1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/debugfs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/math64.h>
37
38 #include <rdma/ib_verbs.h>
39
40 #include "iw_cxgb4.h"
41
42 #define DRV_VERSION "0.1"
43
44 MODULE_AUTHOR("Steve Wise");
45 MODULE_DESCRIPTION("Chelsio T4/T5 RDMA Driver");
46 MODULE_LICENSE("Dual BSD/GPL");
47
48 static int allow_db_fc_on_t5;
49 module_param(allow_db_fc_on_t5, int, 0644);
50 MODULE_PARM_DESC(allow_db_fc_on_t5,
51 "Allow DB Flow Control on T5 (default = 0)");
52
53 static int allow_db_coalescing_on_t5;
54 module_param(allow_db_coalescing_on_t5, int, 0644);
55 MODULE_PARM_DESC(allow_db_coalescing_on_t5,
56 "Allow DB Coalescing on T5 (default = 0)");
57
58 int c4iw_wr_log = 0;
59 module_param(c4iw_wr_log, int, 0444);
60 MODULE_PARM_DESC(c4iw_wr_log, "Enables logging of work request timing data.");
61
62 static int c4iw_wr_log_size_order = 12;
63 module_param(c4iw_wr_log_size_order, int, 0444);
64 MODULE_PARM_DESC(c4iw_wr_log_size_order,
65 "Number of entries (log2) in the work request timing log.");
66
67 static LIST_HEAD(uld_ctx_list);
68 static DEFINE_MUTEX(dev_mutex);
69 static struct workqueue_struct *reg_workq;
70
71 #define DB_FC_RESUME_SIZE 64
72 #define DB_FC_RESUME_DELAY 1
73 #define DB_FC_DRAIN_THRESH 0
74
75 static struct dentry *c4iw_debugfs_root;
76
77 struct c4iw_debugfs_data {
78 struct c4iw_dev *devp;
79 char *buf;
80 int bufsize;
81 int pos;
82 };
83
debugfs_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)84 static ssize_t debugfs_read(struct file *file, char __user *buf, size_t count,
85 loff_t *ppos)
86 {
87 struct c4iw_debugfs_data *d = file->private_data;
88
89 return simple_read_from_buffer(buf, count, ppos, d->buf, d->pos);
90 }
91
c4iw_log_wr_stats(struct t4_wq * wq,struct t4_cqe * cqe)92 void c4iw_log_wr_stats(struct t4_wq *wq, struct t4_cqe *cqe)
93 {
94 struct wr_log_entry le;
95 int idx;
96
97 if (!wq->rdev->wr_log)
98 return;
99
100 idx = (atomic_inc_return(&wq->rdev->wr_log_idx) - 1) &
101 (wq->rdev->wr_log_size - 1);
102 le.poll_sge_ts = cxgb4_read_sge_timestamp(wq->rdev->lldi.ports[0]);
103 le.poll_host_time = ktime_get();
104 le.valid = 1;
105 le.cqe_sge_ts = CQE_TS(cqe);
106 if (SQ_TYPE(cqe)) {
107 le.qid = wq->sq.qid;
108 le.opcode = CQE_OPCODE(cqe);
109 le.post_host_time = wq->sq.sw_sq[wq->sq.cidx].host_time;
110 le.post_sge_ts = wq->sq.sw_sq[wq->sq.cidx].sge_ts;
111 le.wr_id = CQE_WRID_SQ_IDX(cqe);
112 } else {
113 le.qid = wq->rq.qid;
114 le.opcode = FW_RI_RECEIVE;
115 le.post_host_time = wq->rq.sw_rq[wq->rq.cidx].host_time;
116 le.post_sge_ts = wq->rq.sw_rq[wq->rq.cidx].sge_ts;
117 le.wr_id = CQE_WRID_MSN(cqe);
118 }
119 wq->rdev->wr_log[idx] = le;
120 }
121
wr_log_show(struct seq_file * seq,void * v)122 static int wr_log_show(struct seq_file *seq, void *v)
123 {
124 struct c4iw_dev *dev = seq->private;
125 ktime_t prev_time;
126 struct wr_log_entry *lep;
127 int prev_time_set = 0;
128 int idx, end;
129
130 #define ts2ns(ts) div64_u64((ts) * dev->rdev.lldi.cclk_ps, 1000)
131
132 idx = atomic_read(&dev->rdev.wr_log_idx) &
133 (dev->rdev.wr_log_size - 1);
134 end = idx - 1;
135 if (end < 0)
136 end = dev->rdev.wr_log_size - 1;
137 lep = &dev->rdev.wr_log[idx];
138 while (idx != end) {
139 if (lep->valid) {
140 if (!prev_time_set) {
141 prev_time_set = 1;
142 prev_time = lep->poll_host_time;
143 }
144 seq_printf(seq, "%04u: nsec %llu qid %u opcode "
145 "%u %s 0x%x host_wr_delta nsec %llu "
146 "post_sge_ts 0x%llx cqe_sge_ts 0x%llx "
147 "poll_sge_ts 0x%llx post_poll_delta_ns %llu "
148 "cqe_poll_delta_ns %llu\n",
149 idx,
150 ktime_to_ns(ktime_sub(lep->poll_host_time,
151 prev_time)),
152 lep->qid, lep->opcode,
153 lep->opcode == FW_RI_RECEIVE ?
154 "msn" : "wrid",
155 lep->wr_id,
156 ktime_to_ns(ktime_sub(lep->poll_host_time,
157 lep->post_host_time)),
158 lep->post_sge_ts, lep->cqe_sge_ts,
159 lep->poll_sge_ts,
160 ts2ns(lep->poll_sge_ts - lep->post_sge_ts),
161 ts2ns(lep->poll_sge_ts - lep->cqe_sge_ts));
162 prev_time = lep->poll_host_time;
163 }
164 idx++;
165 if (idx > (dev->rdev.wr_log_size - 1))
166 idx = 0;
167 lep = &dev->rdev.wr_log[idx];
168 }
169 #undef ts2ns
170 return 0;
171 }
172
wr_log_open(struct inode * inode,struct file * file)173 static int wr_log_open(struct inode *inode, struct file *file)
174 {
175 return single_open(file, wr_log_show, inode->i_private);
176 }
177
wr_log_clear(struct file * file,const char __user * buf,size_t count,loff_t * pos)178 static ssize_t wr_log_clear(struct file *file, const char __user *buf,
179 size_t count, loff_t *pos)
180 {
181 struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
182 int i;
183
184 if (dev->rdev.wr_log)
185 for (i = 0; i < dev->rdev.wr_log_size; i++)
186 dev->rdev.wr_log[i].valid = 0;
187 return count;
188 }
189
190 static const struct file_operations wr_log_debugfs_fops = {
191 .owner = THIS_MODULE,
192 .open = wr_log_open,
193 .release = single_release,
194 .read = seq_read,
195 .llseek = seq_lseek,
196 .write = wr_log_clear,
197 };
198
199 static struct sockaddr_in zero_sin = {
200 .sin_family = AF_INET,
201 };
202
203 static struct sockaddr_in6 zero_sin6 = {
204 .sin6_family = AF_INET6,
205 };
206
set_ep_sin_addrs(struct c4iw_ep * ep,struct sockaddr_in ** lsin,struct sockaddr_in ** rsin,struct sockaddr_in ** m_lsin,struct sockaddr_in ** m_rsin)207 static void set_ep_sin_addrs(struct c4iw_ep *ep,
208 struct sockaddr_in **lsin,
209 struct sockaddr_in **rsin,
210 struct sockaddr_in **m_lsin,
211 struct sockaddr_in **m_rsin)
212 {
213 struct iw_cm_id *id = ep->com.cm_id;
214
215 *m_lsin = (struct sockaddr_in *)&ep->com.local_addr;
216 *m_rsin = (struct sockaddr_in *)&ep->com.remote_addr;
217 if (id) {
218 *lsin = (struct sockaddr_in *)&id->local_addr;
219 *rsin = (struct sockaddr_in *)&id->remote_addr;
220 } else {
221 *lsin = &zero_sin;
222 *rsin = &zero_sin;
223 }
224 }
225
set_ep_sin6_addrs(struct c4iw_ep * ep,struct sockaddr_in6 ** lsin6,struct sockaddr_in6 ** rsin6,struct sockaddr_in6 ** m_lsin6,struct sockaddr_in6 ** m_rsin6)226 static void set_ep_sin6_addrs(struct c4iw_ep *ep,
227 struct sockaddr_in6 **lsin6,
228 struct sockaddr_in6 **rsin6,
229 struct sockaddr_in6 **m_lsin6,
230 struct sockaddr_in6 **m_rsin6)
231 {
232 struct iw_cm_id *id = ep->com.cm_id;
233
234 *m_lsin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
235 *m_rsin6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
236 if (id) {
237 *lsin6 = (struct sockaddr_in6 *)&id->local_addr;
238 *rsin6 = (struct sockaddr_in6 *)&id->remote_addr;
239 } else {
240 *lsin6 = &zero_sin6;
241 *rsin6 = &zero_sin6;
242 }
243 }
244
dump_qp(unsigned long id,struct c4iw_qp * qp,struct c4iw_debugfs_data * qpd)245 static int dump_qp(unsigned long id, struct c4iw_qp *qp,
246 struct c4iw_debugfs_data *qpd)
247 {
248 int space;
249 int cc;
250 if (id != qp->wq.sq.qid)
251 return 0;
252
253 space = qpd->bufsize - qpd->pos - 1;
254 if (space == 0)
255 return 1;
256
257 if (qp->ep) {
258 struct c4iw_ep *ep = qp->ep;
259
260 if (ep->com.local_addr.ss_family == AF_INET) {
261 struct sockaddr_in *lsin;
262 struct sockaddr_in *rsin;
263 struct sockaddr_in *m_lsin;
264 struct sockaddr_in *m_rsin;
265
266 set_ep_sin_addrs(ep, &lsin, &rsin, &m_lsin, &m_rsin);
267 cc = snprintf(qpd->buf + qpd->pos, space,
268 "rc qp sq id %u %s id %u state %u "
269 "onchip %u ep tid %u state %u "
270 "%pI4:%u/%u->%pI4:%u/%u\n",
271 qp->wq.sq.qid, qp->srq ? "srq" : "rq",
272 qp->srq ? qp->srq->idx : qp->wq.rq.qid,
273 (int)qp->attr.state,
274 qp->wq.sq.flags & T4_SQ_ONCHIP,
275 ep->hwtid, (int)ep->com.state,
276 &lsin->sin_addr, ntohs(lsin->sin_port),
277 ntohs(m_lsin->sin_port),
278 &rsin->sin_addr, ntohs(rsin->sin_port),
279 ntohs(m_rsin->sin_port));
280 } else {
281 struct sockaddr_in6 *lsin6;
282 struct sockaddr_in6 *rsin6;
283 struct sockaddr_in6 *m_lsin6;
284 struct sockaddr_in6 *m_rsin6;
285
286 set_ep_sin6_addrs(ep, &lsin6, &rsin6, &m_lsin6,
287 &m_rsin6);
288 cc = snprintf(qpd->buf + qpd->pos, space,
289 "rc qp sq id %u rq id %u state %u "
290 "onchip %u ep tid %u state %u "
291 "%pI6:%u/%u->%pI6:%u/%u\n",
292 qp->wq.sq.qid, qp->wq.rq.qid,
293 (int)qp->attr.state,
294 qp->wq.sq.flags & T4_SQ_ONCHIP,
295 ep->hwtid, (int)ep->com.state,
296 &lsin6->sin6_addr,
297 ntohs(lsin6->sin6_port),
298 ntohs(m_lsin6->sin6_port),
299 &rsin6->sin6_addr,
300 ntohs(rsin6->sin6_port),
301 ntohs(m_rsin6->sin6_port));
302 }
303 } else
304 cc = snprintf(qpd->buf + qpd->pos, space,
305 "qp sq id %u rq id %u state %u onchip %u\n",
306 qp->wq.sq.qid, qp->wq.rq.qid,
307 (int)qp->attr.state,
308 qp->wq.sq.flags & T4_SQ_ONCHIP);
309 if (cc < space)
310 qpd->pos += cc;
311 return 0;
312 }
313
qp_release(struct inode * inode,struct file * file)314 static int qp_release(struct inode *inode, struct file *file)
315 {
316 struct c4iw_debugfs_data *qpd = file->private_data;
317 if (!qpd) {
318 pr_info("%s null qpd?\n", __func__);
319 return 0;
320 }
321 vfree(qpd->buf);
322 kfree(qpd);
323 return 0;
324 }
325
qp_open(struct inode * inode,struct file * file)326 static int qp_open(struct inode *inode, struct file *file)
327 {
328 struct c4iw_qp *qp;
329 struct c4iw_debugfs_data *qpd;
330 unsigned long index;
331 int count = 1;
332
333 qpd = kmalloc(sizeof(*qpd), GFP_KERNEL);
334 if (!qpd)
335 return -ENOMEM;
336
337 qpd->devp = inode->i_private;
338 qpd->pos = 0;
339
340 /*
341 * No need to lock; we drop the lock to call vmalloc so it's racy
342 * anyway. Someone who cares should switch this over to seq_file
343 */
344 xa_for_each(&qpd->devp->qps, index, qp)
345 count++;
346
347 qpd->bufsize = count * 180;
348 qpd->buf = vmalloc(qpd->bufsize);
349 if (!qpd->buf) {
350 kfree(qpd);
351 return -ENOMEM;
352 }
353
354 xa_lock_irq(&qpd->devp->qps);
355 xa_for_each(&qpd->devp->qps, index, qp)
356 dump_qp(index, qp, qpd);
357 xa_unlock_irq(&qpd->devp->qps);
358
359 qpd->buf[qpd->pos++] = 0;
360 file->private_data = qpd;
361 return 0;
362 }
363
364 static const struct file_operations qp_debugfs_fops = {
365 .owner = THIS_MODULE,
366 .open = qp_open,
367 .release = qp_release,
368 .read = debugfs_read,
369 .llseek = default_llseek,
370 };
371
dump_stag(unsigned long id,struct c4iw_debugfs_data * stagd)372 static int dump_stag(unsigned long id, struct c4iw_debugfs_data *stagd)
373 {
374 int space;
375 int cc;
376 struct fw_ri_tpte tpte;
377 int ret;
378
379 space = stagd->bufsize - stagd->pos - 1;
380 if (space == 0)
381 return 1;
382
383 ret = cxgb4_read_tpte(stagd->devp->rdev.lldi.ports[0], (u32)id<<8,
384 (__be32 *)&tpte);
385 if (ret) {
386 dev_err(&stagd->devp->rdev.lldi.pdev->dev,
387 "%s cxgb4_read_tpte err %d\n", __func__, ret);
388 return ret;
389 }
390 cc = snprintf(stagd->buf + stagd->pos, space,
391 "stag: idx 0x%x valid %d key 0x%x state %d pdid %d "
392 "perm 0x%x ps %d len 0x%llx va 0x%llx\n",
393 (u32)id<<8,
394 FW_RI_TPTE_VALID_G(ntohl(tpte.valid_to_pdid)),
395 FW_RI_TPTE_STAGKEY_G(ntohl(tpte.valid_to_pdid)),
396 FW_RI_TPTE_STAGSTATE_G(ntohl(tpte.valid_to_pdid)),
397 FW_RI_TPTE_PDID_G(ntohl(tpte.valid_to_pdid)),
398 FW_RI_TPTE_PERM_G(ntohl(tpte.locread_to_qpid)),
399 FW_RI_TPTE_PS_G(ntohl(tpte.locread_to_qpid)),
400 ((u64)ntohl(tpte.len_hi) << 32) | ntohl(tpte.len_lo),
401 ((u64)ntohl(tpte.va_hi) << 32) | ntohl(tpte.va_lo_fbo));
402 if (cc < space)
403 stagd->pos += cc;
404 return 0;
405 }
406
stag_release(struct inode * inode,struct file * file)407 static int stag_release(struct inode *inode, struct file *file)
408 {
409 struct c4iw_debugfs_data *stagd = file->private_data;
410 if (!stagd) {
411 pr_info("%s null stagd?\n", __func__);
412 return 0;
413 }
414 vfree(stagd->buf);
415 kfree(stagd);
416 return 0;
417 }
418
stag_open(struct inode * inode,struct file * file)419 static int stag_open(struct inode *inode, struct file *file)
420 {
421 struct c4iw_debugfs_data *stagd;
422 void *p;
423 unsigned long index;
424 int ret = 0;
425 int count = 1;
426
427 stagd = kmalloc(sizeof(*stagd), GFP_KERNEL);
428 if (!stagd) {
429 ret = -ENOMEM;
430 goto out;
431 }
432 stagd->devp = inode->i_private;
433 stagd->pos = 0;
434
435 xa_for_each(&stagd->devp->mrs, index, p)
436 count++;
437
438 stagd->bufsize = count * 256;
439 stagd->buf = vmalloc(stagd->bufsize);
440 if (!stagd->buf) {
441 ret = -ENOMEM;
442 goto err1;
443 }
444
445 xa_lock_irq(&stagd->devp->mrs);
446 xa_for_each(&stagd->devp->mrs, index, p)
447 dump_stag(index, stagd);
448 xa_unlock_irq(&stagd->devp->mrs);
449
450 stagd->buf[stagd->pos++] = 0;
451 file->private_data = stagd;
452 goto out;
453 err1:
454 kfree(stagd);
455 out:
456 return ret;
457 }
458
459 static const struct file_operations stag_debugfs_fops = {
460 .owner = THIS_MODULE,
461 .open = stag_open,
462 .release = stag_release,
463 .read = debugfs_read,
464 .llseek = default_llseek,
465 };
466
467 static char *db_state_str[] = {"NORMAL", "FLOW_CONTROL", "RECOVERY", "STOPPED"};
468
stats_show(struct seq_file * seq,void * v)469 static int stats_show(struct seq_file *seq, void *v)
470 {
471 struct c4iw_dev *dev = seq->private;
472
473 seq_printf(seq, " Object: %10s %10s %10s %10s\n", "Total", "Current",
474 "Max", "Fail");
475 seq_printf(seq, " PDID: %10llu %10llu %10llu %10llu\n",
476 dev->rdev.stats.pd.total, dev->rdev.stats.pd.cur,
477 dev->rdev.stats.pd.max, dev->rdev.stats.pd.fail);
478 seq_printf(seq, " QID: %10llu %10llu %10llu %10llu\n",
479 dev->rdev.stats.qid.total, dev->rdev.stats.qid.cur,
480 dev->rdev.stats.qid.max, dev->rdev.stats.qid.fail);
481 seq_printf(seq, " SRQS: %10llu %10llu %10llu %10llu\n",
482 dev->rdev.stats.srqt.total, dev->rdev.stats.srqt.cur,
483 dev->rdev.stats.srqt.max, dev->rdev.stats.srqt.fail);
484 seq_printf(seq, " TPTMEM: %10llu %10llu %10llu %10llu\n",
485 dev->rdev.stats.stag.total, dev->rdev.stats.stag.cur,
486 dev->rdev.stats.stag.max, dev->rdev.stats.stag.fail);
487 seq_printf(seq, " PBLMEM: %10llu %10llu %10llu %10llu\n",
488 dev->rdev.stats.pbl.total, dev->rdev.stats.pbl.cur,
489 dev->rdev.stats.pbl.max, dev->rdev.stats.pbl.fail);
490 seq_printf(seq, " RQTMEM: %10llu %10llu %10llu %10llu\n",
491 dev->rdev.stats.rqt.total, dev->rdev.stats.rqt.cur,
492 dev->rdev.stats.rqt.max, dev->rdev.stats.rqt.fail);
493 seq_printf(seq, " OCQPMEM: %10llu %10llu %10llu %10llu\n",
494 dev->rdev.stats.ocqp.total, dev->rdev.stats.ocqp.cur,
495 dev->rdev.stats.ocqp.max, dev->rdev.stats.ocqp.fail);
496 seq_printf(seq, " DB FULL: %10llu\n", dev->rdev.stats.db_full);
497 seq_printf(seq, " DB EMPTY: %10llu\n", dev->rdev.stats.db_empty);
498 seq_printf(seq, " DB DROP: %10llu\n", dev->rdev.stats.db_drop);
499 seq_printf(seq, " DB State: %s Transitions %llu FC Interruptions %llu\n",
500 db_state_str[dev->db_state],
501 dev->rdev.stats.db_state_transitions,
502 dev->rdev.stats.db_fc_interruptions);
503 seq_printf(seq, "TCAM_FULL: %10llu\n", dev->rdev.stats.tcam_full);
504 seq_printf(seq, "ACT_OFLD_CONN_FAILS: %10llu\n",
505 dev->rdev.stats.act_ofld_conn_fails);
506 seq_printf(seq, "PAS_OFLD_CONN_FAILS: %10llu\n",
507 dev->rdev.stats.pas_ofld_conn_fails);
508 seq_printf(seq, "NEG_ADV_RCVD: %10llu\n", dev->rdev.stats.neg_adv);
509 seq_printf(seq, "AVAILABLE IRD: %10u\n", dev->avail_ird);
510 return 0;
511 }
512
stats_open(struct inode * inode,struct file * file)513 static int stats_open(struct inode *inode, struct file *file)
514 {
515 return single_open(file, stats_show, inode->i_private);
516 }
517
stats_clear(struct file * file,const char __user * buf,size_t count,loff_t * pos)518 static ssize_t stats_clear(struct file *file, const char __user *buf,
519 size_t count, loff_t *pos)
520 {
521 struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
522
523 mutex_lock(&dev->rdev.stats.lock);
524 dev->rdev.stats.pd.max = 0;
525 dev->rdev.stats.pd.fail = 0;
526 dev->rdev.stats.qid.max = 0;
527 dev->rdev.stats.qid.fail = 0;
528 dev->rdev.stats.stag.max = 0;
529 dev->rdev.stats.stag.fail = 0;
530 dev->rdev.stats.pbl.max = 0;
531 dev->rdev.stats.pbl.fail = 0;
532 dev->rdev.stats.rqt.max = 0;
533 dev->rdev.stats.rqt.fail = 0;
534 dev->rdev.stats.rqt.max = 0;
535 dev->rdev.stats.rqt.fail = 0;
536 dev->rdev.stats.ocqp.max = 0;
537 dev->rdev.stats.ocqp.fail = 0;
538 dev->rdev.stats.db_full = 0;
539 dev->rdev.stats.db_empty = 0;
540 dev->rdev.stats.db_drop = 0;
541 dev->rdev.stats.db_state_transitions = 0;
542 dev->rdev.stats.tcam_full = 0;
543 dev->rdev.stats.act_ofld_conn_fails = 0;
544 dev->rdev.stats.pas_ofld_conn_fails = 0;
545 mutex_unlock(&dev->rdev.stats.lock);
546 return count;
547 }
548
549 static const struct file_operations stats_debugfs_fops = {
550 .owner = THIS_MODULE,
551 .open = stats_open,
552 .release = single_release,
553 .read = seq_read,
554 .llseek = seq_lseek,
555 .write = stats_clear,
556 };
557
dump_ep(struct c4iw_ep * ep,struct c4iw_debugfs_data * epd)558 static int dump_ep(struct c4iw_ep *ep, struct c4iw_debugfs_data *epd)
559 {
560 int space;
561 int cc;
562
563 space = epd->bufsize - epd->pos - 1;
564 if (space == 0)
565 return 1;
566
567 if (ep->com.local_addr.ss_family == AF_INET) {
568 struct sockaddr_in *lsin;
569 struct sockaddr_in *rsin;
570 struct sockaddr_in *m_lsin;
571 struct sockaddr_in *m_rsin;
572
573 set_ep_sin_addrs(ep, &lsin, &rsin, &m_lsin, &m_rsin);
574 cc = snprintf(epd->buf + epd->pos, space,
575 "ep %p cm_id %p qp %p state %d flags 0x%lx "
576 "history 0x%lx hwtid %d atid %d "
577 "conn_na %u abort_na %u "
578 "%pI4:%d/%d <-> %pI4:%d/%d\n",
579 ep, ep->com.cm_id, ep->com.qp,
580 (int)ep->com.state, ep->com.flags,
581 ep->com.history, ep->hwtid, ep->atid,
582 ep->stats.connect_neg_adv,
583 ep->stats.abort_neg_adv,
584 &lsin->sin_addr, ntohs(lsin->sin_port),
585 ntohs(m_lsin->sin_port),
586 &rsin->sin_addr, ntohs(rsin->sin_port),
587 ntohs(m_rsin->sin_port));
588 } else {
589 struct sockaddr_in6 *lsin6;
590 struct sockaddr_in6 *rsin6;
591 struct sockaddr_in6 *m_lsin6;
592 struct sockaddr_in6 *m_rsin6;
593
594 set_ep_sin6_addrs(ep, &lsin6, &rsin6, &m_lsin6, &m_rsin6);
595 cc = snprintf(epd->buf + epd->pos, space,
596 "ep %p cm_id %p qp %p state %d flags 0x%lx "
597 "history 0x%lx hwtid %d atid %d "
598 "conn_na %u abort_na %u "
599 "%pI6:%d/%d <-> %pI6:%d/%d\n",
600 ep, ep->com.cm_id, ep->com.qp,
601 (int)ep->com.state, ep->com.flags,
602 ep->com.history, ep->hwtid, ep->atid,
603 ep->stats.connect_neg_adv,
604 ep->stats.abort_neg_adv,
605 &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
606 ntohs(m_lsin6->sin6_port),
607 &rsin6->sin6_addr, ntohs(rsin6->sin6_port),
608 ntohs(m_rsin6->sin6_port));
609 }
610 if (cc < space)
611 epd->pos += cc;
612 return 0;
613 }
614
615 static
dump_listen_ep(struct c4iw_listen_ep * ep,struct c4iw_debugfs_data * epd)616 int dump_listen_ep(struct c4iw_listen_ep *ep, struct c4iw_debugfs_data *epd)
617 {
618 int space;
619 int cc;
620
621 space = epd->bufsize - epd->pos - 1;
622 if (space == 0)
623 return 1;
624
625 if (ep->com.local_addr.ss_family == AF_INET) {
626 struct sockaddr_in *lsin = (struct sockaddr_in *)
627 &ep->com.cm_id->local_addr;
628 struct sockaddr_in *m_lsin = (struct sockaddr_in *)
629 &ep->com.cm_id->m_local_addr;
630
631 cc = snprintf(epd->buf + epd->pos, space,
632 "ep %p cm_id %p state %d flags 0x%lx stid %d "
633 "backlog %d %pI4:%d/%d\n",
634 ep, ep->com.cm_id, (int)ep->com.state,
635 ep->com.flags, ep->stid, ep->backlog,
636 &lsin->sin_addr, ntohs(lsin->sin_port),
637 ntohs(m_lsin->sin_port));
638 } else {
639 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
640 &ep->com.cm_id->local_addr;
641 struct sockaddr_in6 *m_lsin6 = (struct sockaddr_in6 *)
642 &ep->com.cm_id->m_local_addr;
643
644 cc = snprintf(epd->buf + epd->pos, space,
645 "ep %p cm_id %p state %d flags 0x%lx stid %d "
646 "backlog %d %pI6:%d/%d\n",
647 ep, ep->com.cm_id, (int)ep->com.state,
648 ep->com.flags, ep->stid, ep->backlog,
649 &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
650 ntohs(m_lsin6->sin6_port));
651 }
652 if (cc < space)
653 epd->pos += cc;
654 return 0;
655 }
656
ep_release(struct inode * inode,struct file * file)657 static int ep_release(struct inode *inode, struct file *file)
658 {
659 struct c4iw_debugfs_data *epd = file->private_data;
660 if (!epd) {
661 pr_info("%s null qpd?\n", __func__);
662 return 0;
663 }
664 vfree(epd->buf);
665 kfree(epd);
666 return 0;
667 }
668
ep_open(struct inode * inode,struct file * file)669 static int ep_open(struct inode *inode, struct file *file)
670 {
671 struct c4iw_ep *ep;
672 struct c4iw_listen_ep *lep;
673 unsigned long index;
674 struct c4iw_debugfs_data *epd;
675 int ret = 0;
676 int count = 1;
677
678 epd = kmalloc(sizeof(*epd), GFP_KERNEL);
679 if (!epd) {
680 ret = -ENOMEM;
681 goto out;
682 }
683 epd->devp = inode->i_private;
684 epd->pos = 0;
685
686 xa_for_each(&epd->devp->hwtids, index, ep)
687 count++;
688 xa_for_each(&epd->devp->atids, index, ep)
689 count++;
690 xa_for_each(&epd->devp->stids, index, lep)
691 count++;
692
693 epd->bufsize = count * 240;
694 epd->buf = vmalloc(epd->bufsize);
695 if (!epd->buf) {
696 ret = -ENOMEM;
697 goto err1;
698 }
699
700 xa_lock_irq(&epd->devp->hwtids);
701 xa_for_each(&epd->devp->hwtids, index, ep)
702 dump_ep(ep, epd);
703 xa_unlock_irq(&epd->devp->hwtids);
704 xa_lock_irq(&epd->devp->atids);
705 xa_for_each(&epd->devp->atids, index, ep)
706 dump_ep(ep, epd);
707 xa_unlock_irq(&epd->devp->atids);
708 xa_lock_irq(&epd->devp->stids);
709 xa_for_each(&epd->devp->stids, index, lep)
710 dump_listen_ep(lep, epd);
711 xa_unlock_irq(&epd->devp->stids);
712
713 file->private_data = epd;
714 goto out;
715 err1:
716 kfree(epd);
717 out:
718 return ret;
719 }
720
721 static const struct file_operations ep_debugfs_fops = {
722 .owner = THIS_MODULE,
723 .open = ep_open,
724 .release = ep_release,
725 .read = debugfs_read,
726 };
727
setup_debugfs(struct c4iw_dev * devp)728 static void setup_debugfs(struct c4iw_dev *devp)
729 {
730 debugfs_create_file_size("qps", S_IWUSR, devp->debugfs_root,
731 (void *)devp, &qp_debugfs_fops, 4096);
732
733 debugfs_create_file_size("stags", S_IWUSR, devp->debugfs_root,
734 (void *)devp, &stag_debugfs_fops, 4096);
735
736 debugfs_create_file_size("stats", S_IWUSR, devp->debugfs_root,
737 (void *)devp, &stats_debugfs_fops, 4096);
738
739 debugfs_create_file_size("eps", S_IWUSR, devp->debugfs_root,
740 (void *)devp, &ep_debugfs_fops, 4096);
741
742 if (c4iw_wr_log)
743 debugfs_create_file_size("wr_log", S_IWUSR, devp->debugfs_root,
744 (void *)devp, &wr_log_debugfs_fops, 4096);
745 }
746
c4iw_release_dev_ucontext(struct c4iw_rdev * rdev,struct c4iw_dev_ucontext * uctx)747 void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev,
748 struct c4iw_dev_ucontext *uctx)
749 {
750 struct list_head *pos, *nxt;
751 struct c4iw_qid_list *entry;
752
753 mutex_lock(&uctx->lock);
754 list_for_each_safe(pos, nxt, &uctx->qpids) {
755 entry = list_entry(pos, struct c4iw_qid_list, entry);
756 list_del_init(&entry->entry);
757 if (!(entry->qid & rdev->qpmask)) {
758 c4iw_put_resource(&rdev->resource.qid_table,
759 entry->qid);
760 mutex_lock(&rdev->stats.lock);
761 rdev->stats.qid.cur -= rdev->qpmask + 1;
762 mutex_unlock(&rdev->stats.lock);
763 }
764 kfree(entry);
765 }
766
767 list_for_each_safe(pos, nxt, &uctx->cqids) {
768 entry = list_entry(pos, struct c4iw_qid_list, entry);
769 list_del_init(&entry->entry);
770 kfree(entry);
771 }
772 mutex_unlock(&uctx->lock);
773 }
774
c4iw_init_dev_ucontext(struct c4iw_rdev * rdev,struct c4iw_dev_ucontext * uctx)775 void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev,
776 struct c4iw_dev_ucontext *uctx)
777 {
778 INIT_LIST_HEAD(&uctx->qpids);
779 INIT_LIST_HEAD(&uctx->cqids);
780 mutex_init(&uctx->lock);
781 }
782
783 /* Caller takes care of locking if needed */
c4iw_rdev_open(struct c4iw_rdev * rdev)784 static int c4iw_rdev_open(struct c4iw_rdev *rdev)
785 {
786 int err;
787 unsigned int factor;
788
789 c4iw_init_dev_ucontext(rdev, &rdev->uctx);
790
791 /*
792 * This implementation assumes udb_density == ucq_density! Eventually
793 * we might need to support this but for now fail the open. Also the
794 * cqid and qpid range must match for now.
795 */
796 if (rdev->lldi.udb_density != rdev->lldi.ucq_density) {
797 pr_err("%s: unsupported udb/ucq densities %u/%u\n",
798 pci_name(rdev->lldi.pdev), rdev->lldi.udb_density,
799 rdev->lldi.ucq_density);
800 return -EINVAL;
801 }
802 if (rdev->lldi.vr->qp.start != rdev->lldi.vr->cq.start ||
803 rdev->lldi.vr->qp.size != rdev->lldi.vr->cq.size) {
804 pr_err("%s: unsupported qp and cq id ranges qp start %u size %u cq start %u size %u\n",
805 pci_name(rdev->lldi.pdev), rdev->lldi.vr->qp.start,
806 rdev->lldi.vr->qp.size, rdev->lldi.vr->cq.size,
807 rdev->lldi.vr->cq.size);
808 return -EINVAL;
809 }
810
811 /* This implementation requires a sge_host_page_size <= PAGE_SIZE. */
812 if (rdev->lldi.sge_host_page_size > PAGE_SIZE) {
813 pr_err("%s: unsupported sge host page size %u\n",
814 pci_name(rdev->lldi.pdev),
815 rdev->lldi.sge_host_page_size);
816 return -EINVAL;
817 }
818
819 factor = PAGE_SIZE / rdev->lldi.sge_host_page_size;
820 rdev->qpmask = (rdev->lldi.udb_density * factor) - 1;
821 rdev->cqmask = (rdev->lldi.ucq_density * factor) - 1;
822
823 pr_debug("dev %s stag start 0x%0x size 0x%0x num stags %d pbl start 0x%0x size 0x%0x rq start 0x%0x size 0x%0x qp qid start %u size %u cq qid start %u size %u srq size %u\n",
824 pci_name(rdev->lldi.pdev), rdev->lldi.vr->stag.start,
825 rdev->lldi.vr->stag.size, c4iw_num_stags(rdev),
826 rdev->lldi.vr->pbl.start,
827 rdev->lldi.vr->pbl.size, rdev->lldi.vr->rq.start,
828 rdev->lldi.vr->rq.size,
829 rdev->lldi.vr->qp.start,
830 rdev->lldi.vr->qp.size,
831 rdev->lldi.vr->cq.start,
832 rdev->lldi.vr->cq.size,
833 rdev->lldi.vr->srq.size);
834 pr_debug("udb %pR db_reg %p gts_reg %p qpmask 0x%x cqmask 0x%x\n",
835 &rdev->lldi.pdev->resource[2],
836 rdev->lldi.db_reg, rdev->lldi.gts_reg,
837 rdev->qpmask, rdev->cqmask);
838
839 if (c4iw_num_stags(rdev) == 0)
840 return -EINVAL;
841
842 rdev->stats.pd.total = T4_MAX_NUM_PD;
843 rdev->stats.stag.total = rdev->lldi.vr->stag.size;
844 rdev->stats.pbl.total = rdev->lldi.vr->pbl.size;
845 rdev->stats.rqt.total = rdev->lldi.vr->rq.size;
846 rdev->stats.srqt.total = rdev->lldi.vr->srq.size;
847 rdev->stats.ocqp.total = rdev->lldi.vr->ocq.size;
848 rdev->stats.qid.total = rdev->lldi.vr->qp.size;
849
850 err = c4iw_init_resource(rdev, c4iw_num_stags(rdev),
851 T4_MAX_NUM_PD, rdev->lldi.vr->srq.size);
852 if (err) {
853 pr_err("error %d initializing resources\n", err);
854 return err;
855 }
856 err = c4iw_pblpool_create(rdev);
857 if (err) {
858 pr_err("error %d initializing pbl pool\n", err);
859 goto destroy_resource;
860 }
861 err = c4iw_rqtpool_create(rdev);
862 if (err) {
863 pr_err("error %d initializing rqt pool\n", err);
864 goto destroy_pblpool;
865 }
866 err = c4iw_ocqp_pool_create(rdev);
867 if (err) {
868 pr_err("error %d initializing ocqp pool\n", err);
869 goto destroy_rqtpool;
870 }
871 rdev->status_page = (struct t4_dev_status_page *)
872 __get_free_page(GFP_KERNEL);
873 if (!rdev->status_page) {
874 err = -ENOMEM;
875 goto destroy_ocqp_pool;
876 }
877 rdev->status_page->qp_start = rdev->lldi.vr->qp.start;
878 rdev->status_page->qp_size = rdev->lldi.vr->qp.size;
879 rdev->status_page->cq_start = rdev->lldi.vr->cq.start;
880 rdev->status_page->cq_size = rdev->lldi.vr->cq.size;
881 rdev->status_page->write_cmpl_supported = rdev->lldi.write_cmpl_support;
882
883 if (c4iw_wr_log) {
884 rdev->wr_log = kcalloc(1 << c4iw_wr_log_size_order,
885 sizeof(*rdev->wr_log),
886 GFP_KERNEL);
887 if (rdev->wr_log) {
888 rdev->wr_log_size = 1 << c4iw_wr_log_size_order;
889 atomic_set(&rdev->wr_log_idx, 0);
890 }
891 }
892
893 rdev->free_workq = create_singlethread_workqueue("iw_cxgb4_free");
894 if (!rdev->free_workq) {
895 err = -ENOMEM;
896 goto err_free_status_page_and_wr_log;
897 }
898
899 rdev->status_page->db_off = 0;
900
901 init_completion(&rdev->rqt_compl);
902 init_completion(&rdev->pbl_compl);
903 kref_init(&rdev->rqt_kref);
904 kref_init(&rdev->pbl_kref);
905
906 return 0;
907 err_free_status_page_and_wr_log:
908 if (c4iw_wr_log && rdev->wr_log)
909 kfree(rdev->wr_log);
910 free_page((unsigned long)rdev->status_page);
911 destroy_ocqp_pool:
912 c4iw_ocqp_pool_destroy(rdev);
913 destroy_rqtpool:
914 c4iw_rqtpool_destroy(rdev);
915 destroy_pblpool:
916 c4iw_pblpool_destroy(rdev);
917 destroy_resource:
918 c4iw_destroy_resource(&rdev->resource);
919 return err;
920 }
921
c4iw_rdev_close(struct c4iw_rdev * rdev)922 static void c4iw_rdev_close(struct c4iw_rdev *rdev)
923 {
924 kfree(rdev->wr_log);
925 c4iw_release_dev_ucontext(rdev, &rdev->uctx);
926 free_page((unsigned long)rdev->status_page);
927 c4iw_pblpool_destroy(rdev);
928 c4iw_rqtpool_destroy(rdev);
929 wait_for_completion(&rdev->pbl_compl);
930 wait_for_completion(&rdev->rqt_compl);
931 c4iw_ocqp_pool_destroy(rdev);
932 destroy_workqueue(rdev->free_workq);
933 c4iw_destroy_resource(&rdev->resource);
934 }
935
c4iw_dealloc(struct uld_ctx * ctx)936 void c4iw_dealloc(struct uld_ctx *ctx)
937 {
938 c4iw_rdev_close(&ctx->dev->rdev);
939 WARN_ON(!xa_empty(&ctx->dev->cqs));
940 WARN_ON(!xa_empty(&ctx->dev->qps));
941 WARN_ON(!xa_empty(&ctx->dev->mrs));
942 wait_event(ctx->dev->wait, xa_empty(&ctx->dev->hwtids));
943 WARN_ON(!xa_empty(&ctx->dev->stids));
944 WARN_ON(!xa_empty(&ctx->dev->atids));
945 if (ctx->dev->rdev.bar2_kva)
946 iounmap(ctx->dev->rdev.bar2_kva);
947 if (ctx->dev->rdev.oc_mw_kva)
948 iounmap(ctx->dev->rdev.oc_mw_kva);
949 ib_dealloc_device(&ctx->dev->ibdev);
950 ctx->dev = NULL;
951 }
952
c4iw_remove(struct uld_ctx * ctx)953 static void c4iw_remove(struct uld_ctx *ctx)
954 {
955 pr_debug("c4iw_dev %p\n", ctx->dev);
956 debugfs_remove_recursive(ctx->dev->debugfs_root);
957 c4iw_unregister_device(ctx->dev);
958 c4iw_dealloc(ctx);
959 }
960
rdma_supported(const struct cxgb4_lld_info * infop)961 static int rdma_supported(const struct cxgb4_lld_info *infop)
962 {
963 return infop->vr->stag.size > 0 && infop->vr->pbl.size > 0 &&
964 infop->vr->rq.size > 0 && infop->vr->qp.size > 0 &&
965 infop->vr->cq.size > 0;
966 }
967
c4iw_alloc(const struct cxgb4_lld_info * infop)968 static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop)
969 {
970 struct c4iw_dev *devp;
971 int ret;
972
973 if (!rdma_supported(infop)) {
974 pr_info("%s: RDMA not supported on this device\n",
975 pci_name(infop->pdev));
976 return ERR_PTR(-ENOSYS);
977 }
978 if (!ocqp_supported(infop))
979 pr_info("%s: On-Chip Queues not supported on this device\n",
980 pci_name(infop->pdev));
981
982 devp = ib_alloc_device(c4iw_dev, ibdev);
983 if (!devp) {
984 pr_err("Cannot allocate ib device\n");
985 return ERR_PTR(-ENOMEM);
986 }
987 devp->rdev.lldi = *infop;
988
989 /* init various hw-queue params based on lld info */
990 pr_debug("Ing. padding boundary is %d, egrsstatuspagesize = %d\n",
991 devp->rdev.lldi.sge_ingpadboundary,
992 devp->rdev.lldi.sge_egrstatuspagesize);
993
994 devp->rdev.hw_queue.t4_eq_status_entries =
995 devp->rdev.lldi.sge_egrstatuspagesize / 64;
996 devp->rdev.hw_queue.t4_max_eq_size = 65520;
997 devp->rdev.hw_queue.t4_max_iq_size = 65520;
998 devp->rdev.hw_queue.t4_max_rq_size = 8192 -
999 devp->rdev.hw_queue.t4_eq_status_entries - 1;
1000 devp->rdev.hw_queue.t4_max_sq_size =
1001 devp->rdev.hw_queue.t4_max_eq_size -
1002 devp->rdev.hw_queue.t4_eq_status_entries - 1;
1003 devp->rdev.hw_queue.t4_max_qp_depth =
1004 devp->rdev.hw_queue.t4_max_rq_size;
1005 devp->rdev.hw_queue.t4_max_cq_depth =
1006 devp->rdev.hw_queue.t4_max_iq_size - 2;
1007 devp->rdev.hw_queue.t4_stat_len =
1008 devp->rdev.lldi.sge_egrstatuspagesize;
1009
1010 /*
1011 * For T5/T6 devices, we map all of BAR2 with WC.
1012 * For T4 devices with onchip qp mem, we map only that part
1013 * of BAR2 with WC.
1014 */
1015 devp->rdev.bar2_pa = pci_resource_start(devp->rdev.lldi.pdev, 2);
1016 if (!is_t4(devp->rdev.lldi.adapter_type)) {
1017 devp->rdev.bar2_kva = ioremap_wc(devp->rdev.bar2_pa,
1018 pci_resource_len(devp->rdev.lldi.pdev, 2));
1019 if (!devp->rdev.bar2_kva) {
1020 pr_err("Unable to ioremap BAR2\n");
1021 ib_dealloc_device(&devp->ibdev);
1022 return ERR_PTR(-EINVAL);
1023 }
1024 } else if (ocqp_supported(infop)) {
1025 devp->rdev.oc_mw_pa =
1026 pci_resource_start(devp->rdev.lldi.pdev, 2) +
1027 pci_resource_len(devp->rdev.lldi.pdev, 2) -
1028 roundup_pow_of_two(devp->rdev.lldi.vr->ocq.size);
1029 devp->rdev.oc_mw_kva = ioremap_wc(devp->rdev.oc_mw_pa,
1030 devp->rdev.lldi.vr->ocq.size);
1031 if (!devp->rdev.oc_mw_kva) {
1032 pr_err("Unable to ioremap onchip mem\n");
1033 ib_dealloc_device(&devp->ibdev);
1034 return ERR_PTR(-EINVAL);
1035 }
1036 }
1037
1038 pr_debug("ocq memory: hw_start 0x%x size %u mw_pa 0x%lx mw_kva %p\n",
1039 devp->rdev.lldi.vr->ocq.start, devp->rdev.lldi.vr->ocq.size,
1040 devp->rdev.oc_mw_pa, devp->rdev.oc_mw_kva);
1041
1042 ret = c4iw_rdev_open(&devp->rdev);
1043 if (ret) {
1044 pr_err("Unable to open CXIO rdev err %d\n", ret);
1045 ib_dealloc_device(&devp->ibdev);
1046 return ERR_PTR(ret);
1047 }
1048
1049 xa_init_flags(&devp->cqs, XA_FLAGS_LOCK_IRQ);
1050 xa_init_flags(&devp->qps, XA_FLAGS_LOCK_IRQ);
1051 xa_init_flags(&devp->mrs, XA_FLAGS_LOCK_IRQ);
1052 xa_init_flags(&devp->hwtids, XA_FLAGS_LOCK_IRQ);
1053 xa_init_flags(&devp->atids, XA_FLAGS_LOCK_IRQ);
1054 xa_init_flags(&devp->stids, XA_FLAGS_LOCK_IRQ);
1055 mutex_init(&devp->rdev.stats.lock);
1056 mutex_init(&devp->db_mutex);
1057 INIT_LIST_HEAD(&devp->db_fc_list);
1058 init_waitqueue_head(&devp->wait);
1059 devp->avail_ird = devp->rdev.lldi.max_ird_adapter;
1060
1061 if (c4iw_debugfs_root) {
1062 devp->debugfs_root = debugfs_create_dir(
1063 pci_name(devp->rdev.lldi.pdev),
1064 c4iw_debugfs_root);
1065 setup_debugfs(devp);
1066 }
1067
1068
1069 return devp;
1070 }
1071
c4iw_uld_add(const struct cxgb4_lld_info * infop)1072 static void *c4iw_uld_add(const struct cxgb4_lld_info *infop)
1073 {
1074 struct uld_ctx *ctx;
1075 static int vers_printed;
1076 int i;
1077
1078 if (!vers_printed++)
1079 pr_info("Chelsio T4/T5 RDMA Driver - version %s\n",
1080 DRV_VERSION);
1081
1082 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1083 if (!ctx) {
1084 ctx = ERR_PTR(-ENOMEM);
1085 goto out;
1086 }
1087 ctx->lldi = *infop;
1088
1089 pr_debug("found device %s nchan %u nrxq %u ntxq %u nports %u\n",
1090 pci_name(ctx->lldi.pdev),
1091 ctx->lldi.nchan, ctx->lldi.nrxq,
1092 ctx->lldi.ntxq, ctx->lldi.nports);
1093
1094 mutex_lock(&dev_mutex);
1095 list_add_tail(&ctx->entry, &uld_ctx_list);
1096 mutex_unlock(&dev_mutex);
1097
1098 for (i = 0; i < ctx->lldi.nrxq; i++)
1099 pr_debug("rxqid[%u] %u\n", i, ctx->lldi.rxq_ids[i]);
1100 out:
1101 return ctx;
1102 }
1103
copy_gl_to_skb_pkt(const struct pkt_gl * gl,const __be64 * rsp,u32 pktshift)1104 static inline struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl,
1105 const __be64 *rsp,
1106 u32 pktshift)
1107 {
1108 struct sk_buff *skb;
1109
1110 /*
1111 * Allocate space for cpl_pass_accept_req which will be synthesized by
1112 * driver. Once the driver synthesizes the request the skb will go
1113 * through the regular cpl_pass_accept_req processing.
1114 * The math here assumes sizeof cpl_pass_accept_req >= sizeof
1115 * cpl_rx_pkt.
1116 */
1117 skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1118 sizeof(struct rss_header) - pktshift, GFP_ATOMIC);
1119 if (unlikely(!skb))
1120 return NULL;
1121
1122 __skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1123 sizeof(struct rss_header) - pktshift);
1124
1125 /*
1126 * This skb will contain:
1127 * rss_header from the rspq descriptor (1 flit)
1128 * cpl_rx_pkt struct from the rspq descriptor (2 flits)
1129 * space for the difference between the size of an
1130 * rx_pkt and pass_accept_req cpl (1 flit)
1131 * the packet data from the gl
1132 */
1133 skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_pass_accept_req) +
1134 sizeof(struct rss_header));
1135 skb_copy_to_linear_data_offset(skb, sizeof(struct rss_header) +
1136 sizeof(struct cpl_pass_accept_req),
1137 gl->va + pktshift,
1138 gl->tot_len - pktshift);
1139 return skb;
1140 }
1141
recv_rx_pkt(struct c4iw_dev * dev,const struct pkt_gl * gl,const __be64 * rsp)1142 static inline int recv_rx_pkt(struct c4iw_dev *dev, const struct pkt_gl *gl,
1143 const __be64 *rsp)
1144 {
1145 unsigned int opcode = *(u8 *)rsp;
1146 struct sk_buff *skb;
1147
1148 if (opcode != CPL_RX_PKT)
1149 goto out;
1150
1151 skb = copy_gl_to_skb_pkt(gl , rsp, dev->rdev.lldi.sge_pktshift);
1152 if (skb == NULL)
1153 goto out;
1154
1155 if (c4iw_handlers[opcode] == NULL) {
1156 pr_info("%s no handler opcode 0x%x...\n", __func__, opcode);
1157 kfree_skb(skb);
1158 goto out;
1159 }
1160 c4iw_handlers[opcode](dev, skb);
1161 return 1;
1162 out:
1163 return 0;
1164 }
1165
c4iw_uld_rx_handler(void * handle,const __be64 * rsp,const struct pkt_gl * gl)1166 static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp,
1167 const struct pkt_gl *gl)
1168 {
1169 struct uld_ctx *ctx = handle;
1170 struct c4iw_dev *dev = ctx->dev;
1171 struct sk_buff *skb;
1172 u8 opcode;
1173
1174 if (gl == NULL) {
1175 /* omit RSS and rsp_ctrl at end of descriptor */
1176 unsigned int len = 64 - sizeof(struct rsp_ctrl) - 8;
1177
1178 skb = alloc_skb(256, GFP_ATOMIC);
1179 if (!skb)
1180 goto nomem;
1181 __skb_put(skb, len);
1182 skb_copy_to_linear_data(skb, &rsp[1], len);
1183 } else if (gl == CXGB4_MSG_AN) {
1184 const struct rsp_ctrl *rc = (void *)rsp;
1185
1186 u32 qid = be32_to_cpu(rc->pldbuflen_qid);
1187 c4iw_ev_handler(dev, qid);
1188 return 0;
1189 } else if (unlikely(*(u8 *)rsp != *(u8 *)gl->va)) {
1190 if (recv_rx_pkt(dev, gl, rsp))
1191 return 0;
1192
1193 pr_info("%s: unexpected FL contents at %p, RSS %#llx, FL %#llx, len %u\n",
1194 pci_name(ctx->lldi.pdev), gl->va,
1195 be64_to_cpu(*rsp),
1196 be64_to_cpu(*(__force __be64 *)gl->va),
1197 gl->tot_len);
1198
1199 return 0;
1200 } else {
1201 skb = cxgb4_pktgl_to_skb(gl, 128, 128);
1202 if (unlikely(!skb))
1203 goto nomem;
1204 }
1205
1206 opcode = *(u8 *)rsp;
1207 if (c4iw_handlers[opcode]) {
1208 c4iw_handlers[opcode](dev, skb);
1209 } else {
1210 pr_info("%s no handler opcode 0x%x...\n", __func__, opcode);
1211 kfree_skb(skb);
1212 }
1213
1214 return 0;
1215 nomem:
1216 return -1;
1217 }
1218
c4iw_uld_state_change(void * handle,enum cxgb4_state new_state)1219 static int c4iw_uld_state_change(void *handle, enum cxgb4_state new_state)
1220 {
1221 struct uld_ctx *ctx = handle;
1222
1223 pr_debug("new_state %u\n", new_state);
1224 switch (new_state) {
1225 case CXGB4_STATE_UP:
1226 pr_info("%s: Up\n", pci_name(ctx->lldi.pdev));
1227 if (!ctx->dev) {
1228 ctx->dev = c4iw_alloc(&ctx->lldi);
1229 if (IS_ERR(ctx->dev)) {
1230 pr_err("%s: initialization failed: %ld\n",
1231 pci_name(ctx->lldi.pdev),
1232 PTR_ERR(ctx->dev));
1233 ctx->dev = NULL;
1234 break;
1235 }
1236
1237 INIT_WORK(&ctx->reg_work, c4iw_register_device);
1238 queue_work(reg_workq, &ctx->reg_work);
1239 }
1240 break;
1241 case CXGB4_STATE_DOWN:
1242 pr_info("%s: Down\n", pci_name(ctx->lldi.pdev));
1243 if (ctx->dev)
1244 c4iw_remove(ctx);
1245 break;
1246 case CXGB4_STATE_FATAL_ERROR:
1247 case CXGB4_STATE_START_RECOVERY:
1248 pr_info("%s: Fatal Error\n", pci_name(ctx->lldi.pdev));
1249 if (ctx->dev) {
1250 struct ib_event event = {};
1251
1252 ctx->dev->rdev.flags |= T4_FATAL_ERROR;
1253 event.event = IB_EVENT_DEVICE_FATAL;
1254 event.device = &ctx->dev->ibdev;
1255 ib_dispatch_event(&event);
1256 c4iw_remove(ctx);
1257 }
1258 break;
1259 case CXGB4_STATE_DETACH:
1260 pr_info("%s: Detach\n", pci_name(ctx->lldi.pdev));
1261 if (ctx->dev)
1262 c4iw_remove(ctx);
1263 break;
1264 }
1265 return 0;
1266 }
1267
stop_queues(struct uld_ctx * ctx)1268 static void stop_queues(struct uld_ctx *ctx)
1269 {
1270 struct c4iw_qp *qp;
1271 unsigned long index, flags;
1272
1273 xa_lock_irqsave(&ctx->dev->qps, flags);
1274 ctx->dev->rdev.stats.db_state_transitions++;
1275 ctx->dev->db_state = STOPPED;
1276 if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) {
1277 xa_for_each(&ctx->dev->qps, index, qp)
1278 t4_disable_wq_db(&qp->wq);
1279 } else {
1280 ctx->dev->rdev.status_page->db_off = 1;
1281 }
1282 xa_unlock_irqrestore(&ctx->dev->qps, flags);
1283 }
1284
resume_rc_qp(struct c4iw_qp * qp)1285 static void resume_rc_qp(struct c4iw_qp *qp)
1286 {
1287 spin_lock(&qp->lock);
1288 t4_ring_sq_db(&qp->wq, qp->wq.sq.wq_pidx_inc, NULL);
1289 qp->wq.sq.wq_pidx_inc = 0;
1290 t4_ring_rq_db(&qp->wq, qp->wq.rq.wq_pidx_inc, NULL);
1291 qp->wq.rq.wq_pidx_inc = 0;
1292 spin_unlock(&qp->lock);
1293 }
1294
resume_a_chunk(struct uld_ctx * ctx)1295 static void resume_a_chunk(struct uld_ctx *ctx)
1296 {
1297 int i;
1298 struct c4iw_qp *qp;
1299
1300 for (i = 0; i < DB_FC_RESUME_SIZE; i++) {
1301 qp = list_first_entry(&ctx->dev->db_fc_list, struct c4iw_qp,
1302 db_fc_entry);
1303 list_del_init(&qp->db_fc_entry);
1304 resume_rc_qp(qp);
1305 if (list_empty(&ctx->dev->db_fc_list))
1306 break;
1307 }
1308 }
1309
resume_queues(struct uld_ctx * ctx)1310 static void resume_queues(struct uld_ctx *ctx)
1311 {
1312 xa_lock_irq(&ctx->dev->qps);
1313 if (ctx->dev->db_state != STOPPED)
1314 goto out;
1315 ctx->dev->db_state = FLOW_CONTROL;
1316 while (1) {
1317 if (list_empty(&ctx->dev->db_fc_list)) {
1318 struct c4iw_qp *qp;
1319 unsigned long index;
1320
1321 WARN_ON(ctx->dev->db_state != FLOW_CONTROL);
1322 ctx->dev->db_state = NORMAL;
1323 ctx->dev->rdev.stats.db_state_transitions++;
1324 if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) {
1325 xa_for_each(&ctx->dev->qps, index, qp)
1326 t4_enable_wq_db(&qp->wq);
1327 } else {
1328 ctx->dev->rdev.status_page->db_off = 0;
1329 }
1330 break;
1331 } else {
1332 if (cxgb4_dbfifo_count(ctx->dev->rdev.lldi.ports[0], 1)
1333 < (ctx->dev->rdev.lldi.dbfifo_int_thresh <<
1334 DB_FC_DRAIN_THRESH)) {
1335 resume_a_chunk(ctx);
1336 }
1337 if (!list_empty(&ctx->dev->db_fc_list)) {
1338 xa_unlock_irq(&ctx->dev->qps);
1339 if (DB_FC_RESUME_DELAY) {
1340 set_current_state(TASK_UNINTERRUPTIBLE);
1341 schedule_timeout(DB_FC_RESUME_DELAY);
1342 }
1343 xa_lock_irq(&ctx->dev->qps);
1344 if (ctx->dev->db_state != FLOW_CONTROL)
1345 break;
1346 }
1347 }
1348 }
1349 out:
1350 if (ctx->dev->db_state != NORMAL)
1351 ctx->dev->rdev.stats.db_fc_interruptions++;
1352 xa_unlock_irq(&ctx->dev->qps);
1353 }
1354
1355 struct qp_list {
1356 unsigned idx;
1357 struct c4iw_qp **qps;
1358 };
1359
deref_qps(struct qp_list * qp_list)1360 static void deref_qps(struct qp_list *qp_list)
1361 {
1362 int idx;
1363
1364 for (idx = 0; idx < qp_list->idx; idx++)
1365 c4iw_qp_rem_ref(&qp_list->qps[idx]->ibqp);
1366 }
1367
recover_lost_dbs(struct uld_ctx * ctx,struct qp_list * qp_list)1368 static void recover_lost_dbs(struct uld_ctx *ctx, struct qp_list *qp_list)
1369 {
1370 int idx;
1371 int ret;
1372
1373 for (idx = 0; idx < qp_list->idx; idx++) {
1374 struct c4iw_qp *qp = qp_list->qps[idx];
1375
1376 xa_lock_irq(&qp->rhp->qps);
1377 spin_lock(&qp->lock);
1378 ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1379 qp->wq.sq.qid,
1380 t4_sq_host_wq_pidx(&qp->wq),
1381 t4_sq_wq_size(&qp->wq));
1382 if (ret) {
1383 pr_err("%s: Fatal error - DB overflow recovery failed - error syncing SQ qid %u\n",
1384 pci_name(ctx->lldi.pdev), qp->wq.sq.qid);
1385 spin_unlock(&qp->lock);
1386 xa_unlock_irq(&qp->rhp->qps);
1387 return;
1388 }
1389 qp->wq.sq.wq_pidx_inc = 0;
1390
1391 ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1392 qp->wq.rq.qid,
1393 t4_rq_host_wq_pidx(&qp->wq),
1394 t4_rq_wq_size(&qp->wq));
1395
1396 if (ret) {
1397 pr_err("%s: Fatal error - DB overflow recovery failed - error syncing RQ qid %u\n",
1398 pci_name(ctx->lldi.pdev), qp->wq.rq.qid);
1399 spin_unlock(&qp->lock);
1400 xa_unlock_irq(&qp->rhp->qps);
1401 return;
1402 }
1403 qp->wq.rq.wq_pidx_inc = 0;
1404 spin_unlock(&qp->lock);
1405 xa_unlock_irq(&qp->rhp->qps);
1406
1407 /* Wait for the dbfifo to drain */
1408 while (cxgb4_dbfifo_count(qp->rhp->rdev.lldi.ports[0], 1) > 0) {
1409 set_current_state(TASK_UNINTERRUPTIBLE);
1410 schedule_timeout(usecs_to_jiffies(10));
1411 }
1412 }
1413 }
1414
recover_queues(struct uld_ctx * ctx)1415 static void recover_queues(struct uld_ctx *ctx)
1416 {
1417 struct c4iw_qp *qp;
1418 unsigned long index;
1419 int count = 0;
1420 struct qp_list qp_list;
1421 int ret;
1422
1423 /* slow everybody down */
1424 set_current_state(TASK_UNINTERRUPTIBLE);
1425 schedule_timeout(usecs_to_jiffies(1000));
1426
1427 /* flush the SGE contexts */
1428 ret = cxgb4_flush_eq_cache(ctx->dev->rdev.lldi.ports[0]);
1429 if (ret) {
1430 pr_err("%s: Fatal error - DB overflow recovery failed\n",
1431 pci_name(ctx->lldi.pdev));
1432 return;
1433 }
1434
1435 /* Count active queues so we can build a list of queues to recover */
1436 xa_lock_irq(&ctx->dev->qps);
1437 WARN_ON(ctx->dev->db_state != STOPPED);
1438 ctx->dev->db_state = RECOVERY;
1439 xa_for_each(&ctx->dev->qps, index, qp)
1440 count++;
1441
1442 qp_list.qps = kcalloc(count, sizeof(*qp_list.qps), GFP_ATOMIC);
1443 if (!qp_list.qps) {
1444 xa_unlock_irq(&ctx->dev->qps);
1445 return;
1446 }
1447 qp_list.idx = 0;
1448
1449 /* add and ref each qp so it doesn't get freed */
1450 xa_for_each(&ctx->dev->qps, index, qp) {
1451 c4iw_qp_add_ref(&qp->ibqp);
1452 qp_list.qps[qp_list.idx++] = qp;
1453 }
1454
1455 xa_unlock_irq(&ctx->dev->qps);
1456
1457 /* now traverse the list in a safe context to recover the db state*/
1458 recover_lost_dbs(ctx, &qp_list);
1459
1460 /* we're almost done! deref the qps and clean up */
1461 deref_qps(&qp_list);
1462 kfree(qp_list.qps);
1463
1464 xa_lock_irq(&ctx->dev->qps);
1465 WARN_ON(ctx->dev->db_state != RECOVERY);
1466 ctx->dev->db_state = STOPPED;
1467 xa_unlock_irq(&ctx->dev->qps);
1468 }
1469
c4iw_uld_control(void * handle,enum cxgb4_control control,...)1470 static int c4iw_uld_control(void *handle, enum cxgb4_control control, ...)
1471 {
1472 struct uld_ctx *ctx = handle;
1473
1474 switch (control) {
1475 case CXGB4_CONTROL_DB_FULL:
1476 stop_queues(ctx);
1477 ctx->dev->rdev.stats.db_full++;
1478 break;
1479 case CXGB4_CONTROL_DB_EMPTY:
1480 resume_queues(ctx);
1481 mutex_lock(&ctx->dev->rdev.stats.lock);
1482 ctx->dev->rdev.stats.db_empty++;
1483 mutex_unlock(&ctx->dev->rdev.stats.lock);
1484 break;
1485 case CXGB4_CONTROL_DB_DROP:
1486 recover_queues(ctx);
1487 mutex_lock(&ctx->dev->rdev.stats.lock);
1488 ctx->dev->rdev.stats.db_drop++;
1489 mutex_unlock(&ctx->dev->rdev.stats.lock);
1490 break;
1491 default:
1492 pr_warn("%s: unknown control cmd %u\n",
1493 pci_name(ctx->lldi.pdev), control);
1494 break;
1495 }
1496 return 0;
1497 }
1498
1499 static struct cxgb4_uld_info c4iw_uld_info = {
1500 .name = DRV_NAME,
1501 .nrxq = MAX_ULD_QSETS,
1502 .ntxq = MAX_ULD_QSETS,
1503 .rxq_size = 511,
1504 .ciq = true,
1505 .lro = false,
1506 .add = c4iw_uld_add,
1507 .rx_handler = c4iw_uld_rx_handler,
1508 .state_change = c4iw_uld_state_change,
1509 .control = c4iw_uld_control,
1510 };
1511
_c4iw_free_wr_wait(struct kref * kref)1512 void _c4iw_free_wr_wait(struct kref *kref)
1513 {
1514 struct c4iw_wr_wait *wr_waitp;
1515
1516 wr_waitp = container_of(kref, struct c4iw_wr_wait, kref);
1517 pr_debug("Free wr_wait %p\n", wr_waitp);
1518 kfree(wr_waitp);
1519 }
1520
c4iw_alloc_wr_wait(gfp_t gfp)1521 struct c4iw_wr_wait *c4iw_alloc_wr_wait(gfp_t gfp)
1522 {
1523 struct c4iw_wr_wait *wr_waitp;
1524
1525 wr_waitp = kzalloc(sizeof(*wr_waitp), gfp);
1526 if (wr_waitp) {
1527 kref_init(&wr_waitp->kref);
1528 pr_debug("wr_wait %p\n", wr_waitp);
1529 }
1530 return wr_waitp;
1531 }
1532
c4iw_init_module(void)1533 static int __init c4iw_init_module(void)
1534 {
1535 int err;
1536
1537 err = c4iw_cm_init();
1538 if (err)
1539 return err;
1540
1541 c4iw_debugfs_root = debugfs_create_dir(DRV_NAME, NULL);
1542
1543 reg_workq = create_singlethread_workqueue("Register_iWARP_device");
1544 if (!reg_workq) {
1545 pr_err("Failed creating workqueue to register iwarp device\n");
1546 return -ENOMEM;
1547 }
1548
1549 cxgb4_register_uld(CXGB4_ULD_RDMA, &c4iw_uld_info);
1550
1551 return 0;
1552 }
1553
c4iw_exit_module(void)1554 static void __exit c4iw_exit_module(void)
1555 {
1556 struct uld_ctx *ctx, *tmp;
1557
1558 mutex_lock(&dev_mutex);
1559 list_for_each_entry_safe(ctx, tmp, &uld_ctx_list, entry) {
1560 if (ctx->dev)
1561 c4iw_remove(ctx);
1562 kfree(ctx);
1563 }
1564 mutex_unlock(&dev_mutex);
1565 flush_workqueue(reg_workq);
1566 destroy_workqueue(reg_workq);
1567 cxgb4_unregister_uld(CXGB4_ULD_RDMA);
1568 c4iw_cm_term();
1569 debugfs_remove_recursive(c4iw_debugfs_root);
1570 }
1571
1572 module_init(c4iw_init_module);
1573 module_exit(c4iw_exit_module);
1574