1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG /* Activate rbd_assert() calls */
53
54 /*
55 * Increment the given counter and return its updated value.
56 * If the counter is already 0 it will not be incremented.
57 * If the counter is already at its maximum value returns
58 * -EINVAL without updating it.
59 */
atomic_inc_return_safe(atomic_t * v)60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 unsigned int counter;
63
64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 if (counter <= (unsigned int)INT_MAX)
66 return (int)counter;
67
68 atomic_dec(v);
69
70 return -EINVAL;
71 }
72
73 /* Decrement the counter. Return the resulting value, or -EINVAL */
atomic_dec_return_safe(atomic_t * v)74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 int counter;
77
78 counter = atomic_dec_return(v);
79 if (counter >= 0)
80 return counter;
81
82 atomic_inc(v);
83
84 return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR 256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN 16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN \
96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME "-"
101
102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX 64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX 64
109
110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */
111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS (1ULL<<8)
123
124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
125 RBD_FEATURE_STRIPINGV2 | \
126 RBD_FEATURE_EXCLUSIVE_LOCK | \
127 RBD_FEATURE_OBJECT_MAP | \
128 RBD_FEATURE_FAST_DIFF | \
129 RBD_FEATURE_DEEP_FLATTEN | \
130 RBD_FEATURE_DATA_POOL | \
131 RBD_FEATURE_OPERATIONS)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
136
137 /*
138 * An RBD device name will be "rbd#", where the "rbd" comes from
139 * RBD_DRV_NAME above, and # is a unique integer identifier.
140 */
141 #define DEV_NAME_LEN 32
142
143 /*
144 * block device image metadata (in-memory version)
145 */
146 struct rbd_image_header {
147 /* These six fields never change for a given rbd image */
148 char *object_prefix;
149 __u8 obj_order;
150 u64 stripe_unit;
151 u64 stripe_count;
152 s64 data_pool_id;
153 u64 features; /* Might be changeable someday? */
154
155 /* The remaining fields need to be updated occasionally */
156 u64 image_size;
157 struct ceph_snap_context *snapc;
158 char *snap_names; /* format 1 only */
159 u64 *snap_sizes; /* format 1 only */
160 };
161
162 /*
163 * An rbd image specification.
164 *
165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166 * identify an image. Each rbd_dev structure includes a pointer to
167 * an rbd_spec structure that encapsulates this identity.
168 *
169 * Each of the id's in an rbd_spec has an associated name. For a
170 * user-mapped image, the names are supplied and the id's associated
171 * with them are looked up. For a layered image, a parent image is
172 * defined by the tuple, and the names are looked up.
173 *
174 * An rbd_dev structure contains a parent_spec pointer which is
175 * non-null if the image it represents is a child in a layered
176 * image. This pointer will refer to the rbd_spec structure used
177 * by the parent rbd_dev for its own identity (i.e., the structure
178 * is shared between the parent and child).
179 *
180 * Since these structures are populated once, during the discovery
181 * phase of image construction, they are effectively immutable so
182 * we make no effort to synchronize access to them.
183 *
184 * Note that code herein does not assume the image name is known (it
185 * could be a null pointer).
186 */
187 struct rbd_spec {
188 u64 pool_id;
189 const char *pool_name;
190 const char *pool_ns; /* NULL if default, never "" */
191
192 const char *image_id;
193 const char *image_name;
194
195 u64 snap_id;
196 const char *snap_name;
197
198 struct kref kref;
199 };
200
201 /*
202 * an instance of the client. multiple devices may share an rbd client.
203 */
204 struct rbd_client {
205 struct ceph_client *client;
206 struct kref kref;
207 struct list_head node;
208 };
209
210 struct pending_result {
211 int result; /* first nonzero result */
212 int num_pending;
213 };
214
215 struct rbd_img_request;
216
217 enum obj_request_type {
218 OBJ_REQUEST_NODATA = 1,
219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */
220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */
221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */
222 };
223
224 enum obj_operation_type {
225 OBJ_OP_READ = 1,
226 OBJ_OP_WRITE,
227 OBJ_OP_DISCARD,
228 OBJ_OP_ZEROOUT,
229 };
230
231 #define RBD_OBJ_FLAG_DELETION (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4)
236
237 enum rbd_obj_read_state {
238 RBD_OBJ_READ_START = 1,
239 RBD_OBJ_READ_OBJECT,
240 RBD_OBJ_READ_PARENT,
241 };
242
243 /*
244 * Writes go through the following state machine to deal with
245 * layering:
246 *
247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248 * . | .
249 * . v .
250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . .
251 * . | . .
252 * . v v (deep-copyup .
253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) .
254 * flattened) v | . .
255 * . v . .
256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup .
257 * | not needed) v
258 * v .
259 * done . . . . . . . . . . . . . . . . . .
260 * ^
261 * |
262 * RBD_OBJ_WRITE_FLAT
263 *
264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265 * assert_exists guard is needed or not (in some cases it's not needed
266 * even if there is a parent).
267 */
268 enum rbd_obj_write_state {
269 RBD_OBJ_WRITE_START = 1,
270 RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 RBD_OBJ_WRITE_OBJECT,
272 __RBD_OBJ_WRITE_COPYUP,
273 RBD_OBJ_WRITE_COPYUP,
274 RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276
277 enum rbd_obj_copyup_state {
278 RBD_OBJ_COPYUP_START = 1,
279 RBD_OBJ_COPYUP_READ_PARENT,
280 __RBD_OBJ_COPYUP_OBJECT_MAPS,
281 RBD_OBJ_COPYUP_OBJECT_MAPS,
282 __RBD_OBJ_COPYUP_WRITE_OBJECT,
283 RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285
286 struct rbd_obj_request {
287 struct ceph_object_extent ex;
288 unsigned int flags; /* RBD_OBJ_FLAG_* */
289 union {
290 enum rbd_obj_read_state read_state; /* for reads */
291 enum rbd_obj_write_state write_state; /* for writes */
292 };
293
294 struct rbd_img_request *img_request;
295 struct ceph_file_extent *img_extents;
296 u32 num_img_extents;
297
298 union {
299 struct ceph_bio_iter bio_pos;
300 struct {
301 struct ceph_bvec_iter bvec_pos;
302 u32 bvec_count;
303 u32 bvec_idx;
304 };
305 };
306
307 enum rbd_obj_copyup_state copyup_state;
308 struct bio_vec *copyup_bvecs;
309 u32 copyup_bvec_count;
310
311 struct list_head osd_reqs; /* w/ r_private_item */
312
313 struct mutex state_mutex;
314 struct pending_result pending;
315 struct kref kref;
316 };
317
318 enum img_req_flags {
319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
321 };
322
323 enum rbd_img_state {
324 RBD_IMG_START = 1,
325 RBD_IMG_EXCLUSIVE_LOCK,
326 __RBD_IMG_OBJECT_REQUESTS,
327 RBD_IMG_OBJECT_REQUESTS,
328 };
329
330 struct rbd_img_request {
331 struct rbd_device *rbd_dev;
332 enum obj_operation_type op_type;
333 enum obj_request_type data_type;
334 unsigned long flags;
335 enum rbd_img_state state;
336 union {
337 u64 snap_id; /* for reads */
338 struct ceph_snap_context *snapc; /* for writes */
339 };
340 struct rbd_obj_request *obj_request; /* obj req initiator */
341
342 struct list_head lock_item;
343 struct list_head object_extents; /* obj_req.ex structs */
344
345 struct mutex state_mutex;
346 struct pending_result pending;
347 struct work_struct work;
348 int work_result;
349 };
350
351 #define for_each_obj_request(ireq, oreq) \
352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356 enum rbd_watch_state {
357 RBD_WATCH_STATE_UNREGISTERED,
358 RBD_WATCH_STATE_REGISTERED,
359 RBD_WATCH_STATE_ERROR,
360 };
361
362 enum rbd_lock_state {
363 RBD_LOCK_STATE_UNLOCKED,
364 RBD_LOCK_STATE_LOCKED,
365 RBD_LOCK_STATE_RELEASING,
366 };
367
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 u64 gid;
371 u64 handle;
372 };
373
374 struct rbd_mapping {
375 u64 size;
376 };
377
378 /*
379 * a single device
380 */
381 struct rbd_device {
382 int dev_id; /* blkdev unique id */
383
384 int major; /* blkdev assigned major */
385 int minor;
386 struct gendisk *disk; /* blkdev's gendisk and rq */
387
388 u32 image_format; /* Either 1 or 2 */
389 struct rbd_client *rbd_client;
390
391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393 spinlock_t lock; /* queue, flags, open_count */
394
395 struct rbd_image_header header;
396 unsigned long flags; /* possibly lock protected */
397 struct rbd_spec *spec;
398 struct rbd_options *opts;
399 char *config_info; /* add{,_single_major} string */
400
401 struct ceph_object_id header_oid;
402 struct ceph_object_locator header_oloc;
403
404 struct ceph_file_layout layout; /* used for all rbd requests */
405
406 struct mutex watch_mutex;
407 enum rbd_watch_state watch_state;
408 struct ceph_osd_linger_request *watch_handle;
409 u64 watch_cookie;
410 struct delayed_work watch_dwork;
411
412 struct rw_semaphore lock_rwsem;
413 enum rbd_lock_state lock_state;
414 char lock_cookie[32];
415 struct rbd_client_id owner_cid;
416 struct work_struct acquired_lock_work;
417 struct work_struct released_lock_work;
418 struct delayed_work lock_dwork;
419 struct work_struct unlock_work;
420 spinlock_t lock_lists_lock;
421 struct list_head acquiring_list;
422 struct list_head running_list;
423 struct completion acquire_wait;
424 int acquire_err;
425 struct completion releasing_wait;
426
427 spinlock_t object_map_lock;
428 u8 *object_map;
429 u64 object_map_size; /* in objects */
430 u64 object_map_flags;
431
432 struct workqueue_struct *task_wq;
433
434 struct rbd_spec *parent_spec;
435 u64 parent_overlap;
436 atomic_t parent_ref;
437 struct rbd_device *parent;
438
439 /* Block layer tags. */
440 struct blk_mq_tag_set tag_set;
441
442 /* protects updating the header */
443 struct rw_semaphore header_rwsem;
444
445 struct rbd_mapping mapping;
446
447 struct list_head node;
448
449 /* sysfs related */
450 struct device dev;
451 unsigned long open_count; /* protected by lock */
452 };
453
454 /*
455 * Flag bits for rbd_dev->flags:
456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457 * by rbd_dev->lock
458 */
459 enum rbd_dev_flags {
460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */
461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */
463 };
464
465 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
466
467 static LIST_HEAD(rbd_dev_list); /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470 static LIST_HEAD(rbd_client_list); /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473 /* Slab caches for frequently-allocated structures */
474
475 static struct kmem_cache *rbd_img_request_cache;
476 static struct kmem_cache *rbd_obj_request_cache;
477
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480
481 static struct workqueue_struct *rbd_wq;
482
483 static struct ceph_snap_context rbd_empty_snapc = {
484 .nref = REFCOUNT_INIT(1),
485 };
486
487 /*
488 * single-major requires >= 0.75 version of userspace rbd utility.
489 */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496 size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498 size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
rbd_dev_id_to_minor(int dev_id)503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507
minor_to_rbd_dev_id(int minor)508 static int minor_to_rbd_dev_id(int minor)
509 {
510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512
rbd_is_ro(struct rbd_device * rbd_dev)513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517
rbd_is_snap(struct rbd_device * rbd_dev)518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522
__rbd_is_lock_owner(struct rbd_device * rbd_dev)523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530
rbd_is_lock_owner(struct rbd_device * rbd_dev)531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 bool is_lock_owner;
534
535 down_read(&rbd_dev->lock_rwsem);
536 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 up_read(&rbd_dev->lock_rwsem);
538 return is_lock_owner;
539 }
540
supported_features_show(struct bus_type * bus,char * buf)541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551
552 static struct attribute *rbd_bus_attrs[] = {
553 &bus_attr_add.attr,
554 &bus_attr_remove.attr,
555 &bus_attr_add_single_major.attr,
556 &bus_attr_remove_single_major.attr,
557 &bus_attr_supported_features.attr,
558 NULL,
559 };
560
rbd_bus_is_visible(struct kobject * kobj,struct attribute * attr,int index)561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 struct attribute *attr, int index)
563 {
564 if (!single_major &&
565 (attr == &bus_attr_add_single_major.attr ||
566 attr == &bus_attr_remove_single_major.attr))
567 return 0;
568
569 return attr->mode;
570 }
571
572 static const struct attribute_group rbd_bus_group = {
573 .attrs = rbd_bus_attrs,
574 .is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577
578 static struct bus_type rbd_bus_type = {
579 .name = "rbd",
580 .bus_groups = rbd_bus_groups,
581 };
582
rbd_root_dev_release(struct device * dev)583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586
587 static struct device rbd_root_dev = {
588 .init_name = "rbd",
589 .release = rbd_root_dev_release,
590 };
591
592 static __printf(2, 3)
rbd_warn(struct rbd_device * rbd_dev,const char * fmt,...)593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 struct va_format vaf;
596 va_list args;
597
598 va_start(args, fmt);
599 vaf.fmt = fmt;
600 vaf.va = &args;
601
602 if (!rbd_dev)
603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 else if (rbd_dev->disk)
605 printk(KERN_WARNING "%s: %s: %pV\n",
606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 printk(KERN_WARNING "%s: image %s: %pV\n",
609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 printk(KERN_WARNING "%s: id %s: %pV\n",
612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 else /* punt */
614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 RBD_DRV_NAME, rbd_dev, &vaf);
616 va_end(args);
617 }
618
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr) \
621 if (unlikely(!(expr))) { \
622 printk(KERN_ERR "\nAssertion failure in %s() " \
623 "at line %d:\n\n" \
624 "\trbd_assert(%s);\n\n", \
625 __func__, __LINE__, #expr); \
626 BUG(); \
627 }
628 #else /* !RBD_DEBUG */
629 # define rbd_assert(expr) ((void) 0)
630 #endif /* !RBD_DEBUG */
631
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636 struct rbd_image_header *header);
637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638 u64 snap_id);
639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640 u8 *order, u64 *snap_size);
641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642
643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645
646 /*
647 * Return true if nothing else is pending.
648 */
pending_result_dec(struct pending_result * pending,int * result)649 static bool pending_result_dec(struct pending_result *pending, int *result)
650 {
651 rbd_assert(pending->num_pending > 0);
652
653 if (*result && !pending->result)
654 pending->result = *result;
655 if (--pending->num_pending)
656 return false;
657
658 *result = pending->result;
659 return true;
660 }
661
rbd_open(struct block_device * bdev,fmode_t mode)662 static int rbd_open(struct block_device *bdev, fmode_t mode)
663 {
664 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
665 bool removing = false;
666
667 spin_lock_irq(&rbd_dev->lock);
668 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669 removing = true;
670 else
671 rbd_dev->open_count++;
672 spin_unlock_irq(&rbd_dev->lock);
673 if (removing)
674 return -ENOENT;
675
676 (void) get_device(&rbd_dev->dev);
677
678 return 0;
679 }
680
rbd_release(struct gendisk * disk,fmode_t mode)681 static void rbd_release(struct gendisk *disk, fmode_t mode)
682 {
683 struct rbd_device *rbd_dev = disk->private_data;
684 unsigned long open_count_before;
685
686 spin_lock_irq(&rbd_dev->lock);
687 open_count_before = rbd_dev->open_count--;
688 spin_unlock_irq(&rbd_dev->lock);
689 rbd_assert(open_count_before > 0);
690
691 put_device(&rbd_dev->dev);
692 }
693
694 static const struct block_device_operations rbd_bd_ops = {
695 .owner = THIS_MODULE,
696 .open = rbd_open,
697 .release = rbd_release,
698 };
699
700 /*
701 * Initialize an rbd client instance. Success or not, this function
702 * consumes ceph_opts. Caller holds client_mutex.
703 */
rbd_client_create(struct ceph_options * ceph_opts)704 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
705 {
706 struct rbd_client *rbdc;
707 int ret = -ENOMEM;
708
709 dout("%s:\n", __func__);
710 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
711 if (!rbdc)
712 goto out_opt;
713
714 kref_init(&rbdc->kref);
715 INIT_LIST_HEAD(&rbdc->node);
716
717 rbdc->client = ceph_create_client(ceph_opts, rbdc);
718 if (IS_ERR(rbdc->client))
719 goto out_rbdc;
720 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
721
722 ret = ceph_open_session(rbdc->client);
723 if (ret < 0)
724 goto out_client;
725
726 spin_lock(&rbd_client_list_lock);
727 list_add_tail(&rbdc->node, &rbd_client_list);
728 spin_unlock(&rbd_client_list_lock);
729
730 dout("%s: rbdc %p\n", __func__, rbdc);
731
732 return rbdc;
733 out_client:
734 ceph_destroy_client(rbdc->client);
735 out_rbdc:
736 kfree(rbdc);
737 out_opt:
738 if (ceph_opts)
739 ceph_destroy_options(ceph_opts);
740 dout("%s: error %d\n", __func__, ret);
741
742 return ERR_PTR(ret);
743 }
744
__rbd_get_client(struct rbd_client * rbdc)745 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
746 {
747 kref_get(&rbdc->kref);
748
749 return rbdc;
750 }
751
752 /*
753 * Find a ceph client with specific addr and configuration. If
754 * found, bump its reference count.
755 */
rbd_client_find(struct ceph_options * ceph_opts)756 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
757 {
758 struct rbd_client *client_node;
759 bool found = false;
760
761 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
762 return NULL;
763
764 spin_lock(&rbd_client_list_lock);
765 list_for_each_entry(client_node, &rbd_client_list, node) {
766 if (!ceph_compare_options(ceph_opts, client_node->client)) {
767 __rbd_get_client(client_node);
768
769 found = true;
770 break;
771 }
772 }
773 spin_unlock(&rbd_client_list_lock);
774
775 return found ? client_node : NULL;
776 }
777
778 /*
779 * (Per device) rbd map options
780 */
781 enum {
782 Opt_queue_depth,
783 Opt_alloc_size,
784 Opt_lock_timeout,
785 /* int args above */
786 Opt_pool_ns,
787 Opt_compression_hint,
788 /* string args above */
789 Opt_read_only,
790 Opt_read_write,
791 Opt_lock_on_read,
792 Opt_exclusive,
793 Opt_notrim,
794 };
795
796 enum {
797 Opt_compression_hint_none,
798 Opt_compression_hint_compressible,
799 Opt_compression_hint_incompressible,
800 };
801
802 static const struct constant_table rbd_param_compression_hint[] = {
803 {"none", Opt_compression_hint_none},
804 {"compressible", Opt_compression_hint_compressible},
805 {"incompressible", Opt_compression_hint_incompressible},
806 {}
807 };
808
809 static const struct fs_parameter_spec rbd_parameters[] = {
810 fsparam_u32 ("alloc_size", Opt_alloc_size),
811 fsparam_enum ("compression_hint", Opt_compression_hint,
812 rbd_param_compression_hint),
813 fsparam_flag ("exclusive", Opt_exclusive),
814 fsparam_flag ("lock_on_read", Opt_lock_on_read),
815 fsparam_u32 ("lock_timeout", Opt_lock_timeout),
816 fsparam_flag ("notrim", Opt_notrim),
817 fsparam_string ("_pool_ns", Opt_pool_ns),
818 fsparam_u32 ("queue_depth", Opt_queue_depth),
819 fsparam_flag ("read_only", Opt_read_only),
820 fsparam_flag ("read_write", Opt_read_write),
821 fsparam_flag ("ro", Opt_read_only),
822 fsparam_flag ("rw", Opt_read_write),
823 {}
824 };
825
826 struct rbd_options {
827 int queue_depth;
828 int alloc_size;
829 unsigned long lock_timeout;
830 bool read_only;
831 bool lock_on_read;
832 bool exclusive;
833 bool trim;
834
835 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
836 };
837
838 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
839 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024)
840 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */
841 #define RBD_READ_ONLY_DEFAULT false
842 #define RBD_LOCK_ON_READ_DEFAULT false
843 #define RBD_EXCLUSIVE_DEFAULT false
844 #define RBD_TRIM_DEFAULT true
845
846 struct rbd_parse_opts_ctx {
847 struct rbd_spec *spec;
848 struct ceph_options *copts;
849 struct rbd_options *opts;
850 };
851
obj_op_name(enum obj_operation_type op_type)852 static char* obj_op_name(enum obj_operation_type op_type)
853 {
854 switch (op_type) {
855 case OBJ_OP_READ:
856 return "read";
857 case OBJ_OP_WRITE:
858 return "write";
859 case OBJ_OP_DISCARD:
860 return "discard";
861 case OBJ_OP_ZEROOUT:
862 return "zeroout";
863 default:
864 return "???";
865 }
866 }
867
868 /*
869 * Destroy ceph client
870 *
871 * Caller must hold rbd_client_list_lock.
872 */
rbd_client_release(struct kref * kref)873 static void rbd_client_release(struct kref *kref)
874 {
875 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
876
877 dout("%s: rbdc %p\n", __func__, rbdc);
878 spin_lock(&rbd_client_list_lock);
879 list_del(&rbdc->node);
880 spin_unlock(&rbd_client_list_lock);
881
882 ceph_destroy_client(rbdc->client);
883 kfree(rbdc);
884 }
885
886 /*
887 * Drop reference to ceph client node. If it's not referenced anymore, release
888 * it.
889 */
rbd_put_client(struct rbd_client * rbdc)890 static void rbd_put_client(struct rbd_client *rbdc)
891 {
892 if (rbdc)
893 kref_put(&rbdc->kref, rbd_client_release);
894 }
895
896 /*
897 * Get a ceph client with specific addr and configuration, if one does
898 * not exist create it. Either way, ceph_opts is consumed by this
899 * function.
900 */
rbd_get_client(struct ceph_options * ceph_opts)901 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
902 {
903 struct rbd_client *rbdc;
904 int ret;
905
906 mutex_lock(&client_mutex);
907 rbdc = rbd_client_find(ceph_opts);
908 if (rbdc) {
909 ceph_destroy_options(ceph_opts);
910
911 /*
912 * Using an existing client. Make sure ->pg_pools is up to
913 * date before we look up the pool id in do_rbd_add().
914 */
915 ret = ceph_wait_for_latest_osdmap(rbdc->client,
916 rbdc->client->options->mount_timeout);
917 if (ret) {
918 rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
919 rbd_put_client(rbdc);
920 rbdc = ERR_PTR(ret);
921 }
922 } else {
923 rbdc = rbd_client_create(ceph_opts);
924 }
925 mutex_unlock(&client_mutex);
926
927 return rbdc;
928 }
929
rbd_image_format_valid(u32 image_format)930 static bool rbd_image_format_valid(u32 image_format)
931 {
932 return image_format == 1 || image_format == 2;
933 }
934
rbd_dev_ondisk_valid(struct rbd_image_header_ondisk * ondisk)935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
936 {
937 size_t size;
938 u32 snap_count;
939
940 /* The header has to start with the magic rbd header text */
941 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
942 return false;
943
944 /* The bio layer requires at least sector-sized I/O */
945
946 if (ondisk->options.order < SECTOR_SHIFT)
947 return false;
948
949 /* If we use u64 in a few spots we may be able to loosen this */
950
951 if (ondisk->options.order > 8 * sizeof (int) - 1)
952 return false;
953
954 /*
955 * The size of a snapshot header has to fit in a size_t, and
956 * that limits the number of snapshots.
957 */
958 snap_count = le32_to_cpu(ondisk->snap_count);
959 size = SIZE_MAX - sizeof (struct ceph_snap_context);
960 if (snap_count > size / sizeof (__le64))
961 return false;
962
963 /*
964 * Not only that, but the size of the entire the snapshot
965 * header must also be representable in a size_t.
966 */
967 size -= snap_count * sizeof (__le64);
968 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
969 return false;
970
971 return true;
972 }
973
974 /*
975 * returns the size of an object in the image
976 */
rbd_obj_bytes(struct rbd_image_header * header)977 static u32 rbd_obj_bytes(struct rbd_image_header *header)
978 {
979 return 1U << header->obj_order;
980 }
981
rbd_init_layout(struct rbd_device * rbd_dev)982 static void rbd_init_layout(struct rbd_device *rbd_dev)
983 {
984 if (rbd_dev->header.stripe_unit == 0 ||
985 rbd_dev->header.stripe_count == 0) {
986 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
987 rbd_dev->header.stripe_count = 1;
988 }
989
990 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
991 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
992 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
993 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
994 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
995 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
996 }
997
rbd_image_header_cleanup(struct rbd_image_header * header)998 static void rbd_image_header_cleanup(struct rbd_image_header *header)
999 {
1000 kfree(header->object_prefix);
1001 ceph_put_snap_context(header->snapc);
1002 kfree(header->snap_sizes);
1003 kfree(header->snap_names);
1004
1005 memset(header, 0, sizeof(*header));
1006 }
1007
1008 /*
1009 * Fill an rbd image header with information from the given format 1
1010 * on-disk header.
1011 */
rbd_header_from_disk(struct rbd_image_header * header,struct rbd_image_header_ondisk * ondisk,bool first_time)1012 static int rbd_header_from_disk(struct rbd_image_header *header,
1013 struct rbd_image_header_ondisk *ondisk,
1014 bool first_time)
1015 {
1016 struct ceph_snap_context *snapc;
1017 char *object_prefix = NULL;
1018 char *snap_names = NULL;
1019 u64 *snap_sizes = NULL;
1020 u32 snap_count;
1021 int ret = -ENOMEM;
1022 u32 i;
1023
1024 /* Allocate this now to avoid having to handle failure below */
1025
1026 if (first_time) {
1027 object_prefix = kstrndup(ondisk->object_prefix,
1028 sizeof(ondisk->object_prefix),
1029 GFP_KERNEL);
1030 if (!object_prefix)
1031 return -ENOMEM;
1032 }
1033
1034 /* Allocate the snapshot context and fill it in */
1035
1036 snap_count = le32_to_cpu(ondisk->snap_count);
1037 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1038 if (!snapc)
1039 goto out_err;
1040 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1041 if (snap_count) {
1042 struct rbd_image_snap_ondisk *snaps;
1043 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1044
1045 /* We'll keep a copy of the snapshot names... */
1046
1047 if (snap_names_len > (u64)SIZE_MAX)
1048 goto out_2big;
1049 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1050 if (!snap_names)
1051 goto out_err;
1052
1053 /* ...as well as the array of their sizes. */
1054 snap_sizes = kmalloc_array(snap_count,
1055 sizeof(*header->snap_sizes),
1056 GFP_KERNEL);
1057 if (!snap_sizes)
1058 goto out_err;
1059
1060 /*
1061 * Copy the names, and fill in each snapshot's id
1062 * and size.
1063 *
1064 * Note that rbd_dev_v1_header_info() guarantees the
1065 * ondisk buffer we're working with has
1066 * snap_names_len bytes beyond the end of the
1067 * snapshot id array, this memcpy() is safe.
1068 */
1069 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1070 snaps = ondisk->snaps;
1071 for (i = 0; i < snap_count; i++) {
1072 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1073 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1074 }
1075 }
1076
1077 /* We won't fail any more, fill in the header */
1078
1079 if (first_time) {
1080 header->object_prefix = object_prefix;
1081 header->obj_order = ondisk->options.order;
1082 }
1083
1084 /* The remaining fields always get updated (when we refresh) */
1085
1086 header->image_size = le64_to_cpu(ondisk->image_size);
1087 header->snapc = snapc;
1088 header->snap_names = snap_names;
1089 header->snap_sizes = snap_sizes;
1090
1091 return 0;
1092 out_2big:
1093 ret = -EIO;
1094 out_err:
1095 kfree(snap_sizes);
1096 kfree(snap_names);
1097 ceph_put_snap_context(snapc);
1098 kfree(object_prefix);
1099
1100 return ret;
1101 }
1102
_rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u32 which)1103 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1104 {
1105 const char *snap_name;
1106
1107 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1108
1109 /* Skip over names until we find the one we are looking for */
1110
1111 snap_name = rbd_dev->header.snap_names;
1112 while (which--)
1113 snap_name += strlen(snap_name) + 1;
1114
1115 return kstrdup(snap_name, GFP_KERNEL);
1116 }
1117
1118 /*
1119 * Snapshot id comparison function for use with qsort()/bsearch().
1120 * Note that result is for snapshots in *descending* order.
1121 */
snapid_compare_reverse(const void * s1,const void * s2)1122 static int snapid_compare_reverse(const void *s1, const void *s2)
1123 {
1124 u64 snap_id1 = *(u64 *)s1;
1125 u64 snap_id2 = *(u64 *)s2;
1126
1127 if (snap_id1 < snap_id2)
1128 return 1;
1129 return snap_id1 == snap_id2 ? 0 : -1;
1130 }
1131
1132 /*
1133 * Search a snapshot context to see if the given snapshot id is
1134 * present.
1135 *
1136 * Returns the position of the snapshot id in the array if it's found,
1137 * or BAD_SNAP_INDEX otherwise.
1138 *
1139 * Note: The snapshot array is in kept sorted (by the osd) in
1140 * reverse order, highest snapshot id first.
1141 */
rbd_dev_snap_index(struct rbd_device * rbd_dev,u64 snap_id)1142 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1143 {
1144 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1145 u64 *found;
1146
1147 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1148 sizeof (snap_id), snapid_compare_reverse);
1149
1150 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1151 }
1152
rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1153 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1154 u64 snap_id)
1155 {
1156 u32 which;
1157 const char *snap_name;
1158
1159 which = rbd_dev_snap_index(rbd_dev, snap_id);
1160 if (which == BAD_SNAP_INDEX)
1161 return ERR_PTR(-ENOENT);
1162
1163 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1164 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1165 }
1166
rbd_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1167 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1168 {
1169 if (snap_id == CEPH_NOSNAP)
1170 return RBD_SNAP_HEAD_NAME;
1171
1172 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1173 if (rbd_dev->image_format == 1)
1174 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1175
1176 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1177 }
1178
rbd_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_size)1179 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1180 u64 *snap_size)
1181 {
1182 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1183 if (snap_id == CEPH_NOSNAP) {
1184 *snap_size = rbd_dev->header.image_size;
1185 } else if (rbd_dev->image_format == 1) {
1186 u32 which;
1187
1188 which = rbd_dev_snap_index(rbd_dev, snap_id);
1189 if (which == BAD_SNAP_INDEX)
1190 return -ENOENT;
1191
1192 *snap_size = rbd_dev->header.snap_sizes[which];
1193 } else {
1194 u64 size = 0;
1195 int ret;
1196
1197 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1198 if (ret)
1199 return ret;
1200
1201 *snap_size = size;
1202 }
1203 return 0;
1204 }
1205
rbd_dev_mapping_set(struct rbd_device * rbd_dev)1206 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1207 {
1208 u64 snap_id = rbd_dev->spec->snap_id;
1209 u64 size = 0;
1210 int ret;
1211
1212 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1213 if (ret)
1214 return ret;
1215
1216 rbd_dev->mapping.size = size;
1217 return 0;
1218 }
1219
rbd_dev_mapping_clear(struct rbd_device * rbd_dev)1220 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1221 {
1222 rbd_dev->mapping.size = 0;
1223 }
1224
zero_bios(struct ceph_bio_iter * bio_pos,u32 off,u32 bytes)1225 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1226 {
1227 struct ceph_bio_iter it = *bio_pos;
1228
1229 ceph_bio_iter_advance(&it, off);
1230 ceph_bio_iter_advance_step(&it, bytes, ({
1231 memzero_bvec(&bv);
1232 }));
1233 }
1234
zero_bvecs(struct ceph_bvec_iter * bvec_pos,u32 off,u32 bytes)1235 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1236 {
1237 struct ceph_bvec_iter it = *bvec_pos;
1238
1239 ceph_bvec_iter_advance(&it, off);
1240 ceph_bvec_iter_advance_step(&it, bytes, ({
1241 memzero_bvec(&bv);
1242 }));
1243 }
1244
1245 /*
1246 * Zero a range in @obj_req data buffer defined by a bio (list) or
1247 * (private) bio_vec array.
1248 *
1249 * @off is relative to the start of the data buffer.
1250 */
rbd_obj_zero_range(struct rbd_obj_request * obj_req,u32 off,u32 bytes)1251 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1252 u32 bytes)
1253 {
1254 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1255
1256 switch (obj_req->img_request->data_type) {
1257 case OBJ_REQUEST_BIO:
1258 zero_bios(&obj_req->bio_pos, off, bytes);
1259 break;
1260 case OBJ_REQUEST_BVECS:
1261 case OBJ_REQUEST_OWN_BVECS:
1262 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1263 break;
1264 default:
1265 BUG();
1266 }
1267 }
1268
1269 static void rbd_obj_request_destroy(struct kref *kref);
rbd_obj_request_put(struct rbd_obj_request * obj_request)1270 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1271 {
1272 rbd_assert(obj_request != NULL);
1273 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1274 kref_read(&obj_request->kref));
1275 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1276 }
1277
rbd_img_obj_request_add(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1278 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1279 struct rbd_obj_request *obj_request)
1280 {
1281 rbd_assert(obj_request->img_request == NULL);
1282
1283 /* Image request now owns object's original reference */
1284 obj_request->img_request = img_request;
1285 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1286 }
1287
rbd_img_obj_request_del(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1288 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1289 struct rbd_obj_request *obj_request)
1290 {
1291 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1292 list_del(&obj_request->ex.oe_item);
1293 rbd_assert(obj_request->img_request == img_request);
1294 rbd_obj_request_put(obj_request);
1295 }
1296
rbd_osd_submit(struct ceph_osd_request * osd_req)1297 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1298 {
1299 struct rbd_obj_request *obj_req = osd_req->r_priv;
1300
1301 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1302 __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1303 obj_req->ex.oe_off, obj_req->ex.oe_len);
1304 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1305 }
1306
1307 /*
1308 * The default/initial value for all image request flags is 0. Each
1309 * is conditionally set to 1 at image request initialization time
1310 * and currently never change thereafter.
1311 */
img_request_layered_set(struct rbd_img_request * img_request)1312 static void img_request_layered_set(struct rbd_img_request *img_request)
1313 {
1314 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1315 }
1316
img_request_layered_test(struct rbd_img_request * img_request)1317 static bool img_request_layered_test(struct rbd_img_request *img_request)
1318 {
1319 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1320 }
1321
rbd_obj_is_entire(struct rbd_obj_request * obj_req)1322 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1323 {
1324 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1325
1326 return !obj_req->ex.oe_off &&
1327 obj_req->ex.oe_len == rbd_dev->layout.object_size;
1328 }
1329
rbd_obj_is_tail(struct rbd_obj_request * obj_req)1330 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1331 {
1332 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1333
1334 return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1335 rbd_dev->layout.object_size;
1336 }
1337
1338 /*
1339 * Must be called after rbd_obj_calc_img_extents().
1340 */
rbd_obj_set_copyup_enabled(struct rbd_obj_request * obj_req)1341 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1342 {
1343 rbd_assert(obj_req->img_request->snapc);
1344
1345 if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1346 dout("%s %p objno %llu discard\n", __func__, obj_req,
1347 obj_req->ex.oe_objno);
1348 return;
1349 }
1350
1351 if (!obj_req->num_img_extents) {
1352 dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1353 obj_req->ex.oe_objno);
1354 return;
1355 }
1356
1357 if (rbd_obj_is_entire(obj_req) &&
1358 !obj_req->img_request->snapc->num_snaps) {
1359 dout("%s %p objno %llu entire\n", __func__, obj_req,
1360 obj_req->ex.oe_objno);
1361 return;
1362 }
1363
1364 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1365 }
1366
rbd_obj_img_extents_bytes(struct rbd_obj_request * obj_req)1367 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1368 {
1369 return ceph_file_extents_bytes(obj_req->img_extents,
1370 obj_req->num_img_extents);
1371 }
1372
rbd_img_is_write(struct rbd_img_request * img_req)1373 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1374 {
1375 switch (img_req->op_type) {
1376 case OBJ_OP_READ:
1377 return false;
1378 case OBJ_OP_WRITE:
1379 case OBJ_OP_DISCARD:
1380 case OBJ_OP_ZEROOUT:
1381 return true;
1382 default:
1383 BUG();
1384 }
1385 }
1386
rbd_osd_req_callback(struct ceph_osd_request * osd_req)1387 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1388 {
1389 struct rbd_obj_request *obj_req = osd_req->r_priv;
1390 int result;
1391
1392 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1393 osd_req->r_result, obj_req);
1394
1395 /*
1396 * Writes aren't allowed to return a data payload. In some
1397 * guarded write cases (e.g. stat + zero on an empty object)
1398 * a stat response makes it through, but we don't care.
1399 */
1400 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1401 result = 0;
1402 else
1403 result = osd_req->r_result;
1404
1405 rbd_obj_handle_request(obj_req, result);
1406 }
1407
rbd_osd_format_read(struct ceph_osd_request * osd_req)1408 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1409 {
1410 struct rbd_obj_request *obj_request = osd_req->r_priv;
1411 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1412 struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1413
1414 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1415 osd_req->r_snapid = obj_request->img_request->snap_id;
1416 }
1417
rbd_osd_format_write(struct ceph_osd_request * osd_req)1418 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1419 {
1420 struct rbd_obj_request *obj_request = osd_req->r_priv;
1421
1422 osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1423 ktime_get_real_ts64(&osd_req->r_mtime);
1424 osd_req->r_data_offset = obj_request->ex.oe_off;
1425 }
1426
1427 static struct ceph_osd_request *
__rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,struct ceph_snap_context * snapc,int num_ops)1428 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1429 struct ceph_snap_context *snapc, int num_ops)
1430 {
1431 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1432 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1433 struct ceph_osd_request *req;
1434 const char *name_format = rbd_dev->image_format == 1 ?
1435 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1436 int ret;
1437
1438 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1439 if (!req)
1440 return ERR_PTR(-ENOMEM);
1441
1442 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1443 req->r_callback = rbd_osd_req_callback;
1444 req->r_priv = obj_req;
1445
1446 /*
1447 * Data objects may be stored in a separate pool, but always in
1448 * the same namespace in that pool as the header in its pool.
1449 */
1450 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1451 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1452
1453 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1454 rbd_dev->header.object_prefix,
1455 obj_req->ex.oe_objno);
1456 if (ret)
1457 return ERR_PTR(ret);
1458
1459 return req;
1460 }
1461
1462 static struct ceph_osd_request *
rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,int num_ops)1463 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1464 {
1465 rbd_assert(obj_req->img_request->snapc);
1466 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1467 num_ops);
1468 }
1469
rbd_obj_request_create(void)1470 static struct rbd_obj_request *rbd_obj_request_create(void)
1471 {
1472 struct rbd_obj_request *obj_request;
1473
1474 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1475 if (!obj_request)
1476 return NULL;
1477
1478 ceph_object_extent_init(&obj_request->ex);
1479 INIT_LIST_HEAD(&obj_request->osd_reqs);
1480 mutex_init(&obj_request->state_mutex);
1481 kref_init(&obj_request->kref);
1482
1483 dout("%s %p\n", __func__, obj_request);
1484 return obj_request;
1485 }
1486
rbd_obj_request_destroy(struct kref * kref)1487 static void rbd_obj_request_destroy(struct kref *kref)
1488 {
1489 struct rbd_obj_request *obj_request;
1490 struct ceph_osd_request *osd_req;
1491 u32 i;
1492
1493 obj_request = container_of(kref, struct rbd_obj_request, kref);
1494
1495 dout("%s: obj %p\n", __func__, obj_request);
1496
1497 while (!list_empty(&obj_request->osd_reqs)) {
1498 osd_req = list_first_entry(&obj_request->osd_reqs,
1499 struct ceph_osd_request, r_private_item);
1500 list_del_init(&osd_req->r_private_item);
1501 ceph_osdc_put_request(osd_req);
1502 }
1503
1504 switch (obj_request->img_request->data_type) {
1505 case OBJ_REQUEST_NODATA:
1506 case OBJ_REQUEST_BIO:
1507 case OBJ_REQUEST_BVECS:
1508 break; /* Nothing to do */
1509 case OBJ_REQUEST_OWN_BVECS:
1510 kfree(obj_request->bvec_pos.bvecs);
1511 break;
1512 default:
1513 BUG();
1514 }
1515
1516 kfree(obj_request->img_extents);
1517 if (obj_request->copyup_bvecs) {
1518 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1519 if (obj_request->copyup_bvecs[i].bv_page)
1520 __free_page(obj_request->copyup_bvecs[i].bv_page);
1521 }
1522 kfree(obj_request->copyup_bvecs);
1523 }
1524
1525 kmem_cache_free(rbd_obj_request_cache, obj_request);
1526 }
1527
1528 /* It's OK to call this for a device with no parent */
1529
1530 static void rbd_spec_put(struct rbd_spec *spec);
rbd_dev_unparent(struct rbd_device * rbd_dev)1531 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1532 {
1533 rbd_dev_remove_parent(rbd_dev);
1534 rbd_spec_put(rbd_dev->parent_spec);
1535 rbd_dev->parent_spec = NULL;
1536 rbd_dev->parent_overlap = 0;
1537 }
1538
1539 /*
1540 * Parent image reference counting is used to determine when an
1541 * image's parent fields can be safely torn down--after there are no
1542 * more in-flight requests to the parent image. When the last
1543 * reference is dropped, cleaning them up is safe.
1544 */
rbd_dev_parent_put(struct rbd_device * rbd_dev)1545 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1546 {
1547 int counter;
1548
1549 if (!rbd_dev->parent_spec)
1550 return;
1551
1552 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1553 if (counter > 0)
1554 return;
1555
1556 /* Last reference; clean up parent data structures */
1557
1558 if (!counter)
1559 rbd_dev_unparent(rbd_dev);
1560 else
1561 rbd_warn(rbd_dev, "parent reference underflow");
1562 }
1563
1564 /*
1565 * If an image has a non-zero parent overlap, get a reference to its
1566 * parent.
1567 *
1568 * Returns true if the rbd device has a parent with a non-zero
1569 * overlap and a reference for it was successfully taken, or
1570 * false otherwise.
1571 */
rbd_dev_parent_get(struct rbd_device * rbd_dev)1572 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1573 {
1574 int counter = 0;
1575
1576 if (!rbd_dev->parent_spec)
1577 return false;
1578
1579 if (rbd_dev->parent_overlap)
1580 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1581
1582 if (counter < 0)
1583 rbd_warn(rbd_dev, "parent reference overflow");
1584
1585 return counter > 0;
1586 }
1587
rbd_img_request_init(struct rbd_img_request * img_request,struct rbd_device * rbd_dev,enum obj_operation_type op_type)1588 static void rbd_img_request_init(struct rbd_img_request *img_request,
1589 struct rbd_device *rbd_dev,
1590 enum obj_operation_type op_type)
1591 {
1592 memset(img_request, 0, sizeof(*img_request));
1593
1594 img_request->rbd_dev = rbd_dev;
1595 img_request->op_type = op_type;
1596
1597 INIT_LIST_HEAD(&img_request->lock_item);
1598 INIT_LIST_HEAD(&img_request->object_extents);
1599 mutex_init(&img_request->state_mutex);
1600 }
1601
1602 /*
1603 * Only snap_id is captured here, for reads. For writes, snapshot
1604 * context is captured in rbd_img_object_requests() after exclusive
1605 * lock is ensured to be held.
1606 */
rbd_img_capture_header(struct rbd_img_request * img_req)1607 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1608 {
1609 struct rbd_device *rbd_dev = img_req->rbd_dev;
1610
1611 lockdep_assert_held(&rbd_dev->header_rwsem);
1612
1613 if (!rbd_img_is_write(img_req))
1614 img_req->snap_id = rbd_dev->spec->snap_id;
1615
1616 if (rbd_dev_parent_get(rbd_dev))
1617 img_request_layered_set(img_req);
1618 }
1619
rbd_img_request_destroy(struct rbd_img_request * img_request)1620 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1621 {
1622 struct rbd_obj_request *obj_request;
1623 struct rbd_obj_request *next_obj_request;
1624
1625 dout("%s: img %p\n", __func__, img_request);
1626
1627 WARN_ON(!list_empty(&img_request->lock_item));
1628 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1629 rbd_img_obj_request_del(img_request, obj_request);
1630
1631 if (img_request_layered_test(img_request))
1632 rbd_dev_parent_put(img_request->rbd_dev);
1633
1634 if (rbd_img_is_write(img_request))
1635 ceph_put_snap_context(img_request->snapc);
1636
1637 if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1638 kmem_cache_free(rbd_img_request_cache, img_request);
1639 }
1640
1641 #define BITS_PER_OBJ 2
1642 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ)
1643 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1)
1644
__rbd_object_map_index(struct rbd_device * rbd_dev,u64 objno,u64 * index,u8 * shift)1645 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1646 u64 *index, u8 *shift)
1647 {
1648 u32 off;
1649
1650 rbd_assert(objno < rbd_dev->object_map_size);
1651 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1652 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1653 }
1654
__rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1655 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1656 {
1657 u64 index;
1658 u8 shift;
1659
1660 lockdep_assert_held(&rbd_dev->object_map_lock);
1661 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1662 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1663 }
1664
__rbd_object_map_set(struct rbd_device * rbd_dev,u64 objno,u8 val)1665 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1666 {
1667 u64 index;
1668 u8 shift;
1669 u8 *p;
1670
1671 lockdep_assert_held(&rbd_dev->object_map_lock);
1672 rbd_assert(!(val & ~OBJ_MASK));
1673
1674 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1675 p = &rbd_dev->object_map[index];
1676 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1677 }
1678
rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1679 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1680 {
1681 u8 state;
1682
1683 spin_lock(&rbd_dev->object_map_lock);
1684 state = __rbd_object_map_get(rbd_dev, objno);
1685 spin_unlock(&rbd_dev->object_map_lock);
1686 return state;
1687 }
1688
use_object_map(struct rbd_device * rbd_dev)1689 static bool use_object_map(struct rbd_device *rbd_dev)
1690 {
1691 /*
1692 * An image mapped read-only can't use the object map -- it isn't
1693 * loaded because the header lock isn't acquired. Someone else can
1694 * write to the image and update the object map behind our back.
1695 *
1696 * A snapshot can't be written to, so using the object map is always
1697 * safe.
1698 */
1699 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1700 return false;
1701
1702 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1703 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1704 }
1705
rbd_object_map_may_exist(struct rbd_device * rbd_dev,u64 objno)1706 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1707 {
1708 u8 state;
1709
1710 /* fall back to default logic if object map is disabled or invalid */
1711 if (!use_object_map(rbd_dev))
1712 return true;
1713
1714 state = rbd_object_map_get(rbd_dev, objno);
1715 return state != OBJECT_NONEXISTENT;
1716 }
1717
rbd_object_map_name(struct rbd_device * rbd_dev,u64 snap_id,struct ceph_object_id * oid)1718 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1719 struct ceph_object_id *oid)
1720 {
1721 if (snap_id == CEPH_NOSNAP)
1722 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1723 rbd_dev->spec->image_id);
1724 else
1725 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1726 rbd_dev->spec->image_id, snap_id);
1727 }
1728
rbd_object_map_lock(struct rbd_device * rbd_dev)1729 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1730 {
1731 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1732 CEPH_DEFINE_OID_ONSTACK(oid);
1733 u8 lock_type;
1734 char *lock_tag;
1735 struct ceph_locker *lockers;
1736 u32 num_lockers;
1737 bool broke_lock = false;
1738 int ret;
1739
1740 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1741
1742 again:
1743 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1744 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1745 if (ret != -EBUSY || broke_lock) {
1746 if (ret == -EEXIST)
1747 ret = 0; /* already locked by myself */
1748 if (ret)
1749 rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1750 return ret;
1751 }
1752
1753 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1754 RBD_LOCK_NAME, &lock_type, &lock_tag,
1755 &lockers, &num_lockers);
1756 if (ret) {
1757 if (ret == -ENOENT)
1758 goto again;
1759
1760 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1761 return ret;
1762 }
1763
1764 kfree(lock_tag);
1765 if (num_lockers == 0)
1766 goto again;
1767
1768 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1769 ENTITY_NAME(lockers[0].id.name));
1770
1771 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1772 RBD_LOCK_NAME, lockers[0].id.cookie,
1773 &lockers[0].id.name);
1774 ceph_free_lockers(lockers, num_lockers);
1775 if (ret) {
1776 if (ret == -ENOENT)
1777 goto again;
1778
1779 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1780 return ret;
1781 }
1782
1783 broke_lock = true;
1784 goto again;
1785 }
1786
rbd_object_map_unlock(struct rbd_device * rbd_dev)1787 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1788 {
1789 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1790 CEPH_DEFINE_OID_ONSTACK(oid);
1791 int ret;
1792
1793 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1794
1795 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1796 "");
1797 if (ret && ret != -ENOENT)
1798 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1799 }
1800
decode_object_map_header(void ** p,void * end,u64 * object_map_size)1801 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1802 {
1803 u8 struct_v;
1804 u32 struct_len;
1805 u32 header_len;
1806 void *header_end;
1807 int ret;
1808
1809 ceph_decode_32_safe(p, end, header_len, e_inval);
1810 header_end = *p + header_len;
1811
1812 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1813 &struct_len);
1814 if (ret)
1815 return ret;
1816
1817 ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1818
1819 *p = header_end;
1820 return 0;
1821
1822 e_inval:
1823 return -EINVAL;
1824 }
1825
__rbd_object_map_load(struct rbd_device * rbd_dev)1826 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1827 {
1828 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1829 CEPH_DEFINE_OID_ONSTACK(oid);
1830 struct page **pages;
1831 void *p, *end;
1832 size_t reply_len;
1833 u64 num_objects;
1834 u64 object_map_bytes;
1835 u64 object_map_size;
1836 int num_pages;
1837 int ret;
1838
1839 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1840
1841 num_objects = ceph_get_num_objects(&rbd_dev->layout,
1842 rbd_dev->mapping.size);
1843 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1844 BITS_PER_BYTE);
1845 num_pages = calc_pages_for(0, object_map_bytes) + 1;
1846 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1847 if (IS_ERR(pages))
1848 return PTR_ERR(pages);
1849
1850 reply_len = num_pages * PAGE_SIZE;
1851 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1852 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1853 "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1854 NULL, 0, pages, &reply_len);
1855 if (ret)
1856 goto out;
1857
1858 p = page_address(pages[0]);
1859 end = p + min(reply_len, (size_t)PAGE_SIZE);
1860 ret = decode_object_map_header(&p, end, &object_map_size);
1861 if (ret)
1862 goto out;
1863
1864 if (object_map_size != num_objects) {
1865 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1866 object_map_size, num_objects);
1867 ret = -EINVAL;
1868 goto out;
1869 }
1870
1871 if (offset_in_page(p) + object_map_bytes > reply_len) {
1872 ret = -EINVAL;
1873 goto out;
1874 }
1875
1876 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1877 if (!rbd_dev->object_map) {
1878 ret = -ENOMEM;
1879 goto out;
1880 }
1881
1882 rbd_dev->object_map_size = object_map_size;
1883 ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1884 offset_in_page(p), object_map_bytes);
1885
1886 out:
1887 ceph_release_page_vector(pages, num_pages);
1888 return ret;
1889 }
1890
rbd_object_map_free(struct rbd_device * rbd_dev)1891 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1892 {
1893 kvfree(rbd_dev->object_map);
1894 rbd_dev->object_map = NULL;
1895 rbd_dev->object_map_size = 0;
1896 }
1897
rbd_object_map_load(struct rbd_device * rbd_dev)1898 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1899 {
1900 int ret;
1901
1902 ret = __rbd_object_map_load(rbd_dev);
1903 if (ret)
1904 return ret;
1905
1906 ret = rbd_dev_v2_get_flags(rbd_dev);
1907 if (ret) {
1908 rbd_object_map_free(rbd_dev);
1909 return ret;
1910 }
1911
1912 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1913 rbd_warn(rbd_dev, "object map is invalid");
1914
1915 return 0;
1916 }
1917
rbd_object_map_open(struct rbd_device * rbd_dev)1918 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1919 {
1920 int ret;
1921
1922 ret = rbd_object_map_lock(rbd_dev);
1923 if (ret)
1924 return ret;
1925
1926 ret = rbd_object_map_load(rbd_dev);
1927 if (ret) {
1928 rbd_object_map_unlock(rbd_dev);
1929 return ret;
1930 }
1931
1932 return 0;
1933 }
1934
rbd_object_map_close(struct rbd_device * rbd_dev)1935 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1936 {
1937 rbd_object_map_free(rbd_dev);
1938 rbd_object_map_unlock(rbd_dev);
1939 }
1940
1941 /*
1942 * This function needs snap_id (or more precisely just something to
1943 * distinguish between HEAD and snapshot object maps), new_state and
1944 * current_state that were passed to rbd_object_map_update().
1945 *
1946 * To avoid allocating and stashing a context we piggyback on the OSD
1947 * request. A HEAD update has two ops (assert_locked). For new_state
1948 * and current_state we decode our own object_map_update op, encoded in
1949 * rbd_cls_object_map_update().
1950 */
rbd_object_map_update_finish(struct rbd_obj_request * obj_req,struct ceph_osd_request * osd_req)1951 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1952 struct ceph_osd_request *osd_req)
1953 {
1954 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1955 struct ceph_osd_data *osd_data;
1956 u64 objno;
1957 u8 state, new_state, current_state;
1958 bool has_current_state;
1959 void *p;
1960
1961 if (osd_req->r_result)
1962 return osd_req->r_result;
1963
1964 /*
1965 * Nothing to do for a snapshot object map.
1966 */
1967 if (osd_req->r_num_ops == 1)
1968 return 0;
1969
1970 /*
1971 * Update in-memory HEAD object map.
1972 */
1973 rbd_assert(osd_req->r_num_ops == 2);
1974 osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1975 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1976
1977 p = page_address(osd_data->pages[0]);
1978 objno = ceph_decode_64(&p);
1979 rbd_assert(objno == obj_req->ex.oe_objno);
1980 rbd_assert(ceph_decode_64(&p) == objno + 1);
1981 new_state = ceph_decode_8(&p);
1982 has_current_state = ceph_decode_8(&p);
1983 if (has_current_state)
1984 current_state = ceph_decode_8(&p);
1985
1986 spin_lock(&rbd_dev->object_map_lock);
1987 state = __rbd_object_map_get(rbd_dev, objno);
1988 if (!has_current_state || current_state == state ||
1989 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1990 __rbd_object_map_set(rbd_dev, objno, new_state);
1991 spin_unlock(&rbd_dev->object_map_lock);
1992
1993 return 0;
1994 }
1995
rbd_object_map_callback(struct ceph_osd_request * osd_req)1996 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1997 {
1998 struct rbd_obj_request *obj_req = osd_req->r_priv;
1999 int result;
2000
2001 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2002 osd_req->r_result, obj_req);
2003
2004 result = rbd_object_map_update_finish(obj_req, osd_req);
2005 rbd_obj_handle_request(obj_req, result);
2006 }
2007
update_needed(struct rbd_device * rbd_dev,u64 objno,u8 new_state)2008 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2009 {
2010 u8 state = rbd_object_map_get(rbd_dev, objno);
2011
2012 if (state == new_state ||
2013 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2014 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2015 return false;
2016
2017 return true;
2018 }
2019
rbd_cls_object_map_update(struct ceph_osd_request * req,int which,u64 objno,u8 new_state,const u8 * current_state)2020 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2021 int which, u64 objno, u8 new_state,
2022 const u8 *current_state)
2023 {
2024 struct page **pages;
2025 void *p, *start;
2026 int ret;
2027
2028 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2029 if (ret)
2030 return ret;
2031
2032 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2033 if (IS_ERR(pages))
2034 return PTR_ERR(pages);
2035
2036 p = start = page_address(pages[0]);
2037 ceph_encode_64(&p, objno);
2038 ceph_encode_64(&p, objno + 1);
2039 ceph_encode_8(&p, new_state);
2040 if (current_state) {
2041 ceph_encode_8(&p, 1);
2042 ceph_encode_8(&p, *current_state);
2043 } else {
2044 ceph_encode_8(&p, 0);
2045 }
2046
2047 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2048 false, true);
2049 return 0;
2050 }
2051
2052 /*
2053 * Return:
2054 * 0 - object map update sent
2055 * 1 - object map update isn't needed
2056 * <0 - error
2057 */
rbd_object_map_update(struct rbd_obj_request * obj_req,u64 snap_id,u8 new_state,const u8 * current_state)2058 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2059 u8 new_state, const u8 *current_state)
2060 {
2061 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2062 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2063 struct ceph_osd_request *req;
2064 int num_ops = 1;
2065 int which = 0;
2066 int ret;
2067
2068 if (snap_id == CEPH_NOSNAP) {
2069 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2070 return 1;
2071
2072 num_ops++; /* assert_locked */
2073 }
2074
2075 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2076 if (!req)
2077 return -ENOMEM;
2078
2079 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2080 req->r_callback = rbd_object_map_callback;
2081 req->r_priv = obj_req;
2082
2083 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2084 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2085 req->r_flags = CEPH_OSD_FLAG_WRITE;
2086 ktime_get_real_ts64(&req->r_mtime);
2087
2088 if (snap_id == CEPH_NOSNAP) {
2089 /*
2090 * Protect against possible race conditions during lock
2091 * ownership transitions.
2092 */
2093 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2094 CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2095 if (ret)
2096 return ret;
2097 }
2098
2099 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2100 new_state, current_state);
2101 if (ret)
2102 return ret;
2103
2104 ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2105 if (ret)
2106 return ret;
2107
2108 ceph_osdc_start_request(osdc, req, false);
2109 return 0;
2110 }
2111
prune_extents(struct ceph_file_extent * img_extents,u32 * num_img_extents,u64 overlap)2112 static void prune_extents(struct ceph_file_extent *img_extents,
2113 u32 *num_img_extents, u64 overlap)
2114 {
2115 u32 cnt = *num_img_extents;
2116
2117 /* drop extents completely beyond the overlap */
2118 while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2119 cnt--;
2120
2121 if (cnt) {
2122 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2123
2124 /* trim final overlapping extent */
2125 if (ex->fe_off + ex->fe_len > overlap)
2126 ex->fe_len = overlap - ex->fe_off;
2127 }
2128
2129 *num_img_extents = cnt;
2130 }
2131
2132 /*
2133 * Determine the byte range(s) covered by either just the object extent
2134 * or the entire object in the parent image.
2135 */
rbd_obj_calc_img_extents(struct rbd_obj_request * obj_req,bool entire)2136 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2137 bool entire)
2138 {
2139 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2140 int ret;
2141
2142 if (!rbd_dev->parent_overlap)
2143 return 0;
2144
2145 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2146 entire ? 0 : obj_req->ex.oe_off,
2147 entire ? rbd_dev->layout.object_size :
2148 obj_req->ex.oe_len,
2149 &obj_req->img_extents,
2150 &obj_req->num_img_extents);
2151 if (ret)
2152 return ret;
2153
2154 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2155 rbd_dev->parent_overlap);
2156 return 0;
2157 }
2158
rbd_osd_setup_data(struct ceph_osd_request * osd_req,int which)2159 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2160 {
2161 struct rbd_obj_request *obj_req = osd_req->r_priv;
2162
2163 switch (obj_req->img_request->data_type) {
2164 case OBJ_REQUEST_BIO:
2165 osd_req_op_extent_osd_data_bio(osd_req, which,
2166 &obj_req->bio_pos,
2167 obj_req->ex.oe_len);
2168 break;
2169 case OBJ_REQUEST_BVECS:
2170 case OBJ_REQUEST_OWN_BVECS:
2171 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2172 obj_req->ex.oe_len);
2173 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2174 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2175 &obj_req->bvec_pos);
2176 break;
2177 default:
2178 BUG();
2179 }
2180 }
2181
rbd_osd_setup_stat(struct ceph_osd_request * osd_req,int which)2182 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2183 {
2184 struct page **pages;
2185
2186 /*
2187 * The response data for a STAT call consists of:
2188 * le64 length;
2189 * struct {
2190 * le32 tv_sec;
2191 * le32 tv_nsec;
2192 * } mtime;
2193 */
2194 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2195 if (IS_ERR(pages))
2196 return PTR_ERR(pages);
2197
2198 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2199 osd_req_op_raw_data_in_pages(osd_req, which, pages,
2200 8 + sizeof(struct ceph_timespec),
2201 0, false, true);
2202 return 0;
2203 }
2204
rbd_osd_setup_copyup(struct ceph_osd_request * osd_req,int which,u32 bytes)2205 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2206 u32 bytes)
2207 {
2208 struct rbd_obj_request *obj_req = osd_req->r_priv;
2209 int ret;
2210
2211 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2212 if (ret)
2213 return ret;
2214
2215 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2216 obj_req->copyup_bvec_count, bytes);
2217 return 0;
2218 }
2219
rbd_obj_init_read(struct rbd_obj_request * obj_req)2220 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2221 {
2222 obj_req->read_state = RBD_OBJ_READ_START;
2223 return 0;
2224 }
2225
__rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2226 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2227 int which)
2228 {
2229 struct rbd_obj_request *obj_req = osd_req->r_priv;
2230 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2231 u16 opcode;
2232
2233 if (!use_object_map(rbd_dev) ||
2234 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2235 osd_req_op_alloc_hint_init(osd_req, which++,
2236 rbd_dev->layout.object_size,
2237 rbd_dev->layout.object_size,
2238 rbd_dev->opts->alloc_hint_flags);
2239 }
2240
2241 if (rbd_obj_is_entire(obj_req))
2242 opcode = CEPH_OSD_OP_WRITEFULL;
2243 else
2244 opcode = CEPH_OSD_OP_WRITE;
2245
2246 osd_req_op_extent_init(osd_req, which, opcode,
2247 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2248 rbd_osd_setup_data(osd_req, which);
2249 }
2250
rbd_obj_init_write(struct rbd_obj_request * obj_req)2251 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2252 {
2253 int ret;
2254
2255 /* reverse map the entire object onto the parent */
2256 ret = rbd_obj_calc_img_extents(obj_req, true);
2257 if (ret)
2258 return ret;
2259
2260 obj_req->write_state = RBD_OBJ_WRITE_START;
2261 return 0;
2262 }
2263
truncate_or_zero_opcode(struct rbd_obj_request * obj_req)2264 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2265 {
2266 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2267 CEPH_OSD_OP_ZERO;
2268 }
2269
__rbd_osd_setup_discard_ops(struct ceph_osd_request * osd_req,int which)2270 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2271 int which)
2272 {
2273 struct rbd_obj_request *obj_req = osd_req->r_priv;
2274
2275 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2276 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2277 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2278 } else {
2279 osd_req_op_extent_init(osd_req, which,
2280 truncate_or_zero_opcode(obj_req),
2281 obj_req->ex.oe_off, obj_req->ex.oe_len,
2282 0, 0);
2283 }
2284 }
2285
rbd_obj_init_discard(struct rbd_obj_request * obj_req)2286 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2287 {
2288 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2289 u64 off, next_off;
2290 int ret;
2291
2292 /*
2293 * Align the range to alloc_size boundary and punt on discards
2294 * that are too small to free up any space.
2295 *
2296 * alloc_size == object_size && is_tail() is a special case for
2297 * filestore with filestore_punch_hole = false, needed to allow
2298 * truncate (in addition to delete).
2299 */
2300 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2301 !rbd_obj_is_tail(obj_req)) {
2302 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2303 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2304 rbd_dev->opts->alloc_size);
2305 if (off >= next_off)
2306 return 1;
2307
2308 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2309 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2310 off, next_off - off);
2311 obj_req->ex.oe_off = off;
2312 obj_req->ex.oe_len = next_off - off;
2313 }
2314
2315 /* reverse map the entire object onto the parent */
2316 ret = rbd_obj_calc_img_extents(obj_req, true);
2317 if (ret)
2318 return ret;
2319
2320 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2321 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2322 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2323
2324 obj_req->write_state = RBD_OBJ_WRITE_START;
2325 return 0;
2326 }
2327
__rbd_osd_setup_zeroout_ops(struct ceph_osd_request * osd_req,int which)2328 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2329 int which)
2330 {
2331 struct rbd_obj_request *obj_req = osd_req->r_priv;
2332 u16 opcode;
2333
2334 if (rbd_obj_is_entire(obj_req)) {
2335 if (obj_req->num_img_extents) {
2336 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2337 osd_req_op_init(osd_req, which++,
2338 CEPH_OSD_OP_CREATE, 0);
2339 opcode = CEPH_OSD_OP_TRUNCATE;
2340 } else {
2341 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2342 osd_req_op_init(osd_req, which++,
2343 CEPH_OSD_OP_DELETE, 0);
2344 opcode = 0;
2345 }
2346 } else {
2347 opcode = truncate_or_zero_opcode(obj_req);
2348 }
2349
2350 if (opcode)
2351 osd_req_op_extent_init(osd_req, which, opcode,
2352 obj_req->ex.oe_off, obj_req->ex.oe_len,
2353 0, 0);
2354 }
2355
rbd_obj_init_zeroout(struct rbd_obj_request * obj_req)2356 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2357 {
2358 int ret;
2359
2360 /* reverse map the entire object onto the parent */
2361 ret = rbd_obj_calc_img_extents(obj_req, true);
2362 if (ret)
2363 return ret;
2364
2365 if (!obj_req->num_img_extents) {
2366 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2367 if (rbd_obj_is_entire(obj_req))
2368 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2369 }
2370
2371 obj_req->write_state = RBD_OBJ_WRITE_START;
2372 return 0;
2373 }
2374
count_write_ops(struct rbd_obj_request * obj_req)2375 static int count_write_ops(struct rbd_obj_request *obj_req)
2376 {
2377 struct rbd_img_request *img_req = obj_req->img_request;
2378
2379 switch (img_req->op_type) {
2380 case OBJ_OP_WRITE:
2381 if (!use_object_map(img_req->rbd_dev) ||
2382 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2383 return 2; /* setallochint + write/writefull */
2384
2385 return 1; /* write/writefull */
2386 case OBJ_OP_DISCARD:
2387 return 1; /* delete/truncate/zero */
2388 case OBJ_OP_ZEROOUT:
2389 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2390 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2391 return 2; /* create + truncate */
2392
2393 return 1; /* delete/truncate/zero */
2394 default:
2395 BUG();
2396 }
2397 }
2398
rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2399 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2400 int which)
2401 {
2402 struct rbd_obj_request *obj_req = osd_req->r_priv;
2403
2404 switch (obj_req->img_request->op_type) {
2405 case OBJ_OP_WRITE:
2406 __rbd_osd_setup_write_ops(osd_req, which);
2407 break;
2408 case OBJ_OP_DISCARD:
2409 __rbd_osd_setup_discard_ops(osd_req, which);
2410 break;
2411 case OBJ_OP_ZEROOUT:
2412 __rbd_osd_setup_zeroout_ops(osd_req, which);
2413 break;
2414 default:
2415 BUG();
2416 }
2417 }
2418
2419 /*
2420 * Prune the list of object requests (adjust offset and/or length, drop
2421 * redundant requests). Prepare object request state machines and image
2422 * request state machine for execution.
2423 */
__rbd_img_fill_request(struct rbd_img_request * img_req)2424 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2425 {
2426 struct rbd_obj_request *obj_req, *next_obj_req;
2427 int ret;
2428
2429 for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2430 switch (img_req->op_type) {
2431 case OBJ_OP_READ:
2432 ret = rbd_obj_init_read(obj_req);
2433 break;
2434 case OBJ_OP_WRITE:
2435 ret = rbd_obj_init_write(obj_req);
2436 break;
2437 case OBJ_OP_DISCARD:
2438 ret = rbd_obj_init_discard(obj_req);
2439 break;
2440 case OBJ_OP_ZEROOUT:
2441 ret = rbd_obj_init_zeroout(obj_req);
2442 break;
2443 default:
2444 BUG();
2445 }
2446 if (ret < 0)
2447 return ret;
2448 if (ret > 0) {
2449 rbd_img_obj_request_del(img_req, obj_req);
2450 continue;
2451 }
2452 }
2453
2454 img_req->state = RBD_IMG_START;
2455 return 0;
2456 }
2457
2458 union rbd_img_fill_iter {
2459 struct ceph_bio_iter bio_iter;
2460 struct ceph_bvec_iter bvec_iter;
2461 };
2462
2463 struct rbd_img_fill_ctx {
2464 enum obj_request_type pos_type;
2465 union rbd_img_fill_iter *pos;
2466 union rbd_img_fill_iter iter;
2467 ceph_object_extent_fn_t set_pos_fn;
2468 ceph_object_extent_fn_t count_fn;
2469 ceph_object_extent_fn_t copy_fn;
2470 };
2471
alloc_object_extent(void * arg)2472 static struct ceph_object_extent *alloc_object_extent(void *arg)
2473 {
2474 struct rbd_img_request *img_req = arg;
2475 struct rbd_obj_request *obj_req;
2476
2477 obj_req = rbd_obj_request_create();
2478 if (!obj_req)
2479 return NULL;
2480
2481 rbd_img_obj_request_add(img_req, obj_req);
2482 return &obj_req->ex;
2483 }
2484
2485 /*
2486 * While su != os && sc == 1 is technically not fancy (it's the same
2487 * layout as su == os && sc == 1), we can't use the nocopy path for it
2488 * because ->set_pos_fn() should be called only once per object.
2489 * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2490 * treat su != os && sc == 1 as fancy.
2491 */
rbd_layout_is_fancy(struct ceph_file_layout * l)2492 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2493 {
2494 return l->stripe_unit != l->object_size;
2495 }
2496
rbd_img_fill_request_nocopy(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2497 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2498 struct ceph_file_extent *img_extents,
2499 u32 num_img_extents,
2500 struct rbd_img_fill_ctx *fctx)
2501 {
2502 u32 i;
2503 int ret;
2504
2505 img_req->data_type = fctx->pos_type;
2506
2507 /*
2508 * Create object requests and set each object request's starting
2509 * position in the provided bio (list) or bio_vec array.
2510 */
2511 fctx->iter = *fctx->pos;
2512 for (i = 0; i < num_img_extents; i++) {
2513 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2514 img_extents[i].fe_off,
2515 img_extents[i].fe_len,
2516 &img_req->object_extents,
2517 alloc_object_extent, img_req,
2518 fctx->set_pos_fn, &fctx->iter);
2519 if (ret)
2520 return ret;
2521 }
2522
2523 return __rbd_img_fill_request(img_req);
2524 }
2525
2526 /*
2527 * Map a list of image extents to a list of object extents, create the
2528 * corresponding object requests (normally each to a different object,
2529 * but not always) and add them to @img_req. For each object request,
2530 * set up its data descriptor to point to the corresponding chunk(s) of
2531 * @fctx->pos data buffer.
2532 *
2533 * Because ceph_file_to_extents() will merge adjacent object extents
2534 * together, each object request's data descriptor may point to multiple
2535 * different chunks of @fctx->pos data buffer.
2536 *
2537 * @fctx->pos data buffer is assumed to be large enough.
2538 */
rbd_img_fill_request(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2539 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2540 struct ceph_file_extent *img_extents,
2541 u32 num_img_extents,
2542 struct rbd_img_fill_ctx *fctx)
2543 {
2544 struct rbd_device *rbd_dev = img_req->rbd_dev;
2545 struct rbd_obj_request *obj_req;
2546 u32 i;
2547 int ret;
2548
2549 if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2550 !rbd_layout_is_fancy(&rbd_dev->layout))
2551 return rbd_img_fill_request_nocopy(img_req, img_extents,
2552 num_img_extents, fctx);
2553
2554 img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2555
2556 /*
2557 * Create object requests and determine ->bvec_count for each object
2558 * request. Note that ->bvec_count sum over all object requests may
2559 * be greater than the number of bio_vecs in the provided bio (list)
2560 * or bio_vec array because when mapped, those bio_vecs can straddle
2561 * stripe unit boundaries.
2562 */
2563 fctx->iter = *fctx->pos;
2564 for (i = 0; i < num_img_extents; i++) {
2565 ret = ceph_file_to_extents(&rbd_dev->layout,
2566 img_extents[i].fe_off,
2567 img_extents[i].fe_len,
2568 &img_req->object_extents,
2569 alloc_object_extent, img_req,
2570 fctx->count_fn, &fctx->iter);
2571 if (ret)
2572 return ret;
2573 }
2574
2575 for_each_obj_request(img_req, obj_req) {
2576 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2577 sizeof(*obj_req->bvec_pos.bvecs),
2578 GFP_NOIO);
2579 if (!obj_req->bvec_pos.bvecs)
2580 return -ENOMEM;
2581 }
2582
2583 /*
2584 * Fill in each object request's private bio_vec array, splitting and
2585 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2586 */
2587 fctx->iter = *fctx->pos;
2588 for (i = 0; i < num_img_extents; i++) {
2589 ret = ceph_iterate_extents(&rbd_dev->layout,
2590 img_extents[i].fe_off,
2591 img_extents[i].fe_len,
2592 &img_req->object_extents,
2593 fctx->copy_fn, &fctx->iter);
2594 if (ret)
2595 return ret;
2596 }
2597
2598 return __rbd_img_fill_request(img_req);
2599 }
2600
rbd_img_fill_nodata(struct rbd_img_request * img_req,u64 off,u64 len)2601 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2602 u64 off, u64 len)
2603 {
2604 struct ceph_file_extent ex = { off, len };
2605 union rbd_img_fill_iter dummy = {};
2606 struct rbd_img_fill_ctx fctx = {
2607 .pos_type = OBJ_REQUEST_NODATA,
2608 .pos = &dummy,
2609 };
2610
2611 return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2612 }
2613
set_bio_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2614 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2615 {
2616 struct rbd_obj_request *obj_req =
2617 container_of(ex, struct rbd_obj_request, ex);
2618 struct ceph_bio_iter *it = arg;
2619
2620 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2621 obj_req->bio_pos = *it;
2622 ceph_bio_iter_advance(it, bytes);
2623 }
2624
count_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2625 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2626 {
2627 struct rbd_obj_request *obj_req =
2628 container_of(ex, struct rbd_obj_request, ex);
2629 struct ceph_bio_iter *it = arg;
2630
2631 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2632 ceph_bio_iter_advance_step(it, bytes, ({
2633 obj_req->bvec_count++;
2634 }));
2635
2636 }
2637
copy_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2638 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2639 {
2640 struct rbd_obj_request *obj_req =
2641 container_of(ex, struct rbd_obj_request, ex);
2642 struct ceph_bio_iter *it = arg;
2643
2644 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2645 ceph_bio_iter_advance_step(it, bytes, ({
2646 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2647 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2648 }));
2649 }
2650
__rbd_img_fill_from_bio(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bio_iter * bio_pos)2651 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2652 struct ceph_file_extent *img_extents,
2653 u32 num_img_extents,
2654 struct ceph_bio_iter *bio_pos)
2655 {
2656 struct rbd_img_fill_ctx fctx = {
2657 .pos_type = OBJ_REQUEST_BIO,
2658 .pos = (union rbd_img_fill_iter *)bio_pos,
2659 .set_pos_fn = set_bio_pos,
2660 .count_fn = count_bio_bvecs,
2661 .copy_fn = copy_bio_bvecs,
2662 };
2663
2664 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2665 &fctx);
2666 }
2667
rbd_img_fill_from_bio(struct rbd_img_request * img_req,u64 off,u64 len,struct bio * bio)2668 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2669 u64 off, u64 len, struct bio *bio)
2670 {
2671 struct ceph_file_extent ex = { off, len };
2672 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2673
2674 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2675 }
2676
set_bvec_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2677 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2678 {
2679 struct rbd_obj_request *obj_req =
2680 container_of(ex, struct rbd_obj_request, ex);
2681 struct ceph_bvec_iter *it = arg;
2682
2683 obj_req->bvec_pos = *it;
2684 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2685 ceph_bvec_iter_advance(it, bytes);
2686 }
2687
count_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2688 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2689 {
2690 struct rbd_obj_request *obj_req =
2691 container_of(ex, struct rbd_obj_request, ex);
2692 struct ceph_bvec_iter *it = arg;
2693
2694 ceph_bvec_iter_advance_step(it, bytes, ({
2695 obj_req->bvec_count++;
2696 }));
2697 }
2698
copy_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2699 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2700 {
2701 struct rbd_obj_request *obj_req =
2702 container_of(ex, struct rbd_obj_request, ex);
2703 struct ceph_bvec_iter *it = arg;
2704
2705 ceph_bvec_iter_advance_step(it, bytes, ({
2706 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2707 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2708 }));
2709 }
2710
__rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bvec_iter * bvec_pos)2711 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2712 struct ceph_file_extent *img_extents,
2713 u32 num_img_extents,
2714 struct ceph_bvec_iter *bvec_pos)
2715 {
2716 struct rbd_img_fill_ctx fctx = {
2717 .pos_type = OBJ_REQUEST_BVECS,
2718 .pos = (union rbd_img_fill_iter *)bvec_pos,
2719 .set_pos_fn = set_bvec_pos,
2720 .count_fn = count_bvecs,
2721 .copy_fn = copy_bvecs,
2722 };
2723
2724 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2725 &fctx);
2726 }
2727
rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct bio_vec * bvecs)2728 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2729 struct ceph_file_extent *img_extents,
2730 u32 num_img_extents,
2731 struct bio_vec *bvecs)
2732 {
2733 struct ceph_bvec_iter it = {
2734 .bvecs = bvecs,
2735 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2736 num_img_extents) },
2737 };
2738
2739 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2740 &it);
2741 }
2742
rbd_img_handle_request_work(struct work_struct * work)2743 static void rbd_img_handle_request_work(struct work_struct *work)
2744 {
2745 struct rbd_img_request *img_req =
2746 container_of(work, struct rbd_img_request, work);
2747
2748 rbd_img_handle_request(img_req, img_req->work_result);
2749 }
2750
rbd_img_schedule(struct rbd_img_request * img_req,int result)2751 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2752 {
2753 INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2754 img_req->work_result = result;
2755 queue_work(rbd_wq, &img_req->work);
2756 }
2757
rbd_obj_may_exist(struct rbd_obj_request * obj_req)2758 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2759 {
2760 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2761
2762 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2763 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2764 return true;
2765 }
2766
2767 dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2768 obj_req->ex.oe_objno);
2769 return false;
2770 }
2771
rbd_obj_read_object(struct rbd_obj_request * obj_req)2772 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2773 {
2774 struct ceph_osd_request *osd_req;
2775 int ret;
2776
2777 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2778 if (IS_ERR(osd_req))
2779 return PTR_ERR(osd_req);
2780
2781 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2782 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2783 rbd_osd_setup_data(osd_req, 0);
2784 rbd_osd_format_read(osd_req);
2785
2786 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2787 if (ret)
2788 return ret;
2789
2790 rbd_osd_submit(osd_req);
2791 return 0;
2792 }
2793
rbd_obj_read_from_parent(struct rbd_obj_request * obj_req)2794 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2795 {
2796 struct rbd_img_request *img_req = obj_req->img_request;
2797 struct rbd_device *parent = img_req->rbd_dev->parent;
2798 struct rbd_img_request *child_img_req;
2799 int ret;
2800
2801 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2802 if (!child_img_req)
2803 return -ENOMEM;
2804
2805 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2806 __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2807 child_img_req->obj_request = obj_req;
2808
2809 down_read(&parent->header_rwsem);
2810 rbd_img_capture_header(child_img_req);
2811 up_read(&parent->header_rwsem);
2812
2813 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2814 obj_req);
2815
2816 if (!rbd_img_is_write(img_req)) {
2817 switch (img_req->data_type) {
2818 case OBJ_REQUEST_BIO:
2819 ret = __rbd_img_fill_from_bio(child_img_req,
2820 obj_req->img_extents,
2821 obj_req->num_img_extents,
2822 &obj_req->bio_pos);
2823 break;
2824 case OBJ_REQUEST_BVECS:
2825 case OBJ_REQUEST_OWN_BVECS:
2826 ret = __rbd_img_fill_from_bvecs(child_img_req,
2827 obj_req->img_extents,
2828 obj_req->num_img_extents,
2829 &obj_req->bvec_pos);
2830 break;
2831 default:
2832 BUG();
2833 }
2834 } else {
2835 ret = rbd_img_fill_from_bvecs(child_img_req,
2836 obj_req->img_extents,
2837 obj_req->num_img_extents,
2838 obj_req->copyup_bvecs);
2839 }
2840 if (ret) {
2841 rbd_img_request_destroy(child_img_req);
2842 return ret;
2843 }
2844
2845 /* avoid parent chain recursion */
2846 rbd_img_schedule(child_img_req, 0);
2847 return 0;
2848 }
2849
rbd_obj_advance_read(struct rbd_obj_request * obj_req,int * result)2850 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2851 {
2852 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2853 int ret;
2854
2855 again:
2856 switch (obj_req->read_state) {
2857 case RBD_OBJ_READ_START:
2858 rbd_assert(!*result);
2859
2860 if (!rbd_obj_may_exist(obj_req)) {
2861 *result = -ENOENT;
2862 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2863 goto again;
2864 }
2865
2866 ret = rbd_obj_read_object(obj_req);
2867 if (ret) {
2868 *result = ret;
2869 return true;
2870 }
2871 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2872 return false;
2873 case RBD_OBJ_READ_OBJECT:
2874 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2875 /* reverse map this object extent onto the parent */
2876 ret = rbd_obj_calc_img_extents(obj_req, false);
2877 if (ret) {
2878 *result = ret;
2879 return true;
2880 }
2881 if (obj_req->num_img_extents) {
2882 ret = rbd_obj_read_from_parent(obj_req);
2883 if (ret) {
2884 *result = ret;
2885 return true;
2886 }
2887 obj_req->read_state = RBD_OBJ_READ_PARENT;
2888 return false;
2889 }
2890 }
2891
2892 /*
2893 * -ENOENT means a hole in the image -- zero-fill the entire
2894 * length of the request. A short read also implies zero-fill
2895 * to the end of the request.
2896 */
2897 if (*result == -ENOENT) {
2898 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2899 *result = 0;
2900 } else if (*result >= 0) {
2901 if (*result < obj_req->ex.oe_len)
2902 rbd_obj_zero_range(obj_req, *result,
2903 obj_req->ex.oe_len - *result);
2904 else
2905 rbd_assert(*result == obj_req->ex.oe_len);
2906 *result = 0;
2907 }
2908 return true;
2909 case RBD_OBJ_READ_PARENT:
2910 /*
2911 * The parent image is read only up to the overlap -- zero-fill
2912 * from the overlap to the end of the request.
2913 */
2914 if (!*result) {
2915 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2916
2917 if (obj_overlap < obj_req->ex.oe_len)
2918 rbd_obj_zero_range(obj_req, obj_overlap,
2919 obj_req->ex.oe_len - obj_overlap);
2920 }
2921 return true;
2922 default:
2923 BUG();
2924 }
2925 }
2926
rbd_obj_write_is_noop(struct rbd_obj_request * obj_req)2927 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2928 {
2929 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2930
2931 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2932 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2933
2934 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2935 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2936 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2937 return true;
2938 }
2939
2940 return false;
2941 }
2942
2943 /*
2944 * Return:
2945 * 0 - object map update sent
2946 * 1 - object map update isn't needed
2947 * <0 - error
2948 */
rbd_obj_write_pre_object_map(struct rbd_obj_request * obj_req)2949 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2950 {
2951 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2952 u8 new_state;
2953
2954 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2955 return 1;
2956
2957 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2958 new_state = OBJECT_PENDING;
2959 else
2960 new_state = OBJECT_EXISTS;
2961
2962 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2963 }
2964
rbd_obj_write_object(struct rbd_obj_request * obj_req)2965 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2966 {
2967 struct ceph_osd_request *osd_req;
2968 int num_ops = count_write_ops(obj_req);
2969 int which = 0;
2970 int ret;
2971
2972 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2973 num_ops++; /* stat */
2974
2975 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2976 if (IS_ERR(osd_req))
2977 return PTR_ERR(osd_req);
2978
2979 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2980 ret = rbd_osd_setup_stat(osd_req, which++);
2981 if (ret)
2982 return ret;
2983 }
2984
2985 rbd_osd_setup_write_ops(osd_req, which);
2986 rbd_osd_format_write(osd_req);
2987
2988 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2989 if (ret)
2990 return ret;
2991
2992 rbd_osd_submit(osd_req);
2993 return 0;
2994 }
2995
2996 /*
2997 * copyup_bvecs pages are never highmem pages
2998 */
is_zero_bvecs(struct bio_vec * bvecs,u32 bytes)2999 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3000 {
3001 struct ceph_bvec_iter it = {
3002 .bvecs = bvecs,
3003 .iter = { .bi_size = bytes },
3004 };
3005
3006 ceph_bvec_iter_advance_step(&it, bytes, ({
3007 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3008 return false;
3009 }));
3010 return true;
3011 }
3012
3013 #define MODS_ONLY U32_MAX
3014
rbd_obj_copyup_empty_snapc(struct rbd_obj_request * obj_req,u32 bytes)3015 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3016 u32 bytes)
3017 {
3018 struct ceph_osd_request *osd_req;
3019 int ret;
3020
3021 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3022 rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3023
3024 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3025 if (IS_ERR(osd_req))
3026 return PTR_ERR(osd_req);
3027
3028 ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3029 if (ret)
3030 return ret;
3031
3032 rbd_osd_format_write(osd_req);
3033
3034 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3035 if (ret)
3036 return ret;
3037
3038 rbd_osd_submit(osd_req);
3039 return 0;
3040 }
3041
rbd_obj_copyup_current_snapc(struct rbd_obj_request * obj_req,u32 bytes)3042 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3043 u32 bytes)
3044 {
3045 struct ceph_osd_request *osd_req;
3046 int num_ops = count_write_ops(obj_req);
3047 int which = 0;
3048 int ret;
3049
3050 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3051
3052 if (bytes != MODS_ONLY)
3053 num_ops++; /* copyup */
3054
3055 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3056 if (IS_ERR(osd_req))
3057 return PTR_ERR(osd_req);
3058
3059 if (bytes != MODS_ONLY) {
3060 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3061 if (ret)
3062 return ret;
3063 }
3064
3065 rbd_osd_setup_write_ops(osd_req, which);
3066 rbd_osd_format_write(osd_req);
3067
3068 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3069 if (ret)
3070 return ret;
3071
3072 rbd_osd_submit(osd_req);
3073 return 0;
3074 }
3075
setup_copyup_bvecs(struct rbd_obj_request * obj_req,u64 obj_overlap)3076 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3077 {
3078 u32 i;
3079
3080 rbd_assert(!obj_req->copyup_bvecs);
3081 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3082 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3083 sizeof(*obj_req->copyup_bvecs),
3084 GFP_NOIO);
3085 if (!obj_req->copyup_bvecs)
3086 return -ENOMEM;
3087
3088 for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3089 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3090
3091 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3092 if (!obj_req->copyup_bvecs[i].bv_page)
3093 return -ENOMEM;
3094
3095 obj_req->copyup_bvecs[i].bv_offset = 0;
3096 obj_req->copyup_bvecs[i].bv_len = len;
3097 obj_overlap -= len;
3098 }
3099
3100 rbd_assert(!obj_overlap);
3101 return 0;
3102 }
3103
3104 /*
3105 * The target object doesn't exist. Read the data for the entire
3106 * target object up to the overlap point (if any) from the parent,
3107 * so we can use it for a copyup.
3108 */
rbd_obj_copyup_read_parent(struct rbd_obj_request * obj_req)3109 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3110 {
3111 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3112 int ret;
3113
3114 rbd_assert(obj_req->num_img_extents);
3115 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3116 rbd_dev->parent_overlap);
3117 if (!obj_req->num_img_extents) {
3118 /*
3119 * The overlap has become 0 (most likely because the
3120 * image has been flattened). Re-submit the original write
3121 * request -- pass MODS_ONLY since the copyup isn't needed
3122 * anymore.
3123 */
3124 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3125 }
3126
3127 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3128 if (ret)
3129 return ret;
3130
3131 return rbd_obj_read_from_parent(obj_req);
3132 }
3133
rbd_obj_copyup_object_maps(struct rbd_obj_request * obj_req)3134 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3135 {
3136 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3137 struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3138 u8 new_state;
3139 u32 i;
3140 int ret;
3141
3142 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3143
3144 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3145 return;
3146
3147 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3148 return;
3149
3150 for (i = 0; i < snapc->num_snaps; i++) {
3151 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3152 i + 1 < snapc->num_snaps)
3153 new_state = OBJECT_EXISTS_CLEAN;
3154 else
3155 new_state = OBJECT_EXISTS;
3156
3157 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3158 new_state, NULL);
3159 if (ret < 0) {
3160 obj_req->pending.result = ret;
3161 return;
3162 }
3163
3164 rbd_assert(!ret);
3165 obj_req->pending.num_pending++;
3166 }
3167 }
3168
rbd_obj_copyup_write_object(struct rbd_obj_request * obj_req)3169 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3170 {
3171 u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3172 int ret;
3173
3174 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3175
3176 /*
3177 * Only send non-zero copyup data to save some I/O and network
3178 * bandwidth -- zero copyup data is equivalent to the object not
3179 * existing.
3180 */
3181 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3182 bytes = 0;
3183
3184 if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3185 /*
3186 * Send a copyup request with an empty snapshot context to
3187 * deep-copyup the object through all existing snapshots.
3188 * A second request with the current snapshot context will be
3189 * sent for the actual modification.
3190 */
3191 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3192 if (ret) {
3193 obj_req->pending.result = ret;
3194 return;
3195 }
3196
3197 obj_req->pending.num_pending++;
3198 bytes = MODS_ONLY;
3199 }
3200
3201 ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3202 if (ret) {
3203 obj_req->pending.result = ret;
3204 return;
3205 }
3206
3207 obj_req->pending.num_pending++;
3208 }
3209
rbd_obj_advance_copyup(struct rbd_obj_request * obj_req,int * result)3210 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3211 {
3212 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3213 int ret;
3214
3215 again:
3216 switch (obj_req->copyup_state) {
3217 case RBD_OBJ_COPYUP_START:
3218 rbd_assert(!*result);
3219
3220 ret = rbd_obj_copyup_read_parent(obj_req);
3221 if (ret) {
3222 *result = ret;
3223 return true;
3224 }
3225 if (obj_req->num_img_extents)
3226 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3227 else
3228 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3229 return false;
3230 case RBD_OBJ_COPYUP_READ_PARENT:
3231 if (*result)
3232 return true;
3233
3234 if (is_zero_bvecs(obj_req->copyup_bvecs,
3235 rbd_obj_img_extents_bytes(obj_req))) {
3236 dout("%s %p detected zeros\n", __func__, obj_req);
3237 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3238 }
3239
3240 rbd_obj_copyup_object_maps(obj_req);
3241 if (!obj_req->pending.num_pending) {
3242 *result = obj_req->pending.result;
3243 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3244 goto again;
3245 }
3246 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3247 return false;
3248 case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3249 if (!pending_result_dec(&obj_req->pending, result))
3250 return false;
3251 fallthrough;
3252 case RBD_OBJ_COPYUP_OBJECT_MAPS:
3253 if (*result) {
3254 rbd_warn(rbd_dev, "snap object map update failed: %d",
3255 *result);
3256 return true;
3257 }
3258
3259 rbd_obj_copyup_write_object(obj_req);
3260 if (!obj_req->pending.num_pending) {
3261 *result = obj_req->pending.result;
3262 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3263 goto again;
3264 }
3265 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3266 return false;
3267 case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3268 if (!pending_result_dec(&obj_req->pending, result))
3269 return false;
3270 fallthrough;
3271 case RBD_OBJ_COPYUP_WRITE_OBJECT:
3272 return true;
3273 default:
3274 BUG();
3275 }
3276 }
3277
3278 /*
3279 * Return:
3280 * 0 - object map update sent
3281 * 1 - object map update isn't needed
3282 * <0 - error
3283 */
rbd_obj_write_post_object_map(struct rbd_obj_request * obj_req)3284 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3285 {
3286 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3287 u8 current_state = OBJECT_PENDING;
3288
3289 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3290 return 1;
3291
3292 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3293 return 1;
3294
3295 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3296 ¤t_state);
3297 }
3298
rbd_obj_advance_write(struct rbd_obj_request * obj_req,int * result)3299 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3300 {
3301 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3302 int ret;
3303
3304 again:
3305 switch (obj_req->write_state) {
3306 case RBD_OBJ_WRITE_START:
3307 rbd_assert(!*result);
3308
3309 rbd_obj_set_copyup_enabled(obj_req);
3310 if (rbd_obj_write_is_noop(obj_req))
3311 return true;
3312
3313 ret = rbd_obj_write_pre_object_map(obj_req);
3314 if (ret < 0) {
3315 *result = ret;
3316 return true;
3317 }
3318 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3319 if (ret > 0)
3320 goto again;
3321 return false;
3322 case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3323 if (*result) {
3324 rbd_warn(rbd_dev, "pre object map update failed: %d",
3325 *result);
3326 return true;
3327 }
3328 ret = rbd_obj_write_object(obj_req);
3329 if (ret) {
3330 *result = ret;
3331 return true;
3332 }
3333 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3334 return false;
3335 case RBD_OBJ_WRITE_OBJECT:
3336 if (*result == -ENOENT) {
3337 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3338 *result = 0;
3339 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3340 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3341 goto again;
3342 }
3343 /*
3344 * On a non-existent object:
3345 * delete - -ENOENT, truncate/zero - 0
3346 */
3347 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3348 *result = 0;
3349 }
3350 if (*result)
3351 return true;
3352
3353 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3354 goto again;
3355 case __RBD_OBJ_WRITE_COPYUP:
3356 if (!rbd_obj_advance_copyup(obj_req, result))
3357 return false;
3358 fallthrough;
3359 case RBD_OBJ_WRITE_COPYUP:
3360 if (*result) {
3361 rbd_warn(rbd_dev, "copyup failed: %d", *result);
3362 return true;
3363 }
3364 ret = rbd_obj_write_post_object_map(obj_req);
3365 if (ret < 0) {
3366 *result = ret;
3367 return true;
3368 }
3369 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3370 if (ret > 0)
3371 goto again;
3372 return false;
3373 case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3374 if (*result)
3375 rbd_warn(rbd_dev, "post object map update failed: %d",
3376 *result);
3377 return true;
3378 default:
3379 BUG();
3380 }
3381 }
3382
3383 /*
3384 * Return true if @obj_req is completed.
3385 */
__rbd_obj_handle_request(struct rbd_obj_request * obj_req,int * result)3386 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3387 int *result)
3388 {
3389 struct rbd_img_request *img_req = obj_req->img_request;
3390 struct rbd_device *rbd_dev = img_req->rbd_dev;
3391 bool done;
3392
3393 mutex_lock(&obj_req->state_mutex);
3394 if (!rbd_img_is_write(img_req))
3395 done = rbd_obj_advance_read(obj_req, result);
3396 else
3397 done = rbd_obj_advance_write(obj_req, result);
3398 mutex_unlock(&obj_req->state_mutex);
3399
3400 if (done && *result) {
3401 rbd_assert(*result < 0);
3402 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3403 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3404 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3405 }
3406 return done;
3407 }
3408
3409 /*
3410 * This is open-coded in rbd_img_handle_request() to avoid parent chain
3411 * recursion.
3412 */
rbd_obj_handle_request(struct rbd_obj_request * obj_req,int result)3413 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3414 {
3415 if (__rbd_obj_handle_request(obj_req, &result))
3416 rbd_img_handle_request(obj_req->img_request, result);
3417 }
3418
need_exclusive_lock(struct rbd_img_request * img_req)3419 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3420 {
3421 struct rbd_device *rbd_dev = img_req->rbd_dev;
3422
3423 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3424 return false;
3425
3426 if (rbd_is_ro(rbd_dev))
3427 return false;
3428
3429 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3430 if (rbd_dev->opts->lock_on_read ||
3431 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3432 return true;
3433
3434 return rbd_img_is_write(img_req);
3435 }
3436
rbd_lock_add_request(struct rbd_img_request * img_req)3437 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3438 {
3439 struct rbd_device *rbd_dev = img_req->rbd_dev;
3440 bool locked;
3441
3442 lockdep_assert_held(&rbd_dev->lock_rwsem);
3443 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3444 spin_lock(&rbd_dev->lock_lists_lock);
3445 rbd_assert(list_empty(&img_req->lock_item));
3446 if (!locked)
3447 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3448 else
3449 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3450 spin_unlock(&rbd_dev->lock_lists_lock);
3451 return locked;
3452 }
3453
rbd_lock_del_request(struct rbd_img_request * img_req)3454 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3455 {
3456 struct rbd_device *rbd_dev = img_req->rbd_dev;
3457 bool need_wakeup = false;
3458
3459 lockdep_assert_held(&rbd_dev->lock_rwsem);
3460 spin_lock(&rbd_dev->lock_lists_lock);
3461 if (!list_empty(&img_req->lock_item)) {
3462 list_del_init(&img_req->lock_item);
3463 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3464 list_empty(&rbd_dev->running_list));
3465 }
3466 spin_unlock(&rbd_dev->lock_lists_lock);
3467 if (need_wakeup)
3468 complete(&rbd_dev->releasing_wait);
3469 }
3470
rbd_img_exclusive_lock(struct rbd_img_request * img_req)3471 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3472 {
3473 struct rbd_device *rbd_dev = img_req->rbd_dev;
3474
3475 if (!need_exclusive_lock(img_req))
3476 return 1;
3477
3478 if (rbd_lock_add_request(img_req))
3479 return 1;
3480
3481 if (rbd_dev->opts->exclusive) {
3482 WARN_ON(1); /* lock got released? */
3483 return -EROFS;
3484 }
3485
3486 /*
3487 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3488 * and cancel_delayed_work() in wake_lock_waiters().
3489 */
3490 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3491 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3492 return 0;
3493 }
3494
rbd_img_object_requests(struct rbd_img_request * img_req)3495 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3496 {
3497 struct rbd_device *rbd_dev = img_req->rbd_dev;
3498 struct rbd_obj_request *obj_req;
3499
3500 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3501 rbd_assert(!need_exclusive_lock(img_req) ||
3502 __rbd_is_lock_owner(rbd_dev));
3503
3504 if (rbd_img_is_write(img_req)) {
3505 rbd_assert(!img_req->snapc);
3506 down_read(&rbd_dev->header_rwsem);
3507 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3508 up_read(&rbd_dev->header_rwsem);
3509 }
3510
3511 for_each_obj_request(img_req, obj_req) {
3512 int result = 0;
3513
3514 if (__rbd_obj_handle_request(obj_req, &result)) {
3515 if (result) {
3516 img_req->pending.result = result;
3517 return;
3518 }
3519 } else {
3520 img_req->pending.num_pending++;
3521 }
3522 }
3523 }
3524
rbd_img_advance(struct rbd_img_request * img_req,int * result)3525 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3526 {
3527 int ret;
3528
3529 again:
3530 switch (img_req->state) {
3531 case RBD_IMG_START:
3532 rbd_assert(!*result);
3533
3534 ret = rbd_img_exclusive_lock(img_req);
3535 if (ret < 0) {
3536 *result = ret;
3537 return true;
3538 }
3539 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3540 if (ret > 0)
3541 goto again;
3542 return false;
3543 case RBD_IMG_EXCLUSIVE_LOCK:
3544 if (*result)
3545 return true;
3546
3547 rbd_img_object_requests(img_req);
3548 if (!img_req->pending.num_pending) {
3549 *result = img_req->pending.result;
3550 img_req->state = RBD_IMG_OBJECT_REQUESTS;
3551 goto again;
3552 }
3553 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3554 return false;
3555 case __RBD_IMG_OBJECT_REQUESTS:
3556 if (!pending_result_dec(&img_req->pending, result))
3557 return false;
3558 fallthrough;
3559 case RBD_IMG_OBJECT_REQUESTS:
3560 return true;
3561 default:
3562 BUG();
3563 }
3564 }
3565
3566 /*
3567 * Return true if @img_req is completed.
3568 */
__rbd_img_handle_request(struct rbd_img_request * img_req,int * result)3569 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3570 int *result)
3571 {
3572 struct rbd_device *rbd_dev = img_req->rbd_dev;
3573 bool done;
3574
3575 if (need_exclusive_lock(img_req)) {
3576 down_read(&rbd_dev->lock_rwsem);
3577 mutex_lock(&img_req->state_mutex);
3578 done = rbd_img_advance(img_req, result);
3579 if (done)
3580 rbd_lock_del_request(img_req);
3581 mutex_unlock(&img_req->state_mutex);
3582 up_read(&rbd_dev->lock_rwsem);
3583 } else {
3584 mutex_lock(&img_req->state_mutex);
3585 done = rbd_img_advance(img_req, result);
3586 mutex_unlock(&img_req->state_mutex);
3587 }
3588
3589 if (done && *result) {
3590 rbd_assert(*result < 0);
3591 rbd_warn(rbd_dev, "%s%s result %d",
3592 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3593 obj_op_name(img_req->op_type), *result);
3594 }
3595 return done;
3596 }
3597
rbd_img_handle_request(struct rbd_img_request * img_req,int result)3598 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3599 {
3600 again:
3601 if (!__rbd_img_handle_request(img_req, &result))
3602 return;
3603
3604 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3605 struct rbd_obj_request *obj_req = img_req->obj_request;
3606
3607 rbd_img_request_destroy(img_req);
3608 if (__rbd_obj_handle_request(obj_req, &result)) {
3609 img_req = obj_req->img_request;
3610 goto again;
3611 }
3612 } else {
3613 struct request *rq = blk_mq_rq_from_pdu(img_req);
3614
3615 rbd_img_request_destroy(img_req);
3616 blk_mq_end_request(rq, errno_to_blk_status(result));
3617 }
3618 }
3619
3620 static const struct rbd_client_id rbd_empty_cid;
3621
rbd_cid_equal(const struct rbd_client_id * lhs,const struct rbd_client_id * rhs)3622 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3623 const struct rbd_client_id *rhs)
3624 {
3625 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3626 }
3627
rbd_get_cid(struct rbd_device * rbd_dev)3628 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3629 {
3630 struct rbd_client_id cid;
3631
3632 mutex_lock(&rbd_dev->watch_mutex);
3633 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3634 cid.handle = rbd_dev->watch_cookie;
3635 mutex_unlock(&rbd_dev->watch_mutex);
3636 return cid;
3637 }
3638
3639 /*
3640 * lock_rwsem must be held for write
3641 */
rbd_set_owner_cid(struct rbd_device * rbd_dev,const struct rbd_client_id * cid)3642 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3643 const struct rbd_client_id *cid)
3644 {
3645 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3646 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3647 cid->gid, cid->handle);
3648 rbd_dev->owner_cid = *cid; /* struct */
3649 }
3650
format_lock_cookie(struct rbd_device * rbd_dev,char * buf)3651 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3652 {
3653 mutex_lock(&rbd_dev->watch_mutex);
3654 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3655 mutex_unlock(&rbd_dev->watch_mutex);
3656 }
3657
__rbd_lock(struct rbd_device * rbd_dev,const char * cookie)3658 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3659 {
3660 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3661
3662 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3663 strcpy(rbd_dev->lock_cookie, cookie);
3664 rbd_set_owner_cid(rbd_dev, &cid);
3665 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3666 }
3667
3668 /*
3669 * lock_rwsem must be held for write
3670 */
rbd_lock(struct rbd_device * rbd_dev)3671 static int rbd_lock(struct rbd_device *rbd_dev)
3672 {
3673 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3674 char cookie[32];
3675 int ret;
3676
3677 WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3678 rbd_dev->lock_cookie[0] != '\0');
3679
3680 format_lock_cookie(rbd_dev, cookie);
3681 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3682 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3683 RBD_LOCK_TAG, "", 0);
3684 if (ret && ret != -EEXIST)
3685 return ret;
3686
3687 __rbd_lock(rbd_dev, cookie);
3688 return 0;
3689 }
3690
3691 /*
3692 * lock_rwsem must be held for write
3693 */
rbd_unlock(struct rbd_device * rbd_dev)3694 static void rbd_unlock(struct rbd_device *rbd_dev)
3695 {
3696 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3697 int ret;
3698
3699 WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3700 rbd_dev->lock_cookie[0] == '\0');
3701
3702 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3703 RBD_LOCK_NAME, rbd_dev->lock_cookie);
3704 if (ret && ret != -ENOENT)
3705 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3706
3707 /* treat errors as the image is unlocked */
3708 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3709 rbd_dev->lock_cookie[0] = '\0';
3710 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3711 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3712 }
3713
__rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op,struct page *** preply_pages,size_t * preply_len)3714 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3715 enum rbd_notify_op notify_op,
3716 struct page ***preply_pages,
3717 size_t *preply_len)
3718 {
3719 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3720 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3721 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3722 int buf_size = sizeof(buf);
3723 void *p = buf;
3724
3725 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3726
3727 /* encode *LockPayload NotifyMessage (op + ClientId) */
3728 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3729 ceph_encode_32(&p, notify_op);
3730 ceph_encode_64(&p, cid.gid);
3731 ceph_encode_64(&p, cid.handle);
3732
3733 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3734 &rbd_dev->header_oloc, buf, buf_size,
3735 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3736 }
3737
rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op)3738 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3739 enum rbd_notify_op notify_op)
3740 {
3741 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3742 }
3743
rbd_notify_acquired_lock(struct work_struct * work)3744 static void rbd_notify_acquired_lock(struct work_struct *work)
3745 {
3746 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3747 acquired_lock_work);
3748
3749 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3750 }
3751
rbd_notify_released_lock(struct work_struct * work)3752 static void rbd_notify_released_lock(struct work_struct *work)
3753 {
3754 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3755 released_lock_work);
3756
3757 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3758 }
3759
rbd_request_lock(struct rbd_device * rbd_dev)3760 static int rbd_request_lock(struct rbd_device *rbd_dev)
3761 {
3762 struct page **reply_pages;
3763 size_t reply_len;
3764 bool lock_owner_responded = false;
3765 int ret;
3766
3767 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3768
3769 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3770 &reply_pages, &reply_len);
3771 if (ret && ret != -ETIMEDOUT) {
3772 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3773 goto out;
3774 }
3775
3776 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3777 void *p = page_address(reply_pages[0]);
3778 void *const end = p + reply_len;
3779 u32 n;
3780
3781 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3782 while (n--) {
3783 u8 struct_v;
3784 u32 len;
3785
3786 ceph_decode_need(&p, end, 8 + 8, e_inval);
3787 p += 8 + 8; /* skip gid and cookie */
3788
3789 ceph_decode_32_safe(&p, end, len, e_inval);
3790 if (!len)
3791 continue;
3792
3793 if (lock_owner_responded) {
3794 rbd_warn(rbd_dev,
3795 "duplicate lock owners detected");
3796 ret = -EIO;
3797 goto out;
3798 }
3799
3800 lock_owner_responded = true;
3801 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3802 &struct_v, &len);
3803 if (ret) {
3804 rbd_warn(rbd_dev,
3805 "failed to decode ResponseMessage: %d",
3806 ret);
3807 goto e_inval;
3808 }
3809
3810 ret = ceph_decode_32(&p);
3811 }
3812 }
3813
3814 if (!lock_owner_responded) {
3815 rbd_warn(rbd_dev, "no lock owners detected");
3816 ret = -ETIMEDOUT;
3817 }
3818
3819 out:
3820 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3821 return ret;
3822
3823 e_inval:
3824 ret = -EINVAL;
3825 goto out;
3826 }
3827
3828 /*
3829 * Either image request state machine(s) or rbd_add_acquire_lock()
3830 * (i.e. "rbd map").
3831 */
wake_lock_waiters(struct rbd_device * rbd_dev,int result)3832 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3833 {
3834 struct rbd_img_request *img_req;
3835
3836 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3837 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3838
3839 cancel_delayed_work(&rbd_dev->lock_dwork);
3840 if (!completion_done(&rbd_dev->acquire_wait)) {
3841 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3842 list_empty(&rbd_dev->running_list));
3843 rbd_dev->acquire_err = result;
3844 complete_all(&rbd_dev->acquire_wait);
3845 return;
3846 }
3847
3848 while (!list_empty(&rbd_dev->acquiring_list)) {
3849 img_req = list_first_entry(&rbd_dev->acquiring_list,
3850 struct rbd_img_request, lock_item);
3851 mutex_lock(&img_req->state_mutex);
3852 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3853 if (!result)
3854 list_move_tail(&img_req->lock_item,
3855 &rbd_dev->running_list);
3856 else
3857 list_del_init(&img_req->lock_item);
3858 rbd_img_schedule(img_req, result);
3859 mutex_unlock(&img_req->state_mutex);
3860 }
3861 }
3862
locker_equal(const struct ceph_locker * lhs,const struct ceph_locker * rhs)3863 static bool locker_equal(const struct ceph_locker *lhs,
3864 const struct ceph_locker *rhs)
3865 {
3866 return lhs->id.name.type == rhs->id.name.type &&
3867 lhs->id.name.num == rhs->id.name.num &&
3868 !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3869 ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3870 }
3871
free_locker(struct ceph_locker * locker)3872 static void free_locker(struct ceph_locker *locker)
3873 {
3874 if (locker)
3875 ceph_free_lockers(locker, 1);
3876 }
3877
get_lock_owner_info(struct rbd_device * rbd_dev)3878 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3879 {
3880 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3881 struct ceph_locker *lockers;
3882 u32 num_lockers;
3883 u8 lock_type;
3884 char *lock_tag;
3885 u64 handle;
3886 int ret;
3887
3888 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3889 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3890 &lock_type, &lock_tag, &lockers, &num_lockers);
3891 if (ret) {
3892 rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3893 return ERR_PTR(ret);
3894 }
3895
3896 if (num_lockers == 0) {
3897 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3898 lockers = NULL;
3899 goto out;
3900 }
3901
3902 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3903 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3904 lock_tag);
3905 goto err_busy;
3906 }
3907
3908 if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3909 rbd_warn(rbd_dev, "incompatible lock type detected");
3910 goto err_busy;
3911 }
3912
3913 WARN_ON(num_lockers != 1);
3914 ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3915 &handle);
3916 if (ret != 1) {
3917 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3918 lockers[0].id.cookie);
3919 goto err_busy;
3920 }
3921 if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3922 rbd_warn(rbd_dev, "locker has a blank address");
3923 goto err_busy;
3924 }
3925
3926 dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3927 __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3928 &lockers[0].info.addr.in_addr,
3929 le32_to_cpu(lockers[0].info.addr.nonce), handle);
3930
3931 out:
3932 kfree(lock_tag);
3933 return lockers;
3934
3935 err_busy:
3936 kfree(lock_tag);
3937 ceph_free_lockers(lockers, num_lockers);
3938 return ERR_PTR(-EBUSY);
3939 }
3940
find_watcher(struct rbd_device * rbd_dev,const struct ceph_locker * locker)3941 static int find_watcher(struct rbd_device *rbd_dev,
3942 const struct ceph_locker *locker)
3943 {
3944 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3945 struct ceph_watch_item *watchers;
3946 u32 num_watchers;
3947 u64 cookie;
3948 int i;
3949 int ret;
3950
3951 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3952 &rbd_dev->header_oloc, &watchers,
3953 &num_watchers);
3954 if (ret) {
3955 rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
3956 return ret;
3957 }
3958
3959 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3960 for (i = 0; i < num_watchers; i++) {
3961 /*
3962 * Ignore addr->type while comparing. This mimics
3963 * entity_addr_t::get_legacy_str() + strcmp().
3964 */
3965 if (ceph_addr_equal_no_type(&watchers[i].addr,
3966 &locker->info.addr) &&
3967 watchers[i].cookie == cookie) {
3968 struct rbd_client_id cid = {
3969 .gid = le64_to_cpu(watchers[i].name.num),
3970 .handle = cookie,
3971 };
3972
3973 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3974 rbd_dev, cid.gid, cid.handle);
3975 rbd_set_owner_cid(rbd_dev, &cid);
3976 ret = 1;
3977 goto out;
3978 }
3979 }
3980
3981 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3982 ret = 0;
3983 out:
3984 kfree(watchers);
3985 return ret;
3986 }
3987
3988 /*
3989 * lock_rwsem must be held for write
3990 */
rbd_try_lock(struct rbd_device * rbd_dev)3991 static int rbd_try_lock(struct rbd_device *rbd_dev)
3992 {
3993 struct ceph_client *client = rbd_dev->rbd_client->client;
3994 struct ceph_locker *locker, *refreshed_locker;
3995 int ret;
3996
3997 for (;;) {
3998 locker = refreshed_locker = NULL;
3999
4000 ret = rbd_lock(rbd_dev);
4001 if (!ret)
4002 goto out;
4003 if (ret != -EBUSY) {
4004 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4005 goto out;
4006 }
4007
4008 /* determine if the current lock holder is still alive */
4009 locker = get_lock_owner_info(rbd_dev);
4010 if (IS_ERR(locker)) {
4011 ret = PTR_ERR(locker);
4012 locker = NULL;
4013 goto out;
4014 }
4015 if (!locker)
4016 goto again;
4017
4018 ret = find_watcher(rbd_dev, locker);
4019 if (ret)
4020 goto out; /* request lock or error */
4021
4022 refreshed_locker = get_lock_owner_info(rbd_dev);
4023 if (IS_ERR(refreshed_locker)) {
4024 ret = PTR_ERR(refreshed_locker);
4025 refreshed_locker = NULL;
4026 goto out;
4027 }
4028 if (!refreshed_locker ||
4029 !locker_equal(locker, refreshed_locker))
4030 goto again;
4031
4032 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4033 ENTITY_NAME(locker->id.name));
4034
4035 ret = ceph_monc_blocklist_add(&client->monc,
4036 &locker->info.addr);
4037 if (ret) {
4038 rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4039 ENTITY_NAME(locker->id.name), ret);
4040 goto out;
4041 }
4042
4043 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4044 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4045 locker->id.cookie, &locker->id.name);
4046 if (ret && ret != -ENOENT) {
4047 rbd_warn(rbd_dev, "failed to break header lock: %d",
4048 ret);
4049 goto out;
4050 }
4051
4052 again:
4053 free_locker(refreshed_locker);
4054 free_locker(locker);
4055 }
4056
4057 out:
4058 free_locker(refreshed_locker);
4059 free_locker(locker);
4060 return ret;
4061 }
4062
rbd_post_acquire_action(struct rbd_device * rbd_dev)4063 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4064 {
4065 int ret;
4066
4067 ret = rbd_dev_refresh(rbd_dev);
4068 if (ret)
4069 return ret;
4070
4071 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4072 ret = rbd_object_map_open(rbd_dev);
4073 if (ret)
4074 return ret;
4075 }
4076
4077 return 0;
4078 }
4079
4080 /*
4081 * Return:
4082 * 0 - lock acquired
4083 * 1 - caller should call rbd_request_lock()
4084 * <0 - error
4085 */
rbd_try_acquire_lock(struct rbd_device * rbd_dev)4086 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4087 {
4088 int ret;
4089
4090 down_read(&rbd_dev->lock_rwsem);
4091 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4092 rbd_dev->lock_state);
4093 if (__rbd_is_lock_owner(rbd_dev)) {
4094 up_read(&rbd_dev->lock_rwsem);
4095 return 0;
4096 }
4097
4098 up_read(&rbd_dev->lock_rwsem);
4099 down_write(&rbd_dev->lock_rwsem);
4100 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4101 rbd_dev->lock_state);
4102 if (__rbd_is_lock_owner(rbd_dev)) {
4103 up_write(&rbd_dev->lock_rwsem);
4104 return 0;
4105 }
4106
4107 ret = rbd_try_lock(rbd_dev);
4108 if (ret < 0) {
4109 rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4110 goto out;
4111 }
4112 if (ret > 0) {
4113 up_write(&rbd_dev->lock_rwsem);
4114 return ret;
4115 }
4116
4117 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4118 rbd_assert(list_empty(&rbd_dev->running_list));
4119
4120 ret = rbd_post_acquire_action(rbd_dev);
4121 if (ret) {
4122 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4123 /*
4124 * Can't stay in RBD_LOCK_STATE_LOCKED because
4125 * rbd_lock_add_request() would let the request through,
4126 * assuming that e.g. object map is locked and loaded.
4127 */
4128 rbd_unlock(rbd_dev);
4129 }
4130
4131 out:
4132 wake_lock_waiters(rbd_dev, ret);
4133 up_write(&rbd_dev->lock_rwsem);
4134 return ret;
4135 }
4136
rbd_acquire_lock(struct work_struct * work)4137 static void rbd_acquire_lock(struct work_struct *work)
4138 {
4139 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4140 struct rbd_device, lock_dwork);
4141 int ret;
4142
4143 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4144 again:
4145 ret = rbd_try_acquire_lock(rbd_dev);
4146 if (ret <= 0) {
4147 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4148 return;
4149 }
4150
4151 ret = rbd_request_lock(rbd_dev);
4152 if (ret == -ETIMEDOUT) {
4153 goto again; /* treat this as a dead client */
4154 } else if (ret == -EROFS) {
4155 rbd_warn(rbd_dev, "peer will not release lock");
4156 down_write(&rbd_dev->lock_rwsem);
4157 wake_lock_waiters(rbd_dev, ret);
4158 up_write(&rbd_dev->lock_rwsem);
4159 } else if (ret < 0) {
4160 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4161 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4162 RBD_RETRY_DELAY);
4163 } else {
4164 /*
4165 * lock owner acked, but resend if we don't see them
4166 * release the lock
4167 */
4168 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4169 rbd_dev);
4170 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4171 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4172 }
4173 }
4174
rbd_quiesce_lock(struct rbd_device * rbd_dev)4175 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4176 {
4177 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4178 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4179
4180 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4181 return false;
4182
4183 /*
4184 * Ensure that all in-flight IO is flushed.
4185 */
4186 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4187 rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4188 if (list_empty(&rbd_dev->running_list))
4189 return true;
4190
4191 up_write(&rbd_dev->lock_rwsem);
4192 wait_for_completion(&rbd_dev->releasing_wait);
4193
4194 down_write(&rbd_dev->lock_rwsem);
4195 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4196 return false;
4197
4198 rbd_assert(list_empty(&rbd_dev->running_list));
4199 return true;
4200 }
4201
rbd_pre_release_action(struct rbd_device * rbd_dev)4202 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4203 {
4204 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4205 rbd_object_map_close(rbd_dev);
4206 }
4207
__rbd_release_lock(struct rbd_device * rbd_dev)4208 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4209 {
4210 rbd_assert(list_empty(&rbd_dev->running_list));
4211
4212 rbd_pre_release_action(rbd_dev);
4213 rbd_unlock(rbd_dev);
4214 }
4215
4216 /*
4217 * lock_rwsem must be held for write
4218 */
rbd_release_lock(struct rbd_device * rbd_dev)4219 static void rbd_release_lock(struct rbd_device *rbd_dev)
4220 {
4221 if (!rbd_quiesce_lock(rbd_dev))
4222 return;
4223
4224 __rbd_release_lock(rbd_dev);
4225
4226 /*
4227 * Give others a chance to grab the lock - we would re-acquire
4228 * almost immediately if we got new IO while draining the running
4229 * list otherwise. We need to ack our own notifications, so this
4230 * lock_dwork will be requeued from rbd_handle_released_lock() by
4231 * way of maybe_kick_acquire().
4232 */
4233 cancel_delayed_work(&rbd_dev->lock_dwork);
4234 }
4235
rbd_release_lock_work(struct work_struct * work)4236 static void rbd_release_lock_work(struct work_struct *work)
4237 {
4238 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4239 unlock_work);
4240
4241 down_write(&rbd_dev->lock_rwsem);
4242 rbd_release_lock(rbd_dev);
4243 up_write(&rbd_dev->lock_rwsem);
4244 }
4245
maybe_kick_acquire(struct rbd_device * rbd_dev)4246 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4247 {
4248 bool have_requests;
4249
4250 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4251 if (__rbd_is_lock_owner(rbd_dev))
4252 return;
4253
4254 spin_lock(&rbd_dev->lock_lists_lock);
4255 have_requests = !list_empty(&rbd_dev->acquiring_list);
4256 spin_unlock(&rbd_dev->lock_lists_lock);
4257 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4258 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4259 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4260 }
4261 }
4262
rbd_handle_acquired_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4263 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4264 void **p)
4265 {
4266 struct rbd_client_id cid = { 0 };
4267
4268 if (struct_v >= 2) {
4269 cid.gid = ceph_decode_64(p);
4270 cid.handle = ceph_decode_64(p);
4271 }
4272
4273 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4274 cid.handle);
4275 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4276 down_write(&rbd_dev->lock_rwsem);
4277 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4278 dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4279 __func__, rbd_dev, cid.gid, cid.handle);
4280 } else {
4281 rbd_set_owner_cid(rbd_dev, &cid);
4282 }
4283 downgrade_write(&rbd_dev->lock_rwsem);
4284 } else {
4285 down_read(&rbd_dev->lock_rwsem);
4286 }
4287
4288 maybe_kick_acquire(rbd_dev);
4289 up_read(&rbd_dev->lock_rwsem);
4290 }
4291
rbd_handle_released_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4292 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4293 void **p)
4294 {
4295 struct rbd_client_id cid = { 0 };
4296
4297 if (struct_v >= 2) {
4298 cid.gid = ceph_decode_64(p);
4299 cid.handle = ceph_decode_64(p);
4300 }
4301
4302 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4303 cid.handle);
4304 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4305 down_write(&rbd_dev->lock_rwsem);
4306 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4307 dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4308 __func__, rbd_dev, cid.gid, cid.handle,
4309 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4310 } else {
4311 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4312 }
4313 downgrade_write(&rbd_dev->lock_rwsem);
4314 } else {
4315 down_read(&rbd_dev->lock_rwsem);
4316 }
4317
4318 maybe_kick_acquire(rbd_dev);
4319 up_read(&rbd_dev->lock_rwsem);
4320 }
4321
4322 /*
4323 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4324 * ResponseMessage is needed.
4325 */
rbd_handle_request_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4326 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4327 void **p)
4328 {
4329 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4330 struct rbd_client_id cid = { 0 };
4331 int result = 1;
4332
4333 if (struct_v >= 2) {
4334 cid.gid = ceph_decode_64(p);
4335 cid.handle = ceph_decode_64(p);
4336 }
4337
4338 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4339 cid.handle);
4340 if (rbd_cid_equal(&cid, &my_cid))
4341 return result;
4342
4343 down_read(&rbd_dev->lock_rwsem);
4344 if (__rbd_is_lock_owner(rbd_dev)) {
4345 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4346 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4347 goto out_unlock;
4348
4349 /*
4350 * encode ResponseMessage(0) so the peer can detect
4351 * a missing owner
4352 */
4353 result = 0;
4354
4355 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4356 if (!rbd_dev->opts->exclusive) {
4357 dout("%s rbd_dev %p queueing unlock_work\n",
4358 __func__, rbd_dev);
4359 queue_work(rbd_dev->task_wq,
4360 &rbd_dev->unlock_work);
4361 } else {
4362 /* refuse to release the lock */
4363 result = -EROFS;
4364 }
4365 }
4366 }
4367
4368 out_unlock:
4369 up_read(&rbd_dev->lock_rwsem);
4370 return result;
4371 }
4372
__rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 * result)4373 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4374 u64 notify_id, u64 cookie, s32 *result)
4375 {
4376 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4377 char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4378 int buf_size = sizeof(buf);
4379 int ret;
4380
4381 if (result) {
4382 void *p = buf;
4383
4384 /* encode ResponseMessage */
4385 ceph_start_encoding(&p, 1, 1,
4386 buf_size - CEPH_ENCODING_START_BLK_LEN);
4387 ceph_encode_32(&p, *result);
4388 } else {
4389 buf_size = 0;
4390 }
4391
4392 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4393 &rbd_dev->header_oloc, notify_id, cookie,
4394 buf, buf_size);
4395 if (ret)
4396 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4397 }
4398
rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie)4399 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4400 u64 cookie)
4401 {
4402 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4403 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4404 }
4405
rbd_acknowledge_notify_result(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 result)4406 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4407 u64 notify_id, u64 cookie, s32 result)
4408 {
4409 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4410 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4411 }
4412
rbd_watch_cb(void * arg,u64 notify_id,u64 cookie,u64 notifier_id,void * data,size_t data_len)4413 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4414 u64 notifier_id, void *data, size_t data_len)
4415 {
4416 struct rbd_device *rbd_dev = arg;
4417 void *p = data;
4418 void *const end = p + data_len;
4419 u8 struct_v = 0;
4420 u32 len;
4421 u32 notify_op;
4422 int ret;
4423
4424 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4425 __func__, rbd_dev, cookie, notify_id, data_len);
4426 if (data_len) {
4427 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4428 &struct_v, &len);
4429 if (ret) {
4430 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4431 ret);
4432 return;
4433 }
4434
4435 notify_op = ceph_decode_32(&p);
4436 } else {
4437 /* legacy notification for header updates */
4438 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4439 len = 0;
4440 }
4441
4442 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4443 switch (notify_op) {
4444 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4445 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4446 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4447 break;
4448 case RBD_NOTIFY_OP_RELEASED_LOCK:
4449 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4450 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4451 break;
4452 case RBD_NOTIFY_OP_REQUEST_LOCK:
4453 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4454 if (ret <= 0)
4455 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4456 cookie, ret);
4457 else
4458 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4459 break;
4460 case RBD_NOTIFY_OP_HEADER_UPDATE:
4461 ret = rbd_dev_refresh(rbd_dev);
4462 if (ret)
4463 rbd_warn(rbd_dev, "refresh failed: %d", ret);
4464
4465 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4466 break;
4467 default:
4468 if (rbd_is_lock_owner(rbd_dev))
4469 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4470 cookie, -EOPNOTSUPP);
4471 else
4472 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4473 break;
4474 }
4475 }
4476
4477 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4478
rbd_watch_errcb(void * arg,u64 cookie,int err)4479 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4480 {
4481 struct rbd_device *rbd_dev = arg;
4482
4483 rbd_warn(rbd_dev, "encountered watch error: %d", err);
4484
4485 down_write(&rbd_dev->lock_rwsem);
4486 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4487 up_write(&rbd_dev->lock_rwsem);
4488
4489 mutex_lock(&rbd_dev->watch_mutex);
4490 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4491 __rbd_unregister_watch(rbd_dev);
4492 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4493
4494 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4495 }
4496 mutex_unlock(&rbd_dev->watch_mutex);
4497 }
4498
4499 /*
4500 * watch_mutex must be locked
4501 */
__rbd_register_watch(struct rbd_device * rbd_dev)4502 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4503 {
4504 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4505 struct ceph_osd_linger_request *handle;
4506
4507 rbd_assert(!rbd_dev->watch_handle);
4508 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4509
4510 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4511 &rbd_dev->header_oloc, rbd_watch_cb,
4512 rbd_watch_errcb, rbd_dev);
4513 if (IS_ERR(handle))
4514 return PTR_ERR(handle);
4515
4516 rbd_dev->watch_handle = handle;
4517 return 0;
4518 }
4519
4520 /*
4521 * watch_mutex must be locked
4522 */
__rbd_unregister_watch(struct rbd_device * rbd_dev)4523 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4524 {
4525 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4526 int ret;
4527
4528 rbd_assert(rbd_dev->watch_handle);
4529 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4530
4531 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4532 if (ret)
4533 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4534
4535 rbd_dev->watch_handle = NULL;
4536 }
4537
rbd_register_watch(struct rbd_device * rbd_dev)4538 static int rbd_register_watch(struct rbd_device *rbd_dev)
4539 {
4540 int ret;
4541
4542 mutex_lock(&rbd_dev->watch_mutex);
4543 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4544 ret = __rbd_register_watch(rbd_dev);
4545 if (ret)
4546 goto out;
4547
4548 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4549 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4550
4551 out:
4552 mutex_unlock(&rbd_dev->watch_mutex);
4553 return ret;
4554 }
4555
cancel_tasks_sync(struct rbd_device * rbd_dev)4556 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4557 {
4558 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4559
4560 cancel_work_sync(&rbd_dev->acquired_lock_work);
4561 cancel_work_sync(&rbd_dev->released_lock_work);
4562 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4563 cancel_work_sync(&rbd_dev->unlock_work);
4564 }
4565
4566 /*
4567 * header_rwsem must not be held to avoid a deadlock with
4568 * rbd_dev_refresh() when flushing notifies.
4569 */
rbd_unregister_watch(struct rbd_device * rbd_dev)4570 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4571 {
4572 cancel_tasks_sync(rbd_dev);
4573
4574 mutex_lock(&rbd_dev->watch_mutex);
4575 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4576 __rbd_unregister_watch(rbd_dev);
4577 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4578 mutex_unlock(&rbd_dev->watch_mutex);
4579
4580 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4581 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4582 }
4583
4584 /*
4585 * lock_rwsem must be held for write
4586 */
rbd_reacquire_lock(struct rbd_device * rbd_dev)4587 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4588 {
4589 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4590 char cookie[32];
4591 int ret;
4592
4593 if (!rbd_quiesce_lock(rbd_dev))
4594 return;
4595
4596 format_lock_cookie(rbd_dev, cookie);
4597 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4598 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4599 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4600 RBD_LOCK_TAG, cookie);
4601 if (ret) {
4602 if (ret != -EOPNOTSUPP)
4603 rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4604 ret);
4605
4606 /*
4607 * Lock cookie cannot be updated on older OSDs, so do
4608 * a manual release and queue an acquire.
4609 */
4610 __rbd_release_lock(rbd_dev);
4611 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4612 } else {
4613 __rbd_lock(rbd_dev, cookie);
4614 wake_lock_waiters(rbd_dev, 0);
4615 }
4616 }
4617
rbd_reregister_watch(struct work_struct * work)4618 static void rbd_reregister_watch(struct work_struct *work)
4619 {
4620 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4621 struct rbd_device, watch_dwork);
4622 int ret;
4623
4624 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4625
4626 mutex_lock(&rbd_dev->watch_mutex);
4627 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4628 mutex_unlock(&rbd_dev->watch_mutex);
4629 return;
4630 }
4631
4632 ret = __rbd_register_watch(rbd_dev);
4633 if (ret) {
4634 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4635 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4636 queue_delayed_work(rbd_dev->task_wq,
4637 &rbd_dev->watch_dwork,
4638 RBD_RETRY_DELAY);
4639 mutex_unlock(&rbd_dev->watch_mutex);
4640 return;
4641 }
4642
4643 mutex_unlock(&rbd_dev->watch_mutex);
4644 down_write(&rbd_dev->lock_rwsem);
4645 wake_lock_waiters(rbd_dev, ret);
4646 up_write(&rbd_dev->lock_rwsem);
4647 return;
4648 }
4649
4650 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4651 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4652 mutex_unlock(&rbd_dev->watch_mutex);
4653
4654 down_write(&rbd_dev->lock_rwsem);
4655 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4656 rbd_reacquire_lock(rbd_dev);
4657 up_write(&rbd_dev->lock_rwsem);
4658
4659 ret = rbd_dev_refresh(rbd_dev);
4660 if (ret)
4661 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4662 }
4663
4664 /*
4665 * Synchronous osd object method call. Returns the number of bytes
4666 * returned in the outbound buffer, or a negative error code.
4667 */
rbd_obj_method_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,const char * method_name,const void * outbound,size_t outbound_size,void * inbound,size_t inbound_size)4668 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4669 struct ceph_object_id *oid,
4670 struct ceph_object_locator *oloc,
4671 const char *method_name,
4672 const void *outbound,
4673 size_t outbound_size,
4674 void *inbound,
4675 size_t inbound_size)
4676 {
4677 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4678 struct page *req_page = NULL;
4679 struct page *reply_page;
4680 int ret;
4681
4682 /*
4683 * Method calls are ultimately read operations. The result
4684 * should placed into the inbound buffer provided. They
4685 * also supply outbound data--parameters for the object
4686 * method. Currently if this is present it will be a
4687 * snapshot id.
4688 */
4689 if (outbound) {
4690 if (outbound_size > PAGE_SIZE)
4691 return -E2BIG;
4692
4693 req_page = alloc_page(GFP_KERNEL);
4694 if (!req_page)
4695 return -ENOMEM;
4696
4697 memcpy(page_address(req_page), outbound, outbound_size);
4698 }
4699
4700 reply_page = alloc_page(GFP_KERNEL);
4701 if (!reply_page) {
4702 if (req_page)
4703 __free_page(req_page);
4704 return -ENOMEM;
4705 }
4706
4707 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4708 CEPH_OSD_FLAG_READ, req_page, outbound_size,
4709 &reply_page, &inbound_size);
4710 if (!ret) {
4711 memcpy(inbound, page_address(reply_page), inbound_size);
4712 ret = inbound_size;
4713 }
4714
4715 if (req_page)
4716 __free_page(req_page);
4717 __free_page(reply_page);
4718 return ret;
4719 }
4720
rbd_queue_workfn(struct work_struct * work)4721 static void rbd_queue_workfn(struct work_struct *work)
4722 {
4723 struct rbd_img_request *img_request =
4724 container_of(work, struct rbd_img_request, work);
4725 struct rbd_device *rbd_dev = img_request->rbd_dev;
4726 enum obj_operation_type op_type = img_request->op_type;
4727 struct request *rq = blk_mq_rq_from_pdu(img_request);
4728 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4729 u64 length = blk_rq_bytes(rq);
4730 u64 mapping_size;
4731 int result;
4732
4733 /* Ignore/skip any zero-length requests */
4734 if (!length) {
4735 dout("%s: zero-length request\n", __func__);
4736 result = 0;
4737 goto err_img_request;
4738 }
4739
4740 blk_mq_start_request(rq);
4741
4742 down_read(&rbd_dev->header_rwsem);
4743 mapping_size = rbd_dev->mapping.size;
4744 rbd_img_capture_header(img_request);
4745 up_read(&rbd_dev->header_rwsem);
4746
4747 if (offset + length > mapping_size) {
4748 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4749 length, mapping_size);
4750 result = -EIO;
4751 goto err_img_request;
4752 }
4753
4754 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4755 img_request, obj_op_name(op_type), offset, length);
4756
4757 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4758 result = rbd_img_fill_nodata(img_request, offset, length);
4759 else
4760 result = rbd_img_fill_from_bio(img_request, offset, length,
4761 rq->bio);
4762 if (result)
4763 goto err_img_request;
4764
4765 rbd_img_handle_request(img_request, 0);
4766 return;
4767
4768 err_img_request:
4769 rbd_img_request_destroy(img_request);
4770 if (result)
4771 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4772 obj_op_name(op_type), length, offset, result);
4773 blk_mq_end_request(rq, errno_to_blk_status(result));
4774 }
4775
rbd_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)4776 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4777 const struct blk_mq_queue_data *bd)
4778 {
4779 struct rbd_device *rbd_dev = hctx->queue->queuedata;
4780 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4781 enum obj_operation_type op_type;
4782
4783 switch (req_op(bd->rq)) {
4784 case REQ_OP_DISCARD:
4785 op_type = OBJ_OP_DISCARD;
4786 break;
4787 case REQ_OP_WRITE_ZEROES:
4788 op_type = OBJ_OP_ZEROOUT;
4789 break;
4790 case REQ_OP_WRITE:
4791 op_type = OBJ_OP_WRITE;
4792 break;
4793 case REQ_OP_READ:
4794 op_type = OBJ_OP_READ;
4795 break;
4796 default:
4797 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4798 return BLK_STS_IOERR;
4799 }
4800
4801 rbd_img_request_init(img_req, rbd_dev, op_type);
4802
4803 if (rbd_img_is_write(img_req)) {
4804 if (rbd_is_ro(rbd_dev)) {
4805 rbd_warn(rbd_dev, "%s on read-only mapping",
4806 obj_op_name(img_req->op_type));
4807 return BLK_STS_IOERR;
4808 }
4809 rbd_assert(!rbd_is_snap(rbd_dev));
4810 }
4811
4812 INIT_WORK(&img_req->work, rbd_queue_workfn);
4813 queue_work(rbd_wq, &img_req->work);
4814 return BLK_STS_OK;
4815 }
4816
rbd_free_disk(struct rbd_device * rbd_dev)4817 static void rbd_free_disk(struct rbd_device *rbd_dev)
4818 {
4819 blk_cleanup_disk(rbd_dev->disk);
4820 blk_mq_free_tag_set(&rbd_dev->tag_set);
4821 rbd_dev->disk = NULL;
4822 }
4823
rbd_obj_read_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,void * buf,int buf_len)4824 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4825 struct ceph_object_id *oid,
4826 struct ceph_object_locator *oloc,
4827 void *buf, int buf_len)
4828
4829 {
4830 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4831 struct ceph_osd_request *req;
4832 struct page **pages;
4833 int num_pages = calc_pages_for(0, buf_len);
4834 int ret;
4835
4836 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4837 if (!req)
4838 return -ENOMEM;
4839
4840 ceph_oid_copy(&req->r_base_oid, oid);
4841 ceph_oloc_copy(&req->r_base_oloc, oloc);
4842 req->r_flags = CEPH_OSD_FLAG_READ;
4843
4844 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4845 if (IS_ERR(pages)) {
4846 ret = PTR_ERR(pages);
4847 goto out_req;
4848 }
4849
4850 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4851 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4852 true);
4853
4854 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4855 if (ret)
4856 goto out_req;
4857
4858 ceph_osdc_start_request(osdc, req, false);
4859 ret = ceph_osdc_wait_request(osdc, req);
4860 if (ret >= 0)
4861 ceph_copy_from_page_vector(pages, buf, 0, ret);
4862
4863 out_req:
4864 ceph_osdc_put_request(req);
4865 return ret;
4866 }
4867
4868 /*
4869 * Read the complete header for the given rbd device. On successful
4870 * return, the rbd_dev->header field will contain up-to-date
4871 * information about the image.
4872 */
rbd_dev_v1_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)4873 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4874 struct rbd_image_header *header,
4875 bool first_time)
4876 {
4877 struct rbd_image_header_ondisk *ondisk = NULL;
4878 u32 snap_count = 0;
4879 u64 names_size = 0;
4880 u32 want_count;
4881 int ret;
4882
4883 /*
4884 * The complete header will include an array of its 64-bit
4885 * snapshot ids, followed by the names of those snapshots as
4886 * a contiguous block of NUL-terminated strings. Note that
4887 * the number of snapshots could change by the time we read
4888 * it in, in which case we re-read it.
4889 */
4890 do {
4891 size_t size;
4892
4893 kfree(ondisk);
4894
4895 size = sizeof (*ondisk);
4896 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4897 size += names_size;
4898 ondisk = kmalloc(size, GFP_KERNEL);
4899 if (!ondisk)
4900 return -ENOMEM;
4901
4902 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4903 &rbd_dev->header_oloc, ondisk, size);
4904 if (ret < 0)
4905 goto out;
4906 if ((size_t)ret < size) {
4907 ret = -ENXIO;
4908 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4909 size, ret);
4910 goto out;
4911 }
4912 if (!rbd_dev_ondisk_valid(ondisk)) {
4913 ret = -ENXIO;
4914 rbd_warn(rbd_dev, "invalid header");
4915 goto out;
4916 }
4917
4918 names_size = le64_to_cpu(ondisk->snap_names_len);
4919 want_count = snap_count;
4920 snap_count = le32_to_cpu(ondisk->snap_count);
4921 } while (snap_count != want_count);
4922
4923 ret = rbd_header_from_disk(header, ondisk, first_time);
4924 out:
4925 kfree(ondisk);
4926
4927 return ret;
4928 }
4929
rbd_dev_update_size(struct rbd_device * rbd_dev)4930 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4931 {
4932 sector_t size;
4933
4934 /*
4935 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4936 * try to update its size. If REMOVING is set, updating size
4937 * is just useless work since the device can't be opened.
4938 */
4939 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4940 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4941 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4942 dout("setting size to %llu sectors", (unsigned long long)size);
4943 set_capacity_and_notify(rbd_dev->disk, size);
4944 }
4945 }
4946
4947 static const struct blk_mq_ops rbd_mq_ops = {
4948 .queue_rq = rbd_queue_rq,
4949 };
4950
rbd_init_disk(struct rbd_device * rbd_dev)4951 static int rbd_init_disk(struct rbd_device *rbd_dev)
4952 {
4953 struct gendisk *disk;
4954 struct request_queue *q;
4955 unsigned int objset_bytes =
4956 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4957 int err;
4958
4959 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4960 rbd_dev->tag_set.ops = &rbd_mq_ops;
4961 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4962 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4963 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4964 rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4965 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4966
4967 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4968 if (err)
4969 return err;
4970
4971 disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4972 if (IS_ERR(disk)) {
4973 err = PTR_ERR(disk);
4974 goto out_tag_set;
4975 }
4976 q = disk->queue;
4977
4978 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4979 rbd_dev->dev_id);
4980 disk->major = rbd_dev->major;
4981 disk->first_minor = rbd_dev->minor;
4982 if (single_major) {
4983 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4984 disk->flags |= GENHD_FL_EXT_DEVT;
4985 } else {
4986 disk->minors = RBD_MINORS_PER_MAJOR;
4987 }
4988 disk->fops = &rbd_bd_ops;
4989 disk->private_data = rbd_dev;
4990
4991 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4992 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4993
4994 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4995 q->limits.max_sectors = queue_max_hw_sectors(q);
4996 blk_queue_max_segments(q, USHRT_MAX);
4997 blk_queue_max_segment_size(q, UINT_MAX);
4998 blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4999 blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5000
5001 if (rbd_dev->opts->trim) {
5002 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5003 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5004 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5005 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5006 }
5007
5008 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5009 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5010
5011 rbd_dev->disk = disk;
5012
5013 return 0;
5014 out_tag_set:
5015 blk_mq_free_tag_set(&rbd_dev->tag_set);
5016 return err;
5017 }
5018
5019 /*
5020 sysfs
5021 */
5022
dev_to_rbd_dev(struct device * dev)5023 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5024 {
5025 return container_of(dev, struct rbd_device, dev);
5026 }
5027
rbd_size_show(struct device * dev,struct device_attribute * attr,char * buf)5028 static ssize_t rbd_size_show(struct device *dev,
5029 struct device_attribute *attr, char *buf)
5030 {
5031 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5032
5033 return sprintf(buf, "%llu\n",
5034 (unsigned long long)rbd_dev->mapping.size);
5035 }
5036
rbd_features_show(struct device * dev,struct device_attribute * attr,char * buf)5037 static ssize_t rbd_features_show(struct device *dev,
5038 struct device_attribute *attr, char *buf)
5039 {
5040 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5041
5042 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5043 }
5044
rbd_major_show(struct device * dev,struct device_attribute * attr,char * buf)5045 static ssize_t rbd_major_show(struct device *dev,
5046 struct device_attribute *attr, char *buf)
5047 {
5048 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5049
5050 if (rbd_dev->major)
5051 return sprintf(buf, "%d\n", rbd_dev->major);
5052
5053 return sprintf(buf, "(none)\n");
5054 }
5055
rbd_minor_show(struct device * dev,struct device_attribute * attr,char * buf)5056 static ssize_t rbd_minor_show(struct device *dev,
5057 struct device_attribute *attr, char *buf)
5058 {
5059 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5060
5061 return sprintf(buf, "%d\n", rbd_dev->minor);
5062 }
5063
rbd_client_addr_show(struct device * dev,struct device_attribute * attr,char * buf)5064 static ssize_t rbd_client_addr_show(struct device *dev,
5065 struct device_attribute *attr, char *buf)
5066 {
5067 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5068 struct ceph_entity_addr *client_addr =
5069 ceph_client_addr(rbd_dev->rbd_client->client);
5070
5071 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5072 le32_to_cpu(client_addr->nonce));
5073 }
5074
rbd_client_id_show(struct device * dev,struct device_attribute * attr,char * buf)5075 static ssize_t rbd_client_id_show(struct device *dev,
5076 struct device_attribute *attr, char *buf)
5077 {
5078 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5079
5080 return sprintf(buf, "client%lld\n",
5081 ceph_client_gid(rbd_dev->rbd_client->client));
5082 }
5083
rbd_cluster_fsid_show(struct device * dev,struct device_attribute * attr,char * buf)5084 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5085 struct device_attribute *attr, char *buf)
5086 {
5087 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5088
5089 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5090 }
5091
rbd_config_info_show(struct device * dev,struct device_attribute * attr,char * buf)5092 static ssize_t rbd_config_info_show(struct device *dev,
5093 struct device_attribute *attr, char *buf)
5094 {
5095 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5096
5097 if (!capable(CAP_SYS_ADMIN))
5098 return -EPERM;
5099
5100 return sprintf(buf, "%s\n", rbd_dev->config_info);
5101 }
5102
rbd_pool_show(struct device * dev,struct device_attribute * attr,char * buf)5103 static ssize_t rbd_pool_show(struct device *dev,
5104 struct device_attribute *attr, char *buf)
5105 {
5106 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5107
5108 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5109 }
5110
rbd_pool_id_show(struct device * dev,struct device_attribute * attr,char * buf)5111 static ssize_t rbd_pool_id_show(struct device *dev,
5112 struct device_attribute *attr, char *buf)
5113 {
5114 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5115
5116 return sprintf(buf, "%llu\n",
5117 (unsigned long long) rbd_dev->spec->pool_id);
5118 }
5119
rbd_pool_ns_show(struct device * dev,struct device_attribute * attr,char * buf)5120 static ssize_t rbd_pool_ns_show(struct device *dev,
5121 struct device_attribute *attr, char *buf)
5122 {
5123 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5124
5125 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5126 }
5127
rbd_name_show(struct device * dev,struct device_attribute * attr,char * buf)5128 static ssize_t rbd_name_show(struct device *dev,
5129 struct device_attribute *attr, char *buf)
5130 {
5131 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5132
5133 if (rbd_dev->spec->image_name)
5134 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5135
5136 return sprintf(buf, "(unknown)\n");
5137 }
5138
rbd_image_id_show(struct device * dev,struct device_attribute * attr,char * buf)5139 static ssize_t rbd_image_id_show(struct device *dev,
5140 struct device_attribute *attr, char *buf)
5141 {
5142 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5143
5144 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5145 }
5146
5147 /*
5148 * Shows the name of the currently-mapped snapshot (or
5149 * RBD_SNAP_HEAD_NAME for the base image).
5150 */
rbd_snap_show(struct device * dev,struct device_attribute * attr,char * buf)5151 static ssize_t rbd_snap_show(struct device *dev,
5152 struct device_attribute *attr,
5153 char *buf)
5154 {
5155 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5156
5157 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5158 }
5159
rbd_snap_id_show(struct device * dev,struct device_attribute * attr,char * buf)5160 static ssize_t rbd_snap_id_show(struct device *dev,
5161 struct device_attribute *attr, char *buf)
5162 {
5163 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5164
5165 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5166 }
5167
5168 /*
5169 * For a v2 image, shows the chain of parent images, separated by empty
5170 * lines. For v1 images or if there is no parent, shows "(no parent
5171 * image)".
5172 */
rbd_parent_show(struct device * dev,struct device_attribute * attr,char * buf)5173 static ssize_t rbd_parent_show(struct device *dev,
5174 struct device_attribute *attr,
5175 char *buf)
5176 {
5177 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5178 ssize_t count = 0;
5179
5180 if (!rbd_dev->parent)
5181 return sprintf(buf, "(no parent image)\n");
5182
5183 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5184 struct rbd_spec *spec = rbd_dev->parent_spec;
5185
5186 count += sprintf(&buf[count], "%s"
5187 "pool_id %llu\npool_name %s\n"
5188 "pool_ns %s\n"
5189 "image_id %s\nimage_name %s\n"
5190 "snap_id %llu\nsnap_name %s\n"
5191 "overlap %llu\n",
5192 !count ? "" : "\n", /* first? */
5193 spec->pool_id, spec->pool_name,
5194 spec->pool_ns ?: "",
5195 spec->image_id, spec->image_name ?: "(unknown)",
5196 spec->snap_id, spec->snap_name,
5197 rbd_dev->parent_overlap);
5198 }
5199
5200 return count;
5201 }
5202
rbd_image_refresh(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)5203 static ssize_t rbd_image_refresh(struct device *dev,
5204 struct device_attribute *attr,
5205 const char *buf,
5206 size_t size)
5207 {
5208 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5209 int ret;
5210
5211 if (!capable(CAP_SYS_ADMIN))
5212 return -EPERM;
5213
5214 ret = rbd_dev_refresh(rbd_dev);
5215 if (ret)
5216 return ret;
5217
5218 return size;
5219 }
5220
5221 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5222 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5223 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5224 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5225 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5226 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5227 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5228 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5229 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5230 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5231 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5232 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5233 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5234 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5235 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5236 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5237 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5238
5239 static struct attribute *rbd_attrs[] = {
5240 &dev_attr_size.attr,
5241 &dev_attr_features.attr,
5242 &dev_attr_major.attr,
5243 &dev_attr_minor.attr,
5244 &dev_attr_client_addr.attr,
5245 &dev_attr_client_id.attr,
5246 &dev_attr_cluster_fsid.attr,
5247 &dev_attr_config_info.attr,
5248 &dev_attr_pool.attr,
5249 &dev_attr_pool_id.attr,
5250 &dev_attr_pool_ns.attr,
5251 &dev_attr_name.attr,
5252 &dev_attr_image_id.attr,
5253 &dev_attr_current_snap.attr,
5254 &dev_attr_snap_id.attr,
5255 &dev_attr_parent.attr,
5256 &dev_attr_refresh.attr,
5257 NULL
5258 };
5259
5260 static struct attribute_group rbd_attr_group = {
5261 .attrs = rbd_attrs,
5262 };
5263
5264 static const struct attribute_group *rbd_attr_groups[] = {
5265 &rbd_attr_group,
5266 NULL
5267 };
5268
5269 static void rbd_dev_release(struct device *dev);
5270
5271 static const struct device_type rbd_device_type = {
5272 .name = "rbd",
5273 .groups = rbd_attr_groups,
5274 .release = rbd_dev_release,
5275 };
5276
rbd_spec_get(struct rbd_spec * spec)5277 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5278 {
5279 kref_get(&spec->kref);
5280
5281 return spec;
5282 }
5283
5284 static void rbd_spec_free(struct kref *kref);
rbd_spec_put(struct rbd_spec * spec)5285 static void rbd_spec_put(struct rbd_spec *spec)
5286 {
5287 if (spec)
5288 kref_put(&spec->kref, rbd_spec_free);
5289 }
5290
rbd_spec_alloc(void)5291 static struct rbd_spec *rbd_spec_alloc(void)
5292 {
5293 struct rbd_spec *spec;
5294
5295 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5296 if (!spec)
5297 return NULL;
5298
5299 spec->pool_id = CEPH_NOPOOL;
5300 spec->snap_id = CEPH_NOSNAP;
5301 kref_init(&spec->kref);
5302
5303 return spec;
5304 }
5305
rbd_spec_free(struct kref * kref)5306 static void rbd_spec_free(struct kref *kref)
5307 {
5308 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5309
5310 kfree(spec->pool_name);
5311 kfree(spec->pool_ns);
5312 kfree(spec->image_id);
5313 kfree(spec->image_name);
5314 kfree(spec->snap_name);
5315 kfree(spec);
5316 }
5317
rbd_dev_free(struct rbd_device * rbd_dev)5318 static void rbd_dev_free(struct rbd_device *rbd_dev)
5319 {
5320 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5321 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5322
5323 ceph_oid_destroy(&rbd_dev->header_oid);
5324 ceph_oloc_destroy(&rbd_dev->header_oloc);
5325 kfree(rbd_dev->config_info);
5326
5327 rbd_put_client(rbd_dev->rbd_client);
5328 rbd_spec_put(rbd_dev->spec);
5329 kfree(rbd_dev->opts);
5330 kfree(rbd_dev);
5331 }
5332
rbd_dev_release(struct device * dev)5333 static void rbd_dev_release(struct device *dev)
5334 {
5335 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5336 bool need_put = !!rbd_dev->opts;
5337
5338 if (need_put) {
5339 destroy_workqueue(rbd_dev->task_wq);
5340 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5341 }
5342
5343 rbd_dev_free(rbd_dev);
5344
5345 /*
5346 * This is racy, but way better than putting module outside of
5347 * the release callback. The race window is pretty small, so
5348 * doing something similar to dm (dm-builtin.c) is overkill.
5349 */
5350 if (need_put)
5351 module_put(THIS_MODULE);
5352 }
5353
__rbd_dev_create(struct rbd_spec * spec)5354 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5355 {
5356 struct rbd_device *rbd_dev;
5357
5358 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5359 if (!rbd_dev)
5360 return NULL;
5361
5362 spin_lock_init(&rbd_dev->lock);
5363 INIT_LIST_HEAD(&rbd_dev->node);
5364 init_rwsem(&rbd_dev->header_rwsem);
5365
5366 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5367 ceph_oid_init(&rbd_dev->header_oid);
5368 rbd_dev->header_oloc.pool = spec->pool_id;
5369 if (spec->pool_ns) {
5370 WARN_ON(!*spec->pool_ns);
5371 rbd_dev->header_oloc.pool_ns =
5372 ceph_find_or_create_string(spec->pool_ns,
5373 strlen(spec->pool_ns));
5374 }
5375
5376 mutex_init(&rbd_dev->watch_mutex);
5377 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5378 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5379
5380 init_rwsem(&rbd_dev->lock_rwsem);
5381 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5382 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5383 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5384 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5385 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5386 spin_lock_init(&rbd_dev->lock_lists_lock);
5387 INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5388 INIT_LIST_HEAD(&rbd_dev->running_list);
5389 init_completion(&rbd_dev->acquire_wait);
5390 init_completion(&rbd_dev->releasing_wait);
5391
5392 spin_lock_init(&rbd_dev->object_map_lock);
5393
5394 rbd_dev->dev.bus = &rbd_bus_type;
5395 rbd_dev->dev.type = &rbd_device_type;
5396 rbd_dev->dev.parent = &rbd_root_dev;
5397 device_initialize(&rbd_dev->dev);
5398
5399 return rbd_dev;
5400 }
5401
5402 /*
5403 * Create a mapping rbd_dev.
5404 */
rbd_dev_create(struct rbd_client * rbdc,struct rbd_spec * spec,struct rbd_options * opts)5405 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5406 struct rbd_spec *spec,
5407 struct rbd_options *opts)
5408 {
5409 struct rbd_device *rbd_dev;
5410
5411 rbd_dev = __rbd_dev_create(spec);
5412 if (!rbd_dev)
5413 return NULL;
5414
5415 /* get an id and fill in device name */
5416 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5417 minor_to_rbd_dev_id(1 << MINORBITS),
5418 GFP_KERNEL);
5419 if (rbd_dev->dev_id < 0)
5420 goto fail_rbd_dev;
5421
5422 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5423 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5424 rbd_dev->name);
5425 if (!rbd_dev->task_wq)
5426 goto fail_dev_id;
5427
5428 /* we have a ref from do_rbd_add() */
5429 __module_get(THIS_MODULE);
5430
5431 rbd_dev->rbd_client = rbdc;
5432 rbd_dev->spec = spec;
5433 rbd_dev->opts = opts;
5434
5435 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5436 return rbd_dev;
5437
5438 fail_dev_id:
5439 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5440 fail_rbd_dev:
5441 rbd_dev_free(rbd_dev);
5442 return NULL;
5443 }
5444
rbd_dev_destroy(struct rbd_device * rbd_dev)5445 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5446 {
5447 if (rbd_dev)
5448 put_device(&rbd_dev->dev);
5449 }
5450
5451 /*
5452 * Get the size and object order for an image snapshot, or if
5453 * snap_id is CEPH_NOSNAP, gets this information for the base
5454 * image.
5455 */
_rbd_dev_v2_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u8 * order,u64 * snap_size)5456 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5457 u8 *order, u64 *snap_size)
5458 {
5459 __le64 snapid = cpu_to_le64(snap_id);
5460 int ret;
5461 struct {
5462 u8 order;
5463 __le64 size;
5464 } __attribute__ ((packed)) size_buf = { 0 };
5465
5466 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5467 &rbd_dev->header_oloc, "get_size",
5468 &snapid, sizeof(snapid),
5469 &size_buf, sizeof(size_buf));
5470 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5471 if (ret < 0)
5472 return ret;
5473 if (ret < sizeof (size_buf))
5474 return -ERANGE;
5475
5476 if (order) {
5477 *order = size_buf.order;
5478 dout(" order %u", (unsigned int)*order);
5479 }
5480 *snap_size = le64_to_cpu(size_buf.size);
5481
5482 dout(" snap_id 0x%016llx snap_size = %llu\n",
5483 (unsigned long long)snap_id,
5484 (unsigned long long)*snap_size);
5485
5486 return 0;
5487 }
5488
rbd_dev_v2_object_prefix(struct rbd_device * rbd_dev,char ** pobject_prefix)5489 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5490 char **pobject_prefix)
5491 {
5492 size_t size;
5493 void *reply_buf;
5494 char *object_prefix;
5495 int ret;
5496 void *p;
5497
5498 /* Response will be an encoded string, which includes a length */
5499 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5500 reply_buf = kzalloc(size, GFP_KERNEL);
5501 if (!reply_buf)
5502 return -ENOMEM;
5503
5504 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5505 &rbd_dev->header_oloc, "get_object_prefix",
5506 NULL, 0, reply_buf, size);
5507 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5508 if (ret < 0)
5509 goto out;
5510
5511 p = reply_buf;
5512 object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5513 GFP_NOIO);
5514 if (IS_ERR(object_prefix)) {
5515 ret = PTR_ERR(object_prefix);
5516 goto out;
5517 }
5518 ret = 0;
5519
5520 *pobject_prefix = object_prefix;
5521 dout(" object_prefix = %s\n", object_prefix);
5522 out:
5523 kfree(reply_buf);
5524
5525 return ret;
5526 }
5527
_rbd_dev_v2_snap_features(struct rbd_device * rbd_dev,u64 snap_id,bool read_only,u64 * snap_features)5528 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5529 bool read_only, u64 *snap_features)
5530 {
5531 struct {
5532 __le64 snap_id;
5533 u8 read_only;
5534 } features_in;
5535 struct {
5536 __le64 features;
5537 __le64 incompat;
5538 } __attribute__ ((packed)) features_buf = { 0 };
5539 u64 unsup;
5540 int ret;
5541
5542 features_in.snap_id = cpu_to_le64(snap_id);
5543 features_in.read_only = read_only;
5544
5545 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5546 &rbd_dev->header_oloc, "get_features",
5547 &features_in, sizeof(features_in),
5548 &features_buf, sizeof(features_buf));
5549 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5550 if (ret < 0)
5551 return ret;
5552 if (ret < sizeof (features_buf))
5553 return -ERANGE;
5554
5555 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5556 if (unsup) {
5557 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5558 unsup);
5559 return -ENXIO;
5560 }
5561
5562 *snap_features = le64_to_cpu(features_buf.features);
5563
5564 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5565 (unsigned long long)snap_id,
5566 (unsigned long long)*snap_features,
5567 (unsigned long long)le64_to_cpu(features_buf.incompat));
5568
5569 return 0;
5570 }
5571
5572 /*
5573 * These are generic image flags, but since they are used only for
5574 * object map, store them in rbd_dev->object_map_flags.
5575 *
5576 * For the same reason, this function is called only on object map
5577 * (re)load and not on header refresh.
5578 */
rbd_dev_v2_get_flags(struct rbd_device * rbd_dev)5579 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5580 {
5581 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5582 __le64 flags;
5583 int ret;
5584
5585 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5586 &rbd_dev->header_oloc, "get_flags",
5587 &snapid, sizeof(snapid),
5588 &flags, sizeof(flags));
5589 if (ret < 0)
5590 return ret;
5591 if (ret < sizeof(flags))
5592 return -EBADMSG;
5593
5594 rbd_dev->object_map_flags = le64_to_cpu(flags);
5595 return 0;
5596 }
5597
5598 struct parent_image_info {
5599 u64 pool_id;
5600 const char *pool_ns;
5601 const char *image_id;
5602 u64 snap_id;
5603
5604 bool has_overlap;
5605 u64 overlap;
5606 };
5607
rbd_parent_info_cleanup(struct parent_image_info * pii)5608 static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5609 {
5610 kfree(pii->pool_ns);
5611 kfree(pii->image_id);
5612
5613 memset(pii, 0, sizeof(*pii));
5614 }
5615
5616 /*
5617 * The caller is responsible for @pii.
5618 */
decode_parent_image_spec(void ** p,void * end,struct parent_image_info * pii)5619 static int decode_parent_image_spec(void **p, void *end,
5620 struct parent_image_info *pii)
5621 {
5622 u8 struct_v;
5623 u32 struct_len;
5624 int ret;
5625
5626 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5627 &struct_v, &struct_len);
5628 if (ret)
5629 return ret;
5630
5631 ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5632 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5633 if (IS_ERR(pii->pool_ns)) {
5634 ret = PTR_ERR(pii->pool_ns);
5635 pii->pool_ns = NULL;
5636 return ret;
5637 }
5638 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5639 if (IS_ERR(pii->image_id)) {
5640 ret = PTR_ERR(pii->image_id);
5641 pii->image_id = NULL;
5642 return ret;
5643 }
5644 ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5645 return 0;
5646
5647 e_inval:
5648 return -EINVAL;
5649 }
5650
__get_parent_info(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5651 static int __get_parent_info(struct rbd_device *rbd_dev,
5652 struct page *req_page,
5653 struct page *reply_page,
5654 struct parent_image_info *pii)
5655 {
5656 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5657 size_t reply_len = PAGE_SIZE;
5658 void *p, *end;
5659 int ret;
5660
5661 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5662 "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5663 req_page, sizeof(u64), &reply_page, &reply_len);
5664 if (ret)
5665 return ret == -EOPNOTSUPP ? 1 : ret;
5666
5667 p = page_address(reply_page);
5668 end = p + reply_len;
5669 ret = decode_parent_image_spec(&p, end, pii);
5670 if (ret)
5671 return ret;
5672
5673 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5674 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5675 req_page, sizeof(u64), &reply_page, &reply_len);
5676 if (ret)
5677 return ret;
5678
5679 p = page_address(reply_page);
5680 end = p + reply_len;
5681 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5682 if (pii->has_overlap)
5683 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5684
5685 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5686 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5687 pii->has_overlap, pii->overlap);
5688 return 0;
5689
5690 e_inval:
5691 return -EINVAL;
5692 }
5693
5694 /*
5695 * The caller is responsible for @pii.
5696 */
__get_parent_info_legacy(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5697 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5698 struct page *req_page,
5699 struct page *reply_page,
5700 struct parent_image_info *pii)
5701 {
5702 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5703 size_t reply_len = PAGE_SIZE;
5704 void *p, *end;
5705 int ret;
5706
5707 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5708 "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5709 req_page, sizeof(u64), &reply_page, &reply_len);
5710 if (ret)
5711 return ret;
5712
5713 p = page_address(reply_page);
5714 end = p + reply_len;
5715 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5716 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5717 if (IS_ERR(pii->image_id)) {
5718 ret = PTR_ERR(pii->image_id);
5719 pii->image_id = NULL;
5720 return ret;
5721 }
5722 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5723 pii->has_overlap = true;
5724 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5725
5726 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5727 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5728 pii->has_overlap, pii->overlap);
5729 return 0;
5730
5731 e_inval:
5732 return -EINVAL;
5733 }
5734
rbd_dev_v2_parent_info(struct rbd_device * rbd_dev,struct parent_image_info * pii)5735 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5736 struct parent_image_info *pii)
5737 {
5738 struct page *req_page, *reply_page;
5739 void *p;
5740 int ret;
5741
5742 req_page = alloc_page(GFP_KERNEL);
5743 if (!req_page)
5744 return -ENOMEM;
5745
5746 reply_page = alloc_page(GFP_KERNEL);
5747 if (!reply_page) {
5748 __free_page(req_page);
5749 return -ENOMEM;
5750 }
5751
5752 p = page_address(req_page);
5753 ceph_encode_64(&p, rbd_dev->spec->snap_id);
5754 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5755 if (ret > 0)
5756 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5757 pii);
5758
5759 __free_page(req_page);
5760 __free_page(reply_page);
5761 return ret;
5762 }
5763
rbd_dev_setup_parent(struct rbd_device * rbd_dev)5764 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5765 {
5766 struct rbd_spec *parent_spec;
5767 struct parent_image_info pii = { 0 };
5768 int ret;
5769
5770 parent_spec = rbd_spec_alloc();
5771 if (!parent_spec)
5772 return -ENOMEM;
5773
5774 ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5775 if (ret)
5776 goto out_err;
5777
5778 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5779 goto out; /* No parent? No problem. */
5780
5781 /* The ceph file layout needs to fit pool id in 32 bits */
5782
5783 ret = -EIO;
5784 if (pii.pool_id > (u64)U32_MAX) {
5785 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5786 (unsigned long long)pii.pool_id, U32_MAX);
5787 goto out_err;
5788 }
5789
5790 /*
5791 * The parent won't change except when the clone is flattened,
5792 * so we only need to record the parent image spec once.
5793 */
5794 parent_spec->pool_id = pii.pool_id;
5795 if (pii.pool_ns && *pii.pool_ns) {
5796 parent_spec->pool_ns = pii.pool_ns;
5797 pii.pool_ns = NULL;
5798 }
5799 parent_spec->image_id = pii.image_id;
5800 pii.image_id = NULL;
5801 parent_spec->snap_id = pii.snap_id;
5802
5803 rbd_assert(!rbd_dev->parent_spec);
5804 rbd_dev->parent_spec = parent_spec;
5805 parent_spec = NULL; /* rbd_dev now owns this */
5806
5807 /*
5808 * Record the parent overlap. If it's zero, issue a warning as
5809 * we will proceed as if there is no parent.
5810 */
5811 if (!pii.overlap)
5812 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5813 rbd_dev->parent_overlap = pii.overlap;
5814
5815 out:
5816 ret = 0;
5817 out_err:
5818 rbd_parent_info_cleanup(&pii);
5819 rbd_spec_put(parent_spec);
5820 return ret;
5821 }
5822
rbd_dev_v2_striping_info(struct rbd_device * rbd_dev,u64 * stripe_unit,u64 * stripe_count)5823 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5824 u64 *stripe_unit, u64 *stripe_count)
5825 {
5826 struct {
5827 __le64 stripe_unit;
5828 __le64 stripe_count;
5829 } __attribute__ ((packed)) striping_info_buf = { 0 };
5830 size_t size = sizeof (striping_info_buf);
5831 int ret;
5832
5833 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5834 &rbd_dev->header_oloc, "get_stripe_unit_count",
5835 NULL, 0, &striping_info_buf, size);
5836 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5837 if (ret < 0)
5838 return ret;
5839 if (ret < size)
5840 return -ERANGE;
5841
5842 *stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5843 *stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5844 dout(" stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5845 *stripe_count);
5846
5847 return 0;
5848 }
5849
rbd_dev_v2_data_pool(struct rbd_device * rbd_dev,s64 * data_pool_id)5850 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5851 {
5852 __le64 data_pool_buf;
5853 int ret;
5854
5855 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5856 &rbd_dev->header_oloc, "get_data_pool",
5857 NULL, 0, &data_pool_buf,
5858 sizeof(data_pool_buf));
5859 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5860 if (ret < 0)
5861 return ret;
5862 if (ret < sizeof(data_pool_buf))
5863 return -EBADMSG;
5864
5865 *data_pool_id = le64_to_cpu(data_pool_buf);
5866 dout(" data_pool_id = %lld\n", *data_pool_id);
5867 WARN_ON(*data_pool_id == CEPH_NOPOOL);
5868
5869 return 0;
5870 }
5871
rbd_dev_image_name(struct rbd_device * rbd_dev)5872 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5873 {
5874 CEPH_DEFINE_OID_ONSTACK(oid);
5875 size_t image_id_size;
5876 char *image_id;
5877 void *p;
5878 void *end;
5879 size_t size;
5880 void *reply_buf = NULL;
5881 size_t len = 0;
5882 char *image_name = NULL;
5883 int ret;
5884
5885 rbd_assert(!rbd_dev->spec->image_name);
5886
5887 len = strlen(rbd_dev->spec->image_id);
5888 image_id_size = sizeof (__le32) + len;
5889 image_id = kmalloc(image_id_size, GFP_KERNEL);
5890 if (!image_id)
5891 return NULL;
5892
5893 p = image_id;
5894 end = image_id + image_id_size;
5895 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5896
5897 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5898 reply_buf = kmalloc(size, GFP_KERNEL);
5899 if (!reply_buf)
5900 goto out;
5901
5902 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5903 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5904 "dir_get_name", image_id, image_id_size,
5905 reply_buf, size);
5906 if (ret < 0)
5907 goto out;
5908 p = reply_buf;
5909 end = reply_buf + ret;
5910
5911 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5912 if (IS_ERR(image_name))
5913 image_name = NULL;
5914 else
5915 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5916 out:
5917 kfree(reply_buf);
5918 kfree(image_id);
5919
5920 return image_name;
5921 }
5922
rbd_v1_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5923 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5924 {
5925 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5926 const char *snap_name;
5927 u32 which = 0;
5928
5929 /* Skip over names until we find the one we are looking for */
5930
5931 snap_name = rbd_dev->header.snap_names;
5932 while (which < snapc->num_snaps) {
5933 if (!strcmp(name, snap_name))
5934 return snapc->snaps[which];
5935 snap_name += strlen(snap_name) + 1;
5936 which++;
5937 }
5938 return CEPH_NOSNAP;
5939 }
5940
rbd_v2_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5941 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5942 {
5943 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5944 u32 which;
5945 bool found = false;
5946 u64 snap_id;
5947
5948 for (which = 0; !found && which < snapc->num_snaps; which++) {
5949 const char *snap_name;
5950
5951 snap_id = snapc->snaps[which];
5952 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5953 if (IS_ERR(snap_name)) {
5954 /* ignore no-longer existing snapshots */
5955 if (PTR_ERR(snap_name) == -ENOENT)
5956 continue;
5957 else
5958 break;
5959 }
5960 found = !strcmp(name, snap_name);
5961 kfree(snap_name);
5962 }
5963 return found ? snap_id : CEPH_NOSNAP;
5964 }
5965
5966 /*
5967 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5968 * no snapshot by that name is found, or if an error occurs.
5969 */
rbd_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5970 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5971 {
5972 if (rbd_dev->image_format == 1)
5973 return rbd_v1_snap_id_by_name(rbd_dev, name);
5974
5975 return rbd_v2_snap_id_by_name(rbd_dev, name);
5976 }
5977
5978 /*
5979 * An image being mapped will have everything but the snap id.
5980 */
rbd_spec_fill_snap_id(struct rbd_device * rbd_dev)5981 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5982 {
5983 struct rbd_spec *spec = rbd_dev->spec;
5984
5985 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5986 rbd_assert(spec->image_id && spec->image_name);
5987 rbd_assert(spec->snap_name);
5988
5989 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5990 u64 snap_id;
5991
5992 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5993 if (snap_id == CEPH_NOSNAP)
5994 return -ENOENT;
5995
5996 spec->snap_id = snap_id;
5997 } else {
5998 spec->snap_id = CEPH_NOSNAP;
5999 }
6000
6001 return 0;
6002 }
6003
6004 /*
6005 * A parent image will have all ids but none of the names.
6006 *
6007 * All names in an rbd spec are dynamically allocated. It's OK if we
6008 * can't figure out the name for an image id.
6009 */
rbd_spec_fill_names(struct rbd_device * rbd_dev)6010 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6011 {
6012 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6013 struct rbd_spec *spec = rbd_dev->spec;
6014 const char *pool_name;
6015 const char *image_name;
6016 const char *snap_name;
6017 int ret;
6018
6019 rbd_assert(spec->pool_id != CEPH_NOPOOL);
6020 rbd_assert(spec->image_id);
6021 rbd_assert(spec->snap_id != CEPH_NOSNAP);
6022
6023 /* Get the pool name; we have to make our own copy of this */
6024
6025 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6026 if (!pool_name) {
6027 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6028 return -EIO;
6029 }
6030 pool_name = kstrdup(pool_name, GFP_KERNEL);
6031 if (!pool_name)
6032 return -ENOMEM;
6033
6034 /* Fetch the image name; tolerate failure here */
6035
6036 image_name = rbd_dev_image_name(rbd_dev);
6037 if (!image_name)
6038 rbd_warn(rbd_dev, "unable to get image name");
6039
6040 /* Fetch the snapshot name */
6041
6042 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6043 if (IS_ERR(snap_name)) {
6044 ret = PTR_ERR(snap_name);
6045 goto out_err;
6046 }
6047
6048 spec->pool_name = pool_name;
6049 spec->image_name = image_name;
6050 spec->snap_name = snap_name;
6051
6052 return 0;
6053
6054 out_err:
6055 kfree(image_name);
6056 kfree(pool_name);
6057 return ret;
6058 }
6059
rbd_dev_v2_snap_context(struct rbd_device * rbd_dev,struct ceph_snap_context ** psnapc)6060 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6061 struct ceph_snap_context **psnapc)
6062 {
6063 size_t size;
6064 int ret;
6065 void *reply_buf;
6066 void *p;
6067 void *end;
6068 u64 seq;
6069 u32 snap_count;
6070 struct ceph_snap_context *snapc;
6071 u32 i;
6072
6073 /*
6074 * We'll need room for the seq value (maximum snapshot id),
6075 * snapshot count, and array of that many snapshot ids.
6076 * For now we have a fixed upper limit on the number we're
6077 * prepared to receive.
6078 */
6079 size = sizeof (__le64) + sizeof (__le32) +
6080 RBD_MAX_SNAP_COUNT * sizeof (__le64);
6081 reply_buf = kzalloc(size, GFP_KERNEL);
6082 if (!reply_buf)
6083 return -ENOMEM;
6084
6085 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6086 &rbd_dev->header_oloc, "get_snapcontext",
6087 NULL, 0, reply_buf, size);
6088 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6089 if (ret < 0)
6090 goto out;
6091
6092 p = reply_buf;
6093 end = reply_buf + ret;
6094 ret = -ERANGE;
6095 ceph_decode_64_safe(&p, end, seq, out);
6096 ceph_decode_32_safe(&p, end, snap_count, out);
6097
6098 /*
6099 * Make sure the reported number of snapshot ids wouldn't go
6100 * beyond the end of our buffer. But before checking that,
6101 * make sure the computed size of the snapshot context we
6102 * allocate is representable in a size_t.
6103 */
6104 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6105 / sizeof (u64)) {
6106 ret = -EINVAL;
6107 goto out;
6108 }
6109 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6110 goto out;
6111 ret = 0;
6112
6113 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6114 if (!snapc) {
6115 ret = -ENOMEM;
6116 goto out;
6117 }
6118 snapc->seq = seq;
6119 for (i = 0; i < snap_count; i++)
6120 snapc->snaps[i] = ceph_decode_64(&p);
6121
6122 *psnapc = snapc;
6123 dout(" snap context seq = %llu, snap_count = %u\n",
6124 (unsigned long long)seq, (unsigned int)snap_count);
6125 out:
6126 kfree(reply_buf);
6127
6128 return ret;
6129 }
6130
rbd_dev_v2_snap_name(struct rbd_device * rbd_dev,u64 snap_id)6131 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6132 u64 snap_id)
6133 {
6134 size_t size;
6135 void *reply_buf;
6136 __le64 snapid;
6137 int ret;
6138 void *p;
6139 void *end;
6140 char *snap_name;
6141
6142 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6143 reply_buf = kmalloc(size, GFP_KERNEL);
6144 if (!reply_buf)
6145 return ERR_PTR(-ENOMEM);
6146
6147 snapid = cpu_to_le64(snap_id);
6148 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6149 &rbd_dev->header_oloc, "get_snapshot_name",
6150 &snapid, sizeof(snapid), reply_buf, size);
6151 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6152 if (ret < 0) {
6153 snap_name = ERR_PTR(ret);
6154 goto out;
6155 }
6156
6157 p = reply_buf;
6158 end = reply_buf + ret;
6159 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6160 if (IS_ERR(snap_name))
6161 goto out;
6162
6163 dout(" snap_id 0x%016llx snap_name = %s\n",
6164 (unsigned long long)snap_id, snap_name);
6165 out:
6166 kfree(reply_buf);
6167
6168 return snap_name;
6169 }
6170
rbd_dev_v2_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)6171 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6172 struct rbd_image_header *header,
6173 bool first_time)
6174 {
6175 int ret;
6176
6177 ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6178 first_time ? &header->obj_order : NULL,
6179 &header->image_size);
6180 if (ret)
6181 return ret;
6182
6183 if (first_time) {
6184 ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6185 if (ret)
6186 return ret;
6187 }
6188
6189 ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6190 if (ret)
6191 return ret;
6192
6193 return 0;
6194 }
6195
rbd_dev_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)6196 static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6197 struct rbd_image_header *header,
6198 bool first_time)
6199 {
6200 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6201 rbd_assert(!header->object_prefix && !header->snapc);
6202
6203 if (rbd_dev->image_format == 1)
6204 return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6205
6206 return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6207 }
6208
6209 /*
6210 * Skips over white space at *buf, and updates *buf to point to the
6211 * first found non-space character (if any). Returns the length of
6212 * the token (string of non-white space characters) found. Note
6213 * that *buf must be terminated with '\0'.
6214 */
next_token(const char ** buf)6215 static inline size_t next_token(const char **buf)
6216 {
6217 /*
6218 * These are the characters that produce nonzero for
6219 * isspace() in the "C" and "POSIX" locales.
6220 */
6221 const char *spaces = " \f\n\r\t\v";
6222
6223 *buf += strspn(*buf, spaces); /* Find start of token */
6224
6225 return strcspn(*buf, spaces); /* Return token length */
6226 }
6227
6228 /*
6229 * Finds the next token in *buf, dynamically allocates a buffer big
6230 * enough to hold a copy of it, and copies the token into the new
6231 * buffer. The copy is guaranteed to be terminated with '\0'. Note
6232 * that a duplicate buffer is created even for a zero-length token.
6233 *
6234 * Returns a pointer to the newly-allocated duplicate, or a null
6235 * pointer if memory for the duplicate was not available. If
6236 * the lenp argument is a non-null pointer, the length of the token
6237 * (not including the '\0') is returned in *lenp.
6238 *
6239 * If successful, the *buf pointer will be updated to point beyond
6240 * the end of the found token.
6241 *
6242 * Note: uses GFP_KERNEL for allocation.
6243 */
dup_token(const char ** buf,size_t * lenp)6244 static inline char *dup_token(const char **buf, size_t *lenp)
6245 {
6246 char *dup;
6247 size_t len;
6248
6249 len = next_token(buf);
6250 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6251 if (!dup)
6252 return NULL;
6253 *(dup + len) = '\0';
6254 *buf += len;
6255
6256 if (lenp)
6257 *lenp = len;
6258
6259 return dup;
6260 }
6261
rbd_parse_param(struct fs_parameter * param,struct rbd_parse_opts_ctx * pctx)6262 static int rbd_parse_param(struct fs_parameter *param,
6263 struct rbd_parse_opts_ctx *pctx)
6264 {
6265 struct rbd_options *opt = pctx->opts;
6266 struct fs_parse_result result;
6267 struct p_log log = {.prefix = "rbd"};
6268 int token, ret;
6269
6270 ret = ceph_parse_param(param, pctx->copts, NULL);
6271 if (ret != -ENOPARAM)
6272 return ret;
6273
6274 token = __fs_parse(&log, rbd_parameters, param, &result);
6275 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6276 if (token < 0) {
6277 if (token == -ENOPARAM)
6278 return inval_plog(&log, "Unknown parameter '%s'",
6279 param->key);
6280 return token;
6281 }
6282
6283 switch (token) {
6284 case Opt_queue_depth:
6285 if (result.uint_32 < 1)
6286 goto out_of_range;
6287 opt->queue_depth = result.uint_32;
6288 break;
6289 case Opt_alloc_size:
6290 if (result.uint_32 < SECTOR_SIZE)
6291 goto out_of_range;
6292 if (!is_power_of_2(result.uint_32))
6293 return inval_plog(&log, "alloc_size must be a power of 2");
6294 opt->alloc_size = result.uint_32;
6295 break;
6296 case Opt_lock_timeout:
6297 /* 0 is "wait forever" (i.e. infinite timeout) */
6298 if (result.uint_32 > INT_MAX / 1000)
6299 goto out_of_range;
6300 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6301 break;
6302 case Opt_pool_ns:
6303 kfree(pctx->spec->pool_ns);
6304 pctx->spec->pool_ns = param->string;
6305 param->string = NULL;
6306 break;
6307 case Opt_compression_hint:
6308 switch (result.uint_32) {
6309 case Opt_compression_hint_none:
6310 opt->alloc_hint_flags &=
6311 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6312 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6313 break;
6314 case Opt_compression_hint_compressible:
6315 opt->alloc_hint_flags |=
6316 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6317 opt->alloc_hint_flags &=
6318 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6319 break;
6320 case Opt_compression_hint_incompressible:
6321 opt->alloc_hint_flags |=
6322 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6323 opt->alloc_hint_flags &=
6324 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6325 break;
6326 default:
6327 BUG();
6328 }
6329 break;
6330 case Opt_read_only:
6331 opt->read_only = true;
6332 break;
6333 case Opt_read_write:
6334 opt->read_only = false;
6335 break;
6336 case Opt_lock_on_read:
6337 opt->lock_on_read = true;
6338 break;
6339 case Opt_exclusive:
6340 opt->exclusive = true;
6341 break;
6342 case Opt_notrim:
6343 opt->trim = false;
6344 break;
6345 default:
6346 BUG();
6347 }
6348
6349 return 0;
6350
6351 out_of_range:
6352 return inval_plog(&log, "%s out of range", param->key);
6353 }
6354
6355 /*
6356 * This duplicates most of generic_parse_monolithic(), untying it from
6357 * fs_context and skipping standard superblock and security options.
6358 */
rbd_parse_options(char * options,struct rbd_parse_opts_ctx * pctx)6359 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6360 {
6361 char *key;
6362 int ret = 0;
6363
6364 dout("%s '%s'\n", __func__, options);
6365 while ((key = strsep(&options, ",")) != NULL) {
6366 if (*key) {
6367 struct fs_parameter param = {
6368 .key = key,
6369 .type = fs_value_is_flag,
6370 };
6371 char *value = strchr(key, '=');
6372 size_t v_len = 0;
6373
6374 if (value) {
6375 if (value == key)
6376 continue;
6377 *value++ = 0;
6378 v_len = strlen(value);
6379 param.string = kmemdup_nul(value, v_len,
6380 GFP_KERNEL);
6381 if (!param.string)
6382 return -ENOMEM;
6383 param.type = fs_value_is_string;
6384 }
6385 param.size = v_len;
6386
6387 ret = rbd_parse_param(¶m, pctx);
6388 kfree(param.string);
6389 if (ret)
6390 break;
6391 }
6392 }
6393
6394 return ret;
6395 }
6396
6397 /*
6398 * Parse the options provided for an "rbd add" (i.e., rbd image
6399 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
6400 * and the data written is passed here via a NUL-terminated buffer.
6401 * Returns 0 if successful or an error code otherwise.
6402 *
6403 * The information extracted from these options is recorded in
6404 * the other parameters which return dynamically-allocated
6405 * structures:
6406 * ceph_opts
6407 * The address of a pointer that will refer to a ceph options
6408 * structure. Caller must release the returned pointer using
6409 * ceph_destroy_options() when it is no longer needed.
6410 * rbd_opts
6411 * Address of an rbd options pointer. Fully initialized by
6412 * this function; caller must release with kfree().
6413 * spec
6414 * Address of an rbd image specification pointer. Fully
6415 * initialized by this function based on parsed options.
6416 * Caller must release with rbd_spec_put().
6417 *
6418 * The options passed take this form:
6419 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6420 * where:
6421 * <mon_addrs>
6422 * A comma-separated list of one or more monitor addresses.
6423 * A monitor address is an ip address, optionally followed
6424 * by a port number (separated by a colon).
6425 * I.e.: ip1[:port1][,ip2[:port2]...]
6426 * <options>
6427 * A comma-separated list of ceph and/or rbd options.
6428 * <pool_name>
6429 * The name of the rados pool containing the rbd image.
6430 * <image_name>
6431 * The name of the image in that pool to map.
6432 * <snap_id>
6433 * An optional snapshot id. If provided, the mapping will
6434 * present data from the image at the time that snapshot was
6435 * created. The image head is used if no snapshot id is
6436 * provided. Snapshot mappings are always read-only.
6437 */
rbd_add_parse_args(const char * buf,struct ceph_options ** ceph_opts,struct rbd_options ** opts,struct rbd_spec ** rbd_spec)6438 static int rbd_add_parse_args(const char *buf,
6439 struct ceph_options **ceph_opts,
6440 struct rbd_options **opts,
6441 struct rbd_spec **rbd_spec)
6442 {
6443 size_t len;
6444 char *options;
6445 const char *mon_addrs;
6446 char *snap_name;
6447 size_t mon_addrs_size;
6448 struct rbd_parse_opts_ctx pctx = { 0 };
6449 int ret;
6450
6451 /* The first four tokens are required */
6452
6453 len = next_token(&buf);
6454 if (!len) {
6455 rbd_warn(NULL, "no monitor address(es) provided");
6456 return -EINVAL;
6457 }
6458 mon_addrs = buf;
6459 mon_addrs_size = len;
6460 buf += len;
6461
6462 ret = -EINVAL;
6463 options = dup_token(&buf, NULL);
6464 if (!options)
6465 return -ENOMEM;
6466 if (!*options) {
6467 rbd_warn(NULL, "no options provided");
6468 goto out_err;
6469 }
6470
6471 pctx.spec = rbd_spec_alloc();
6472 if (!pctx.spec)
6473 goto out_mem;
6474
6475 pctx.spec->pool_name = dup_token(&buf, NULL);
6476 if (!pctx.spec->pool_name)
6477 goto out_mem;
6478 if (!*pctx.spec->pool_name) {
6479 rbd_warn(NULL, "no pool name provided");
6480 goto out_err;
6481 }
6482
6483 pctx.spec->image_name = dup_token(&buf, NULL);
6484 if (!pctx.spec->image_name)
6485 goto out_mem;
6486 if (!*pctx.spec->image_name) {
6487 rbd_warn(NULL, "no image name provided");
6488 goto out_err;
6489 }
6490
6491 /*
6492 * Snapshot name is optional; default is to use "-"
6493 * (indicating the head/no snapshot).
6494 */
6495 len = next_token(&buf);
6496 if (!len) {
6497 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6498 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6499 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6500 ret = -ENAMETOOLONG;
6501 goto out_err;
6502 }
6503 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6504 if (!snap_name)
6505 goto out_mem;
6506 *(snap_name + len) = '\0';
6507 pctx.spec->snap_name = snap_name;
6508
6509 pctx.copts = ceph_alloc_options();
6510 if (!pctx.copts)
6511 goto out_mem;
6512
6513 /* Initialize all rbd options to the defaults */
6514
6515 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6516 if (!pctx.opts)
6517 goto out_mem;
6518
6519 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6520 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6521 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6522 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6523 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6524 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6525 pctx.opts->trim = RBD_TRIM_DEFAULT;
6526
6527 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6528 if (ret)
6529 goto out_err;
6530
6531 ret = rbd_parse_options(options, &pctx);
6532 if (ret)
6533 goto out_err;
6534
6535 *ceph_opts = pctx.copts;
6536 *opts = pctx.opts;
6537 *rbd_spec = pctx.spec;
6538 kfree(options);
6539 return 0;
6540
6541 out_mem:
6542 ret = -ENOMEM;
6543 out_err:
6544 kfree(pctx.opts);
6545 ceph_destroy_options(pctx.copts);
6546 rbd_spec_put(pctx.spec);
6547 kfree(options);
6548 return ret;
6549 }
6550
rbd_dev_image_unlock(struct rbd_device * rbd_dev)6551 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6552 {
6553 down_write(&rbd_dev->lock_rwsem);
6554 if (__rbd_is_lock_owner(rbd_dev))
6555 __rbd_release_lock(rbd_dev);
6556 up_write(&rbd_dev->lock_rwsem);
6557 }
6558
6559 /*
6560 * If the wait is interrupted, an error is returned even if the lock
6561 * was successfully acquired. rbd_dev_image_unlock() will release it
6562 * if needed.
6563 */
rbd_add_acquire_lock(struct rbd_device * rbd_dev)6564 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6565 {
6566 long ret;
6567
6568 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6569 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6570 return 0;
6571
6572 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6573 return -EINVAL;
6574 }
6575
6576 if (rbd_is_ro(rbd_dev))
6577 return 0;
6578
6579 rbd_assert(!rbd_is_lock_owner(rbd_dev));
6580 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6581 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6582 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6583 if (ret > 0) {
6584 ret = rbd_dev->acquire_err;
6585 } else {
6586 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6587 if (!ret)
6588 ret = -ETIMEDOUT;
6589
6590 rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6591 }
6592 if (ret)
6593 return ret;
6594
6595 /*
6596 * The lock may have been released by now, unless automatic lock
6597 * transitions are disabled.
6598 */
6599 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6600 return 0;
6601 }
6602
6603 /*
6604 * An rbd format 2 image has a unique identifier, distinct from the
6605 * name given to it by the user. Internally, that identifier is
6606 * what's used to specify the names of objects related to the image.
6607 *
6608 * A special "rbd id" object is used to map an rbd image name to its
6609 * id. If that object doesn't exist, then there is no v2 rbd image
6610 * with the supplied name.
6611 *
6612 * This function will record the given rbd_dev's image_id field if
6613 * it can be determined, and in that case will return 0. If any
6614 * errors occur a negative errno will be returned and the rbd_dev's
6615 * image_id field will be unchanged (and should be NULL).
6616 */
rbd_dev_image_id(struct rbd_device * rbd_dev)6617 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6618 {
6619 int ret;
6620 size_t size;
6621 CEPH_DEFINE_OID_ONSTACK(oid);
6622 void *response;
6623 char *image_id;
6624
6625 /*
6626 * When probing a parent image, the image id is already
6627 * known (and the image name likely is not). There's no
6628 * need to fetch the image id again in this case. We
6629 * do still need to set the image format though.
6630 */
6631 if (rbd_dev->spec->image_id) {
6632 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6633
6634 return 0;
6635 }
6636
6637 /*
6638 * First, see if the format 2 image id file exists, and if
6639 * so, get the image's persistent id from it.
6640 */
6641 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6642 rbd_dev->spec->image_name);
6643 if (ret)
6644 return ret;
6645
6646 dout("rbd id object name is %s\n", oid.name);
6647
6648 /* Response will be an encoded string, which includes a length */
6649 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6650 response = kzalloc(size, GFP_NOIO);
6651 if (!response) {
6652 ret = -ENOMEM;
6653 goto out;
6654 }
6655
6656 /* If it doesn't exist we'll assume it's a format 1 image */
6657
6658 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6659 "get_id", NULL, 0,
6660 response, size);
6661 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6662 if (ret == -ENOENT) {
6663 image_id = kstrdup("", GFP_KERNEL);
6664 ret = image_id ? 0 : -ENOMEM;
6665 if (!ret)
6666 rbd_dev->image_format = 1;
6667 } else if (ret >= 0) {
6668 void *p = response;
6669
6670 image_id = ceph_extract_encoded_string(&p, p + ret,
6671 NULL, GFP_NOIO);
6672 ret = PTR_ERR_OR_ZERO(image_id);
6673 if (!ret)
6674 rbd_dev->image_format = 2;
6675 }
6676
6677 if (!ret) {
6678 rbd_dev->spec->image_id = image_id;
6679 dout("image_id is %s\n", image_id);
6680 }
6681 out:
6682 kfree(response);
6683 ceph_oid_destroy(&oid);
6684 return ret;
6685 }
6686
6687 /*
6688 * Undo whatever state changes are made by v1 or v2 header info
6689 * call.
6690 */
rbd_dev_unprobe(struct rbd_device * rbd_dev)6691 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6692 {
6693 rbd_dev_parent_put(rbd_dev);
6694 rbd_object_map_free(rbd_dev);
6695 rbd_dev_mapping_clear(rbd_dev);
6696
6697 /* Free dynamic fields from the header, then zero it out */
6698
6699 rbd_image_header_cleanup(&rbd_dev->header);
6700 }
6701
rbd_dev_v2_header_onetime(struct rbd_device * rbd_dev,struct rbd_image_header * header)6702 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6703 struct rbd_image_header *header)
6704 {
6705 int ret;
6706
6707 ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6708 if (ret)
6709 return ret;
6710
6711 /*
6712 * Get the and check features for the image. Currently the
6713 * features are assumed to never change.
6714 */
6715 ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6716 rbd_is_ro(rbd_dev), &header->features);
6717 if (ret)
6718 return ret;
6719
6720 /* If the image supports fancy striping, get its parameters */
6721
6722 if (header->features & RBD_FEATURE_STRIPINGV2) {
6723 ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6724 &header->stripe_count);
6725 if (ret)
6726 return ret;
6727 }
6728
6729 if (header->features & RBD_FEATURE_DATA_POOL) {
6730 ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6731 if (ret)
6732 return ret;
6733 }
6734
6735 return 0;
6736 }
6737
6738 /*
6739 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6740 * rbd_dev_image_probe() recursion depth, which means it's also the
6741 * length of the already discovered part of the parent chain.
6742 */
rbd_dev_probe_parent(struct rbd_device * rbd_dev,int depth)6743 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6744 {
6745 struct rbd_device *parent = NULL;
6746 int ret;
6747
6748 if (!rbd_dev->parent_spec)
6749 return 0;
6750
6751 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6752 pr_info("parent chain is too long (%d)\n", depth);
6753 ret = -EINVAL;
6754 goto out_err;
6755 }
6756
6757 parent = __rbd_dev_create(rbd_dev->parent_spec);
6758 if (!parent) {
6759 ret = -ENOMEM;
6760 goto out_err;
6761 }
6762
6763 /*
6764 * Images related by parent/child relationships always share
6765 * rbd_client and spec/parent_spec, so bump their refcounts.
6766 */
6767 parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6768 parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6769
6770 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6771
6772 ret = rbd_dev_image_probe(parent, depth);
6773 if (ret < 0)
6774 goto out_err;
6775
6776 rbd_dev->parent = parent;
6777 atomic_set(&rbd_dev->parent_ref, 1);
6778 return 0;
6779
6780 out_err:
6781 rbd_dev_unparent(rbd_dev);
6782 rbd_dev_destroy(parent);
6783 return ret;
6784 }
6785
rbd_dev_device_release(struct rbd_device * rbd_dev)6786 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6787 {
6788 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6789 rbd_free_disk(rbd_dev);
6790 if (!single_major)
6791 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6792 }
6793
6794 /*
6795 * rbd_dev->header_rwsem must be locked for write and will be unlocked
6796 * upon return.
6797 */
rbd_dev_device_setup(struct rbd_device * rbd_dev)6798 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6799 {
6800 int ret;
6801
6802 /* Record our major and minor device numbers. */
6803
6804 if (!single_major) {
6805 ret = register_blkdev(0, rbd_dev->name);
6806 if (ret < 0)
6807 goto err_out_unlock;
6808
6809 rbd_dev->major = ret;
6810 rbd_dev->minor = 0;
6811 } else {
6812 rbd_dev->major = rbd_major;
6813 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6814 }
6815
6816 /* Set up the blkdev mapping. */
6817
6818 ret = rbd_init_disk(rbd_dev);
6819 if (ret)
6820 goto err_out_blkdev;
6821
6822 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6823 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6824
6825 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6826 if (ret)
6827 goto err_out_disk;
6828
6829 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6830 up_write(&rbd_dev->header_rwsem);
6831 return 0;
6832
6833 err_out_disk:
6834 rbd_free_disk(rbd_dev);
6835 err_out_blkdev:
6836 if (!single_major)
6837 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6838 err_out_unlock:
6839 up_write(&rbd_dev->header_rwsem);
6840 return ret;
6841 }
6842
rbd_dev_header_name(struct rbd_device * rbd_dev)6843 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6844 {
6845 struct rbd_spec *spec = rbd_dev->spec;
6846 int ret;
6847
6848 /* Record the header object name for this rbd image. */
6849
6850 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6851 if (rbd_dev->image_format == 1)
6852 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6853 spec->image_name, RBD_SUFFIX);
6854 else
6855 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6856 RBD_HEADER_PREFIX, spec->image_id);
6857
6858 return ret;
6859 }
6860
rbd_print_dne(struct rbd_device * rbd_dev,bool is_snap)6861 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6862 {
6863 if (!is_snap) {
6864 pr_info("image %s/%s%s%s does not exist\n",
6865 rbd_dev->spec->pool_name,
6866 rbd_dev->spec->pool_ns ?: "",
6867 rbd_dev->spec->pool_ns ? "/" : "",
6868 rbd_dev->spec->image_name);
6869 } else {
6870 pr_info("snap %s/%s%s%s@%s does not exist\n",
6871 rbd_dev->spec->pool_name,
6872 rbd_dev->spec->pool_ns ?: "",
6873 rbd_dev->spec->pool_ns ? "/" : "",
6874 rbd_dev->spec->image_name,
6875 rbd_dev->spec->snap_name);
6876 }
6877 }
6878
rbd_dev_image_release(struct rbd_device * rbd_dev)6879 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6880 {
6881 if (!rbd_is_ro(rbd_dev))
6882 rbd_unregister_watch(rbd_dev);
6883
6884 rbd_dev_unprobe(rbd_dev);
6885 rbd_dev->image_format = 0;
6886 kfree(rbd_dev->spec->image_id);
6887 rbd_dev->spec->image_id = NULL;
6888 }
6889
6890 /*
6891 * Probe for the existence of the header object for the given rbd
6892 * device. If this image is the one being mapped (i.e., not a
6893 * parent), initiate a watch on its header object before using that
6894 * object to get detailed information about the rbd image.
6895 *
6896 * On success, returns with header_rwsem held for write if called
6897 * with @depth == 0.
6898 */
rbd_dev_image_probe(struct rbd_device * rbd_dev,int depth)6899 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6900 {
6901 bool need_watch = !rbd_is_ro(rbd_dev);
6902 int ret;
6903
6904 /*
6905 * Get the id from the image id object. Unless there's an
6906 * error, rbd_dev->spec->image_id will be filled in with
6907 * a dynamically-allocated string, and rbd_dev->image_format
6908 * will be set to either 1 or 2.
6909 */
6910 ret = rbd_dev_image_id(rbd_dev);
6911 if (ret)
6912 return ret;
6913
6914 ret = rbd_dev_header_name(rbd_dev);
6915 if (ret)
6916 goto err_out_format;
6917
6918 if (need_watch) {
6919 ret = rbd_register_watch(rbd_dev);
6920 if (ret) {
6921 if (ret == -ENOENT)
6922 rbd_print_dne(rbd_dev, false);
6923 goto err_out_format;
6924 }
6925 }
6926
6927 if (!depth)
6928 down_write(&rbd_dev->header_rwsem);
6929
6930 ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6931 if (ret) {
6932 if (ret == -ENOENT && !need_watch)
6933 rbd_print_dne(rbd_dev, false);
6934 goto err_out_probe;
6935 }
6936
6937 rbd_init_layout(rbd_dev);
6938
6939 /*
6940 * If this image is the one being mapped, we have pool name and
6941 * id, image name and id, and snap name - need to fill snap id.
6942 * Otherwise this is a parent image, identified by pool, image
6943 * and snap ids - need to fill in names for those ids.
6944 */
6945 if (!depth)
6946 ret = rbd_spec_fill_snap_id(rbd_dev);
6947 else
6948 ret = rbd_spec_fill_names(rbd_dev);
6949 if (ret) {
6950 if (ret == -ENOENT)
6951 rbd_print_dne(rbd_dev, true);
6952 goto err_out_probe;
6953 }
6954
6955 ret = rbd_dev_mapping_set(rbd_dev);
6956 if (ret)
6957 goto err_out_probe;
6958
6959 if (rbd_is_snap(rbd_dev) &&
6960 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6961 ret = rbd_object_map_load(rbd_dev);
6962 if (ret)
6963 goto err_out_probe;
6964 }
6965
6966 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6967 ret = rbd_dev_setup_parent(rbd_dev);
6968 if (ret)
6969 goto err_out_probe;
6970 }
6971
6972 ret = rbd_dev_probe_parent(rbd_dev, depth);
6973 if (ret)
6974 goto err_out_probe;
6975
6976 dout("discovered format %u image, header name is %s\n",
6977 rbd_dev->image_format, rbd_dev->header_oid.name);
6978 return 0;
6979
6980 err_out_probe:
6981 if (!depth)
6982 up_write(&rbd_dev->header_rwsem);
6983 if (need_watch)
6984 rbd_unregister_watch(rbd_dev);
6985 rbd_dev_unprobe(rbd_dev);
6986 err_out_format:
6987 rbd_dev->image_format = 0;
6988 kfree(rbd_dev->spec->image_id);
6989 rbd_dev->spec->image_id = NULL;
6990 return ret;
6991 }
6992
rbd_dev_update_header(struct rbd_device * rbd_dev,struct rbd_image_header * header)6993 static void rbd_dev_update_header(struct rbd_device *rbd_dev,
6994 struct rbd_image_header *header)
6995 {
6996 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6997 rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
6998
6999 if (rbd_dev->header.image_size != header->image_size) {
7000 rbd_dev->header.image_size = header->image_size;
7001
7002 if (!rbd_is_snap(rbd_dev)) {
7003 rbd_dev->mapping.size = header->image_size;
7004 rbd_dev_update_size(rbd_dev);
7005 }
7006 }
7007
7008 ceph_put_snap_context(rbd_dev->header.snapc);
7009 rbd_dev->header.snapc = header->snapc;
7010 header->snapc = NULL;
7011
7012 if (rbd_dev->image_format == 1) {
7013 kfree(rbd_dev->header.snap_names);
7014 rbd_dev->header.snap_names = header->snap_names;
7015 header->snap_names = NULL;
7016
7017 kfree(rbd_dev->header.snap_sizes);
7018 rbd_dev->header.snap_sizes = header->snap_sizes;
7019 header->snap_sizes = NULL;
7020 }
7021 }
7022
rbd_dev_update_parent(struct rbd_device * rbd_dev,struct parent_image_info * pii)7023 static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7024 struct parent_image_info *pii)
7025 {
7026 if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7027 /*
7028 * Either the parent never existed, or we have
7029 * record of it but the image got flattened so it no
7030 * longer has a parent. When the parent of a
7031 * layered image disappears we immediately set the
7032 * overlap to 0. The effect of this is that all new
7033 * requests will be treated as if the image had no
7034 * parent.
7035 *
7036 * If !pii.has_overlap, the parent image spec is not
7037 * applicable. It's there to avoid duplication in each
7038 * snapshot record.
7039 */
7040 if (rbd_dev->parent_overlap) {
7041 rbd_dev->parent_overlap = 0;
7042 rbd_dev_parent_put(rbd_dev);
7043 pr_info("%s: clone has been flattened\n",
7044 rbd_dev->disk->disk_name);
7045 }
7046 } else {
7047 rbd_assert(rbd_dev->parent_spec);
7048
7049 /*
7050 * Update the parent overlap. If it became zero, issue
7051 * a warning as we will proceed as if there is no parent.
7052 */
7053 if (!pii->overlap && rbd_dev->parent_overlap)
7054 rbd_warn(rbd_dev,
7055 "clone has become standalone (overlap 0)");
7056 rbd_dev->parent_overlap = pii->overlap;
7057 }
7058 }
7059
rbd_dev_refresh(struct rbd_device * rbd_dev)7060 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7061 {
7062 struct rbd_image_header header = { 0 };
7063 struct parent_image_info pii = { 0 };
7064 int ret;
7065
7066 dout("%s rbd_dev %p\n", __func__, rbd_dev);
7067
7068 ret = rbd_dev_header_info(rbd_dev, &header, false);
7069 if (ret)
7070 goto out;
7071
7072 /*
7073 * If there is a parent, see if it has disappeared due to the
7074 * mapped image getting flattened.
7075 */
7076 if (rbd_dev->parent) {
7077 ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7078 if (ret)
7079 goto out;
7080 }
7081
7082 down_write(&rbd_dev->header_rwsem);
7083 rbd_dev_update_header(rbd_dev, &header);
7084 if (rbd_dev->parent)
7085 rbd_dev_update_parent(rbd_dev, &pii);
7086 up_write(&rbd_dev->header_rwsem);
7087
7088 out:
7089 rbd_parent_info_cleanup(&pii);
7090 rbd_image_header_cleanup(&header);
7091 return ret;
7092 }
7093
do_rbd_add(struct bus_type * bus,const char * buf,size_t count)7094 static ssize_t do_rbd_add(struct bus_type *bus,
7095 const char *buf,
7096 size_t count)
7097 {
7098 struct rbd_device *rbd_dev = NULL;
7099 struct ceph_options *ceph_opts = NULL;
7100 struct rbd_options *rbd_opts = NULL;
7101 struct rbd_spec *spec = NULL;
7102 struct rbd_client *rbdc;
7103 int rc;
7104
7105 if (!capable(CAP_SYS_ADMIN))
7106 return -EPERM;
7107
7108 if (!try_module_get(THIS_MODULE))
7109 return -ENODEV;
7110
7111 /* parse add command */
7112 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7113 if (rc < 0)
7114 goto out;
7115
7116 rbdc = rbd_get_client(ceph_opts);
7117 if (IS_ERR(rbdc)) {
7118 rc = PTR_ERR(rbdc);
7119 goto err_out_args;
7120 }
7121
7122 /* pick the pool */
7123 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7124 if (rc < 0) {
7125 if (rc == -ENOENT)
7126 pr_info("pool %s does not exist\n", spec->pool_name);
7127 goto err_out_client;
7128 }
7129 spec->pool_id = (u64)rc;
7130
7131 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7132 if (!rbd_dev) {
7133 rc = -ENOMEM;
7134 goto err_out_client;
7135 }
7136 rbdc = NULL; /* rbd_dev now owns this */
7137 spec = NULL; /* rbd_dev now owns this */
7138 rbd_opts = NULL; /* rbd_dev now owns this */
7139
7140 /* if we are mapping a snapshot it will be a read-only mapping */
7141 if (rbd_dev->opts->read_only ||
7142 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7143 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7144
7145 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7146 if (!rbd_dev->config_info) {
7147 rc = -ENOMEM;
7148 goto err_out_rbd_dev;
7149 }
7150
7151 rc = rbd_dev_image_probe(rbd_dev, 0);
7152 if (rc < 0)
7153 goto err_out_rbd_dev;
7154
7155 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7156 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7157 rbd_dev->layout.object_size);
7158 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7159 }
7160
7161 rc = rbd_dev_device_setup(rbd_dev);
7162 if (rc)
7163 goto err_out_image_probe;
7164
7165 rc = rbd_add_acquire_lock(rbd_dev);
7166 if (rc)
7167 goto err_out_image_lock;
7168
7169 /* Everything's ready. Announce the disk to the world. */
7170
7171 rc = device_add(&rbd_dev->dev);
7172 if (rc)
7173 goto err_out_image_lock;
7174
7175 device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7176
7177 spin_lock(&rbd_dev_list_lock);
7178 list_add_tail(&rbd_dev->node, &rbd_dev_list);
7179 spin_unlock(&rbd_dev_list_lock);
7180
7181 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7182 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7183 rbd_dev->header.features);
7184 rc = count;
7185 out:
7186 module_put(THIS_MODULE);
7187 return rc;
7188
7189 err_out_image_lock:
7190 rbd_dev_image_unlock(rbd_dev);
7191 rbd_dev_device_release(rbd_dev);
7192 err_out_image_probe:
7193 rbd_dev_image_release(rbd_dev);
7194 err_out_rbd_dev:
7195 rbd_dev_destroy(rbd_dev);
7196 err_out_client:
7197 rbd_put_client(rbdc);
7198 err_out_args:
7199 rbd_spec_put(spec);
7200 kfree(rbd_opts);
7201 goto out;
7202 }
7203
add_store(struct bus_type * bus,const char * buf,size_t count)7204 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7205 {
7206 if (single_major)
7207 return -EINVAL;
7208
7209 return do_rbd_add(bus, buf, count);
7210 }
7211
add_single_major_store(struct bus_type * bus,const char * buf,size_t count)7212 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7213 size_t count)
7214 {
7215 return do_rbd_add(bus, buf, count);
7216 }
7217
rbd_dev_remove_parent(struct rbd_device * rbd_dev)7218 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7219 {
7220 while (rbd_dev->parent) {
7221 struct rbd_device *first = rbd_dev;
7222 struct rbd_device *second = first->parent;
7223 struct rbd_device *third;
7224
7225 /*
7226 * Follow to the parent with no grandparent and
7227 * remove it.
7228 */
7229 while (second && (third = second->parent)) {
7230 first = second;
7231 second = third;
7232 }
7233 rbd_assert(second);
7234 rbd_dev_image_release(second);
7235 rbd_dev_destroy(second);
7236 first->parent = NULL;
7237 first->parent_overlap = 0;
7238
7239 rbd_assert(first->parent_spec);
7240 rbd_spec_put(first->parent_spec);
7241 first->parent_spec = NULL;
7242 }
7243 }
7244
do_rbd_remove(struct bus_type * bus,const char * buf,size_t count)7245 static ssize_t do_rbd_remove(struct bus_type *bus,
7246 const char *buf,
7247 size_t count)
7248 {
7249 struct rbd_device *rbd_dev = NULL;
7250 struct list_head *tmp;
7251 int dev_id;
7252 char opt_buf[6];
7253 bool force = false;
7254 int ret;
7255
7256 if (!capable(CAP_SYS_ADMIN))
7257 return -EPERM;
7258
7259 dev_id = -1;
7260 opt_buf[0] = '\0';
7261 sscanf(buf, "%d %5s", &dev_id, opt_buf);
7262 if (dev_id < 0) {
7263 pr_err("dev_id out of range\n");
7264 return -EINVAL;
7265 }
7266 if (opt_buf[0] != '\0') {
7267 if (!strcmp(opt_buf, "force")) {
7268 force = true;
7269 } else {
7270 pr_err("bad remove option at '%s'\n", opt_buf);
7271 return -EINVAL;
7272 }
7273 }
7274
7275 ret = -ENOENT;
7276 spin_lock(&rbd_dev_list_lock);
7277 list_for_each(tmp, &rbd_dev_list) {
7278 rbd_dev = list_entry(tmp, struct rbd_device, node);
7279 if (rbd_dev->dev_id == dev_id) {
7280 ret = 0;
7281 break;
7282 }
7283 }
7284 if (!ret) {
7285 spin_lock_irq(&rbd_dev->lock);
7286 if (rbd_dev->open_count && !force)
7287 ret = -EBUSY;
7288 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7289 &rbd_dev->flags))
7290 ret = -EINPROGRESS;
7291 spin_unlock_irq(&rbd_dev->lock);
7292 }
7293 spin_unlock(&rbd_dev_list_lock);
7294 if (ret)
7295 return ret;
7296
7297 if (force) {
7298 /*
7299 * Prevent new IO from being queued and wait for existing
7300 * IO to complete/fail.
7301 */
7302 blk_mq_freeze_queue(rbd_dev->disk->queue);
7303 blk_mark_disk_dead(rbd_dev->disk);
7304 }
7305
7306 del_gendisk(rbd_dev->disk);
7307 spin_lock(&rbd_dev_list_lock);
7308 list_del_init(&rbd_dev->node);
7309 spin_unlock(&rbd_dev_list_lock);
7310 device_del(&rbd_dev->dev);
7311
7312 rbd_dev_image_unlock(rbd_dev);
7313 rbd_dev_device_release(rbd_dev);
7314 rbd_dev_image_release(rbd_dev);
7315 rbd_dev_destroy(rbd_dev);
7316 return count;
7317 }
7318
remove_store(struct bus_type * bus,const char * buf,size_t count)7319 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7320 {
7321 if (single_major)
7322 return -EINVAL;
7323
7324 return do_rbd_remove(bus, buf, count);
7325 }
7326
remove_single_major_store(struct bus_type * bus,const char * buf,size_t count)7327 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7328 size_t count)
7329 {
7330 return do_rbd_remove(bus, buf, count);
7331 }
7332
7333 /*
7334 * create control files in sysfs
7335 * /sys/bus/rbd/...
7336 */
rbd_sysfs_init(void)7337 static int __init rbd_sysfs_init(void)
7338 {
7339 int ret;
7340
7341 ret = device_register(&rbd_root_dev);
7342 if (ret < 0)
7343 return ret;
7344
7345 ret = bus_register(&rbd_bus_type);
7346 if (ret < 0)
7347 device_unregister(&rbd_root_dev);
7348
7349 return ret;
7350 }
7351
rbd_sysfs_cleanup(void)7352 static void __exit rbd_sysfs_cleanup(void)
7353 {
7354 bus_unregister(&rbd_bus_type);
7355 device_unregister(&rbd_root_dev);
7356 }
7357
rbd_slab_init(void)7358 static int __init rbd_slab_init(void)
7359 {
7360 rbd_assert(!rbd_img_request_cache);
7361 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7362 if (!rbd_img_request_cache)
7363 return -ENOMEM;
7364
7365 rbd_assert(!rbd_obj_request_cache);
7366 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7367 if (!rbd_obj_request_cache)
7368 goto out_err;
7369
7370 return 0;
7371
7372 out_err:
7373 kmem_cache_destroy(rbd_img_request_cache);
7374 rbd_img_request_cache = NULL;
7375 return -ENOMEM;
7376 }
7377
rbd_slab_exit(void)7378 static void rbd_slab_exit(void)
7379 {
7380 rbd_assert(rbd_obj_request_cache);
7381 kmem_cache_destroy(rbd_obj_request_cache);
7382 rbd_obj_request_cache = NULL;
7383
7384 rbd_assert(rbd_img_request_cache);
7385 kmem_cache_destroy(rbd_img_request_cache);
7386 rbd_img_request_cache = NULL;
7387 }
7388
rbd_init(void)7389 static int __init rbd_init(void)
7390 {
7391 int rc;
7392
7393 if (!libceph_compatible(NULL)) {
7394 rbd_warn(NULL, "libceph incompatibility (quitting)");
7395 return -EINVAL;
7396 }
7397
7398 rc = rbd_slab_init();
7399 if (rc)
7400 return rc;
7401
7402 /*
7403 * The number of active work items is limited by the number of
7404 * rbd devices * queue depth, so leave @max_active at default.
7405 */
7406 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7407 if (!rbd_wq) {
7408 rc = -ENOMEM;
7409 goto err_out_slab;
7410 }
7411
7412 if (single_major) {
7413 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7414 if (rbd_major < 0) {
7415 rc = rbd_major;
7416 goto err_out_wq;
7417 }
7418 }
7419
7420 rc = rbd_sysfs_init();
7421 if (rc)
7422 goto err_out_blkdev;
7423
7424 if (single_major)
7425 pr_info("loaded (major %d)\n", rbd_major);
7426 else
7427 pr_info("loaded\n");
7428
7429 return 0;
7430
7431 err_out_blkdev:
7432 if (single_major)
7433 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7434 err_out_wq:
7435 destroy_workqueue(rbd_wq);
7436 err_out_slab:
7437 rbd_slab_exit();
7438 return rc;
7439 }
7440
rbd_exit(void)7441 static void __exit rbd_exit(void)
7442 {
7443 ida_destroy(&rbd_dev_id_ida);
7444 rbd_sysfs_cleanup();
7445 if (single_major)
7446 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7447 destroy_workqueue(rbd_wq);
7448 rbd_slab_exit();
7449 }
7450
7451 module_init(rbd_init);
7452 module_exit(rbd_exit);
7453
7454 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7455 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7456 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7457 /* following authorship retained from original osdblk.c */
7458 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7459
7460 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7461 MODULE_LICENSE("GPL");
7462