• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/sched/deadline.h>
60 #include <linux/psi.h>
61 #include <net/sock.h>
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/cgroup.h>
65 #undef CREATE_TRACE_POINTS
66 
67 #include <trace/hooks/cgroup.h>
68 
69 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
70 					 MAX_CFTYPE_NAME + 2)
71 /* let's not notify more than 100 times per second */
72 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
73 
74 /*
75  * To avoid confusing the compiler (and generating warnings) with code
76  * that attempts to access what would be a 0-element array (i.e. sized
77  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
78  * constant expression can be added.
79  */
80 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
81 
82 /*
83  * cgroup_mutex is the master lock.  Any modification to cgroup or its
84  * hierarchy must be performed while holding it.
85  *
86  * css_set_lock protects task->cgroups pointer, the list of css_set
87  * objects, and the chain of tasks off each css_set.
88  *
89  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
90  * cgroup.h can use them for lockdep annotations.
91  */
92 DEFINE_MUTEX(cgroup_mutex);
93 DEFINE_SPINLOCK(css_set_lock);
94 
95 #ifdef CONFIG_PROVE_RCU
96 EXPORT_SYMBOL_GPL(cgroup_mutex);
97 EXPORT_SYMBOL_GPL(css_set_lock);
98 #endif
99 
100 DEFINE_SPINLOCK(trace_cgroup_path_lock);
101 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
102 bool cgroup_debug __read_mostly;
103 
104 /*
105  * Protects cgroup_idr and css_idr so that IDs can be released without
106  * grabbing cgroup_mutex.
107  */
108 static DEFINE_SPINLOCK(cgroup_idr_lock);
109 
110 /*
111  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
112  * against file removal/re-creation across css hiding.
113  */
114 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
115 
116 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
117 
118 #define cgroup_assert_mutex_or_rcu_locked()				\
119 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
120 			   !lockdep_is_held(&cgroup_mutex),		\
121 			   "cgroup_mutex or RCU read lock required");
122 
123 /*
124  * cgroup destruction makes heavy use of work items and there can be a lot
125  * of concurrent destructions.  Use a separate workqueue so that cgroup
126  * destruction work items don't end up filling up max_active of system_wq
127  * which may lead to deadlock.
128  */
129 static struct workqueue_struct *cgroup_destroy_wq;
130 
131 /* generate an array of cgroup subsystem pointers */
132 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
133 struct cgroup_subsys *cgroup_subsys[] = {
134 #include <linux/cgroup_subsys.h>
135 };
136 #undef SUBSYS
137 
138 /* array of cgroup subsystem names */
139 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
140 static const char *cgroup_subsys_name[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144 
145 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
146 #define SUBSYS(_x)								\
147 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
148 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
149 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
150 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
151 #include <linux/cgroup_subsys.h>
152 #undef SUBSYS
153 
154 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
155 static struct static_key_true *cgroup_subsys_enabled_key[] = {
156 #include <linux/cgroup_subsys.h>
157 };
158 #undef SUBSYS
159 
160 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
161 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
162 #include <linux/cgroup_subsys.h>
163 };
164 #undef SUBSYS
165 
166 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
167 
168 /* the default hierarchy */
169 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
170 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
171 
172 /*
173  * The default hierarchy always exists but is hidden until mounted for the
174  * first time.  This is for backward compatibility.
175  */
176 static bool cgrp_dfl_visible;
177 
178 /* some controllers are not supported in the default hierarchy */
179 static u16 cgrp_dfl_inhibit_ss_mask;
180 
181 /* some controllers are implicitly enabled on the default hierarchy */
182 static u16 cgrp_dfl_implicit_ss_mask;
183 
184 /* some controllers can be threaded on the default hierarchy */
185 static u16 cgrp_dfl_threaded_ss_mask;
186 
187 /* The list of hierarchy roots */
188 LIST_HEAD(cgroup_roots);
189 static int cgroup_root_count;
190 
191 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
192 static DEFINE_IDR(cgroup_hierarchy_idr);
193 
194 /*
195  * Assign a monotonically increasing serial number to csses.  It guarantees
196  * cgroups with bigger numbers are newer than those with smaller numbers.
197  * Also, as csses are always appended to the parent's ->children list, it
198  * guarantees that sibling csses are always sorted in the ascending serial
199  * number order on the list.  Protected by cgroup_mutex.
200  */
201 static u64 css_serial_nr_next = 1;
202 
203 /*
204  * These bitmasks identify subsystems with specific features to avoid
205  * having to do iterative checks repeatedly.
206  */
207 static u16 have_fork_callback __read_mostly;
208 static u16 have_exit_callback __read_mostly;
209 static u16 have_release_callback __read_mostly;
210 static u16 have_canfork_callback __read_mostly;
211 
212 /* cgroup namespace for init task */
213 struct cgroup_namespace init_cgroup_ns = {
214 	.ns.count	= REFCOUNT_INIT(2),
215 	.user_ns	= &init_user_ns,
216 	.ns.ops		= &cgroupns_operations,
217 	.ns.inum	= PROC_CGROUP_INIT_INO,
218 	.root_cset	= &init_css_set,
219 };
220 
221 static struct file_system_type cgroup2_fs_type;
222 static struct cftype cgroup_base_files[];
223 
224 /* cgroup optional features */
225 enum cgroup_opt_features {
226 #ifdef CONFIG_PSI
227 	OPT_FEATURE_PRESSURE,
228 #endif
229 	OPT_FEATURE_COUNT
230 };
231 
232 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
233 #ifdef CONFIG_PSI
234 	"pressure",
235 #endif
236 };
237 
238 static u16 cgroup_feature_disable_mask __read_mostly;
239 
240 static int cgroup_apply_control(struct cgroup *cgrp);
241 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
242 static void css_task_iter_skip(struct css_task_iter *it,
243 			       struct task_struct *task);
244 static int cgroup_destroy_locked(struct cgroup *cgrp);
245 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
246 					      struct cgroup_subsys *ss);
247 static void css_release(struct percpu_ref *ref);
248 static void kill_css(struct cgroup_subsys_state *css);
249 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
250 			      struct cgroup *cgrp, struct cftype cfts[],
251 			      bool is_add);
252 
253 /**
254  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
255  * @ssid: subsys ID of interest
256  *
257  * cgroup_subsys_enabled() can only be used with literal subsys names which
258  * is fine for individual subsystems but unsuitable for cgroup core.  This
259  * is slower static_key_enabled() based test indexed by @ssid.
260  */
cgroup_ssid_enabled(int ssid)261 bool cgroup_ssid_enabled(int ssid)
262 {
263 	if (!CGROUP_HAS_SUBSYS_CONFIG)
264 		return false;
265 
266 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
267 }
268 
269 /**
270  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
271  * @cgrp: the cgroup of interest
272  *
273  * The default hierarchy is the v2 interface of cgroup and this function
274  * can be used to test whether a cgroup is on the default hierarchy for
275  * cases where a subsystem should behave differently depending on the
276  * interface version.
277  *
278  * List of changed behaviors:
279  *
280  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
281  *   and "name" are disallowed.
282  *
283  * - When mounting an existing superblock, mount options should match.
284  *
285  * - Remount is disallowed.
286  *
287  * - rename(2) is disallowed.
288  *
289  * - "tasks" is removed.  Everything should be at process granularity.  Use
290  *   "cgroup.procs" instead.
291  *
292  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
293  *   recycled in-between reads.
294  *
295  * - "release_agent" and "notify_on_release" are removed.  Replacement
296  *   notification mechanism will be implemented.
297  *
298  * - "cgroup.clone_children" is removed.
299  *
300  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
301  *   and its descendants contain no task; otherwise, 1.  The file also
302  *   generates kernfs notification which can be monitored through poll and
303  *   [di]notify when the value of the file changes.
304  *
305  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
306  *   take masks of ancestors with non-empty cpus/mems, instead of being
307  *   moved to an ancestor.
308  *
309  * - cpuset: a task can be moved into an empty cpuset, and again it takes
310  *   masks of ancestors.
311  *
312  * - blkcg: blk-throttle becomes properly hierarchical.
313  *
314  * - debug: disallowed on the default hierarchy.
315  */
cgroup_on_dfl(const struct cgroup * cgrp)316 bool cgroup_on_dfl(const struct cgroup *cgrp)
317 {
318 	return cgrp->root == &cgrp_dfl_root;
319 }
320 
321 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)322 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
323 			    gfp_t gfp_mask)
324 {
325 	int ret;
326 
327 	idr_preload(gfp_mask);
328 	spin_lock_bh(&cgroup_idr_lock);
329 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
330 	spin_unlock_bh(&cgroup_idr_lock);
331 	idr_preload_end();
332 	return ret;
333 }
334 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)335 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
336 {
337 	void *ret;
338 
339 	spin_lock_bh(&cgroup_idr_lock);
340 	ret = idr_replace(idr, ptr, id);
341 	spin_unlock_bh(&cgroup_idr_lock);
342 	return ret;
343 }
344 
cgroup_idr_remove(struct idr * idr,int id)345 static void cgroup_idr_remove(struct idr *idr, int id)
346 {
347 	spin_lock_bh(&cgroup_idr_lock);
348 	idr_remove(idr, id);
349 	spin_unlock_bh(&cgroup_idr_lock);
350 }
351 
cgroup_has_tasks(struct cgroup * cgrp)352 static bool cgroup_has_tasks(struct cgroup *cgrp)
353 {
354 	return cgrp->nr_populated_csets;
355 }
356 
cgroup_is_threaded(struct cgroup * cgrp)357 bool cgroup_is_threaded(struct cgroup *cgrp)
358 {
359 	return cgrp->dom_cgrp != cgrp;
360 }
361 
362 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)363 static bool cgroup_is_mixable(struct cgroup *cgrp)
364 {
365 	/*
366 	 * Root isn't under domain level resource control exempting it from
367 	 * the no-internal-process constraint, so it can serve as a thread
368 	 * root and a parent of resource domains at the same time.
369 	 */
370 	return !cgroup_parent(cgrp);
371 }
372 
373 /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)374 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
375 {
376 	/* mixables don't care */
377 	if (cgroup_is_mixable(cgrp))
378 		return true;
379 
380 	/* domain roots can't be nested under threaded */
381 	if (cgroup_is_threaded(cgrp))
382 		return false;
383 
384 	/* can only have either domain or threaded children */
385 	if (cgrp->nr_populated_domain_children)
386 		return false;
387 
388 	/* and no domain controllers can be enabled */
389 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
390 		return false;
391 
392 	return true;
393 }
394 
395 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)396 bool cgroup_is_thread_root(struct cgroup *cgrp)
397 {
398 	/* thread root should be a domain */
399 	if (cgroup_is_threaded(cgrp))
400 		return false;
401 
402 	/* a domain w/ threaded children is a thread root */
403 	if (cgrp->nr_threaded_children)
404 		return true;
405 
406 	/*
407 	 * A domain which has tasks and explicit threaded controllers
408 	 * enabled is a thread root.
409 	 */
410 	if (cgroup_has_tasks(cgrp) &&
411 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
412 		return true;
413 
414 	return false;
415 }
416 
417 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)418 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
419 {
420 	/* the cgroup itself can be a thread root */
421 	if (cgroup_is_threaded(cgrp))
422 		return false;
423 
424 	/* but the ancestors can't be unless mixable */
425 	while ((cgrp = cgroup_parent(cgrp))) {
426 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
427 			return false;
428 		if (cgroup_is_threaded(cgrp))
429 			return false;
430 	}
431 
432 	return true;
433 }
434 
435 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)436 static u16 cgroup_control(struct cgroup *cgrp)
437 {
438 	struct cgroup *parent = cgroup_parent(cgrp);
439 	u16 root_ss_mask = cgrp->root->subsys_mask;
440 
441 	if (parent) {
442 		u16 ss_mask = parent->subtree_control;
443 
444 		/* threaded cgroups can only have threaded controllers */
445 		if (cgroup_is_threaded(cgrp))
446 			ss_mask &= cgrp_dfl_threaded_ss_mask;
447 		return ss_mask;
448 	}
449 
450 	if (cgroup_on_dfl(cgrp))
451 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
452 				  cgrp_dfl_implicit_ss_mask);
453 	return root_ss_mask;
454 }
455 
456 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)457 static u16 cgroup_ss_mask(struct cgroup *cgrp)
458 {
459 	struct cgroup *parent = cgroup_parent(cgrp);
460 
461 	if (parent) {
462 		u16 ss_mask = parent->subtree_ss_mask;
463 
464 		/* threaded cgroups can only have threaded controllers */
465 		if (cgroup_is_threaded(cgrp))
466 			ss_mask &= cgrp_dfl_threaded_ss_mask;
467 		return ss_mask;
468 	}
469 
470 	return cgrp->root->subsys_mask;
471 }
472 
473 /**
474  * cgroup_css - obtain a cgroup's css for the specified subsystem
475  * @cgrp: the cgroup of interest
476  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
477  *
478  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
479  * function must be called either under cgroup_mutex or rcu_read_lock() and
480  * the caller is responsible for pinning the returned css if it wants to
481  * keep accessing it outside the said locks.  This function may return
482  * %NULL if @cgrp doesn't have @subsys_id enabled.
483  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)484 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
485 					      struct cgroup_subsys *ss)
486 {
487 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
488 		return rcu_dereference_check(cgrp->subsys[ss->id],
489 					lockdep_is_held(&cgroup_mutex));
490 	else
491 		return &cgrp->self;
492 }
493 
494 /**
495  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
496  * @cgrp: the cgroup of interest
497  * @ss: the subsystem of interest
498  *
499  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
500  * or is offline, %NULL is returned.
501  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)502 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
503 						     struct cgroup_subsys *ss)
504 {
505 	struct cgroup_subsys_state *css;
506 
507 	rcu_read_lock();
508 	css = cgroup_css(cgrp, ss);
509 	if (css && !css_tryget_online(css))
510 		css = NULL;
511 	rcu_read_unlock();
512 
513 	return css;
514 }
515 
516 /**
517  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
518  * @cgrp: the cgroup of interest
519  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
520  *
521  * Similar to cgroup_css() but returns the effective css, which is defined
522  * as the matching css of the nearest ancestor including self which has @ss
523  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
524  * function is guaranteed to return non-NULL css.
525  */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)526 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
527 							struct cgroup_subsys *ss)
528 {
529 	lockdep_assert_held(&cgroup_mutex);
530 
531 	if (!ss)
532 		return &cgrp->self;
533 
534 	/*
535 	 * This function is used while updating css associations and thus
536 	 * can't test the csses directly.  Test ss_mask.
537 	 */
538 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
539 		cgrp = cgroup_parent(cgrp);
540 		if (!cgrp)
541 			return NULL;
542 	}
543 
544 	return cgroup_css(cgrp, ss);
545 }
546 
547 /**
548  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
549  * @cgrp: the cgroup of interest
550  * @ss: the subsystem of interest
551  *
552  * Find and get the effective css of @cgrp for @ss.  The effective css is
553  * defined as the matching css of the nearest ancestor including self which
554  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
555  * the root css is returned, so this function always returns a valid css.
556  *
557  * The returned css is not guaranteed to be online, and therefore it is the
558  * callers responsibility to try get a reference for it.
559  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)560 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
561 					 struct cgroup_subsys *ss)
562 {
563 	struct cgroup_subsys_state *css;
564 
565 	if (!CGROUP_HAS_SUBSYS_CONFIG)
566 		return NULL;
567 
568 	do {
569 		css = cgroup_css(cgrp, ss);
570 
571 		if (css)
572 			return css;
573 		cgrp = cgroup_parent(cgrp);
574 	} while (cgrp);
575 
576 	return init_css_set.subsys[ss->id];
577 }
578 
579 /**
580  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
581  * @cgrp: the cgroup of interest
582  * @ss: the subsystem of interest
583  *
584  * Find and get the effective css of @cgrp for @ss.  The effective css is
585  * defined as the matching css of the nearest ancestor including self which
586  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
587  * the root css is returned, so this function always returns a valid css.
588  * The returned css must be put using css_put().
589  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)590 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
591 					     struct cgroup_subsys *ss)
592 {
593 	struct cgroup_subsys_state *css;
594 
595 	if (!CGROUP_HAS_SUBSYS_CONFIG)
596 		return NULL;
597 
598 	rcu_read_lock();
599 
600 	do {
601 		css = cgroup_css(cgrp, ss);
602 
603 		if (css && css_tryget_online(css))
604 			goto out_unlock;
605 		cgrp = cgroup_parent(cgrp);
606 	} while (cgrp);
607 
608 	css = init_css_set.subsys[ss->id];
609 	css_get(css);
610 out_unlock:
611 	rcu_read_unlock();
612 	return css;
613 }
614 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
615 
cgroup_get_live(struct cgroup * cgrp)616 static void cgroup_get_live(struct cgroup *cgrp)
617 {
618 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
619 	css_get(&cgrp->self);
620 }
621 
622 /**
623  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
624  * is responsible for taking the css_set_lock.
625  * @cgrp: the cgroup in question
626  */
__cgroup_task_count(const struct cgroup * cgrp)627 int __cgroup_task_count(const struct cgroup *cgrp)
628 {
629 	int count = 0;
630 	struct cgrp_cset_link *link;
631 
632 	lockdep_assert_held(&css_set_lock);
633 
634 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
635 		count += link->cset->nr_tasks;
636 
637 	return count;
638 }
639 
640 /**
641  * cgroup_task_count - count the number of tasks in a cgroup.
642  * @cgrp: the cgroup in question
643  */
cgroup_task_count(const struct cgroup * cgrp)644 int cgroup_task_count(const struct cgroup *cgrp)
645 {
646 	int count;
647 
648 	spin_lock_irq(&css_set_lock);
649 	count = __cgroup_task_count(cgrp);
650 	spin_unlock_irq(&css_set_lock);
651 
652 	return count;
653 }
654 
of_css(struct kernfs_open_file * of)655 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
656 {
657 	struct cgroup *cgrp = of->kn->parent->priv;
658 	struct cftype *cft = of_cft(of);
659 
660 	/*
661 	 * This is open and unprotected implementation of cgroup_css().
662 	 * seq_css() is only called from a kernfs file operation which has
663 	 * an active reference on the file.  Because all the subsystem
664 	 * files are drained before a css is disassociated with a cgroup,
665 	 * the matching css from the cgroup's subsys table is guaranteed to
666 	 * be and stay valid until the enclosing operation is complete.
667 	 */
668 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
669 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
670 	else
671 		return &cgrp->self;
672 }
673 EXPORT_SYMBOL_GPL(of_css);
674 
675 /**
676  * for_each_css - iterate all css's of a cgroup
677  * @css: the iteration cursor
678  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
679  * @cgrp: the target cgroup to iterate css's of
680  *
681  * Should be called under cgroup_[tree_]mutex.
682  */
683 #define for_each_css(css, ssid, cgrp)					\
684 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
685 		if (!((css) = rcu_dereference_check(			\
686 				(cgrp)->subsys[(ssid)],			\
687 				lockdep_is_held(&cgroup_mutex)))) { }	\
688 		else
689 
690 /**
691  * for_each_e_css - iterate all effective css's of a cgroup
692  * @css: the iteration cursor
693  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
694  * @cgrp: the target cgroup to iterate css's of
695  *
696  * Should be called under cgroup_[tree_]mutex.
697  */
698 #define for_each_e_css(css, ssid, cgrp)					    \
699 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
700 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
701 						   cgroup_subsys[(ssid)]))) \
702 			;						    \
703 		else
704 
705 /**
706  * do_each_subsys_mask - filter for_each_subsys with a bitmask
707  * @ss: the iteration cursor
708  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
709  * @ss_mask: the bitmask
710  *
711  * The block will only run for cases where the ssid-th bit (1 << ssid) of
712  * @ss_mask is set.
713  */
714 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
715 	unsigned long __ss_mask = (ss_mask);				\
716 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
717 		(ssid) = 0;						\
718 		break;							\
719 	}								\
720 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
721 		(ss) = cgroup_subsys[ssid];				\
722 		{
723 
724 #define while_each_subsys_mask()					\
725 		}							\
726 	}								\
727 } while (false)
728 
729 /* iterate over child cgrps, lock should be held throughout iteration */
730 #define cgroup_for_each_live_child(child, cgrp)				\
731 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
732 		if (({ lockdep_assert_held(&cgroup_mutex);		\
733 		       cgroup_is_dead(child); }))			\
734 			;						\
735 		else
736 
737 /* walk live descendants in pre order */
738 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
739 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
740 		if (({ lockdep_assert_held(&cgroup_mutex);		\
741 		       (dsct) = (d_css)->cgroup;			\
742 		       cgroup_is_dead(dsct); }))			\
743 			;						\
744 		else
745 
746 /* walk live descendants in postorder */
747 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
748 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
749 		if (({ lockdep_assert_held(&cgroup_mutex);		\
750 		       (dsct) = (d_css)->cgroup;			\
751 		       cgroup_is_dead(dsct); }))			\
752 			;						\
753 		else
754 
755 /*
756  * The default css_set - used by init and its children prior to any
757  * hierarchies being mounted. It contains a pointer to the root state
758  * for each subsystem. Also used to anchor the list of css_sets. Not
759  * reference-counted, to improve performance when child cgroups
760  * haven't been created.
761  */
762 struct css_set init_css_set = {
763 	.refcount		= REFCOUNT_INIT(1),
764 	.dom_cset		= &init_css_set,
765 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
766 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
767 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
768 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
769 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
770 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
771 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
772 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
773 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
774 
775 	/*
776 	 * The following field is re-initialized when this cset gets linked
777 	 * in cgroup_init().  However, let's initialize the field
778 	 * statically too so that the default cgroup can be accessed safely
779 	 * early during boot.
780 	 */
781 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
782 };
783 
784 static int css_set_count	= 1;	/* 1 for init_css_set */
785 
css_set_threaded(struct css_set * cset)786 static bool css_set_threaded(struct css_set *cset)
787 {
788 	return cset->dom_cset != cset;
789 }
790 
791 /**
792  * css_set_populated - does a css_set contain any tasks?
793  * @cset: target css_set
794  *
795  * css_set_populated() should be the same as !!cset->nr_tasks at steady
796  * state. However, css_set_populated() can be called while a task is being
797  * added to or removed from the linked list before the nr_tasks is
798  * properly updated. Hence, we can't just look at ->nr_tasks here.
799  */
css_set_populated(struct css_set * cset)800 static bool css_set_populated(struct css_set *cset)
801 {
802 	lockdep_assert_held(&css_set_lock);
803 
804 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
805 }
806 
807 /**
808  * cgroup_update_populated - update the populated count of a cgroup
809  * @cgrp: the target cgroup
810  * @populated: inc or dec populated count
811  *
812  * One of the css_sets associated with @cgrp is either getting its first
813  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
814  * count is propagated towards root so that a given cgroup's
815  * nr_populated_children is zero iff none of its descendants contain any
816  * tasks.
817  *
818  * @cgrp's interface file "cgroup.populated" is zero if both
819  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
820  * 1 otherwise.  When the sum changes from or to zero, userland is notified
821  * that the content of the interface file has changed.  This can be used to
822  * detect when @cgrp and its descendants become populated or empty.
823  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)824 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
825 {
826 	struct cgroup *child = NULL;
827 	int adj = populated ? 1 : -1;
828 
829 	lockdep_assert_held(&css_set_lock);
830 
831 	do {
832 		bool was_populated = cgroup_is_populated(cgrp);
833 
834 		if (!child) {
835 			cgrp->nr_populated_csets += adj;
836 		} else {
837 			if (cgroup_is_threaded(child))
838 				cgrp->nr_populated_threaded_children += adj;
839 			else
840 				cgrp->nr_populated_domain_children += adj;
841 		}
842 
843 		if (was_populated == cgroup_is_populated(cgrp))
844 			break;
845 
846 		cgroup1_check_for_release(cgrp);
847 		TRACE_CGROUP_PATH(notify_populated, cgrp,
848 				  cgroup_is_populated(cgrp));
849 		cgroup_file_notify(&cgrp->events_file);
850 
851 		child = cgrp;
852 		cgrp = cgroup_parent(cgrp);
853 	} while (cgrp);
854 }
855 
856 /**
857  * css_set_update_populated - update populated state of a css_set
858  * @cset: target css_set
859  * @populated: whether @cset is populated or depopulated
860  *
861  * @cset is either getting the first task or losing the last.  Update the
862  * populated counters of all associated cgroups accordingly.
863  */
css_set_update_populated(struct css_set * cset,bool populated)864 static void css_set_update_populated(struct css_set *cset, bool populated)
865 {
866 	struct cgrp_cset_link *link;
867 
868 	lockdep_assert_held(&css_set_lock);
869 
870 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
871 		cgroup_update_populated(link->cgrp, populated);
872 }
873 
874 /*
875  * @task is leaving, advance task iterators which are pointing to it so
876  * that they can resume at the next position.  Advancing an iterator might
877  * remove it from the list, use safe walk.  See css_task_iter_skip() for
878  * details.
879  */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)880 static void css_set_skip_task_iters(struct css_set *cset,
881 				    struct task_struct *task)
882 {
883 	struct css_task_iter *it, *pos;
884 
885 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
886 		css_task_iter_skip(it, task);
887 }
888 
889 /**
890  * css_set_move_task - move a task from one css_set to another
891  * @task: task being moved
892  * @from_cset: css_set @task currently belongs to (may be NULL)
893  * @to_cset: new css_set @task is being moved to (may be NULL)
894  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
895  *
896  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
897  * css_set, @from_cset can be NULL.  If @task is being disassociated
898  * instead of moved, @to_cset can be NULL.
899  *
900  * This function automatically handles populated counter updates and
901  * css_task_iter adjustments but the caller is responsible for managing
902  * @from_cset and @to_cset's reference counts.
903  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)904 static void css_set_move_task(struct task_struct *task,
905 			      struct css_set *from_cset, struct css_set *to_cset,
906 			      bool use_mg_tasks)
907 {
908 	lockdep_assert_held(&css_set_lock);
909 
910 	if (to_cset && !css_set_populated(to_cset))
911 		css_set_update_populated(to_cset, true);
912 
913 	if (from_cset) {
914 		WARN_ON_ONCE(list_empty(&task->cg_list));
915 
916 		css_set_skip_task_iters(from_cset, task);
917 		list_del_init(&task->cg_list);
918 		if (!css_set_populated(from_cset))
919 			css_set_update_populated(from_cset, false);
920 	} else {
921 		WARN_ON_ONCE(!list_empty(&task->cg_list));
922 	}
923 
924 	if (to_cset) {
925 		/*
926 		 * We are synchronized through cgroup_threadgroup_rwsem
927 		 * against PF_EXITING setting such that we can't race
928 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
929 		 */
930 		WARN_ON_ONCE(task->flags & PF_EXITING);
931 
932 		cgroup_move_task(task, to_cset);
933 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
934 							     &to_cset->tasks);
935 	}
936 }
937 
938 /*
939  * hash table for cgroup groups. This improves the performance to find
940  * an existing css_set. This hash doesn't (currently) take into
941  * account cgroups in empty hierarchies.
942  */
943 #define CSS_SET_HASH_BITS	7
944 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
945 
css_set_hash(struct cgroup_subsys_state * css[])946 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
947 {
948 	unsigned long key = 0UL;
949 	struct cgroup_subsys *ss;
950 	int i;
951 
952 	for_each_subsys(ss, i)
953 		key += (unsigned long)css[i];
954 	key = (key >> 16) ^ key;
955 
956 	return key;
957 }
958 
put_css_set_locked(struct css_set * cset)959 void put_css_set_locked(struct css_set *cset)
960 {
961 	struct cgrp_cset_link *link, *tmp_link;
962 	struct cgroup_subsys *ss;
963 	int ssid;
964 
965 	lockdep_assert_held(&css_set_lock);
966 
967 	if (!refcount_dec_and_test(&cset->refcount))
968 		return;
969 
970 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
971 
972 	/* This css_set is dead. Unlink it and release cgroup and css refs */
973 	for_each_subsys(ss, ssid) {
974 		list_del(&cset->e_cset_node[ssid]);
975 		css_put(cset->subsys[ssid]);
976 	}
977 	hash_del(&cset->hlist);
978 	css_set_count--;
979 
980 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
981 		list_del(&link->cset_link);
982 		list_del(&link->cgrp_link);
983 		if (cgroup_parent(link->cgrp))
984 			cgroup_put(link->cgrp);
985 		kfree(link);
986 	}
987 
988 	if (css_set_threaded(cset)) {
989 		list_del(&cset->threaded_csets_node);
990 		put_css_set_locked(cset->dom_cset);
991 	}
992 
993 	kfree_rcu(cset, rcu_head);
994 }
995 
996 /**
997  * compare_css_sets - helper function for find_existing_css_set().
998  * @cset: candidate css_set being tested
999  * @old_cset: existing css_set for a task
1000  * @new_cgrp: cgroup that's being entered by the task
1001  * @template: desired set of css pointers in css_set (pre-calculated)
1002  *
1003  * Returns true if "cset" matches "old_cset" except for the hierarchy
1004  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1005  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])1006 static bool compare_css_sets(struct css_set *cset,
1007 			     struct css_set *old_cset,
1008 			     struct cgroup *new_cgrp,
1009 			     struct cgroup_subsys_state *template[])
1010 {
1011 	struct cgroup *new_dfl_cgrp;
1012 	struct list_head *l1, *l2;
1013 
1014 	/*
1015 	 * On the default hierarchy, there can be csets which are
1016 	 * associated with the same set of cgroups but different csses.
1017 	 * Let's first ensure that csses match.
1018 	 */
1019 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1020 		return false;
1021 
1022 
1023 	/* @cset's domain should match the default cgroup's */
1024 	if (cgroup_on_dfl(new_cgrp))
1025 		new_dfl_cgrp = new_cgrp;
1026 	else
1027 		new_dfl_cgrp = old_cset->dfl_cgrp;
1028 
1029 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1030 		return false;
1031 
1032 	/*
1033 	 * Compare cgroup pointers in order to distinguish between
1034 	 * different cgroups in hierarchies.  As different cgroups may
1035 	 * share the same effective css, this comparison is always
1036 	 * necessary.
1037 	 */
1038 	l1 = &cset->cgrp_links;
1039 	l2 = &old_cset->cgrp_links;
1040 	while (1) {
1041 		struct cgrp_cset_link *link1, *link2;
1042 		struct cgroup *cgrp1, *cgrp2;
1043 
1044 		l1 = l1->next;
1045 		l2 = l2->next;
1046 		/* See if we reached the end - both lists are equal length. */
1047 		if (l1 == &cset->cgrp_links) {
1048 			BUG_ON(l2 != &old_cset->cgrp_links);
1049 			break;
1050 		} else {
1051 			BUG_ON(l2 == &old_cset->cgrp_links);
1052 		}
1053 		/* Locate the cgroups associated with these links. */
1054 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1055 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1056 		cgrp1 = link1->cgrp;
1057 		cgrp2 = link2->cgrp;
1058 		/* Hierarchies should be linked in the same order. */
1059 		BUG_ON(cgrp1->root != cgrp2->root);
1060 
1061 		/*
1062 		 * If this hierarchy is the hierarchy of the cgroup
1063 		 * that's changing, then we need to check that this
1064 		 * css_set points to the new cgroup; if it's any other
1065 		 * hierarchy, then this css_set should point to the
1066 		 * same cgroup as the old css_set.
1067 		 */
1068 		if (cgrp1->root == new_cgrp->root) {
1069 			if (cgrp1 != new_cgrp)
1070 				return false;
1071 		} else {
1072 			if (cgrp1 != cgrp2)
1073 				return false;
1074 		}
1075 	}
1076 	return true;
1077 }
1078 
1079 /**
1080  * find_existing_css_set - init css array and find the matching css_set
1081  * @old_cset: the css_set that we're using before the cgroup transition
1082  * @cgrp: the cgroup that we're moving into
1083  * @template: out param for the new set of csses, should be clear on entry
1084  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1085 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1086 					struct cgroup *cgrp,
1087 					struct cgroup_subsys_state *template[])
1088 {
1089 	struct cgroup_root *root = cgrp->root;
1090 	struct cgroup_subsys *ss;
1091 	struct css_set *cset;
1092 	unsigned long key;
1093 	int i;
1094 
1095 	/*
1096 	 * Build the set of subsystem state objects that we want to see in the
1097 	 * new css_set. While subsystems can change globally, the entries here
1098 	 * won't change, so no need for locking.
1099 	 */
1100 	for_each_subsys(ss, i) {
1101 		if (root->subsys_mask & (1UL << i)) {
1102 			/*
1103 			 * @ss is in this hierarchy, so we want the
1104 			 * effective css from @cgrp.
1105 			 */
1106 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1107 		} else {
1108 			/*
1109 			 * @ss is not in this hierarchy, so we don't want
1110 			 * to change the css.
1111 			 */
1112 			template[i] = old_cset->subsys[i];
1113 		}
1114 	}
1115 
1116 	key = css_set_hash(template);
1117 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1118 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1119 			continue;
1120 
1121 		/* This css_set matches what we need */
1122 		return cset;
1123 	}
1124 
1125 	/* No existing cgroup group matched */
1126 	return NULL;
1127 }
1128 
free_cgrp_cset_links(struct list_head * links_to_free)1129 static void free_cgrp_cset_links(struct list_head *links_to_free)
1130 {
1131 	struct cgrp_cset_link *link, *tmp_link;
1132 
1133 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1134 		list_del(&link->cset_link);
1135 		kfree(link);
1136 	}
1137 }
1138 
1139 /**
1140  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1141  * @count: the number of links to allocate
1142  * @tmp_links: list_head the allocated links are put on
1143  *
1144  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1145  * through ->cset_link.  Returns 0 on success or -errno.
1146  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1147 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1148 {
1149 	struct cgrp_cset_link *link;
1150 	int i;
1151 
1152 	INIT_LIST_HEAD(tmp_links);
1153 
1154 	for (i = 0; i < count; i++) {
1155 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1156 		if (!link) {
1157 			free_cgrp_cset_links(tmp_links);
1158 			return -ENOMEM;
1159 		}
1160 		list_add(&link->cset_link, tmp_links);
1161 	}
1162 	return 0;
1163 }
1164 
1165 /**
1166  * link_css_set - a helper function to link a css_set to a cgroup
1167  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1168  * @cset: the css_set to be linked
1169  * @cgrp: the destination cgroup
1170  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1171 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1172 			 struct cgroup *cgrp)
1173 {
1174 	struct cgrp_cset_link *link;
1175 
1176 	BUG_ON(list_empty(tmp_links));
1177 
1178 	if (cgroup_on_dfl(cgrp))
1179 		cset->dfl_cgrp = cgrp;
1180 
1181 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1182 	link->cset = cset;
1183 	link->cgrp = cgrp;
1184 
1185 	/*
1186 	 * Always add links to the tail of the lists so that the lists are
1187 	 * in chronological order.
1188 	 */
1189 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1190 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1191 
1192 	if (cgroup_parent(cgrp))
1193 		cgroup_get_live(cgrp);
1194 }
1195 
1196 /**
1197  * find_css_set - return a new css_set with one cgroup updated
1198  * @old_cset: the baseline css_set
1199  * @cgrp: the cgroup to be updated
1200  *
1201  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1202  * substituted into the appropriate hierarchy.
1203  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1204 static struct css_set *find_css_set(struct css_set *old_cset,
1205 				    struct cgroup *cgrp)
1206 {
1207 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1208 	struct css_set *cset;
1209 	struct list_head tmp_links;
1210 	struct cgrp_cset_link *link;
1211 	struct cgroup_subsys *ss;
1212 	unsigned long key;
1213 	int ssid;
1214 
1215 	lockdep_assert_held(&cgroup_mutex);
1216 
1217 	/* First see if we already have a cgroup group that matches
1218 	 * the desired set */
1219 	spin_lock_irq(&css_set_lock);
1220 	cset = find_existing_css_set(old_cset, cgrp, template);
1221 	if (cset)
1222 		get_css_set(cset);
1223 	spin_unlock_irq(&css_set_lock);
1224 
1225 	if (cset)
1226 		return cset;
1227 
1228 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1229 	if (!cset)
1230 		return NULL;
1231 
1232 	/* Allocate all the cgrp_cset_link objects that we'll need */
1233 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1234 		kfree(cset);
1235 		return NULL;
1236 	}
1237 
1238 	refcount_set(&cset->refcount, 1);
1239 	cset->dom_cset = cset;
1240 	INIT_LIST_HEAD(&cset->tasks);
1241 	INIT_LIST_HEAD(&cset->mg_tasks);
1242 	INIT_LIST_HEAD(&cset->dying_tasks);
1243 	INIT_LIST_HEAD(&cset->task_iters);
1244 	INIT_LIST_HEAD(&cset->threaded_csets);
1245 	INIT_HLIST_NODE(&cset->hlist);
1246 	INIT_LIST_HEAD(&cset->cgrp_links);
1247 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1248 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1249 	INIT_LIST_HEAD(&cset->mg_node);
1250 
1251 	/* Copy the set of subsystem state objects generated in
1252 	 * find_existing_css_set() */
1253 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1254 
1255 	spin_lock_irq(&css_set_lock);
1256 	/* Add reference counts and links from the new css_set. */
1257 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1258 		struct cgroup *c = link->cgrp;
1259 
1260 		if (c->root == cgrp->root)
1261 			c = cgrp;
1262 		link_css_set(&tmp_links, cset, c);
1263 	}
1264 
1265 	BUG_ON(!list_empty(&tmp_links));
1266 
1267 	css_set_count++;
1268 
1269 	/* Add @cset to the hash table */
1270 	key = css_set_hash(cset->subsys);
1271 	hash_add(css_set_table, &cset->hlist, key);
1272 
1273 	for_each_subsys(ss, ssid) {
1274 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1275 
1276 		list_add_tail(&cset->e_cset_node[ssid],
1277 			      &css->cgroup->e_csets[ssid]);
1278 		css_get(css);
1279 	}
1280 
1281 	spin_unlock_irq(&css_set_lock);
1282 
1283 	/*
1284 	 * If @cset should be threaded, look up the matching dom_cset and
1285 	 * link them up.  We first fully initialize @cset then look for the
1286 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1287 	 * to stay empty until we return.
1288 	 */
1289 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1290 		struct css_set *dcset;
1291 
1292 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1293 		if (!dcset) {
1294 			put_css_set(cset);
1295 			return NULL;
1296 		}
1297 
1298 		spin_lock_irq(&css_set_lock);
1299 		cset->dom_cset = dcset;
1300 		list_add_tail(&cset->threaded_csets_node,
1301 			      &dcset->threaded_csets);
1302 		spin_unlock_irq(&css_set_lock);
1303 	}
1304 
1305 	return cset;
1306 }
1307 
cgroup_root_from_kf(struct kernfs_root * kf_root)1308 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1309 {
1310 	struct cgroup *root_cgrp = kf_root->kn->priv;
1311 
1312 	return root_cgrp->root;
1313 }
1314 
cgroup_init_root_id(struct cgroup_root * root)1315 static int cgroup_init_root_id(struct cgroup_root *root)
1316 {
1317 	int id;
1318 
1319 	lockdep_assert_held(&cgroup_mutex);
1320 
1321 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1322 	if (id < 0)
1323 		return id;
1324 
1325 	root->hierarchy_id = id;
1326 	return 0;
1327 }
1328 
cgroup_exit_root_id(struct cgroup_root * root)1329 static void cgroup_exit_root_id(struct cgroup_root *root)
1330 {
1331 	lockdep_assert_held(&cgroup_mutex);
1332 
1333 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1334 }
1335 
cgroup_free_root(struct cgroup_root * root)1336 void cgroup_free_root(struct cgroup_root *root)
1337 {
1338 	kfree(root);
1339 }
1340 
cgroup_destroy_root(struct cgroup_root * root)1341 static void cgroup_destroy_root(struct cgroup_root *root)
1342 {
1343 	struct cgroup *cgrp = &root->cgrp;
1344 	struct cgrp_cset_link *link, *tmp_link;
1345 
1346 	trace_cgroup_destroy_root(root);
1347 
1348 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1349 
1350 	BUG_ON(atomic_read(&root->nr_cgrps));
1351 	BUG_ON(!list_empty(&cgrp->self.children));
1352 
1353 	/* Rebind all subsystems back to the default hierarchy */
1354 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1355 
1356 	/*
1357 	 * Release all the links from cset_links to this hierarchy's
1358 	 * root cgroup
1359 	 */
1360 	spin_lock_irq(&css_set_lock);
1361 
1362 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1363 		list_del(&link->cset_link);
1364 		list_del(&link->cgrp_link);
1365 		kfree(link);
1366 	}
1367 
1368 	spin_unlock_irq(&css_set_lock);
1369 
1370 	if (!list_empty(&root->root_list)) {
1371 		list_del(&root->root_list);
1372 		cgroup_root_count--;
1373 	}
1374 
1375 	cgroup_exit_root_id(root);
1376 
1377 	mutex_unlock(&cgroup_mutex);
1378 
1379 	cgroup_rstat_exit(cgrp);
1380 	kernfs_destroy_root(root->kf_root);
1381 	cgroup_free_root(root);
1382 }
1383 
1384 /*
1385  * look up cgroup associated with current task's cgroup namespace on the
1386  * specified hierarchy
1387  */
1388 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1389 current_cgns_cgroup_from_root(struct cgroup_root *root)
1390 {
1391 	struct cgroup *res = NULL;
1392 	struct css_set *cset;
1393 
1394 	lockdep_assert_held(&css_set_lock);
1395 
1396 	rcu_read_lock();
1397 
1398 	cset = current->nsproxy->cgroup_ns->root_cset;
1399 	if (cset == &init_css_set) {
1400 		res = &root->cgrp;
1401 	} else if (root == &cgrp_dfl_root) {
1402 		res = cset->dfl_cgrp;
1403 	} else {
1404 		struct cgrp_cset_link *link;
1405 
1406 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1407 			struct cgroup *c = link->cgrp;
1408 
1409 			if (c->root == root) {
1410 				res = c;
1411 				break;
1412 			}
1413 		}
1414 	}
1415 	rcu_read_unlock();
1416 
1417 	BUG_ON(!res);
1418 	return res;
1419 }
1420 
1421 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1422 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1423 					    struct cgroup_root *root)
1424 {
1425 	struct cgroup *res = NULL;
1426 
1427 	lockdep_assert_held(&cgroup_mutex);
1428 	lockdep_assert_held(&css_set_lock);
1429 
1430 	if (cset == &init_css_set) {
1431 		res = &root->cgrp;
1432 	} else if (root == &cgrp_dfl_root) {
1433 		res = cset->dfl_cgrp;
1434 	} else {
1435 		struct cgrp_cset_link *link;
1436 
1437 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1438 			struct cgroup *c = link->cgrp;
1439 
1440 			if (c->root == root) {
1441 				res = c;
1442 				break;
1443 			}
1444 		}
1445 	}
1446 
1447 	BUG_ON(!res);
1448 	return res;
1449 }
1450 
1451 /*
1452  * Return the cgroup for "task" from the given hierarchy. Must be
1453  * called with cgroup_mutex and css_set_lock held.
1454  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1455 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1456 				     struct cgroup_root *root)
1457 {
1458 	/*
1459 	 * No need to lock the task - since we hold css_set_lock the
1460 	 * task can't change groups.
1461 	 */
1462 	return cset_cgroup_from_root(task_css_set(task), root);
1463 }
1464 
1465 /*
1466  * A task must hold cgroup_mutex to modify cgroups.
1467  *
1468  * Any task can increment and decrement the count field without lock.
1469  * So in general, code holding cgroup_mutex can't rely on the count
1470  * field not changing.  However, if the count goes to zero, then only
1471  * cgroup_attach_task() can increment it again.  Because a count of zero
1472  * means that no tasks are currently attached, therefore there is no
1473  * way a task attached to that cgroup can fork (the other way to
1474  * increment the count).  So code holding cgroup_mutex can safely
1475  * assume that if the count is zero, it will stay zero. Similarly, if
1476  * a task holds cgroup_mutex on a cgroup with zero count, it
1477  * knows that the cgroup won't be removed, as cgroup_rmdir()
1478  * needs that mutex.
1479  *
1480  * A cgroup can only be deleted if both its 'count' of using tasks
1481  * is zero, and its list of 'children' cgroups is empty.  Since all
1482  * tasks in the system use _some_ cgroup, and since there is always at
1483  * least one task in the system (init, pid == 1), therefore, root cgroup
1484  * always has either children cgroups and/or using tasks.  So we don't
1485  * need a special hack to ensure that root cgroup cannot be deleted.
1486  *
1487  * P.S.  One more locking exception.  RCU is used to guard the
1488  * update of a tasks cgroup pointer by cgroup_attach_task()
1489  */
1490 
1491 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1492 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1493 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1494 			      char *buf)
1495 {
1496 	struct cgroup_subsys *ss = cft->ss;
1497 
1498 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1499 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1500 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1501 
1502 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1503 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1504 			 cft->name);
1505 	} else {
1506 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1507 	}
1508 	return buf;
1509 }
1510 
1511 /**
1512  * cgroup_file_mode - deduce file mode of a control file
1513  * @cft: the control file in question
1514  *
1515  * S_IRUGO for read, S_IWUSR for write.
1516  */
cgroup_file_mode(const struct cftype * cft)1517 static umode_t cgroup_file_mode(const struct cftype *cft)
1518 {
1519 	umode_t mode = 0;
1520 
1521 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1522 		mode |= S_IRUGO;
1523 
1524 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1525 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1526 			mode |= S_IWUGO;
1527 		else
1528 			mode |= S_IWUSR;
1529 	}
1530 
1531 	return mode;
1532 }
1533 
1534 /**
1535  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1536  * @subtree_control: the new subtree_control mask to consider
1537  * @this_ss_mask: available subsystems
1538  *
1539  * On the default hierarchy, a subsystem may request other subsystems to be
1540  * enabled together through its ->depends_on mask.  In such cases, more
1541  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1542  *
1543  * This function calculates which subsystems need to be enabled if
1544  * @subtree_control is to be applied while restricted to @this_ss_mask.
1545  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1546 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1547 {
1548 	u16 cur_ss_mask = subtree_control;
1549 	struct cgroup_subsys *ss;
1550 	int ssid;
1551 
1552 	lockdep_assert_held(&cgroup_mutex);
1553 
1554 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1555 
1556 	while (true) {
1557 		u16 new_ss_mask = cur_ss_mask;
1558 
1559 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1560 			new_ss_mask |= ss->depends_on;
1561 		} while_each_subsys_mask();
1562 
1563 		/*
1564 		 * Mask out subsystems which aren't available.  This can
1565 		 * happen only if some depended-upon subsystems were bound
1566 		 * to non-default hierarchies.
1567 		 */
1568 		new_ss_mask &= this_ss_mask;
1569 
1570 		if (new_ss_mask == cur_ss_mask)
1571 			break;
1572 		cur_ss_mask = new_ss_mask;
1573 	}
1574 
1575 	return cur_ss_mask;
1576 }
1577 
1578 /**
1579  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1580  * @kn: the kernfs_node being serviced
1581  *
1582  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1583  * the method finishes if locking succeeded.  Note that once this function
1584  * returns the cgroup returned by cgroup_kn_lock_live() may become
1585  * inaccessible any time.  If the caller intends to continue to access the
1586  * cgroup, it should pin it before invoking this function.
1587  */
cgroup_kn_unlock(struct kernfs_node * kn)1588 void cgroup_kn_unlock(struct kernfs_node *kn)
1589 {
1590 	struct cgroup *cgrp;
1591 
1592 	if (kernfs_type(kn) == KERNFS_DIR)
1593 		cgrp = kn->priv;
1594 	else
1595 		cgrp = kn->parent->priv;
1596 
1597 	mutex_unlock(&cgroup_mutex);
1598 
1599 	kernfs_unbreak_active_protection(kn);
1600 	cgroup_put(cgrp);
1601 }
1602 
1603 /**
1604  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1605  * @kn: the kernfs_node being serviced
1606  * @drain_offline: perform offline draining on the cgroup
1607  *
1608  * This helper is to be used by a cgroup kernfs method currently servicing
1609  * @kn.  It breaks the active protection, performs cgroup locking and
1610  * verifies that the associated cgroup is alive.  Returns the cgroup if
1611  * alive; otherwise, %NULL.  A successful return should be undone by a
1612  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1613  * cgroup is drained of offlining csses before return.
1614  *
1615  * Any cgroup kernfs method implementation which requires locking the
1616  * associated cgroup should use this helper.  It avoids nesting cgroup
1617  * locking under kernfs active protection and allows all kernfs operations
1618  * including self-removal.
1619  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1620 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1621 {
1622 	struct cgroup *cgrp;
1623 
1624 	if (kernfs_type(kn) == KERNFS_DIR)
1625 		cgrp = kn->priv;
1626 	else
1627 		cgrp = kn->parent->priv;
1628 
1629 	/*
1630 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1631 	 * active_ref.  cgroup liveliness check alone provides enough
1632 	 * protection against removal.  Ensure @cgrp stays accessible and
1633 	 * break the active_ref protection.
1634 	 */
1635 	if (!cgroup_tryget(cgrp))
1636 		return NULL;
1637 	kernfs_break_active_protection(kn);
1638 
1639 	if (drain_offline)
1640 		cgroup_lock_and_drain_offline(cgrp);
1641 	else
1642 		mutex_lock(&cgroup_mutex);
1643 
1644 	if (!cgroup_is_dead(cgrp))
1645 		return cgrp;
1646 
1647 	cgroup_kn_unlock(kn);
1648 	return NULL;
1649 }
1650 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1651 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1652 {
1653 	char name[CGROUP_FILE_NAME_MAX];
1654 
1655 	lockdep_assert_held(&cgroup_mutex);
1656 
1657 	if (cft->file_offset) {
1658 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1659 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1660 
1661 		spin_lock_irq(&cgroup_file_kn_lock);
1662 		cfile->kn = NULL;
1663 		spin_unlock_irq(&cgroup_file_kn_lock);
1664 
1665 		del_timer_sync(&cfile->notify_timer);
1666 	}
1667 
1668 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1669 }
1670 
1671 /**
1672  * css_clear_dir - remove subsys files in a cgroup directory
1673  * @css: target css
1674  */
css_clear_dir(struct cgroup_subsys_state * css)1675 static void css_clear_dir(struct cgroup_subsys_state *css)
1676 {
1677 	struct cgroup *cgrp = css->cgroup;
1678 	struct cftype *cfts;
1679 
1680 	if (!(css->flags & CSS_VISIBLE))
1681 		return;
1682 
1683 	css->flags &= ~CSS_VISIBLE;
1684 
1685 	if (!css->ss) {
1686 		if (cgroup_on_dfl(cgrp))
1687 			cfts = cgroup_base_files;
1688 		else
1689 			cfts = cgroup1_base_files;
1690 
1691 		cgroup_addrm_files(css, cgrp, cfts, false);
1692 	} else {
1693 		list_for_each_entry(cfts, &css->ss->cfts, node)
1694 			cgroup_addrm_files(css, cgrp, cfts, false);
1695 	}
1696 }
1697 
1698 /**
1699  * css_populate_dir - create subsys files in a cgroup directory
1700  * @css: target css
1701  *
1702  * On failure, no file is added.
1703  */
css_populate_dir(struct cgroup_subsys_state * css)1704 static int css_populate_dir(struct cgroup_subsys_state *css)
1705 {
1706 	struct cgroup *cgrp = css->cgroup;
1707 	struct cftype *cfts, *failed_cfts;
1708 	int ret;
1709 
1710 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1711 		return 0;
1712 
1713 	if (!css->ss) {
1714 		if (cgroup_on_dfl(cgrp))
1715 			cfts = cgroup_base_files;
1716 		else
1717 			cfts = cgroup1_base_files;
1718 
1719 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1720 		if (ret < 0)
1721 			return ret;
1722 	} else {
1723 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1724 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1725 			if (ret < 0) {
1726 				failed_cfts = cfts;
1727 				goto err;
1728 			}
1729 		}
1730 	}
1731 
1732 	css->flags |= CSS_VISIBLE;
1733 
1734 	return 0;
1735 err:
1736 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1737 		if (cfts == failed_cfts)
1738 			break;
1739 		cgroup_addrm_files(css, cgrp, cfts, false);
1740 	}
1741 	return ret;
1742 }
1743 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1744 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1745 {
1746 	struct cgroup *dcgrp = &dst_root->cgrp;
1747 	struct cgroup_subsys *ss;
1748 	int ssid, ret;
1749 	u16 dfl_disable_ss_mask = 0;
1750 
1751 	lockdep_assert_held(&cgroup_mutex);
1752 
1753 	do_each_subsys_mask(ss, ssid, ss_mask) {
1754 		/*
1755 		 * If @ss has non-root csses attached to it, can't move.
1756 		 * If @ss is an implicit controller, it is exempt from this
1757 		 * rule and can be stolen.
1758 		 */
1759 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1760 		    !ss->implicit_on_dfl)
1761 			return -EBUSY;
1762 
1763 		/* can't move between two non-dummy roots either */
1764 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1765 			return -EBUSY;
1766 
1767 		/*
1768 		 * Collect ssid's that need to be disabled from default
1769 		 * hierarchy.
1770 		 */
1771 		if (ss->root == &cgrp_dfl_root)
1772 			dfl_disable_ss_mask |= 1 << ssid;
1773 
1774 	} while_each_subsys_mask();
1775 
1776 	if (dfl_disable_ss_mask) {
1777 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1778 
1779 		/*
1780 		 * Controllers from default hierarchy that need to be rebound
1781 		 * are all disabled together in one go.
1782 		 */
1783 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1784 		WARN_ON(cgroup_apply_control(scgrp));
1785 		cgroup_finalize_control(scgrp, 0);
1786 	}
1787 
1788 	do_each_subsys_mask(ss, ssid, ss_mask) {
1789 		struct cgroup_root *src_root = ss->root;
1790 		struct cgroup *scgrp = &src_root->cgrp;
1791 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1792 		struct css_set *cset, *cset_pos;
1793 		struct css_task_iter *it;
1794 
1795 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1796 
1797 		if (src_root != &cgrp_dfl_root) {
1798 			/* disable from the source */
1799 			src_root->subsys_mask &= ~(1 << ssid);
1800 			WARN_ON(cgroup_apply_control(scgrp));
1801 			cgroup_finalize_control(scgrp, 0);
1802 		}
1803 
1804 		/* rebind */
1805 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1806 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1807 		ss->root = dst_root;
1808 		css->cgroup = dcgrp;
1809 
1810 		spin_lock_irq(&css_set_lock);
1811 		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1812 		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1813 					 e_cset_node[ss->id]) {
1814 			list_move_tail(&cset->e_cset_node[ss->id],
1815 				       &dcgrp->e_csets[ss->id]);
1816 			/*
1817 			 * all css_sets of scgrp together in same order to dcgrp,
1818 			 * patch in-flight iterators to preserve correct iteration.
1819 			 * since the iterator is always advanced right away and
1820 			 * finished when it->cset_pos meets it->cset_head, so only
1821 			 * update it->cset_head is enough here.
1822 			 */
1823 			list_for_each_entry(it, &cset->task_iters, iters_node)
1824 				if (it->cset_head == &scgrp->e_csets[ss->id])
1825 					it->cset_head = &dcgrp->e_csets[ss->id];
1826 		}
1827 		spin_unlock_irq(&css_set_lock);
1828 
1829 		if (ss->css_rstat_flush) {
1830 			list_del_rcu(&css->rstat_css_node);
1831 			synchronize_rcu();
1832 			list_add_rcu(&css->rstat_css_node,
1833 				     &dcgrp->rstat_css_list);
1834 		}
1835 
1836 		/* default hierarchy doesn't enable controllers by default */
1837 		dst_root->subsys_mask |= 1 << ssid;
1838 		if (dst_root == &cgrp_dfl_root) {
1839 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1840 		} else {
1841 			dcgrp->subtree_control |= 1 << ssid;
1842 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1843 		}
1844 
1845 		ret = cgroup_apply_control(dcgrp);
1846 		if (ret)
1847 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1848 				ss->name, ret);
1849 
1850 		if (ss->bind)
1851 			ss->bind(css);
1852 	} while_each_subsys_mask();
1853 
1854 	kernfs_activate(dcgrp->kn);
1855 	return 0;
1856 }
1857 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1858 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1859 		     struct kernfs_root *kf_root)
1860 {
1861 	int len = 0;
1862 	char *buf = NULL;
1863 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1864 	struct cgroup *ns_cgroup;
1865 
1866 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1867 	if (!buf)
1868 		return -ENOMEM;
1869 
1870 	spin_lock_irq(&css_set_lock);
1871 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1872 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1873 	spin_unlock_irq(&css_set_lock);
1874 
1875 	if (len >= PATH_MAX)
1876 		len = -ERANGE;
1877 	else if (len > 0) {
1878 		seq_escape(sf, buf, " \t\n\\");
1879 		len = 0;
1880 	}
1881 	kfree(buf);
1882 	return len;
1883 }
1884 
1885 enum cgroup2_param {
1886 	Opt_nsdelegate,
1887 	Opt_memory_localevents,
1888 	Opt_memory_recursiveprot,
1889 	nr__cgroup2_params
1890 };
1891 
1892 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1893 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1894 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1895 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1896 	{}
1897 };
1898 
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1899 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1900 {
1901 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1902 	struct fs_parse_result result;
1903 	int opt;
1904 
1905 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1906 	if (opt < 0)
1907 		return opt;
1908 
1909 	switch (opt) {
1910 	case Opt_nsdelegate:
1911 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1912 		return 0;
1913 	case Opt_memory_localevents:
1914 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1915 		return 0;
1916 	case Opt_memory_recursiveprot:
1917 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1918 		return 0;
1919 	}
1920 	return -EINVAL;
1921 }
1922 
apply_cgroup_root_flags(unsigned int root_flags)1923 static void apply_cgroup_root_flags(unsigned int root_flags)
1924 {
1925 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1926 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1927 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1928 		else
1929 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1930 
1931 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1932 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1933 		else
1934 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1935 
1936 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1937 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1938 		else
1939 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1940 	}
1941 }
1942 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1943 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1944 {
1945 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1946 		seq_puts(seq, ",nsdelegate");
1947 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1948 		seq_puts(seq, ",memory_localevents");
1949 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1950 		seq_puts(seq, ",memory_recursiveprot");
1951 	return 0;
1952 }
1953 
cgroup_reconfigure(struct fs_context * fc)1954 static int cgroup_reconfigure(struct fs_context *fc)
1955 {
1956 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1957 
1958 	apply_cgroup_root_flags(ctx->flags);
1959 	return 0;
1960 }
1961 
init_cgroup_housekeeping(struct cgroup * cgrp)1962 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1963 {
1964 	struct cgroup_subsys *ss;
1965 	int ssid;
1966 
1967 	INIT_LIST_HEAD(&cgrp->self.sibling);
1968 	INIT_LIST_HEAD(&cgrp->self.children);
1969 	INIT_LIST_HEAD(&cgrp->cset_links);
1970 	INIT_LIST_HEAD(&cgrp->pidlists);
1971 	mutex_init(&cgrp->pidlist_mutex);
1972 	cgrp->self.cgroup = cgrp;
1973 	cgrp->self.flags |= CSS_ONLINE;
1974 	cgrp->dom_cgrp = cgrp;
1975 	cgrp->max_descendants = INT_MAX;
1976 	cgrp->max_depth = INT_MAX;
1977 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1978 	prev_cputime_init(&cgrp->prev_cputime);
1979 
1980 	for_each_subsys(ss, ssid)
1981 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1982 
1983 	init_waitqueue_head(&cgrp->offline_waitq);
1984 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1985 }
1986 
init_cgroup_root(struct cgroup_fs_context * ctx)1987 void init_cgroup_root(struct cgroup_fs_context *ctx)
1988 {
1989 	struct cgroup_root *root = ctx->root;
1990 	struct cgroup *cgrp = &root->cgrp;
1991 
1992 	INIT_LIST_HEAD(&root->root_list);
1993 	atomic_set(&root->nr_cgrps, 1);
1994 	cgrp->root = root;
1995 	init_cgroup_housekeeping(cgrp);
1996 
1997 	root->flags = ctx->flags;
1998 	if (ctx->release_agent)
1999 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2000 	if (ctx->name)
2001 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2002 	if (ctx->cpuset_clone_children)
2003 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2004 }
2005 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)2006 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2007 {
2008 	LIST_HEAD(tmp_links);
2009 	struct cgroup *root_cgrp = &root->cgrp;
2010 	struct kernfs_syscall_ops *kf_sops;
2011 	struct css_set *cset;
2012 	int i, ret;
2013 
2014 	lockdep_assert_held(&cgroup_mutex);
2015 
2016 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2017 			      0, GFP_KERNEL);
2018 	if (ret)
2019 		goto out;
2020 
2021 	/*
2022 	 * We're accessing css_set_count without locking css_set_lock here,
2023 	 * but that's OK - it can only be increased by someone holding
2024 	 * cgroup_lock, and that's us.  Later rebinding may disable
2025 	 * controllers on the default hierarchy and thus create new csets,
2026 	 * which can't be more than the existing ones.  Allocate 2x.
2027 	 */
2028 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2029 	if (ret)
2030 		goto cancel_ref;
2031 
2032 	ret = cgroup_init_root_id(root);
2033 	if (ret)
2034 		goto cancel_ref;
2035 
2036 	kf_sops = root == &cgrp_dfl_root ?
2037 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2038 
2039 	root->kf_root = kernfs_create_root(kf_sops,
2040 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2041 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2042 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2043 					   root_cgrp);
2044 	if (IS_ERR(root->kf_root)) {
2045 		ret = PTR_ERR(root->kf_root);
2046 		goto exit_root_id;
2047 	}
2048 	root_cgrp->kn = root->kf_root->kn;
2049 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2050 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2051 
2052 	ret = css_populate_dir(&root_cgrp->self);
2053 	if (ret)
2054 		goto destroy_root;
2055 
2056 	ret = cgroup_rstat_init(root_cgrp);
2057 	if (ret)
2058 		goto destroy_root;
2059 
2060 	ret = rebind_subsystems(root, ss_mask);
2061 	if (ret)
2062 		goto exit_stats;
2063 
2064 	ret = cgroup_bpf_inherit(root_cgrp);
2065 	WARN_ON_ONCE(ret);
2066 
2067 	trace_cgroup_setup_root(root);
2068 
2069 	/*
2070 	 * There must be no failure case after here, since rebinding takes
2071 	 * care of subsystems' refcounts, which are explicitly dropped in
2072 	 * the failure exit path.
2073 	 */
2074 	list_add(&root->root_list, &cgroup_roots);
2075 	cgroup_root_count++;
2076 
2077 	/*
2078 	 * Link the root cgroup in this hierarchy into all the css_set
2079 	 * objects.
2080 	 */
2081 	spin_lock_irq(&css_set_lock);
2082 	hash_for_each(css_set_table, i, cset, hlist) {
2083 		link_css_set(&tmp_links, cset, root_cgrp);
2084 		if (css_set_populated(cset))
2085 			cgroup_update_populated(root_cgrp, true);
2086 	}
2087 	spin_unlock_irq(&css_set_lock);
2088 
2089 	BUG_ON(!list_empty(&root_cgrp->self.children));
2090 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2091 
2092 	ret = 0;
2093 	goto out;
2094 
2095 exit_stats:
2096 	cgroup_rstat_exit(root_cgrp);
2097 destroy_root:
2098 	kernfs_destroy_root(root->kf_root);
2099 	root->kf_root = NULL;
2100 exit_root_id:
2101 	cgroup_exit_root_id(root);
2102 cancel_ref:
2103 	percpu_ref_exit(&root_cgrp->self.refcnt);
2104 out:
2105 	free_cgrp_cset_links(&tmp_links);
2106 	return ret;
2107 }
2108 
cgroup_do_get_tree(struct fs_context * fc)2109 int cgroup_do_get_tree(struct fs_context *fc)
2110 {
2111 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2112 	int ret;
2113 
2114 	ctx->kfc.root = ctx->root->kf_root;
2115 	if (fc->fs_type == &cgroup2_fs_type)
2116 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2117 	else
2118 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2119 	ret = kernfs_get_tree(fc);
2120 
2121 	/*
2122 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2123 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2124 	 */
2125 	if (!ret && ctx->ns != &init_cgroup_ns) {
2126 		struct dentry *nsdentry;
2127 		struct super_block *sb = fc->root->d_sb;
2128 		struct cgroup *cgrp;
2129 
2130 		mutex_lock(&cgroup_mutex);
2131 		spin_lock_irq(&css_set_lock);
2132 
2133 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2134 
2135 		spin_unlock_irq(&css_set_lock);
2136 		mutex_unlock(&cgroup_mutex);
2137 
2138 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2139 		dput(fc->root);
2140 		if (IS_ERR(nsdentry)) {
2141 			deactivate_locked_super(sb);
2142 			ret = PTR_ERR(nsdentry);
2143 			nsdentry = NULL;
2144 		}
2145 		fc->root = nsdentry;
2146 	}
2147 
2148 	if (!ctx->kfc.new_sb_created)
2149 		cgroup_put(&ctx->root->cgrp);
2150 
2151 	return ret;
2152 }
2153 
2154 /*
2155  * Destroy a cgroup filesystem context.
2156  */
cgroup_fs_context_free(struct fs_context * fc)2157 static void cgroup_fs_context_free(struct fs_context *fc)
2158 {
2159 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2160 
2161 	kfree(ctx->name);
2162 	kfree(ctx->release_agent);
2163 	put_cgroup_ns(ctx->ns);
2164 	kernfs_free_fs_context(fc);
2165 	kfree(ctx);
2166 }
2167 
cgroup_get_tree(struct fs_context * fc)2168 static int cgroup_get_tree(struct fs_context *fc)
2169 {
2170 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2171 	int ret;
2172 
2173 	cgrp_dfl_visible = true;
2174 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2175 	ctx->root = &cgrp_dfl_root;
2176 
2177 	ret = cgroup_do_get_tree(fc);
2178 	if (!ret)
2179 		apply_cgroup_root_flags(ctx->flags);
2180 	return ret;
2181 }
2182 
2183 static const struct fs_context_operations cgroup_fs_context_ops = {
2184 	.free		= cgroup_fs_context_free,
2185 	.parse_param	= cgroup2_parse_param,
2186 	.get_tree	= cgroup_get_tree,
2187 	.reconfigure	= cgroup_reconfigure,
2188 };
2189 
2190 static const struct fs_context_operations cgroup1_fs_context_ops = {
2191 	.free		= cgroup_fs_context_free,
2192 	.parse_param	= cgroup1_parse_param,
2193 	.get_tree	= cgroup1_get_tree,
2194 	.reconfigure	= cgroup1_reconfigure,
2195 };
2196 
2197 /*
2198  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2199  * we select the namespace we're going to use.
2200  */
cgroup_init_fs_context(struct fs_context * fc)2201 static int cgroup_init_fs_context(struct fs_context *fc)
2202 {
2203 	struct cgroup_fs_context *ctx;
2204 
2205 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2206 	if (!ctx)
2207 		return -ENOMEM;
2208 
2209 	ctx->ns = current->nsproxy->cgroup_ns;
2210 	get_cgroup_ns(ctx->ns);
2211 	fc->fs_private = &ctx->kfc;
2212 	if (fc->fs_type == &cgroup2_fs_type)
2213 		fc->ops = &cgroup_fs_context_ops;
2214 	else
2215 		fc->ops = &cgroup1_fs_context_ops;
2216 	put_user_ns(fc->user_ns);
2217 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2218 	fc->global = true;
2219 	return 0;
2220 }
2221 
cgroup_kill_sb(struct super_block * sb)2222 static void cgroup_kill_sb(struct super_block *sb)
2223 {
2224 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2225 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2226 
2227 	/*
2228 	 * If @root doesn't have any children, start killing it.
2229 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2230 	 *
2231 	 * And don't kill the default root.
2232 	 */
2233 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2234 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2235 		cgroup_bpf_offline(&root->cgrp);
2236 		percpu_ref_kill(&root->cgrp.self.refcnt);
2237 	}
2238 	cgroup_put(&root->cgrp);
2239 	kernfs_kill_sb(sb);
2240 }
2241 
2242 struct file_system_type cgroup_fs_type = {
2243 	.name			= "cgroup",
2244 	.init_fs_context	= cgroup_init_fs_context,
2245 	.parameters		= cgroup1_fs_parameters,
2246 	.kill_sb		= cgroup_kill_sb,
2247 	.fs_flags		= FS_USERNS_MOUNT,
2248 };
2249 
2250 static struct file_system_type cgroup2_fs_type = {
2251 	.name			= "cgroup2",
2252 	.init_fs_context	= cgroup_init_fs_context,
2253 	.parameters		= cgroup2_fs_parameters,
2254 	.kill_sb		= cgroup_kill_sb,
2255 	.fs_flags		= FS_USERNS_MOUNT,
2256 };
2257 
2258 #ifdef CONFIG_CPUSETS
2259 static const struct fs_context_operations cpuset_fs_context_ops = {
2260 	.get_tree	= cgroup1_get_tree,
2261 	.free		= cgroup_fs_context_free,
2262 };
2263 
2264 /*
2265  * This is ugly, but preserves the userspace API for existing cpuset
2266  * users. If someone tries to mount the "cpuset" filesystem, we
2267  * silently switch it to mount "cgroup" instead
2268  */
cpuset_init_fs_context(struct fs_context * fc)2269 static int cpuset_init_fs_context(struct fs_context *fc)
2270 {
2271 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2272 	struct cgroup_fs_context *ctx;
2273 	int err;
2274 
2275 	err = cgroup_init_fs_context(fc);
2276 	if (err) {
2277 		kfree(agent);
2278 		return err;
2279 	}
2280 
2281 	fc->ops = &cpuset_fs_context_ops;
2282 
2283 	ctx = cgroup_fc2context(fc);
2284 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2285 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2286 	ctx->release_agent = agent;
2287 
2288 	get_filesystem(&cgroup_fs_type);
2289 	put_filesystem(fc->fs_type);
2290 	fc->fs_type = &cgroup_fs_type;
2291 
2292 	return 0;
2293 }
2294 
2295 static struct file_system_type cpuset_fs_type = {
2296 	.name			= "cpuset",
2297 	.init_fs_context	= cpuset_init_fs_context,
2298 	.fs_flags		= FS_USERNS_MOUNT,
2299 };
2300 #endif
2301 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2302 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2303 			  struct cgroup_namespace *ns)
2304 {
2305 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2306 
2307 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2308 }
2309 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2310 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2311 		   struct cgroup_namespace *ns)
2312 {
2313 	int ret;
2314 
2315 	mutex_lock(&cgroup_mutex);
2316 	spin_lock_irq(&css_set_lock);
2317 
2318 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2319 
2320 	spin_unlock_irq(&css_set_lock);
2321 	mutex_unlock(&cgroup_mutex);
2322 
2323 	return ret;
2324 }
2325 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2326 
2327 /**
2328  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2329  * @task: target task
2330  * @buf: the buffer to write the path into
2331  * @buflen: the length of the buffer
2332  *
2333  * Determine @task's cgroup on the first (the one with the lowest non-zero
2334  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2335  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2336  * cgroup controller callbacks.
2337  *
2338  * Return value is the same as kernfs_path().
2339  */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2340 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2341 {
2342 	struct cgroup_root *root;
2343 	struct cgroup *cgrp;
2344 	int hierarchy_id = 1;
2345 	int ret;
2346 
2347 	mutex_lock(&cgroup_mutex);
2348 	spin_lock_irq(&css_set_lock);
2349 
2350 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2351 
2352 	if (root) {
2353 		cgrp = task_cgroup_from_root(task, root);
2354 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2355 	} else {
2356 		/* if no hierarchy exists, everyone is in "/" */
2357 		ret = strlcpy(buf, "/", buflen);
2358 	}
2359 
2360 	spin_unlock_irq(&css_set_lock);
2361 	mutex_unlock(&cgroup_mutex);
2362 	return ret;
2363 }
2364 EXPORT_SYMBOL_GPL(task_cgroup_path);
2365 
2366 /**
2367  * cgroup_attach_lock - Lock for ->attach()
2368  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2369  *
2370  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2371  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2372  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2373  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2374  * lead to deadlocks.
2375  *
2376  * Bringing up a CPU may involve creating and destroying tasks which requires
2377  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2378  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2379  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2380  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2381  * the threadgroup_rwsem to be released to create new tasks. For more details:
2382  *
2383  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2384  *
2385  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2386  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2387  * CPU hotplug is disabled on entry.
2388  */
cgroup_attach_lock(bool lock_threadgroup)2389 static void cgroup_attach_lock(bool lock_threadgroup)
2390 {
2391 	cpus_read_lock();
2392 	if (lock_threadgroup)
2393 		percpu_down_write(&cgroup_threadgroup_rwsem);
2394 }
2395 
2396 /**
2397  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2398  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2399  */
cgroup_attach_unlock(bool lock_threadgroup)2400 static void cgroup_attach_unlock(bool lock_threadgroup)
2401 {
2402 	if (lock_threadgroup)
2403 		percpu_up_write(&cgroup_threadgroup_rwsem);
2404 	cpus_read_unlock();
2405 }
2406 
2407 /**
2408  * cgroup_migrate_add_task - add a migration target task to a migration context
2409  * @task: target task
2410  * @mgctx: target migration context
2411  *
2412  * Add @task, which is a migration target, to @mgctx->tset.  This function
2413  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2414  * should have been added as a migration source and @task->cg_list will be
2415  * moved from the css_set's tasks list to mg_tasks one.
2416  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2417 static void cgroup_migrate_add_task(struct task_struct *task,
2418 				    struct cgroup_mgctx *mgctx)
2419 {
2420 	struct css_set *cset;
2421 
2422 	lockdep_assert_held(&css_set_lock);
2423 
2424 	/* @task either already exited or can't exit until the end */
2425 	if (task->flags & PF_EXITING)
2426 		return;
2427 
2428 	/* cgroup_threadgroup_rwsem protects racing against forks */
2429 	WARN_ON_ONCE(list_empty(&task->cg_list));
2430 
2431 	cset = task_css_set(task);
2432 	if (!cset->mg_src_cgrp)
2433 		return;
2434 
2435 	mgctx->tset.nr_tasks++;
2436 
2437 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2438 	if (list_empty(&cset->mg_node))
2439 		list_add_tail(&cset->mg_node,
2440 			      &mgctx->tset.src_csets);
2441 	if (list_empty(&cset->mg_dst_cset->mg_node))
2442 		list_add_tail(&cset->mg_dst_cset->mg_node,
2443 			      &mgctx->tset.dst_csets);
2444 }
2445 
2446 /**
2447  * cgroup_taskset_first - reset taskset and return the first task
2448  * @tset: taskset of interest
2449  * @dst_cssp: output variable for the destination css
2450  *
2451  * @tset iteration is initialized and the first task is returned.
2452  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2453 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2454 					 struct cgroup_subsys_state **dst_cssp)
2455 {
2456 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2457 	tset->cur_task = NULL;
2458 
2459 	return cgroup_taskset_next(tset, dst_cssp);
2460 }
2461 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
2462 
2463 /**
2464  * cgroup_taskset_next - iterate to the next task in taskset
2465  * @tset: taskset of interest
2466  * @dst_cssp: output variable for the destination css
2467  *
2468  * Return the next task in @tset.  Iteration must have been initialized
2469  * with cgroup_taskset_first().
2470  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2471 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2472 					struct cgroup_subsys_state **dst_cssp)
2473 {
2474 	struct css_set *cset = tset->cur_cset;
2475 	struct task_struct *task = tset->cur_task;
2476 
2477 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2478 		if (!task)
2479 			task = list_first_entry(&cset->mg_tasks,
2480 						struct task_struct, cg_list);
2481 		else
2482 			task = list_next_entry(task, cg_list);
2483 
2484 		if (&task->cg_list != &cset->mg_tasks) {
2485 			tset->cur_cset = cset;
2486 			tset->cur_task = task;
2487 
2488 			/*
2489 			 * This function may be called both before and
2490 			 * after cgroup_taskset_migrate().  The two cases
2491 			 * can be distinguished by looking at whether @cset
2492 			 * has its ->mg_dst_cset set.
2493 			 */
2494 			if (cset->mg_dst_cset)
2495 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2496 			else
2497 				*dst_cssp = cset->subsys[tset->ssid];
2498 
2499 			return task;
2500 		}
2501 
2502 		cset = list_next_entry(cset, mg_node);
2503 		task = NULL;
2504 	}
2505 
2506 	return NULL;
2507 }
2508 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
2509 
2510 /**
2511  * cgroup_migrate_execute - migrate a taskset
2512  * @mgctx: migration context
2513  *
2514  * Migrate tasks in @mgctx as setup by migration preparation functions.
2515  * This function fails iff one of the ->can_attach callbacks fails and
2516  * guarantees that either all or none of the tasks in @mgctx are migrated.
2517  * @mgctx is consumed regardless of success.
2518  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2519 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2520 {
2521 	struct cgroup_taskset *tset = &mgctx->tset;
2522 	struct cgroup_subsys *ss;
2523 	struct task_struct *task, *tmp_task;
2524 	struct css_set *cset, *tmp_cset;
2525 	int ssid, failed_ssid, ret;
2526 
2527 	/* check that we can legitimately attach to the cgroup */
2528 	if (tset->nr_tasks) {
2529 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2530 			if (ss->can_attach) {
2531 				tset->ssid = ssid;
2532 				ret = ss->can_attach(tset);
2533 				if (ret) {
2534 					failed_ssid = ssid;
2535 					goto out_cancel_attach;
2536 				}
2537 			}
2538 		} while_each_subsys_mask();
2539 	}
2540 
2541 	/*
2542 	 * Now that we're guaranteed success, proceed to move all tasks to
2543 	 * the new cgroup.  There are no failure cases after here, so this
2544 	 * is the commit point.
2545 	 */
2546 	spin_lock_irq(&css_set_lock);
2547 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2548 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2549 			struct css_set *from_cset = task_css_set(task);
2550 			struct css_set *to_cset = cset->mg_dst_cset;
2551 
2552 			get_css_set(to_cset);
2553 			to_cset->nr_tasks++;
2554 			css_set_move_task(task, from_cset, to_cset, true);
2555 			from_cset->nr_tasks--;
2556 			/*
2557 			 * If the source or destination cgroup is frozen,
2558 			 * the task might require to change its state.
2559 			 */
2560 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2561 						    to_cset->dfl_cgrp);
2562 			put_css_set_locked(from_cset);
2563 
2564 		}
2565 	}
2566 	spin_unlock_irq(&css_set_lock);
2567 
2568 	/*
2569 	 * Migration is committed, all target tasks are now on dst_csets.
2570 	 * Nothing is sensitive to fork() after this point.  Notify
2571 	 * controllers that migration is complete.
2572 	 */
2573 	tset->csets = &tset->dst_csets;
2574 
2575 	if (tset->nr_tasks) {
2576 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2577 			if (ss->attach) {
2578 				tset->ssid = ssid;
2579 				trace_android_vh_cgroup_attach(ss, tset);
2580 				ss->attach(tset);
2581 			}
2582 		} while_each_subsys_mask();
2583 	}
2584 
2585 	ret = 0;
2586 	goto out_release_tset;
2587 
2588 out_cancel_attach:
2589 	if (tset->nr_tasks) {
2590 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2591 			if (ssid == failed_ssid)
2592 				break;
2593 			if (ss->cancel_attach) {
2594 				tset->ssid = ssid;
2595 				ss->cancel_attach(tset);
2596 			}
2597 		} while_each_subsys_mask();
2598 	}
2599 out_release_tset:
2600 	spin_lock_irq(&css_set_lock);
2601 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2602 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2603 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2604 		list_del_init(&cset->mg_node);
2605 	}
2606 	spin_unlock_irq(&css_set_lock);
2607 
2608 	/*
2609 	 * Re-initialize the cgroup_taskset structure in case it is reused
2610 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2611 	 * iteration.
2612 	 */
2613 	tset->nr_tasks = 0;
2614 	tset->csets    = &tset->src_csets;
2615 	return ret;
2616 }
2617 
2618 /**
2619  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2620  * @dst_cgrp: destination cgroup to test
2621  *
2622  * On the default hierarchy, except for the mixable, (possible) thread root
2623  * and threaded cgroups, subtree_control must be zero for migration
2624  * destination cgroups with tasks so that child cgroups don't compete
2625  * against tasks.
2626  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2627 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2628 {
2629 	/* v1 doesn't have any restriction */
2630 	if (!cgroup_on_dfl(dst_cgrp))
2631 		return 0;
2632 
2633 	/* verify @dst_cgrp can host resources */
2634 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2635 		return -EOPNOTSUPP;
2636 
2637 	/* mixables don't care */
2638 	if (cgroup_is_mixable(dst_cgrp))
2639 		return 0;
2640 
2641 	/*
2642 	 * If @dst_cgrp is already or can become a thread root or is
2643 	 * threaded, it doesn't matter.
2644 	 */
2645 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2646 		return 0;
2647 
2648 	/* apply no-internal-process constraint */
2649 	if (dst_cgrp->subtree_control)
2650 		return -EBUSY;
2651 
2652 	return 0;
2653 }
2654 
2655 /**
2656  * cgroup_migrate_finish - cleanup after attach
2657  * @mgctx: migration context
2658  *
2659  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2660  * those functions for details.
2661  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2662 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2663 {
2664 	struct css_set *cset, *tmp_cset;
2665 
2666 	lockdep_assert_held(&cgroup_mutex);
2667 
2668 	spin_lock_irq(&css_set_lock);
2669 
2670 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2671 				 mg_src_preload_node) {
2672 		cset->mg_src_cgrp = NULL;
2673 		cset->mg_dst_cgrp = NULL;
2674 		cset->mg_dst_cset = NULL;
2675 		list_del_init(&cset->mg_src_preload_node);
2676 		put_css_set_locked(cset);
2677 	}
2678 
2679 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2680 				 mg_dst_preload_node) {
2681 		cset->mg_src_cgrp = NULL;
2682 		cset->mg_dst_cgrp = NULL;
2683 		cset->mg_dst_cset = NULL;
2684 		list_del_init(&cset->mg_dst_preload_node);
2685 		put_css_set_locked(cset);
2686 	}
2687 
2688 	spin_unlock_irq(&css_set_lock);
2689 }
2690 
2691 /**
2692  * cgroup_migrate_add_src - add a migration source css_set
2693  * @src_cset: the source css_set to add
2694  * @dst_cgrp: the destination cgroup
2695  * @mgctx: migration context
2696  *
2697  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2698  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2699  * up by cgroup_migrate_finish().
2700  *
2701  * This function may be called without holding cgroup_threadgroup_rwsem
2702  * even if the target is a process.  Threads may be created and destroyed
2703  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2704  * into play and the preloaded css_sets are guaranteed to cover all
2705  * migrations.
2706  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2707 void cgroup_migrate_add_src(struct css_set *src_cset,
2708 			    struct cgroup *dst_cgrp,
2709 			    struct cgroup_mgctx *mgctx)
2710 {
2711 	struct cgroup *src_cgrp;
2712 
2713 	lockdep_assert_held(&cgroup_mutex);
2714 	lockdep_assert_held(&css_set_lock);
2715 
2716 	/*
2717 	 * If ->dead, @src_set is associated with one or more dead cgroups
2718 	 * and doesn't contain any migratable tasks.  Ignore it early so
2719 	 * that the rest of migration path doesn't get confused by it.
2720 	 */
2721 	if (src_cset->dead)
2722 		return;
2723 
2724 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2725 
2726 	if (!list_empty(&src_cset->mg_src_preload_node))
2727 		return;
2728 
2729 	WARN_ON(src_cset->mg_src_cgrp);
2730 	WARN_ON(src_cset->mg_dst_cgrp);
2731 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2732 	WARN_ON(!list_empty(&src_cset->mg_node));
2733 
2734 	src_cset->mg_src_cgrp = src_cgrp;
2735 	src_cset->mg_dst_cgrp = dst_cgrp;
2736 	get_css_set(src_cset);
2737 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2738 }
2739 
2740 /**
2741  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2742  * @mgctx: migration context
2743  *
2744  * Tasks are about to be moved and all the source css_sets have been
2745  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2746  * pins all destination css_sets, links each to its source, and append them
2747  * to @mgctx->preloaded_dst_csets.
2748  *
2749  * This function must be called after cgroup_migrate_add_src() has been
2750  * called on each migration source css_set.  After migration is performed
2751  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2752  * @mgctx.
2753  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2754 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2755 {
2756 	struct css_set *src_cset, *tmp_cset;
2757 
2758 	lockdep_assert_held(&cgroup_mutex);
2759 
2760 	/* look up the dst cset for each src cset and link it to src */
2761 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2762 				 mg_src_preload_node) {
2763 		struct css_set *dst_cset;
2764 		struct cgroup_subsys *ss;
2765 		int ssid;
2766 
2767 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2768 		if (!dst_cset)
2769 			return -ENOMEM;
2770 
2771 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2772 
2773 		/*
2774 		 * If src cset equals dst, it's noop.  Drop the src.
2775 		 * cgroup_migrate() will skip the cset too.  Note that we
2776 		 * can't handle src == dst as some nodes are used by both.
2777 		 */
2778 		if (src_cset == dst_cset) {
2779 			src_cset->mg_src_cgrp = NULL;
2780 			src_cset->mg_dst_cgrp = NULL;
2781 			list_del_init(&src_cset->mg_src_preload_node);
2782 			put_css_set(src_cset);
2783 			put_css_set(dst_cset);
2784 			continue;
2785 		}
2786 
2787 		src_cset->mg_dst_cset = dst_cset;
2788 
2789 		if (list_empty(&dst_cset->mg_dst_preload_node))
2790 			list_add_tail(&dst_cset->mg_dst_preload_node,
2791 				      &mgctx->preloaded_dst_csets);
2792 		else
2793 			put_css_set(dst_cset);
2794 
2795 		for_each_subsys(ss, ssid)
2796 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2797 				mgctx->ss_mask |= 1 << ssid;
2798 	}
2799 
2800 	return 0;
2801 }
2802 
2803 /**
2804  * cgroup_migrate - migrate a process or task to a cgroup
2805  * @leader: the leader of the process or the task to migrate
2806  * @threadgroup: whether @leader points to the whole process or a single task
2807  * @mgctx: migration context
2808  *
2809  * Migrate a process or task denoted by @leader.  If migrating a process,
2810  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2811  * responsible for invoking cgroup_migrate_add_src() and
2812  * cgroup_migrate_prepare_dst() on the targets before invoking this
2813  * function and following up with cgroup_migrate_finish().
2814  *
2815  * As long as a controller's ->can_attach() doesn't fail, this function is
2816  * guaranteed to succeed.  This means that, excluding ->can_attach()
2817  * failure, when migrating multiple targets, the success or failure can be
2818  * decided for all targets by invoking group_migrate_prepare_dst() before
2819  * actually starting migrating.
2820  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2821 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2822 		   struct cgroup_mgctx *mgctx)
2823 {
2824 	struct task_struct *task;
2825 
2826 	/*
2827 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2828 	 * already PF_EXITING could be freed from underneath us unless we
2829 	 * take an rcu_read_lock.
2830 	 */
2831 	spin_lock_irq(&css_set_lock);
2832 	rcu_read_lock();
2833 	task = leader;
2834 	do {
2835 		cgroup_migrate_add_task(task, mgctx);
2836 		if (!threadgroup)
2837 			break;
2838 	} while_each_thread(leader, task);
2839 	rcu_read_unlock();
2840 	spin_unlock_irq(&css_set_lock);
2841 
2842 	return cgroup_migrate_execute(mgctx);
2843 }
2844 
2845 /**
2846  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2847  * @dst_cgrp: the cgroup to attach to
2848  * @leader: the task or the leader of the threadgroup to be attached
2849  * @threadgroup: attach the whole threadgroup?
2850  *
2851  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2852  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2853 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2854 		       bool threadgroup)
2855 {
2856 	DEFINE_CGROUP_MGCTX(mgctx);
2857 	struct task_struct *task;
2858 	int ret = 0;
2859 
2860 	/* look up all src csets */
2861 	spin_lock_irq(&css_set_lock);
2862 	rcu_read_lock();
2863 	task = leader;
2864 	do {
2865 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2866 		if (!threadgroup)
2867 			break;
2868 	} while_each_thread(leader, task);
2869 	rcu_read_unlock();
2870 	spin_unlock_irq(&css_set_lock);
2871 
2872 	/* prepare dst csets and commit */
2873 	ret = cgroup_migrate_prepare_dst(&mgctx);
2874 	if (!ret)
2875 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2876 
2877 	cgroup_migrate_finish(&mgctx);
2878 
2879 	if (!ret)
2880 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2881 
2882 	return ret;
2883 }
2884 
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked,struct cgroup * dst_cgrp)2885 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2886 					     bool *threadgroup_locked,
2887 					     struct cgroup *dst_cgrp)
2888 {
2889 	struct task_struct *tsk;
2890 	pid_t pid;
2891 	bool force_migration = false;
2892 
2893 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2894 		return ERR_PTR(-EINVAL);
2895 
2896 	/*
2897 	 * If we migrate a single thread, we don't care about threadgroup
2898 	 * stability. If the thread is `current`, it won't exit(2) under our
2899 	 * hands or change PID through exec(2). We exclude
2900 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2901 	 * callers by cgroup_mutex.
2902 	 * Therefore, we can skip the global lock.
2903 	 */
2904 	lockdep_assert_held(&cgroup_mutex);
2905 	*threadgroup_locked = pid || threadgroup;
2906 	cgroup_attach_lock(*threadgroup_locked);
2907 
2908 	rcu_read_lock();
2909 	if (pid) {
2910 		tsk = find_task_by_vpid(pid);
2911 		if (!tsk) {
2912 			tsk = ERR_PTR(-ESRCH);
2913 			goto out_unlock_threadgroup;
2914 		}
2915 	} else {
2916 		tsk = current;
2917 	}
2918 
2919 	if (threadgroup)
2920 		tsk = tsk->group_leader;
2921 
2922 	if (tsk->flags & PF_KTHREAD)
2923 		trace_android_rvh_cgroup_force_kthread_migration(tsk, dst_cgrp, &force_migration);
2924 
2925 	/*
2926 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2927 	 * If userland migrates such a kthread to a non-root cgroup, it can
2928 	 * become trapped in a cpuset, or RT kthread may be born in a
2929 	 * cgroup with no rt_runtime allocated.  Just say no.
2930 	 */
2931 	if (!force_migration && (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY))) {
2932 		tsk = ERR_PTR(-EINVAL);
2933 		goto out_unlock_threadgroup;
2934 	}
2935 
2936 	get_task_struct(tsk);
2937 	goto out_unlock_rcu;
2938 
2939 out_unlock_threadgroup:
2940 	cgroup_attach_unlock(*threadgroup_locked);
2941 	*threadgroup_locked = false;
2942 out_unlock_rcu:
2943 	rcu_read_unlock();
2944 	return tsk;
2945 }
2946 
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)2947 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2948 {
2949 	struct cgroup_subsys *ss;
2950 	int ssid;
2951 
2952 	/* release reference from cgroup_procs_write_start() */
2953 	put_task_struct(task);
2954 
2955 	cgroup_attach_unlock(threadgroup_locked);
2956 
2957 	for_each_subsys(ss, ssid)
2958 		if (ss->post_attach)
2959 			ss->post_attach();
2960 }
2961 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2962 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2963 {
2964 	struct cgroup_subsys *ss;
2965 	bool printed = false;
2966 	int ssid;
2967 
2968 	do_each_subsys_mask(ss, ssid, ss_mask) {
2969 		if (printed)
2970 			seq_putc(seq, ' ');
2971 		seq_puts(seq, ss->name);
2972 		printed = true;
2973 	} while_each_subsys_mask();
2974 	if (printed)
2975 		seq_putc(seq, '\n');
2976 }
2977 
2978 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2979 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2980 {
2981 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2982 
2983 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2984 	return 0;
2985 }
2986 
2987 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2988 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2989 {
2990 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2991 
2992 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2993 	return 0;
2994 }
2995 
2996 /**
2997  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2998  * @cgrp: root of the subtree to update csses for
2999  *
3000  * @cgrp's control masks have changed and its subtree's css associations
3001  * need to be updated accordingly.  This function looks up all css_sets
3002  * which are attached to the subtree, creates the matching updated css_sets
3003  * and migrates the tasks to the new ones.
3004  */
cgroup_update_dfl_csses(struct cgroup * cgrp)3005 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3006 {
3007 	DEFINE_CGROUP_MGCTX(mgctx);
3008 	struct cgroup_subsys_state *d_css;
3009 	struct cgroup *dsct;
3010 	struct css_set *src_cset;
3011 	bool has_tasks;
3012 	int ret;
3013 
3014 	lockdep_assert_held(&cgroup_mutex);
3015 
3016 	/* look up all csses currently attached to @cgrp's subtree */
3017 	spin_lock_irq(&css_set_lock);
3018 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3019 		struct cgrp_cset_link *link;
3020 
3021 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3022 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3023 	}
3024 	spin_unlock_irq(&css_set_lock);
3025 
3026 	/*
3027 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3028 	 * However, if there are no source csets for @cgrp, changing its
3029 	 * controllers isn't gonna produce any task migrations and the
3030 	 * write-locking can be skipped safely.
3031 	 */
3032 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3033 	cgroup_attach_lock(has_tasks);
3034 
3035 	/* NULL dst indicates self on default hierarchy */
3036 	ret = cgroup_migrate_prepare_dst(&mgctx);
3037 	if (ret)
3038 		goto out_finish;
3039 
3040 	spin_lock_irq(&css_set_lock);
3041 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3042 			    mg_src_preload_node) {
3043 		struct task_struct *task, *ntask;
3044 
3045 		/* all tasks in src_csets need to be migrated */
3046 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3047 			cgroup_migrate_add_task(task, &mgctx);
3048 	}
3049 	spin_unlock_irq(&css_set_lock);
3050 
3051 	ret = cgroup_migrate_execute(&mgctx);
3052 out_finish:
3053 	cgroup_migrate_finish(&mgctx);
3054 	cgroup_attach_unlock(has_tasks);
3055 	return ret;
3056 }
3057 
3058 /**
3059  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3060  * @cgrp: root of the target subtree
3061  *
3062  * Because css offlining is asynchronous, userland may try to re-enable a
3063  * controller while the previous css is still around.  This function grabs
3064  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3065  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3066 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3067 	__acquires(&cgroup_mutex)
3068 {
3069 	struct cgroup *dsct;
3070 	struct cgroup_subsys_state *d_css;
3071 	struct cgroup_subsys *ss;
3072 	int ssid;
3073 
3074 restart:
3075 	mutex_lock(&cgroup_mutex);
3076 
3077 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3078 		for_each_subsys(ss, ssid) {
3079 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3080 			DEFINE_WAIT(wait);
3081 
3082 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3083 				continue;
3084 
3085 			cgroup_get_live(dsct);
3086 			prepare_to_wait(&dsct->offline_waitq, &wait,
3087 					TASK_UNINTERRUPTIBLE);
3088 
3089 			mutex_unlock(&cgroup_mutex);
3090 			schedule();
3091 			finish_wait(&dsct->offline_waitq, &wait);
3092 
3093 			cgroup_put(dsct);
3094 			goto restart;
3095 		}
3096 	}
3097 }
3098 
3099 /**
3100  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3101  * @cgrp: root of the target subtree
3102  *
3103  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3104  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3105  * itself.
3106  */
cgroup_save_control(struct cgroup * cgrp)3107 static void cgroup_save_control(struct cgroup *cgrp)
3108 {
3109 	struct cgroup *dsct;
3110 	struct cgroup_subsys_state *d_css;
3111 
3112 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3113 		dsct->old_subtree_control = dsct->subtree_control;
3114 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3115 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3116 	}
3117 }
3118 
3119 /**
3120  * cgroup_propagate_control - refresh control masks of a subtree
3121  * @cgrp: root of the target subtree
3122  *
3123  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3124  * ->subtree_control and propagate controller availability through the
3125  * subtree so that descendants don't have unavailable controllers enabled.
3126  */
cgroup_propagate_control(struct cgroup * cgrp)3127 static void cgroup_propagate_control(struct cgroup *cgrp)
3128 {
3129 	struct cgroup *dsct;
3130 	struct cgroup_subsys_state *d_css;
3131 
3132 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3133 		dsct->subtree_control &= cgroup_control(dsct);
3134 		dsct->subtree_ss_mask =
3135 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3136 						    cgroup_ss_mask(dsct));
3137 	}
3138 }
3139 
3140 /**
3141  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3142  * @cgrp: root of the target subtree
3143  *
3144  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3145  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3146  * itself.
3147  */
cgroup_restore_control(struct cgroup * cgrp)3148 static void cgroup_restore_control(struct cgroup *cgrp)
3149 {
3150 	struct cgroup *dsct;
3151 	struct cgroup_subsys_state *d_css;
3152 
3153 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3154 		dsct->subtree_control = dsct->old_subtree_control;
3155 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3156 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3157 	}
3158 }
3159 
css_visible(struct cgroup_subsys_state * css)3160 static bool css_visible(struct cgroup_subsys_state *css)
3161 {
3162 	struct cgroup_subsys *ss = css->ss;
3163 	struct cgroup *cgrp = css->cgroup;
3164 
3165 	if (cgroup_control(cgrp) & (1 << ss->id))
3166 		return true;
3167 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3168 		return false;
3169 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3170 }
3171 
3172 /**
3173  * cgroup_apply_control_enable - enable or show csses according to control
3174  * @cgrp: root of the target subtree
3175  *
3176  * Walk @cgrp's subtree and create new csses or make the existing ones
3177  * visible.  A css is created invisible if it's being implicitly enabled
3178  * through dependency.  An invisible css is made visible when the userland
3179  * explicitly enables it.
3180  *
3181  * Returns 0 on success, -errno on failure.  On failure, csses which have
3182  * been processed already aren't cleaned up.  The caller is responsible for
3183  * cleaning up with cgroup_apply_control_disable().
3184  */
cgroup_apply_control_enable(struct cgroup * cgrp)3185 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3186 {
3187 	struct cgroup *dsct;
3188 	struct cgroup_subsys_state *d_css;
3189 	struct cgroup_subsys *ss;
3190 	int ssid, ret;
3191 
3192 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3193 		for_each_subsys(ss, ssid) {
3194 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3195 
3196 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3197 				continue;
3198 
3199 			if (!css) {
3200 				css = css_create(dsct, ss);
3201 				if (IS_ERR(css))
3202 					return PTR_ERR(css);
3203 			}
3204 
3205 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3206 
3207 			if (css_visible(css)) {
3208 				ret = css_populate_dir(css);
3209 				if (ret)
3210 					return ret;
3211 			}
3212 		}
3213 	}
3214 
3215 	return 0;
3216 }
3217 
3218 /**
3219  * cgroup_apply_control_disable - kill or hide csses according to control
3220  * @cgrp: root of the target subtree
3221  *
3222  * Walk @cgrp's subtree and kill and hide csses so that they match
3223  * cgroup_ss_mask() and cgroup_visible_mask().
3224  *
3225  * A css is hidden when the userland requests it to be disabled while other
3226  * subsystems are still depending on it.  The css must not actively control
3227  * resources and be in the vanilla state if it's made visible again later.
3228  * Controllers which may be depended upon should provide ->css_reset() for
3229  * this purpose.
3230  */
cgroup_apply_control_disable(struct cgroup * cgrp)3231 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3232 {
3233 	struct cgroup *dsct;
3234 	struct cgroup_subsys_state *d_css;
3235 	struct cgroup_subsys *ss;
3236 	int ssid;
3237 
3238 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3239 		for_each_subsys(ss, ssid) {
3240 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3241 
3242 			if (!css)
3243 				continue;
3244 
3245 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3246 
3247 			if (css->parent &&
3248 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3249 				kill_css(css);
3250 			} else if (!css_visible(css)) {
3251 				css_clear_dir(css);
3252 				if (ss->css_reset)
3253 					ss->css_reset(css);
3254 			}
3255 		}
3256 	}
3257 }
3258 
3259 /**
3260  * cgroup_apply_control - apply control mask updates to the subtree
3261  * @cgrp: root of the target subtree
3262  *
3263  * subsystems can be enabled and disabled in a subtree using the following
3264  * steps.
3265  *
3266  * 1. Call cgroup_save_control() to stash the current state.
3267  * 2. Update ->subtree_control masks in the subtree as desired.
3268  * 3. Call cgroup_apply_control() to apply the changes.
3269  * 4. Optionally perform other related operations.
3270  * 5. Call cgroup_finalize_control() to finish up.
3271  *
3272  * This function implements step 3 and propagates the mask changes
3273  * throughout @cgrp's subtree, updates csses accordingly and perform
3274  * process migrations.
3275  */
cgroup_apply_control(struct cgroup * cgrp)3276 static int cgroup_apply_control(struct cgroup *cgrp)
3277 {
3278 	int ret;
3279 
3280 	cgroup_propagate_control(cgrp);
3281 
3282 	ret = cgroup_apply_control_enable(cgrp);
3283 	if (ret)
3284 		return ret;
3285 
3286 	/*
3287 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3288 	 * making the following cgroup_update_dfl_csses() properly update
3289 	 * css associations of all tasks in the subtree.
3290 	 */
3291 	ret = cgroup_update_dfl_csses(cgrp);
3292 	if (ret)
3293 		return ret;
3294 
3295 	return 0;
3296 }
3297 
3298 /**
3299  * cgroup_finalize_control - finalize control mask update
3300  * @cgrp: root of the target subtree
3301  * @ret: the result of the update
3302  *
3303  * Finalize control mask update.  See cgroup_apply_control() for more info.
3304  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3305 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3306 {
3307 	if (ret) {
3308 		cgroup_restore_control(cgrp);
3309 		cgroup_propagate_control(cgrp);
3310 	}
3311 
3312 	cgroup_apply_control_disable(cgrp);
3313 }
3314 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3315 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3316 {
3317 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3318 
3319 	/* if nothing is getting enabled, nothing to worry about */
3320 	if (!enable)
3321 		return 0;
3322 
3323 	/* can @cgrp host any resources? */
3324 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3325 		return -EOPNOTSUPP;
3326 
3327 	/* mixables don't care */
3328 	if (cgroup_is_mixable(cgrp))
3329 		return 0;
3330 
3331 	if (domain_enable) {
3332 		/* can't enable domain controllers inside a thread subtree */
3333 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3334 			return -EOPNOTSUPP;
3335 	} else {
3336 		/*
3337 		 * Threaded controllers can handle internal competitions
3338 		 * and are always allowed inside a (prospective) thread
3339 		 * subtree.
3340 		 */
3341 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3342 			return 0;
3343 	}
3344 
3345 	/*
3346 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3347 	 * child cgroups competing against tasks.
3348 	 */
3349 	if (cgroup_has_tasks(cgrp))
3350 		return -EBUSY;
3351 
3352 	return 0;
3353 }
3354 
3355 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3356 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3357 					    char *buf, size_t nbytes,
3358 					    loff_t off)
3359 {
3360 	u16 enable = 0, disable = 0;
3361 	struct cgroup *cgrp, *child;
3362 	struct cgroup_subsys *ss;
3363 	char *tok;
3364 	int ssid, ret;
3365 
3366 	/*
3367 	 * Parse input - space separated list of subsystem names prefixed
3368 	 * with either + or -.
3369 	 */
3370 	buf = strstrip(buf);
3371 	while ((tok = strsep(&buf, " "))) {
3372 		if (tok[0] == '\0')
3373 			continue;
3374 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3375 			if (!cgroup_ssid_enabled(ssid) ||
3376 			    strcmp(tok + 1, ss->name))
3377 				continue;
3378 
3379 			if (*tok == '+') {
3380 				enable |= 1 << ssid;
3381 				disable &= ~(1 << ssid);
3382 			} else if (*tok == '-') {
3383 				disable |= 1 << ssid;
3384 				enable &= ~(1 << ssid);
3385 			} else {
3386 				return -EINVAL;
3387 			}
3388 			break;
3389 		} while_each_subsys_mask();
3390 		if (ssid == CGROUP_SUBSYS_COUNT)
3391 			return -EINVAL;
3392 	}
3393 
3394 	cgrp = cgroup_kn_lock_live(of->kn, true);
3395 	if (!cgrp)
3396 		return -ENODEV;
3397 
3398 	for_each_subsys(ss, ssid) {
3399 		if (enable & (1 << ssid)) {
3400 			if (cgrp->subtree_control & (1 << ssid)) {
3401 				enable &= ~(1 << ssid);
3402 				continue;
3403 			}
3404 
3405 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3406 				ret = -ENOENT;
3407 				goto out_unlock;
3408 			}
3409 		} else if (disable & (1 << ssid)) {
3410 			if (!(cgrp->subtree_control & (1 << ssid))) {
3411 				disable &= ~(1 << ssid);
3412 				continue;
3413 			}
3414 
3415 			/* a child has it enabled? */
3416 			cgroup_for_each_live_child(child, cgrp) {
3417 				if (child->subtree_control & (1 << ssid)) {
3418 					ret = -EBUSY;
3419 					goto out_unlock;
3420 				}
3421 			}
3422 		}
3423 	}
3424 
3425 	if (!enable && !disable) {
3426 		ret = 0;
3427 		goto out_unlock;
3428 	}
3429 
3430 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3431 	if (ret)
3432 		goto out_unlock;
3433 
3434 	/* save and update control masks and prepare csses */
3435 	cgroup_save_control(cgrp);
3436 
3437 	cgrp->subtree_control |= enable;
3438 	cgrp->subtree_control &= ~disable;
3439 
3440 	ret = cgroup_apply_control(cgrp);
3441 	cgroup_finalize_control(cgrp, ret);
3442 	if (ret)
3443 		goto out_unlock;
3444 
3445 	kernfs_activate(cgrp->kn);
3446 out_unlock:
3447 	cgroup_kn_unlock(of->kn);
3448 	return ret ?: nbytes;
3449 }
3450 
3451 /**
3452  * cgroup_enable_threaded - make @cgrp threaded
3453  * @cgrp: the target cgroup
3454  *
3455  * Called when "threaded" is written to the cgroup.type interface file and
3456  * tries to make @cgrp threaded and join the parent's resource domain.
3457  * This function is never called on the root cgroup as cgroup.type doesn't
3458  * exist on it.
3459  */
cgroup_enable_threaded(struct cgroup * cgrp)3460 static int cgroup_enable_threaded(struct cgroup *cgrp)
3461 {
3462 	struct cgroup *parent = cgroup_parent(cgrp);
3463 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3464 	struct cgroup *dsct;
3465 	struct cgroup_subsys_state *d_css;
3466 	int ret;
3467 
3468 	lockdep_assert_held(&cgroup_mutex);
3469 
3470 	/* noop if already threaded */
3471 	if (cgroup_is_threaded(cgrp))
3472 		return 0;
3473 
3474 	/*
3475 	 * If @cgroup is populated or has domain controllers enabled, it
3476 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3477 	 * test can catch the same conditions, that's only when @parent is
3478 	 * not mixable, so let's check it explicitly.
3479 	 */
3480 	if (cgroup_is_populated(cgrp) ||
3481 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3482 		return -EOPNOTSUPP;
3483 
3484 	/* we're joining the parent's domain, ensure its validity */
3485 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3486 	    !cgroup_can_be_thread_root(dom_cgrp))
3487 		return -EOPNOTSUPP;
3488 
3489 	/*
3490 	 * The following shouldn't cause actual migrations and should
3491 	 * always succeed.
3492 	 */
3493 	cgroup_save_control(cgrp);
3494 
3495 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3496 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3497 			dsct->dom_cgrp = dom_cgrp;
3498 
3499 	ret = cgroup_apply_control(cgrp);
3500 	if (!ret)
3501 		parent->nr_threaded_children++;
3502 
3503 	cgroup_finalize_control(cgrp, ret);
3504 	return ret;
3505 }
3506 
cgroup_type_show(struct seq_file * seq,void * v)3507 static int cgroup_type_show(struct seq_file *seq, void *v)
3508 {
3509 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3510 
3511 	if (cgroup_is_threaded(cgrp))
3512 		seq_puts(seq, "threaded\n");
3513 	else if (!cgroup_is_valid_domain(cgrp))
3514 		seq_puts(seq, "domain invalid\n");
3515 	else if (cgroup_is_thread_root(cgrp))
3516 		seq_puts(seq, "domain threaded\n");
3517 	else
3518 		seq_puts(seq, "domain\n");
3519 
3520 	return 0;
3521 }
3522 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3523 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3524 				 size_t nbytes, loff_t off)
3525 {
3526 	struct cgroup *cgrp;
3527 	int ret;
3528 
3529 	/* only switching to threaded mode is supported */
3530 	if (strcmp(strstrip(buf), "threaded"))
3531 		return -EINVAL;
3532 
3533 	/* drain dying csses before we re-apply (threaded) subtree control */
3534 	cgrp = cgroup_kn_lock_live(of->kn, true);
3535 	if (!cgrp)
3536 		return -ENOENT;
3537 
3538 	/* threaded can only be enabled */
3539 	ret = cgroup_enable_threaded(cgrp);
3540 
3541 	cgroup_kn_unlock(of->kn);
3542 	return ret ?: nbytes;
3543 }
3544 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3545 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3546 {
3547 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3548 	int descendants = READ_ONCE(cgrp->max_descendants);
3549 
3550 	if (descendants == INT_MAX)
3551 		seq_puts(seq, "max\n");
3552 	else
3553 		seq_printf(seq, "%d\n", descendants);
3554 
3555 	return 0;
3556 }
3557 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3558 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3559 					   char *buf, size_t nbytes, loff_t off)
3560 {
3561 	struct cgroup *cgrp;
3562 	int descendants;
3563 	ssize_t ret;
3564 
3565 	buf = strstrip(buf);
3566 	if (!strcmp(buf, "max")) {
3567 		descendants = INT_MAX;
3568 	} else {
3569 		ret = kstrtoint(buf, 0, &descendants);
3570 		if (ret)
3571 			return ret;
3572 	}
3573 
3574 	if (descendants < 0)
3575 		return -ERANGE;
3576 
3577 	cgrp = cgroup_kn_lock_live(of->kn, false);
3578 	if (!cgrp)
3579 		return -ENOENT;
3580 
3581 	cgrp->max_descendants = descendants;
3582 
3583 	cgroup_kn_unlock(of->kn);
3584 
3585 	return nbytes;
3586 }
3587 
cgroup_max_depth_show(struct seq_file * seq,void * v)3588 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3589 {
3590 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3591 	int depth = READ_ONCE(cgrp->max_depth);
3592 
3593 	if (depth == INT_MAX)
3594 		seq_puts(seq, "max\n");
3595 	else
3596 		seq_printf(seq, "%d\n", depth);
3597 
3598 	return 0;
3599 }
3600 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3601 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3602 				      char *buf, size_t nbytes, loff_t off)
3603 {
3604 	struct cgroup *cgrp;
3605 	ssize_t ret;
3606 	int depth;
3607 
3608 	buf = strstrip(buf);
3609 	if (!strcmp(buf, "max")) {
3610 		depth = INT_MAX;
3611 	} else {
3612 		ret = kstrtoint(buf, 0, &depth);
3613 		if (ret)
3614 			return ret;
3615 	}
3616 
3617 	if (depth < 0)
3618 		return -ERANGE;
3619 
3620 	cgrp = cgroup_kn_lock_live(of->kn, false);
3621 	if (!cgrp)
3622 		return -ENOENT;
3623 
3624 	cgrp->max_depth = depth;
3625 
3626 	cgroup_kn_unlock(of->kn);
3627 
3628 	return nbytes;
3629 }
3630 
cgroup_events_show(struct seq_file * seq,void * v)3631 static int cgroup_events_show(struct seq_file *seq, void *v)
3632 {
3633 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3634 
3635 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3636 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3637 
3638 	return 0;
3639 }
3640 
cgroup_stat_show(struct seq_file * seq,void * v)3641 static int cgroup_stat_show(struct seq_file *seq, void *v)
3642 {
3643 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3644 
3645 	seq_printf(seq, "nr_descendants %d\n",
3646 		   cgroup->nr_descendants);
3647 	seq_printf(seq, "nr_dying_descendants %d\n",
3648 		   cgroup->nr_dying_descendants);
3649 
3650 	return 0;
3651 }
3652 
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3653 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3654 						 struct cgroup *cgrp, int ssid)
3655 {
3656 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3657 	struct cgroup_subsys_state *css;
3658 	int ret;
3659 
3660 	if (!ss->css_extra_stat_show)
3661 		return 0;
3662 
3663 	css = cgroup_tryget_css(cgrp, ss);
3664 	if (!css)
3665 		return 0;
3666 
3667 	ret = ss->css_extra_stat_show(seq, css);
3668 	css_put(css);
3669 	return ret;
3670 }
3671 
cpu_stat_show(struct seq_file * seq,void * v)3672 static int cpu_stat_show(struct seq_file *seq, void *v)
3673 {
3674 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3675 	int ret = 0;
3676 
3677 	cgroup_base_stat_cputime_show(seq);
3678 #ifdef CONFIG_CGROUP_SCHED
3679 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3680 #endif
3681 	return ret;
3682 }
3683 
3684 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3685 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3686 {
3687 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3688 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3689 
3690 	return psi_show(seq, psi, PSI_IO);
3691 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3692 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3693 {
3694 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3695 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3696 
3697 	return psi_show(seq, psi, PSI_MEM);
3698 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3699 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3700 {
3701 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3702 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3703 
3704 	return psi_show(seq, psi, PSI_CPU);
3705 }
3706 
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3707 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3708 					  size_t nbytes, enum psi_res res)
3709 {
3710 	struct cgroup_file_ctx *ctx = of->priv;
3711 	struct psi_trigger *new;
3712 	struct cgroup *cgrp;
3713 	struct psi_group *psi;
3714 
3715 	cgrp = cgroup_kn_lock_live(of->kn, false);
3716 	if (!cgrp)
3717 		return -ENODEV;
3718 
3719 	cgroup_get(cgrp);
3720 	cgroup_kn_unlock(of->kn);
3721 
3722 	/* Allow only one trigger per file descriptor */
3723 	if (ctx->psi.trigger) {
3724 		cgroup_put(cgrp);
3725 		return -EBUSY;
3726 	}
3727 
3728 	psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3729 	new = psi_trigger_create(psi, buf, nbytes, res);
3730 	if (IS_ERR(new)) {
3731 		cgroup_put(cgrp);
3732 		return PTR_ERR(new);
3733 	}
3734 
3735 	smp_store_release(&ctx->psi.trigger, new);
3736 	cgroup_put(cgrp);
3737 
3738 	return nbytes;
3739 }
3740 
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3741 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3742 					  char *buf, size_t nbytes,
3743 					  loff_t off)
3744 {
3745 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3746 }
3747 
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3748 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3749 					  char *buf, size_t nbytes,
3750 					  loff_t off)
3751 {
3752 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3753 }
3754 
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3755 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3756 					  char *buf, size_t nbytes,
3757 					  loff_t off)
3758 {
3759 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3760 }
3761 
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3762 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3763 					  poll_table *pt)
3764 {
3765 	struct cgroup_file_ctx *ctx = of->priv;
3766 
3767 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3768 }
3769 
cgroup_pressure_release(struct kernfs_open_file * of)3770 static void cgroup_pressure_release(struct kernfs_open_file *of)
3771 {
3772 	struct cgroup_file_ctx *ctx = of->priv;
3773 
3774 	psi_trigger_destroy(ctx->psi.trigger);
3775 }
3776 
cgroup_psi_enabled(void)3777 bool cgroup_psi_enabled(void)
3778 {
3779 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3780 }
3781 
3782 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)3783 bool cgroup_psi_enabled(void)
3784 {
3785 	return false;
3786 }
3787 
3788 #endif /* CONFIG_PSI */
3789 
cgroup_freeze_show(struct seq_file * seq,void * v)3790 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3791 {
3792 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3793 
3794 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3795 
3796 	return 0;
3797 }
3798 
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3799 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3800 				   char *buf, size_t nbytes, loff_t off)
3801 {
3802 	struct cgroup *cgrp;
3803 	ssize_t ret;
3804 	int freeze;
3805 
3806 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3807 	if (ret)
3808 		return ret;
3809 
3810 	if (freeze < 0 || freeze > 1)
3811 		return -ERANGE;
3812 
3813 	cgrp = cgroup_kn_lock_live(of->kn, false);
3814 	if (!cgrp)
3815 		return -ENOENT;
3816 
3817 	cgroup_freeze(cgrp, freeze);
3818 
3819 	cgroup_kn_unlock(of->kn);
3820 
3821 	return nbytes;
3822 }
3823 
__cgroup_kill(struct cgroup * cgrp)3824 static void __cgroup_kill(struct cgroup *cgrp)
3825 {
3826 	struct css_task_iter it;
3827 	struct task_struct *task;
3828 
3829 	lockdep_assert_held(&cgroup_mutex);
3830 
3831 	spin_lock_irq(&css_set_lock);
3832 	set_bit(CGRP_KILL, &cgrp->flags);
3833 	spin_unlock_irq(&css_set_lock);
3834 
3835 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3836 	while ((task = css_task_iter_next(&it))) {
3837 		/* Ignore kernel threads here. */
3838 		if (task->flags & PF_KTHREAD)
3839 			continue;
3840 
3841 		/* Skip tasks that are already dying. */
3842 		if (__fatal_signal_pending(task))
3843 			continue;
3844 
3845 		send_sig(SIGKILL, task, 0);
3846 	}
3847 	css_task_iter_end(&it);
3848 
3849 	spin_lock_irq(&css_set_lock);
3850 	clear_bit(CGRP_KILL, &cgrp->flags);
3851 	spin_unlock_irq(&css_set_lock);
3852 }
3853 
cgroup_kill(struct cgroup * cgrp)3854 static void cgroup_kill(struct cgroup *cgrp)
3855 {
3856 	struct cgroup_subsys_state *css;
3857 	struct cgroup *dsct;
3858 
3859 	lockdep_assert_held(&cgroup_mutex);
3860 
3861 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3862 		__cgroup_kill(dsct);
3863 }
3864 
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3865 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3866 				 size_t nbytes, loff_t off)
3867 {
3868 	ssize_t ret = 0;
3869 	int kill;
3870 	struct cgroup *cgrp;
3871 
3872 	ret = kstrtoint(strstrip(buf), 0, &kill);
3873 	if (ret)
3874 		return ret;
3875 
3876 	if (kill != 1)
3877 		return -ERANGE;
3878 
3879 	cgrp = cgroup_kn_lock_live(of->kn, false);
3880 	if (!cgrp)
3881 		return -ENOENT;
3882 
3883 	/*
3884 	 * Killing is a process directed operation, i.e. the whole thread-group
3885 	 * is taken down so act like we do for cgroup.procs and only make this
3886 	 * writable in non-threaded cgroups.
3887 	 */
3888 	if (cgroup_is_threaded(cgrp))
3889 		ret = -EOPNOTSUPP;
3890 	else
3891 		cgroup_kill(cgrp);
3892 
3893 	cgroup_kn_unlock(of->kn);
3894 
3895 	return ret ?: nbytes;
3896 }
3897 
cgroup_file_open(struct kernfs_open_file * of)3898 static int cgroup_file_open(struct kernfs_open_file *of)
3899 {
3900 	struct cftype *cft = of_cft(of);
3901 	struct cgroup_file_ctx *ctx;
3902 	int ret;
3903 
3904 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3905 	if (!ctx)
3906 		return -ENOMEM;
3907 
3908 	ctx->ns = current->nsproxy->cgroup_ns;
3909 	get_cgroup_ns(ctx->ns);
3910 	of->priv = ctx;
3911 
3912 	if (!cft->open)
3913 		return 0;
3914 
3915 	ret = cft->open(of);
3916 	if (ret) {
3917 		put_cgroup_ns(ctx->ns);
3918 		kfree(ctx);
3919 	}
3920 	return ret;
3921 }
3922 
cgroup_file_release(struct kernfs_open_file * of)3923 static void cgroup_file_release(struct kernfs_open_file *of)
3924 {
3925 	struct cftype *cft = of_cft(of);
3926 	struct cgroup_file_ctx *ctx = of->priv;
3927 
3928 	if (cft->release)
3929 		cft->release(of);
3930 	put_cgroup_ns(ctx->ns);
3931 	kfree(ctx);
3932 }
3933 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3934 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3935 				 size_t nbytes, loff_t off)
3936 {
3937 	struct cgroup_file_ctx *ctx = of->priv;
3938 	struct cgroup *cgrp = of->kn->parent->priv;
3939 	struct cftype *cft = of_cft(of);
3940 	struct cgroup_subsys_state *css;
3941 	int ret;
3942 
3943 	if (!nbytes)
3944 		return 0;
3945 
3946 	/*
3947 	 * If namespaces are delegation boundaries, disallow writes to
3948 	 * files in an non-init namespace root from inside the namespace
3949 	 * except for the files explicitly marked delegatable -
3950 	 * cgroup.procs and cgroup.subtree_control.
3951 	 */
3952 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3953 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3954 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3955 		return -EPERM;
3956 
3957 	if (cft->write)
3958 		return cft->write(of, buf, nbytes, off);
3959 
3960 	/*
3961 	 * kernfs guarantees that a file isn't deleted with operations in
3962 	 * flight, which means that the matching css is and stays alive and
3963 	 * doesn't need to be pinned.  The RCU locking is not necessary
3964 	 * either.  It's just for the convenience of using cgroup_css().
3965 	 */
3966 	rcu_read_lock();
3967 	css = cgroup_css(cgrp, cft->ss);
3968 	rcu_read_unlock();
3969 
3970 	if (cft->write_u64) {
3971 		unsigned long long v;
3972 		ret = kstrtoull(buf, 0, &v);
3973 		if (!ret)
3974 			ret = cft->write_u64(css, cft, v);
3975 	} else if (cft->write_s64) {
3976 		long long v;
3977 		ret = kstrtoll(buf, 0, &v);
3978 		if (!ret)
3979 			ret = cft->write_s64(css, cft, v);
3980 	} else {
3981 		ret = -EINVAL;
3982 	}
3983 
3984 	return ret ?: nbytes;
3985 }
3986 
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3987 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3988 {
3989 	struct cftype *cft = of_cft(of);
3990 
3991 	if (cft->poll)
3992 		return cft->poll(of, pt);
3993 
3994 	return kernfs_generic_poll(of, pt);
3995 }
3996 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3997 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3998 {
3999 	return seq_cft(seq)->seq_start(seq, ppos);
4000 }
4001 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)4002 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4003 {
4004 	return seq_cft(seq)->seq_next(seq, v, ppos);
4005 }
4006 
cgroup_seqfile_stop(struct seq_file * seq,void * v)4007 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4008 {
4009 	if (seq_cft(seq)->seq_stop)
4010 		seq_cft(seq)->seq_stop(seq, v);
4011 }
4012 
cgroup_seqfile_show(struct seq_file * m,void * arg)4013 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4014 {
4015 	struct cftype *cft = seq_cft(m);
4016 	struct cgroup_subsys_state *css = seq_css(m);
4017 
4018 	if (cft->seq_show)
4019 		return cft->seq_show(m, arg);
4020 
4021 	if (cft->read_u64)
4022 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4023 	else if (cft->read_s64)
4024 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4025 	else
4026 		return -EINVAL;
4027 	return 0;
4028 }
4029 
4030 static struct kernfs_ops cgroup_kf_single_ops = {
4031 	.atomic_write_len	= PAGE_SIZE,
4032 	.open			= cgroup_file_open,
4033 	.release		= cgroup_file_release,
4034 	.write			= cgroup_file_write,
4035 	.poll			= cgroup_file_poll,
4036 	.seq_show		= cgroup_seqfile_show,
4037 };
4038 
4039 static struct kernfs_ops cgroup_kf_ops = {
4040 	.atomic_write_len	= PAGE_SIZE,
4041 	.open			= cgroup_file_open,
4042 	.release		= cgroup_file_release,
4043 	.write			= cgroup_file_write,
4044 	.poll			= cgroup_file_poll,
4045 	.seq_start		= cgroup_seqfile_start,
4046 	.seq_next		= cgroup_seqfile_next,
4047 	.seq_stop		= cgroup_seqfile_stop,
4048 	.seq_show		= cgroup_seqfile_show,
4049 };
4050 
4051 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)4052 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
4053 {
4054 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4055 			       .ia_uid = current_fsuid(),
4056 			       .ia_gid = current_fsgid(), };
4057 
4058 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4059 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4060 		return 0;
4061 
4062 	return kernfs_setattr(kn, &iattr);
4063 }
4064 
cgroup_file_notify_timer(struct timer_list * timer)4065 static void cgroup_file_notify_timer(struct timer_list *timer)
4066 {
4067 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4068 					notify_timer));
4069 }
4070 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4071 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4072 			   struct cftype *cft)
4073 {
4074 	char name[CGROUP_FILE_NAME_MAX];
4075 	struct kernfs_node *kn;
4076 	struct lock_class_key *key = NULL;
4077 	int ret;
4078 
4079 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4080 	key = &cft->lockdep_key;
4081 #endif
4082 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4083 				  cgroup_file_mode(cft),
4084 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4085 				  0, cft->kf_ops, cft,
4086 				  NULL, key);
4087 	if (IS_ERR(kn))
4088 		return PTR_ERR(kn);
4089 
4090 	ret = cgroup_kn_set_ugid(kn);
4091 	if (ret) {
4092 		kernfs_remove(kn);
4093 		return ret;
4094 	}
4095 
4096 	if (cft->file_offset) {
4097 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4098 
4099 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4100 
4101 		spin_lock_irq(&cgroup_file_kn_lock);
4102 		cfile->kn = kn;
4103 		spin_unlock_irq(&cgroup_file_kn_lock);
4104 	}
4105 
4106 	return 0;
4107 }
4108 
4109 /**
4110  * cgroup_addrm_files - add or remove files to a cgroup directory
4111  * @css: the target css
4112  * @cgrp: the target cgroup (usually css->cgroup)
4113  * @cfts: array of cftypes to be added
4114  * @is_add: whether to add or remove
4115  *
4116  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4117  * For removals, this function never fails.
4118  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4119 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4120 			      struct cgroup *cgrp, struct cftype cfts[],
4121 			      bool is_add)
4122 {
4123 	struct cftype *cft, *cft_end = NULL;
4124 	int ret = 0;
4125 
4126 	lockdep_assert_held(&cgroup_mutex);
4127 
4128 restart:
4129 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4130 		/* does cft->flags tell us to skip this file on @cgrp? */
4131 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4132 			continue;
4133 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4134 			continue;
4135 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4136 			continue;
4137 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4138 			continue;
4139 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4140 			continue;
4141 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4142 			continue;
4143 		if (is_add) {
4144 			ret = cgroup_add_file(css, cgrp, cft);
4145 			if (ret) {
4146 				pr_warn("%s: failed to add %s, err=%d\n",
4147 					__func__, cft->name, ret);
4148 				cft_end = cft;
4149 				is_add = false;
4150 				goto restart;
4151 			}
4152 		} else {
4153 			cgroup_rm_file(cgrp, cft);
4154 		}
4155 	}
4156 	return ret;
4157 }
4158 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4159 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4160 {
4161 	struct cgroup_subsys *ss = cfts[0].ss;
4162 	struct cgroup *root = &ss->root->cgrp;
4163 	struct cgroup_subsys_state *css;
4164 	int ret = 0;
4165 
4166 	lockdep_assert_held(&cgroup_mutex);
4167 
4168 	/* add/rm files for all cgroups created before */
4169 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4170 		struct cgroup *cgrp = css->cgroup;
4171 
4172 		if (!(css->flags & CSS_VISIBLE))
4173 			continue;
4174 
4175 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4176 		if (ret)
4177 			break;
4178 	}
4179 
4180 	if (is_add && !ret)
4181 		kernfs_activate(root->kn);
4182 	return ret;
4183 }
4184 
cgroup_exit_cftypes(struct cftype * cfts)4185 static void cgroup_exit_cftypes(struct cftype *cfts)
4186 {
4187 	struct cftype *cft;
4188 
4189 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4190 		/* free copy for custom atomic_write_len, see init_cftypes() */
4191 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4192 			kfree(cft->kf_ops);
4193 		cft->kf_ops = NULL;
4194 		cft->ss = NULL;
4195 
4196 		/* revert flags set by cgroup core while adding @cfts */
4197 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4198 	}
4199 }
4200 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4201 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4202 {
4203 	struct cftype *cft;
4204 
4205 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4206 		struct kernfs_ops *kf_ops;
4207 
4208 		WARN_ON(cft->ss || cft->kf_ops);
4209 
4210 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4211 			continue;
4212 
4213 		if (cft->seq_start)
4214 			kf_ops = &cgroup_kf_ops;
4215 		else
4216 			kf_ops = &cgroup_kf_single_ops;
4217 
4218 		/*
4219 		 * Ugh... if @cft wants a custom max_write_len, we need to
4220 		 * make a copy of kf_ops to set its atomic_write_len.
4221 		 */
4222 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4223 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4224 			if (!kf_ops) {
4225 				cgroup_exit_cftypes(cfts);
4226 				return -ENOMEM;
4227 			}
4228 			kf_ops->atomic_write_len = cft->max_write_len;
4229 		}
4230 
4231 		cft->kf_ops = kf_ops;
4232 		cft->ss = ss;
4233 	}
4234 
4235 	return 0;
4236 }
4237 
cgroup_rm_cftypes_locked(struct cftype * cfts)4238 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4239 {
4240 	lockdep_assert_held(&cgroup_mutex);
4241 
4242 	if (!cfts || !cfts[0].ss)
4243 		return -ENOENT;
4244 
4245 	list_del(&cfts->node);
4246 	cgroup_apply_cftypes(cfts, false);
4247 	cgroup_exit_cftypes(cfts);
4248 	return 0;
4249 }
4250 
4251 /**
4252  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4253  * @cfts: zero-length name terminated array of cftypes
4254  *
4255  * Unregister @cfts.  Files described by @cfts are removed from all
4256  * existing cgroups and all future cgroups won't have them either.  This
4257  * function can be called anytime whether @cfts' subsys is attached or not.
4258  *
4259  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4260  * registered.
4261  */
cgroup_rm_cftypes(struct cftype * cfts)4262 int cgroup_rm_cftypes(struct cftype *cfts)
4263 {
4264 	int ret;
4265 
4266 	mutex_lock(&cgroup_mutex);
4267 	ret = cgroup_rm_cftypes_locked(cfts);
4268 	mutex_unlock(&cgroup_mutex);
4269 	return ret;
4270 }
4271 
4272 /**
4273  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4274  * @ss: target cgroup subsystem
4275  * @cfts: zero-length name terminated array of cftypes
4276  *
4277  * Register @cfts to @ss.  Files described by @cfts are created for all
4278  * existing cgroups to which @ss is attached and all future cgroups will
4279  * have them too.  This function can be called anytime whether @ss is
4280  * attached or not.
4281  *
4282  * Returns 0 on successful registration, -errno on failure.  Note that this
4283  * function currently returns 0 as long as @cfts registration is successful
4284  * even if some file creation attempts on existing cgroups fail.
4285  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4286 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4287 {
4288 	int ret;
4289 
4290 	if (!cgroup_ssid_enabled(ss->id))
4291 		return 0;
4292 
4293 	if (!cfts || cfts[0].name[0] == '\0')
4294 		return 0;
4295 
4296 	ret = cgroup_init_cftypes(ss, cfts);
4297 	if (ret)
4298 		return ret;
4299 
4300 	mutex_lock(&cgroup_mutex);
4301 
4302 	list_add_tail(&cfts->node, &ss->cfts);
4303 	ret = cgroup_apply_cftypes(cfts, true);
4304 	if (ret)
4305 		cgroup_rm_cftypes_locked(cfts);
4306 
4307 	mutex_unlock(&cgroup_mutex);
4308 	return ret;
4309 }
4310 
4311 /**
4312  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4313  * @ss: target cgroup subsystem
4314  * @cfts: zero-length name terminated array of cftypes
4315  *
4316  * Similar to cgroup_add_cftypes() but the added files are only used for
4317  * the default hierarchy.
4318  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4319 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4320 {
4321 	struct cftype *cft;
4322 
4323 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4324 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4325 	return cgroup_add_cftypes(ss, cfts);
4326 }
4327 EXPORT_SYMBOL_GPL(cgroup_add_dfl_cftypes);
4328 
4329 /**
4330  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4331  * @ss: target cgroup subsystem
4332  * @cfts: zero-length name terminated array of cftypes
4333  *
4334  * Similar to cgroup_add_cftypes() but the added files are only used for
4335  * the legacy hierarchies.
4336  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4337 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4338 {
4339 	struct cftype *cft;
4340 
4341 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4342 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4343 	return cgroup_add_cftypes(ss, cfts);
4344 }
4345 EXPORT_SYMBOL_GPL(cgroup_add_legacy_cftypes);
4346 
4347 /**
4348  * cgroup_file_notify - generate a file modified event for a cgroup_file
4349  * @cfile: target cgroup_file
4350  *
4351  * @cfile must have been obtained by setting cftype->file_offset.
4352  */
cgroup_file_notify(struct cgroup_file * cfile)4353 void cgroup_file_notify(struct cgroup_file *cfile)
4354 {
4355 	unsigned long flags;
4356 
4357 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4358 	if (cfile->kn) {
4359 		unsigned long last = cfile->notified_at;
4360 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4361 
4362 		if (time_in_range(jiffies, last, next)) {
4363 			timer_reduce(&cfile->notify_timer, next);
4364 		} else {
4365 			kernfs_notify(cfile->kn);
4366 			cfile->notified_at = jiffies;
4367 		}
4368 	}
4369 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4370 }
4371 
4372 /**
4373  * css_next_child - find the next child of a given css
4374  * @pos: the current position (%NULL to initiate traversal)
4375  * @parent: css whose children to walk
4376  *
4377  * This function returns the next child of @parent and should be called
4378  * under either cgroup_mutex or RCU read lock.  The only requirement is
4379  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4380  * be returned regardless of their states.
4381  *
4382  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4383  * css which finished ->css_online() is guaranteed to be visible in the
4384  * future iterations and will stay visible until the last reference is put.
4385  * A css which hasn't finished ->css_online() or already finished
4386  * ->css_offline() may show up during traversal.  It's each subsystem's
4387  * responsibility to synchronize against on/offlining.
4388  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4389 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4390 					   struct cgroup_subsys_state *parent)
4391 {
4392 	struct cgroup_subsys_state *next;
4393 
4394 	cgroup_assert_mutex_or_rcu_locked();
4395 
4396 	/*
4397 	 * @pos could already have been unlinked from the sibling list.
4398 	 * Once a cgroup is removed, its ->sibling.next is no longer
4399 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4400 	 * @pos is taken off list, at which time its next pointer is valid,
4401 	 * and, as releases are serialized, the one pointed to by the next
4402 	 * pointer is guaranteed to not have started release yet.  This
4403 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4404 	 * critical section, the one pointed to by its next pointer is
4405 	 * guaranteed to not have finished its RCU grace period even if we
4406 	 * have dropped rcu_read_lock() in-between iterations.
4407 	 *
4408 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4409 	 * dereferenced; however, as each css is given a monotonically
4410 	 * increasing unique serial number and always appended to the
4411 	 * sibling list, the next one can be found by walking the parent's
4412 	 * children until the first css with higher serial number than
4413 	 * @pos's.  While this path can be slower, it happens iff iteration
4414 	 * races against release and the race window is very small.
4415 	 */
4416 	if (!pos) {
4417 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4418 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4419 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4420 	} else {
4421 		list_for_each_entry_rcu(next, &parent->children, sibling,
4422 					lockdep_is_held(&cgroup_mutex))
4423 			if (next->serial_nr > pos->serial_nr)
4424 				break;
4425 	}
4426 
4427 	/*
4428 	 * @next, if not pointing to the head, can be dereferenced and is
4429 	 * the next sibling.
4430 	 */
4431 	if (&next->sibling != &parent->children)
4432 		return next;
4433 	return NULL;
4434 }
4435 EXPORT_SYMBOL_GPL(css_next_child);
4436 
4437 /**
4438  * css_next_descendant_pre - find the next descendant for pre-order walk
4439  * @pos: the current position (%NULL to initiate traversal)
4440  * @root: css whose descendants to walk
4441  *
4442  * To be used by css_for_each_descendant_pre().  Find the next descendant
4443  * to visit for pre-order traversal of @root's descendants.  @root is
4444  * included in the iteration and the first node to be visited.
4445  *
4446  * While this function requires cgroup_mutex or RCU read locking, it
4447  * doesn't require the whole traversal to be contained in a single critical
4448  * section.  This function will return the correct next descendant as long
4449  * as both @pos and @root are accessible and @pos is a descendant of @root.
4450  *
4451  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4452  * css which finished ->css_online() is guaranteed to be visible in the
4453  * future iterations and will stay visible until the last reference is put.
4454  * A css which hasn't finished ->css_online() or already finished
4455  * ->css_offline() may show up during traversal.  It's each subsystem's
4456  * responsibility to synchronize against on/offlining.
4457  */
4458 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4459 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4460 			struct cgroup_subsys_state *root)
4461 {
4462 	struct cgroup_subsys_state *next;
4463 
4464 	cgroup_assert_mutex_or_rcu_locked();
4465 
4466 	/* if first iteration, visit @root */
4467 	if (!pos)
4468 		return root;
4469 
4470 	/* visit the first child if exists */
4471 	next = css_next_child(NULL, pos);
4472 	if (next)
4473 		return next;
4474 
4475 	/* no child, visit my or the closest ancestor's next sibling */
4476 	while (pos != root) {
4477 		next = css_next_child(pos, pos->parent);
4478 		if (next)
4479 			return next;
4480 		pos = pos->parent;
4481 	}
4482 
4483 	return NULL;
4484 }
4485 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4486 
4487 /**
4488  * css_rightmost_descendant - return the rightmost descendant of a css
4489  * @pos: css of interest
4490  *
4491  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4492  * is returned.  This can be used during pre-order traversal to skip
4493  * subtree of @pos.
4494  *
4495  * While this function requires cgroup_mutex or RCU read locking, it
4496  * doesn't require the whole traversal to be contained in a single critical
4497  * section.  This function will return the correct rightmost descendant as
4498  * long as @pos is accessible.
4499  */
4500 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4501 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4502 {
4503 	struct cgroup_subsys_state *last, *tmp;
4504 
4505 	cgroup_assert_mutex_or_rcu_locked();
4506 
4507 	do {
4508 		last = pos;
4509 		/* ->prev isn't RCU safe, walk ->next till the end */
4510 		pos = NULL;
4511 		css_for_each_child(tmp, last)
4512 			pos = tmp;
4513 	} while (pos);
4514 
4515 	return last;
4516 }
4517 
4518 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4519 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4520 {
4521 	struct cgroup_subsys_state *last;
4522 
4523 	do {
4524 		last = pos;
4525 		pos = css_next_child(NULL, pos);
4526 	} while (pos);
4527 
4528 	return last;
4529 }
4530 
4531 /**
4532  * css_next_descendant_post - find the next descendant for post-order walk
4533  * @pos: the current position (%NULL to initiate traversal)
4534  * @root: css whose descendants to walk
4535  *
4536  * To be used by css_for_each_descendant_post().  Find the next descendant
4537  * to visit for post-order traversal of @root's descendants.  @root is
4538  * included in the iteration and the last node to be visited.
4539  *
4540  * While this function requires cgroup_mutex or RCU read locking, it
4541  * doesn't require the whole traversal to be contained in a single critical
4542  * section.  This function will return the correct next descendant as long
4543  * as both @pos and @cgroup are accessible and @pos is a descendant of
4544  * @cgroup.
4545  *
4546  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4547  * css which finished ->css_online() is guaranteed to be visible in the
4548  * future iterations and will stay visible until the last reference is put.
4549  * A css which hasn't finished ->css_online() or already finished
4550  * ->css_offline() may show up during traversal.  It's each subsystem's
4551  * responsibility to synchronize against on/offlining.
4552  */
4553 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4554 css_next_descendant_post(struct cgroup_subsys_state *pos,
4555 			 struct cgroup_subsys_state *root)
4556 {
4557 	struct cgroup_subsys_state *next;
4558 
4559 	cgroup_assert_mutex_or_rcu_locked();
4560 
4561 	/* if first iteration, visit leftmost descendant which may be @root */
4562 	if (!pos)
4563 		return css_leftmost_descendant(root);
4564 
4565 	/* if we visited @root, we're done */
4566 	if (pos == root)
4567 		return NULL;
4568 
4569 	/* if there's an unvisited sibling, visit its leftmost descendant */
4570 	next = css_next_child(pos, pos->parent);
4571 	if (next)
4572 		return css_leftmost_descendant(next);
4573 
4574 	/* no sibling left, visit parent */
4575 	return pos->parent;
4576 }
4577 
4578 /**
4579  * css_has_online_children - does a css have online children
4580  * @css: the target css
4581  *
4582  * Returns %true if @css has any online children; otherwise, %false.  This
4583  * function can be called from any context but the caller is responsible
4584  * for synchronizing against on/offlining as necessary.
4585  */
css_has_online_children(struct cgroup_subsys_state * css)4586 bool css_has_online_children(struct cgroup_subsys_state *css)
4587 {
4588 	struct cgroup_subsys_state *child;
4589 	bool ret = false;
4590 
4591 	rcu_read_lock();
4592 	css_for_each_child(child, css) {
4593 		if (child->flags & CSS_ONLINE) {
4594 			ret = true;
4595 			break;
4596 		}
4597 	}
4598 	rcu_read_unlock();
4599 	return ret;
4600 }
4601 
css_task_iter_next_css_set(struct css_task_iter * it)4602 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4603 {
4604 	struct list_head *l;
4605 	struct cgrp_cset_link *link;
4606 	struct css_set *cset;
4607 
4608 	lockdep_assert_held(&css_set_lock);
4609 
4610 	/* find the next threaded cset */
4611 	if (it->tcset_pos) {
4612 		l = it->tcset_pos->next;
4613 
4614 		if (l != it->tcset_head) {
4615 			it->tcset_pos = l;
4616 			return container_of(l, struct css_set,
4617 					    threaded_csets_node);
4618 		}
4619 
4620 		it->tcset_pos = NULL;
4621 	}
4622 
4623 	/* find the next cset */
4624 	l = it->cset_pos;
4625 	l = l->next;
4626 	if (l == it->cset_head) {
4627 		it->cset_pos = NULL;
4628 		return NULL;
4629 	}
4630 
4631 	if (it->ss) {
4632 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4633 	} else {
4634 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4635 		cset = link->cset;
4636 	}
4637 
4638 	it->cset_pos = l;
4639 
4640 	/* initialize threaded css_set walking */
4641 	if (it->flags & CSS_TASK_ITER_THREADED) {
4642 		if (it->cur_dcset)
4643 			put_css_set_locked(it->cur_dcset);
4644 		it->cur_dcset = cset;
4645 		get_css_set(cset);
4646 
4647 		it->tcset_head = &cset->threaded_csets;
4648 		it->tcset_pos = &cset->threaded_csets;
4649 	}
4650 
4651 	return cset;
4652 }
4653 
4654 /**
4655  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4656  * @it: the iterator to advance
4657  *
4658  * Advance @it to the next css_set to walk.
4659  */
css_task_iter_advance_css_set(struct css_task_iter * it)4660 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4661 {
4662 	struct css_set *cset;
4663 
4664 	lockdep_assert_held(&css_set_lock);
4665 
4666 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4667 	while ((cset = css_task_iter_next_css_set(it))) {
4668 		if (!list_empty(&cset->tasks)) {
4669 			it->cur_tasks_head = &cset->tasks;
4670 			break;
4671 		} else if (!list_empty(&cset->mg_tasks)) {
4672 			it->cur_tasks_head = &cset->mg_tasks;
4673 			break;
4674 		} else if (!list_empty(&cset->dying_tasks)) {
4675 			it->cur_tasks_head = &cset->dying_tasks;
4676 			break;
4677 		}
4678 	}
4679 	if (!cset) {
4680 		it->task_pos = NULL;
4681 		return;
4682 	}
4683 	it->task_pos = it->cur_tasks_head->next;
4684 
4685 	/*
4686 	 * We don't keep css_sets locked across iteration steps and thus
4687 	 * need to take steps to ensure that iteration can be resumed after
4688 	 * the lock is re-acquired.  Iteration is performed at two levels -
4689 	 * css_sets and tasks in them.
4690 	 *
4691 	 * Once created, a css_set never leaves its cgroup lists, so a
4692 	 * pinned css_set is guaranteed to stay put and we can resume
4693 	 * iteration afterwards.
4694 	 *
4695 	 * Tasks may leave @cset across iteration steps.  This is resolved
4696 	 * by registering each iterator with the css_set currently being
4697 	 * walked and making css_set_move_task() advance iterators whose
4698 	 * next task is leaving.
4699 	 */
4700 	if (it->cur_cset) {
4701 		list_del(&it->iters_node);
4702 		put_css_set_locked(it->cur_cset);
4703 	}
4704 	get_css_set(cset);
4705 	it->cur_cset = cset;
4706 	list_add(&it->iters_node, &cset->task_iters);
4707 }
4708 
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4709 static void css_task_iter_skip(struct css_task_iter *it,
4710 			       struct task_struct *task)
4711 {
4712 	lockdep_assert_held(&css_set_lock);
4713 
4714 	if (it->task_pos == &task->cg_list) {
4715 		it->task_pos = it->task_pos->next;
4716 		it->flags |= CSS_TASK_ITER_SKIPPED;
4717 	}
4718 }
4719 
css_task_iter_advance(struct css_task_iter * it)4720 static void css_task_iter_advance(struct css_task_iter *it)
4721 {
4722 	struct task_struct *task;
4723 
4724 	lockdep_assert_held(&css_set_lock);
4725 repeat:
4726 	if (it->task_pos) {
4727 		/*
4728 		 * Advance iterator to find next entry. We go through cset
4729 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4730 		 * the next cset.
4731 		 */
4732 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4733 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4734 		else
4735 			it->task_pos = it->task_pos->next;
4736 
4737 		if (it->task_pos == &it->cur_cset->tasks) {
4738 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4739 			it->task_pos = it->cur_tasks_head->next;
4740 		}
4741 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4742 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4743 			it->task_pos = it->cur_tasks_head->next;
4744 		}
4745 		if (it->task_pos == &it->cur_cset->dying_tasks)
4746 			css_task_iter_advance_css_set(it);
4747 	} else {
4748 		/* called from start, proceed to the first cset */
4749 		css_task_iter_advance_css_set(it);
4750 	}
4751 
4752 	if (!it->task_pos)
4753 		return;
4754 
4755 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4756 
4757 	if (it->flags & CSS_TASK_ITER_PROCS) {
4758 		/* if PROCS, skip over tasks which aren't group leaders */
4759 		if (!thread_group_leader(task))
4760 			goto repeat;
4761 
4762 		/* and dying leaders w/o live member threads */
4763 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4764 		    !atomic_read(&task->signal->live))
4765 			goto repeat;
4766 	} else {
4767 		/* skip all dying ones */
4768 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4769 			goto repeat;
4770 	}
4771 }
4772 
4773 /**
4774  * css_task_iter_start - initiate task iteration
4775  * @css: the css to walk tasks of
4776  * @flags: CSS_TASK_ITER_* flags
4777  * @it: the task iterator to use
4778  *
4779  * Initiate iteration through the tasks of @css.  The caller can call
4780  * css_task_iter_next() to walk through the tasks until the function
4781  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4782  * called.
4783  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4784 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4785 			 struct css_task_iter *it)
4786 {
4787 	memset(it, 0, sizeof(*it));
4788 
4789 	spin_lock_irq(&css_set_lock);
4790 
4791 	it->ss = css->ss;
4792 	it->flags = flags;
4793 
4794 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4795 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4796 	else
4797 		it->cset_pos = &css->cgroup->cset_links;
4798 
4799 	it->cset_head = it->cset_pos;
4800 
4801 	css_task_iter_advance(it);
4802 
4803 	spin_unlock_irq(&css_set_lock);
4804 }
4805 
4806 /**
4807  * css_task_iter_next - return the next task for the iterator
4808  * @it: the task iterator being iterated
4809  *
4810  * The "next" function for task iteration.  @it should have been
4811  * initialized via css_task_iter_start().  Returns NULL when the iteration
4812  * reaches the end.
4813  */
css_task_iter_next(struct css_task_iter * it)4814 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4815 {
4816 	if (it->cur_task) {
4817 		put_task_struct(it->cur_task);
4818 		it->cur_task = NULL;
4819 	}
4820 
4821 	spin_lock_irq(&css_set_lock);
4822 
4823 	/* @it may be half-advanced by skips, finish advancing */
4824 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4825 		css_task_iter_advance(it);
4826 
4827 	if (it->task_pos) {
4828 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4829 					  cg_list);
4830 		get_task_struct(it->cur_task);
4831 		css_task_iter_advance(it);
4832 	}
4833 
4834 	spin_unlock_irq(&css_set_lock);
4835 
4836 	return it->cur_task;
4837 }
4838 
4839 /**
4840  * css_task_iter_end - finish task iteration
4841  * @it: the task iterator to finish
4842  *
4843  * Finish task iteration started by css_task_iter_start().
4844  */
css_task_iter_end(struct css_task_iter * it)4845 void css_task_iter_end(struct css_task_iter *it)
4846 {
4847 	if (it->cur_cset) {
4848 		spin_lock_irq(&css_set_lock);
4849 		list_del(&it->iters_node);
4850 		put_css_set_locked(it->cur_cset);
4851 		spin_unlock_irq(&css_set_lock);
4852 	}
4853 
4854 	if (it->cur_dcset)
4855 		put_css_set(it->cur_dcset);
4856 
4857 	if (it->cur_task)
4858 		put_task_struct(it->cur_task);
4859 }
4860 
cgroup_procs_release(struct kernfs_open_file * of)4861 static void cgroup_procs_release(struct kernfs_open_file *of)
4862 {
4863 	struct cgroup_file_ctx *ctx = of->priv;
4864 
4865 	if (ctx->procs.started)
4866 		css_task_iter_end(&ctx->procs.iter);
4867 }
4868 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4869 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4870 {
4871 	struct kernfs_open_file *of = s->private;
4872 	struct cgroup_file_ctx *ctx = of->priv;
4873 
4874 	if (pos)
4875 		(*pos)++;
4876 
4877 	return css_task_iter_next(&ctx->procs.iter);
4878 }
4879 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4880 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4881 				  unsigned int iter_flags)
4882 {
4883 	struct kernfs_open_file *of = s->private;
4884 	struct cgroup *cgrp = seq_css(s)->cgroup;
4885 	struct cgroup_file_ctx *ctx = of->priv;
4886 	struct css_task_iter *it = &ctx->procs.iter;
4887 
4888 	/*
4889 	 * When a seq_file is seeked, it's always traversed sequentially
4890 	 * from position 0, so we can simply keep iterating on !0 *pos.
4891 	 */
4892 	if (!ctx->procs.started) {
4893 		if (WARN_ON_ONCE((*pos)))
4894 			return ERR_PTR(-EINVAL);
4895 		css_task_iter_start(&cgrp->self, iter_flags, it);
4896 		ctx->procs.started = true;
4897 	} else if (!(*pos)) {
4898 		css_task_iter_end(it);
4899 		css_task_iter_start(&cgrp->self, iter_flags, it);
4900 	} else
4901 		return it->cur_task;
4902 
4903 	return cgroup_procs_next(s, NULL, NULL);
4904 }
4905 
cgroup_procs_start(struct seq_file * s,loff_t * pos)4906 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4907 {
4908 	struct cgroup *cgrp = seq_css(s)->cgroup;
4909 
4910 	/*
4911 	 * All processes of a threaded subtree belong to the domain cgroup
4912 	 * of the subtree.  Only threads can be distributed across the
4913 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4914 	 * They're always empty anyway.
4915 	 */
4916 	if (cgroup_is_threaded(cgrp))
4917 		return ERR_PTR(-EOPNOTSUPP);
4918 
4919 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4920 					    CSS_TASK_ITER_THREADED);
4921 }
4922 
cgroup_procs_show(struct seq_file * s,void * v)4923 static int cgroup_procs_show(struct seq_file *s, void *v)
4924 {
4925 	seq_printf(s, "%d\n", task_pid_vnr(v));
4926 	return 0;
4927 }
4928 
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4929 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4930 {
4931 	int ret;
4932 	struct inode *inode;
4933 
4934 	lockdep_assert_held(&cgroup_mutex);
4935 
4936 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4937 	if (!inode)
4938 		return -ENOMEM;
4939 
4940 	ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4941 	iput(inode);
4942 	return ret;
4943 }
4944 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)4945 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4946 					 struct cgroup *dst_cgrp,
4947 					 struct super_block *sb,
4948 					 struct cgroup_namespace *ns)
4949 {
4950 	struct cgroup *com_cgrp = src_cgrp;
4951 	int ret;
4952 
4953 	lockdep_assert_held(&cgroup_mutex);
4954 
4955 	/* find the common ancestor */
4956 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4957 		com_cgrp = cgroup_parent(com_cgrp);
4958 
4959 	/* %current should be authorized to migrate to the common ancestor */
4960 	ret = cgroup_may_write(com_cgrp, sb);
4961 	if (ret)
4962 		return ret;
4963 
4964 	/*
4965 	 * If namespaces are delegation boundaries, %current must be able
4966 	 * to see both source and destination cgroups from its namespace.
4967 	 */
4968 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4969 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4970 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4971 		return -ENOENT;
4972 
4973 	return 0;
4974 }
4975 
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)4976 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4977 				     struct cgroup *dst_cgrp,
4978 				     struct super_block *sb, bool threadgroup,
4979 				     struct cgroup_namespace *ns)
4980 {
4981 	int ret = 0;
4982 
4983 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4984 	if (ret)
4985 		return ret;
4986 
4987 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4988 	if (ret)
4989 		return ret;
4990 
4991 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4992 		ret = -EOPNOTSUPP;
4993 
4994 	return ret;
4995 }
4996 
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)4997 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4998 				    bool threadgroup)
4999 {
5000 	struct cgroup_file_ctx *ctx = of->priv;
5001 	struct cgroup *src_cgrp, *dst_cgrp;
5002 	struct task_struct *task;
5003 	const struct cred *saved_cred;
5004 	ssize_t ret;
5005 	bool threadgroup_locked;
5006 
5007 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5008 	if (!dst_cgrp)
5009 		return -ENODEV;
5010 
5011 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked, dst_cgrp);
5012 	ret = PTR_ERR_OR_ZERO(task);
5013 	if (ret)
5014 		goto out_unlock;
5015 
5016 	/* find the source cgroup */
5017 	spin_lock_irq(&css_set_lock);
5018 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5019 	spin_unlock_irq(&css_set_lock);
5020 
5021 	/*
5022 	 * Process and thread migrations follow same delegation rule. Check
5023 	 * permissions using the credentials from file open to protect against
5024 	 * inherited fd attacks.
5025 	 */
5026 	saved_cred = override_creds(of->file->f_cred);
5027 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5028 					of->file->f_path.dentry->d_sb,
5029 					threadgroup, ctx->ns);
5030 	revert_creds(saved_cred);
5031 	if (ret)
5032 		goto out_finish;
5033 
5034 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5035 
5036 out_finish:
5037 	cgroup_procs_write_finish(task, threadgroup_locked);
5038 out_unlock:
5039 	cgroup_kn_unlock(of->kn);
5040 
5041 	return ret;
5042 }
5043 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5044 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5045 				  char *buf, size_t nbytes, loff_t off)
5046 {
5047 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5048 }
5049 
cgroup_threads_start(struct seq_file * s,loff_t * pos)5050 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5051 {
5052 	return __cgroup_procs_start(s, pos, 0);
5053 }
5054 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5055 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5056 				    char *buf, size_t nbytes, loff_t off)
5057 {
5058 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5059 }
5060 
5061 /* cgroup core interface files for the default hierarchy */
5062 static struct cftype cgroup_base_files[] = {
5063 	{
5064 		.name = "cgroup.type",
5065 		.flags = CFTYPE_NOT_ON_ROOT,
5066 		.seq_show = cgroup_type_show,
5067 		.write = cgroup_type_write,
5068 	},
5069 	{
5070 		.name = "cgroup.procs",
5071 		.flags = CFTYPE_NS_DELEGATABLE,
5072 		.file_offset = offsetof(struct cgroup, procs_file),
5073 		.release = cgroup_procs_release,
5074 		.seq_start = cgroup_procs_start,
5075 		.seq_next = cgroup_procs_next,
5076 		.seq_show = cgroup_procs_show,
5077 		.write = cgroup_procs_write,
5078 	},
5079 	{
5080 		.name = "cgroup.threads",
5081 		.flags = CFTYPE_NS_DELEGATABLE,
5082 		.release = cgroup_procs_release,
5083 		.seq_start = cgroup_threads_start,
5084 		.seq_next = cgroup_procs_next,
5085 		.seq_show = cgroup_procs_show,
5086 		.write = cgroup_threads_write,
5087 	},
5088 	{
5089 		.name = "cgroup.controllers",
5090 		.seq_show = cgroup_controllers_show,
5091 	},
5092 	{
5093 		.name = "cgroup.subtree_control",
5094 		.flags = CFTYPE_NS_DELEGATABLE,
5095 		.seq_show = cgroup_subtree_control_show,
5096 		.write = cgroup_subtree_control_write,
5097 	},
5098 	{
5099 		.name = "cgroup.events",
5100 		.flags = CFTYPE_NOT_ON_ROOT,
5101 		.file_offset = offsetof(struct cgroup, events_file),
5102 		.seq_show = cgroup_events_show,
5103 	},
5104 	{
5105 		.name = "cgroup.max.descendants",
5106 		.seq_show = cgroup_max_descendants_show,
5107 		.write = cgroup_max_descendants_write,
5108 	},
5109 	{
5110 		.name = "cgroup.max.depth",
5111 		.seq_show = cgroup_max_depth_show,
5112 		.write = cgroup_max_depth_write,
5113 	},
5114 	{
5115 		.name = "cgroup.stat",
5116 		.seq_show = cgroup_stat_show,
5117 	},
5118 	{
5119 		.name = "cgroup.freeze",
5120 		.flags = CFTYPE_NOT_ON_ROOT,
5121 		.seq_show = cgroup_freeze_show,
5122 		.write = cgroup_freeze_write,
5123 	},
5124 	{
5125 		.name = "cgroup.kill",
5126 		.flags = CFTYPE_NOT_ON_ROOT,
5127 		.write = cgroup_kill_write,
5128 	},
5129 	{
5130 		.name = "cpu.stat",
5131 		.seq_show = cpu_stat_show,
5132 	},
5133 #ifdef CONFIG_PSI
5134 	{
5135 		.name = "io.pressure",
5136 		.flags = CFTYPE_PRESSURE,
5137 		.seq_show = cgroup_io_pressure_show,
5138 		.write = cgroup_io_pressure_write,
5139 		.poll = cgroup_pressure_poll,
5140 		.release = cgroup_pressure_release,
5141 	},
5142 	{
5143 		.name = "memory.pressure",
5144 		.flags = CFTYPE_PRESSURE,
5145 		.seq_show = cgroup_memory_pressure_show,
5146 		.write = cgroup_memory_pressure_write,
5147 		.poll = cgroup_pressure_poll,
5148 		.release = cgroup_pressure_release,
5149 	},
5150 	{
5151 		.name = "cpu.pressure",
5152 		.flags = CFTYPE_PRESSURE,
5153 		.seq_show = cgroup_cpu_pressure_show,
5154 		.write = cgroup_cpu_pressure_write,
5155 		.poll = cgroup_pressure_poll,
5156 		.release = cgroup_pressure_release,
5157 	},
5158 #endif /* CONFIG_PSI */
5159 	{ }	/* terminate */
5160 };
5161 
5162 /*
5163  * css destruction is four-stage process.
5164  *
5165  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5166  *    Implemented in kill_css().
5167  *
5168  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5169  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5170  *    offlined by invoking offline_css().  After offlining, the base ref is
5171  *    put.  Implemented in css_killed_work_fn().
5172  *
5173  * 3. When the percpu_ref reaches zero, the only possible remaining
5174  *    accessors are inside RCU read sections.  css_release() schedules the
5175  *    RCU callback.
5176  *
5177  * 4. After the grace period, the css can be freed.  Implemented in
5178  *    css_free_work_fn().
5179  *
5180  * It is actually hairier because both step 2 and 4 require process context
5181  * and thus involve punting to css->destroy_work adding two additional
5182  * steps to the already complex sequence.
5183  */
css_free_rwork_fn(struct work_struct * work)5184 static void css_free_rwork_fn(struct work_struct *work)
5185 {
5186 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5187 				struct cgroup_subsys_state, destroy_rwork);
5188 	struct cgroup_subsys *ss = css->ss;
5189 	struct cgroup *cgrp = css->cgroup;
5190 
5191 	percpu_ref_exit(&css->refcnt);
5192 
5193 	if (ss) {
5194 		/* css free path */
5195 		struct cgroup_subsys_state *parent = css->parent;
5196 		int id = css->id;
5197 
5198 		ss->css_free(css);
5199 		cgroup_idr_remove(&ss->css_idr, id);
5200 		cgroup_put(cgrp);
5201 
5202 		if (parent)
5203 			css_put(parent);
5204 	} else {
5205 		/* cgroup free path */
5206 		atomic_dec(&cgrp->root->nr_cgrps);
5207 		cgroup1_pidlist_destroy_all(cgrp);
5208 		cancel_work_sync(&cgrp->release_agent_work);
5209 
5210 		if (cgroup_parent(cgrp)) {
5211 			/*
5212 			 * We get a ref to the parent, and put the ref when
5213 			 * this cgroup is being freed, so it's guaranteed
5214 			 * that the parent won't be destroyed before its
5215 			 * children.
5216 			 */
5217 			cgroup_put(cgroup_parent(cgrp));
5218 			kernfs_put(cgrp->kn);
5219 			psi_cgroup_free(cgrp);
5220 			cgroup_rstat_exit(cgrp);
5221 			kfree(cgrp);
5222 		} else {
5223 			/*
5224 			 * This is root cgroup's refcnt reaching zero,
5225 			 * which indicates that the root should be
5226 			 * released.
5227 			 */
5228 			cgroup_destroy_root(cgrp->root);
5229 		}
5230 	}
5231 }
5232 
css_release_work_fn(struct work_struct * work)5233 static void css_release_work_fn(struct work_struct *work)
5234 {
5235 	struct cgroup_subsys_state *css =
5236 		container_of(work, struct cgroup_subsys_state, destroy_work);
5237 	struct cgroup_subsys *ss = css->ss;
5238 	struct cgroup *cgrp = css->cgroup;
5239 
5240 	mutex_lock(&cgroup_mutex);
5241 
5242 	css->flags |= CSS_RELEASED;
5243 	list_del_rcu(&css->sibling);
5244 
5245 	if (ss) {
5246 		/* css release path */
5247 		if (!list_empty(&css->rstat_css_node)) {
5248 			cgroup_rstat_flush(cgrp);
5249 			list_del_rcu(&css->rstat_css_node);
5250 		}
5251 
5252 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5253 		if (ss->css_released)
5254 			ss->css_released(css);
5255 	} else {
5256 		struct cgroup *tcgrp;
5257 
5258 		/* cgroup release path */
5259 		TRACE_CGROUP_PATH(release, cgrp);
5260 
5261 		cgroup_rstat_flush(cgrp);
5262 
5263 		spin_lock_irq(&css_set_lock);
5264 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5265 		     tcgrp = cgroup_parent(tcgrp))
5266 			tcgrp->nr_dying_descendants--;
5267 		spin_unlock_irq(&css_set_lock);
5268 
5269 		/*
5270 		 * There are two control paths which try to determine
5271 		 * cgroup from dentry without going through kernfs -
5272 		 * cgroupstats_build() and css_tryget_online_from_dir().
5273 		 * Those are supported by RCU protecting clearing of
5274 		 * cgrp->kn->priv backpointer.
5275 		 */
5276 		if (cgrp->kn)
5277 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5278 					 NULL);
5279 	}
5280 
5281 	mutex_unlock(&cgroup_mutex);
5282 
5283 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5284 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5285 }
5286 
css_release(struct percpu_ref * ref)5287 static void css_release(struct percpu_ref *ref)
5288 {
5289 	struct cgroup_subsys_state *css =
5290 		container_of(ref, struct cgroup_subsys_state, refcnt);
5291 
5292 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5293 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5294 }
5295 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5296 static void init_and_link_css(struct cgroup_subsys_state *css,
5297 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5298 {
5299 	lockdep_assert_held(&cgroup_mutex);
5300 
5301 	cgroup_get_live(cgrp);
5302 
5303 	memset(css, 0, sizeof(*css));
5304 	css->cgroup = cgrp;
5305 	css->ss = ss;
5306 	css->id = -1;
5307 	INIT_LIST_HEAD(&css->sibling);
5308 	INIT_LIST_HEAD(&css->children);
5309 	INIT_LIST_HEAD(&css->rstat_css_node);
5310 	css->serial_nr = css_serial_nr_next++;
5311 	atomic_set(&css->online_cnt, 0);
5312 
5313 	if (cgroup_parent(cgrp)) {
5314 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5315 		css_get(css->parent);
5316 	}
5317 
5318 	if (ss->css_rstat_flush)
5319 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5320 
5321 	BUG_ON(cgroup_css(cgrp, ss));
5322 }
5323 
5324 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5325 static int online_css(struct cgroup_subsys_state *css)
5326 {
5327 	struct cgroup_subsys *ss = css->ss;
5328 	int ret = 0;
5329 
5330 	lockdep_assert_held(&cgroup_mutex);
5331 
5332 	if (ss->css_online)
5333 		ret = ss->css_online(css);
5334 	if (!ret) {
5335 		css->flags |= CSS_ONLINE;
5336 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5337 
5338 		atomic_inc(&css->online_cnt);
5339 		if (css->parent)
5340 			atomic_inc(&css->parent->online_cnt);
5341 	}
5342 	return ret;
5343 }
5344 
5345 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5346 static void offline_css(struct cgroup_subsys_state *css)
5347 {
5348 	struct cgroup_subsys *ss = css->ss;
5349 
5350 	lockdep_assert_held(&cgroup_mutex);
5351 
5352 	if (!(css->flags & CSS_ONLINE))
5353 		return;
5354 
5355 	if (ss->css_offline)
5356 		ss->css_offline(css);
5357 
5358 	css->flags &= ~CSS_ONLINE;
5359 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5360 
5361 	wake_up_all(&css->cgroup->offline_waitq);
5362 }
5363 
5364 /**
5365  * css_create - create a cgroup_subsys_state
5366  * @cgrp: the cgroup new css will be associated with
5367  * @ss: the subsys of new css
5368  *
5369  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5370  * css is online and installed in @cgrp.  This function doesn't create the
5371  * interface files.  Returns 0 on success, -errno on failure.
5372  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5373 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5374 					      struct cgroup_subsys *ss)
5375 {
5376 	struct cgroup *parent = cgroup_parent(cgrp);
5377 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5378 	struct cgroup_subsys_state *css;
5379 	int err;
5380 
5381 	lockdep_assert_held(&cgroup_mutex);
5382 
5383 	css = ss->css_alloc(parent_css);
5384 	if (!css)
5385 		css = ERR_PTR(-ENOMEM);
5386 	if (IS_ERR(css))
5387 		return css;
5388 
5389 	init_and_link_css(css, ss, cgrp);
5390 
5391 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5392 	if (err)
5393 		goto err_free_css;
5394 
5395 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5396 	if (err < 0)
5397 		goto err_free_css;
5398 	css->id = err;
5399 
5400 	/* @css is ready to be brought online now, make it visible */
5401 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5402 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5403 
5404 	err = online_css(css);
5405 	if (err)
5406 		goto err_list_del;
5407 
5408 	return css;
5409 
5410 err_list_del:
5411 	list_del_rcu(&css->sibling);
5412 err_free_css:
5413 	list_del_rcu(&css->rstat_css_node);
5414 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5415 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5416 	return ERR_PTR(err);
5417 }
5418 
5419 /*
5420  * The returned cgroup is fully initialized including its control mask, but
5421  * it isn't associated with its kernfs_node and doesn't have the control
5422  * mask applied.
5423  */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5424 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5425 				    umode_t mode)
5426 {
5427 	struct cgroup_root *root = parent->root;
5428 	struct cgroup *cgrp, *tcgrp;
5429 	struct kernfs_node *kn;
5430 	int level = parent->level + 1;
5431 	int ret;
5432 
5433 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5434 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5435 		       GFP_KERNEL);
5436 	if (!cgrp)
5437 		return ERR_PTR(-ENOMEM);
5438 
5439 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5440 	if (ret)
5441 		goto out_free_cgrp;
5442 
5443 	ret = cgroup_rstat_init(cgrp);
5444 	if (ret)
5445 		goto out_cancel_ref;
5446 
5447 	/* create the directory */
5448 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5449 	if (IS_ERR(kn)) {
5450 		ret = PTR_ERR(kn);
5451 		goto out_stat_exit;
5452 	}
5453 	cgrp->kn = kn;
5454 
5455 	init_cgroup_housekeeping(cgrp);
5456 
5457 	cgrp->self.parent = &parent->self;
5458 	cgrp->root = root;
5459 	cgrp->level = level;
5460 
5461 	ret = psi_cgroup_alloc(cgrp);
5462 	if (ret)
5463 		goto out_kernfs_remove;
5464 
5465 	ret = cgroup_bpf_inherit(cgrp);
5466 	if (ret)
5467 		goto out_psi_free;
5468 
5469 	/*
5470 	 * New cgroup inherits effective freeze counter, and
5471 	 * if the parent has to be frozen, the child has too.
5472 	 */
5473 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5474 	if (cgrp->freezer.e_freeze) {
5475 		/*
5476 		 * Set the CGRP_FREEZE flag, so when a process will be
5477 		 * attached to the child cgroup, it will become frozen.
5478 		 * At this point the new cgroup is unpopulated, so we can
5479 		 * consider it frozen immediately.
5480 		 */
5481 		set_bit(CGRP_FREEZE, &cgrp->flags);
5482 		set_bit(CGRP_FROZEN, &cgrp->flags);
5483 	}
5484 
5485 	spin_lock_irq(&css_set_lock);
5486 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5487 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5488 
5489 		if (tcgrp != cgrp) {
5490 			tcgrp->nr_descendants++;
5491 
5492 			/*
5493 			 * If the new cgroup is frozen, all ancestor cgroups
5494 			 * get a new frozen descendant, but their state can't
5495 			 * change because of this.
5496 			 */
5497 			if (cgrp->freezer.e_freeze)
5498 				tcgrp->freezer.nr_frozen_descendants++;
5499 		}
5500 	}
5501 	spin_unlock_irq(&css_set_lock);
5502 
5503 	if (notify_on_release(parent))
5504 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5505 
5506 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5507 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5508 
5509 	cgrp->self.serial_nr = css_serial_nr_next++;
5510 
5511 	/* allocation complete, commit to creation */
5512 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5513 	atomic_inc(&root->nr_cgrps);
5514 	cgroup_get_live(parent);
5515 
5516 	/*
5517 	 * On the default hierarchy, a child doesn't automatically inherit
5518 	 * subtree_control from the parent.  Each is configured manually.
5519 	 */
5520 	if (!cgroup_on_dfl(cgrp))
5521 		cgrp->subtree_control = cgroup_control(cgrp);
5522 
5523 	cgroup_propagate_control(cgrp);
5524 
5525 	return cgrp;
5526 
5527 out_psi_free:
5528 	psi_cgroup_free(cgrp);
5529 out_kernfs_remove:
5530 	kernfs_remove(cgrp->kn);
5531 out_stat_exit:
5532 	cgroup_rstat_exit(cgrp);
5533 out_cancel_ref:
5534 	percpu_ref_exit(&cgrp->self.refcnt);
5535 out_free_cgrp:
5536 	kfree(cgrp);
5537 	return ERR_PTR(ret);
5538 }
5539 
cgroup_check_hierarchy_limits(struct cgroup * parent)5540 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5541 {
5542 	struct cgroup *cgroup;
5543 	int ret = false;
5544 	int level = 1;
5545 
5546 	lockdep_assert_held(&cgroup_mutex);
5547 
5548 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5549 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5550 			goto fail;
5551 
5552 		if (level > cgroup->max_depth)
5553 			goto fail;
5554 
5555 		level++;
5556 	}
5557 
5558 	ret = true;
5559 fail:
5560 	return ret;
5561 }
5562 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5563 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5564 {
5565 	struct cgroup *parent, *cgrp;
5566 	int ret;
5567 
5568 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5569 	if (strchr(name, '\n'))
5570 		return -EINVAL;
5571 
5572 	parent = cgroup_kn_lock_live(parent_kn, false);
5573 	if (!parent)
5574 		return -ENODEV;
5575 
5576 	if (!cgroup_check_hierarchy_limits(parent)) {
5577 		ret = -EAGAIN;
5578 		goto out_unlock;
5579 	}
5580 
5581 	cgrp = cgroup_create(parent, name, mode);
5582 	if (IS_ERR(cgrp)) {
5583 		ret = PTR_ERR(cgrp);
5584 		goto out_unlock;
5585 	}
5586 
5587 	/*
5588 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5589 	 * that @cgrp->kn is always accessible.
5590 	 */
5591 	kernfs_get(cgrp->kn);
5592 
5593 	ret = cgroup_kn_set_ugid(cgrp->kn);
5594 	if (ret)
5595 		goto out_destroy;
5596 
5597 	ret = css_populate_dir(&cgrp->self);
5598 	if (ret)
5599 		goto out_destroy;
5600 
5601 	ret = cgroup_apply_control_enable(cgrp);
5602 	if (ret)
5603 		goto out_destroy;
5604 
5605 	TRACE_CGROUP_PATH(mkdir, cgrp);
5606 
5607 	/* let's create and online css's */
5608 	kernfs_activate(cgrp->kn);
5609 
5610 	ret = 0;
5611 	goto out_unlock;
5612 
5613 out_destroy:
5614 	cgroup_destroy_locked(cgrp);
5615 out_unlock:
5616 	cgroup_kn_unlock(parent_kn);
5617 	return ret;
5618 }
5619 
5620 /*
5621  * This is called when the refcnt of a css is confirmed to be killed.
5622  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5623  * initiate destruction and put the css ref from kill_css().
5624  */
css_killed_work_fn(struct work_struct * work)5625 static void css_killed_work_fn(struct work_struct *work)
5626 {
5627 	struct cgroup_subsys_state *css =
5628 		container_of(work, struct cgroup_subsys_state, destroy_work);
5629 
5630 	mutex_lock(&cgroup_mutex);
5631 
5632 	do {
5633 		offline_css(css);
5634 		css_put(css);
5635 		/* @css can't go away while we're holding cgroup_mutex */
5636 		css = css->parent;
5637 	} while (css && atomic_dec_and_test(&css->online_cnt));
5638 
5639 	mutex_unlock(&cgroup_mutex);
5640 }
5641 
5642 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5643 static void css_killed_ref_fn(struct percpu_ref *ref)
5644 {
5645 	struct cgroup_subsys_state *css =
5646 		container_of(ref, struct cgroup_subsys_state, refcnt);
5647 
5648 	if (atomic_dec_and_test(&css->online_cnt)) {
5649 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5650 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5651 	}
5652 }
5653 
5654 /**
5655  * kill_css - destroy a css
5656  * @css: css to destroy
5657  *
5658  * This function initiates destruction of @css by removing cgroup interface
5659  * files and putting its base reference.  ->css_offline() will be invoked
5660  * asynchronously once css_tryget_online() is guaranteed to fail and when
5661  * the reference count reaches zero, @css will be released.
5662  */
kill_css(struct cgroup_subsys_state * css)5663 static void kill_css(struct cgroup_subsys_state *css)
5664 {
5665 	lockdep_assert_held(&cgroup_mutex);
5666 
5667 	if (css->flags & CSS_DYING)
5668 		return;
5669 
5670 	css->flags |= CSS_DYING;
5671 
5672 	/*
5673 	 * This must happen before css is disassociated with its cgroup.
5674 	 * See seq_css() for details.
5675 	 */
5676 	css_clear_dir(css);
5677 
5678 	/*
5679 	 * Killing would put the base ref, but we need to keep it alive
5680 	 * until after ->css_offline().
5681 	 */
5682 	css_get(css);
5683 
5684 	/*
5685 	 * cgroup core guarantees that, by the time ->css_offline() is
5686 	 * invoked, no new css reference will be given out via
5687 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5688 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5689 	 * guarantee that the ref is seen as killed on all CPUs on return.
5690 	 *
5691 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5692 	 * css is confirmed to be seen as killed on all CPUs.
5693 	 */
5694 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5695 }
5696 
5697 /**
5698  * cgroup_destroy_locked - the first stage of cgroup destruction
5699  * @cgrp: cgroup to be destroyed
5700  *
5701  * css's make use of percpu refcnts whose killing latency shouldn't be
5702  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5703  * guarantee that css_tryget_online() won't succeed by the time
5704  * ->css_offline() is invoked.  To satisfy all the requirements,
5705  * destruction is implemented in the following two steps.
5706  *
5707  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5708  *     userland visible parts and start killing the percpu refcnts of
5709  *     css's.  Set up so that the next stage will be kicked off once all
5710  *     the percpu refcnts are confirmed to be killed.
5711  *
5712  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5713  *     rest of destruction.  Once all cgroup references are gone, the
5714  *     cgroup is RCU-freed.
5715  *
5716  * This function implements s1.  After this step, @cgrp is gone as far as
5717  * the userland is concerned and a new cgroup with the same name may be
5718  * created.  As cgroup doesn't care about the names internally, this
5719  * doesn't cause any problem.
5720  */
cgroup_destroy_locked(struct cgroup * cgrp)5721 static int cgroup_destroy_locked(struct cgroup *cgrp)
5722 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5723 {
5724 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5725 	struct cgroup_subsys_state *css;
5726 	struct cgrp_cset_link *link;
5727 	int ssid;
5728 
5729 	lockdep_assert_held(&cgroup_mutex);
5730 
5731 	/*
5732 	 * Only migration can raise populated from zero and we're already
5733 	 * holding cgroup_mutex.
5734 	 */
5735 	if (cgroup_is_populated(cgrp))
5736 		return -EBUSY;
5737 
5738 	/*
5739 	 * Make sure there's no live children.  We can't test emptiness of
5740 	 * ->self.children as dead children linger on it while being
5741 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5742 	 */
5743 	if (css_has_online_children(&cgrp->self))
5744 		return -EBUSY;
5745 
5746 	/*
5747 	 * Mark @cgrp and the associated csets dead.  The former prevents
5748 	 * further task migration and child creation by disabling
5749 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5750 	 * the migration path.
5751 	 */
5752 	cgrp->self.flags &= ~CSS_ONLINE;
5753 
5754 	spin_lock_irq(&css_set_lock);
5755 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5756 		link->cset->dead = true;
5757 	spin_unlock_irq(&css_set_lock);
5758 
5759 	/* initiate massacre of all css's */
5760 	for_each_css(css, ssid, cgrp)
5761 		kill_css(css);
5762 
5763 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5764 	css_clear_dir(&cgrp->self);
5765 	kernfs_remove(cgrp->kn);
5766 
5767 	if (parent && cgroup_is_threaded(cgrp))
5768 		parent->nr_threaded_children--;
5769 
5770 	spin_lock_irq(&css_set_lock);
5771 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5772 		tcgrp->nr_descendants--;
5773 		tcgrp->nr_dying_descendants++;
5774 		/*
5775 		 * If the dying cgroup is frozen, decrease frozen descendants
5776 		 * counters of ancestor cgroups.
5777 		 */
5778 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5779 			tcgrp->freezer.nr_frozen_descendants--;
5780 	}
5781 	spin_unlock_irq(&css_set_lock);
5782 
5783 	cgroup1_check_for_release(parent);
5784 
5785 	cgroup_bpf_offline(cgrp);
5786 
5787 	/* put the base reference */
5788 	percpu_ref_kill(&cgrp->self.refcnt);
5789 
5790 	return 0;
5791 };
5792 
cgroup_rmdir(struct kernfs_node * kn)5793 int cgroup_rmdir(struct kernfs_node *kn)
5794 {
5795 	struct cgroup *cgrp;
5796 	int ret = 0;
5797 
5798 	cgrp = cgroup_kn_lock_live(kn, false);
5799 	if (!cgrp)
5800 		return 0;
5801 
5802 	ret = cgroup_destroy_locked(cgrp);
5803 	if (!ret)
5804 		TRACE_CGROUP_PATH(rmdir, cgrp);
5805 
5806 	cgroup_kn_unlock(kn);
5807 	return ret;
5808 }
5809 
5810 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5811 	.show_options		= cgroup_show_options,
5812 	.mkdir			= cgroup_mkdir,
5813 	.rmdir			= cgroup_rmdir,
5814 	.show_path		= cgroup_show_path,
5815 };
5816 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5817 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5818 {
5819 	struct cgroup_subsys_state *css;
5820 
5821 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5822 
5823 	mutex_lock(&cgroup_mutex);
5824 
5825 	idr_init(&ss->css_idr);
5826 	INIT_LIST_HEAD(&ss->cfts);
5827 
5828 	/* Create the root cgroup state for this subsystem */
5829 	ss->root = &cgrp_dfl_root;
5830 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5831 	/* We don't handle early failures gracefully */
5832 	BUG_ON(IS_ERR(css));
5833 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5834 
5835 	/*
5836 	 * Root csses are never destroyed and we can't initialize
5837 	 * percpu_ref during early init.  Disable refcnting.
5838 	 */
5839 	css->flags |= CSS_NO_REF;
5840 
5841 	if (early) {
5842 		/* allocation can't be done safely during early init */
5843 		css->id = 1;
5844 	} else {
5845 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5846 		BUG_ON(css->id < 0);
5847 	}
5848 
5849 	/* Update the init_css_set to contain a subsys
5850 	 * pointer to this state - since the subsystem is
5851 	 * newly registered, all tasks and hence the
5852 	 * init_css_set is in the subsystem's root cgroup. */
5853 	init_css_set.subsys[ss->id] = css;
5854 
5855 	have_fork_callback |= (bool)ss->fork << ss->id;
5856 	have_exit_callback |= (bool)ss->exit << ss->id;
5857 	have_release_callback |= (bool)ss->release << ss->id;
5858 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5859 
5860 	/* At system boot, before all subsystems have been
5861 	 * registered, no tasks have been forked, so we don't
5862 	 * need to invoke fork callbacks here. */
5863 	BUG_ON(!list_empty(&init_task.tasks));
5864 
5865 	BUG_ON(online_css(css));
5866 
5867 	mutex_unlock(&cgroup_mutex);
5868 }
5869 
5870 /**
5871  * cgroup_init_early - cgroup initialization at system boot
5872  *
5873  * Initialize cgroups at system boot, and initialize any
5874  * subsystems that request early init.
5875  */
cgroup_init_early(void)5876 int __init cgroup_init_early(void)
5877 {
5878 	static struct cgroup_fs_context __initdata ctx;
5879 	struct cgroup_subsys *ss;
5880 	int i;
5881 
5882 	ctx.root = &cgrp_dfl_root;
5883 	init_cgroup_root(&ctx);
5884 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5885 
5886 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5887 
5888 	for_each_subsys(ss, i) {
5889 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5890 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5891 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5892 		     ss->id, ss->name);
5893 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5894 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5895 
5896 		ss->id = i;
5897 		ss->name = cgroup_subsys_name[i];
5898 		if (!ss->legacy_name)
5899 			ss->legacy_name = cgroup_subsys_name[i];
5900 
5901 		if (ss->early_init)
5902 			cgroup_init_subsys(ss, true);
5903 	}
5904 	return 0;
5905 }
5906 
5907 /**
5908  * cgroup_init - cgroup initialization
5909  *
5910  * Register cgroup filesystem and /proc file, and initialize
5911  * any subsystems that didn't request early init.
5912  */
cgroup_init(void)5913 int __init cgroup_init(void)
5914 {
5915 	struct cgroup_subsys *ss;
5916 	int ssid;
5917 
5918 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5919 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5920 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5921 
5922 	cgroup_rstat_boot();
5923 
5924 	/*
5925 	 * The latency of the synchronize_rcu() is too high for cgroups,
5926 	 * avoid it at the cost of forcing all readers into the slow path.
5927 	 */
5928 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5929 
5930 	get_user_ns(init_cgroup_ns.user_ns);
5931 
5932 	mutex_lock(&cgroup_mutex);
5933 
5934 	/*
5935 	 * Add init_css_set to the hash table so that dfl_root can link to
5936 	 * it during init.
5937 	 */
5938 	hash_add(css_set_table, &init_css_set.hlist,
5939 		 css_set_hash(init_css_set.subsys));
5940 
5941 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5942 
5943 	mutex_unlock(&cgroup_mutex);
5944 
5945 	for_each_subsys(ss, ssid) {
5946 		if (ss->early_init) {
5947 			struct cgroup_subsys_state *css =
5948 				init_css_set.subsys[ss->id];
5949 
5950 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5951 						   GFP_KERNEL);
5952 			BUG_ON(css->id < 0);
5953 		} else {
5954 			cgroup_init_subsys(ss, false);
5955 		}
5956 
5957 		list_add_tail(&init_css_set.e_cset_node[ssid],
5958 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5959 
5960 		/*
5961 		 * Setting dfl_root subsys_mask needs to consider the
5962 		 * disabled flag and cftype registration needs kmalloc,
5963 		 * both of which aren't available during early_init.
5964 		 */
5965 		if (!cgroup_ssid_enabled(ssid))
5966 			continue;
5967 
5968 		if (cgroup1_ssid_disabled(ssid))
5969 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5970 			       ss->name);
5971 
5972 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5973 
5974 		/* implicit controllers must be threaded too */
5975 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5976 
5977 		if (ss->implicit_on_dfl)
5978 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5979 		else if (!ss->dfl_cftypes)
5980 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5981 
5982 		if (ss->threaded)
5983 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5984 
5985 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5986 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5987 		} else {
5988 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5989 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5990 		}
5991 
5992 		if (ss->bind)
5993 			ss->bind(init_css_set.subsys[ssid]);
5994 
5995 		mutex_lock(&cgroup_mutex);
5996 		css_populate_dir(init_css_set.subsys[ssid]);
5997 		mutex_unlock(&cgroup_mutex);
5998 	}
5999 
6000 	/* init_css_set.subsys[] has been updated, re-hash */
6001 	hash_del(&init_css_set.hlist);
6002 	hash_add(css_set_table, &init_css_set.hlist,
6003 		 css_set_hash(init_css_set.subsys));
6004 
6005 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6006 	WARN_ON(register_filesystem(&cgroup_fs_type));
6007 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6008 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6009 #ifdef CONFIG_CPUSETS
6010 	WARN_ON(register_filesystem(&cpuset_fs_type));
6011 #endif
6012 
6013 	return 0;
6014 }
6015 
cgroup_wq_init(void)6016 static int __init cgroup_wq_init(void)
6017 {
6018 	/*
6019 	 * There isn't much point in executing destruction path in
6020 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6021 	 * Use 1 for @max_active.
6022 	 *
6023 	 * We would prefer to do this in cgroup_init() above, but that
6024 	 * is called before init_workqueues(): so leave this until after.
6025 	 */
6026 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6027 	BUG_ON(!cgroup_destroy_wq);
6028 	return 0;
6029 }
6030 core_initcall(cgroup_wq_init);
6031 
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)6032 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6033 {
6034 	struct kernfs_node *kn;
6035 
6036 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6037 	if (!kn)
6038 		return;
6039 	kernfs_path(kn, buf, buflen);
6040 	kernfs_put(kn);
6041 }
6042 
6043 /*
6044  * cgroup_get_from_id : get the cgroup associated with cgroup id
6045  * @id: cgroup id
6046  * On success return the cgrp, on failure return NULL
6047  */
cgroup_get_from_id(u64 id)6048 struct cgroup *cgroup_get_from_id(u64 id)
6049 {
6050 	struct kernfs_node *kn;
6051 	struct cgroup *cgrp = NULL;
6052 
6053 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6054 	if (!kn)
6055 		goto out;
6056 
6057 	if (kernfs_type(kn) != KERNFS_DIR)
6058 		goto put;
6059 
6060 	rcu_read_lock();
6061 
6062 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6063 	if (cgrp && !cgroup_tryget(cgrp))
6064 		cgrp = NULL;
6065 
6066 	rcu_read_unlock();
6067 put:
6068 	kernfs_put(kn);
6069 out:
6070 	return cgrp;
6071 }
6072 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6073 
6074 /*
6075  * proc_cgroup_show()
6076  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6077  *  - Used for /proc/<pid>/cgroup.
6078  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6079 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6080 		     struct pid *pid, struct task_struct *tsk)
6081 {
6082 	char *buf;
6083 	int retval;
6084 	struct cgroup_root *root;
6085 
6086 	retval = -ENOMEM;
6087 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6088 	if (!buf)
6089 		goto out;
6090 
6091 	mutex_lock(&cgroup_mutex);
6092 	spin_lock_irq(&css_set_lock);
6093 
6094 	for_each_root(root) {
6095 		struct cgroup_subsys *ss;
6096 		struct cgroup *cgrp;
6097 		int ssid, count = 0;
6098 
6099 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
6100 			continue;
6101 
6102 		seq_printf(m, "%d:", root->hierarchy_id);
6103 		if (root != &cgrp_dfl_root)
6104 			for_each_subsys(ss, ssid)
6105 				if (root->subsys_mask & (1 << ssid))
6106 					seq_printf(m, "%s%s", count++ ? "," : "",
6107 						   ss->legacy_name);
6108 		if (strlen(root->name))
6109 			seq_printf(m, "%sname=%s", count ? "," : "",
6110 				   root->name);
6111 		seq_putc(m, ':');
6112 
6113 		cgrp = task_cgroup_from_root(tsk, root);
6114 
6115 		/*
6116 		 * On traditional hierarchies, all zombie tasks show up as
6117 		 * belonging to the root cgroup.  On the default hierarchy,
6118 		 * while a zombie doesn't show up in "cgroup.procs" and
6119 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6120 		 * reporting the cgroup it belonged to before exiting.  If
6121 		 * the cgroup is removed before the zombie is reaped,
6122 		 * " (deleted)" is appended to the cgroup path.
6123 		 */
6124 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6125 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6126 						current->nsproxy->cgroup_ns);
6127 			if (retval >= PATH_MAX)
6128 				retval = -ENAMETOOLONG;
6129 			if (retval < 0)
6130 				goto out_unlock;
6131 
6132 			seq_puts(m, buf);
6133 		} else {
6134 			seq_puts(m, "/");
6135 		}
6136 
6137 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6138 			seq_puts(m, " (deleted)\n");
6139 		else
6140 			seq_putc(m, '\n');
6141 	}
6142 
6143 	retval = 0;
6144 out_unlock:
6145 	spin_unlock_irq(&css_set_lock);
6146 	mutex_unlock(&cgroup_mutex);
6147 	kfree(buf);
6148 out:
6149 	return retval;
6150 }
6151 
6152 /**
6153  * cgroup_fork - initialize cgroup related fields during copy_process()
6154  * @child: pointer to task_struct of forking parent process.
6155  *
6156  * A task is associated with the init_css_set until cgroup_post_fork()
6157  * attaches it to the target css_set.
6158  */
cgroup_fork(struct task_struct * child)6159 void cgroup_fork(struct task_struct *child)
6160 {
6161 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6162 	INIT_LIST_HEAD(&child->cg_list);
6163 }
6164 
cgroup_get_from_file(struct file * f)6165 static struct cgroup *cgroup_get_from_file(struct file *f)
6166 {
6167 	struct cgroup_subsys_state *css;
6168 	struct cgroup *cgrp;
6169 
6170 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6171 	if (IS_ERR(css))
6172 		return ERR_CAST(css);
6173 
6174 	cgrp = css->cgroup;
6175 	if (!cgroup_on_dfl(cgrp)) {
6176 		cgroup_put(cgrp);
6177 		return ERR_PTR(-EBADF);
6178 	}
6179 
6180 	return cgrp;
6181 }
6182 
6183 /**
6184  * cgroup_css_set_fork - find or create a css_set for a child process
6185  * @kargs: the arguments passed to create the child process
6186  *
6187  * This functions finds or creates a new css_set which the child
6188  * process will be attached to in cgroup_post_fork(). By default,
6189  * the child process will be given the same css_set as its parent.
6190  *
6191  * If CLONE_INTO_CGROUP is specified this function will try to find an
6192  * existing css_set which includes the requested cgroup and if not create
6193  * a new css_set that the child will be attached to later. If this function
6194  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6195  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6196  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6197  * to the target cgroup.
6198  */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6199 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6200 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6201 {
6202 	int ret;
6203 	struct cgroup *dst_cgrp = NULL;
6204 	struct css_set *cset;
6205 	struct super_block *sb;
6206 	struct file *f;
6207 
6208 	if (kargs->flags & CLONE_INTO_CGROUP)
6209 		mutex_lock(&cgroup_mutex);
6210 
6211 	cgroup_threadgroup_change_begin(current);
6212 
6213 	spin_lock_irq(&css_set_lock);
6214 	cset = task_css_set(current);
6215 	get_css_set(cset);
6216 	spin_unlock_irq(&css_set_lock);
6217 
6218 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6219 		kargs->cset = cset;
6220 		return 0;
6221 	}
6222 
6223 	f = fget_raw(kargs->cgroup);
6224 	if (!f) {
6225 		ret = -EBADF;
6226 		goto err;
6227 	}
6228 	sb = f->f_path.dentry->d_sb;
6229 
6230 	dst_cgrp = cgroup_get_from_file(f);
6231 	if (IS_ERR(dst_cgrp)) {
6232 		ret = PTR_ERR(dst_cgrp);
6233 		dst_cgrp = NULL;
6234 		goto err;
6235 	}
6236 
6237 	if (cgroup_is_dead(dst_cgrp)) {
6238 		ret = -ENODEV;
6239 		goto err;
6240 	}
6241 
6242 	/*
6243 	 * Verify that we the target cgroup is writable for us. This is
6244 	 * usually done by the vfs layer but since we're not going through
6245 	 * the vfs layer here we need to do it "manually".
6246 	 */
6247 	ret = cgroup_may_write(dst_cgrp, sb);
6248 	if (ret)
6249 		goto err;
6250 
6251 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6252 					!(kargs->flags & CLONE_THREAD),
6253 					current->nsproxy->cgroup_ns);
6254 	if (ret)
6255 		goto err;
6256 
6257 	kargs->cset = find_css_set(cset, dst_cgrp);
6258 	if (!kargs->cset) {
6259 		ret = -ENOMEM;
6260 		goto err;
6261 	}
6262 
6263 	put_css_set(cset);
6264 	fput(f);
6265 	kargs->cgrp = dst_cgrp;
6266 	return ret;
6267 
6268 err:
6269 	cgroup_threadgroup_change_end(current);
6270 	mutex_unlock(&cgroup_mutex);
6271 	if (f)
6272 		fput(f);
6273 	if (dst_cgrp)
6274 		cgroup_put(dst_cgrp);
6275 	put_css_set(cset);
6276 	if (kargs->cset)
6277 		put_css_set(kargs->cset);
6278 	return ret;
6279 }
6280 
6281 /**
6282  * cgroup_css_set_put_fork - drop references we took during fork
6283  * @kargs: the arguments passed to create the child process
6284  *
6285  * Drop references to the prepared css_set and target cgroup if
6286  * CLONE_INTO_CGROUP was requested.
6287  */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6288 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6289 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6290 {
6291 	struct cgroup *cgrp = kargs->cgrp;
6292 	struct css_set *cset = kargs->cset;
6293 
6294 	cgroup_threadgroup_change_end(current);
6295 
6296 	if (cset) {
6297 		put_css_set(cset);
6298 		kargs->cset = NULL;
6299 	}
6300 
6301 	if (kargs->flags & CLONE_INTO_CGROUP) {
6302 		mutex_unlock(&cgroup_mutex);
6303 		if (cgrp) {
6304 			cgroup_put(cgrp);
6305 			kargs->cgrp = NULL;
6306 		}
6307 	}
6308 }
6309 
6310 /**
6311  * cgroup_can_fork - called on a new task before the process is exposed
6312  * @child: the child process
6313  *
6314  * This prepares a new css_set for the child process which the child will
6315  * be attached to in cgroup_post_fork().
6316  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6317  * callback returns an error, the fork aborts with that error code. This
6318  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6319  */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6320 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6321 {
6322 	struct cgroup_subsys *ss;
6323 	int i, j, ret;
6324 
6325 	ret = cgroup_css_set_fork(kargs);
6326 	if (ret)
6327 		return ret;
6328 
6329 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6330 		ret = ss->can_fork(child, kargs->cset);
6331 		if (ret)
6332 			goto out_revert;
6333 	} while_each_subsys_mask();
6334 
6335 	return 0;
6336 
6337 out_revert:
6338 	for_each_subsys(ss, j) {
6339 		if (j >= i)
6340 			break;
6341 		if (ss->cancel_fork)
6342 			ss->cancel_fork(child, kargs->cset);
6343 	}
6344 
6345 	cgroup_css_set_put_fork(kargs);
6346 
6347 	return ret;
6348 }
6349 
6350 /**
6351  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6352  * @child: the child process
6353  * @kargs: the arguments passed to create the child process
6354  *
6355  * This calls the cancel_fork() callbacks if a fork failed *after*
6356  * cgroup_can_fork() succeeded and cleans up references we took to
6357  * prepare a new css_set for the child process in cgroup_can_fork().
6358  */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6359 void cgroup_cancel_fork(struct task_struct *child,
6360 			struct kernel_clone_args *kargs)
6361 {
6362 	struct cgroup_subsys *ss;
6363 	int i;
6364 
6365 	for_each_subsys(ss, i)
6366 		if (ss->cancel_fork)
6367 			ss->cancel_fork(child, kargs->cset);
6368 
6369 	cgroup_css_set_put_fork(kargs);
6370 }
6371 
6372 /**
6373  * cgroup_post_fork - finalize cgroup setup for the child process
6374  * @child: the child process
6375  *
6376  * Attach the child process to its css_set calling the subsystem fork()
6377  * callbacks.
6378  */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6379 void cgroup_post_fork(struct task_struct *child,
6380 		      struct kernel_clone_args *kargs)
6381 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6382 {
6383 	unsigned long cgrp_flags = 0;
6384 	bool kill = false;
6385 	struct cgroup_subsys *ss;
6386 	struct css_set *cset;
6387 	int i;
6388 
6389 	cset = kargs->cset;
6390 	kargs->cset = NULL;
6391 
6392 	spin_lock_irq(&css_set_lock);
6393 
6394 	/* init tasks are special, only link regular threads */
6395 	if (likely(child->pid)) {
6396 		if (kargs->cgrp)
6397 			cgrp_flags = kargs->cgrp->flags;
6398 		else
6399 			cgrp_flags = cset->dfl_cgrp->flags;
6400 
6401 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6402 		cset->nr_tasks++;
6403 		css_set_move_task(child, NULL, cset, false);
6404 	} else {
6405 		put_css_set(cset);
6406 		cset = NULL;
6407 	}
6408 
6409 	if (!(child->flags & PF_KTHREAD)) {
6410 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6411 			/*
6412 			 * If the cgroup has to be frozen, the new task has
6413 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6414 			 * get the task into the frozen state.
6415 			 */
6416 			spin_lock(&child->sighand->siglock);
6417 			WARN_ON_ONCE(child->frozen);
6418 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6419 			spin_unlock(&child->sighand->siglock);
6420 
6421 			/*
6422 			 * Calling cgroup_update_frozen() isn't required here,
6423 			 * because it will be called anyway a bit later from
6424 			 * do_freezer_trap(). So we avoid cgroup's transient
6425 			 * switch from the frozen state and back.
6426 			 */
6427 		}
6428 
6429 		/*
6430 		 * If the cgroup is to be killed notice it now and take the
6431 		 * child down right after we finished preparing it for
6432 		 * userspace.
6433 		 */
6434 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6435 	}
6436 
6437 	spin_unlock_irq(&css_set_lock);
6438 
6439 	/*
6440 	 * Call ss->fork().  This must happen after @child is linked on
6441 	 * css_set; otherwise, @child might change state between ->fork()
6442 	 * and addition to css_set.
6443 	 */
6444 	do_each_subsys_mask(ss, i, have_fork_callback) {
6445 		ss->fork(child);
6446 	} while_each_subsys_mask();
6447 
6448 	/* Make the new cset the root_cset of the new cgroup namespace. */
6449 	if (kargs->flags & CLONE_NEWCGROUP) {
6450 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6451 
6452 		get_css_set(cset);
6453 		child->nsproxy->cgroup_ns->root_cset = cset;
6454 		put_css_set(rcset);
6455 	}
6456 
6457 	/* Cgroup has to be killed so take down child immediately. */
6458 	if (unlikely(kill))
6459 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6460 
6461 	cgroup_css_set_put_fork(kargs);
6462 }
6463 
6464 /**
6465  * cgroup_exit - detach cgroup from exiting task
6466  * @tsk: pointer to task_struct of exiting process
6467  *
6468  * Description: Detach cgroup from @tsk.
6469  *
6470  */
cgroup_exit(struct task_struct * tsk)6471 void cgroup_exit(struct task_struct *tsk)
6472 {
6473 	struct cgroup_subsys *ss;
6474 	struct css_set *cset;
6475 	int i;
6476 
6477 	spin_lock_irq(&css_set_lock);
6478 
6479 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6480 	cset = task_css_set(tsk);
6481 	css_set_move_task(tsk, cset, NULL, false);
6482 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6483 	cset->nr_tasks--;
6484 
6485 	if (dl_task(tsk))
6486 		dec_dl_tasks_cs(tsk);
6487 
6488 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6489 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6490 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6491 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6492 
6493 	spin_unlock_irq(&css_set_lock);
6494 
6495 	/* see cgroup_post_fork() for details */
6496 	do_each_subsys_mask(ss, i, have_exit_callback) {
6497 		ss->exit(tsk);
6498 	} while_each_subsys_mask();
6499 }
6500 
cgroup_release(struct task_struct * task)6501 void cgroup_release(struct task_struct *task)
6502 {
6503 	struct cgroup_subsys *ss;
6504 	int ssid;
6505 
6506 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6507 		ss->release(task);
6508 	} while_each_subsys_mask();
6509 
6510 	spin_lock_irq(&css_set_lock);
6511 	css_set_skip_task_iters(task_css_set(task), task);
6512 	list_del_init(&task->cg_list);
6513 	spin_unlock_irq(&css_set_lock);
6514 }
6515 
cgroup_free(struct task_struct * task)6516 void cgroup_free(struct task_struct *task)
6517 {
6518 	struct css_set *cset = task_css_set(task);
6519 	put_css_set(cset);
6520 }
6521 
cgroup_disable(char * str)6522 static int __init cgroup_disable(char *str)
6523 {
6524 	struct cgroup_subsys *ss;
6525 	char *token;
6526 	int i;
6527 
6528 	while ((token = strsep(&str, ",")) != NULL) {
6529 		if (!*token)
6530 			continue;
6531 
6532 		for_each_subsys(ss, i) {
6533 			if (strcmp(token, ss->name) &&
6534 			    strcmp(token, ss->legacy_name))
6535 				continue;
6536 
6537 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6538 			pr_info("Disabling %s control group subsystem\n",
6539 				ss->name);
6540 		}
6541 
6542 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6543 			if (strcmp(token, cgroup_opt_feature_names[i]))
6544 				continue;
6545 			cgroup_feature_disable_mask |= 1 << i;
6546 			pr_info("Disabling %s control group feature\n",
6547 				cgroup_opt_feature_names[i]);
6548 			break;
6549 		}
6550 	}
6551 	return 1;
6552 }
6553 __setup("cgroup_disable=", cgroup_disable);
6554 
enable_debug_cgroup(void)6555 void __init __weak enable_debug_cgroup(void) { }
6556 
enable_cgroup_debug(char * str)6557 static int __init enable_cgroup_debug(char *str)
6558 {
6559 	cgroup_debug = true;
6560 	enable_debug_cgroup();
6561 	return 1;
6562 }
6563 __setup("cgroup_debug", enable_cgroup_debug);
6564 
6565 /**
6566  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6567  * @dentry: directory dentry of interest
6568  * @ss: subsystem of interest
6569  *
6570  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6571  * to get the corresponding css and return it.  If such css doesn't exist
6572  * or can't be pinned, an ERR_PTR value is returned.
6573  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6574 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6575 						       struct cgroup_subsys *ss)
6576 {
6577 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6578 	struct file_system_type *s_type = dentry->d_sb->s_type;
6579 	struct cgroup_subsys_state *css = NULL;
6580 	struct cgroup *cgrp;
6581 
6582 	/* is @dentry a cgroup dir? */
6583 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6584 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6585 		return ERR_PTR(-EBADF);
6586 
6587 	rcu_read_lock();
6588 
6589 	/*
6590 	 * This path doesn't originate from kernfs and @kn could already
6591 	 * have been or be removed at any point.  @kn->priv is RCU
6592 	 * protected for this access.  See css_release_work_fn() for details.
6593 	 */
6594 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6595 	if (cgrp)
6596 		css = cgroup_css(cgrp, ss);
6597 
6598 	if (!css || !css_tryget_online(css))
6599 		css = ERR_PTR(-ENOENT);
6600 
6601 	rcu_read_unlock();
6602 	return css;
6603 }
6604 
6605 /**
6606  * css_from_id - lookup css by id
6607  * @id: the cgroup id
6608  * @ss: cgroup subsys to be looked into
6609  *
6610  * Returns the css if there's valid one with @id, otherwise returns NULL.
6611  * Should be called under rcu_read_lock().
6612  */
css_from_id(int id,struct cgroup_subsys * ss)6613 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6614 {
6615 	WARN_ON_ONCE(!rcu_read_lock_held());
6616 	return idr_find(&ss->css_idr, id);
6617 }
6618 
6619 /**
6620  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6621  * @path: path on the default hierarchy
6622  *
6623  * Find the cgroup at @path on the default hierarchy, increment its
6624  * reference count and return it.  Returns pointer to the found cgroup on
6625  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6626  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6627  */
cgroup_get_from_path(const char * path)6628 struct cgroup *cgroup_get_from_path(const char *path)
6629 {
6630 	struct kernfs_node *kn;
6631 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6632 	struct cgroup *root_cgrp;
6633 
6634 	spin_lock_irq(&css_set_lock);
6635 	root_cgrp = current_cgns_cgroup_from_root(&cgrp_dfl_root);
6636 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
6637 	spin_unlock_irq(&css_set_lock);
6638 	if (!kn)
6639 		goto out;
6640 
6641 	if (kernfs_type(kn) != KERNFS_DIR) {
6642 		cgrp = ERR_PTR(-ENOTDIR);
6643 		goto out_kernfs;
6644 	}
6645 
6646 	rcu_read_lock();
6647 
6648 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6649 	if (!cgrp || !cgroup_tryget(cgrp))
6650 		cgrp = ERR_PTR(-ENOENT);
6651 
6652 	rcu_read_unlock();
6653 
6654 out_kernfs:
6655 	kernfs_put(kn);
6656 out:
6657 	return cgrp;
6658 }
6659 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6660 
6661 /**
6662  * cgroup_get_from_fd - get a cgroup pointer from a fd
6663  * @fd: fd obtained by open(cgroup2_dir)
6664  *
6665  * Find the cgroup from a fd which should be obtained
6666  * by opening a cgroup directory.  Returns a pointer to the
6667  * cgroup on success. ERR_PTR is returned if the cgroup
6668  * cannot be found.
6669  */
cgroup_get_from_fd(int fd)6670 struct cgroup *cgroup_get_from_fd(int fd)
6671 {
6672 	struct cgroup *cgrp;
6673 	struct file *f;
6674 
6675 	f = fget_raw(fd);
6676 	if (!f)
6677 		return ERR_PTR(-EBADF);
6678 
6679 	cgrp = cgroup_get_from_file(f);
6680 	fput(f);
6681 	return cgrp;
6682 }
6683 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6684 
power_of_ten(int power)6685 static u64 power_of_ten(int power)
6686 {
6687 	u64 v = 1;
6688 	while (power--)
6689 		v *= 10;
6690 	return v;
6691 }
6692 
6693 /**
6694  * cgroup_parse_float - parse a floating number
6695  * @input: input string
6696  * @dec_shift: number of decimal digits to shift
6697  * @v: output
6698  *
6699  * Parse a decimal floating point number in @input and store the result in
6700  * @v with decimal point right shifted @dec_shift times.  For example, if
6701  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6702  * Returns 0 on success, -errno otherwise.
6703  *
6704  * There's nothing cgroup specific about this function except that it's
6705  * currently the only user.
6706  */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6707 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6708 {
6709 	s64 whole, frac = 0;
6710 	int fstart = 0, fend = 0, flen;
6711 
6712 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6713 		return -EINVAL;
6714 	if (frac < 0)
6715 		return -EINVAL;
6716 
6717 	flen = fend > fstart ? fend - fstart : 0;
6718 	if (flen < dec_shift)
6719 		frac *= power_of_ten(dec_shift - flen);
6720 	else
6721 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6722 
6723 	*v = whole * power_of_ten(dec_shift) + frac;
6724 	return 0;
6725 }
6726 
6727 /*
6728  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6729  * definition in cgroup-defs.h.
6730  */
6731 #ifdef CONFIG_SOCK_CGROUP_DATA
6732 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6733 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6734 {
6735 	struct cgroup *cgroup;
6736 
6737 	rcu_read_lock();
6738 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6739 	if (in_interrupt()) {
6740 		cgroup = &cgrp_dfl_root.cgrp;
6741 		cgroup_get(cgroup);
6742 		goto out;
6743 	}
6744 
6745 	while (true) {
6746 		struct css_set *cset;
6747 
6748 		cset = task_css_set(current);
6749 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6750 			cgroup = cset->dfl_cgrp;
6751 			break;
6752 		}
6753 		cpu_relax();
6754 	}
6755 out:
6756 	skcd->cgroup = cgroup;
6757 	cgroup_bpf_get(cgroup);
6758 	rcu_read_unlock();
6759 }
6760 
cgroup_sk_clone(struct sock_cgroup_data * skcd)6761 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6762 {
6763 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6764 
6765 	/*
6766 	 * We might be cloning a socket which is left in an empty
6767 	 * cgroup and the cgroup might have already been rmdir'd.
6768 	 * Don't use cgroup_get_live().
6769 	 */
6770 	cgroup_get(cgrp);
6771 	cgroup_bpf_get(cgrp);
6772 }
6773 
cgroup_sk_free(struct sock_cgroup_data * skcd)6774 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6775 {
6776 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6777 
6778 	cgroup_bpf_put(cgrp);
6779 	cgroup_put(cgrp);
6780 }
6781 
6782 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6783 
6784 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)6785 int cgroup_bpf_attach(struct cgroup *cgrp,
6786 		      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6787 		      struct bpf_cgroup_link *link,
6788 		      enum bpf_attach_type type,
6789 		      u32 flags)
6790 {
6791 	int ret;
6792 
6793 	mutex_lock(&cgroup_mutex);
6794 	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6795 	mutex_unlock(&cgroup_mutex);
6796 	return ret;
6797 }
6798 
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)6799 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6800 		      enum bpf_attach_type type)
6801 {
6802 	int ret;
6803 
6804 	mutex_lock(&cgroup_mutex);
6805 	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6806 	mutex_unlock(&cgroup_mutex);
6807 	return ret;
6808 }
6809 
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6810 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6811 		     union bpf_attr __user *uattr)
6812 {
6813 	int ret;
6814 
6815 	mutex_lock(&cgroup_mutex);
6816 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6817 	mutex_unlock(&cgroup_mutex);
6818 	return ret;
6819 }
6820 #endif /* CONFIG_CGROUP_BPF */
6821 
6822 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6823 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6824 				      ssize_t size, const char *prefix)
6825 {
6826 	struct cftype *cft;
6827 	ssize_t ret = 0;
6828 
6829 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6830 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6831 			continue;
6832 
6833 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6834 			continue;
6835 
6836 		if (prefix)
6837 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6838 
6839 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6840 
6841 		if (WARN_ON(ret >= size))
6842 			break;
6843 	}
6844 
6845 	return ret;
6846 }
6847 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6848 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6849 			      char *buf)
6850 {
6851 	struct cgroup_subsys *ss;
6852 	int ssid;
6853 	ssize_t ret = 0;
6854 
6855 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6856 				     NULL);
6857 
6858 	for_each_subsys(ss, ssid)
6859 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6860 					      PAGE_SIZE - ret,
6861 					      cgroup_subsys_name[ssid]);
6862 
6863 	return ret;
6864 }
6865 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6866 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6867 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6868 			     char *buf)
6869 {
6870 	return snprintf(buf, PAGE_SIZE,
6871 			"nsdelegate\n"
6872 			"memory_localevents\n"
6873 			"memory_recursiveprot\n");
6874 }
6875 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6876 
6877 static struct attribute *cgroup_sysfs_attrs[] = {
6878 	&cgroup_delegate_attr.attr,
6879 	&cgroup_features_attr.attr,
6880 	NULL,
6881 };
6882 
6883 static const struct attribute_group cgroup_sysfs_attr_group = {
6884 	.attrs = cgroup_sysfs_attrs,
6885 	.name = "cgroup",
6886 };
6887 
cgroup_sysfs_init(void)6888 static int __init cgroup_sysfs_init(void)
6889 {
6890 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6891 }
6892 subsys_initcall(cgroup_sysfs_init);
6893 
6894 #endif /* CONFIG_SYSFS */
6895