1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Performance event support - powerpc architecture code
4 *
5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20 #include <asm/interrupt.h>
21
22 #ifdef CONFIG_PPC64
23 #include "internal.h"
24 #endif
25
26 #define BHRB_MAX_ENTRIES 32
27 #define BHRB_TARGET 0x0000000000000002
28 #define BHRB_PREDICTION 0x0000000000000001
29 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
30
31 struct cpu_hw_events {
32 int n_events;
33 int n_percpu;
34 int disabled;
35 int n_added;
36 int n_limited;
37 u8 pmcs_enabled;
38 struct perf_event *event[MAX_HWEVENTS];
39 u64 events[MAX_HWEVENTS];
40 unsigned int flags[MAX_HWEVENTS];
41 struct mmcr_regs mmcr;
42 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
43 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
44 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
47
48 unsigned int txn_flags;
49 int n_txn_start;
50
51 /* BHRB bits */
52 u64 bhrb_filter; /* BHRB HW branch filter */
53 unsigned int bhrb_users;
54 void *bhrb_context;
55 struct perf_branch_stack bhrb_stack;
56 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
57 u64 ic_init;
58
59 /* Store the PMC values */
60 unsigned long pmcs[MAX_HWEVENTS];
61 };
62
63 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
64
65 static struct power_pmu *ppmu;
66
67 /*
68 * Normally, to ignore kernel events we set the FCS (freeze counters
69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
70 * hypervisor bit set in the MSR, or if we are running on a processor
71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
72 * then we need to use the FCHV bit to ignore kernel events.
73 */
74 static unsigned int freeze_events_kernel = MMCR0_FCS;
75
76 /*
77 * 32-bit doesn't have MMCRA but does have an MMCR2,
78 * and a few other names are different.
79 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
80 * Define them as zero knowing that any code path accessing
81 * these registers (via mtspr/mfspr) are done under ppmu flag
82 * check for PPMU_ARCH_31 and we will not enter that code path
83 * for 32-bit.
84 */
85 #ifdef CONFIG_PPC32
86
87 #define MMCR0_FCHV 0
88 #define MMCR0_PMCjCE MMCR0_PMCnCE
89 #define MMCR0_FC56 0
90 #define MMCR0_PMAO 0
91 #define MMCR0_EBE 0
92 #define MMCR0_BHRBA 0
93 #define MMCR0_PMCC 0
94 #define MMCR0_PMCC_U6 0
95
96 #define SPRN_MMCRA SPRN_MMCR2
97 #define SPRN_MMCR3 0
98 #define SPRN_SIER2 0
99 #define SPRN_SIER3 0
100 #define MMCRA_SAMPLE_ENABLE 0
101 #define MMCRA_BHRB_DISABLE 0
102 #define MMCR0_PMCCEXT 0
103
perf_ip_adjust(struct pt_regs * regs)104 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
105 {
106 return 0;
107 }
perf_get_data_addr(struct perf_event * event,struct pt_regs * regs,u64 * addrp)108 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
perf_get_misc_flags(struct pt_regs * regs)109 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
110 {
111 return 0;
112 }
perf_read_regs(struct pt_regs * regs)113 static inline void perf_read_regs(struct pt_regs *regs)
114 {
115 regs->result = 0;
116 }
117
siar_valid(struct pt_regs * regs)118 static inline int siar_valid(struct pt_regs *regs)
119 {
120 return 1;
121 }
122
is_ebb_event(struct perf_event * event)123 static bool is_ebb_event(struct perf_event *event) { return false; }
ebb_event_check(struct perf_event * event)124 static int ebb_event_check(struct perf_event *event) { return 0; }
ebb_event_add(struct perf_event * event)125 static void ebb_event_add(struct perf_event *event) { }
ebb_switch_out(unsigned long mmcr0)126 static void ebb_switch_out(unsigned long mmcr0) { }
ebb_switch_in(bool ebb,struct cpu_hw_events * cpuhw)127 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
128 {
129 return cpuhw->mmcr.mmcr0;
130 }
131
power_pmu_bhrb_enable(struct perf_event * event)132 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
power_pmu_bhrb_disable(struct perf_event * event)133 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
power_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)134 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
power_pmu_bhrb_read(struct perf_event * event,struct cpu_hw_events * cpuhw)135 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
pmao_restore_workaround(bool ebb)136 static void pmao_restore_workaround(bool ebb) { }
137 #endif /* CONFIG_PPC32 */
138
is_sier_available(void)139 bool is_sier_available(void)
140 {
141 if (!ppmu)
142 return false;
143
144 if (ppmu->flags & PPMU_HAS_SIER)
145 return true;
146
147 return false;
148 }
149
150 /*
151 * Return PMC value corresponding to the
152 * index passed.
153 */
get_pmcs_ext_regs(int idx)154 unsigned long get_pmcs_ext_regs(int idx)
155 {
156 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
157
158 return cpuhw->pmcs[idx];
159 }
160
regs_use_siar(struct pt_regs * regs)161 static bool regs_use_siar(struct pt_regs *regs)
162 {
163 /*
164 * When we take a performance monitor exception the regs are setup
165 * using perf_read_regs() which overloads some fields, in particular
166 * regs->result to tell us whether to use SIAR.
167 *
168 * However if the regs are from another exception, eg. a syscall, then
169 * they have not been setup using perf_read_regs() and so regs->result
170 * is something random.
171 */
172 return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result);
173 }
174
175 /*
176 * Things that are specific to 64-bit implementations.
177 */
178 #ifdef CONFIG_PPC64
179
perf_ip_adjust(struct pt_regs * regs)180 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
181 {
182 unsigned long mmcra = regs->dsisr;
183
184 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
185 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
186 if (slot > 1)
187 return 4 * (slot - 1);
188 }
189
190 return 0;
191 }
192
193 /*
194 * The user wants a data address recorded.
195 * If we're not doing instruction sampling, give them the SDAR
196 * (sampled data address). If we are doing instruction sampling, then
197 * only give them the SDAR if it corresponds to the instruction
198 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
199 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
200 */
perf_get_data_addr(struct perf_event * event,struct pt_regs * regs,u64 * addrp)201 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
202 {
203 unsigned long mmcra = regs->dsisr;
204 bool sdar_valid;
205
206 if (ppmu->flags & PPMU_HAS_SIER)
207 sdar_valid = regs->dar & SIER_SDAR_VALID;
208 else {
209 unsigned long sdsync;
210
211 if (ppmu->flags & PPMU_SIAR_VALID)
212 sdsync = POWER7P_MMCRA_SDAR_VALID;
213 else if (ppmu->flags & PPMU_ALT_SIPR)
214 sdsync = POWER6_MMCRA_SDSYNC;
215 else if (ppmu->flags & PPMU_NO_SIAR)
216 sdsync = MMCRA_SAMPLE_ENABLE;
217 else
218 sdsync = MMCRA_SDSYNC;
219
220 sdar_valid = mmcra & sdsync;
221 }
222
223 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
224 *addrp = mfspr(SPRN_SDAR);
225
226 if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel)
227 *addrp = 0;
228 }
229
regs_sihv(struct pt_regs * regs)230 static bool regs_sihv(struct pt_regs *regs)
231 {
232 unsigned long sihv = MMCRA_SIHV;
233
234 if (ppmu->flags & PPMU_HAS_SIER)
235 return !!(regs->dar & SIER_SIHV);
236
237 if (ppmu->flags & PPMU_ALT_SIPR)
238 sihv = POWER6_MMCRA_SIHV;
239
240 return !!(regs->dsisr & sihv);
241 }
242
regs_sipr(struct pt_regs * regs)243 static bool regs_sipr(struct pt_regs *regs)
244 {
245 unsigned long sipr = MMCRA_SIPR;
246
247 if (ppmu->flags & PPMU_HAS_SIER)
248 return !!(regs->dar & SIER_SIPR);
249
250 if (ppmu->flags & PPMU_ALT_SIPR)
251 sipr = POWER6_MMCRA_SIPR;
252
253 return !!(regs->dsisr & sipr);
254 }
255
perf_flags_from_msr(struct pt_regs * regs)256 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
257 {
258 if (regs->msr & MSR_PR)
259 return PERF_RECORD_MISC_USER;
260 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
261 return PERF_RECORD_MISC_HYPERVISOR;
262 return PERF_RECORD_MISC_KERNEL;
263 }
264
perf_get_misc_flags(struct pt_regs * regs)265 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
266 {
267 bool use_siar = regs_use_siar(regs);
268 unsigned long mmcra = regs->dsisr;
269 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
270
271 if (!use_siar)
272 return perf_flags_from_msr(regs);
273
274 /*
275 * Check the address in SIAR to identify the
276 * privilege levels since the SIER[MSR_HV, MSR_PR]
277 * bits are not set for marked events in power10
278 * DD1.
279 */
280 if (marked && (ppmu->flags & PPMU_P10_DD1)) {
281 unsigned long siar = mfspr(SPRN_SIAR);
282 if (siar) {
283 if (is_kernel_addr(siar))
284 return PERF_RECORD_MISC_KERNEL;
285 return PERF_RECORD_MISC_USER;
286 } else {
287 if (is_kernel_addr(regs->nip))
288 return PERF_RECORD_MISC_KERNEL;
289 return PERF_RECORD_MISC_USER;
290 }
291 }
292
293 /*
294 * If we don't have flags in MMCRA, rather than using
295 * the MSR, we intuit the flags from the address in
296 * SIAR which should give slightly more reliable
297 * results
298 */
299 if (ppmu->flags & PPMU_NO_SIPR) {
300 unsigned long siar = mfspr(SPRN_SIAR);
301 if (is_kernel_addr(siar))
302 return PERF_RECORD_MISC_KERNEL;
303 return PERF_RECORD_MISC_USER;
304 }
305
306 /* PR has priority over HV, so order below is important */
307 if (regs_sipr(regs))
308 return PERF_RECORD_MISC_USER;
309
310 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
311 return PERF_RECORD_MISC_HYPERVISOR;
312
313 return PERF_RECORD_MISC_KERNEL;
314 }
315
316 /*
317 * Overload regs->dsisr to store MMCRA so we only need to read it once
318 * on each interrupt.
319 * Overload regs->dar to store SIER if we have it.
320 * Overload regs->result to specify whether we should use the MSR (result
321 * is zero) or the SIAR (result is non zero).
322 */
perf_read_regs(struct pt_regs * regs)323 static inline void perf_read_regs(struct pt_regs *regs)
324 {
325 unsigned long mmcra = mfspr(SPRN_MMCRA);
326 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
327 int use_siar;
328
329 regs->dsisr = mmcra;
330
331 if (ppmu->flags & PPMU_HAS_SIER)
332 regs->dar = mfspr(SPRN_SIER);
333
334 /*
335 * If this isn't a PMU exception (eg a software event) the SIAR is
336 * not valid. Use pt_regs.
337 *
338 * If it is a marked event use the SIAR.
339 *
340 * If the PMU doesn't update the SIAR for non marked events use
341 * pt_regs.
342 *
343 * If regs is a kernel interrupt, always use SIAR. Some PMUs have an
344 * issue with regs_sipr not being in synch with SIAR in interrupt entry
345 * and return sequences, which can result in regs_sipr being true for
346 * kernel interrupts and SIAR, which has the effect of causing samples
347 * to pile up at mtmsrd MSR[EE] 0->1 or pending irq replay around
348 * interrupt entry/exit.
349 *
350 * If the PMU has HV/PR flags then check to see if they
351 * place the exception in userspace. If so, use pt_regs. In
352 * continuous sampling mode the SIAR and the PMU exception are
353 * not synchronised, so they may be many instructions apart.
354 * This can result in confusing backtraces. We still want
355 * hypervisor samples as well as samples in the kernel with
356 * interrupts off hence the userspace check.
357 */
358 if (TRAP(regs) != INTERRUPT_PERFMON)
359 use_siar = 0;
360 else if ((ppmu->flags & PPMU_NO_SIAR))
361 use_siar = 0;
362 else if (marked)
363 use_siar = 1;
364 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
365 use_siar = 0;
366 else if (!user_mode(regs))
367 use_siar = 1;
368 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
369 use_siar = 0;
370 else
371 use_siar = 1;
372
373 regs->result = use_siar;
374 }
375
376 /*
377 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
378 * must be sampled only if the SIAR-valid bit is set.
379 *
380 * For unmarked instructions and for processors that don't have the SIAR-Valid
381 * bit, assume that SIAR is valid.
382 */
siar_valid(struct pt_regs * regs)383 static inline int siar_valid(struct pt_regs *regs)
384 {
385 unsigned long mmcra = regs->dsisr;
386 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
387
388 if (marked) {
389 /*
390 * SIER[SIAR_VALID] is not set for some
391 * marked events on power10 DD1, so drop
392 * the check for SIER[SIAR_VALID] and return true.
393 */
394 if (ppmu->flags & PPMU_P10_DD1)
395 return 0x1;
396 else if (ppmu->flags & PPMU_HAS_SIER)
397 return regs->dar & SIER_SIAR_VALID;
398
399 if (ppmu->flags & PPMU_SIAR_VALID)
400 return mmcra & POWER7P_MMCRA_SIAR_VALID;
401 }
402
403 return 1;
404 }
405
406
407 /* Reset all possible BHRB entries */
power_pmu_bhrb_reset(void)408 static void power_pmu_bhrb_reset(void)
409 {
410 asm volatile(PPC_CLRBHRB);
411 }
412
power_pmu_bhrb_enable(struct perf_event * event)413 static void power_pmu_bhrb_enable(struct perf_event *event)
414 {
415 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
416
417 if (!ppmu->bhrb_nr)
418 return;
419
420 /* Clear BHRB if we changed task context to avoid data leaks */
421 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
422 power_pmu_bhrb_reset();
423 cpuhw->bhrb_context = event->ctx;
424 }
425 cpuhw->bhrb_users++;
426 perf_sched_cb_inc(event->ctx->pmu);
427 }
428
power_pmu_bhrb_disable(struct perf_event * event)429 static void power_pmu_bhrb_disable(struct perf_event *event)
430 {
431 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
432
433 if (!ppmu->bhrb_nr)
434 return;
435
436 WARN_ON_ONCE(!cpuhw->bhrb_users);
437 cpuhw->bhrb_users--;
438 perf_sched_cb_dec(event->ctx->pmu);
439
440 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
441 /* BHRB cannot be turned off when other
442 * events are active on the PMU.
443 */
444
445 /* avoid stale pointer */
446 cpuhw->bhrb_context = NULL;
447 }
448 }
449
450 /* Called from ctxsw to prevent one process's branch entries to
451 * mingle with the other process's entries during context switch.
452 */
power_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)453 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
454 {
455 if (!ppmu->bhrb_nr)
456 return;
457
458 if (sched_in)
459 power_pmu_bhrb_reset();
460 }
461 /* Calculate the to address for a branch */
power_pmu_bhrb_to(u64 addr)462 static __u64 power_pmu_bhrb_to(u64 addr)
463 {
464 unsigned int instr;
465 __u64 target;
466
467 if (is_kernel_addr(addr)) {
468 if (copy_from_kernel_nofault(&instr, (void *)addr,
469 sizeof(instr)))
470 return 0;
471
472 return branch_target(&instr);
473 }
474
475 /* Userspace: need copy instruction here then translate it */
476 if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
477 sizeof(instr)))
478 return 0;
479
480 target = branch_target(&instr);
481 if ((!target) || (instr & BRANCH_ABSOLUTE))
482 return target;
483
484 /* Translate relative branch target from kernel to user address */
485 return target - (unsigned long)&instr + addr;
486 }
487
488 /* Processing BHRB entries */
power_pmu_bhrb_read(struct perf_event * event,struct cpu_hw_events * cpuhw)489 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
490 {
491 u64 val;
492 u64 addr;
493 int r_index, u_index, pred;
494
495 r_index = 0;
496 u_index = 0;
497 while (r_index < ppmu->bhrb_nr) {
498 /* Assembly read function */
499 val = read_bhrb(r_index++);
500 if (!val)
501 /* Terminal marker: End of valid BHRB entries */
502 break;
503 else {
504 addr = val & BHRB_EA;
505 pred = val & BHRB_PREDICTION;
506
507 if (!addr)
508 /* invalid entry */
509 continue;
510
511 /*
512 * BHRB rolling buffer could very much contain the kernel
513 * addresses at this point. Check the privileges before
514 * exporting it to userspace (avoid exposure of regions
515 * where we could have speculative execution)
516 * Incase of ISA v3.1, BHRB will capture only user-space
517 * addresses, hence include a check before filtering code
518 */
519 if (!(ppmu->flags & PPMU_ARCH_31) &&
520 is_kernel_addr(addr) && event->attr.exclude_kernel)
521 continue;
522
523 /* Branches are read most recent first (ie. mfbhrb 0 is
524 * the most recent branch).
525 * There are two types of valid entries:
526 * 1) a target entry which is the to address of a
527 * computed goto like a blr,bctr,btar. The next
528 * entry read from the bhrb will be branch
529 * corresponding to this target (ie. the actual
530 * blr/bctr/btar instruction).
531 * 2) a from address which is an actual branch. If a
532 * target entry proceeds this, then this is the
533 * matching branch for that target. If this is not
534 * following a target entry, then this is a branch
535 * where the target is given as an immediate field
536 * in the instruction (ie. an i or b form branch).
537 * In this case we need to read the instruction from
538 * memory to determine the target/to address.
539 */
540
541 if (val & BHRB_TARGET) {
542 /* Target branches use two entries
543 * (ie. computed gotos/XL form)
544 */
545 cpuhw->bhrb_entries[u_index].to = addr;
546 cpuhw->bhrb_entries[u_index].mispred = pred;
547 cpuhw->bhrb_entries[u_index].predicted = ~pred;
548
549 /* Get from address in next entry */
550 val = read_bhrb(r_index++);
551 addr = val & BHRB_EA;
552 if (val & BHRB_TARGET) {
553 /* Shouldn't have two targets in a
554 row.. Reset index and try again */
555 r_index--;
556 addr = 0;
557 }
558 cpuhw->bhrb_entries[u_index].from = addr;
559 } else {
560 /* Branches to immediate field
561 (ie I or B form) */
562 cpuhw->bhrb_entries[u_index].from = addr;
563 cpuhw->bhrb_entries[u_index].to =
564 power_pmu_bhrb_to(addr);
565 cpuhw->bhrb_entries[u_index].mispred = pred;
566 cpuhw->bhrb_entries[u_index].predicted = ~pred;
567 }
568 u_index++;
569
570 }
571 }
572 cpuhw->bhrb_stack.nr = u_index;
573 cpuhw->bhrb_stack.hw_idx = -1ULL;
574 return;
575 }
576
is_ebb_event(struct perf_event * event)577 static bool is_ebb_event(struct perf_event *event)
578 {
579 /*
580 * This could be a per-PMU callback, but we'd rather avoid the cost. We
581 * check that the PMU supports EBB, meaning those that don't can still
582 * use bit 63 of the event code for something else if they wish.
583 */
584 return (ppmu->flags & PPMU_ARCH_207S) &&
585 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
586 }
587
ebb_event_check(struct perf_event * event)588 static int ebb_event_check(struct perf_event *event)
589 {
590 struct perf_event *leader = event->group_leader;
591
592 /* Event and group leader must agree on EBB */
593 if (is_ebb_event(leader) != is_ebb_event(event))
594 return -EINVAL;
595
596 if (is_ebb_event(event)) {
597 if (!(event->attach_state & PERF_ATTACH_TASK))
598 return -EINVAL;
599
600 if (!leader->attr.pinned || !leader->attr.exclusive)
601 return -EINVAL;
602
603 if (event->attr.freq ||
604 event->attr.inherit ||
605 event->attr.sample_type ||
606 event->attr.sample_period ||
607 event->attr.enable_on_exec)
608 return -EINVAL;
609 }
610
611 return 0;
612 }
613
ebb_event_add(struct perf_event * event)614 static void ebb_event_add(struct perf_event *event)
615 {
616 if (!is_ebb_event(event) || current->thread.used_ebb)
617 return;
618
619 /*
620 * IFF this is the first time we've added an EBB event, set
621 * PMXE in the user MMCR0 so we can detect when it's cleared by
622 * userspace. We need this so that we can context switch while
623 * userspace is in the EBB handler (where PMXE is 0).
624 */
625 current->thread.used_ebb = 1;
626 current->thread.mmcr0 |= MMCR0_PMXE;
627 }
628
ebb_switch_out(unsigned long mmcr0)629 static void ebb_switch_out(unsigned long mmcr0)
630 {
631 if (!(mmcr0 & MMCR0_EBE))
632 return;
633
634 current->thread.siar = mfspr(SPRN_SIAR);
635 current->thread.sier = mfspr(SPRN_SIER);
636 current->thread.sdar = mfspr(SPRN_SDAR);
637 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
638 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
639 if (ppmu->flags & PPMU_ARCH_31) {
640 current->thread.mmcr3 = mfspr(SPRN_MMCR3);
641 current->thread.sier2 = mfspr(SPRN_SIER2);
642 current->thread.sier3 = mfspr(SPRN_SIER3);
643 }
644 }
645
ebb_switch_in(bool ebb,struct cpu_hw_events * cpuhw)646 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
647 {
648 unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
649
650 if (!ebb)
651 goto out;
652
653 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
654 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
655
656 /*
657 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
658 * with pmao_restore_workaround() because we may add PMAO but we never
659 * clear it here.
660 */
661 mmcr0 |= current->thread.mmcr0;
662
663 /*
664 * Be careful not to set PMXE if userspace had it cleared. This is also
665 * compatible with pmao_restore_workaround() because it has already
666 * cleared PMXE and we leave PMAO alone.
667 */
668 if (!(current->thread.mmcr0 & MMCR0_PMXE))
669 mmcr0 &= ~MMCR0_PMXE;
670
671 mtspr(SPRN_SIAR, current->thread.siar);
672 mtspr(SPRN_SIER, current->thread.sier);
673 mtspr(SPRN_SDAR, current->thread.sdar);
674
675 /*
676 * Merge the kernel & user values of MMCR2. The semantics we implement
677 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
678 * but not clear bits. If a task wants to be able to clear bits, ie.
679 * unfreeze counters, it should not set exclude_xxx in its events and
680 * instead manage the MMCR2 entirely by itself.
681 */
682 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
683
684 if (ppmu->flags & PPMU_ARCH_31) {
685 mtspr(SPRN_MMCR3, current->thread.mmcr3);
686 mtspr(SPRN_SIER2, current->thread.sier2);
687 mtspr(SPRN_SIER3, current->thread.sier3);
688 }
689 out:
690 return mmcr0;
691 }
692
pmao_restore_workaround(bool ebb)693 static void pmao_restore_workaround(bool ebb)
694 {
695 unsigned pmcs[6];
696
697 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
698 return;
699
700 /*
701 * On POWER8E there is a hardware defect which affects the PMU context
702 * switch logic, ie. power_pmu_disable/enable().
703 *
704 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
705 * by the hardware. Sometime later the actual PMU exception is
706 * delivered.
707 *
708 * If we context switch, or simply disable/enable, the PMU prior to the
709 * exception arriving, the exception will be lost when we clear PMAO.
710 *
711 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
712 * set, and this _should_ generate an exception. However because of the
713 * defect no exception is generated when we write PMAO, and we get
714 * stuck with no counters counting but no exception delivered.
715 *
716 * The workaround is to detect this case and tweak the hardware to
717 * create another pending PMU exception.
718 *
719 * We do that by setting up PMC6 (cycles) for an imminent overflow and
720 * enabling the PMU. That causes a new exception to be generated in the
721 * chip, but we don't take it yet because we have interrupts hard
722 * disabled. We then write back the PMU state as we want it to be seen
723 * by the exception handler. When we reenable interrupts the exception
724 * handler will be called and see the correct state.
725 *
726 * The logic is the same for EBB, except that the exception is gated by
727 * us having interrupts hard disabled as well as the fact that we are
728 * not in userspace. The exception is finally delivered when we return
729 * to userspace.
730 */
731
732 /* Only if PMAO is set and PMAO_SYNC is clear */
733 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
734 return;
735
736 /* If we're doing EBB, only if BESCR[GE] is set */
737 if (ebb && !(current->thread.bescr & BESCR_GE))
738 return;
739
740 /*
741 * We are already soft-disabled in power_pmu_enable(). We need to hard
742 * disable to actually prevent the PMU exception from firing.
743 */
744 hard_irq_disable();
745
746 /*
747 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
748 * Using read/write_pmc() in a for loop adds 12 function calls and
749 * almost doubles our code size.
750 */
751 pmcs[0] = mfspr(SPRN_PMC1);
752 pmcs[1] = mfspr(SPRN_PMC2);
753 pmcs[2] = mfspr(SPRN_PMC3);
754 pmcs[3] = mfspr(SPRN_PMC4);
755 pmcs[4] = mfspr(SPRN_PMC5);
756 pmcs[5] = mfspr(SPRN_PMC6);
757
758 /* Ensure all freeze bits are unset */
759 mtspr(SPRN_MMCR2, 0);
760
761 /* Set up PMC6 to overflow in one cycle */
762 mtspr(SPRN_PMC6, 0x7FFFFFFE);
763
764 /* Enable exceptions and unfreeze PMC6 */
765 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
766
767 /* Now we need to refreeze and restore the PMCs */
768 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
769
770 mtspr(SPRN_PMC1, pmcs[0]);
771 mtspr(SPRN_PMC2, pmcs[1]);
772 mtspr(SPRN_PMC3, pmcs[2]);
773 mtspr(SPRN_PMC4, pmcs[3]);
774 mtspr(SPRN_PMC5, pmcs[4]);
775 mtspr(SPRN_PMC6, pmcs[5]);
776 }
777
778 #endif /* CONFIG_PPC64 */
779
780 static void perf_event_interrupt(struct pt_regs *regs);
781
782 /*
783 * Read one performance monitor counter (PMC).
784 */
read_pmc(int idx)785 static unsigned long read_pmc(int idx)
786 {
787 unsigned long val;
788
789 switch (idx) {
790 case 1:
791 val = mfspr(SPRN_PMC1);
792 break;
793 case 2:
794 val = mfspr(SPRN_PMC2);
795 break;
796 case 3:
797 val = mfspr(SPRN_PMC3);
798 break;
799 case 4:
800 val = mfspr(SPRN_PMC4);
801 break;
802 case 5:
803 val = mfspr(SPRN_PMC5);
804 break;
805 case 6:
806 val = mfspr(SPRN_PMC6);
807 break;
808 #ifdef CONFIG_PPC64
809 case 7:
810 val = mfspr(SPRN_PMC7);
811 break;
812 case 8:
813 val = mfspr(SPRN_PMC8);
814 break;
815 #endif /* CONFIG_PPC64 */
816 default:
817 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
818 val = 0;
819 }
820 return val;
821 }
822
823 /*
824 * Write one PMC.
825 */
write_pmc(int idx,unsigned long val)826 static void write_pmc(int idx, unsigned long val)
827 {
828 switch (idx) {
829 case 1:
830 mtspr(SPRN_PMC1, val);
831 break;
832 case 2:
833 mtspr(SPRN_PMC2, val);
834 break;
835 case 3:
836 mtspr(SPRN_PMC3, val);
837 break;
838 case 4:
839 mtspr(SPRN_PMC4, val);
840 break;
841 case 5:
842 mtspr(SPRN_PMC5, val);
843 break;
844 case 6:
845 mtspr(SPRN_PMC6, val);
846 break;
847 #ifdef CONFIG_PPC64
848 case 7:
849 mtspr(SPRN_PMC7, val);
850 break;
851 case 8:
852 mtspr(SPRN_PMC8, val);
853 break;
854 #endif /* CONFIG_PPC64 */
855 default:
856 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
857 }
858 }
859
any_pmc_overflown(struct cpu_hw_events * cpuhw)860 static int any_pmc_overflown(struct cpu_hw_events *cpuhw)
861 {
862 int i, idx;
863
864 for (i = 0; i < cpuhw->n_events; i++) {
865 idx = cpuhw->event[i]->hw.idx;
866 if ((idx) && ((int)read_pmc(idx) < 0))
867 return idx;
868 }
869
870 return 0;
871 }
872
873 /* Called from sysrq_handle_showregs() */
perf_event_print_debug(void)874 void perf_event_print_debug(void)
875 {
876 unsigned long sdar, sier, flags;
877 u32 pmcs[MAX_HWEVENTS];
878 int i;
879
880 if (!ppmu) {
881 pr_info("Performance monitor hardware not registered.\n");
882 return;
883 }
884
885 if (!ppmu->n_counter)
886 return;
887
888 local_irq_save(flags);
889
890 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
891 smp_processor_id(), ppmu->name, ppmu->n_counter);
892
893 for (i = 0; i < ppmu->n_counter; i++)
894 pmcs[i] = read_pmc(i + 1);
895
896 for (; i < MAX_HWEVENTS; i++)
897 pmcs[i] = 0xdeadbeef;
898
899 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
900 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
901
902 if (ppmu->n_counter > 4)
903 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
904 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
905
906 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
907 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
908
909 sdar = sier = 0;
910 #ifdef CONFIG_PPC64
911 sdar = mfspr(SPRN_SDAR);
912
913 if (ppmu->flags & PPMU_HAS_SIER)
914 sier = mfspr(SPRN_SIER);
915
916 if (ppmu->flags & PPMU_ARCH_207S) {
917 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
918 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
919 pr_info("EBBRR: %016lx BESCR: %016lx\n",
920 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
921 }
922
923 if (ppmu->flags & PPMU_ARCH_31) {
924 pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
925 mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
926 }
927 #endif
928 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
929 mfspr(SPRN_SIAR), sdar, sier);
930
931 local_irq_restore(flags);
932 }
933
934 /*
935 * Check if a set of events can all go on the PMU at once.
936 * If they can't, this will look at alternative codes for the events
937 * and see if any combination of alternative codes is feasible.
938 * The feasible set is returned in event_id[].
939 */
power_check_constraints(struct cpu_hw_events * cpuhw,u64 event_id[],unsigned int cflags[],int n_ev,struct perf_event ** event)940 static int power_check_constraints(struct cpu_hw_events *cpuhw,
941 u64 event_id[], unsigned int cflags[],
942 int n_ev, struct perf_event **event)
943 {
944 unsigned long mask, value, nv;
945 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
946 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
947 int i, j;
948 unsigned long addf = ppmu->add_fields;
949 unsigned long tadd = ppmu->test_adder;
950 unsigned long grp_mask = ppmu->group_constraint_mask;
951 unsigned long grp_val = ppmu->group_constraint_val;
952
953 if (n_ev > ppmu->n_counter)
954 return -1;
955
956 /* First see if the events will go on as-is */
957 for (i = 0; i < n_ev; ++i) {
958 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
959 && !ppmu->limited_pmc_event(event_id[i])) {
960 ppmu->get_alternatives(event_id[i], cflags[i],
961 cpuhw->alternatives[i]);
962 event_id[i] = cpuhw->alternatives[i][0];
963 }
964 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
965 &cpuhw->avalues[i][0], event[i]->attr.config1))
966 return -1;
967 }
968 value = mask = 0;
969 for (i = 0; i < n_ev; ++i) {
970 nv = (value | cpuhw->avalues[i][0]) +
971 (value & cpuhw->avalues[i][0] & addf);
972
973 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
974 break;
975
976 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
977 & (~grp_mask)) != 0)
978 break;
979
980 value = nv;
981 mask |= cpuhw->amasks[i][0];
982 }
983 if (i == n_ev) {
984 if ((value & mask & grp_mask) != (mask & grp_val))
985 return -1;
986 else
987 return 0; /* all OK */
988 }
989
990 /* doesn't work, gather alternatives... */
991 if (!ppmu->get_alternatives)
992 return -1;
993 for (i = 0; i < n_ev; ++i) {
994 choice[i] = 0;
995 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
996 cpuhw->alternatives[i]);
997 for (j = 1; j < n_alt[i]; ++j)
998 ppmu->get_constraint(cpuhw->alternatives[i][j],
999 &cpuhw->amasks[i][j],
1000 &cpuhw->avalues[i][j],
1001 event[i]->attr.config1);
1002 }
1003
1004 /* enumerate all possibilities and see if any will work */
1005 i = 0;
1006 j = -1;
1007 value = mask = nv = 0;
1008 while (i < n_ev) {
1009 if (j >= 0) {
1010 /* we're backtracking, restore context */
1011 value = svalues[i];
1012 mask = smasks[i];
1013 j = choice[i];
1014 }
1015 /*
1016 * See if any alternative k for event_id i,
1017 * where k > j, will satisfy the constraints.
1018 */
1019 while (++j < n_alt[i]) {
1020 nv = (value | cpuhw->avalues[i][j]) +
1021 (value & cpuhw->avalues[i][j] & addf);
1022 if ((((nv + tadd) ^ value) & mask) == 0 &&
1023 (((nv + tadd) ^ cpuhw->avalues[i][j])
1024 & cpuhw->amasks[i][j]) == 0)
1025 break;
1026 }
1027 if (j >= n_alt[i]) {
1028 /*
1029 * No feasible alternative, backtrack
1030 * to event_id i-1 and continue enumerating its
1031 * alternatives from where we got up to.
1032 */
1033 if (--i < 0)
1034 return -1;
1035 } else {
1036 /*
1037 * Found a feasible alternative for event_id i,
1038 * remember where we got up to with this event_id,
1039 * go on to the next event_id, and start with
1040 * the first alternative for it.
1041 */
1042 choice[i] = j;
1043 svalues[i] = value;
1044 smasks[i] = mask;
1045 value = nv;
1046 mask |= cpuhw->amasks[i][j];
1047 ++i;
1048 j = -1;
1049 }
1050 }
1051
1052 /* OK, we have a feasible combination, tell the caller the solution */
1053 for (i = 0; i < n_ev; ++i)
1054 event_id[i] = cpuhw->alternatives[i][choice[i]];
1055 return 0;
1056 }
1057
1058 /*
1059 * Check if newly-added events have consistent settings for
1060 * exclude_{user,kernel,hv} with each other and any previously
1061 * added events.
1062 */
check_excludes(struct perf_event ** ctrs,unsigned int cflags[],int n_prev,int n_new)1063 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1064 int n_prev, int n_new)
1065 {
1066 int eu = 0, ek = 0, eh = 0;
1067 int i, n, first;
1068 struct perf_event *event;
1069
1070 /*
1071 * If the PMU we're on supports per event exclude settings then we
1072 * don't need to do any of this logic. NB. This assumes no PMU has both
1073 * per event exclude and limited PMCs.
1074 */
1075 if (ppmu->flags & PPMU_ARCH_207S)
1076 return 0;
1077
1078 n = n_prev + n_new;
1079 if (n <= 1)
1080 return 0;
1081
1082 first = 1;
1083 for (i = 0; i < n; ++i) {
1084 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1085 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1086 continue;
1087 }
1088 event = ctrs[i];
1089 if (first) {
1090 eu = event->attr.exclude_user;
1091 ek = event->attr.exclude_kernel;
1092 eh = event->attr.exclude_hv;
1093 first = 0;
1094 } else if (event->attr.exclude_user != eu ||
1095 event->attr.exclude_kernel != ek ||
1096 event->attr.exclude_hv != eh) {
1097 return -EAGAIN;
1098 }
1099 }
1100
1101 if (eu || ek || eh)
1102 for (i = 0; i < n; ++i)
1103 if (cflags[i] & PPMU_LIMITED_PMC_OK)
1104 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1105
1106 return 0;
1107 }
1108
check_and_compute_delta(u64 prev,u64 val)1109 static u64 check_and_compute_delta(u64 prev, u64 val)
1110 {
1111 u64 delta = (val - prev) & 0xfffffffful;
1112
1113 /*
1114 * POWER7 can roll back counter values, if the new value is smaller
1115 * than the previous value it will cause the delta and the counter to
1116 * have bogus values unless we rolled a counter over. If a coutner is
1117 * rolled back, it will be smaller, but within 256, which is the maximum
1118 * number of events to rollback at once. If we detect a rollback
1119 * return 0. This can lead to a small lack of precision in the
1120 * counters.
1121 */
1122 if (prev > val && (prev - val) < 256)
1123 delta = 0;
1124
1125 return delta;
1126 }
1127
power_pmu_read(struct perf_event * event)1128 static void power_pmu_read(struct perf_event *event)
1129 {
1130 s64 val, delta, prev;
1131
1132 if (event->hw.state & PERF_HES_STOPPED)
1133 return;
1134
1135 if (!event->hw.idx)
1136 return;
1137
1138 if (is_ebb_event(event)) {
1139 val = read_pmc(event->hw.idx);
1140 local64_set(&event->hw.prev_count, val);
1141 return;
1142 }
1143
1144 /*
1145 * Performance monitor interrupts come even when interrupts
1146 * are soft-disabled, as long as interrupts are hard-enabled.
1147 * Therefore we treat them like NMIs.
1148 */
1149 do {
1150 prev = local64_read(&event->hw.prev_count);
1151 barrier();
1152 val = read_pmc(event->hw.idx);
1153 delta = check_and_compute_delta(prev, val);
1154 if (!delta)
1155 return;
1156 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1157
1158 local64_add(delta, &event->count);
1159
1160 /*
1161 * A number of places program the PMC with (0x80000000 - period_left).
1162 * We never want period_left to be less than 1 because we will program
1163 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1164 * roll around to 0 before taking an exception. We have seen this
1165 * on POWER8.
1166 *
1167 * To fix this, clamp the minimum value of period_left to 1.
1168 */
1169 do {
1170 prev = local64_read(&event->hw.period_left);
1171 val = prev - delta;
1172 if (val < 1)
1173 val = 1;
1174 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1175 }
1176
1177 /*
1178 * On some machines, PMC5 and PMC6 can't be written, don't respect
1179 * the freeze conditions, and don't generate interrupts. This tells
1180 * us if `event' is using such a PMC.
1181 */
is_limited_pmc(int pmcnum)1182 static int is_limited_pmc(int pmcnum)
1183 {
1184 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1185 && (pmcnum == 5 || pmcnum == 6);
1186 }
1187
freeze_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)1188 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1189 unsigned long pmc5, unsigned long pmc6)
1190 {
1191 struct perf_event *event;
1192 u64 val, prev, delta;
1193 int i;
1194
1195 for (i = 0; i < cpuhw->n_limited; ++i) {
1196 event = cpuhw->limited_counter[i];
1197 if (!event->hw.idx)
1198 continue;
1199 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1200 prev = local64_read(&event->hw.prev_count);
1201 event->hw.idx = 0;
1202 delta = check_and_compute_delta(prev, val);
1203 if (delta)
1204 local64_add(delta, &event->count);
1205 }
1206 }
1207
thaw_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)1208 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1209 unsigned long pmc5, unsigned long pmc6)
1210 {
1211 struct perf_event *event;
1212 u64 val, prev;
1213 int i;
1214
1215 for (i = 0; i < cpuhw->n_limited; ++i) {
1216 event = cpuhw->limited_counter[i];
1217 event->hw.idx = cpuhw->limited_hwidx[i];
1218 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1219 prev = local64_read(&event->hw.prev_count);
1220 if (check_and_compute_delta(prev, val))
1221 local64_set(&event->hw.prev_count, val);
1222 perf_event_update_userpage(event);
1223 }
1224 }
1225
1226 /*
1227 * Since limited events don't respect the freeze conditions, we
1228 * have to read them immediately after freezing or unfreezing the
1229 * other events. We try to keep the values from the limited
1230 * events as consistent as possible by keeping the delay (in
1231 * cycles and instructions) between freezing/unfreezing and reading
1232 * the limited events as small and consistent as possible.
1233 * Therefore, if any limited events are in use, we read them
1234 * both, and always in the same order, to minimize variability,
1235 * and do it inside the same asm that writes MMCR0.
1236 */
write_mmcr0(struct cpu_hw_events * cpuhw,unsigned long mmcr0)1237 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1238 {
1239 unsigned long pmc5, pmc6;
1240
1241 if (!cpuhw->n_limited) {
1242 mtspr(SPRN_MMCR0, mmcr0);
1243 return;
1244 }
1245
1246 /*
1247 * Write MMCR0, then read PMC5 and PMC6 immediately.
1248 * To ensure we don't get a performance monitor interrupt
1249 * between writing MMCR0 and freezing/thawing the limited
1250 * events, we first write MMCR0 with the event overflow
1251 * interrupt enable bits turned off.
1252 */
1253 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1254 : "=&r" (pmc5), "=&r" (pmc6)
1255 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1256 "i" (SPRN_MMCR0),
1257 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1258
1259 if (mmcr0 & MMCR0_FC)
1260 freeze_limited_counters(cpuhw, pmc5, pmc6);
1261 else
1262 thaw_limited_counters(cpuhw, pmc5, pmc6);
1263
1264 /*
1265 * Write the full MMCR0 including the event overflow interrupt
1266 * enable bits, if necessary.
1267 */
1268 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1269 mtspr(SPRN_MMCR0, mmcr0);
1270 }
1271
1272 /*
1273 * Disable all events to prevent PMU interrupts and to allow
1274 * events to be added or removed.
1275 */
power_pmu_disable(struct pmu * pmu)1276 static void power_pmu_disable(struct pmu *pmu)
1277 {
1278 struct cpu_hw_events *cpuhw;
1279 unsigned long flags, mmcr0, val, mmcra;
1280
1281 if (!ppmu)
1282 return;
1283 local_irq_save(flags);
1284 cpuhw = this_cpu_ptr(&cpu_hw_events);
1285
1286 if (!cpuhw->disabled) {
1287 /*
1288 * Check if we ever enabled the PMU on this cpu.
1289 */
1290 if (!cpuhw->pmcs_enabled) {
1291 ppc_enable_pmcs();
1292 cpuhw->pmcs_enabled = 1;
1293 }
1294
1295 /*
1296 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1297 * Also clear PMXE to disable PMI's getting triggered in some
1298 * corner cases during PMU disable.
1299 */
1300 val = mmcr0 = mfspr(SPRN_MMCR0);
1301 val |= MMCR0_FC;
1302 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1303 MMCR0_PMXE | MMCR0_FC56);
1304 /* Set mmcr0 PMCCEXT for p10 */
1305 if (ppmu->flags & PPMU_ARCH_31)
1306 val |= MMCR0_PMCCEXT;
1307
1308 /*
1309 * The barrier is to make sure the mtspr has been
1310 * executed and the PMU has frozen the events etc.
1311 * before we return.
1312 */
1313 write_mmcr0(cpuhw, val);
1314 mb();
1315 isync();
1316
1317 /*
1318 * Some corner cases could clear the PMU counter overflow
1319 * while a masked PMI is pending. One such case is when
1320 * a PMI happens during interrupt replay and perf counter
1321 * values are cleared by PMU callbacks before replay.
1322 *
1323 * Disable the interrupt by clearing the paca bit for PMI
1324 * since we are disabling the PMU now. Otherwise provide a
1325 * warning if there is PMI pending, but no counter is found
1326 * overflown.
1327 *
1328 * Since power_pmu_disable runs under local_irq_save, it
1329 * could happen that code hits a PMC overflow without PMI
1330 * pending in paca. Hence only clear PMI pending if it was
1331 * set.
1332 *
1333 * If a PMI is pending, then MSR[EE] must be disabled (because
1334 * the masked PMI handler disabling EE). So it is safe to
1335 * call clear_pmi_irq_pending().
1336 */
1337 if (pmi_irq_pending())
1338 clear_pmi_irq_pending();
1339
1340 val = mmcra = cpuhw->mmcr.mmcra;
1341
1342 /*
1343 * Disable instruction sampling if it was enabled
1344 */
1345 val &= ~MMCRA_SAMPLE_ENABLE;
1346
1347 /* Disable BHRB via mmcra (BHRBRD) for p10 */
1348 if (ppmu->flags & PPMU_ARCH_31)
1349 val |= MMCRA_BHRB_DISABLE;
1350
1351 /*
1352 * Write SPRN_MMCRA if mmcra has either disabled
1353 * instruction sampling or BHRB.
1354 */
1355 if (val != mmcra) {
1356 mtspr(SPRN_MMCRA, val);
1357 mb();
1358 isync();
1359 }
1360
1361 cpuhw->disabled = 1;
1362 cpuhw->n_added = 0;
1363
1364 ebb_switch_out(mmcr0);
1365
1366 #ifdef CONFIG_PPC64
1367 /*
1368 * These are readable by userspace, may contain kernel
1369 * addresses and are not switched by context switch, so clear
1370 * them now to avoid leaking anything to userspace in general
1371 * including to another process.
1372 */
1373 if (ppmu->flags & PPMU_ARCH_207S) {
1374 mtspr(SPRN_SDAR, 0);
1375 mtspr(SPRN_SIAR, 0);
1376 }
1377 #endif
1378 }
1379
1380 local_irq_restore(flags);
1381 }
1382
1383 /*
1384 * Re-enable all events if disable == 0.
1385 * If we were previously disabled and events were added, then
1386 * put the new config on the PMU.
1387 */
power_pmu_enable(struct pmu * pmu)1388 static void power_pmu_enable(struct pmu *pmu)
1389 {
1390 struct perf_event *event;
1391 struct cpu_hw_events *cpuhw;
1392 unsigned long flags;
1393 long i;
1394 unsigned long val, mmcr0;
1395 s64 left;
1396 unsigned int hwc_index[MAX_HWEVENTS];
1397 int n_lim;
1398 int idx;
1399 bool ebb;
1400
1401 if (!ppmu)
1402 return;
1403 local_irq_save(flags);
1404
1405 cpuhw = this_cpu_ptr(&cpu_hw_events);
1406 if (!cpuhw->disabled)
1407 goto out;
1408
1409 if (cpuhw->n_events == 0) {
1410 ppc_set_pmu_inuse(0);
1411 goto out;
1412 }
1413
1414 cpuhw->disabled = 0;
1415
1416 /*
1417 * EBB requires an exclusive group and all events must have the EBB
1418 * flag set, or not set, so we can just check a single event. Also we
1419 * know we have at least one event.
1420 */
1421 ebb = is_ebb_event(cpuhw->event[0]);
1422
1423 /*
1424 * If we didn't change anything, or only removed events,
1425 * no need to recalculate MMCR* settings and reset the PMCs.
1426 * Just reenable the PMU with the current MMCR* settings
1427 * (possibly updated for removal of events).
1428 */
1429 if (!cpuhw->n_added) {
1430 /*
1431 * If there is any active event with an overflown PMC
1432 * value, set back PACA_IRQ_PMI which would have been
1433 * cleared in power_pmu_disable().
1434 */
1435 hard_irq_disable();
1436 if (any_pmc_overflown(cpuhw))
1437 set_pmi_irq_pending();
1438
1439 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1440 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1441 if (ppmu->flags & PPMU_ARCH_31)
1442 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1443 goto out_enable;
1444 }
1445
1446 /*
1447 * Clear all MMCR settings and recompute them for the new set of events.
1448 */
1449 memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1450
1451 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1452 &cpuhw->mmcr, cpuhw->event, ppmu->flags)) {
1453 /* shouldn't ever get here */
1454 printk(KERN_ERR "oops compute_mmcr failed\n");
1455 goto out;
1456 }
1457
1458 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1459 /*
1460 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1461 * bits for the first event. We have already checked that all
1462 * events have the same value for these bits as the first event.
1463 */
1464 event = cpuhw->event[0];
1465 if (event->attr.exclude_user)
1466 cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1467 if (event->attr.exclude_kernel)
1468 cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1469 if (event->attr.exclude_hv)
1470 cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1471 }
1472
1473 /*
1474 * Write the new configuration to MMCR* with the freeze
1475 * bit set and set the hardware events to their initial values.
1476 * Then unfreeze the events.
1477 */
1478 ppc_set_pmu_inuse(1);
1479 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1480 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1481 mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1482 | MMCR0_FC);
1483 if (ppmu->flags & PPMU_ARCH_207S)
1484 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1485
1486 if (ppmu->flags & PPMU_ARCH_31)
1487 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1488
1489 /*
1490 * Read off any pre-existing events that need to move
1491 * to another PMC.
1492 */
1493 for (i = 0; i < cpuhw->n_events; ++i) {
1494 event = cpuhw->event[i];
1495 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1496 power_pmu_read(event);
1497 write_pmc(event->hw.idx, 0);
1498 event->hw.idx = 0;
1499 }
1500 }
1501
1502 /*
1503 * Initialize the PMCs for all the new and moved events.
1504 */
1505 cpuhw->n_limited = n_lim = 0;
1506 for (i = 0; i < cpuhw->n_events; ++i) {
1507 event = cpuhw->event[i];
1508 if (event->hw.idx)
1509 continue;
1510 idx = hwc_index[i] + 1;
1511 if (is_limited_pmc(idx)) {
1512 cpuhw->limited_counter[n_lim] = event;
1513 cpuhw->limited_hwidx[n_lim] = idx;
1514 ++n_lim;
1515 continue;
1516 }
1517
1518 if (ebb)
1519 val = local64_read(&event->hw.prev_count);
1520 else {
1521 val = 0;
1522 if (event->hw.sample_period) {
1523 left = local64_read(&event->hw.period_left);
1524 if (left < 0x80000000L)
1525 val = 0x80000000L - left;
1526 }
1527 local64_set(&event->hw.prev_count, val);
1528 }
1529
1530 event->hw.idx = idx;
1531 if (event->hw.state & PERF_HES_STOPPED)
1532 val = 0;
1533 write_pmc(idx, val);
1534
1535 perf_event_update_userpage(event);
1536 }
1537 cpuhw->n_limited = n_lim;
1538 cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1539
1540 out_enable:
1541 pmao_restore_workaround(ebb);
1542
1543 mmcr0 = ebb_switch_in(ebb, cpuhw);
1544
1545 mb();
1546 if (cpuhw->bhrb_users)
1547 ppmu->config_bhrb(cpuhw->bhrb_filter);
1548
1549 write_mmcr0(cpuhw, mmcr0);
1550
1551 /*
1552 * Enable instruction sampling if necessary
1553 */
1554 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1555 mb();
1556 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1557 }
1558
1559 out:
1560
1561 local_irq_restore(flags);
1562 }
1563
collect_events(struct perf_event * group,int max_count,struct perf_event * ctrs[],u64 * events,unsigned int * flags)1564 static int collect_events(struct perf_event *group, int max_count,
1565 struct perf_event *ctrs[], u64 *events,
1566 unsigned int *flags)
1567 {
1568 int n = 0;
1569 struct perf_event *event;
1570
1571 if (group->pmu->task_ctx_nr == perf_hw_context) {
1572 if (n >= max_count)
1573 return -1;
1574 ctrs[n] = group;
1575 flags[n] = group->hw.event_base;
1576 events[n++] = group->hw.config;
1577 }
1578 for_each_sibling_event(event, group) {
1579 if (event->pmu->task_ctx_nr == perf_hw_context &&
1580 event->state != PERF_EVENT_STATE_OFF) {
1581 if (n >= max_count)
1582 return -1;
1583 ctrs[n] = event;
1584 flags[n] = event->hw.event_base;
1585 events[n++] = event->hw.config;
1586 }
1587 }
1588 return n;
1589 }
1590
1591 /*
1592 * Add an event to the PMU.
1593 * If all events are not already frozen, then we disable and
1594 * re-enable the PMU in order to get hw_perf_enable to do the
1595 * actual work of reconfiguring the PMU.
1596 */
power_pmu_add(struct perf_event * event,int ef_flags)1597 static int power_pmu_add(struct perf_event *event, int ef_flags)
1598 {
1599 struct cpu_hw_events *cpuhw;
1600 unsigned long flags;
1601 int n0;
1602 int ret = -EAGAIN;
1603
1604 local_irq_save(flags);
1605 perf_pmu_disable(event->pmu);
1606
1607 /*
1608 * Add the event to the list (if there is room)
1609 * and check whether the total set is still feasible.
1610 */
1611 cpuhw = this_cpu_ptr(&cpu_hw_events);
1612 n0 = cpuhw->n_events;
1613 if (n0 >= ppmu->n_counter)
1614 goto out;
1615 cpuhw->event[n0] = event;
1616 cpuhw->events[n0] = event->hw.config;
1617 cpuhw->flags[n0] = event->hw.event_base;
1618
1619 /*
1620 * This event may have been disabled/stopped in record_and_restart()
1621 * because we exceeded the ->event_limit. If re-starting the event,
1622 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1623 * notification is re-enabled.
1624 */
1625 if (!(ef_flags & PERF_EF_START))
1626 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1627 else
1628 event->hw.state = 0;
1629
1630 /*
1631 * If group events scheduling transaction was started,
1632 * skip the schedulability test here, it will be performed
1633 * at commit time(->commit_txn) as a whole
1634 */
1635 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1636 goto nocheck;
1637
1638 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1639 goto out;
1640 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event))
1641 goto out;
1642 event->hw.config = cpuhw->events[n0];
1643
1644 nocheck:
1645 ebb_event_add(event);
1646
1647 ++cpuhw->n_events;
1648 ++cpuhw->n_added;
1649
1650 ret = 0;
1651 out:
1652 if (has_branch_stack(event)) {
1653 u64 bhrb_filter = -1;
1654
1655 if (ppmu->bhrb_filter_map)
1656 bhrb_filter = ppmu->bhrb_filter_map(
1657 event->attr.branch_sample_type);
1658
1659 if (bhrb_filter != -1) {
1660 cpuhw->bhrb_filter = bhrb_filter;
1661 power_pmu_bhrb_enable(event);
1662 }
1663 }
1664
1665 perf_pmu_enable(event->pmu);
1666 local_irq_restore(flags);
1667 return ret;
1668 }
1669
1670 /*
1671 * Remove an event from the PMU.
1672 */
power_pmu_del(struct perf_event * event,int ef_flags)1673 static void power_pmu_del(struct perf_event *event, int ef_flags)
1674 {
1675 struct cpu_hw_events *cpuhw;
1676 long i;
1677 unsigned long flags;
1678
1679 local_irq_save(flags);
1680 perf_pmu_disable(event->pmu);
1681
1682 power_pmu_read(event);
1683
1684 cpuhw = this_cpu_ptr(&cpu_hw_events);
1685 for (i = 0; i < cpuhw->n_events; ++i) {
1686 if (event == cpuhw->event[i]) {
1687 while (++i < cpuhw->n_events) {
1688 cpuhw->event[i-1] = cpuhw->event[i];
1689 cpuhw->events[i-1] = cpuhw->events[i];
1690 cpuhw->flags[i-1] = cpuhw->flags[i];
1691 }
1692 --cpuhw->n_events;
1693 ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1694 if (event->hw.idx) {
1695 write_pmc(event->hw.idx, 0);
1696 event->hw.idx = 0;
1697 }
1698 perf_event_update_userpage(event);
1699 break;
1700 }
1701 }
1702 for (i = 0; i < cpuhw->n_limited; ++i)
1703 if (event == cpuhw->limited_counter[i])
1704 break;
1705 if (i < cpuhw->n_limited) {
1706 while (++i < cpuhw->n_limited) {
1707 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1708 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1709 }
1710 --cpuhw->n_limited;
1711 }
1712 if (cpuhw->n_events == 0) {
1713 /* disable exceptions if no events are running */
1714 cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1715 }
1716
1717 if (has_branch_stack(event))
1718 power_pmu_bhrb_disable(event);
1719
1720 perf_pmu_enable(event->pmu);
1721 local_irq_restore(flags);
1722 }
1723
1724 /*
1725 * POWER-PMU does not support disabling individual counters, hence
1726 * program their cycle counter to their max value and ignore the interrupts.
1727 */
1728
power_pmu_start(struct perf_event * event,int ef_flags)1729 static void power_pmu_start(struct perf_event *event, int ef_flags)
1730 {
1731 unsigned long flags;
1732 s64 left;
1733 unsigned long val;
1734
1735 if (!event->hw.idx || !event->hw.sample_period)
1736 return;
1737
1738 if (!(event->hw.state & PERF_HES_STOPPED))
1739 return;
1740
1741 if (ef_flags & PERF_EF_RELOAD)
1742 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1743
1744 local_irq_save(flags);
1745 perf_pmu_disable(event->pmu);
1746
1747 event->hw.state = 0;
1748 left = local64_read(&event->hw.period_left);
1749
1750 val = 0;
1751 if (left < 0x80000000L)
1752 val = 0x80000000L - left;
1753
1754 write_pmc(event->hw.idx, val);
1755
1756 perf_event_update_userpage(event);
1757 perf_pmu_enable(event->pmu);
1758 local_irq_restore(flags);
1759 }
1760
power_pmu_stop(struct perf_event * event,int ef_flags)1761 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1762 {
1763 unsigned long flags;
1764
1765 if (!event->hw.idx || !event->hw.sample_period)
1766 return;
1767
1768 if (event->hw.state & PERF_HES_STOPPED)
1769 return;
1770
1771 local_irq_save(flags);
1772 perf_pmu_disable(event->pmu);
1773
1774 power_pmu_read(event);
1775 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1776 write_pmc(event->hw.idx, 0);
1777
1778 perf_event_update_userpage(event);
1779 perf_pmu_enable(event->pmu);
1780 local_irq_restore(flags);
1781 }
1782
1783 /*
1784 * Start group events scheduling transaction
1785 * Set the flag to make pmu::enable() not perform the
1786 * schedulability test, it will be performed at commit time
1787 *
1788 * We only support PERF_PMU_TXN_ADD transactions. Save the
1789 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1790 * transactions.
1791 */
power_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1792 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1793 {
1794 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1795
1796 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1797
1798 cpuhw->txn_flags = txn_flags;
1799 if (txn_flags & ~PERF_PMU_TXN_ADD)
1800 return;
1801
1802 perf_pmu_disable(pmu);
1803 cpuhw->n_txn_start = cpuhw->n_events;
1804 }
1805
1806 /*
1807 * Stop group events scheduling transaction
1808 * Clear the flag and pmu::enable() will perform the
1809 * schedulability test.
1810 */
power_pmu_cancel_txn(struct pmu * pmu)1811 static void power_pmu_cancel_txn(struct pmu *pmu)
1812 {
1813 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1814 unsigned int txn_flags;
1815
1816 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1817
1818 txn_flags = cpuhw->txn_flags;
1819 cpuhw->txn_flags = 0;
1820 if (txn_flags & ~PERF_PMU_TXN_ADD)
1821 return;
1822
1823 perf_pmu_enable(pmu);
1824 }
1825
1826 /*
1827 * Commit group events scheduling transaction
1828 * Perform the group schedulability test as a whole
1829 * Return 0 if success
1830 */
power_pmu_commit_txn(struct pmu * pmu)1831 static int power_pmu_commit_txn(struct pmu *pmu)
1832 {
1833 struct cpu_hw_events *cpuhw;
1834 long i, n;
1835
1836 if (!ppmu)
1837 return -EAGAIN;
1838
1839 cpuhw = this_cpu_ptr(&cpu_hw_events);
1840 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1841
1842 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1843 cpuhw->txn_flags = 0;
1844 return 0;
1845 }
1846
1847 n = cpuhw->n_events;
1848 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1849 return -EAGAIN;
1850 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event);
1851 if (i < 0)
1852 return -EAGAIN;
1853
1854 for (i = cpuhw->n_txn_start; i < n; ++i)
1855 cpuhw->event[i]->hw.config = cpuhw->events[i];
1856
1857 cpuhw->txn_flags = 0;
1858 perf_pmu_enable(pmu);
1859 return 0;
1860 }
1861
1862 /*
1863 * Return 1 if we might be able to put event on a limited PMC,
1864 * or 0 if not.
1865 * An event can only go on a limited PMC if it counts something
1866 * that a limited PMC can count, doesn't require interrupts, and
1867 * doesn't exclude any processor mode.
1868 */
can_go_on_limited_pmc(struct perf_event * event,u64 ev,unsigned int flags)1869 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1870 unsigned int flags)
1871 {
1872 int n;
1873 u64 alt[MAX_EVENT_ALTERNATIVES];
1874
1875 if (event->attr.exclude_user
1876 || event->attr.exclude_kernel
1877 || event->attr.exclude_hv
1878 || event->attr.sample_period)
1879 return 0;
1880
1881 if (ppmu->limited_pmc_event(ev))
1882 return 1;
1883
1884 /*
1885 * The requested event_id isn't on a limited PMC already;
1886 * see if any alternative code goes on a limited PMC.
1887 */
1888 if (!ppmu->get_alternatives)
1889 return 0;
1890
1891 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1892 n = ppmu->get_alternatives(ev, flags, alt);
1893
1894 return n > 0;
1895 }
1896
1897 /*
1898 * Find an alternative event_id that goes on a normal PMC, if possible,
1899 * and return the event_id code, or 0 if there is no such alternative.
1900 * (Note: event_id code 0 is "don't count" on all machines.)
1901 */
normal_pmc_alternative(u64 ev,unsigned long flags)1902 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1903 {
1904 u64 alt[MAX_EVENT_ALTERNATIVES];
1905 int n;
1906
1907 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1908 n = ppmu->get_alternatives(ev, flags, alt);
1909 if (!n)
1910 return 0;
1911 return alt[0];
1912 }
1913
1914 /* Number of perf_events counting hardware events */
1915 static atomic_t num_events;
1916 /* Used to avoid races in calling reserve/release_pmc_hardware */
1917 static DEFINE_MUTEX(pmc_reserve_mutex);
1918
1919 /*
1920 * Release the PMU if this is the last perf_event.
1921 */
hw_perf_event_destroy(struct perf_event * event)1922 static void hw_perf_event_destroy(struct perf_event *event)
1923 {
1924 if (!atomic_add_unless(&num_events, -1, 1)) {
1925 mutex_lock(&pmc_reserve_mutex);
1926 if (atomic_dec_return(&num_events) == 0)
1927 release_pmc_hardware();
1928 mutex_unlock(&pmc_reserve_mutex);
1929 }
1930 }
1931
1932 /*
1933 * Translate a generic cache event_id config to a raw event_id code.
1934 */
hw_perf_cache_event(u64 config,u64 * eventp)1935 static int hw_perf_cache_event(u64 config, u64 *eventp)
1936 {
1937 unsigned long type, op, result;
1938 u64 ev;
1939
1940 if (!ppmu->cache_events)
1941 return -EINVAL;
1942
1943 /* unpack config */
1944 type = config & 0xff;
1945 op = (config >> 8) & 0xff;
1946 result = (config >> 16) & 0xff;
1947
1948 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1949 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1950 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1951 return -EINVAL;
1952
1953 ev = (*ppmu->cache_events)[type][op][result];
1954 if (ev == 0)
1955 return -EOPNOTSUPP;
1956 if (ev == -1)
1957 return -EINVAL;
1958 *eventp = ev;
1959 return 0;
1960 }
1961
is_event_blacklisted(u64 ev)1962 static bool is_event_blacklisted(u64 ev)
1963 {
1964 int i;
1965
1966 for (i=0; i < ppmu->n_blacklist_ev; i++) {
1967 if (ppmu->blacklist_ev[i] == ev)
1968 return true;
1969 }
1970
1971 return false;
1972 }
1973
power_pmu_event_init(struct perf_event * event)1974 static int power_pmu_event_init(struct perf_event *event)
1975 {
1976 u64 ev;
1977 unsigned long flags, irq_flags;
1978 struct perf_event *ctrs[MAX_HWEVENTS];
1979 u64 events[MAX_HWEVENTS];
1980 unsigned int cflags[MAX_HWEVENTS];
1981 int n;
1982 int err;
1983 struct cpu_hw_events *cpuhw;
1984
1985 if (!ppmu)
1986 return -ENOENT;
1987
1988 if (has_branch_stack(event)) {
1989 /* PMU has BHRB enabled */
1990 if (!(ppmu->flags & PPMU_ARCH_207S))
1991 return -EOPNOTSUPP;
1992 }
1993
1994 switch (event->attr.type) {
1995 case PERF_TYPE_HARDWARE:
1996 ev = event->attr.config;
1997 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1998 return -EOPNOTSUPP;
1999
2000 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2001 return -EINVAL;
2002 ev = ppmu->generic_events[ev];
2003 break;
2004 case PERF_TYPE_HW_CACHE:
2005 err = hw_perf_cache_event(event->attr.config, &ev);
2006 if (err)
2007 return err;
2008
2009 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2010 return -EINVAL;
2011 break;
2012 case PERF_TYPE_RAW:
2013 ev = event->attr.config;
2014
2015 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2016 return -EINVAL;
2017 break;
2018 default:
2019 return -ENOENT;
2020 }
2021
2022 /*
2023 * PMU config registers have fields that are
2024 * reserved and some specific values for bit fields are reserved.
2025 * For ex., MMCRA[61:62] is Randome Sampling Mode (SM)
2026 * and value of 0b11 to this field is reserved.
2027 * Check for invalid values in attr.config.
2028 */
2029 if (ppmu->check_attr_config &&
2030 ppmu->check_attr_config(event))
2031 return -EINVAL;
2032
2033 event->hw.config_base = ev;
2034 event->hw.idx = 0;
2035
2036 /*
2037 * If we are not running on a hypervisor, force the
2038 * exclude_hv bit to 0 so that we don't care what
2039 * the user set it to.
2040 */
2041 if (!firmware_has_feature(FW_FEATURE_LPAR))
2042 event->attr.exclude_hv = 0;
2043
2044 /*
2045 * If this is a per-task event, then we can use
2046 * PM_RUN_* events interchangeably with their non RUN_*
2047 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
2048 * XXX we should check if the task is an idle task.
2049 */
2050 flags = 0;
2051 if (event->attach_state & PERF_ATTACH_TASK)
2052 flags |= PPMU_ONLY_COUNT_RUN;
2053
2054 /*
2055 * If this machine has limited events, check whether this
2056 * event_id could go on a limited event.
2057 */
2058 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
2059 if (can_go_on_limited_pmc(event, ev, flags)) {
2060 flags |= PPMU_LIMITED_PMC_OK;
2061 } else if (ppmu->limited_pmc_event(ev)) {
2062 /*
2063 * The requested event_id is on a limited PMC,
2064 * but we can't use a limited PMC; see if any
2065 * alternative goes on a normal PMC.
2066 */
2067 ev = normal_pmc_alternative(ev, flags);
2068 if (!ev)
2069 return -EINVAL;
2070 }
2071 }
2072
2073 /* Extra checks for EBB */
2074 err = ebb_event_check(event);
2075 if (err)
2076 return err;
2077
2078 /*
2079 * If this is in a group, check if it can go on with all the
2080 * other hardware events in the group. We assume the event
2081 * hasn't been linked into its leader's sibling list at this point.
2082 */
2083 n = 0;
2084 if (event->group_leader != event) {
2085 n = collect_events(event->group_leader, ppmu->n_counter - 1,
2086 ctrs, events, cflags);
2087 if (n < 0)
2088 return -EINVAL;
2089 }
2090 events[n] = ev;
2091 ctrs[n] = event;
2092 cflags[n] = flags;
2093 if (check_excludes(ctrs, cflags, n, 1))
2094 return -EINVAL;
2095
2096 local_irq_save(irq_flags);
2097 cpuhw = this_cpu_ptr(&cpu_hw_events);
2098
2099 err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs);
2100
2101 if (has_branch_stack(event)) {
2102 u64 bhrb_filter = -1;
2103
2104 if (ppmu->bhrb_filter_map)
2105 bhrb_filter = ppmu->bhrb_filter_map(
2106 event->attr.branch_sample_type);
2107
2108 if (bhrb_filter == -1) {
2109 local_irq_restore(irq_flags);
2110 return -EOPNOTSUPP;
2111 }
2112 cpuhw->bhrb_filter = bhrb_filter;
2113 }
2114
2115 local_irq_restore(irq_flags);
2116 if (err)
2117 return -EINVAL;
2118
2119 event->hw.config = events[n];
2120 event->hw.event_base = cflags[n];
2121 event->hw.last_period = event->hw.sample_period;
2122 local64_set(&event->hw.period_left, event->hw.last_period);
2123
2124 /*
2125 * For EBB events we just context switch the PMC value, we don't do any
2126 * of the sample_period logic. We use hw.prev_count for this.
2127 */
2128 if (is_ebb_event(event))
2129 local64_set(&event->hw.prev_count, 0);
2130
2131 /*
2132 * See if we need to reserve the PMU.
2133 * If no events are currently in use, then we have to take a
2134 * mutex to ensure that we don't race with another task doing
2135 * reserve_pmc_hardware or release_pmc_hardware.
2136 */
2137 err = 0;
2138 if (!atomic_inc_not_zero(&num_events)) {
2139 mutex_lock(&pmc_reserve_mutex);
2140 if (atomic_read(&num_events) == 0 &&
2141 reserve_pmc_hardware(perf_event_interrupt))
2142 err = -EBUSY;
2143 else
2144 atomic_inc(&num_events);
2145 mutex_unlock(&pmc_reserve_mutex);
2146 }
2147 event->destroy = hw_perf_event_destroy;
2148
2149 return err;
2150 }
2151
power_pmu_event_idx(struct perf_event * event)2152 static int power_pmu_event_idx(struct perf_event *event)
2153 {
2154 return event->hw.idx;
2155 }
2156
power_events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)2157 ssize_t power_events_sysfs_show(struct device *dev,
2158 struct device_attribute *attr, char *page)
2159 {
2160 struct perf_pmu_events_attr *pmu_attr;
2161
2162 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2163
2164 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2165 }
2166
2167 static struct pmu power_pmu = {
2168 .pmu_enable = power_pmu_enable,
2169 .pmu_disable = power_pmu_disable,
2170 .event_init = power_pmu_event_init,
2171 .add = power_pmu_add,
2172 .del = power_pmu_del,
2173 .start = power_pmu_start,
2174 .stop = power_pmu_stop,
2175 .read = power_pmu_read,
2176 .start_txn = power_pmu_start_txn,
2177 .cancel_txn = power_pmu_cancel_txn,
2178 .commit_txn = power_pmu_commit_txn,
2179 .event_idx = power_pmu_event_idx,
2180 .sched_task = power_pmu_sched_task,
2181 };
2182
2183 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \
2184 PERF_SAMPLE_PHYS_ADDR | \
2185 PERF_SAMPLE_DATA_PAGE_SIZE)
2186 /*
2187 * A counter has overflowed; update its count and record
2188 * things if requested. Note that interrupts are hard-disabled
2189 * here so there is no possibility of being interrupted.
2190 */
record_and_restart(struct perf_event * event,unsigned long val,struct pt_regs * regs)2191 static void record_and_restart(struct perf_event *event, unsigned long val,
2192 struct pt_regs *regs)
2193 {
2194 u64 period = event->hw.sample_period;
2195 s64 prev, delta, left;
2196 int record = 0;
2197
2198 if (event->hw.state & PERF_HES_STOPPED) {
2199 write_pmc(event->hw.idx, 0);
2200 return;
2201 }
2202
2203 /* we don't have to worry about interrupts here */
2204 prev = local64_read(&event->hw.prev_count);
2205 delta = check_and_compute_delta(prev, val);
2206 local64_add(delta, &event->count);
2207
2208 /*
2209 * See if the total period for this event has expired,
2210 * and update for the next period.
2211 */
2212 val = 0;
2213 left = local64_read(&event->hw.period_left) - delta;
2214 if (delta == 0)
2215 left++;
2216 if (period) {
2217 if (left <= 0) {
2218 left += period;
2219 if (left <= 0)
2220 left = period;
2221
2222 /*
2223 * If address is not requested in the sample via
2224 * PERF_SAMPLE_IP, just record that sample irrespective
2225 * of SIAR valid check.
2226 */
2227 if (event->attr.sample_type & PERF_SAMPLE_IP)
2228 record = siar_valid(regs);
2229 else
2230 record = 1;
2231
2232 event->hw.last_period = event->hw.sample_period;
2233 }
2234 if (left < 0x80000000LL)
2235 val = 0x80000000LL - left;
2236 }
2237
2238 write_pmc(event->hw.idx, val);
2239 local64_set(&event->hw.prev_count, val);
2240 local64_set(&event->hw.period_left, left);
2241 perf_event_update_userpage(event);
2242
2243 /*
2244 * Due to hardware limitation, sometimes SIAR could sample a kernel
2245 * address even when freeze on supervisor state (kernel) is set in
2246 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2247 * these cases.
2248 */
2249 if (event->attr.exclude_kernel &&
2250 (event->attr.sample_type & PERF_SAMPLE_IP) &&
2251 is_kernel_addr(mfspr(SPRN_SIAR)))
2252 record = 0;
2253
2254 /*
2255 * Finally record data if requested.
2256 */
2257 if (record) {
2258 struct perf_sample_data data;
2259
2260 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2261
2262 if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE)
2263 perf_get_data_addr(event, regs, &data.addr);
2264
2265 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2266 struct cpu_hw_events *cpuhw;
2267 cpuhw = this_cpu_ptr(&cpu_hw_events);
2268 power_pmu_bhrb_read(event, cpuhw);
2269 data.br_stack = &cpuhw->bhrb_stack;
2270 }
2271
2272 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2273 ppmu->get_mem_data_src)
2274 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2275
2276 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE &&
2277 ppmu->get_mem_weight)
2278 ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type);
2279
2280 if (perf_event_overflow(event, &data, regs))
2281 power_pmu_stop(event, 0);
2282 } else if (period) {
2283 /* Account for interrupt in case of invalid SIAR */
2284 if (perf_event_account_interrupt(event))
2285 power_pmu_stop(event, 0);
2286 }
2287 }
2288
2289 /*
2290 * Called from generic code to get the misc flags (i.e. processor mode)
2291 * for an event_id.
2292 */
perf_misc_flags(struct pt_regs * regs)2293 unsigned long perf_misc_flags(struct pt_regs *regs)
2294 {
2295 u32 flags = perf_get_misc_flags(regs);
2296
2297 if (flags)
2298 return flags;
2299 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2300 PERF_RECORD_MISC_KERNEL;
2301 }
2302
2303 /*
2304 * Called from generic code to get the instruction pointer
2305 * for an event_id.
2306 */
perf_instruction_pointer(struct pt_regs * regs)2307 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2308 {
2309 unsigned long siar = mfspr(SPRN_SIAR);
2310
2311 if (regs_use_siar(regs) && siar_valid(regs) && siar)
2312 return siar + perf_ip_adjust(regs);
2313 else
2314 return regs->nip;
2315 }
2316
pmc_overflow_power7(unsigned long val)2317 static bool pmc_overflow_power7(unsigned long val)
2318 {
2319 /*
2320 * Events on POWER7 can roll back if a speculative event doesn't
2321 * eventually complete. Unfortunately in some rare cases they will
2322 * raise a performance monitor exception. We need to catch this to
2323 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2324 * cycles from overflow.
2325 *
2326 * We only do this if the first pass fails to find any overflowing
2327 * PMCs because a user might set a period of less than 256 and we
2328 * don't want to mistakenly reset them.
2329 */
2330 if ((0x80000000 - val) <= 256)
2331 return true;
2332
2333 return false;
2334 }
2335
pmc_overflow(unsigned long val)2336 static bool pmc_overflow(unsigned long val)
2337 {
2338 if ((int)val < 0)
2339 return true;
2340
2341 return false;
2342 }
2343
2344 /*
2345 * Performance monitor interrupt stuff
2346 */
__perf_event_interrupt(struct pt_regs * regs)2347 static void __perf_event_interrupt(struct pt_regs *regs)
2348 {
2349 int i, j;
2350 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2351 struct perf_event *event;
2352 int found, active;
2353
2354 if (cpuhw->n_limited)
2355 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2356 mfspr(SPRN_PMC6));
2357
2358 perf_read_regs(regs);
2359
2360 /* Read all the PMCs since we'll need them a bunch of times */
2361 for (i = 0; i < ppmu->n_counter; ++i)
2362 cpuhw->pmcs[i] = read_pmc(i + 1);
2363
2364 /* Try to find what caused the IRQ */
2365 found = 0;
2366 for (i = 0; i < ppmu->n_counter; ++i) {
2367 if (!pmc_overflow(cpuhw->pmcs[i]))
2368 continue;
2369 if (is_limited_pmc(i + 1))
2370 continue; /* these won't generate IRQs */
2371 /*
2372 * We've found one that's overflowed. For active
2373 * counters we need to log this. For inactive
2374 * counters, we need to reset it anyway
2375 */
2376 found = 1;
2377 active = 0;
2378 for (j = 0; j < cpuhw->n_events; ++j) {
2379 event = cpuhw->event[j];
2380 if (event->hw.idx == (i + 1)) {
2381 active = 1;
2382 record_and_restart(event, cpuhw->pmcs[i], regs);
2383 break;
2384 }
2385 }
2386
2387 /*
2388 * Clear PACA_IRQ_PMI in case it was set by
2389 * set_pmi_irq_pending() when PMU was enabled
2390 * after accounting for interrupts.
2391 */
2392 clear_pmi_irq_pending();
2393
2394 if (!active)
2395 /* reset non active counters that have overflowed */
2396 write_pmc(i + 1, 0);
2397 }
2398 if (!found && pvr_version_is(PVR_POWER7)) {
2399 /* check active counters for special buggy p7 overflow */
2400 for (i = 0; i < cpuhw->n_events; ++i) {
2401 event = cpuhw->event[i];
2402 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2403 continue;
2404 if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) {
2405 /* event has overflowed in a buggy way*/
2406 found = 1;
2407 record_and_restart(event,
2408 cpuhw->pmcs[event->hw.idx - 1],
2409 regs);
2410 }
2411 }
2412 }
2413
2414 /*
2415 * During system wide profling or while specific CPU is monitored for an
2416 * event, some corner cases could cause PMC to overflow in idle path. This
2417 * will trigger a PMI after waking up from idle. Since counter values are _not_
2418 * saved/restored in idle path, can lead to below "Can't find PMC" message.
2419 */
2420 if (unlikely(!found) && !arch_irq_disabled_regs(regs))
2421 printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n");
2422
2423 /*
2424 * Reset MMCR0 to its normal value. This will set PMXE and
2425 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2426 * and thus allow interrupts to occur again.
2427 * XXX might want to use MSR.PM to keep the events frozen until
2428 * we get back out of this interrupt.
2429 */
2430 write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2431
2432 /* Clear the cpuhw->pmcs */
2433 memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs));
2434
2435 }
2436
perf_event_interrupt(struct pt_regs * regs)2437 static void perf_event_interrupt(struct pt_regs *regs)
2438 {
2439 u64 start_clock = sched_clock();
2440
2441 __perf_event_interrupt(regs);
2442 perf_sample_event_took(sched_clock() - start_clock);
2443 }
2444
power_pmu_prepare_cpu(unsigned int cpu)2445 static int power_pmu_prepare_cpu(unsigned int cpu)
2446 {
2447 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2448
2449 if (ppmu) {
2450 memset(cpuhw, 0, sizeof(*cpuhw));
2451 cpuhw->mmcr.mmcr0 = MMCR0_FC;
2452 }
2453 return 0;
2454 }
2455
register_power_pmu(struct power_pmu * pmu)2456 int register_power_pmu(struct power_pmu *pmu)
2457 {
2458 if (ppmu)
2459 return -EBUSY; /* something's already registered */
2460
2461 ppmu = pmu;
2462 pr_info("%s performance monitor hardware support registered\n",
2463 pmu->name);
2464
2465 power_pmu.attr_groups = ppmu->attr_groups;
2466 power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2467
2468 #ifdef MSR_HV
2469 /*
2470 * Use FCHV to ignore kernel events if MSR.HV is set.
2471 */
2472 if (mfmsr() & MSR_HV)
2473 freeze_events_kernel = MMCR0_FCHV;
2474 #endif /* CONFIG_PPC64 */
2475
2476 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2477 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2478 power_pmu_prepare_cpu, NULL);
2479 return 0;
2480 }
2481
2482 #ifdef CONFIG_PPC64
init_ppc64_pmu(void)2483 static int __init init_ppc64_pmu(void)
2484 {
2485 /* run through all the pmu drivers one at a time */
2486 if (!init_power5_pmu())
2487 return 0;
2488 else if (!init_power5p_pmu())
2489 return 0;
2490 else if (!init_power6_pmu())
2491 return 0;
2492 else if (!init_power7_pmu())
2493 return 0;
2494 else if (!init_power8_pmu())
2495 return 0;
2496 else if (!init_power9_pmu())
2497 return 0;
2498 else if (!init_power10_pmu())
2499 return 0;
2500 else if (!init_ppc970_pmu())
2501 return 0;
2502 else
2503 return init_generic_compat_pmu();
2504 }
2505 early_initcall(init_ppc64_pmu);
2506 #endif
2507