1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Task-based RCU implementations.
4 *
5 * Copyright (C) 2020 Paul E. McKenney
6 */
7
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9
10 ////////////////////////////////////////////////////////////////////////
11 //
12 // Generic data structures.
13
14 struct rcu_tasks;
15 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
16 typedef void (*pregp_func_t)(void);
17 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
18 typedef void (*postscan_func_t)(struct list_head *hop);
19 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
20 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
21
22 /**
23 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
24 * @cbs_head: Head of callback list.
25 * @cbs_tail: Tail pointer for callback list.
26 * @cbs_wq: Wait queue allowing new callback to get kthread's attention.
27 * @cbs_lock: Lock protecting callback list.
28 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
29 * @gp_func: This flavor's grace-period-wait function.
30 * @gp_state: Grace period's most recent state transition (debugging).
31 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
32 * @init_fract: Initial backoff sleep interval.
33 * @gp_jiffies: Time of last @gp_state transition.
34 * @gp_start: Most recent grace-period start in jiffies.
35 * @n_gps: Number of grace periods completed since boot.
36 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
37 * @n_ipis_fails: Number of IPI-send failures.
38 * @pregp_func: This flavor's pre-grace-period function (optional).
39 * @pertask_func: This flavor's per-task scan function (optional).
40 * @postscan_func: This flavor's post-task scan function (optional).
41 * @holdouts_func: This flavor's holdout-list scan function (optional).
42 * @postgp_func: This flavor's post-grace-period function (optional).
43 * @call_func: This flavor's call_rcu()-equivalent function.
44 * @name: This flavor's textual name.
45 * @kname: This flavor's kthread name.
46 */
47 struct rcu_tasks {
48 struct rcu_head *cbs_head;
49 struct rcu_head **cbs_tail;
50 struct wait_queue_head cbs_wq;
51 raw_spinlock_t cbs_lock;
52 int gp_state;
53 int gp_sleep;
54 int init_fract;
55 unsigned long gp_jiffies;
56 unsigned long gp_start;
57 unsigned long n_gps;
58 unsigned long n_ipis;
59 unsigned long n_ipis_fails;
60 struct task_struct *kthread_ptr;
61 rcu_tasks_gp_func_t gp_func;
62 pregp_func_t pregp_func;
63 pertask_func_t pertask_func;
64 postscan_func_t postscan_func;
65 holdouts_func_t holdouts_func;
66 postgp_func_t postgp_func;
67 call_rcu_func_t call_func;
68 char *name;
69 char *kname;
70 };
71
72 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \
73 static struct rcu_tasks rt_name = \
74 { \
75 .cbs_tail = &rt_name.cbs_head, \
76 .cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \
77 .cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \
78 .gp_func = gp, \
79 .call_func = call, \
80 .name = n, \
81 .kname = #rt_name, \
82 }
83
84 /* Track exiting tasks in order to allow them to be waited for. */
85 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
86
87 /* Avoid IPIing CPUs early in the grace period. */
88 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
89 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
90 module_param(rcu_task_ipi_delay, int, 0644);
91
92 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
93 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
94 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
95 module_param(rcu_task_stall_timeout, int, 0644);
96
97 /* RCU tasks grace-period state for debugging. */
98 #define RTGS_INIT 0
99 #define RTGS_WAIT_WAIT_CBS 1
100 #define RTGS_WAIT_GP 2
101 #define RTGS_PRE_WAIT_GP 3
102 #define RTGS_SCAN_TASKLIST 4
103 #define RTGS_POST_SCAN_TASKLIST 5
104 #define RTGS_WAIT_SCAN_HOLDOUTS 6
105 #define RTGS_SCAN_HOLDOUTS 7
106 #define RTGS_POST_GP 8
107 #define RTGS_WAIT_READERS 9
108 #define RTGS_INVOKE_CBS 10
109 #define RTGS_WAIT_CBS 11
110 #ifndef CONFIG_TINY_RCU
111 static const char * const rcu_tasks_gp_state_names[] = {
112 "RTGS_INIT",
113 "RTGS_WAIT_WAIT_CBS",
114 "RTGS_WAIT_GP",
115 "RTGS_PRE_WAIT_GP",
116 "RTGS_SCAN_TASKLIST",
117 "RTGS_POST_SCAN_TASKLIST",
118 "RTGS_WAIT_SCAN_HOLDOUTS",
119 "RTGS_SCAN_HOLDOUTS",
120 "RTGS_POST_GP",
121 "RTGS_WAIT_READERS",
122 "RTGS_INVOKE_CBS",
123 "RTGS_WAIT_CBS",
124 };
125 #endif /* #ifndef CONFIG_TINY_RCU */
126
127 ////////////////////////////////////////////////////////////////////////
128 //
129 // Generic code.
130
131 /* Record grace-period phase and time. */
set_tasks_gp_state(struct rcu_tasks * rtp,int newstate)132 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
133 {
134 rtp->gp_state = newstate;
135 rtp->gp_jiffies = jiffies;
136 }
137
138 #ifndef CONFIG_TINY_RCU
139 /* Return state name. */
tasks_gp_state_getname(struct rcu_tasks * rtp)140 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
141 {
142 int i = data_race(rtp->gp_state); // Let KCSAN detect update races
143 int j = READ_ONCE(i); // Prevent the compiler from reading twice
144
145 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
146 return "???";
147 return rcu_tasks_gp_state_names[j];
148 }
149 #endif /* #ifndef CONFIG_TINY_RCU */
150
151 // Enqueue a callback for the specified flavor of Tasks RCU.
call_rcu_tasks_generic(struct rcu_head * rhp,rcu_callback_t func,struct rcu_tasks * rtp)152 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
153 struct rcu_tasks *rtp)
154 {
155 unsigned long flags;
156 bool needwake;
157
158 rhp->next = NULL;
159 rhp->func = func;
160 raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
161 needwake = !rtp->cbs_head;
162 WRITE_ONCE(*rtp->cbs_tail, rhp);
163 rtp->cbs_tail = &rhp->next;
164 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
165 /* We can't create the thread unless interrupts are enabled. */
166 if (needwake && READ_ONCE(rtp->kthread_ptr))
167 wake_up(&rtp->cbs_wq);
168 }
169
170 // Wait for a grace period for the specified flavor of Tasks RCU.
synchronize_rcu_tasks_generic(struct rcu_tasks * rtp)171 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
172 {
173 /* Complain if the scheduler has not started. */
174 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
175 "synchronize_%s() called too soon", rtp->name))
176 return;
177
178 /* Wait for the grace period. */
179 wait_rcu_gp(rtp->call_func);
180 }
181
182 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
rcu_tasks_kthread(void * arg)183 static int __noreturn rcu_tasks_kthread(void *arg)
184 {
185 unsigned long flags;
186 struct rcu_head *list;
187 struct rcu_head *next;
188 struct rcu_tasks *rtp = arg;
189
190 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
191 housekeeping_affine(current, HK_FLAG_RCU);
192 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
193
194 /*
195 * Each pass through the following loop makes one check for
196 * newly arrived callbacks, and, if there are some, waits for
197 * one RCU-tasks grace period and then invokes the callbacks.
198 * This loop is terminated by the system going down. ;-)
199 */
200 for (;;) {
201 set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
202
203 /* Pick up any new callbacks. */
204 raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
205 smp_mb__after_spinlock(); // Order updates vs. GP.
206 list = rtp->cbs_head;
207 rtp->cbs_head = NULL;
208 rtp->cbs_tail = &rtp->cbs_head;
209 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
210
211 /* If there were none, wait a bit and start over. */
212 if (!list) {
213 wait_event_interruptible(rtp->cbs_wq,
214 READ_ONCE(rtp->cbs_head));
215 if (!rtp->cbs_head) {
216 WARN_ON(signal_pending(current));
217 set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS);
218 schedule_timeout_idle(HZ/10);
219 }
220 continue;
221 }
222
223 // Wait for one grace period.
224 set_tasks_gp_state(rtp, RTGS_WAIT_GP);
225 rtp->gp_start = jiffies;
226 rtp->gp_func(rtp);
227 rtp->n_gps++;
228
229 /* Invoke the callbacks. */
230 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
231 while (list) {
232 next = list->next;
233 local_bh_disable();
234 list->func(list);
235 local_bh_enable();
236 list = next;
237 cond_resched();
238 }
239 /* Paranoid sleep to keep this from entering a tight loop */
240 schedule_timeout_idle(rtp->gp_sleep);
241 }
242 }
243
244 /* Spawn RCU-tasks grace-period kthread. */
rcu_spawn_tasks_kthread_generic(struct rcu_tasks * rtp)245 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
246 {
247 struct task_struct *t;
248
249 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
250 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
251 return;
252 smp_mb(); /* Ensure others see full kthread. */
253 }
254
255 #ifndef CONFIG_TINY_RCU
256
257 /*
258 * Print any non-default Tasks RCU settings.
259 */
rcu_tasks_bootup_oddness(void)260 static void __init rcu_tasks_bootup_oddness(void)
261 {
262 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
263 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
264 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
265 #endif /* #ifdef CONFIG_TASKS_RCU */
266 #ifdef CONFIG_TASKS_RCU
267 pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
268 #endif /* #ifdef CONFIG_TASKS_RCU */
269 #ifdef CONFIG_TASKS_RUDE_RCU
270 pr_info("\tRude variant of Tasks RCU enabled.\n");
271 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
272 #ifdef CONFIG_TASKS_TRACE_RCU
273 pr_info("\tTracing variant of Tasks RCU enabled.\n");
274 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
275 }
276
277 #endif /* #ifndef CONFIG_TINY_RCU */
278
279 #ifndef CONFIG_TINY_RCU
280 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
show_rcu_tasks_generic_gp_kthread(struct rcu_tasks * rtp,char * s)281 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
282 {
283 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
284 rtp->kname,
285 tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
286 jiffies - data_race(rtp->gp_jiffies),
287 data_race(rtp->n_gps),
288 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
289 ".k"[!!data_race(rtp->kthread_ptr)],
290 ".C"[!!data_race(rtp->cbs_head)],
291 s);
292 }
293 #endif // #ifndef CONFIG_TINY_RCU
294
295 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
296
297 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
298
299 ////////////////////////////////////////////////////////////////////////
300 //
301 // Shared code between task-list-scanning variants of Tasks RCU.
302
303 /* Wait for one RCU-tasks grace period. */
rcu_tasks_wait_gp(struct rcu_tasks * rtp)304 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
305 {
306 struct task_struct *g, *t;
307 unsigned long lastreport;
308 LIST_HEAD(holdouts);
309 int fract;
310
311 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
312 rtp->pregp_func();
313
314 /*
315 * There were callbacks, so we need to wait for an RCU-tasks
316 * grace period. Start off by scanning the task list for tasks
317 * that are not already voluntarily blocked. Mark these tasks
318 * and make a list of them in holdouts.
319 */
320 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
321 rcu_read_lock();
322 for_each_process_thread(g, t)
323 rtp->pertask_func(t, &holdouts);
324 rcu_read_unlock();
325
326 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
327 rtp->postscan_func(&holdouts);
328
329 /*
330 * Each pass through the following loop scans the list of holdout
331 * tasks, removing any that are no longer holdouts. When the list
332 * is empty, we are done.
333 */
334 lastreport = jiffies;
335
336 // Start off with initial wait and slowly back off to 1 HZ wait.
337 fract = rtp->init_fract;
338
339 while (!list_empty(&holdouts)) {
340 bool firstreport;
341 bool needreport;
342 int rtst;
343
344 /* Slowly back off waiting for holdouts */
345 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
346 schedule_timeout_idle(fract);
347
348 if (fract < HZ)
349 fract++;
350
351 rtst = READ_ONCE(rcu_task_stall_timeout);
352 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
353 if (needreport)
354 lastreport = jiffies;
355 firstreport = true;
356 WARN_ON(signal_pending(current));
357 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
358 rtp->holdouts_func(&holdouts, needreport, &firstreport);
359 }
360
361 set_tasks_gp_state(rtp, RTGS_POST_GP);
362 rtp->postgp_func(rtp);
363 }
364
365 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
366
367 #ifdef CONFIG_TASKS_RCU
368
369 ////////////////////////////////////////////////////////////////////////
370 //
371 // Simple variant of RCU whose quiescent states are voluntary context
372 // switch, cond_resched_rcu_qs(), user-space execution, and idle.
373 // As such, grace periods can take one good long time. There are no
374 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
375 // because this implementation is intended to get the system into a safe
376 // state for some of the manipulations involved in tracing and the like.
377 // Finally, this implementation does not support high call_rcu_tasks()
378 // rates from multiple CPUs. If this is required, per-CPU callback lists
379 // will be needed.
380 //
381 // The implementation uses rcu_tasks_wait_gp(), which relies on function
382 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread()
383 // function sets these function pointers up so that rcu_tasks_wait_gp()
384 // invokes these functions in this order:
385 //
386 // rcu_tasks_pregp_step():
387 // Invokes synchronize_rcu() in order to wait for all in-flight
388 // t->on_rq and t->nvcsw transitions to complete. This works because
389 // all such transitions are carried out with interrupts disabled.
390 // rcu_tasks_pertask(), invoked on every non-idle task:
391 // For every runnable non-idle task other than the current one, use
392 // get_task_struct() to pin down that task, snapshot that task's
393 // number of voluntary context switches, and add that task to the
394 // holdout list.
395 // rcu_tasks_postscan():
396 // Invoke synchronize_srcu() to ensure that all tasks that were
397 // in the process of exiting (and which thus might not know to
398 // synchronize with this RCU Tasks grace period) have completed
399 // exiting.
400 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
401 // Scans the holdout list, attempting to identify a quiescent state
402 // for each task on the list. If there is a quiescent state, the
403 // corresponding task is removed from the holdout list.
404 // rcu_tasks_postgp():
405 // Invokes synchronize_rcu() in order to ensure that all prior
406 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
407 // to have happened before the end of this RCU Tasks grace period.
408 // Again, this works because all such transitions are carried out
409 // with interrupts disabled.
410 //
411 // For each exiting task, the exit_tasks_rcu_start() and
412 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
413 // read-side critical sections waited for by rcu_tasks_postscan().
414 //
415 // Pre-grace-period update-side code is ordered before the grace via the
416 // ->cbs_lock and the smp_mb__after_spinlock(). Pre-grace-period read-side
417 // code is ordered before the grace period via synchronize_rcu() call
418 // in rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
419 // disabling.
420
421 /* Pre-grace-period preparation. */
rcu_tasks_pregp_step(void)422 static void rcu_tasks_pregp_step(void)
423 {
424 /*
425 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
426 * to complete. Invoking synchronize_rcu() suffices because all
427 * these transitions occur with interrupts disabled. Without this
428 * synchronize_rcu(), a read-side critical section that started
429 * before the grace period might be incorrectly seen as having
430 * started after the grace period.
431 *
432 * This synchronize_rcu() also dispenses with the need for a
433 * memory barrier on the first store to t->rcu_tasks_holdout,
434 * as it forces the store to happen after the beginning of the
435 * grace period.
436 */
437 synchronize_rcu();
438 }
439
440 /* Per-task initial processing. */
rcu_tasks_pertask(struct task_struct * t,struct list_head * hop)441 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
442 {
443 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
444 get_task_struct(t);
445 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
446 WRITE_ONCE(t->rcu_tasks_holdout, true);
447 list_add(&t->rcu_tasks_holdout_list, hop);
448 }
449 }
450
451 /* Processing between scanning taskslist and draining the holdout list. */
rcu_tasks_postscan(struct list_head * hop)452 static void rcu_tasks_postscan(struct list_head *hop)
453 {
454 /*
455 * Exiting tasks may escape the tasklist scan. Those are vulnerable
456 * until their final schedule() with TASK_DEAD state. To cope with
457 * this, divide the fragile exit path part in two intersecting
458 * read side critical sections:
459 *
460 * 1) An _SRCU_ read side starting before calling exit_notify(),
461 * which may remove the task from the tasklist, and ending after
462 * the final preempt_disable() call in do_exit().
463 *
464 * 2) An _RCU_ read side starting with the final preempt_disable()
465 * call in do_exit() and ending with the final call to schedule()
466 * with TASK_DEAD state.
467 *
468 * This handles the part 1). And postgp will handle part 2) with a
469 * call to synchronize_rcu().
470 */
471 synchronize_srcu(&tasks_rcu_exit_srcu);
472 }
473
474 /* See if tasks are still holding out, complain if so. */
check_holdout_task(struct task_struct * t,bool needreport,bool * firstreport)475 static void check_holdout_task(struct task_struct *t,
476 bool needreport, bool *firstreport)
477 {
478 int cpu;
479
480 if (!READ_ONCE(t->rcu_tasks_holdout) ||
481 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
482 !READ_ONCE(t->on_rq) ||
483 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
484 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
485 WRITE_ONCE(t->rcu_tasks_holdout, false);
486 list_del_init(&t->rcu_tasks_holdout_list);
487 put_task_struct(t);
488 return;
489 }
490 rcu_request_urgent_qs_task(t);
491 if (!needreport)
492 return;
493 if (*firstreport) {
494 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
495 *firstreport = false;
496 }
497 cpu = task_cpu(t);
498 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
499 t, ".I"[is_idle_task(t)],
500 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
501 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
502 t->rcu_tasks_idle_cpu, cpu);
503 sched_show_task(t);
504 }
505
506 /* Scan the holdout lists for tasks no longer holding out. */
check_all_holdout_tasks(struct list_head * hop,bool needreport,bool * firstreport)507 static void check_all_holdout_tasks(struct list_head *hop,
508 bool needreport, bool *firstreport)
509 {
510 struct task_struct *t, *t1;
511
512 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
513 check_holdout_task(t, needreport, firstreport);
514 cond_resched();
515 }
516 }
517
518 /* Finish off the Tasks-RCU grace period. */
rcu_tasks_postgp(struct rcu_tasks * rtp)519 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
520 {
521 /*
522 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
523 * memory barriers prior to them in the schedule() path, memory
524 * reordering on other CPUs could cause their RCU-tasks read-side
525 * critical sections to extend past the end of the grace period.
526 * However, because these ->nvcsw updates are carried out with
527 * interrupts disabled, we can use synchronize_rcu() to force the
528 * needed ordering on all such CPUs.
529 *
530 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
531 * accesses to be within the grace period, avoiding the need for
532 * memory barriers for ->rcu_tasks_holdout accesses.
533 *
534 * In addition, this synchronize_rcu() waits for exiting tasks
535 * to complete their final preempt_disable() region of execution,
536 * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu),
537 * enforcing the whole region before tasklist removal until
538 * the final schedule() with TASK_DEAD state to be an RCU TASKS
539 * read side critical section.
540 */
541 synchronize_rcu();
542 }
543
544 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
545 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
546
547 /**
548 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
549 * @rhp: structure to be used for queueing the RCU updates.
550 * @func: actual callback function to be invoked after the grace period
551 *
552 * The callback function will be invoked some time after a full grace
553 * period elapses, in other words after all currently executing RCU
554 * read-side critical sections have completed. call_rcu_tasks() assumes
555 * that the read-side critical sections end at a voluntary context
556 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
557 * or transition to usermode execution. As such, there are no read-side
558 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
559 * this primitive is intended to determine that all tasks have passed
560 * through a safe state, not so much for data-structure synchronization.
561 *
562 * See the description of call_rcu() for more detailed information on
563 * memory ordering guarantees.
564 */
call_rcu_tasks(struct rcu_head * rhp,rcu_callback_t func)565 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
566 {
567 call_rcu_tasks_generic(rhp, func, &rcu_tasks);
568 }
569 EXPORT_SYMBOL_GPL(call_rcu_tasks);
570
571 /**
572 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
573 *
574 * Control will return to the caller some time after a full rcu-tasks
575 * grace period has elapsed, in other words after all currently
576 * executing rcu-tasks read-side critical sections have elapsed. These
577 * read-side critical sections are delimited by calls to schedule(),
578 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
579 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
580 *
581 * This is a very specialized primitive, intended only for a few uses in
582 * tracing and other situations requiring manipulation of function
583 * preambles and profiling hooks. The synchronize_rcu_tasks() function
584 * is not (yet) intended for heavy use from multiple CPUs.
585 *
586 * See the description of synchronize_rcu() for more detailed information
587 * on memory ordering guarantees.
588 */
synchronize_rcu_tasks(void)589 void synchronize_rcu_tasks(void)
590 {
591 synchronize_rcu_tasks_generic(&rcu_tasks);
592 }
593 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
594
595 /**
596 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
597 *
598 * Although the current implementation is guaranteed to wait, it is not
599 * obligated to, for example, if there are no pending callbacks.
600 */
rcu_barrier_tasks(void)601 void rcu_barrier_tasks(void)
602 {
603 /* There is only one callback queue, so this is easy. ;-) */
604 synchronize_rcu_tasks();
605 }
606 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
607
rcu_spawn_tasks_kthread(void)608 static int __init rcu_spawn_tasks_kthread(void)
609 {
610 rcu_tasks.gp_sleep = HZ / 10;
611 rcu_tasks.init_fract = HZ / 10;
612 rcu_tasks.pregp_func = rcu_tasks_pregp_step;
613 rcu_tasks.pertask_func = rcu_tasks_pertask;
614 rcu_tasks.postscan_func = rcu_tasks_postscan;
615 rcu_tasks.holdouts_func = check_all_holdout_tasks;
616 rcu_tasks.postgp_func = rcu_tasks_postgp;
617 rcu_spawn_tasks_kthread_generic(&rcu_tasks);
618 return 0;
619 }
620
621 #if !defined(CONFIG_TINY_RCU)
show_rcu_tasks_classic_gp_kthread(void)622 void show_rcu_tasks_classic_gp_kthread(void)
623 {
624 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
625 }
626 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
627 #endif // !defined(CONFIG_TINY_RCU)
628
629 /*
630 * Contribute to protect against tasklist scan blind spot while the
631 * task is exiting and may be removed from the tasklist. See
632 * corresponding synchronize_srcu() for further details.
633 */
exit_tasks_rcu_start(void)634 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
635 {
636 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
637 }
638
639 /*
640 * Contribute to protect against tasklist scan blind spot while the
641 * task is exiting and may be removed from the tasklist. See
642 * corresponding synchronize_srcu() for further details.
643 */
exit_tasks_rcu_stop(void)644 void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu)
645 {
646 struct task_struct *t = current;
647
648 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
649 }
650
651 /*
652 * Contribute to protect against tasklist scan blind spot while the
653 * task is exiting and may be removed from the tasklist. See
654 * corresponding synchronize_srcu() for further details.
655 */
exit_tasks_rcu_finish(void)656 void exit_tasks_rcu_finish(void)
657 {
658 exit_tasks_rcu_stop();
659 exit_tasks_rcu_finish_trace(current);
660 }
661
662 #else /* #ifdef CONFIG_TASKS_RCU */
exit_tasks_rcu_start(void)663 void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)664 void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)665 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
666 #endif /* #else #ifdef CONFIG_TASKS_RCU */
667
668 #ifdef CONFIG_TASKS_RUDE_RCU
669
670 ////////////////////////////////////////////////////////////////////////
671 //
672 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
673 // passing an empty function to schedule_on_each_cpu(). This approach
674 // provides an asynchronous call_rcu_tasks_rude() API and batching of
675 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
676 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide
677 // and induces otherwise unnecessary context switches on all online CPUs,
678 // whether idle or not.
679 //
680 // Callback handling is provided by the rcu_tasks_kthread() function.
681 //
682 // Ordering is provided by the scheduler's context-switch code.
683
684 // Empty function to allow workqueues to force a context switch.
rcu_tasks_be_rude(struct work_struct * work)685 static void rcu_tasks_be_rude(struct work_struct *work)
686 {
687 }
688
689 // Wait for one rude RCU-tasks grace period.
rcu_tasks_rude_wait_gp(struct rcu_tasks * rtp)690 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
691 {
692 rtp->n_ipis += cpumask_weight(cpu_online_mask);
693 schedule_on_each_cpu(rcu_tasks_be_rude);
694 }
695
696 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
697 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
698 "RCU Tasks Rude");
699
700 /**
701 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
702 * @rhp: structure to be used for queueing the RCU updates.
703 * @func: actual callback function to be invoked after the grace period
704 *
705 * The callback function will be invoked some time after a full grace
706 * period elapses, in other words after all currently executing RCU
707 * read-side critical sections have completed. call_rcu_tasks_rude()
708 * assumes that the read-side critical sections end at context switch,
709 * cond_resched_rcu_qs(), or transition to usermode execution. As such,
710 * there are no read-side primitives analogous to rcu_read_lock() and
711 * rcu_read_unlock() because this primitive is intended to determine
712 * that all tasks have passed through a safe state, not so much for
713 * data-structure synchronization.
714 *
715 * See the description of call_rcu() for more detailed information on
716 * memory ordering guarantees.
717 */
call_rcu_tasks_rude(struct rcu_head * rhp,rcu_callback_t func)718 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
719 {
720 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
721 }
722 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
723
724 /**
725 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
726 *
727 * Control will return to the caller some time after a rude rcu-tasks
728 * grace period has elapsed, in other words after all currently
729 * executing rcu-tasks read-side critical sections have elapsed. These
730 * read-side critical sections are delimited by calls to schedule(),
731 * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory,
732 * anyway) cond_resched().
733 *
734 * This is a very specialized primitive, intended only for a few uses in
735 * tracing and other situations requiring manipulation of function preambles
736 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not
737 * (yet) intended for heavy use from multiple CPUs.
738 *
739 * See the description of synchronize_rcu() for more detailed information
740 * on memory ordering guarantees.
741 */
synchronize_rcu_tasks_rude(void)742 void synchronize_rcu_tasks_rude(void)
743 {
744 synchronize_rcu_tasks_generic(&rcu_tasks_rude);
745 }
746 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
747
748 /**
749 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
750 *
751 * Although the current implementation is guaranteed to wait, it is not
752 * obligated to, for example, if there are no pending callbacks.
753 */
rcu_barrier_tasks_rude(void)754 void rcu_barrier_tasks_rude(void)
755 {
756 /* There is only one callback queue, so this is easy. ;-) */
757 synchronize_rcu_tasks_rude();
758 }
759 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
760
rcu_spawn_tasks_rude_kthread(void)761 static int __init rcu_spawn_tasks_rude_kthread(void)
762 {
763 rcu_tasks_rude.gp_sleep = HZ / 10;
764 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
765 return 0;
766 }
767
768 #if !defined(CONFIG_TINY_RCU)
show_rcu_tasks_rude_gp_kthread(void)769 void show_rcu_tasks_rude_gp_kthread(void)
770 {
771 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
772 }
773 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
774 #endif // !defined(CONFIG_TINY_RCU)
775 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
776
777 ////////////////////////////////////////////////////////////////////////
778 //
779 // Tracing variant of Tasks RCU. This variant is designed to be used
780 // to protect tracing hooks, including those of BPF. This variant
781 // therefore:
782 //
783 // 1. Has explicit read-side markers to allow finite grace periods
784 // in the face of in-kernel loops for PREEMPT=n builds.
785 //
786 // 2. Protects code in the idle loop, exception entry/exit, and
787 // CPU-hotplug code paths, similar to the capabilities of SRCU.
788 //
789 // 3. Avoids expensive read-side instruction, having overhead similar
790 // to that of Preemptible RCU.
791 //
792 // There are of course downsides. The grace-period code can send IPIs to
793 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
794 // It is necessary to scan the full tasklist, much as for Tasks RCU. There
795 // is a single callback queue guarded by a single lock, again, much as for
796 // Tasks RCU. If needed, these downsides can be at least partially remedied.
797 //
798 // Perhaps most important, this variant of RCU does not affect the vanilla
799 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace
800 // readers can operate from idle, offline, and exception entry/exit in no
801 // way allows rcu_preempt and rcu_sched readers to also do so.
802 //
803 // The implementation uses rcu_tasks_wait_gp(), which relies on function
804 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread()
805 // function sets these function pointers up so that rcu_tasks_wait_gp()
806 // invokes these functions in this order:
807 //
808 // rcu_tasks_trace_pregp_step():
809 // Initialize the count of readers and block CPU-hotplug operations.
810 // rcu_tasks_trace_pertask(), invoked on every non-idle task:
811 // Initialize per-task state and attempt to identify an immediate
812 // quiescent state for that task, or, failing that, attempt to
813 // set that task's .need_qs flag so that task's next outermost
814 // rcu_read_unlock_trace() will report the quiescent state (in which
815 // case the count of readers is incremented). If both attempts fail,
816 // the task is added to a "holdout" list. Note that IPIs are used
817 // to invoke trc_read_check_handler() in the context of running tasks
818 // in order to avoid ordering overhead on common-case shared-variable
819 // accessses.
820 // rcu_tasks_trace_postscan():
821 // Initialize state and attempt to identify an immediate quiescent
822 // state as above (but only for idle tasks), unblock CPU-hotplug
823 // operations, and wait for an RCU grace period to avoid races with
824 // tasks that are in the process of exiting.
825 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
826 // Scans the holdout list, attempting to identify a quiescent state
827 // for each task on the list. If there is a quiescent state, the
828 // corresponding task is removed from the holdout list.
829 // rcu_tasks_trace_postgp():
830 // Wait for the count of readers do drop to zero, reporting any stalls.
831 // Also execute full memory barriers to maintain ordering with code
832 // executing after the grace period.
833 //
834 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
835 //
836 // Pre-grace-period update-side code is ordered before the grace
837 // period via the ->cbs_lock and barriers in rcu_tasks_kthread().
838 // Pre-grace-period read-side code is ordered before the grace period by
839 // atomic_dec_and_test() of the count of readers (for IPIed readers) and by
840 // scheduler context-switch ordering (for locked-down non-running readers).
841
842 // The lockdep state must be outside of #ifdef to be useful.
843 #ifdef CONFIG_DEBUG_LOCK_ALLOC
844 static struct lock_class_key rcu_lock_trace_key;
845 struct lockdep_map rcu_trace_lock_map =
846 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
847 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
848 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
849
850 #ifdef CONFIG_TASKS_TRACE_RCU
851
852 static atomic_t trc_n_readers_need_end; // Number of waited-for readers.
853 static DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks.
854
855 // Record outstanding IPIs to each CPU. No point in sending two...
856 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
857
858 // The number of detections of task quiescent state relying on
859 // heavyweight readers executing explicit memory barriers.
860 static unsigned long n_heavy_reader_attempts;
861 static unsigned long n_heavy_reader_updates;
862 static unsigned long n_heavy_reader_ofl_updates;
863
864 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
865 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
866 "RCU Tasks Trace");
867
868 /*
869 * This irq_work handler allows rcu_read_unlock_trace() to be invoked
870 * while the scheduler locks are held.
871 */
rcu_read_unlock_iw(struct irq_work * iwp)872 static void rcu_read_unlock_iw(struct irq_work *iwp)
873 {
874 wake_up(&trc_wait);
875 }
876 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
877
878 /* If we are the last reader, wake up the grace-period kthread. */
rcu_read_unlock_trace_special(struct task_struct * t,int nesting)879 void rcu_read_unlock_trace_special(struct task_struct *t, int nesting)
880 {
881 int nq = READ_ONCE(t->trc_reader_special.b.need_qs);
882
883 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
884 t->trc_reader_special.b.need_mb)
885 smp_mb(); // Pairs with update-side barriers.
886 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
887 if (nq)
888 WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
889 WRITE_ONCE(t->trc_reader_nesting, nesting);
890 if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
891 irq_work_queue(&rcu_tasks_trace_iw);
892 }
893 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
894
895 /* Add a task to the holdout list, if it is not already on the list. */
trc_add_holdout(struct task_struct * t,struct list_head * bhp)896 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
897 {
898 if (list_empty(&t->trc_holdout_list)) {
899 get_task_struct(t);
900 list_add(&t->trc_holdout_list, bhp);
901 }
902 }
903
904 /* Remove a task from the holdout list, if it is in fact present. */
trc_del_holdout(struct task_struct * t)905 static void trc_del_holdout(struct task_struct *t)
906 {
907 if (!list_empty(&t->trc_holdout_list)) {
908 list_del_init(&t->trc_holdout_list);
909 put_task_struct(t);
910 }
911 }
912
913 /* IPI handler to check task state. */
trc_read_check_handler(void * t_in)914 static void trc_read_check_handler(void *t_in)
915 {
916 struct task_struct *t = current;
917 struct task_struct *texp = t_in;
918
919 // If the task is no longer running on this CPU, leave.
920 if (unlikely(texp != t)) {
921 goto reset_ipi; // Already on holdout list, so will check later.
922 }
923
924 // If the task is not in a read-side critical section, and
925 // if this is the last reader, awaken the grace-period kthread.
926 if (likely(!READ_ONCE(t->trc_reader_nesting))) {
927 WRITE_ONCE(t->trc_reader_checked, true);
928 goto reset_ipi;
929 }
930 // If we are racing with an rcu_read_unlock_trace(), try again later.
931 if (unlikely(READ_ONCE(t->trc_reader_nesting) < 0))
932 goto reset_ipi;
933 WRITE_ONCE(t->trc_reader_checked, true);
934
935 // Get here if the task is in a read-side critical section. Set
936 // its state so that it will awaken the grace-period kthread upon
937 // exit from that critical section.
938 atomic_inc(&trc_n_readers_need_end); // One more to wait on.
939 WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
940 WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
941
942 reset_ipi:
943 // Allow future IPIs to be sent on CPU and for task.
944 // Also order this IPI handler against any later manipulations of
945 // the intended task.
946 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
947 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
948 }
949
950 /* Callback function for scheduler to check locked-down task. */
trc_inspect_reader(struct task_struct * t,void * arg)951 static bool trc_inspect_reader(struct task_struct *t, void *arg)
952 {
953 int cpu = task_cpu(t);
954 int nesting;
955 bool ofl = cpu_is_offline(cpu);
956
957 if (task_curr(t)) {
958 WARN_ON_ONCE(ofl && !is_idle_task(t));
959
960 // If no chance of heavyweight readers, do it the hard way.
961 if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
962 return false;
963
964 // If heavyweight readers are enabled on the remote task,
965 // we can inspect its state despite its currently running.
966 // However, we cannot safely change its state.
967 n_heavy_reader_attempts++;
968 if (!ofl && // Check for "running" idle tasks on offline CPUs.
969 !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
970 return false; // No quiescent state, do it the hard way.
971 n_heavy_reader_updates++;
972 if (ofl)
973 n_heavy_reader_ofl_updates++;
974 nesting = 0;
975 } else {
976 // The task is not running, so C-language access is safe.
977 nesting = t->trc_reader_nesting;
978 }
979
980 // If not exiting a read-side critical section, mark as checked
981 // so that the grace-period kthread will remove it from the
982 // holdout list.
983 t->trc_reader_checked = nesting >= 0;
984 if (nesting <= 0)
985 return !nesting; // If in QS, done, otherwise try again later.
986
987 // The task is in a read-side critical section, so set up its
988 // state so that it will awaken the grace-period kthread upon exit
989 // from that critical section.
990 atomic_inc(&trc_n_readers_need_end); // One more to wait on.
991 WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
992 WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
993 return true;
994 }
995
996 /* Attempt to extract the state for the specified task. */
trc_wait_for_one_reader(struct task_struct * t,struct list_head * bhp)997 static void trc_wait_for_one_reader(struct task_struct *t,
998 struct list_head *bhp)
999 {
1000 int cpu;
1001
1002 // If a previous IPI is still in flight, let it complete.
1003 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1004 return;
1005
1006 // The current task had better be in a quiescent state.
1007 if (t == current) {
1008 t->trc_reader_checked = true;
1009 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1010 return;
1011 }
1012
1013 // Attempt to nail down the task for inspection.
1014 get_task_struct(t);
1015 if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) {
1016 put_task_struct(t);
1017 return;
1018 }
1019 put_task_struct(t);
1020
1021 // If this task is not yet on the holdout list, then we are in
1022 // an RCU read-side critical section. Otherwise, the invocation of
1023 // rcu_add_holdout() that added it to the list did the necessary
1024 // get_task_struct(). Either way, the task cannot be freed out
1025 // from under this code.
1026
1027 // If currently running, send an IPI, either way, add to list.
1028 trc_add_holdout(t, bhp);
1029 if (task_curr(t) &&
1030 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1031 // The task is currently running, so try IPIing it.
1032 cpu = task_cpu(t);
1033
1034 // If there is already an IPI outstanding, let it happen.
1035 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1036 return;
1037
1038 per_cpu(trc_ipi_to_cpu, cpu) = true;
1039 t->trc_ipi_to_cpu = cpu;
1040 rcu_tasks_trace.n_ipis++;
1041 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1042 // Just in case there is some other reason for
1043 // failure than the target CPU being offline.
1044 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n",
1045 __func__, cpu);
1046 rcu_tasks_trace.n_ipis_fails++;
1047 per_cpu(trc_ipi_to_cpu, cpu) = false;
1048 t->trc_ipi_to_cpu = -1;
1049 }
1050 }
1051 }
1052
1053 /* Initialize for a new RCU-tasks-trace grace period. */
rcu_tasks_trace_pregp_step(void)1054 static void rcu_tasks_trace_pregp_step(void)
1055 {
1056 int cpu;
1057
1058 // Allow for fast-acting IPIs.
1059 atomic_set(&trc_n_readers_need_end, 1);
1060
1061 // There shouldn't be any old IPIs, but...
1062 for_each_possible_cpu(cpu)
1063 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1064
1065 // Disable CPU hotplug across the tasklist scan.
1066 // This also waits for all readers in CPU-hotplug code paths.
1067 cpus_read_lock();
1068 }
1069
1070 /* Do first-round processing for the specified task. */
rcu_tasks_trace_pertask(struct task_struct * t,struct list_head * hop)1071 static void rcu_tasks_trace_pertask(struct task_struct *t,
1072 struct list_head *hop)
1073 {
1074 // During early boot when there is only the one boot CPU, there
1075 // is no idle task for the other CPUs. Just return.
1076 if (unlikely(t == NULL))
1077 return;
1078
1079 WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
1080 WRITE_ONCE(t->trc_reader_checked, false);
1081 t->trc_ipi_to_cpu = -1;
1082 trc_wait_for_one_reader(t, hop);
1083 }
1084
1085 /*
1086 * Do intermediate processing between task and holdout scans and
1087 * pick up the idle tasks.
1088 */
rcu_tasks_trace_postscan(struct list_head * hop)1089 static void rcu_tasks_trace_postscan(struct list_head *hop)
1090 {
1091 int cpu;
1092
1093 for_each_possible_cpu(cpu)
1094 rcu_tasks_trace_pertask(idle_task(cpu), hop);
1095
1096 // Re-enable CPU hotplug now that the tasklist scan has completed.
1097 cpus_read_unlock();
1098
1099 // Wait for late-stage exiting tasks to finish exiting.
1100 // These might have passed the call to exit_tasks_rcu_finish().
1101 synchronize_rcu();
1102 // Any tasks that exit after this point will set ->trc_reader_checked.
1103 }
1104
1105 /* Show the state of a task stalling the current RCU tasks trace GP. */
show_stalled_task_trace(struct task_struct * t,bool * firstreport)1106 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1107 {
1108 int cpu;
1109
1110 if (*firstreport) {
1111 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1112 *firstreport = false;
1113 }
1114 // FIXME: This should attempt to use try_invoke_on_nonrunning_task().
1115 cpu = task_cpu(t);
1116 pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
1117 t->pid,
1118 ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0],
1119 ".i"[is_idle_task(t)],
1120 ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)],
1121 READ_ONCE(t->trc_reader_nesting),
1122 " N"[!!READ_ONCE(t->trc_reader_special.b.need_qs)],
1123 cpu);
1124 sched_show_task(t);
1125 }
1126
1127 /* List stalled IPIs for RCU tasks trace. */
show_stalled_ipi_trace(void)1128 static void show_stalled_ipi_trace(void)
1129 {
1130 int cpu;
1131
1132 for_each_possible_cpu(cpu)
1133 if (per_cpu(trc_ipi_to_cpu, cpu))
1134 pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1135 }
1136
1137 /* Do one scan of the holdout list. */
check_all_holdout_tasks_trace(struct list_head * hop,bool needreport,bool * firstreport)1138 static void check_all_holdout_tasks_trace(struct list_head *hop,
1139 bool needreport, bool *firstreport)
1140 {
1141 struct task_struct *g, *t;
1142
1143 // Disable CPU hotplug across the holdout list scan.
1144 cpus_read_lock();
1145
1146 list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1147 // If safe and needed, try to check the current task.
1148 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1149 !READ_ONCE(t->trc_reader_checked))
1150 trc_wait_for_one_reader(t, hop);
1151
1152 // If check succeeded, remove this task from the list.
1153 if (READ_ONCE(t->trc_reader_checked))
1154 trc_del_holdout(t);
1155 else if (needreport)
1156 show_stalled_task_trace(t, firstreport);
1157 }
1158
1159 // Re-enable CPU hotplug now that the holdout list scan has completed.
1160 cpus_read_unlock();
1161
1162 if (needreport) {
1163 if (firstreport)
1164 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1165 show_stalled_ipi_trace();
1166 }
1167 }
1168
rcu_tasks_trace_empty_fn(void * unused)1169 static void rcu_tasks_trace_empty_fn(void *unused)
1170 {
1171 }
1172
1173 /* Wait for grace period to complete and provide ordering. */
rcu_tasks_trace_postgp(struct rcu_tasks * rtp)1174 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1175 {
1176 int cpu;
1177 bool firstreport;
1178 struct task_struct *g, *t;
1179 LIST_HEAD(holdouts);
1180 long ret;
1181
1182 // Wait for any lingering IPI handlers to complete. Note that
1183 // if a CPU has gone offline or transitioned to userspace in the
1184 // meantime, all IPI handlers should have been drained beforehand.
1185 // Yes, this assumes that CPUs process IPIs in order. If that ever
1186 // changes, there will need to be a recheck and/or timed wait.
1187 for_each_online_cpu(cpu)
1188 if (smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))
1189 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1190
1191 // Remove the safety count.
1192 smp_mb__before_atomic(); // Order vs. earlier atomics
1193 atomic_dec(&trc_n_readers_need_end);
1194 smp_mb__after_atomic(); // Order vs. later atomics
1195
1196 // Wait for readers.
1197 set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
1198 for (;;) {
1199 ret = wait_event_idle_exclusive_timeout(
1200 trc_wait,
1201 atomic_read(&trc_n_readers_need_end) == 0,
1202 READ_ONCE(rcu_task_stall_timeout));
1203 if (ret)
1204 break; // Count reached zero.
1205 // Stall warning time, so make a list of the offenders.
1206 rcu_read_lock();
1207 for_each_process_thread(g, t)
1208 if (READ_ONCE(t->trc_reader_special.b.need_qs))
1209 trc_add_holdout(t, &holdouts);
1210 rcu_read_unlock();
1211 firstreport = true;
1212 list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) {
1213 if (READ_ONCE(t->trc_reader_special.b.need_qs))
1214 show_stalled_task_trace(t, &firstreport);
1215 trc_del_holdout(t); // Release task_struct reference.
1216 }
1217 if (firstreport)
1218 pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
1219 show_stalled_ipi_trace();
1220 pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
1221 }
1222 smp_mb(); // Caller's code must be ordered after wakeup.
1223 // Pairs with pretty much every ordering primitive.
1224 }
1225
1226 /* Report any needed quiescent state for this exiting task. */
exit_tasks_rcu_finish_trace(struct task_struct * t)1227 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1228 {
1229 WRITE_ONCE(t->trc_reader_checked, true);
1230 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1231 WRITE_ONCE(t->trc_reader_nesting, 0);
1232 if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
1233 rcu_read_unlock_trace_special(t, 0);
1234 }
1235
1236 /**
1237 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1238 * @rhp: structure to be used for queueing the RCU updates.
1239 * @func: actual callback function to be invoked after the grace period
1240 *
1241 * The callback function will be invoked some time after a full grace
1242 * period elapses, in other words after all currently executing RCU
1243 * read-side critical sections have completed. call_rcu_tasks_trace()
1244 * assumes that the read-side critical sections end at context switch,
1245 * cond_resched_rcu_qs(), or transition to usermode execution. As such,
1246 * there are no read-side primitives analogous to rcu_read_lock() and
1247 * rcu_read_unlock() because this primitive is intended to determine
1248 * that all tasks have passed through a safe state, not so much for
1249 * data-structure synchronization.
1250 *
1251 * See the description of call_rcu() for more detailed information on
1252 * memory ordering guarantees.
1253 */
call_rcu_tasks_trace(struct rcu_head * rhp,rcu_callback_t func)1254 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1255 {
1256 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1257 }
1258 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1259
1260 /**
1261 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1262 *
1263 * Control will return to the caller some time after a trace rcu-tasks
1264 * grace period has elapsed, in other words after all currently executing
1265 * rcu-tasks read-side critical sections have elapsed. These read-side
1266 * critical sections are delimited by calls to rcu_read_lock_trace()
1267 * and rcu_read_unlock_trace().
1268 *
1269 * This is a very specialized primitive, intended only for a few uses in
1270 * tracing and other situations requiring manipulation of function preambles
1271 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not
1272 * (yet) intended for heavy use from multiple CPUs.
1273 *
1274 * See the description of synchronize_rcu() for more detailed information
1275 * on memory ordering guarantees.
1276 */
synchronize_rcu_tasks_trace(void)1277 void synchronize_rcu_tasks_trace(void)
1278 {
1279 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1280 synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1281 }
1282 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1283
1284 /**
1285 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1286 *
1287 * Although the current implementation is guaranteed to wait, it is not
1288 * obligated to, for example, if there are no pending callbacks.
1289 */
rcu_barrier_tasks_trace(void)1290 void rcu_barrier_tasks_trace(void)
1291 {
1292 /* There is only one callback queue, so this is easy. ;-) */
1293 synchronize_rcu_tasks_trace();
1294 }
1295 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1296
rcu_spawn_tasks_trace_kthread(void)1297 static int __init rcu_spawn_tasks_trace_kthread(void)
1298 {
1299 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1300 rcu_tasks_trace.gp_sleep = HZ / 10;
1301 rcu_tasks_trace.init_fract = HZ / 10;
1302 } else {
1303 rcu_tasks_trace.gp_sleep = HZ / 200;
1304 if (rcu_tasks_trace.gp_sleep <= 0)
1305 rcu_tasks_trace.gp_sleep = 1;
1306 rcu_tasks_trace.init_fract = HZ / 200;
1307 if (rcu_tasks_trace.init_fract <= 0)
1308 rcu_tasks_trace.init_fract = 1;
1309 }
1310 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1311 rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
1312 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1313 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1314 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1315 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1316 return 0;
1317 }
1318
1319 #if !defined(CONFIG_TINY_RCU)
show_rcu_tasks_trace_gp_kthread(void)1320 void show_rcu_tasks_trace_gp_kthread(void)
1321 {
1322 char buf[64];
1323
1324 sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
1325 data_race(n_heavy_reader_ofl_updates),
1326 data_race(n_heavy_reader_updates),
1327 data_race(n_heavy_reader_attempts));
1328 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1329 }
1330 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1331 #endif // !defined(CONFIG_TINY_RCU)
1332
1333 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
exit_tasks_rcu_finish_trace(struct task_struct * t)1334 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1335 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1336
1337 #ifndef CONFIG_TINY_RCU
show_rcu_tasks_gp_kthreads(void)1338 void show_rcu_tasks_gp_kthreads(void)
1339 {
1340 show_rcu_tasks_classic_gp_kthread();
1341 show_rcu_tasks_rude_gp_kthread();
1342 show_rcu_tasks_trace_gp_kthread();
1343 }
1344 #endif /* #ifndef CONFIG_TINY_RCU */
1345
1346 #ifdef CONFIG_PROVE_RCU
1347 struct rcu_tasks_test_desc {
1348 struct rcu_head rh;
1349 const char *name;
1350 bool notrun;
1351 };
1352
1353 static struct rcu_tasks_test_desc tests[] = {
1354 {
1355 .name = "call_rcu_tasks()",
1356 /* If not defined, the test is skipped. */
1357 .notrun = !IS_ENABLED(CONFIG_TASKS_RCU),
1358 },
1359 {
1360 .name = "call_rcu_tasks_rude()",
1361 /* If not defined, the test is skipped. */
1362 .notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1363 },
1364 {
1365 .name = "call_rcu_tasks_trace()",
1366 /* If not defined, the test is skipped. */
1367 .notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1368 }
1369 };
1370
test_rcu_tasks_callback(struct rcu_head * rhp)1371 static void test_rcu_tasks_callback(struct rcu_head *rhp)
1372 {
1373 struct rcu_tasks_test_desc *rttd =
1374 container_of(rhp, struct rcu_tasks_test_desc, rh);
1375
1376 pr_info("Callback from %s invoked.\n", rttd->name);
1377
1378 rttd->notrun = true;
1379 }
1380
rcu_tasks_initiate_self_tests(void)1381 static void rcu_tasks_initiate_self_tests(void)
1382 {
1383 pr_info("Running RCU-tasks wait API self tests\n");
1384 #ifdef CONFIG_TASKS_RCU
1385 synchronize_rcu_tasks();
1386 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
1387 #endif
1388
1389 #ifdef CONFIG_TASKS_RUDE_RCU
1390 synchronize_rcu_tasks_rude();
1391 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
1392 #endif
1393
1394 #ifdef CONFIG_TASKS_TRACE_RCU
1395 synchronize_rcu_tasks_trace();
1396 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
1397 #endif
1398 }
1399
rcu_tasks_verify_self_tests(void)1400 static int rcu_tasks_verify_self_tests(void)
1401 {
1402 int ret = 0;
1403 int i;
1404
1405 for (i = 0; i < ARRAY_SIZE(tests); i++) {
1406 if (!tests[i].notrun) { // still hanging.
1407 pr_err("%s has been failed.\n", tests[i].name);
1408 ret = -1;
1409 }
1410 }
1411
1412 if (ret)
1413 WARN_ON(1);
1414
1415 return ret;
1416 }
1417 late_initcall(rcu_tasks_verify_self_tests);
1418 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_tasks_initiate_self_tests(void)1419 static void rcu_tasks_initiate_self_tests(void) { }
1420 #endif /* #else #ifdef CONFIG_PROVE_RCU */
1421
rcu_init_tasks_generic(void)1422 void __init rcu_init_tasks_generic(void)
1423 {
1424 #ifdef CONFIG_TASKS_RCU
1425 rcu_spawn_tasks_kthread();
1426 #endif
1427
1428 #ifdef CONFIG_TASKS_RUDE_RCU
1429 rcu_spawn_tasks_rude_kthread();
1430 #endif
1431
1432 #ifdef CONFIG_TASKS_TRACE_RCU
1433 rcu_spawn_tasks_trace_kthread();
1434 #endif
1435
1436 // Run the self-tests.
1437 rcu_tasks_initiate_self_tests();
1438 }
1439
1440 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
rcu_tasks_bootup_oddness(void)1441 static inline void rcu_tasks_bootup_oddness(void) {}
1442 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
1443