ON(!*spec->pool_ns);
5371 		rbd_dev->header_oloc.pool_ns =
5372 		    ceph_find_or_create_string(spec->pool_ns,
5373 					       strlen(spec->pool_ns));
5374 	}
5375 
5376 	mutex_init(&rbd_dev->watch_mutex);
5377 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5378 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5379 
5380 	init_rwsem(&rbd_dev->lock_rwsem);
5381 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5382 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5383 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5384 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5385 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5386 	spin_lock_init(&rbd_dev->lock_lists_lock);
5387 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5388 	INIT_LIST_HEAD(&rbd_dev->running_list);
5389 	init_completion(&rbd_dev->acquire_wait);
5390 	init_completion(&rbd_dev->releasing_wait);
5391 
5392 	spin_lock_init(&rbd_dev->object_map_lock);
5393 
5394 	rbd_dev->dev.bus = &rbd_bus_type;
5395 	rbd_dev->dev.type = &rbd_device_type;
5396 	rbd_dev->dev.parent = &rbd_root_dev;
5397 	device_initialize(&rbd_dev->dev);
5398 
5399 	return rbd_dev;
5400 }
5401 
5402 /*
5403  * Create a mapping rbd_dev.
5404  */
rbd_dev_create(struct rbd_client * rbdc,struct rbd_spec * spec,struct rbd_options * opts)5405 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5406 					 struct rbd_spec *spec,
5407 					 struct rbd_options *opts)
5408 {
5409 	struct rbd_device *rbd_dev;
5410 
5411 	rbd_dev = __rbd_dev_create(spec);
5412 	if (!rbd_dev)
5413 		return NULL;
5414 
5415 	/* get an id and fill in device name */
5416 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5417 					 minor_to_rbd_dev_id(1 << MINORBITS),
5418 					 GFP_KERNEL);
5419 	if (rbd_dev->dev_id < 0)
5420 		goto fail_rbd_dev;
5421 
5422 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5423 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5424 						   rbd_dev->name);
5425 	if (!rbd_dev->task_wq)
5426 		goto fail_dev_id;
5427 
5428 	/* we have a ref from do_rbd_add() */
5429 	__module_get(THIS_MODULE);
5430 
5431 	rbd_dev->rbd_client = rbdc;
5432 	rbd_dev->spec = spec;
5433 	rbd_dev->opts = opts;
5434 
5435 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5436 	return rbd_dev;
5437 
5438 fail_dev_id:
5439 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5440 fail_rbd_dev:
5441 	rbd_dev_free(rbd_dev);
5442 	return NULL;
5443 }
5444 
rbd_dev_destroy(struct rbd_device * rbd_dev)5445 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5446 {
5447 	if (rbd_dev)
5448 		put_device(&rbd_dev->dev);
5449 }
5450 
5451 /*
5452  * Get the size and object order for an image snapshot, or if
5453  * snap_id is CEPH_NOSNAP, gets this information for the base
5454  * image.
5455  */
_rbd_dev_v2_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u8 * order,u64 * snap_size)5456 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5457 				u8 *order, u64 *snap_size)
5458 {
5459 	__le64 snapid = cpu_to_le64(snap_id);
5460 	int ret;
5461 	struct {
5462 		u8 order;
5463 		__le64 size;
5464 	} __attribute__ ((packed)) size_buf = { 0 };
5465 
5466 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5467 				  &rbd_dev->header_oloc, "get_size",
5468 				  &snapid, sizeof(snapid),
5469 				  &size_buf, sizeof(size_buf));
5470 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5471 	if (ret < 0)
5472 		return ret;
5473 	if (ret < sizeof (size_buf))
5474 		return -ERANGE;
5475 
5476 	if (order) {
5477 		*order = size_buf.order;
5478 		dout("  order %u", (unsigned int)*order);
5479 	}
5480 	*snap_size = le64_to_cpu(size_buf.size);
5481 
5482 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5483 		(unsigned long long)snap_id,
5484 		(unsigned long long)*snap_size);
5485 
5486 	return 0;
5487 }
5488 
rbd_dev_v2_object_prefix(struct rbd_device * rbd_dev,char ** pobject_prefix)5489 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5490 				    char **pobject_prefix)
5491 {
5492 	size_t size;
5493 	void *reply_buf;
5494 	char *object_prefix;
5495 	int ret;
5496 	void *p;
5497 
5498 	/* Response will be an encoded string, which includes a length */
5499 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5500 	reply_buf = kzalloc(size, GFP_KERNEL);
5501 	if (!reply_buf)
5502 		return -ENOMEM;
5503 
5504 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5505 				  &rbd_dev->header_oloc, "get_object_prefix",
5506 				  NULL, 0, reply_buf, size);
5507 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5508 	if (ret < 0)
5509 		goto out;
5510 
5511 	p = reply_buf;
5512 	object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5513 						    GFP_NOIO);
5514 	if (IS_ERR(object_prefix)) {
5515 		ret = PTR_ERR(object_prefix);
5516 		goto out;
5517 	}
5518 	ret = 0;
5519 
5520 	*pobject_prefix = object_prefix;
5521 	dout("  object_prefix = %s\n", object_prefix);
5522 out:
5523 	kfree(reply_buf);
5524 
5525 	return ret;
5526 }
5527 
_rbd_dev_v2_snap_features(struct rbd_device * rbd_dev,u64 snap_id,bool read_only,u64 * snap_features)5528 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5529 				     bool read_only, u64 *snap_features)
5530 {
5531 	struct {
5532 		__le64 snap_id;
5533 		u8 read_only;
5534 	} features_in;
5535 	struct {
5536 		__le64 features;
5537 		__le64 incompat;
5538 	} __attribute__ ((packed)) features_buf = { 0 };
5539 	u64 unsup;
5540 	int ret;
5541 
5542 	features_in.snap_id = cpu_to_le64(snap_id);
5543 	features_in.read_only = read_only;
5544 
5545 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5546 				  &rbd_dev->header_oloc, "get_features",
5547 				  &features_in, sizeof(features_in),
5548 				  &features_buf, sizeof(features_buf));
5549 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5550 	if (ret < 0)
5551 		return ret;
5552 	if (ret < sizeof (features_buf))
5553 		return -ERANGE;
5554 
5555 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5556 	if (unsup) {
5557 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5558 			 unsup);
5559 		return -ENXIO;
5560 	}
5561 
5562 	*snap_features = le64_to_cpu(features_buf.features);
5563 
5564 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5565 		(unsigned long long)snap_id,
5566 		(unsigned long long)*snap_features,
5567 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5568 
5569 	return 0;
5570 }
5571 
5572 /*
5573  * These are generic image flags, but since they are used only for
5574  * object map, store them in rbd_dev->object_map_flags.
5575  *
5576  * For the same reason, this function is called only on object map
5577  * (re)load and not on header refresh.
5578  */
rbd_dev_v2_get_flags(struct rbd_device * rbd_dev)5579 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5580 {
5581 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5582 	__le64 flags;
5583 	int ret;
5584 
5585 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5586 				  &rbd_dev->header_oloc, "get_flags",
5587 				  &snapid, sizeof(snapid),
5588 				  &flags, sizeof(flags));
5589 	if (ret < 0)
5590 		return ret;
5591 	if (ret < sizeof(flags))
5592 		return -EBADMSG;
5593 
5594 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5595 	return 0;
5596 }
5597 
5598 struct parent_image_info {
5599 	u64		pool_id;
5600 	const char	*pool_ns;
5601 	const char	*image_id;
5602 	u64		snap_id;
5603 
5604 	bool		has_overlap;
5605 	u64		overlap;
5606 };
5607 
rbd_parent_info_cleanup(struct parent_image_info * pii)5608 static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5609 {
5610 	kfree(pii->pool_ns);
5611 	kfree(pii->image_id);
5612 
5613 	memset(pii, 0, sizeof(*pii));
5614 }
5615 
5616 /*
5617  * The caller is responsible for @pii.
5618  */
decode_parent_image_spec(void ** p,void * end,struct parent_image_info * pii)5619 static int decode_parent_image_spec(void **p, void *end,
5620 				    struct parent_image_info *pii)
5621 {
5622 	u8 struct_v;
5623 	u32 struct_len;
5624 	int ret;
5625 
5626 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5627 				  &struct_v, &struct_len);
5628 	if (ret)
5629 		return ret;
5630 
5631 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5632 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5633 	if (IS_ERR(pii->pool_ns)) {
5634 		ret = PTR_ERR(pii->pool_ns);
5635 		pii->pool_ns = NULL;
5636 		return ret;
5637 	}
5638 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5639 	if (IS_ERR(pii->image_id)) {
5640 		ret = PTR_ERR(pii->image_id);
5641 		pii->image_id = NULL;
5642 		return ret;
5643 	}
5644 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5645 	return 0;
5646 
5647 e_inval:
5648 	return -EINVAL;
5649 }
5650 
__get_parent_info(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5651 static int __get_parent_info(struct rbd_device *rbd_dev,
5652 			     struct page *req_page,
5653 			     struct page *reply_page,
5654 			     struct parent_image_info *pii)
5655 {
5656 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5657 	size_t reply_len = PAGE_SIZE;
5658 	void *p, *end;
5659 	int ret;
5660 
5661 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5662 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5663 			     req_page, sizeof(u64), &reply_page, &reply_len);
5664 	if (ret)
5665 		return ret == -EOPNOTSUPP ? 1 : ret;
5666 
5667 	p = page_address(reply_page);
5668 	end = p + reply_len;
5669 	ret = decode_parent_image_spec(&p, end, pii);
5670 	if (ret)
5671 		return ret;
5672 
5673 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5674 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5675 			     req_page, sizeof(u64), &reply_page, &reply_len);
5676 	if (ret)
5677 		return ret;
5678 
5679 	p = page_address(reply_page);
5680 	end = p + reply_len;
5681 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5682 	if (pii->has_overlap)
5683 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5684 
5685 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5686 	     __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5687 	     pii->has_overlap, pii->overlap);
5688 	return 0;
5689 
5690 e_inval:
5691 	return -EINVAL;
5692 }
5693 
5694 /*
5695  * The caller is responsible for @pii.
5696  */
__get_parent_info_legacy(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5697 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5698 				    struct page *req_page,
5699 				    struct page *reply_page,
5700 				    struct parent_image_info *pii)
5701 {
5702 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5703 	size_t reply_len = PAGE_SIZE;
5704 	void *p, *end;
5705 	int ret;
5706 
5707 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5708 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5709 			     req_page, sizeof(u64), &reply_page, &reply_len);
5710 	if (ret)
5711 		return ret;
5712 
5713 	p = page_address(reply_page);
5714 	end = p + reply_len;
5715 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5716 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5717 	if (IS_ERR(pii->image_id)) {
5718 		ret = PTR_ERR(pii->image_id);
5719 		pii->image_id = NULL;
5720 		return ret;
5721 	}
5722 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5723 	pii->has_overlap = true;
5724 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5725 
5726 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5727 	     __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5728 	     pii->has_overlap, pii->overlap);
5729 	return 0;
5730 
5731 e_inval:
5732 	return -EINVAL;
5733 }
5734 
rbd_dev_v2_parent_info(struct rbd_device * rbd_dev,struct parent_image_info * pii)5735 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5736 				  struct parent_image_info *pii)
5737 {
5738 	struct page *req_page, *reply_page;
5739 	void *p;
5740 	int ret;
5741 
5742 	req_page = alloc_page(GFP_KERNEL);
5743 	if (!req_page)
5744 		return -ENOMEM;
5745 
5746 	reply_page = alloc_page(GFP_KERNEL);
5747 	if (!reply_page) {
5748 		__free_page(req_page);
5749 		return -ENOMEM;
5750 	}
5751 
5752 	p = page_address(req_page);
5753 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5754 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5755 	if (ret > 0)
5756 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5757 					       pii);
5758 
5759 	__free_page(req_page);
5760 	__free_page(reply_page);
5761 	return ret;
5762 }
5763 
rbd_dev_setup_parent(struct rbd_device * rbd_dev)5764 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5765 {
5766 	struct rbd_spec *parent_spec;
5767 	struct parent_image_info pii = { 0 };
5768 	int ret;
5769 
5770 	parent_spec = rbd_spec_alloc();
5771 	if (!parent_spec)
5772 		return -ENOMEM;
5773 
5774 	ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5775 	if (ret)
5776 		goto out_err;
5777 
5778 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5779 		goto out;	/* No parent?  No problem. */
5780 
5781 	/* The ceph file layout needs to fit pool id in 32 bits */
5782 
5783 	ret = -EIO;
5784 	if (pii.pool_id > (u64)U32_MAX) {
5785 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5786 			(unsigned long long)pii.pool_id, U32_MAX);
5787 		goto out_err;
5788 	}
5789 
5790 	/*
5791 	 * The parent won't change except when the clone is flattened,
5792 	 * so we only need to record the parent image spec once.
5793 	 */
5794 	parent_spec->pool_id = pii.pool_id;
5795 	if (pii.pool_ns && *pii.pool_ns) {
5796 		parent_spec->pool_ns = pii.pool_ns;
5797 		pii.pool_ns = NULL;
5798 	}
5799 	parent_spec->image_id = pii.image_id;
5800 	pii.image_id = NULL;
5801 	parent_spec->snap_id = pii.snap_id;
5802 
5803 	rbd_assert(!rbd_dev->parent_spec);
5804 	rbd_dev->parent_spec = parent_spec;
5805 	parent_spec = NULL;	/* rbd_dev now owns this */
5806 
5807 	/*
5808 	 * Record the parent overlap.  If it's zero, issue a warning as
5809 	 * we will proceed as if there is no parent.
5810 	 */
5811 	if (!pii.overlap)
5812 		rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5813 	rbd_dev->parent_overlap = pii.overlap;
5814 
5815 out:
5816 	ret = 0;
5817 out_err:
5818 	rbd_parent_info_cleanup(&pii);
5819 	rbd_spec_put(parent_spec);
5820 	return ret;
5821 }
5822 
rbd_dev_v2_striping_info(struct rbd_device * rbd_dev,u64 * stripe_unit,u64 * stripe_count)5823 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5824 				    u64 *stripe_unit, u64 *stripe_count)
5825 {
5826 	struct {
5827 		__le64 stripe_unit;
5828 		__le64 stripe_count;
5829 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5830 	size_t size = sizeof (striping_info_buf);
5831 	int ret;
5832 
5833 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5834 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5835 				NULL, 0, &striping_info_buf, size);
5836 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5837 	if (ret < 0)
5838 		return ret;
5839 	if (ret < size)
5840 		return -ERANGE;
5841 
5842 	*stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5843 	*stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5844 	dout("  stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5845 	     *stripe_count);
5846 
5847 	return 0;
5848 }
5849 
rbd_dev_v2_data_pool(struct rbd_device * rbd_dev,s64 * data_pool_id)5850 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5851 {
5852 	__le64 data_pool_buf;
5853 	int ret;
5854 
5855 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5856 				  &rbd_dev->header_oloc, "get_data_pool",
5857 				  NULL, 0, &data_pool_buf,
5858 				  sizeof(data_pool_buf));
5859 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5860 	if (ret < 0)
5861 		return ret;
5862 	if (ret < sizeof(data_pool_buf))
5863 		return -EBADMSG;
5864 
5865 	*data_pool_id = le64_to_cpu(data_pool_buf);
5866 	dout("  data_pool_id = %lld\n", *data_pool_id);
5867 	WARN_ON(*data_pool_id == CEPH_NOPOOL);
5868 
5869 	return 0;
5870 }
5871 
rbd_dev_image_name(struct rbd_device * rbd_dev)5872 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5873 {
5874 	CEPH_DEFINE_OID_ONSTACK(oid);
5875 	size_t image_id_size;
5876 	char *image_id;
5877 	void *p;
5878 	void *end;
5879 	size_t size;
5880 	void *reply_buf = NULL;
5881 	size_t len = 0;
5882 	char *image_name = NULL;
5883 	int ret;
5884 
5885 	rbd_assert(!rbd_dev->spec->image_name);
5886 
5887 	len = strlen(rbd_dev->spec->image_id);
5888 	image_id_size = sizeof (__le32) + len;
5889 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5890 	if (!image_id)
5891 		return NULL;
5892 
5893 	p = image_id;
5894 	end = image_id + image_id_size;
5895 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5896 
5897 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5898 	reply_buf = kmalloc(size, GFP_KERNEL);
5899 	if (!reply_buf)
5900 		goto out;
5901 
5902 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5903 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5904 				  "dir_get_name", image_id, image_id_size,
5905 				  reply_buf, size);
5906 	if (ret < 0)
5907 		goto out;
5908 	p = reply_buf;
5909 	end = reply_buf + ret;
5910 
5911 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5912 	if (IS_ERR(image_name))
5913 		image_name = NULL;
5914 	else
5915 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5916 out:
5917 	kfree(reply_buf);
5918 	kfree(image_id);
5919 
5920 	return image_name;
5921 }
5922 
rbd_v1_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5923 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5924 {
5925 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5926 	const char *snap_name;
5927 	u32 which = 0;
5928 
5929 	/* Skip over names until we find the one we are looking for */
5930 
5931 	snap_name = rbd_dev->header.snap_names;
5932 	while (which < snapc->num_snaps) {
5933 		if (!strcmp(name, snap_name))
5934 			return snapc->snaps[which];
5935 		snap_name += strlen(snap_name) + 1;
5936 		which++;
5937 	}
5938 	return CEPH_NOSNAP;
5939 }
5940 
rbd_v2_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5941 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5942 {
5943 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5944 	u32 which;
5945 	bool found = false;
5946 	u64 snap_id;
5947 
5948 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5949 		const char *snap_name;
5950 
5951 		snap_id = snapc->snaps[which];
5952 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5953 		if (IS_ERR(snap_name)) {
5954 			/* ignore no-longer existing snapshots */
5955 			if (PTR_ERR(snap_name) == -ENOENT)
5956 				continue;
5957 			else
5958 				break;
5959 		}
5960 		found = !strcmp(name, snap_name);
5961 		kfree(snap_name);
5962 	}
5963 	return found ? snap_id : CEPH_NOSNAP;
5964 }
5965 
5966 /*
5967  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5968  * no snapshot by that name is found, or if an error occurs.
5969  */
rbd_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5970 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5971 {
5972 	if (rbd_dev->image_format == 1)
5973 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5974 
5975 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5976 }
5977 
5978 /*
5979  * An image being mapped will have everything but the snap id.
5980  */
rbd_spec_fill_snap_id(struct rbd_device * rbd_dev)5981 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5982 {
5983 	struct rbd_spec *spec = rbd_dev->spec;
5984 
5985 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5986 	rbd_assert(spec->image_id && spec->image_name);
5987 	rbd_assert(spec->snap_name);
5988 
5989 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5990 		u64 snap_id;
5991 
5992 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5993 		if (snap_id == CEPH_NOSNAP)
5994 			return -ENOENT;
5995 
5996 		spec->snap_id = snap_id;
5997 	} else {
5998 		spec->snap_id = CEPH_NOSNAP;
5999 	}
6000 
6001 	return 0;
6002 }
6003 
6004 /*
6005  * A parent image will have all ids but none of the names.
6006  *
6007  * All names in an rbd spec are dynamically allocated.  It's OK if we
6008  * can't figure out the name for an image id.
6009  */
rbd_spec_fill_names(struct rbd_device * rbd_dev)6010 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6011 {
6012 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6013 	struct rbd_spec *spec = rbd_dev->spec;
6014 	const char *pool_name;
6015 	const char *image_name;
6016 	const char *snap_name;
6017 	int ret;
6018 
6019 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6020 	rbd_assert(spec->image_id);
6021 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6022 
6023 	/* Get the pool name; we have to make our own copy of this */
6024 
6025 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6026 	if (!pool_name) {
6027 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6028 		return -EIO;
6029 	}
6030 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6031 	if (!pool_name)
6032 		return -ENOMEM;
6033 
6034 	/* Fetch the image name; tolerate failure here */
6035 
6036 	image_name = rbd_dev_image_name(rbd_dev);
6037 	if (!image_name)
6038 		rbd_warn(rbd_dev, "unable to get image name");
6039 
6040 	/* Fetch the snapshot name */
6041 
6042 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6043 	if (IS_ERR(snap_name)) {
6044 		ret = PTR_ERR(snap_name);
6045 		goto out_err;
6046 	}
6047 
6048 	spec->pool_name = pool_name;
6049 	spec->image_name = image_name;
6050 	spec->snap_name = snap_name;
6051 
6052 	return 0;
6053 
6054 out_err:
6055 	kfree(image_name);
6056 	kfree(pool_name);
6057 	return ret;
6058 }
6059 
rbd_dev_v2_snap_context(struct rbd_device * rbd_dev,struct ceph_snap_context ** psnapc)6060 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6061 				   struct ceph_snap_context **psnapc)
6062 {
6063 	size_t size;
6064 	int ret;
6065 	void *reply_buf;
6066 	void *p;
6067 	void *end;
6068 	u64 seq;
6069 	u32 snap_count;
6070 	struct ceph_snap_context *snapc;
6071 	u32 i;
6072 
6073 	/*
6074 	 * We'll need room for the seq value (maximum snapshot id),
6075 	 * snapshot count, and array of that many snapshot ids.
6076 	 * For now we have a fixed upper limit on the number we're
6077 	 * prepared to receive.
6078 	 */
6079 	size = sizeof (__le64) + sizeof (__le32) +
6080 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6081 	reply_buf = kzalloc(size, GFP_KERNEL);
6082 	if (!reply_buf)
6083 		return -ENOMEM;
6084 
6085 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6086 				  &rbd_dev->header_oloc, "get_snapcontext",
6087 				  NULL, 0, reply_buf, size);
6088 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6089 	if (ret < 0)
6090 		goto out;
6091 
6092 	p = reply_buf;
6093 	end = reply_buf + ret;
6094 	ret = -ERANGE;
6095 	ceph_decode_64_safe(&p, end, seq, out);
6096 	ceph_decode_32_safe(&p, end, snap_count, out);
6097 
6098 	/*
6099 	 * Make sure the reported number of snapshot ids wouldn't go
6100 	 * beyond the end of our buffer.  But before checking that,
6101 	 * make sure the computed size of the snapshot context we
6102 	 * allocate is representable in a size_t.
6103 	 */
6104 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6105 				 / sizeof (u64)) {
6106 		ret = -EINVAL;
6107 		goto out;
6108 	}
6109 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6110 		goto out;
6111 	ret = 0;
6112 
6113 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6114 	if (!snapc) {
6115 		ret = -ENOMEM;
6116 		goto out;
6117 	}
6118 	snapc->seq = seq;
6119 	for (i = 0; i < snap_count; i++)
6120 		snapc->snaps[i] = ceph_decode_64(&p);
6121 
6122 	*psnapc = snapc;
6123 	dout("  snap context seq = %llu, snap_count = %u\n",
6124 		(unsigned long long)seq, (unsigned int)snap_count);
6125 out:
6126 	kfree(reply_buf);
6127 
6128 	return ret;
6129 }
6130 
rbd_dev_v2_snap_name(struct rbd_device * rbd_dev,u64 snap_id)6131 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6132 					u64 snap_id)
6133 {
6134 	size_t size;
6135 	void *reply_buf;
6136 	__le64 snapid;
6137 	int ret;
6138 	void *p;
6139 	void *end;
6140 	char *snap_name;
6141 
6142 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6143 	reply_buf = kmalloc(size, GFP_KERNEL);
6144 	if (!reply_buf)
6145 		return ERR_PTR(-ENOMEM);
6146 
6147 	snapid = cpu_to_le64(snap_id);
6148 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6149 				  &rbd_dev->header_oloc, "get_snapshot_name",
6150 				  &snapid, sizeof(snapid), reply_buf, size);
6151 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6152 	if (ret < 0) {
6153 		snap_name = ERR_PTR(ret);
6154 		goto out;
6155 	}
6156 
6157 	p = reply_buf;
6158 	end = reply_buf + ret;
6159 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6160 	if (IS_ERR(snap_name))
6161 		goto out;
6162 
6163 	dout("  snap_id 0x%016llx snap_name = %s\n",
6164 		(unsigned long long)snap_id, snap_name);
6165 out:
6166 	kfree(reply_buf);
6167 
6168 	return snap_name;
6169 }
6170 
rbd_dev_v2_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)6171 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6172 				  struct rbd_image_header *header,
6173 				  bool first_time)
6174 {
6175 	int ret;
6176 
6177 	ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6178 				    first_time ? &header->obj_order : NULL,
6179 				    &header->image_size);
6180 	if (ret)
6181 		return ret;
6182 
6183 	if (first_time) {
6184 		ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6185 		if (ret)
6186 			return ret;
6187 	}
6188 
6189 	ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6190 	if (ret)
6191 		return ret;
6192 
6193 	return 0;
6194 }
6195 
rbd_dev_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)6196 static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6197 			       struct rbd_image_header *header,
6198 			       bool first_time)
6199 {
6200 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6201 	rbd_assert(!header->object_prefix && !header->snapc);
6202 
6203 	if (rbd_dev->image_format == 1)
6204 		return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6205 
6206 	return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6207 }
6208 
6209 /*
6210  * Skips over white space at *buf, and updates *buf to point to the
6211  * first found non-space character (if any). Returns the length of
6212  * the token (string of non-white space characters) found.  Note
6213  * that *buf must be terminated with '\0'.
6214  */
next_token(const char ** buf)6215 static inline size_t next_token(const char **buf)
6216 {
6217         /*
6218         * These are the characters that produce nonzero for
6219         * isspace() in the "C" and "POSIX" locales.
6220         */
6221         const char *spaces = " \f\n\r\t\v";
6222 
6223         *buf += strspn(*buf, spaces);	/* Find start of token */
6224 
6225 	return strcspn(*buf, spaces);   /* Return token length */
6226 }
6227 
6228 /*
6229  * Finds the next token in *buf, dynamically allocates a buffer big
6230  * enough to hold a copy of it, and copies the token into the new
6231  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6232  * that a duplicate buffer is created even for a zero-length token.
6233  *
6234  * Returns a pointer to the newly-allocated duplicate, or a null
6235  * pointer if memory for the duplicate was not available.  If
6236  * the lenp argument is a non-null pointer, the length of the token
6237  * (not including the '\0') is returned in *lenp.
6238  *
6239  * If successful, the *buf pointer will be updated to point beyond
6240  * the end of the found token.
6241  *
6242  * Note: uses GFP_KERNEL for allocation.
6243  */
dup_token(const char ** buf,size_t * lenp)6244 static inline char *dup_token(const char **buf, size_t *lenp)
6245 {
6246 	char *dup;
6247 	size_t len;
6248 
6249 	len = next_token(buf);
6250 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6251 	if (!dup)
6252 		return NULL;
6253 	*(dup + len) = '\0';
6254 	*buf += len;
6255 
6256 	if (lenp)
6257 		*lenp = len;
6258 
6259 	return dup;
6260 }
6261 
rbd_parse_param(struct fs_parameter * param,struct rbd_parse_opts_ctx * pctx)6262 static int rbd_parse_param(struct fs_parameter *param,
6263 			    struct rbd_parse_opts_ctx *pctx)
6264 {
6265 	struct rbd_options *opt = pctx->opts;
6266 	struct fs_parse_result result;
6267 	struct p_log log = {.prefix = "rbd"};
6268 	int token, ret;
6269 
6270 	ret = ceph_parse_param(param, pctx->copts, NULL);
6271 	if (ret != -ENOPARAM)
6272 		return ret;
6273 
6274 	token = __fs_parse(&log, rbd_parameters, param, &result);
6275 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6276 	if (token < 0) {
6277 		if (token == -ENOPARAM)
6278 			return inval_plog(&log, "Unknown parameter '%s'",
6279 					  param->key);
6280 		return token;
6281 	}
6282 
6283 	switch (token) {
6284 	case Opt_queue_depth:
6285 		if (result.uint_32 < 1)
6286 			goto out_of_range;
6287 		opt->queue_depth = result.uint_32;
6288 		break;
6289 	case Opt_alloc_size:
6290 		if (result.uint_32 < SECTOR_SIZE)
6291 			goto out_of_range;
6292 		if (!is_power_of_2(result.uint_32))
6293 			return inval_plog(&log, "alloc_size must be a power of 2");
6294 		opt->alloc_size = result.uint_32;
6295 		break;
6296 	case Opt_lock_timeout:
6297 		/* 0 is "wait forever" (i.e. infinite timeout) */
6298 		if (result.uint_32 > INT_MAX / 1000)
6299 			goto out_of_range;
6300 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6301 		break;
6302 	case Opt_pool_ns:
6303 		kfree(pctx->spec->pool_ns);
6304 		pctx->spec->pool_ns = param->string;
6305 		param->string = NULL;
6306 		break;
6307 	case Opt_compression_hint:
6308 		switch (result.uint_32) {
6309 		case Opt_compression_hint_none:
6310 			opt->alloc_hint_flags &=
6311 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6312 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6313 			break;
6314 		case Opt_compression_hint_compressible:
6315 			opt->alloc_hint_flags |=
6316 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6317 			opt->alloc_hint_flags &=
6318 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6319 			break;
6320 		case Opt_compression_hint_incompressible:
6321 			opt->alloc_hint_flags |=
6322 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6323 			opt->alloc_hint_flags &=
6324 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6325 			break;
6326 		default:
6327 			BUG();
6328 		}
6329 		break;
6330 	case Opt_read_only:
6331 		opt->read_only = true;
6332 		break;
6333 	case Opt_read_write:
6334 		opt->read_only = false;
6335 		break;
6336 	case Opt_lock_on_read:
6337 		opt->lock_on_read = true;
6338 		break;
6339 	case Opt_exclusive:
6340 		opt->exclusive = true;
6341 		break;
6342 	case Opt_notrim:
6343 		opt->trim = false;
6344 		break;
6345 	default:
6346 		BUG();
6347 	}
6348 
6349 	return 0;
6350 
6351 out_of_range:
6352 	return inval_plog(&log, "%s out of range", param->key);
6353 }
6354 
6355 /*
6356  * This duplicates most of generic_parse_monolithic(), untying it from
6357  * fs_context and skipping standard superblock and security options.
6358  */
rbd_parse_options(char * options,struct rbd_parse_opts_ctx * pctx)6359 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6360 {
6361 	char *key;
6362 	int ret = 0;
6363 
6364 	dout("%s '%s'\n", __func__, options);
6365 	while ((key = strsep(&options, ",")) != NULL) {
6366 		if (*key) {
6367 			struct fs_parameter param = {
6368 				.key	= key,
6369 				.type	= fs_value_is_flag,
6370 			};
6371 			char *value = strchr(key, '=');
6372 			size_t v_len = 0;
6373 
6374 			if (value) {
6375 				if (value == key)
6376 					continue;
6377 				*value++ = 0;
6378 				v_len = strlen(value);
6379 				param.string = kmemdup_nul(value, v_len,
6380 							   GFP_KERNEL);
6381 				if (!param.string)
6382 					return -ENOMEM;
6383 				param.type = fs_value_is_string;
6384 			}
6385 			param.size = v_len;
6386 
6387 			ret = rbd_parse_param(&param, pctx);
6388 			kfree(param.string);
6389 			if (ret)
6390 				break;
6391 		}
6392 	}
6393 
6394 	return ret;
6395 }
6396 
6397 /*
6398  * Parse the options provided for an "rbd add" (i.e., rbd image
6399  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6400  * and the data written is passed here via a NUL-terminated buffer.
6401  * Returns 0 if successful or an error code otherwise.
6402  *
6403  * The information extracted from these options is recorded in
6404  * the other parameters which return dynamically-allocated
6405  * structures:
6406  *  ceph_opts
6407  *      The address of a pointer that will refer to a ceph options
6408  *      structure.  Caller must release the returned pointer using
6409  *      ceph_destroy_options() when it is no longer needed.
6410  *  rbd_opts
6411  *	Address of an rbd options pointer.  Fully initialized by
6412  *	this function; caller must release with kfree().
6413  *  spec
6414  *	Address of an rbd image specification pointer.  Fully
6415  *	initialized by this function based on parsed options.
6416  *	Caller must release with rbd_spec_put().
6417  *
6418  * The options passed take this form:
6419  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6420  * where:
6421  *  <mon_addrs>
6422  *      A comma-separated list of one or more monitor addresses.
6423  *      A monitor address is an ip address, optionally followed
6424  *      by a port number (separated by a colon).
6425  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6426  *  <options>
6427  *      A comma-separated list of ceph and/or rbd options.
6428  *  <pool_name>
6429  *      The name of the rados pool containing the rbd image.
6430  *  <image_name>
6431  *      The name of the image in that pool to map.
6432  *  <snap_id>
6433  *      An optional snapshot id.  If provided, the mapping will
6434  *      present data from the image at the time that snapshot was
6435  *      created.  The image head is used if no snapshot id is
6436  *      provided.  Snapshot mappings are always read-only.
6437  */
rbd_add_parse_args(const char * buf,struct ceph_options ** ceph_opts,struct rbd_options ** opts,struct rbd_spec ** rbd_spec)6438 static int rbd_add_parse_args(const char *buf,
6439 				struct ceph_options **ceph_opts,
6440 				struct rbd_options **opts,
6441 				struct rbd_spec **rbd_spec)
6442 {
6443 	size_t len;
6444 	char *options;
6445 	const char *mon_addrs;
6446 	char *snap_name;
6447 	size_t mon_addrs_size;
6448 	struct rbd_parse_opts_ctx pctx = { 0 };
6449 	int ret;
6450 
6451 	/* The first four tokens are required */
6452 
6453 	len = next_token(&buf);
6454 	if (!len) {
6455 		rbd_warn(NULL, "no monitor address(es) provided");
6456 		return -EINVAL;
6457 	}
6458 	mon_addrs = buf;
6459 	mon_addrs_size = len;
6460 	buf += len;
6461 
6462 	ret = -EINVAL;
6463 	options = dup_token(&buf, NULL);
6464 	if (!options)
6465 		return -ENOMEM;
6466 	if (!*options) {
6467 		rbd_warn(NULL, "no options provided");
6468 		goto out_err;
6469 	}
6470 
6471 	pctx.spec = rbd_spec_alloc();
6472 	if (!pctx.spec)
6473 		goto out_mem;
6474 
6475 	pctx.spec->pool_name = dup_token(&buf, NULL);
6476 	if (!pctx.spec->pool_name)
6477 		goto out_mem;
6478 	if (!*pctx.spec->pool_name) {
6479 		rbd_warn(NULL, "no pool name provided");
6480 		goto out_err;
6481 	}
6482 
6483 	pctx.spec->image_name = dup_token(&buf, NULL);
6484 	if (!pctx.spec->image_name)
6485 		goto out_mem;
6486 	if (!*pctx.spec->image_name) {
6487 		rbd_warn(NULL, "no image name provided");
6488 		goto out_err;
6489 	}
6490 
6491 	/*
6492 	 * Snapshot name is optional; default is to use "-"
6493 	 * (indicating the head/no snapshot).
6494 	 */
6495 	len = next_token(&buf);
6496 	if (!len) {
6497 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6498 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6499 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6500 		ret = -ENAMETOOLONG;
6501 		goto out_err;
6502 	}
6503 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6504 	if (!snap_name)
6505 		goto out_mem;
6506 	*(snap_name + len) = '\0';
6507 	pctx.spec->snap_name = snap_name;
6508 
6509 	pctx.copts = ceph_alloc_options();
6510 	if (!pctx.copts)
6511 		goto out_mem;
6512 
6513 	/* Initialize all rbd options to the defaults */
6514 
6515 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6516 	if (!pctx.opts)
6517 		goto out_mem;
6518 
6519 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6520 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6521 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6522 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6523 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6524 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6525 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6526 
6527 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6528 	if (ret)
6529 		goto out_err;
6530 
6531 	ret = rbd_parse_options(options, &pctx);
6532 	if (ret)
6533 		goto out_err;
6534 
6535 	*ceph_opts = pctx.copts;
6536 	*opts = pctx.opts;
6537 	*rbd_spec = pctx.spec;
6538 	kfree(options);
6539 	return 0;
6540 
6541 out_mem:
6542 	ret = -ENOMEM;
6543 out_err:
6544 	kfree(pctx.opts);
6545 	ceph_destroy_options(pctx.copts);
6546 	rbd_spec_put(pctx.spec);
6547 	kfree(options);
6548 	return ret;
6549 }
6550 
rbd_dev_image_unlock(struct rbd_device * rbd_dev)6551 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6552 {
6553 	down_write(&rbd_dev->lock_rwsem);
6554 	if (__rbd_is_lock_owner(rbd_dev))
6555 		__rbd_release_lock(rbd_dev);
6556 	up_write(&rbd_dev->lock_rwsem);
6557 }
6558 
6559 /*
6560  * If the wait is interrupted, an error is returned even if the lock
6561  * was successfully acquired.  rbd_dev_image_unlock() will release it
6562  * if needed.
6563  */
rbd_add_acquire_lock(struct rbd_device * rbd_dev)6564 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6565 {
6566 	long ret;
6567 
6568 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6569 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6570 			return 0;
6571 
6572 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6573 		return -EINVAL;
6574 	}
6575 
6576 	if (rbd_is_ro(rbd_dev))
6577 		return 0;
6578 
6579 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6580 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6581 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6582 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6583 	if (ret > 0) {
6584 		ret = rbd_dev->acquire_err;
6585 	} else {
6586 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6587 		if (!ret)
6588 			ret = -ETIMEDOUT;
6589 
6590 		rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6591 	}
6592 	if (ret)
6593 		return ret;
6594 
6595 	/*
6596 	 * The lock may have been released by now, unless automatic lock
6597 	 * transitions are disabled.
6598 	 */
6599 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6600 	return 0;
6601 }
6602 
6603 /*
6604  * An rbd format 2 image has a unique identifier, distinct from the
6605  * name given to it by the user.  Internally, that identifier is
6606  * what's used to specify the names of objects related to the image.
6607  *
6608  * A special "rbd id" object is used to map an rbd image name to its
6609  * id.  If that object doesn't exist, then there is no v2 rbd image
6610  * with the supplied name.
6611  *
6612  * This function will record the given rbd_dev's image_id field if
6613  * it can be determined, and in that case will return 0.  If any
6614  * errors occur a negative errno will be returned and the rbd_dev's
6615  * image_id field will be unchanged (and should be NULL).
6616  */
rbd_dev_image_id(struct rbd_device * rbd_dev)6617 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6618 {
6619 	int ret;
6620 	size_t size;
6621 	CEPH_DEFINE_OID_ONSTACK(oid);
6622 	void *response;
6623 	char *image_id;
6624 
6625 	/*
6626 	 * When probing a parent image, the image id is already
6627 	 * known (and the image name likely is not).  There's no
6628 	 * need to fetch the image id again in this case.  We
6629 	 * do still need to set the image format though.
6630 	 */
6631 	if (rbd_dev->spec->image_id) {
6632 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6633 
6634 		return 0;
6635 	}
6636 
6637 	/*
6638 	 * First, see if the format 2 image id file exists, and if
6639 	 * so, get the image's persistent id from it.
6640 	 */
6641 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6642 			       rbd_dev->spec->image_name);
6643 	if (ret)
6644 		return ret;
6645 
6646 	dout("rbd id object name is %s\n", oid.name);
6647 
6648 	/* Response will be an encoded string, which includes a length */
6649 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6650 	response = kzalloc(size, GFP_NOIO);
6651 	if (!response) {
6652 		ret = -ENOMEM;
6653 		goto out;
6654 	}
6655 
6656 	/* If it doesn't exist we'll assume it's a format 1 image */
6657 
6658 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6659 				  "get_id", NULL, 0,
6660 				  response, size);
6661 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6662 	if (ret == -ENOENT) {
6663 		image_id = kstrdup("", GFP_KERNEL);
6664 		ret = image_id ? 0 : -ENOMEM;
6665 		if (!ret)
6666 			rbd_dev->image_format = 1;
6667 	} else if (ret >= 0) {
6668 		void *p = response;
6669 
6670 		image_id = ceph_extract_encoded_string(&p, p + ret,
6671 						NULL, GFP_NOIO);
6672 		ret = PTR_ERR_OR_ZERO(image_id);
6673 		if (!ret)
6674 			rbd_dev->image_format = 2;
6675 	}
6676 
6677 	if (!ret) {
6678 		rbd_dev->spec->image_id = image_id;
6679 		dout("image_id is %s\n", image_id);
6680 	}
6681 out:
6682 	kfree(response);
6683 	ceph_oid_destroy(&oid);
6684 	return ret;
6685 }
6686 
6687 /*
6688  * Undo whatever state changes are made by v1 or v2 header info
6689  * call.
6690  */
rbd_dev_unprobe(struct rbd_device * rbd_dev)6691 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6692 {
6693 	rbd_dev_parent_put(rbd_dev);
6694 	rbd_object_map_free(rbd_dev);
6695 	rbd_dev_mapping_clear(rbd_dev);
6696 
6697 	/* Free dynamic fields from the header, then zero it out */
6698 
6699 	rbd_image_header_cleanup(&rbd_dev->header);
6700 }
6701 
rbd_dev_v2_header_onetime(struct rbd_device * rbd_dev,struct rbd_image_header * header)6702 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6703 				     struct rbd_image_header *header)
6704 {
6705 	int ret;
6706 
6707 	ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6708 	if (ret)
6709 		return ret;
6710 
6711 	/*
6712 	 * Get the and check features for the image.  Currently the
6713 	 * features are assumed to never change.
6714 	 */
6715 	ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6716 					rbd_is_ro(rbd_dev), &header->features);
6717 	if (ret)
6718 		return ret;
6719 
6720 	/* If the image supports fancy striping, get its parameters */
6721 
6722 	if (header->features & RBD_FEATURE_STRIPINGV2) {
6723 		ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6724 					       &header->stripe_count);
6725 		if (ret)
6726 			return ret;
6727 	}
6728 
6729 	if (header->features & RBD_FEATURE_DATA_POOL) {
6730 		ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6731 		if (ret)
6732 			return ret;
6733 	}
6734 
6735 	return 0;
6736 }
6737 
6738 /*
6739  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6740  * rbd_dev_image_probe() recursion depth, which means it's also the
6741  * length of the already discovered part of the parent chain.
6742  */
rbd_dev_probe_parent(struct rbd_device * rbd_dev,int depth)6743 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6744 {
6745 	struct rbd_device *parent = NULL;
6746 	int ret;
6747 
6748 	if (!rbd_dev->parent_spec)
6749 		return 0;
6750 
6751 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6752 		pr_info("parent chain is too long (%d)\n", depth);
6753 		ret = -EINVAL;
6754 		goto out_err;
6755 	}
6756 
6757 	parent = __rbd_dev_create(rbd_dev->parent_spec);
6758 	if (!parent) {
6759 		ret = -ENOMEM;
6760 		goto out_err;
6761 	}
6762 
6763 	/*
6764 	 * Images related by parent/child relationships always share
6765 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6766 	 */
6767 	parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6768 	parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6769 
6770 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6771 
6772 	ret = rbd_dev_image_probe(parent, depth);
6773 	if (ret < 0)
6774 		goto out_err;
6775 
6776 	rbd_dev->parent = parent;
6777 	atomic_set(&rbd_dev->parent_ref, 1);
6778 	return 0;
6779 
6780 out_err:
6781 	rbd_dev_unparent(rbd_dev);
6782 	rbd_dev_destroy(parent);
6783 	return ret;
6784 }
6785 
rbd_dev_device_release(struct rbd_device * rbd_dev)6786 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6787 {
6788 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6789 	rbd_free_disk(rbd_dev);
6790 	if (!single_major)
6791 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6792 }
6793 
6794 /*
6795  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6796  * upon return.
6797  */
rbd_dev_device_setup(struct rbd_device * rbd_dev)6798 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6799 {
6800 	int ret;
6801 
6802 	/* Record our major and minor device numbers. */
6803 
6804 	if (!single_major) {
6805 		ret = register_blkdev(0, rbd_dev->name);
6806 		if (ret < 0)
6807 			goto err_out_unlock;
6808 
6809 		rbd_dev->major = ret;
6810 		rbd_dev->minor = 0;
6811 	} else {
6812 		rbd_dev->major = rbd_major;
6813 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6814 	}
6815 
6816 	/* Set up the blkdev mapping. */
6817 
6818 	ret = rbd_init_disk(rbd_dev);
6819 	if (ret)
6820 		goto err_out_blkdev;
6821 
6822 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6823 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6824 
6825 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6826 	if (ret)
6827 		goto err_out_disk;
6828 
6829 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6830 	up_write(&rbd_dev->header_rwsem);
6831 	return 0;
6832 
6833 err_out_disk:
6834 	rbd_free_disk(rbd_dev);
6835 err_out_blkdev:
6836 	if (!single_major)
6837 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6838 err_out_unlock:
6839 	up_write(&rbd_dev->header_rwsem);
6840 	return ret;
6841 }
6842 
rbd_dev_header_name(struct rbd_device * rbd_dev)6843 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6844 {
6845 	struct rbd_spec *spec = rbd_dev->spec;
6846 	int ret;
6847 
6848 	/* Record the header object name for this rbd image. */
6849 
6850 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6851 	if (rbd_dev->image_format == 1)
6852 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6853 				       spec->image_name, RBD_SUFFIX);
6854 	else
6855 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6856 				       RBD_HEADER_PREFIX, spec->image_id);
6857 
6858 	return ret;
6859 }
6860 
rbd_print_dne(struct rbd_device * rbd_dev,bool is_snap)6861 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6862 {
6863 	if (!is_snap) {
6864 		pr_info("image %s/%s%s%s does not exist\n",
6865 			rbd_dev->spec->pool_name,
6866 			rbd_dev->spec->pool_ns ?: "",
6867 			rbd_dev->spec->pool_ns ? "/" : "",
6868 			rbd_dev->spec->image_name);
6869 	} else {
6870 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6871 			rbd_dev->spec->pool_name,
6872 			rbd_dev->spec->pool_ns ?: "",
6873 			rbd_dev->spec->pool_ns ? "/" : "",
6874 			rbd_dev->spec->image_name,
6875 			rbd_dev->spec->snap_name);
6876 	}
6877 }
6878 
rbd_dev_image_release(struct rbd_device * rbd_dev)6879 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6880 {
6881 	if (!rbd_is_ro(rbd_dev))
6882 		rbd_unregister_watch(rbd_dev);
6883 
6884 	rbd_dev_unprobe(rbd_dev);
6885 	rbd_dev->image_format = 0;
6886 	kfree(rbd_dev->spec->image_id);
6887 	rbd_dev->spec->image_id = NULL;
6888 }
6889 
6890 /*
6891  * Probe for the existence of the header object for the given rbd
6892  * device.  If this image is the one being mapped (i.e., not a
6893  * parent), initiate a watch on its header object before using that
6894  * object to get detailed information about the rbd image.
6895  *
6896  * On success, returns with header_rwsem held for write if called
6897  * with @depth == 0.
6898  */
rbd_dev_image_probe(struct rbd_device * rbd_dev,int depth)6899 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6900 {
6901 	bool need_watch = !rbd_is_ro(rbd_dev);
6902 	int ret;
6903 
6904 	/*
6905 	 * Get the id from the image id object.  Unless there's an
6906 	 * error, rbd_dev->spec->image_id will be filled in with
6907 	 * a dynamically-allocated string, and rbd_dev->image_format
6908 	 * will be set to either 1 or 2.
6909 	 */
6910 	ret = rbd_dev_image_id(rbd_dev);
6911 	if (ret)
6912 		return ret;
6913 
6914 	ret = rbd_dev_header_name(rbd_dev);
6915 	if (ret)
6916 		goto err_out_format;
6917 
6918 	if (need_watch) {
6919 		ret = rbd_register_watch(rbd_dev);
6920 		if (ret) {
6921 			if (ret == -ENOENT)
6922 				rbd_print_dne(rbd_dev, false);
6923 			goto err_out_format;
6924 		}
6925 	}
6926 
6927 	if (!depth)
6928 		down_write(&rbd_dev->header_rwsem);
6929 
6930 	ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6931 	if (ret) {
6932 		if (ret == -ENOENT && !need_watch)
6933 			rbd_print_dne(rbd_dev, false);
6934 		goto err_out_probe;
6935 	}
6936 
6937 	rbd_init_layout(rbd_dev);
6938 
6939 	/*
6940 	 * If this image is the one being mapped, we have pool name and
6941 	 * id, image name and id, and snap name - need to fill snap id.
6942 	 * Otherwise this is a parent image, identified by pool, image
6943 	 * and snap ids - need to fill in names for those ids.
6944 	 */
6945 	if (!depth)
6946 		ret = rbd_spec_fill_snap_id(rbd_dev);
6947 	else
6948 		ret = rbd_spec_fill_names(rbd_dev);
6949 	if (ret) {
6950 		if (ret == -ENOENT)
6951 			rbd_print_dne(rbd_dev, true);
6952 		goto err_out_probe;
6953 	}
6954 
6955 	ret = rbd_dev_mapping_set(rbd_dev);
6956 	if (ret)
6957 		goto err_out_probe;
6958 
6959 	if (rbd_is_snap(rbd_dev) &&
6960 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6961 		ret = rbd_object_map_load(rbd_dev);
6962 		if (ret)
6963 			goto err_out_probe;
6964 	}
6965 
6966 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6967 		ret = rbd_dev_setup_parent(rbd_dev);
6968 		if (ret)
6969 			goto err_out_probe;
6970 	}
6971 
6972 	ret = rbd_dev_probe_parent(rbd_dev, depth);
6973 	if (ret)
6974 		goto err_out_probe;
6975 
6976 	dout("discovered format %u image, header name is %s\n",
6977 		rbd_dev->image_format, rbd_dev->header_oid.name);
6978 	return 0;
6979 
6980 err_out_probe:
6981 	if (!depth)
6982 		up_write(&rbd_dev->header_rwsem);
6983 	if (need_watch)
6984 		rbd_unregister_watch(rbd_dev);
6985 	rbd_dev_unprobe(rbd_dev);
6986 err_out_format:
6987 	rbd_dev->image_format = 0;
6988 	kfree(rbd_dev->spec->image_id);
6989 	rbd_dev->spec->image_id = NULL;
6990 	return ret;
6991 }
6992 
rbd_dev_update_header(struct rbd_device * rbd_dev,struct rbd_image_header * header)6993 static void rbd_dev_update_header(struct rbd_device *rbd_dev,
6994 				  struct rbd_image_header *header)
6995 {
6996 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6997 	rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
6998 
6999 	if (rbd_dev->header.image_size != header->image_size) {
7000 		rbd_dev->header.image_size = header->image_size;
7001 
7002 		if (!rbd_is_snap(rbd_dev)) {
7003 			rbd_dev->mapping.size = header->image_size;
7004 			rbd_dev_update_size(rbd_dev);
7005 		}
7006 	}
7007 
7008 	ceph_put_snap_context(rbd_dev->header.snapc);
7009 	rbd_dev->header.snapc = header->snapc;
7010 	header->snapc = NULL;
7011 
7012 	if (rbd_dev->image_format == 1) {
7013 		kfree(rbd_dev->header.snap_names);
7014 		rbd_dev->header.snap_names = header->snap_names;
7015 		header->snap_names = NULL;
7016 
7017 		kfree(rbd_dev->header.snap_sizes);
7018 		rbd_dev->header.snap_sizes = header->snap_sizes;
7019 		header->snap_sizes = NULL;
7020 	}
7021 }
7022 
rbd_dev_update_parent(struct rbd_device * rbd_dev,struct parent_image_info * pii)7023 static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7024 				  struct parent_image_info *pii)
7025 {
7026 	if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7027 		/*
7028 		 * Either the parent never existed, or we have
7029 		 * record of it but the image got flattened so it no
7030 		 * longer has a parent.  When the parent of a
7031 		 * layered image disappears we immediately set the
7032 		 * overlap to 0.  The effect of this is that all new
7033 		 * requests will be treated as if the image had no
7034 		 * parent.
7035 		 *
7036 		 * If !pii.has_overlap, the parent image spec is not
7037 		 * applicable.  It's there to avoid duplication in each
7038 		 * snapshot record.
7039 		 */
7040 		if (rbd_dev->parent_overlap) {
7041 			rbd_dev->parent_overlap = 0;
7042 			rbd_dev_parent_put(rbd_dev);
7043 			pr_info("%s: clone has been flattened\n",
7044 				rbd_dev->disk->disk_name);
7045 		}
7046 	} else {
7047 		rbd_assert(rbd_dev->parent_spec);
7048 
7049 		/*
7050 		 * Update the parent overlap.  If it became zero, issue
7051 		 * a warning as we will proceed as if there is no parent.
7052 		 */
7053 		if (!pii->overlap && rbd_dev->parent_overlap)
7054 			rbd_warn(rbd_dev,
7055 				 "clone has become standalone (overlap 0)");
7056 		rbd_dev->parent_overlap = pii->overlap;
7057 	}
7058 }
7059 
rbd_dev_refresh(struct rbd_device * rbd_dev)7060 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7061 {
7062 	struct rbd_image_header	header = { 0 };
7063 	struct parent_image_info pii = { 0 };
7064 	int ret;
7065 
7066 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
7067 
7068 	ret = rbd_dev_header_info(rbd_dev, &header, false);
7069 	if (ret)
7070 		goto out;
7071 
7072 	/*
7073 	 * If there is a parent, see if it has disappeared due to the
7074 	 * mapped image getting flattened.
7075 	 */
7076 	if (rbd_dev->parent) {
7077 		ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7078 		if (ret)
7079 			goto out;
7080 	}
7081 
7082 	down_write(&rbd_dev->header_rwsem);
7083 	rbd_dev_update_header(rbd_dev, &header);
7084 	if (rbd_dev->parent)
7085 		rbd_dev_update_parent(rbd_dev, &pii);
7086 	up_write(&rbd_dev->header_rwsem);
7087 
7088 out:
7089 	rbd_parent_info_cleanup(&pii);
7090 	rbd_image_header_cleanup(&header);
7091 	return ret;
7092 }
7093 
do_rbd_add(struct bus_type * bus,const char * buf,size_t count)7094 static ssize_t do_rbd_add(struct bus_type *bus,
7095 			  const char *buf,
7096 			  size_t count)
7097 {
7098 	struct rbd_device *rbd_dev = NULL;
7099 	struct ceph_options *ceph_opts = NULL;
7100 	struct rbd_options *rbd_opts = NULL;
7101 	struct rbd_spec *spec = NULL;
7102 	struct rbd_client *rbdc;
7103 	int rc;
7104 
7105 	if (!capable(CAP_SYS_ADMIN))
7106 		return -EPERM;
7107 
7108 	if (!try_module_get(THIS_MODULE))
7109 		return -ENODEV;
7110 
7111 	/* parse add command */
7112 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7113 	if (rc < 0)
7114 		goto out;
7115 
7116 	rbdc = rbd_get_client(ceph_opts);
7117 	if (IS_ERR(rbdc)) {
7118 		rc = PTR_ERR(rbdc);
7119 		goto err_out_args;
7120 	}
7121 
7122 	/* pick the pool */
7123 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7124 	if (rc < 0) {
7125 		if (rc == -ENOENT)
7126 			pr_info("pool %s does not exist\n", spec->pool_name);
7127 		goto err_out_client;
7128 	}
7129 	spec->pool_id = (u64)rc;
7130 
7131 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7132 	if (!rbd_dev) {
7133 		rc = -ENOMEM;
7134 		goto err_out_client;
7135 	}
7136 	rbdc = NULL;		/* rbd_dev now owns this */
7137 	spec = NULL;		/* rbd_dev now owns this */
7138 	rbd_opts = NULL;	/* rbd_dev now owns this */
7139 
7140 	/* if we are mapping a snapshot it will be a read-only mapping */
7141 	if (rbd_dev->opts->read_only ||
7142 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7143 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7144 
7145 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7146 	if (!rbd_dev->config_info) {
7147 		rc = -ENOMEM;
7148 		goto err_out_rbd_dev;
7149 	}
7150 
7151 	rc = rbd_dev_image_probe(rbd_dev, 0);
7152 	if (rc < 0)
7153 		goto err_out_rbd_dev;
7154 
7155 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7156 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7157 			 rbd_dev->layout.object_size);
7158 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7159 	}
7160 
7161 	rc = rbd_dev_device_setup(rbd_dev);
7162 	if (rc)
7163 		goto err_out_image_probe;
7164 
7165 	rc = rbd_add_acquire_lock(rbd_dev);
7166 	if (rc)
7167 		goto err_out_image_lock;
7168 
7169 	/* Everything's ready.  Announce the disk to the world. */
7170 
7171 	rc = device_add(&rbd_dev->dev);
7172 	if (rc)
7173 		goto err_out_image_lock;
7174 
7175 	device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7176 
7177 	spin_lock(&rbd_dev_list_lock);
7178 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7179 	spin_unlock(&rbd_dev_list_lock);
7180 
7181 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7182 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7183 		rbd_dev->header.features);
7184 	rc = count;
7185 out:
7186 	module_put(THIS_MODULE);
7187 	return rc;
7188 
7189 err_out_image_lock:
7190 	rbd_dev_image_unlock(rbd_dev);
7191 	rbd_dev_device_release(rbd_dev);
7192 err_out_image_probe:
7193 	rbd_dev_image_release(rbd_dev);
7194 err_out_rbd_dev:
7195 	rbd_dev_destroy(rbd_dev);
7196 err_out_client:
7197 	rbd_put_client(rbdc);
7198 err_out_args:
7199 	rbd_spec_put(spec);
7200 	kfree(rbd_opts);
7201 	goto out;
7202 }
7203 
add_store(struct bus_type * bus,const char * buf,size_t count)7204 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7205 {
7206 	if (single_major)
7207 		return -EINVAL;
7208 
7209 	return do_rbd_add(bus, buf, count);
7210 }
7211 
add_single_major_store(struct bus_type * bus,const char * buf,size_t count)7212 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7213 				      size_t count)
7214 {
7215 	return do_rbd_add(bus, buf, count);
7216 }
7217 
rbd_dev_remove_parent(struct rbd_device * rbd_dev)7218 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7219 {
7220 	while (rbd_dev->parent) {
7221 		struct rbd_device *first = rbd_dev;
7222 		struct rbd_device *second = first->parent;
7223 		struct rbd_device *third;
7224 
7225 		/*
7226 		 * Follow to the parent with no grandparent and
7227 		 * remove it.
7228 		 */
7229 		while (second && (third = second->parent)) {
7230 			first = second;
7231 			second = third;
7232 		}
7233 		rbd_assert(second);
7234 		rbd_dev_image_release(second);
7235 		rbd_dev_destroy(second);
7236 		first->parent = NULL;
7237 		first->parent_overlap = 0;
7238 
7239 		rbd_assert(first->parent_spec);
7240 		rbd_spec_put(first->parent_spec);
7241 		first->parent_spec = NULL;
7242 	}
7243 }
7244 
do_rbd_remove(struct bus_type * bus,const char * buf,size_t count)7245 static ssize_t do_rbd_remove(struct bus_type *bus,
7246 			     const char *buf,
7247 			     size_t count)
7248 {
7249 	struct rbd_device *rbd_dev = NULL;
7250 	struct list_head *tmp;
7251 	int dev_id;
7252 	char opt_buf[6];
7253 	bool force = false;
7254 	int ret;
7255 
7256 	if (!capable(CAP_SYS_ADMIN))
7257 		return -EPERM;
7258 
7259 	dev_id = -1;
7260 	opt_buf[0] = '\0';
7261 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7262 	if (dev_id < 0) {
7263 		pr_err("dev_id out of range\n");
7264 		return -EINVAL;
7265 	}
7266 	if (opt_buf[0] != '\0') {
7267 		if (!strcmp(opt_buf, "force")) {
7268 			force = true;
7269 		} else {
7270 			pr_err("bad remove option at '%s'\n", opt_buf);
7271 			return -EINVAL;
7272 		}
7273 	}
7274 
7275 	ret = -ENOENT;
7276 	spin_lock(&rbd_dev_list_lock);
7277 	list_for_each(tmp, &rbd_dev_list) {
7278 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7279 		if (rbd_dev->dev_id == dev_id) {
7280 			ret = 0;
7281 			break;
7282 		}
7283 	}
7284 	if (!ret) {
7285 		spin_lock_irq(&rbd_dev->lock);
7286 		if (rbd_dev->open_count && !force)
7287 			ret = -EBUSY;
7288 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7289 					  &rbd_dev->flags))
7290 			ret = -EINPROGRESS;
7291 		spin_unlock_irq(&rbd_dev->lock);
7292 	}
7293 	spin_unlock(&rbd_dev_list_lock);
7294 	if (ret)
7295 		return ret;
7296 
7297 	if (force) {
7298 		/*
7299 		 * Prevent new IO from being queued and wait for existing
7300 		 * IO to complete/fail.
7301 		 */
7302 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7303 		blk_mark_disk_dead(rbd_dev->disk);
7304 	}
7305 
7306 	del_gendisk(rbd_dev->disk);
7307 	spin_lock(&rbd_dev_list_lock);
7308 	list_del_init(&rbd_dev->node);
7309 	spin_unlock(&rbd_dev_list_lock);
7310 	device_del(&rbd_dev->dev);
7311 
7312 	rbd_dev_image_unlock(rbd_dev);
7313 	rbd_dev_device_release(rbd_dev);
7314 	rbd_dev_image_release(rbd_dev);
7315 	rbd_dev_destroy(rbd_dev);
7316 	return count;
7317 }
7318 
remove_store(struct bus_type * bus,const char * buf,size_t count)7319 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7320 {
7321 	if (single_major)
7322 		return -EINVAL;
7323 
7324 	return do_rbd_remove(bus, buf, count);
7325 }
7326 
remove_single_major_store(struct bus_type * bus,const char * buf,size_t count)7327 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7328 					 size_t count)
7329 {
7330 	return do_rbd_remove(bus, buf, count);
7331 }
7332 
7333 /*
7334  * create control files in sysfs
7335  * /sys/bus/rbd/...
7336  */
rbd_sysfs_init(void)7337 static int __init rbd_sysfs_init(void)
7338 {
7339 	int ret;
7340 
7341 	ret = device_register(&rbd_root_dev);
7342 	if (ret < 0)
7343 		return ret;
7344 
7345 	ret = bus_register(&rbd_bus_type);
7346 	if (ret < 0)
7347 		device_unregister(&rbd_root_dev);
7348 
7349 	return ret;
7350 }
7351 
rbd_sysfs_cleanup(void)7352 static void __exit rbd_sysfs_cleanup(void)
7353 {
7354 	bus_unregister(&rbd_bus_type);
7355 	device_unregister(&rbd_root_dev);
7356 }
7357 
rbd_slab_init(void)7358 static int __init rbd_slab_init(void)
7359 {
7360 	rbd_assert(!rbd_img_request_cache);
7361 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7362 	if (!rbd_img_request_cache)
7363 		return -ENOMEM;
7364 
7365 	rbd_assert(!rbd_obj_request_cache);
7366 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7367 	if (!rbd_obj_request_cache)
7368 		goto out_err;
7369 
7370 	return 0;
7371 
7372 out_err:
7373 	kmem_cache_destroy(rbd_img_request_cache);
7374 	rbd_img_request_cache = NULL;
7375 	return -ENOMEM;
7376 }
7377 
rbd_slab_exit(void)7378 static void rbd_slab_exit(void)
7379 {
7380 	rbd_assert(rbd_obj_request_cache);
7381 	kmem_cache_destroy(rbd_obj_request_cache);
7382 	rbd_obj_request_cache = NULL;
7383 
7384 	rbd_assert(rbd_img_request_cache);
7385 	kmem_cache_destroy(rbd_img_request_cache);
7386 	rbd_img_request_cache = NULL;
7387 }
7388 
rbd_init(void)7389 static int __init rbd_init(void)
7390 {
7391 	int rc;
7392 
7393 	if (!libceph_compatible(NULL)) {
7394 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7395 		return -EINVAL;
7396 	}
7397 
7398 	rc = rbd_slab_init();
7399 	if (rc)
7400 		return rc;
7401 
7402 	/*
7403 	 * The number of active work items is limited by the number of
7404 	 * rbd devices * queue depth, so leave @max_active at default.
7405 	 */
7406 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7407 	if (!rbd_wq) {
7408 		rc = -ENOMEM;
7409 		goto err_out_slab;
7410 	}
7411 
7412 	if (single_major) {
7413 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7414 		if (rbd_major < 0) {
7415 			rc = rbd_major;
7416 			goto err_out_wq;
7417 		}
7418 	}
7419 
7420 	rc = rbd_sysfs_init();
7421 	if (rc)
7422 		goto err_out_blkdev;
7423 
7424 	if (single_major)
7425 		pr_info("loaded (major %d)\n", rbd_major);
7426 	else
7427 		pr_info("loaded\n");
7428 
7429 	return 0;
7430 
7431 err_out_blkdev:
7432 	if (single_major)
7433 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7434 err_out_wq:
7435 	destroy_workqueue(rbd_wq);
7436 err_out_slab:
7437 	rbd_slab_exit();
7438 	return rc;
7439 }
7440 
rbd_exit(void)7441 static void __exit rbd_exit(void)
7442 {
7443 	ida_destroy(&rbd_dev_id_ida);
7444 	rbd_sysfs_cleanup();
7445 	if (single_major)
7446 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7447 	destroy_workqueue(rbd_wq);
7448 	rbd_slab_exit();
7449 }
7450 
7451 module_init(rbd_init);
7452 module_exit(rbd_exit);
7453 
7454 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7455 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7456 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7457 /* following authorship retained from original osdblk.c */
7458 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7459 
7460 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7461 MODULE_LICENSE("GPL");
7462