1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4 *
5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 */
7
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23
24 #include "cec-priv.h"
25
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27 struct cec_msg *msg,
28 unsigned int la_idx);
29
30 /*
31 * 400 ms is the time it takes for one 16 byte message to be
32 * transferred and 5 is the maximum number of retries. Add
33 * another 100 ms as a margin. So if the transmit doesn't
34 * finish before that time something is really wrong and we
35 * have to time out.
36 *
37 * This is a sign that something it really wrong and a warning
38 * will be issued.
39 */
40 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
41
42 #define call_op(adap, op, arg...) \
43 (adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
44
45 #define call_void_op(adap, op, arg...) \
46 do { \
47 if (adap->ops->op) \
48 adap->ops->op(adap, ## arg); \
49 } while (0)
50
cec_log_addr2idx(const struct cec_adapter * adap,u8 log_addr)51 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
52 {
53 int i;
54
55 for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
56 if (adap->log_addrs.log_addr[i] == log_addr)
57 return i;
58 return -1;
59 }
60
cec_log_addr2dev(const struct cec_adapter * adap,u8 log_addr)61 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
62 {
63 int i = cec_log_addr2idx(adap, log_addr);
64
65 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
66 }
67
cec_get_edid_phys_addr(const u8 * edid,unsigned int size,unsigned int * offset)68 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
69 unsigned int *offset)
70 {
71 unsigned int loc = cec_get_edid_spa_location(edid, size);
72
73 if (offset)
74 *offset = loc;
75 if (loc == 0)
76 return CEC_PHYS_ADDR_INVALID;
77 return (edid[loc] << 8) | edid[loc + 1];
78 }
79 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
80
cec_fill_conn_info_from_drm(struct cec_connector_info * conn_info,const struct drm_connector * connector)81 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
82 const struct drm_connector *connector)
83 {
84 memset(conn_info, 0, sizeof(*conn_info));
85 conn_info->type = CEC_CONNECTOR_TYPE_DRM;
86 conn_info->drm.card_no = connector->dev->primary->index;
87 conn_info->drm.connector_id = connector->base.id;
88 }
89 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
90
91 /*
92 * Queue a new event for this filehandle. If ts == 0, then set it
93 * to the current time.
94 *
95 * We keep a queue of at most max_event events where max_event differs
96 * per event. If the queue becomes full, then drop the oldest event and
97 * keep track of how many events we've dropped.
98 */
cec_queue_event_fh(struct cec_fh * fh,const struct cec_event * new_ev,u64 ts)99 void cec_queue_event_fh(struct cec_fh *fh,
100 const struct cec_event *new_ev, u64 ts)
101 {
102 static const u16 max_events[CEC_NUM_EVENTS] = {
103 1, 1, 800, 800, 8, 8, 8, 8
104 };
105 struct cec_event_entry *entry;
106 unsigned int ev_idx = new_ev->event - 1;
107
108 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
109 return;
110
111 if (ts == 0)
112 ts = ktime_get_ns();
113
114 mutex_lock(&fh->lock);
115 if (ev_idx < CEC_NUM_CORE_EVENTS)
116 entry = &fh->core_events[ev_idx];
117 else
118 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
119 if (entry) {
120 if (new_ev->event == CEC_EVENT_LOST_MSGS &&
121 fh->queued_events[ev_idx]) {
122 entry->ev.lost_msgs.lost_msgs +=
123 new_ev->lost_msgs.lost_msgs;
124 goto unlock;
125 }
126 entry->ev = *new_ev;
127 entry->ev.ts = ts;
128
129 if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
130 /* Add new msg at the end of the queue */
131 list_add_tail(&entry->list, &fh->events[ev_idx]);
132 fh->queued_events[ev_idx]++;
133 fh->total_queued_events++;
134 goto unlock;
135 }
136
137 if (ev_idx >= CEC_NUM_CORE_EVENTS) {
138 list_add_tail(&entry->list, &fh->events[ev_idx]);
139 /* drop the oldest event */
140 entry = list_first_entry(&fh->events[ev_idx],
141 struct cec_event_entry, list);
142 list_del(&entry->list);
143 kfree(entry);
144 }
145 }
146 /* Mark that events were lost */
147 entry = list_first_entry_or_null(&fh->events[ev_idx],
148 struct cec_event_entry, list);
149 if (entry)
150 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
151
152 unlock:
153 mutex_unlock(&fh->lock);
154 wake_up_interruptible(&fh->wait);
155 }
156
157 /* Queue a new event for all open filehandles. */
cec_queue_event(struct cec_adapter * adap,const struct cec_event * ev)158 static void cec_queue_event(struct cec_adapter *adap,
159 const struct cec_event *ev)
160 {
161 u64 ts = ktime_get_ns();
162 struct cec_fh *fh;
163
164 mutex_lock(&adap->devnode.lock_fhs);
165 list_for_each_entry(fh, &adap->devnode.fhs, list)
166 cec_queue_event_fh(fh, ev, ts);
167 mutex_unlock(&adap->devnode.lock_fhs);
168 }
169
170 /* Notify userspace that the CEC pin changed state at the given time. */
cec_queue_pin_cec_event(struct cec_adapter * adap,bool is_high,bool dropped_events,ktime_t ts)171 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
172 bool dropped_events, ktime_t ts)
173 {
174 struct cec_event ev = {
175 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
176 CEC_EVENT_PIN_CEC_LOW,
177 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
178 };
179 struct cec_fh *fh;
180
181 mutex_lock(&adap->devnode.lock_fhs);
182 list_for_each_entry(fh, &adap->devnode.fhs, list) {
183 if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
184 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
185 }
186 mutex_unlock(&adap->devnode.lock_fhs);
187 }
188 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
189
190 /* Notify userspace that the HPD pin changed state at the given time. */
cec_queue_pin_hpd_event(struct cec_adapter * adap,bool is_high,ktime_t ts)191 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
192 {
193 struct cec_event ev = {
194 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
195 CEC_EVENT_PIN_HPD_LOW,
196 };
197 struct cec_fh *fh;
198
199 mutex_lock(&adap->devnode.lock_fhs);
200 list_for_each_entry(fh, &adap->devnode.fhs, list)
201 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
202 mutex_unlock(&adap->devnode.lock_fhs);
203 }
204 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
205
206 /* Notify userspace that the 5V pin changed state at the given time. */
cec_queue_pin_5v_event(struct cec_adapter * adap,bool is_high,ktime_t ts)207 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
208 {
209 struct cec_event ev = {
210 .event = is_high ? CEC_EVENT_PIN_5V_HIGH :
211 CEC_EVENT_PIN_5V_LOW,
212 };
213 struct cec_fh *fh;
214
215 mutex_lock(&adap->devnode.lock_fhs);
216 list_for_each_entry(fh, &adap->devnode.fhs, list)
217 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
218 mutex_unlock(&adap->devnode.lock_fhs);
219 }
220 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
221
222 /*
223 * Queue a new message for this filehandle.
224 *
225 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
226 * queue becomes full, then drop the oldest message and keep track
227 * of how many messages we've dropped.
228 */
cec_queue_msg_fh(struct cec_fh * fh,const struct cec_msg * msg)229 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
230 {
231 static const struct cec_event ev_lost_msgs = {
232 .event = CEC_EVENT_LOST_MSGS,
233 .flags = 0,
234 {
235 .lost_msgs = { 1 },
236 },
237 };
238 struct cec_msg_entry *entry;
239
240 mutex_lock(&fh->lock);
241 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
242 if (entry) {
243 entry->msg = *msg;
244 /* Add new msg at the end of the queue */
245 list_add_tail(&entry->list, &fh->msgs);
246
247 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
248 /* All is fine if there is enough room */
249 fh->queued_msgs++;
250 mutex_unlock(&fh->lock);
251 wake_up_interruptible(&fh->wait);
252 return;
253 }
254
255 /*
256 * if the message queue is full, then drop the oldest one and
257 * send a lost message event.
258 */
259 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
260 list_del(&entry->list);
261 kfree(entry);
262 }
263 mutex_unlock(&fh->lock);
264
265 /*
266 * We lost a message, either because kmalloc failed or the queue
267 * was full.
268 */
269 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
270 }
271
272 /*
273 * Queue the message for those filehandles that are in monitor mode.
274 * If valid_la is true (this message is for us or was sent by us),
275 * then pass it on to any monitoring filehandle. If this message
276 * isn't for us or from us, then only give it to filehandles that
277 * are in MONITOR_ALL mode.
278 *
279 * This can only happen if the CEC_CAP_MONITOR_ALL capability is
280 * set and the CEC adapter was placed in 'monitor all' mode.
281 */
cec_queue_msg_monitor(struct cec_adapter * adap,const struct cec_msg * msg,bool valid_la)282 static void cec_queue_msg_monitor(struct cec_adapter *adap,
283 const struct cec_msg *msg,
284 bool valid_la)
285 {
286 struct cec_fh *fh;
287 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
288 CEC_MODE_MONITOR_ALL;
289
290 mutex_lock(&adap->devnode.lock_fhs);
291 list_for_each_entry(fh, &adap->devnode.fhs, list) {
292 if (fh->mode_follower >= monitor_mode)
293 cec_queue_msg_fh(fh, msg);
294 }
295 mutex_unlock(&adap->devnode.lock_fhs);
296 }
297
298 /*
299 * Queue the message for follower filehandles.
300 */
cec_queue_msg_followers(struct cec_adapter * adap,const struct cec_msg * msg)301 static void cec_queue_msg_followers(struct cec_adapter *adap,
302 const struct cec_msg *msg)
303 {
304 struct cec_fh *fh;
305
306 mutex_lock(&adap->devnode.lock_fhs);
307 list_for_each_entry(fh, &adap->devnode.fhs, list) {
308 if (fh->mode_follower == CEC_MODE_FOLLOWER)
309 cec_queue_msg_fh(fh, msg);
310 }
311 mutex_unlock(&adap->devnode.lock_fhs);
312 }
313
314 /* Notify userspace of an adapter state change. */
cec_post_state_event(struct cec_adapter * adap)315 static void cec_post_state_event(struct cec_adapter *adap)
316 {
317 struct cec_event ev = {
318 .event = CEC_EVENT_STATE_CHANGE,
319 };
320
321 ev.state_change.phys_addr = adap->phys_addr;
322 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
323 ev.state_change.have_conn_info =
324 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR;
325 cec_queue_event(adap, &ev);
326 }
327
328 /*
329 * A CEC transmit (and a possible wait for reply) completed.
330 * If this was in blocking mode, then complete it, otherwise
331 * queue the message for userspace to dequeue later.
332 *
333 * This function is called with adap->lock held.
334 */
cec_data_completed(struct cec_data * data)335 static void cec_data_completed(struct cec_data *data)
336 {
337 /*
338 * Delete this transmit from the filehandle's xfer_list since
339 * we're done with it.
340 *
341 * Note that if the filehandle is closed before this transmit
342 * finished, then the release() function will set data->fh to NULL.
343 * Without that we would be referring to a closed filehandle.
344 */
345 if (data->fh)
346 list_del(&data->xfer_list);
347
348 if (data->blocking) {
349 /*
350 * Someone is blocking so mark the message as completed
351 * and call complete.
352 */
353 data->completed = true;
354 complete(&data->c);
355 } else {
356 /*
357 * No blocking, so just queue the message if needed and
358 * free the memory.
359 */
360 if (data->fh)
361 cec_queue_msg_fh(data->fh, &data->msg);
362 kfree(data);
363 }
364 }
365
366 /*
367 * A pending CEC transmit needs to be cancelled, either because the CEC
368 * adapter is disabled or the transmit takes an impossibly long time to
369 * finish.
370 *
371 * This function is called with adap->lock held.
372 */
cec_data_cancel(struct cec_data * data,u8 tx_status)373 static void cec_data_cancel(struct cec_data *data, u8 tx_status)
374 {
375 /*
376 * It's either the current transmit, or it is a pending
377 * transmit. Take the appropriate action to clear it.
378 */
379 if (data->adap->transmitting == data) {
380 data->adap->transmitting = NULL;
381 } else {
382 list_del_init(&data->list);
383 if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
384 if (!WARN_ON(!data->adap->transmit_queue_sz))
385 data->adap->transmit_queue_sz--;
386 }
387
388 if (data->msg.tx_status & CEC_TX_STATUS_OK) {
389 data->msg.rx_ts = ktime_get_ns();
390 data->msg.rx_status = CEC_RX_STATUS_ABORTED;
391 } else {
392 data->msg.tx_ts = ktime_get_ns();
393 data->msg.tx_status |= tx_status |
394 CEC_TX_STATUS_MAX_RETRIES;
395 data->msg.tx_error_cnt++;
396 data->attempts = 0;
397 }
398
399 /* Queue transmitted message for monitoring purposes */
400 cec_queue_msg_monitor(data->adap, &data->msg, 1);
401
402 cec_data_completed(data);
403 }
404
405 /*
406 * Flush all pending transmits and cancel any pending timeout work.
407 *
408 * This function is called with adap->lock held.
409 */
cec_flush(struct cec_adapter * adap)410 static void cec_flush(struct cec_adapter *adap)
411 {
412 struct cec_data *data, *n;
413
414 /*
415 * If the adapter is disabled, or we're asked to stop,
416 * then cancel any pending transmits.
417 */
418 while (!list_empty(&adap->transmit_queue)) {
419 data = list_first_entry(&adap->transmit_queue,
420 struct cec_data, list);
421 cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
422 }
423 if (adap->transmitting)
424 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED);
425
426 /* Cancel the pending timeout work. */
427 list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
428 if (cancel_delayed_work(&data->work))
429 cec_data_cancel(data, CEC_TX_STATUS_OK);
430 /*
431 * If cancel_delayed_work returned false, then
432 * the cec_wait_timeout function is running,
433 * which will call cec_data_completed. So no
434 * need to do anything special in that case.
435 */
436 }
437 /*
438 * If something went wrong and this counter isn't what it should
439 * be, then this will reset it back to 0. Warn if it is not 0,
440 * since it indicates a bug, either in this framework or in a
441 * CEC driver.
442 */
443 if (WARN_ON(adap->transmit_queue_sz))
444 adap->transmit_queue_sz = 0;
445 }
446
447 /*
448 * Main CEC state machine
449 *
450 * Wait until the thread should be stopped, or we are not transmitting and
451 * a new transmit message is queued up, in which case we start transmitting
452 * that message. When the adapter finished transmitting the message it will
453 * call cec_transmit_done().
454 *
455 * If the adapter is disabled, then remove all queued messages instead.
456 *
457 * If the current transmit times out, then cancel that transmit.
458 */
cec_thread_func(void * _adap)459 int cec_thread_func(void *_adap)
460 {
461 struct cec_adapter *adap = _adap;
462
463 for (;;) {
464 unsigned int signal_free_time;
465 struct cec_data *data;
466 bool timeout = false;
467 u8 attempts;
468
469 if (adap->transmit_in_progress) {
470 int err;
471
472 /*
473 * We are transmitting a message, so add a timeout
474 * to prevent the state machine to get stuck waiting
475 * for this message to finalize and add a check to
476 * see if the adapter is disabled in which case the
477 * transmit should be canceled.
478 */
479 err = wait_event_interruptible_timeout(adap->kthread_waitq,
480 (adap->needs_hpd &&
481 (!adap->is_configured && !adap->is_configuring)) ||
482 kthread_should_stop() ||
483 (!adap->transmit_in_progress &&
484 !list_empty(&adap->transmit_queue)),
485 msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
486 timeout = err == 0;
487 } else {
488 /* Otherwise we just wait for something to happen. */
489 wait_event_interruptible(adap->kthread_waitq,
490 kthread_should_stop() ||
491 (!adap->transmit_in_progress &&
492 !list_empty(&adap->transmit_queue)));
493 }
494
495 mutex_lock(&adap->lock);
496
497 if ((adap->needs_hpd &&
498 (!adap->is_configured && !adap->is_configuring)) ||
499 kthread_should_stop()) {
500 cec_flush(adap);
501 goto unlock;
502 }
503
504 if (adap->transmit_in_progress && timeout) {
505 /*
506 * If we timeout, then log that. Normally this does
507 * not happen and it is an indication of a faulty CEC
508 * adapter driver, or the CEC bus is in some weird
509 * state. On rare occasions it can happen if there is
510 * so much traffic on the bus that the adapter was
511 * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
512 */
513 if (adap->transmitting) {
514 pr_warn("cec-%s: message %*ph timed out\n", adap->name,
515 adap->transmitting->msg.len,
516 adap->transmitting->msg.msg);
517 /* Just give up on this. */
518 cec_data_cancel(adap->transmitting,
519 CEC_TX_STATUS_TIMEOUT);
520 } else {
521 pr_warn("cec-%s: transmit timed out\n", adap->name);
522 }
523 adap->transmit_in_progress = false;
524 adap->tx_timeouts++;
525 goto unlock;
526 }
527
528 /*
529 * If we are still transmitting, or there is nothing new to
530 * transmit, then just continue waiting.
531 */
532 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
533 goto unlock;
534
535 /* Get a new message to transmit */
536 data = list_first_entry(&adap->transmit_queue,
537 struct cec_data, list);
538 list_del_init(&data->list);
539 if (!WARN_ON(!data->adap->transmit_queue_sz))
540 adap->transmit_queue_sz--;
541
542 /* Make this the current transmitting message */
543 adap->transmitting = data;
544
545 /*
546 * Suggested number of attempts as per the CEC 2.0 spec:
547 * 4 attempts is the default, except for 'secondary poll
548 * messages', i.e. poll messages not sent during the adapter
549 * configuration phase when it allocates logical addresses.
550 */
551 if (data->msg.len == 1 && adap->is_configured)
552 attempts = 2;
553 else
554 attempts = 4;
555
556 /* Set the suggested signal free time */
557 if (data->attempts) {
558 /* should be >= 3 data bit periods for a retry */
559 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
560 } else if (adap->last_initiator !=
561 cec_msg_initiator(&data->msg)) {
562 /* should be >= 5 data bit periods for new initiator */
563 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
564 adap->last_initiator = cec_msg_initiator(&data->msg);
565 } else {
566 /*
567 * should be >= 7 data bit periods for sending another
568 * frame immediately after another.
569 */
570 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
571 }
572 if (data->attempts == 0)
573 data->attempts = attempts;
574
575 /* Tell the adapter to transmit, cancel on error */
576 if (adap->ops->adap_transmit(adap, data->attempts,
577 signal_free_time, &data->msg))
578 cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
579 else
580 adap->transmit_in_progress = true;
581
582 unlock:
583 mutex_unlock(&adap->lock);
584
585 if (kthread_should_stop())
586 break;
587 }
588 return 0;
589 }
590
591 /*
592 * Called by the CEC adapter if a transmit finished.
593 */
cec_transmit_done_ts(struct cec_adapter * adap,u8 status,u8 arb_lost_cnt,u8 nack_cnt,u8 low_drive_cnt,u8 error_cnt,ktime_t ts)594 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
595 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
596 u8 error_cnt, ktime_t ts)
597 {
598 struct cec_data *data;
599 struct cec_msg *msg;
600 unsigned int attempts_made = arb_lost_cnt + nack_cnt +
601 low_drive_cnt + error_cnt;
602
603 dprintk(2, "%s: status 0x%02x\n", __func__, status);
604 if (attempts_made < 1)
605 attempts_made = 1;
606
607 mutex_lock(&adap->lock);
608 data = adap->transmitting;
609 if (!data) {
610 /*
611 * This might happen if a transmit was issued and the cable is
612 * unplugged while the transmit is ongoing. Ignore this
613 * transmit in that case.
614 */
615 if (!adap->transmit_in_progress)
616 dprintk(1, "%s was called without an ongoing transmit!\n",
617 __func__);
618 adap->transmit_in_progress = false;
619 goto wake_thread;
620 }
621 adap->transmit_in_progress = false;
622
623 msg = &data->msg;
624
625 /* Drivers must fill in the status! */
626 WARN_ON(status == 0);
627 msg->tx_ts = ktime_to_ns(ts);
628 msg->tx_status |= status;
629 msg->tx_arb_lost_cnt += arb_lost_cnt;
630 msg->tx_nack_cnt += nack_cnt;
631 msg->tx_low_drive_cnt += low_drive_cnt;
632 msg->tx_error_cnt += error_cnt;
633
634 /* Mark that we're done with this transmit */
635 adap->transmitting = NULL;
636
637 /*
638 * If there are still retry attempts left and there was an error and
639 * the hardware didn't signal that it retried itself (by setting
640 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
641 */
642 if (data->attempts > attempts_made &&
643 !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
644 /* Retry this message */
645 data->attempts -= attempts_made;
646 if (msg->timeout)
647 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
648 msg->len, msg->msg, data->attempts, msg->reply);
649 else
650 dprintk(2, "retransmit: %*ph (attempts: %d)\n",
651 msg->len, msg->msg, data->attempts);
652 /* Add the message in front of the transmit queue */
653 list_add(&data->list, &adap->transmit_queue);
654 adap->transmit_queue_sz++;
655 goto wake_thread;
656 }
657
658 data->attempts = 0;
659
660 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
661 if (!(status & CEC_TX_STATUS_OK))
662 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
663
664 /* Queue transmitted message for monitoring purposes */
665 cec_queue_msg_monitor(adap, msg, 1);
666
667 if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
668 msg->timeout) {
669 /*
670 * Queue the message into the wait queue if we want to wait
671 * for a reply.
672 */
673 list_add_tail(&data->list, &adap->wait_queue);
674 schedule_delayed_work(&data->work,
675 msecs_to_jiffies(msg->timeout));
676 } else {
677 /* Otherwise we're done */
678 cec_data_completed(data);
679 }
680
681 wake_thread:
682 /*
683 * Wake up the main thread to see if another message is ready
684 * for transmitting or to retry the current message.
685 */
686 wake_up_interruptible(&adap->kthread_waitq);
687 mutex_unlock(&adap->lock);
688 }
689 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
690
cec_transmit_attempt_done_ts(struct cec_adapter * adap,u8 status,ktime_t ts)691 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
692 u8 status, ktime_t ts)
693 {
694 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
695 case CEC_TX_STATUS_OK:
696 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
697 return;
698 case CEC_TX_STATUS_ARB_LOST:
699 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
700 return;
701 case CEC_TX_STATUS_NACK:
702 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
703 return;
704 case CEC_TX_STATUS_LOW_DRIVE:
705 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
706 return;
707 case CEC_TX_STATUS_ERROR:
708 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
709 return;
710 default:
711 /* Should never happen */
712 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
713 return;
714 }
715 }
716 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
717
718 /*
719 * Called when waiting for a reply times out.
720 */
cec_wait_timeout(struct work_struct * work)721 static void cec_wait_timeout(struct work_struct *work)
722 {
723 struct cec_data *data = container_of(work, struct cec_data, work.work);
724 struct cec_adapter *adap = data->adap;
725
726 mutex_lock(&adap->lock);
727 /*
728 * Sanity check in case the timeout and the arrival of the message
729 * happened at the same time.
730 */
731 if (list_empty(&data->list))
732 goto unlock;
733
734 /* Mark the message as timed out */
735 list_del_init(&data->list);
736 data->msg.rx_ts = ktime_get_ns();
737 data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
738 cec_data_completed(data);
739 unlock:
740 mutex_unlock(&adap->lock);
741 }
742
743 /*
744 * Transmit a message. The fh argument may be NULL if the transmit is not
745 * associated with a specific filehandle.
746 *
747 * This function is called with adap->lock held.
748 */
cec_transmit_msg_fh(struct cec_adapter * adap,struct cec_msg * msg,struct cec_fh * fh,bool block)749 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
750 struct cec_fh *fh, bool block)
751 {
752 struct cec_data *data;
753 bool is_raw = msg_is_raw(msg);
754
755 if (adap->devnode.unregistered)
756 return -ENODEV;
757
758 msg->rx_ts = 0;
759 msg->tx_ts = 0;
760 msg->rx_status = 0;
761 msg->tx_status = 0;
762 msg->tx_arb_lost_cnt = 0;
763 msg->tx_nack_cnt = 0;
764 msg->tx_low_drive_cnt = 0;
765 msg->tx_error_cnt = 0;
766 msg->sequence = 0;
767
768 if (msg->reply && msg->timeout == 0) {
769 /* Make sure the timeout isn't 0. */
770 msg->timeout = 1000;
771 }
772 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW;
773
774 if (!msg->timeout)
775 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
776
777 /* Sanity checks */
778 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
779 dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
780 return -EINVAL;
781 }
782
783 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
784
785 if (msg->timeout)
786 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
787 __func__, msg->len, msg->msg, msg->reply,
788 !block ? ", nb" : "");
789 else
790 dprintk(2, "%s: %*ph%s\n",
791 __func__, msg->len, msg->msg, !block ? " (nb)" : "");
792
793 if (msg->timeout && msg->len == 1) {
794 dprintk(1, "%s: can't reply to poll msg\n", __func__);
795 return -EINVAL;
796 }
797
798 if (is_raw) {
799 if (!capable(CAP_SYS_RAWIO))
800 return -EPERM;
801 } else {
802 /* A CDC-Only device can only send CDC messages */
803 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
804 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
805 dprintk(1, "%s: not a CDC message\n", __func__);
806 return -EINVAL;
807 }
808
809 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
810 msg->msg[2] = adap->phys_addr >> 8;
811 msg->msg[3] = adap->phys_addr & 0xff;
812 }
813
814 if (msg->len == 1) {
815 if (cec_msg_destination(msg) == 0xf) {
816 dprintk(1, "%s: invalid poll message\n",
817 __func__);
818 return -EINVAL;
819 }
820 if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
821 /*
822 * If the destination is a logical address our
823 * adapter has already claimed, then just NACK
824 * this. It depends on the hardware what it will
825 * do with a POLL to itself (some OK this), so
826 * it is just as easy to handle it here so the
827 * behavior will be consistent.
828 */
829 msg->tx_ts = ktime_get_ns();
830 msg->tx_status = CEC_TX_STATUS_NACK |
831 CEC_TX_STATUS_MAX_RETRIES;
832 msg->tx_nack_cnt = 1;
833 msg->sequence = ++adap->sequence;
834 if (!msg->sequence)
835 msg->sequence = ++adap->sequence;
836 return 0;
837 }
838 }
839 if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
840 cec_has_log_addr(adap, cec_msg_destination(msg))) {
841 dprintk(1, "%s: destination is the adapter itself\n",
842 __func__);
843 return -EINVAL;
844 }
845 if (msg->len > 1 && adap->is_configured &&
846 !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
847 dprintk(1, "%s: initiator has unknown logical address %d\n",
848 __func__, cec_msg_initiator(msg));
849 return -EINVAL;
850 }
851 /*
852 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
853 * transmitted to a TV, even if the adapter is unconfigured.
854 * This makes it possible to detect or wake up displays that
855 * pull down the HPD when in standby.
856 */
857 if (!adap->is_configured && !adap->is_configuring &&
858 (msg->len > 2 ||
859 cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
860 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
861 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
862 dprintk(1, "%s: adapter is unconfigured\n", __func__);
863 return -ENONET;
864 }
865 }
866
867 if (!adap->is_configured && !adap->is_configuring) {
868 if (adap->needs_hpd) {
869 dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
870 __func__);
871 return -ENONET;
872 }
873 if (msg->reply) {
874 dprintk(1, "%s: invalid msg->reply\n", __func__);
875 return -EINVAL;
876 }
877 }
878
879 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
880 dprintk(2, "%s: transmit queue full\n", __func__);
881 return -EBUSY;
882 }
883
884 data = kzalloc(sizeof(*data), GFP_KERNEL);
885 if (!data)
886 return -ENOMEM;
887
888 msg->sequence = ++adap->sequence;
889 if (!msg->sequence)
890 msg->sequence = ++adap->sequence;
891
892 data->msg = *msg;
893 data->fh = fh;
894 data->adap = adap;
895 data->blocking = block;
896
897 init_completion(&data->c);
898 INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
899
900 if (fh)
901 list_add_tail(&data->xfer_list, &fh->xfer_list);
902
903 list_add_tail(&data->list, &adap->transmit_queue);
904 adap->transmit_queue_sz++;
905 if (!adap->transmitting)
906 wake_up_interruptible(&adap->kthread_waitq);
907
908 /* All done if we don't need to block waiting for completion */
909 if (!block)
910 return 0;
911
912 /*
913 * Release the lock and wait, retake the lock afterwards.
914 */
915 mutex_unlock(&adap->lock);
916 wait_for_completion_killable(&data->c);
917 if (!data->completed)
918 cancel_delayed_work_sync(&data->work);
919 mutex_lock(&adap->lock);
920
921 /* Cancel the transmit if it was interrupted */
922 if (!data->completed)
923 cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
924
925 /* The transmit completed (possibly with an error) */
926 *msg = data->msg;
927 kfree(data);
928 return 0;
929 }
930
931 /* Helper function to be used by drivers and this framework. */
cec_transmit_msg(struct cec_adapter * adap,struct cec_msg * msg,bool block)932 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
933 bool block)
934 {
935 int ret;
936
937 mutex_lock(&adap->lock);
938 ret = cec_transmit_msg_fh(adap, msg, NULL, block);
939 mutex_unlock(&adap->lock);
940 return ret;
941 }
942 EXPORT_SYMBOL_GPL(cec_transmit_msg);
943
944 /*
945 * I don't like forward references but without this the low-level
946 * cec_received_msg() function would come after a bunch of high-level
947 * CEC protocol handling functions. That was very confusing.
948 */
949 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
950 bool is_reply);
951
952 #define DIRECTED 0x80
953 #define BCAST1_4 0x40
954 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */
955 #define BCAST (BCAST1_4 | BCAST2_0)
956 #define BOTH (BCAST | DIRECTED)
957
958 /*
959 * Specify minimum length and whether the message is directed, broadcast
960 * or both. Messages that do not match the criteria are ignored as per
961 * the CEC specification.
962 */
963 static const u8 cec_msg_size[256] = {
964 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
965 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
966 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
967 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
968 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
969 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
970 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
971 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
972 [CEC_MSG_STANDBY] = 2 | BOTH,
973 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
974 [CEC_MSG_RECORD_ON] = 3 | DIRECTED,
975 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
976 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
977 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
978 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
979 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
980 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
981 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
982 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
983 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
984 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
985 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
986 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
987 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
988 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
989 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
990 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
991 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
992 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
993 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
994 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
995 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
996 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
997 [CEC_MSG_PLAY] = 3 | DIRECTED,
998 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
999 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
1000 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
1001 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
1002 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
1003 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
1004 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
1005 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1006 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1007 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1008 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1009 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1010 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1011 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1012 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1013 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1014 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1015 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1016 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1017 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1018 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1019 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1020 [CEC_MSG_ABORT] = 2 | DIRECTED,
1021 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1022 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1023 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1024 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1025 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1026 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1027 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1028 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1029 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1030 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1031 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1032 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1033 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1034 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1035 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1036 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1037 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1038 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1039 };
1040
1041 /* Called by the CEC adapter if a message is received */
cec_received_msg_ts(struct cec_adapter * adap,struct cec_msg * msg,ktime_t ts)1042 void cec_received_msg_ts(struct cec_adapter *adap,
1043 struct cec_msg *msg, ktime_t ts)
1044 {
1045 struct cec_data *data;
1046 u8 msg_init = cec_msg_initiator(msg);
1047 u8 msg_dest = cec_msg_destination(msg);
1048 u8 cmd = msg->msg[1];
1049 bool is_reply = false;
1050 bool valid_la = true;
1051 u8 min_len = 0;
1052
1053 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1054 return;
1055
1056 if (adap->devnode.unregistered)
1057 return;
1058
1059 /*
1060 * Some CEC adapters will receive the messages that they transmitted.
1061 * This test filters out those messages by checking if we are the
1062 * initiator, and just returning in that case.
1063 *
1064 * Note that this won't work if this is an Unregistered device.
1065 *
1066 * It is bad practice if the hardware receives the message that it
1067 * transmitted and luckily most CEC adapters behave correctly in this
1068 * respect.
1069 */
1070 if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1071 cec_has_log_addr(adap, msg_init))
1072 return;
1073
1074 msg->rx_ts = ktime_to_ns(ts);
1075 msg->rx_status = CEC_RX_STATUS_OK;
1076 msg->sequence = msg->reply = msg->timeout = 0;
1077 msg->tx_status = 0;
1078 msg->tx_ts = 0;
1079 msg->tx_arb_lost_cnt = 0;
1080 msg->tx_nack_cnt = 0;
1081 msg->tx_low_drive_cnt = 0;
1082 msg->tx_error_cnt = 0;
1083 msg->flags = 0;
1084 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1085
1086 mutex_lock(&adap->lock);
1087 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1088
1089 if (!adap->transmit_in_progress)
1090 adap->last_initiator = 0xff;
1091
1092 /* Check if this message was for us (directed or broadcast). */
1093 if (!cec_msg_is_broadcast(msg))
1094 valid_la = cec_has_log_addr(adap, msg_dest);
1095
1096 /*
1097 * Check if the length is not too short or if the message is a
1098 * broadcast message where a directed message was expected or
1099 * vice versa. If so, then the message has to be ignored (according
1100 * to section CEC 7.3 and CEC 12.2).
1101 */
1102 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1103 u8 dir_fl = cec_msg_size[cmd] & BOTH;
1104
1105 min_len = cec_msg_size[cmd] & 0x1f;
1106 if (msg->len < min_len)
1107 valid_la = false;
1108 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1109 valid_la = false;
1110 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1111 valid_la = false;
1112 else if (cec_msg_is_broadcast(msg) &&
1113 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1114 !(dir_fl & BCAST1_4))
1115 valid_la = false;
1116 }
1117 if (valid_la && min_len) {
1118 /* These messages have special length requirements */
1119 switch (cmd) {
1120 case CEC_MSG_TIMER_STATUS:
1121 if (msg->msg[2] & 0x10) {
1122 switch (msg->msg[2] & 0xf) {
1123 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
1124 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
1125 if (msg->len < 5)
1126 valid_la = false;
1127 break;
1128 }
1129 } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
1130 if (msg->len < 5)
1131 valid_la = false;
1132 }
1133 break;
1134 case CEC_MSG_RECORD_ON:
1135 switch (msg->msg[2]) {
1136 case CEC_OP_RECORD_SRC_OWN:
1137 break;
1138 case CEC_OP_RECORD_SRC_DIGITAL:
1139 if (msg->len < 10)
1140 valid_la = false;
1141 break;
1142 case CEC_OP_RECORD_SRC_ANALOG:
1143 if (msg->len < 7)
1144 valid_la = false;
1145 break;
1146 case CEC_OP_RECORD_SRC_EXT_PLUG:
1147 if (msg->len < 4)
1148 valid_la = false;
1149 break;
1150 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1151 if (msg->len < 5)
1152 valid_la = false;
1153 break;
1154 }
1155 break;
1156 }
1157 }
1158
1159 /* It's a valid message and not a poll or CDC message */
1160 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1161 bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1162
1163 /* The aborted command is in msg[2] */
1164 if (abort)
1165 cmd = msg->msg[2];
1166
1167 /*
1168 * Walk over all transmitted messages that are waiting for a
1169 * reply.
1170 */
1171 list_for_each_entry(data, &adap->wait_queue, list) {
1172 struct cec_msg *dst = &data->msg;
1173
1174 /*
1175 * The *only* CEC message that has two possible replies
1176 * is CEC_MSG_INITIATE_ARC.
1177 * In this case allow either of the two replies.
1178 */
1179 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1180 (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1181 cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1182 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1183 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1184 dst->reply = cmd;
1185
1186 /* Does the command match? */
1187 if ((abort && cmd != dst->msg[1]) ||
1188 (!abort && cmd != dst->reply))
1189 continue;
1190
1191 /* Does the addressing match? */
1192 if (msg_init != cec_msg_destination(dst) &&
1193 !cec_msg_is_broadcast(dst))
1194 continue;
1195
1196 /* We got a reply */
1197 memcpy(dst->msg, msg->msg, msg->len);
1198 dst->len = msg->len;
1199 dst->rx_ts = msg->rx_ts;
1200 dst->rx_status = msg->rx_status;
1201 if (abort)
1202 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1203 msg->flags = dst->flags;
1204 msg->sequence = dst->sequence;
1205 /* Remove it from the wait_queue */
1206 list_del_init(&data->list);
1207
1208 /* Cancel the pending timeout work */
1209 if (!cancel_delayed_work(&data->work)) {
1210 mutex_unlock(&adap->lock);
1211 cancel_delayed_work_sync(&data->work);
1212 mutex_lock(&adap->lock);
1213 }
1214 /*
1215 * Mark this as a reply, provided someone is still
1216 * waiting for the answer.
1217 */
1218 if (data->fh)
1219 is_reply = true;
1220 cec_data_completed(data);
1221 break;
1222 }
1223 }
1224 mutex_unlock(&adap->lock);
1225
1226 /* Pass the message on to any monitoring filehandles */
1227 cec_queue_msg_monitor(adap, msg, valid_la);
1228
1229 /* We're done if it is not for us or a poll message */
1230 if (!valid_la || msg->len <= 1)
1231 return;
1232
1233 if (adap->log_addrs.log_addr_mask == 0)
1234 return;
1235
1236 /*
1237 * Process the message on the protocol level. If is_reply is true,
1238 * then cec_receive_notify() won't pass on the reply to the listener(s)
1239 * since that was already done by cec_data_completed() above.
1240 */
1241 cec_receive_notify(adap, msg, is_reply);
1242 }
1243 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1244
1245 /* Logical Address Handling */
1246
1247 /*
1248 * Attempt to claim a specific logical address.
1249 *
1250 * This function is called with adap->lock held.
1251 */
cec_config_log_addr(struct cec_adapter * adap,unsigned int idx,unsigned int log_addr)1252 static int cec_config_log_addr(struct cec_adapter *adap,
1253 unsigned int idx,
1254 unsigned int log_addr)
1255 {
1256 struct cec_log_addrs *las = &adap->log_addrs;
1257 struct cec_msg msg = { };
1258 const unsigned int max_retries = 2;
1259 unsigned int i;
1260 int err;
1261
1262 if (cec_has_log_addr(adap, log_addr))
1263 return 0;
1264
1265 /* Send poll message */
1266 msg.len = 1;
1267 msg.msg[0] = (log_addr << 4) | log_addr;
1268
1269 for (i = 0; i < max_retries; i++) {
1270 err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1271
1272 /*
1273 * While trying to poll the physical address was reset
1274 * and the adapter was unconfigured, so bail out.
1275 */
1276 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID)
1277 return -EINTR;
1278
1279 if (err)
1280 return err;
1281
1282 /*
1283 * The message was aborted due to a disconnect or
1284 * unconfigure, just bail out.
1285 */
1286 if (msg.tx_status & CEC_TX_STATUS_ABORTED)
1287 return -EINTR;
1288 if (msg.tx_status & CEC_TX_STATUS_OK)
1289 return 0;
1290 if (msg.tx_status & CEC_TX_STATUS_NACK)
1291 break;
1292 /*
1293 * Retry up to max_retries times if the message was neither
1294 * OKed or NACKed. This can happen due to e.g. a Lost
1295 * Arbitration condition.
1296 */
1297 }
1298
1299 /*
1300 * If we are unable to get an OK or a NACK after max_retries attempts
1301 * (and note that each attempt already consists of four polls), then
1302 * we assume that something is really weird and that it is not a
1303 * good idea to try and claim this logical address.
1304 */
1305 if (i == max_retries)
1306 return 0;
1307
1308 /*
1309 * Message not acknowledged, so this logical
1310 * address is free to use.
1311 */
1312 err = adap->ops->adap_log_addr(adap, log_addr);
1313 if (err)
1314 return err;
1315
1316 las->log_addr[idx] = log_addr;
1317 las->log_addr_mask |= 1 << log_addr;
1318 return 1;
1319 }
1320
1321 /*
1322 * Unconfigure the adapter: clear all logical addresses and send
1323 * the state changed event.
1324 *
1325 * This function is called with adap->lock held.
1326 */
cec_adap_unconfigure(struct cec_adapter * adap)1327 static void cec_adap_unconfigure(struct cec_adapter *adap)
1328 {
1329 if (!adap->needs_hpd ||
1330 adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1331 WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1332 adap->log_addrs.log_addr_mask = 0;
1333 adap->is_configured = false;
1334 cec_flush(adap);
1335 wake_up_interruptible(&adap->kthread_waitq);
1336 cec_post_state_event(adap);
1337 }
1338
1339 /*
1340 * Attempt to claim the required logical addresses.
1341 */
cec_config_thread_func(void * arg)1342 static int cec_config_thread_func(void *arg)
1343 {
1344 /* The various LAs for each type of device */
1345 static const u8 tv_log_addrs[] = {
1346 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1347 CEC_LOG_ADDR_INVALID
1348 };
1349 static const u8 record_log_addrs[] = {
1350 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1351 CEC_LOG_ADDR_RECORD_3,
1352 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1353 CEC_LOG_ADDR_INVALID
1354 };
1355 static const u8 tuner_log_addrs[] = {
1356 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1357 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1358 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1359 CEC_LOG_ADDR_INVALID
1360 };
1361 static const u8 playback_log_addrs[] = {
1362 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1363 CEC_LOG_ADDR_PLAYBACK_3,
1364 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1365 CEC_LOG_ADDR_INVALID
1366 };
1367 static const u8 audiosystem_log_addrs[] = {
1368 CEC_LOG_ADDR_AUDIOSYSTEM,
1369 CEC_LOG_ADDR_INVALID
1370 };
1371 static const u8 specific_use_log_addrs[] = {
1372 CEC_LOG_ADDR_SPECIFIC,
1373 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1374 CEC_LOG_ADDR_INVALID
1375 };
1376 static const u8 *type2addrs[6] = {
1377 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1378 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1379 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1380 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1381 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1382 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1383 };
1384 static const u16 type2mask[] = {
1385 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1386 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1387 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1388 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1389 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1390 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1391 };
1392 struct cec_adapter *adap = arg;
1393 struct cec_log_addrs *las = &adap->log_addrs;
1394 int err;
1395 int i, j;
1396
1397 mutex_lock(&adap->lock);
1398 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1399 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1400 las->log_addr_mask = 0;
1401
1402 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1403 goto configured;
1404
1405 for (i = 0; i < las->num_log_addrs; i++) {
1406 unsigned int type = las->log_addr_type[i];
1407 const u8 *la_list;
1408 u8 last_la;
1409
1410 /*
1411 * The TV functionality can only map to physical address 0.
1412 * For any other address, try the Specific functionality
1413 * instead as per the spec.
1414 */
1415 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1416 type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1417
1418 la_list = type2addrs[type];
1419 last_la = las->log_addr[i];
1420 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1421 if (last_la == CEC_LOG_ADDR_INVALID ||
1422 last_la == CEC_LOG_ADDR_UNREGISTERED ||
1423 !((1 << last_la) & type2mask[type]))
1424 last_la = la_list[0];
1425
1426 err = cec_config_log_addr(adap, i, last_la);
1427 if (err > 0) /* Reused last LA */
1428 continue;
1429
1430 if (err < 0)
1431 goto unconfigure;
1432
1433 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1434 /* Tried this one already, skip it */
1435 if (la_list[j] == last_la)
1436 continue;
1437 /* The backup addresses are CEC 2.0 specific */
1438 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1439 la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1440 las->cec_version < CEC_OP_CEC_VERSION_2_0)
1441 continue;
1442
1443 err = cec_config_log_addr(adap, i, la_list[j]);
1444 if (err == 0) /* LA is in use */
1445 continue;
1446 if (err < 0)
1447 goto unconfigure;
1448 /* Done, claimed an LA */
1449 break;
1450 }
1451
1452 if (la_list[j] == CEC_LOG_ADDR_INVALID)
1453 dprintk(1, "could not claim LA %d\n", i);
1454 }
1455
1456 if (adap->log_addrs.log_addr_mask == 0 &&
1457 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1458 goto unconfigure;
1459
1460 configured:
1461 if (adap->log_addrs.log_addr_mask == 0) {
1462 /* Fall back to unregistered */
1463 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1464 las->log_addr_mask = 1 << las->log_addr[0];
1465 for (i = 1; i < las->num_log_addrs; i++)
1466 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1467 }
1468 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1469 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1470 adap->is_configured = true;
1471 adap->is_configuring = false;
1472 cec_post_state_event(adap);
1473
1474 /*
1475 * Now post the Report Features and Report Physical Address broadcast
1476 * messages. Note that these are non-blocking transmits, meaning that
1477 * they are just queued up and once adap->lock is unlocked the main
1478 * thread will kick in and start transmitting these.
1479 *
1480 * If after this function is done (but before one or more of these
1481 * messages are actually transmitted) the CEC adapter is unconfigured,
1482 * then any remaining messages will be dropped by the main thread.
1483 */
1484 for (i = 0; i < las->num_log_addrs; i++) {
1485 struct cec_msg msg = {};
1486
1487 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1488 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1489 continue;
1490
1491 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1492
1493 /* Report Features must come first according to CEC 2.0 */
1494 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1495 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1496 cec_fill_msg_report_features(adap, &msg, i);
1497 cec_transmit_msg_fh(adap, &msg, NULL, false);
1498 }
1499
1500 /* Report Physical Address */
1501 cec_msg_report_physical_addr(&msg, adap->phys_addr,
1502 las->primary_device_type[i]);
1503 dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1504 las->log_addr[i],
1505 cec_phys_addr_exp(adap->phys_addr));
1506 cec_transmit_msg_fh(adap, &msg, NULL, false);
1507
1508 /* Report Vendor ID */
1509 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1510 cec_msg_device_vendor_id(&msg,
1511 adap->log_addrs.vendor_id);
1512 cec_transmit_msg_fh(adap, &msg, NULL, false);
1513 }
1514 }
1515 adap->kthread_config = NULL;
1516 complete(&adap->config_completion);
1517 mutex_unlock(&adap->lock);
1518 return 0;
1519
1520 unconfigure:
1521 for (i = 0; i < las->num_log_addrs; i++)
1522 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1523 cec_adap_unconfigure(adap);
1524 adap->is_configuring = false;
1525 adap->kthread_config = NULL;
1526 complete(&adap->config_completion);
1527 mutex_unlock(&adap->lock);
1528 return 0;
1529 }
1530
1531 /*
1532 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1533 * logical addresses.
1534 *
1535 * This function is called with adap->lock held.
1536 */
cec_claim_log_addrs(struct cec_adapter * adap,bool block)1537 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1538 {
1539 if (WARN_ON(adap->is_configuring || adap->is_configured))
1540 return;
1541
1542 init_completion(&adap->config_completion);
1543
1544 /* Ready to kick off the thread */
1545 adap->is_configuring = true;
1546 adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1547 "ceccfg-%s", adap->name);
1548 if (IS_ERR(adap->kthread_config)) {
1549 adap->kthread_config = NULL;
1550 } else if (block) {
1551 mutex_unlock(&adap->lock);
1552 wait_for_completion(&adap->config_completion);
1553 mutex_lock(&adap->lock);
1554 }
1555 }
1556
1557 /* Set a new physical address and send an event notifying userspace of this.
1558 *
1559 * This function is called with adap->lock held.
1560 */
__cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1561 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1562 {
1563 if (phys_addr == adap->phys_addr)
1564 return;
1565 if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered)
1566 return;
1567
1568 dprintk(1, "new physical address %x.%x.%x.%x\n",
1569 cec_phys_addr_exp(phys_addr));
1570 if (phys_addr == CEC_PHYS_ADDR_INVALID ||
1571 adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
1572 adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1573 cec_post_state_event(adap);
1574 cec_adap_unconfigure(adap);
1575 /* Disabling monitor all mode should always succeed */
1576 if (adap->monitor_all_cnt)
1577 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1578 /* serialize adap_enable */
1579 mutex_lock(&adap->devnode.lock);
1580 if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) {
1581 WARN_ON(adap->ops->adap_enable(adap, false));
1582 adap->transmit_in_progress = false;
1583 wake_up_interruptible(&adap->kthread_waitq);
1584 }
1585 mutex_unlock(&adap->devnode.lock);
1586 if (phys_addr == CEC_PHYS_ADDR_INVALID)
1587 return;
1588 }
1589
1590 /* serialize adap_enable */
1591 mutex_lock(&adap->devnode.lock);
1592 adap->last_initiator = 0xff;
1593 adap->transmit_in_progress = false;
1594
1595 if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) {
1596 if (adap->ops->adap_enable(adap, true)) {
1597 mutex_unlock(&adap->devnode.lock);
1598 return;
1599 }
1600 }
1601
1602 if (adap->monitor_all_cnt &&
1603 call_op(adap, adap_monitor_all_enable, true)) {
1604 if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1605 WARN_ON(adap->ops->adap_enable(adap, false));
1606 mutex_unlock(&adap->devnode.lock);
1607 return;
1608 }
1609 mutex_unlock(&adap->devnode.lock);
1610
1611 adap->phys_addr = phys_addr;
1612 cec_post_state_event(adap);
1613 if (adap->log_addrs.num_log_addrs)
1614 cec_claim_log_addrs(adap, block);
1615 }
1616
cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1617 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1618 {
1619 if (IS_ERR_OR_NULL(adap))
1620 return;
1621
1622 mutex_lock(&adap->lock);
1623 __cec_s_phys_addr(adap, phys_addr, block);
1624 mutex_unlock(&adap->lock);
1625 }
1626 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1627
cec_s_phys_addr_from_edid(struct cec_adapter * adap,const struct edid * edid)1628 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1629 const struct edid *edid)
1630 {
1631 u16 pa = CEC_PHYS_ADDR_INVALID;
1632
1633 if (edid && edid->extensions)
1634 pa = cec_get_edid_phys_addr((const u8 *)edid,
1635 EDID_LENGTH * (edid->extensions + 1), NULL);
1636 cec_s_phys_addr(adap, pa, false);
1637 }
1638 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1639
cec_s_conn_info(struct cec_adapter * adap,const struct cec_connector_info * conn_info)1640 void cec_s_conn_info(struct cec_adapter *adap,
1641 const struct cec_connector_info *conn_info)
1642 {
1643 if (IS_ERR_OR_NULL(adap))
1644 return;
1645
1646 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1647 return;
1648
1649 mutex_lock(&adap->lock);
1650 if (conn_info)
1651 adap->conn_info = *conn_info;
1652 else
1653 memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1654 cec_post_state_event(adap);
1655 mutex_unlock(&adap->lock);
1656 }
1657 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1658
1659 /*
1660 * Called from either the ioctl or a driver to set the logical addresses.
1661 *
1662 * This function is called with adap->lock held.
1663 */
__cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1664 int __cec_s_log_addrs(struct cec_adapter *adap,
1665 struct cec_log_addrs *log_addrs, bool block)
1666 {
1667 u16 type_mask = 0;
1668 int i;
1669
1670 if (adap->devnode.unregistered)
1671 return -ENODEV;
1672
1673 if (!log_addrs || log_addrs->num_log_addrs == 0) {
1674 cec_adap_unconfigure(adap);
1675 adap->log_addrs.num_log_addrs = 0;
1676 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1677 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1678 adap->log_addrs.osd_name[0] = '\0';
1679 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1680 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1681 return 0;
1682 }
1683
1684 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1685 /*
1686 * Sanitize log_addrs fields if a CDC-Only device is
1687 * requested.
1688 */
1689 log_addrs->num_log_addrs = 1;
1690 log_addrs->osd_name[0] = '\0';
1691 log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1692 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1693 /*
1694 * This is just an internal convention since a CDC-Only device
1695 * doesn't have to be a switch. But switches already use
1696 * unregistered, so it makes some kind of sense to pick this
1697 * as the primary device. Since a CDC-Only device never sends
1698 * any 'normal' CEC messages this primary device type is never
1699 * sent over the CEC bus.
1700 */
1701 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1702 log_addrs->all_device_types[0] = 0;
1703 log_addrs->features[0][0] = 0;
1704 log_addrs->features[0][1] = 0;
1705 }
1706
1707 /* Ensure the osd name is 0-terminated */
1708 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1709
1710 /* Sanity checks */
1711 if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1712 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1713 return -EINVAL;
1714 }
1715
1716 /*
1717 * Vendor ID is a 24 bit number, so check if the value is
1718 * within the correct range.
1719 */
1720 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1721 (log_addrs->vendor_id & 0xff000000) != 0) {
1722 dprintk(1, "invalid vendor ID\n");
1723 return -EINVAL;
1724 }
1725
1726 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1727 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1728 dprintk(1, "invalid CEC version\n");
1729 return -EINVAL;
1730 }
1731
1732 if (log_addrs->num_log_addrs > 1)
1733 for (i = 0; i < log_addrs->num_log_addrs; i++)
1734 if (log_addrs->log_addr_type[i] ==
1735 CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1736 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1737 return -EINVAL;
1738 }
1739
1740 for (i = 0; i < log_addrs->num_log_addrs; i++) {
1741 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1742 u8 *features = log_addrs->features[i];
1743 bool op_is_dev_features = false;
1744 unsigned int j;
1745
1746 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1747 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1748 dprintk(1, "unknown logical address type\n");
1749 return -EINVAL;
1750 }
1751 if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1752 dprintk(1, "duplicate logical address type\n");
1753 return -EINVAL;
1754 }
1755 type_mask |= 1 << log_addrs->log_addr_type[i];
1756 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1757 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1758 /* Record already contains the playback functionality */
1759 dprintk(1, "invalid record + playback combination\n");
1760 return -EINVAL;
1761 }
1762 if (log_addrs->primary_device_type[i] >
1763 CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1764 dprintk(1, "unknown primary device type\n");
1765 return -EINVAL;
1766 }
1767 if (log_addrs->primary_device_type[i] == 2) {
1768 dprintk(1, "invalid primary device type\n");
1769 return -EINVAL;
1770 }
1771 for (j = 0; j < feature_sz; j++) {
1772 if ((features[j] & 0x80) == 0) {
1773 if (op_is_dev_features)
1774 break;
1775 op_is_dev_features = true;
1776 }
1777 }
1778 if (!op_is_dev_features || j == feature_sz) {
1779 dprintk(1, "malformed features\n");
1780 return -EINVAL;
1781 }
1782 /* Zero unused part of the feature array */
1783 memset(features + j + 1, 0, feature_sz - j - 1);
1784 }
1785
1786 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1787 if (log_addrs->num_log_addrs > 2) {
1788 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1789 return -EINVAL;
1790 }
1791 if (log_addrs->num_log_addrs == 2) {
1792 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1793 (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1794 dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1795 return -EINVAL;
1796 }
1797 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1798 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1799 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1800 return -EINVAL;
1801 }
1802 }
1803 }
1804
1805 /* Zero unused LAs */
1806 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1807 log_addrs->primary_device_type[i] = 0;
1808 log_addrs->log_addr_type[i] = 0;
1809 log_addrs->all_device_types[i] = 0;
1810 memset(log_addrs->features[i], 0,
1811 sizeof(log_addrs->features[i]));
1812 }
1813
1814 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1815 adap->log_addrs = *log_addrs;
1816 if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1817 cec_claim_log_addrs(adap, block);
1818 return 0;
1819 }
1820
cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1821 int cec_s_log_addrs(struct cec_adapter *adap,
1822 struct cec_log_addrs *log_addrs, bool block)
1823 {
1824 int err;
1825
1826 mutex_lock(&adap->lock);
1827 err = __cec_s_log_addrs(adap, log_addrs, block);
1828 mutex_unlock(&adap->lock);
1829 return err;
1830 }
1831 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1832
1833 /* High-level core CEC message handling */
1834
1835 /* Fill in the Report Features message */
cec_fill_msg_report_features(struct cec_adapter * adap,struct cec_msg * msg,unsigned int la_idx)1836 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1837 struct cec_msg *msg,
1838 unsigned int la_idx)
1839 {
1840 const struct cec_log_addrs *las = &adap->log_addrs;
1841 const u8 *features = las->features[la_idx];
1842 bool op_is_dev_features = false;
1843 unsigned int idx;
1844
1845 /* Report Features */
1846 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1847 msg->len = 4;
1848 msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1849 msg->msg[2] = adap->log_addrs.cec_version;
1850 msg->msg[3] = las->all_device_types[la_idx];
1851
1852 /* Write RC Profiles first, then Device Features */
1853 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1854 msg->msg[msg->len++] = features[idx];
1855 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1856 if (op_is_dev_features)
1857 break;
1858 op_is_dev_features = true;
1859 }
1860 }
1861 }
1862
1863 /* Transmit the Feature Abort message */
cec_feature_abort_reason(struct cec_adapter * adap,struct cec_msg * msg,u8 reason)1864 static int cec_feature_abort_reason(struct cec_adapter *adap,
1865 struct cec_msg *msg, u8 reason)
1866 {
1867 struct cec_msg tx_msg = { };
1868
1869 /*
1870 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1871 * message!
1872 */
1873 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1874 return 0;
1875 /* Don't Feature Abort messages from 'Unregistered' */
1876 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1877 return 0;
1878 cec_msg_set_reply_to(&tx_msg, msg);
1879 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1880 return cec_transmit_msg(adap, &tx_msg, false);
1881 }
1882
cec_feature_abort(struct cec_adapter * adap,struct cec_msg * msg)1883 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1884 {
1885 return cec_feature_abort_reason(adap, msg,
1886 CEC_OP_ABORT_UNRECOGNIZED_OP);
1887 }
1888
cec_feature_refused(struct cec_adapter * adap,struct cec_msg * msg)1889 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1890 {
1891 return cec_feature_abort_reason(adap, msg,
1892 CEC_OP_ABORT_REFUSED);
1893 }
1894
1895 /*
1896 * Called when a CEC message is received. This function will do any
1897 * necessary core processing. The is_reply bool is true if this message
1898 * is a reply to an earlier transmit.
1899 *
1900 * The message is either a broadcast message or a valid directed message.
1901 */
cec_receive_notify(struct cec_adapter * adap,struct cec_msg * msg,bool is_reply)1902 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1903 bool is_reply)
1904 {
1905 bool is_broadcast = cec_msg_is_broadcast(msg);
1906 u8 dest_laddr = cec_msg_destination(msg);
1907 u8 init_laddr = cec_msg_initiator(msg);
1908 u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1909 int la_idx = cec_log_addr2idx(adap, dest_laddr);
1910 bool from_unregistered = init_laddr == 0xf;
1911 struct cec_msg tx_cec_msg = { };
1912
1913 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1914
1915 /* If this is a CDC-Only device, then ignore any non-CDC messages */
1916 if (cec_is_cdc_only(&adap->log_addrs) &&
1917 msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1918 return 0;
1919
1920 if (adap->ops->received) {
1921 /* Allow drivers to process the message first */
1922 if (adap->ops->received(adap, msg) != -ENOMSG)
1923 return 0;
1924 }
1925
1926 /*
1927 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1928 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1929 * handled by the CEC core, even if the passthrough mode is on.
1930 * The others are just ignored if passthrough mode is on.
1931 */
1932 switch (msg->msg[1]) {
1933 case CEC_MSG_GET_CEC_VERSION:
1934 case CEC_MSG_ABORT:
1935 case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
1936 case CEC_MSG_GIVE_OSD_NAME:
1937 /*
1938 * These messages reply with a directed message, so ignore if
1939 * the initiator is Unregistered.
1940 */
1941 if (!adap->passthrough && from_unregistered)
1942 return 0;
1943 fallthrough;
1944 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1945 case CEC_MSG_GIVE_FEATURES:
1946 case CEC_MSG_GIVE_PHYSICAL_ADDR:
1947 /*
1948 * Skip processing these messages if the passthrough mode
1949 * is on.
1950 */
1951 if (adap->passthrough)
1952 goto skip_processing;
1953 /* Ignore if addressing is wrong */
1954 if (is_broadcast)
1955 return 0;
1956 break;
1957
1958 case CEC_MSG_USER_CONTROL_PRESSED:
1959 case CEC_MSG_USER_CONTROL_RELEASED:
1960 /* Wrong addressing mode: don't process */
1961 if (is_broadcast || from_unregistered)
1962 goto skip_processing;
1963 break;
1964
1965 case CEC_MSG_REPORT_PHYSICAL_ADDR:
1966 /*
1967 * This message is always processed, regardless of the
1968 * passthrough setting.
1969 *
1970 * Exception: don't process if wrong addressing mode.
1971 */
1972 if (!is_broadcast)
1973 goto skip_processing;
1974 break;
1975
1976 default:
1977 break;
1978 }
1979
1980 cec_msg_set_reply_to(&tx_cec_msg, msg);
1981
1982 switch (msg->msg[1]) {
1983 /* The following messages are processed but still passed through */
1984 case CEC_MSG_REPORT_PHYSICAL_ADDR: {
1985 u16 pa = (msg->msg[2] << 8) | msg->msg[3];
1986
1987 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1988 cec_phys_addr_exp(pa), init_laddr);
1989 break;
1990 }
1991
1992 case CEC_MSG_USER_CONTROL_PRESSED:
1993 if (!(adap->capabilities & CEC_CAP_RC) ||
1994 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1995 break;
1996
1997 #ifdef CONFIG_MEDIA_CEC_RC
1998 switch (msg->msg[2]) {
1999 /*
2000 * Play function, this message can have variable length
2001 * depending on the specific play function that is used.
2002 */
2003 case CEC_OP_UI_CMD_PLAY_FUNCTION:
2004 if (msg->len == 2)
2005 rc_keydown(adap->rc, RC_PROTO_CEC,
2006 msg->msg[2], 0);
2007 else
2008 rc_keydown(adap->rc, RC_PROTO_CEC,
2009 msg->msg[2] << 8 | msg->msg[3], 0);
2010 break;
2011 /*
2012 * Other function messages that are not handled.
2013 * Currently the RC framework does not allow to supply an
2014 * additional parameter to a keypress. These "keys" contain
2015 * other information such as channel number, an input number
2016 * etc.
2017 * For the time being these messages are not processed by the
2018 * framework and are simply forwarded to the user space.
2019 */
2020 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE:
2021 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION:
2022 case CEC_OP_UI_CMD_TUNE_FUNCTION:
2023 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION:
2024 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION:
2025 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION:
2026 break;
2027 default:
2028 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2029 break;
2030 }
2031 #endif
2032 break;
2033
2034 case CEC_MSG_USER_CONTROL_RELEASED:
2035 if (!(adap->capabilities & CEC_CAP_RC) ||
2036 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2037 break;
2038 #ifdef CONFIG_MEDIA_CEC_RC
2039 rc_keyup(adap->rc);
2040 #endif
2041 break;
2042
2043 /*
2044 * The remaining messages are only processed if the passthrough mode
2045 * is off.
2046 */
2047 case CEC_MSG_GET_CEC_VERSION:
2048 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2049 return cec_transmit_msg(adap, &tx_cec_msg, false);
2050
2051 case CEC_MSG_GIVE_PHYSICAL_ADDR:
2052 /* Do nothing for CEC switches using addr 15 */
2053 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2054 return 0;
2055 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2056 return cec_transmit_msg(adap, &tx_cec_msg, false);
2057
2058 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2059 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2060 return cec_feature_abort(adap, msg);
2061 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2062 return cec_transmit_msg(adap, &tx_cec_msg, false);
2063
2064 case CEC_MSG_ABORT:
2065 /* Do nothing for CEC switches */
2066 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2067 return 0;
2068 return cec_feature_refused(adap, msg);
2069
2070 case CEC_MSG_GIVE_OSD_NAME: {
2071 if (adap->log_addrs.osd_name[0] == 0)
2072 return cec_feature_abort(adap, msg);
2073 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2074 return cec_transmit_msg(adap, &tx_cec_msg, false);
2075 }
2076
2077 case CEC_MSG_GIVE_FEATURES:
2078 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2079 return cec_feature_abort(adap, msg);
2080 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2081 return cec_transmit_msg(adap, &tx_cec_msg, false);
2082
2083 default:
2084 /*
2085 * Unprocessed messages are aborted if userspace isn't doing
2086 * any processing either.
2087 */
2088 if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2089 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2090 return cec_feature_abort(adap, msg);
2091 break;
2092 }
2093
2094 skip_processing:
2095 /* If this was a reply, then we're done, unless otherwise specified */
2096 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2097 return 0;
2098
2099 /*
2100 * Send to the exclusive follower if there is one, otherwise send
2101 * to all followers.
2102 */
2103 if (adap->cec_follower)
2104 cec_queue_msg_fh(adap->cec_follower, msg);
2105 else
2106 cec_queue_msg_followers(adap, msg);
2107 return 0;
2108 }
2109
2110 /*
2111 * Helper functions to keep track of the 'monitor all' use count.
2112 *
2113 * These functions are called with adap->lock held.
2114 */
cec_monitor_all_cnt_inc(struct cec_adapter * adap)2115 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2116 {
2117 int ret = 0;
2118
2119 if (adap->monitor_all_cnt == 0)
2120 ret = call_op(adap, adap_monitor_all_enable, 1);
2121 if (ret == 0)
2122 adap->monitor_all_cnt++;
2123 return ret;
2124 }
2125
cec_monitor_all_cnt_dec(struct cec_adapter * adap)2126 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2127 {
2128 adap->monitor_all_cnt--;
2129 if (adap->monitor_all_cnt == 0)
2130 WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
2131 }
2132
2133 /*
2134 * Helper functions to keep track of the 'monitor pin' use count.
2135 *
2136 * These functions are called with adap->lock held.
2137 */
cec_monitor_pin_cnt_inc(struct cec_adapter * adap)2138 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2139 {
2140 int ret = 0;
2141
2142 if (adap->monitor_pin_cnt == 0)
2143 ret = call_op(adap, adap_monitor_pin_enable, 1);
2144 if (ret == 0)
2145 adap->monitor_pin_cnt++;
2146 return ret;
2147 }
2148
cec_monitor_pin_cnt_dec(struct cec_adapter * adap)2149 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2150 {
2151 adap->monitor_pin_cnt--;
2152 if (adap->monitor_pin_cnt == 0)
2153 WARN_ON(call_op(adap, adap_monitor_pin_enable, 0));
2154 }
2155
2156 #ifdef CONFIG_DEBUG_FS
2157 /*
2158 * Log the current state of the CEC adapter.
2159 * Very useful for debugging.
2160 */
cec_adap_status(struct seq_file * file,void * priv)2161 int cec_adap_status(struct seq_file *file, void *priv)
2162 {
2163 struct cec_adapter *adap = dev_get_drvdata(file->private);
2164 struct cec_data *data;
2165
2166 mutex_lock(&adap->lock);
2167 seq_printf(file, "configured: %d\n", adap->is_configured);
2168 seq_printf(file, "configuring: %d\n", adap->is_configuring);
2169 seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2170 cec_phys_addr_exp(adap->phys_addr));
2171 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2172 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2173 if (adap->cec_follower)
2174 seq_printf(file, "has CEC follower%s\n",
2175 adap->passthrough ? " (in passthrough mode)" : "");
2176 if (adap->cec_initiator)
2177 seq_puts(file, "has CEC initiator\n");
2178 if (adap->monitor_all_cnt)
2179 seq_printf(file, "file handles in Monitor All mode: %u\n",
2180 adap->monitor_all_cnt);
2181 if (adap->tx_timeouts) {
2182 seq_printf(file, "transmit timeouts: %u\n",
2183 adap->tx_timeouts);
2184 adap->tx_timeouts = 0;
2185 }
2186 data = adap->transmitting;
2187 if (data)
2188 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2189 data->msg.len, data->msg.msg, data->msg.reply,
2190 data->msg.timeout);
2191 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2192 list_for_each_entry(data, &adap->transmit_queue, list) {
2193 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2194 data->msg.len, data->msg.msg, data->msg.reply,
2195 data->msg.timeout);
2196 }
2197 list_for_each_entry(data, &adap->wait_queue, list) {
2198 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2199 data->msg.len, data->msg.msg, data->msg.reply,
2200 data->msg.timeout);
2201 }
2202
2203 call_void_op(adap, adap_status, file);
2204 mutex_unlock(&adap->lock);
2205 return 0;
2206 }
2207 #endif
2208