• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51 
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85 
86 #include <uapi/linux/io_uring.h>
87 
88 #include "../fs/internal.h"
89 #include "io-wq.h"
90 
91 #define IORING_MAX_ENTRIES	32768
92 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94 
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES	(1U << 15)
97 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
98 				 IORING_REGISTER_LAST + IORING_OP_LAST)
99 
100 #define IO_RSRC_TAG_TABLE_SHIFT	(PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX	(1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK	(IO_RSRC_TAG_TABLE_MAX - 1)
103 
104 #define IORING_MAX_REG_BUFFERS	(1U << 14)
105 
106 #define SQE_VALID_FLAGS	(IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK|	\
107 				IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 				IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111 
112 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
113 
114 struct io_uring {
115 	u32 head ____cacheline_aligned_in_smp;
116 	u32 tail ____cacheline_aligned_in_smp;
117 };
118 
119 /*
120  * This data is shared with the application through the mmap at offsets
121  * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122  *
123  * The offsets to the member fields are published through struct
124  * io_sqring_offsets when calling io_uring_setup.
125  */
126 struct io_rings {
127 	/*
128 	 * Head and tail offsets into the ring; the offsets need to be
129 	 * masked to get valid indices.
130 	 *
131 	 * The kernel controls head of the sq ring and the tail of the cq ring,
132 	 * and the application controls tail of the sq ring and the head of the
133 	 * cq ring.
134 	 */
135 	struct io_uring		sq, cq;
136 	/*
137 	 * Bitmasks to apply to head and tail offsets (constant, equals
138 	 * ring_entries - 1)
139 	 */
140 	u32			sq_ring_mask, cq_ring_mask;
141 	/* Ring sizes (constant, power of 2) */
142 	u32			sq_ring_entries, cq_ring_entries;
143 	/*
144 	 * Number of invalid entries dropped by the kernel due to
145 	 * invalid index stored in array
146 	 *
147 	 * Written by the kernel, shouldn't be modified by the
148 	 * application (i.e. get number of "new events" by comparing to
149 	 * cached value).
150 	 *
151 	 * After a new SQ head value was read by the application this
152 	 * counter includes all submissions that were dropped reaching
153 	 * the new SQ head (and possibly more).
154 	 */
155 	u32			sq_dropped;
156 	/*
157 	 * Runtime SQ flags
158 	 *
159 	 * Written by the kernel, shouldn't be modified by the
160 	 * application.
161 	 *
162 	 * The application needs a full memory barrier before checking
163 	 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 	 */
165 	u32			sq_flags;
166 	/*
167 	 * Runtime CQ flags
168 	 *
169 	 * Written by the application, shouldn't be modified by the
170 	 * kernel.
171 	 */
172 	u32			cq_flags;
173 	/*
174 	 * Number of completion events lost because the queue was full;
175 	 * this should be avoided by the application by making sure
176 	 * there are not more requests pending than there is space in
177 	 * the completion queue.
178 	 *
179 	 * Written by the kernel, shouldn't be modified by the
180 	 * application (i.e. get number of "new events" by comparing to
181 	 * cached value).
182 	 *
183 	 * As completion events come in out of order this counter is not
184 	 * ordered with any other data.
185 	 */
186 	u32			cq_overflow;
187 	/*
188 	 * Ring buffer of completion events.
189 	 *
190 	 * The kernel writes completion events fresh every time they are
191 	 * produced, so the application is allowed to modify pending
192 	 * entries.
193 	 */
194 	struct io_uring_cqe	cqes[] ____cacheline_aligned_in_smp;
195 };
196 
197 enum io_uring_cmd_flags {
198 	IO_URING_F_NONBLOCK		= 1,
199 	IO_URING_F_COMPLETE_DEFER	= 2,
200 };
201 
202 struct io_mapped_ubuf {
203 	u64		ubuf;
204 	u64		ubuf_end;
205 	unsigned int	nr_bvecs;
206 	unsigned long	acct_pages;
207 	struct bio_vec	bvec[];
208 };
209 
210 struct io_ring_ctx;
211 
212 struct io_overflow_cqe {
213 	struct io_uring_cqe cqe;
214 	struct list_head list;
215 };
216 
217 struct io_fixed_file {
218 	/* file * with additional FFS_* flags */
219 	unsigned long file_ptr;
220 };
221 
222 struct io_rsrc_put {
223 	struct list_head list;
224 	u64 tag;
225 	union {
226 		void *rsrc;
227 		struct file *file;
228 		struct io_mapped_ubuf *buf;
229 	};
230 };
231 
232 struct io_file_table {
233 	struct io_fixed_file *files;
234 };
235 
236 struct io_rsrc_node {
237 	struct percpu_ref		refs;
238 	struct list_head		node;
239 	struct list_head		rsrc_list;
240 	struct io_rsrc_data		*rsrc_data;
241 	struct llist_node		llist;
242 	bool				done;
243 };
244 
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246 
247 struct io_rsrc_data {
248 	struct io_ring_ctx		*ctx;
249 
250 	u64				**tags;
251 	unsigned int			nr;
252 	rsrc_put_fn			*do_put;
253 	atomic_t			refs;
254 	struct completion		done;
255 	bool				quiesce;
256 };
257 
258 struct io_buffer {
259 	struct list_head list;
260 	__u64 addr;
261 	__u32 len;
262 	__u16 bid;
263 };
264 
265 struct io_restriction {
266 	DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 	DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 	u8 sqe_flags_allowed;
269 	u8 sqe_flags_required;
270 	bool registered;
271 };
272 
273 enum {
274 	IO_SQ_THREAD_SHOULD_STOP = 0,
275 	IO_SQ_THREAD_SHOULD_PARK,
276 };
277 
278 struct io_sq_data {
279 	refcount_t		refs;
280 	atomic_t		park_pending;
281 	struct mutex		lock;
282 
283 	/* ctx's that are using this sqd */
284 	struct list_head	ctx_list;
285 
286 	struct task_struct	*thread;
287 	struct wait_queue_head	wait;
288 
289 	unsigned		sq_thread_idle;
290 	int			sq_cpu;
291 	pid_t			task_pid;
292 	pid_t			task_tgid;
293 
294 	unsigned long		state;
295 	struct completion	exited;
296 };
297 
298 #define IO_COMPL_BATCH			32
299 #define IO_REQ_CACHE_SIZE		32
300 #define IO_REQ_ALLOC_BATCH		8
301 
302 struct io_submit_link {
303 	struct io_kiocb		*head;
304 	struct io_kiocb		*last;
305 };
306 
307 struct io_submit_state {
308 	struct blk_plug		plug;
309 	struct io_submit_link	link;
310 
311 	/*
312 	 * io_kiocb alloc cache
313 	 */
314 	void			*reqs[IO_REQ_CACHE_SIZE];
315 	unsigned int		free_reqs;
316 
317 	bool			plug_started;
318 
319 	/*
320 	 * Batch completion logic
321 	 */
322 	struct io_kiocb		*compl_reqs[IO_COMPL_BATCH];
323 	unsigned int		compl_nr;
324 	/* inline/task_work completion list, under ->uring_lock */
325 	struct list_head	free_list;
326 
327 	unsigned int		ios_left;
328 };
329 
330 struct io_ring_ctx {
331 	/* const or read-mostly hot data */
332 	struct {
333 		struct percpu_ref	refs;
334 
335 		struct io_rings		*rings;
336 		unsigned int		flags;
337 		unsigned int		compat: 1;
338 		unsigned int		drain_next: 1;
339 		unsigned int		eventfd_async: 1;
340 		unsigned int		restricted: 1;
341 		unsigned int		off_timeout_used: 1;
342 		unsigned int		drain_active: 1;
343 	} ____cacheline_aligned_in_smp;
344 
345 	/* submission data */
346 	struct {
347 		struct mutex		uring_lock;
348 
349 		/*
350 		 * Ring buffer of indices into array of io_uring_sqe, which is
351 		 * mmapped by the application using the IORING_OFF_SQES offset.
352 		 *
353 		 * This indirection could e.g. be used to assign fixed
354 		 * io_uring_sqe entries to operations and only submit them to
355 		 * the queue when needed.
356 		 *
357 		 * The kernel modifies neither the indices array nor the entries
358 		 * array.
359 		 */
360 		u32			*sq_array;
361 		struct io_uring_sqe	*sq_sqes;
362 		unsigned		cached_sq_head;
363 		unsigned		sq_entries;
364 		struct list_head	defer_list;
365 
366 		/*
367 		 * Fixed resources fast path, should be accessed only under
368 		 * uring_lock, and updated through io_uring_register(2)
369 		 */
370 		struct io_rsrc_node	*rsrc_node;
371 		struct io_file_table	file_table;
372 		unsigned		nr_user_files;
373 		unsigned		nr_user_bufs;
374 		struct io_mapped_ubuf	**user_bufs;
375 
376 		struct io_submit_state	submit_state;
377 		struct list_head	timeout_list;
378 		struct list_head	ltimeout_list;
379 		struct list_head	cq_overflow_list;
380 		struct xarray		io_buffers;
381 		struct xarray		personalities;
382 		u32			pers_next;
383 		unsigned		sq_thread_idle;
384 	} ____cacheline_aligned_in_smp;
385 
386 	/* IRQ completion list, under ->completion_lock */
387 	struct list_head	locked_free_list;
388 	unsigned int		locked_free_nr;
389 
390 	const struct cred	*sq_creds;	/* cred used for __io_sq_thread() */
391 	struct io_sq_data	*sq_data;	/* if using sq thread polling */
392 
393 	struct wait_queue_head	sqo_sq_wait;
394 	struct list_head	sqd_list;
395 
396 	unsigned long		check_cq_overflow;
397 
398 	struct {
399 		unsigned		cached_cq_tail;
400 		unsigned		cq_entries;
401 		struct eventfd_ctx	*cq_ev_fd;
402 		struct wait_queue_head	poll_wait;
403 		struct wait_queue_head	cq_wait;
404 		unsigned		cq_extra;
405 		atomic_t		cq_timeouts;
406 		unsigned		cq_last_tm_flush;
407 	} ____cacheline_aligned_in_smp;
408 
409 	struct {
410 		spinlock_t		completion_lock;
411 
412 		spinlock_t		timeout_lock;
413 
414 		/*
415 		 * ->iopoll_list is protected by the ctx->uring_lock for
416 		 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 		 * For SQPOLL, only the single threaded io_sq_thread() will
418 		 * manipulate the list, hence no extra locking is needed there.
419 		 */
420 		struct list_head	iopoll_list;
421 		struct hlist_head	*cancel_hash;
422 		unsigned		cancel_hash_bits;
423 		bool			poll_multi_queue;
424 	} ____cacheline_aligned_in_smp;
425 
426 	struct io_restriction		restrictions;
427 
428 	/* slow path rsrc auxilary data, used by update/register */
429 	struct {
430 		struct io_rsrc_node		*rsrc_backup_node;
431 		struct io_mapped_ubuf		*dummy_ubuf;
432 		struct io_rsrc_data		*file_data;
433 		struct io_rsrc_data		*buf_data;
434 
435 		struct delayed_work		rsrc_put_work;
436 		struct llist_head		rsrc_put_llist;
437 		struct list_head		rsrc_ref_list;
438 		spinlock_t			rsrc_ref_lock;
439 	};
440 
441 	/* Keep this last, we don't need it for the fast path */
442 	struct {
443 		#if defined(CONFIG_UNIX)
444 			struct socket		*ring_sock;
445 		#endif
446 		/* hashed buffered write serialization */
447 		struct io_wq_hash		*hash_map;
448 
449 		/* Only used for accounting purposes */
450 		struct user_struct		*user;
451 		struct mm_struct		*mm_account;
452 
453 		/* ctx exit and cancelation */
454 		struct llist_head		fallback_llist;
455 		struct delayed_work		fallback_work;
456 		struct work_struct		exit_work;
457 		struct list_head		tctx_list;
458 		struct completion		ref_comp;
459 		u32				iowq_limits[2];
460 		bool				iowq_limits_set;
461 	};
462 };
463 
464 struct io_uring_task {
465 	/* submission side */
466 	int			cached_refs;
467 	struct xarray		xa;
468 	struct wait_queue_head	wait;
469 	const struct io_ring_ctx *last;
470 	struct io_wq		*io_wq;
471 	struct percpu_counter	inflight;
472 	atomic_t		inflight_tracked;
473 	atomic_t		in_idle;
474 
475 	spinlock_t		task_lock;
476 	struct io_wq_work_list	task_list;
477 	struct callback_head	task_work;
478 	bool			task_running;
479 };
480 
481 /*
482  * First field must be the file pointer in all the
483  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484  */
485 struct io_poll_iocb {
486 	struct file			*file;
487 	struct wait_queue_head		*head;
488 	__poll_t			events;
489 	int				retries;
490 	struct wait_queue_entry		wait;
491 };
492 
493 struct io_poll_update {
494 	struct file			*file;
495 	u64				old_user_data;
496 	u64				new_user_data;
497 	__poll_t			events;
498 	bool				update_events;
499 	bool				update_user_data;
500 };
501 
502 struct io_close {
503 	struct file			*file;
504 	int				fd;
505 	u32				file_slot;
506 };
507 
508 struct io_timeout_data {
509 	struct io_kiocb			*req;
510 	struct hrtimer			timer;
511 	struct timespec64		ts;
512 	enum hrtimer_mode		mode;
513 	u32				flags;
514 };
515 
516 struct io_accept {
517 	struct file			*file;
518 	struct sockaddr __user		*addr;
519 	int __user			*addr_len;
520 	int				flags;
521 	u32				file_slot;
522 	unsigned long			nofile;
523 };
524 
525 struct io_sync {
526 	struct file			*file;
527 	loff_t				len;
528 	loff_t				off;
529 	int				flags;
530 	int				mode;
531 };
532 
533 struct io_cancel {
534 	struct file			*file;
535 	u64				addr;
536 };
537 
538 struct io_timeout {
539 	struct file			*file;
540 	u32				off;
541 	u32				target_seq;
542 	struct list_head		list;
543 	/* head of the link, used by linked timeouts only */
544 	struct io_kiocb			*head;
545 	/* for linked completions */
546 	struct io_kiocb			*prev;
547 };
548 
549 struct io_timeout_rem {
550 	struct file			*file;
551 	u64				addr;
552 
553 	/* timeout update */
554 	struct timespec64		ts;
555 	u32				flags;
556 	bool				ltimeout;
557 };
558 
559 struct io_rw {
560 	/* NOTE: kiocb has the file as the first member, so don't do it here */
561 	struct kiocb			kiocb;
562 	u64				addr;
563 	u64				len;
564 };
565 
566 struct io_connect {
567 	struct file			*file;
568 	struct sockaddr __user		*addr;
569 	int				addr_len;
570 };
571 
572 struct io_sr_msg {
573 	struct file			*file;
574 	union {
575 		struct compat_msghdr __user	*umsg_compat;
576 		struct user_msghdr __user	*umsg;
577 		void __user			*buf;
578 	};
579 	int				msg_flags;
580 	int				bgid;
581 	size_t				len;
582 	size_t				done_io;
583 	struct io_buffer		*kbuf;
584 	void __user			*msg_control;
585 };
586 
587 struct io_open {
588 	struct file			*file;
589 	int				dfd;
590 	u32				file_slot;
591 	struct filename			*filename;
592 	struct open_how			how;
593 	unsigned long			nofile;
594 };
595 
596 struct io_rsrc_update {
597 	struct file			*file;
598 	u64				arg;
599 	u32				nr_args;
600 	u32				offset;
601 };
602 
603 struct io_fadvise {
604 	struct file			*file;
605 	u64				offset;
606 	u32				len;
607 	u32				advice;
608 };
609 
610 struct io_madvise {
611 	struct file			*file;
612 	u64				addr;
613 	u32				len;
614 	u32				advice;
615 };
616 
617 struct io_epoll {
618 	struct file			*file;
619 	int				epfd;
620 	int				op;
621 	int				fd;
622 	struct epoll_event		event;
623 };
624 
625 struct io_splice {
626 	struct file			*file_out;
627 	loff_t				off_out;
628 	loff_t				off_in;
629 	u64				len;
630 	int				splice_fd_in;
631 	unsigned int			flags;
632 };
633 
634 struct io_provide_buf {
635 	struct file			*file;
636 	__u64				addr;
637 	__u32				len;
638 	__u32				bgid;
639 	__u16				nbufs;
640 	__u16				bid;
641 };
642 
643 struct io_statx {
644 	struct file			*file;
645 	int				dfd;
646 	unsigned int			mask;
647 	unsigned int			flags;
648 	const char __user		*filename;
649 	struct statx __user		*buffer;
650 };
651 
652 struct io_shutdown {
653 	struct file			*file;
654 	int				how;
655 };
656 
657 struct io_rename {
658 	struct file			*file;
659 	int				old_dfd;
660 	int				new_dfd;
661 	struct filename			*oldpath;
662 	struct filename			*newpath;
663 	int				flags;
664 };
665 
666 struct io_unlink {
667 	struct file			*file;
668 	int				dfd;
669 	int				flags;
670 	struct filename			*filename;
671 };
672 
673 struct io_mkdir {
674 	struct file			*file;
675 	int				dfd;
676 	umode_t				mode;
677 	struct filename			*filename;
678 };
679 
680 struct io_symlink {
681 	struct file			*file;
682 	int				new_dfd;
683 	struct filename			*oldpath;
684 	struct filename			*newpath;
685 };
686 
687 struct io_hardlink {
688 	struct file			*file;
689 	int				old_dfd;
690 	int				new_dfd;
691 	struct filename			*oldpath;
692 	struct filename			*newpath;
693 	int				flags;
694 };
695 
696 struct io_completion {
697 	struct file			*file;
698 	u32				cflags;
699 };
700 
701 struct io_async_connect {
702 	struct sockaddr_storage		address;
703 };
704 
705 struct io_async_msghdr {
706 	struct iovec			fast_iov[UIO_FASTIOV];
707 	/* points to an allocated iov, if NULL we use fast_iov instead */
708 	struct iovec			*free_iov;
709 	struct sockaddr __user		*uaddr;
710 	struct msghdr			msg;
711 	struct sockaddr_storage		addr;
712 };
713 
714 struct io_async_rw {
715 	struct iovec			fast_iov[UIO_FASTIOV];
716 	const struct iovec		*free_iovec;
717 	struct iov_iter			iter;
718 	struct iov_iter_state		iter_state;
719 	size_t				bytes_done;
720 	struct wait_page_queue		wpq;
721 };
722 
723 enum {
724 	REQ_F_FIXED_FILE_BIT	= IOSQE_FIXED_FILE_BIT,
725 	REQ_F_IO_DRAIN_BIT	= IOSQE_IO_DRAIN_BIT,
726 	REQ_F_LINK_BIT		= IOSQE_IO_LINK_BIT,
727 	REQ_F_HARDLINK_BIT	= IOSQE_IO_HARDLINK_BIT,
728 	REQ_F_FORCE_ASYNC_BIT	= IOSQE_ASYNC_BIT,
729 	REQ_F_BUFFER_SELECT_BIT	= IOSQE_BUFFER_SELECT_BIT,
730 
731 	/* first byte is taken by user flags, shift it to not overlap */
732 	REQ_F_FAIL_BIT		= 8,
733 	REQ_F_INFLIGHT_BIT,
734 	REQ_F_CUR_POS_BIT,
735 	REQ_F_NOWAIT_BIT,
736 	REQ_F_LINK_TIMEOUT_BIT,
737 	REQ_F_NEED_CLEANUP_BIT,
738 	REQ_F_POLLED_BIT,
739 	REQ_F_BUFFER_SELECTED_BIT,
740 	REQ_F_COMPLETE_INLINE_BIT,
741 	REQ_F_REISSUE_BIT,
742 	REQ_F_CREDS_BIT,
743 	REQ_F_REFCOUNT_BIT,
744 	REQ_F_ARM_LTIMEOUT_BIT,
745 	REQ_F_PARTIAL_IO_BIT,
746 	/* keep async read/write and isreg together and in order */
747 	REQ_F_NOWAIT_READ_BIT,
748 	REQ_F_NOWAIT_WRITE_BIT,
749 	REQ_F_ISREG_BIT,
750 
751 	/* not a real bit, just to check we're not overflowing the space */
752 	__REQ_F_LAST_BIT,
753 };
754 
755 enum {
756 	/* ctx owns file */
757 	REQ_F_FIXED_FILE	= BIT(REQ_F_FIXED_FILE_BIT),
758 	/* drain existing IO first */
759 	REQ_F_IO_DRAIN		= BIT(REQ_F_IO_DRAIN_BIT),
760 	/* linked sqes */
761 	REQ_F_LINK		= BIT(REQ_F_LINK_BIT),
762 	/* doesn't sever on completion < 0 */
763 	REQ_F_HARDLINK		= BIT(REQ_F_HARDLINK_BIT),
764 	/* IOSQE_ASYNC */
765 	REQ_F_FORCE_ASYNC	= BIT(REQ_F_FORCE_ASYNC_BIT),
766 	/* IOSQE_BUFFER_SELECT */
767 	REQ_F_BUFFER_SELECT	= BIT(REQ_F_BUFFER_SELECT_BIT),
768 
769 	/* fail rest of links */
770 	REQ_F_FAIL		= BIT(REQ_F_FAIL_BIT),
771 	/* on inflight list, should be cancelled and waited on exit reliably */
772 	REQ_F_INFLIGHT		= BIT(REQ_F_INFLIGHT_BIT),
773 	/* read/write uses file position */
774 	REQ_F_CUR_POS		= BIT(REQ_F_CUR_POS_BIT),
775 	/* must not punt to workers */
776 	REQ_F_NOWAIT		= BIT(REQ_F_NOWAIT_BIT),
777 	/* has or had linked timeout */
778 	REQ_F_LINK_TIMEOUT	= BIT(REQ_F_LINK_TIMEOUT_BIT),
779 	/* needs cleanup */
780 	REQ_F_NEED_CLEANUP	= BIT(REQ_F_NEED_CLEANUP_BIT),
781 	/* already went through poll handler */
782 	REQ_F_POLLED		= BIT(REQ_F_POLLED_BIT),
783 	/* buffer already selected */
784 	REQ_F_BUFFER_SELECTED	= BIT(REQ_F_BUFFER_SELECTED_BIT),
785 	/* completion is deferred through io_comp_state */
786 	REQ_F_COMPLETE_INLINE	= BIT(REQ_F_COMPLETE_INLINE_BIT),
787 	/* caller should reissue async */
788 	REQ_F_REISSUE		= BIT(REQ_F_REISSUE_BIT),
789 	/* supports async reads */
790 	REQ_F_NOWAIT_READ	= BIT(REQ_F_NOWAIT_READ_BIT),
791 	/* supports async writes */
792 	REQ_F_NOWAIT_WRITE	= BIT(REQ_F_NOWAIT_WRITE_BIT),
793 	/* regular file */
794 	REQ_F_ISREG		= BIT(REQ_F_ISREG_BIT),
795 	/* has creds assigned */
796 	REQ_F_CREDS		= BIT(REQ_F_CREDS_BIT),
797 	/* skip refcounting if not set */
798 	REQ_F_REFCOUNT		= BIT(REQ_F_REFCOUNT_BIT),
799 	/* there is a linked timeout that has to be armed */
800 	REQ_F_ARM_LTIMEOUT	= BIT(REQ_F_ARM_LTIMEOUT_BIT),
801 	/* request has already done partial IO */
802 	REQ_F_PARTIAL_IO	= BIT(REQ_F_PARTIAL_IO_BIT),
803 };
804 
805 struct async_poll {
806 	struct io_poll_iocb	poll;
807 	struct io_poll_iocb	*double_poll;
808 };
809 
810 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
811 
812 struct io_task_work {
813 	union {
814 		struct io_wq_work_node	node;
815 		struct llist_node	fallback_node;
816 	};
817 	io_req_tw_func_t		func;
818 };
819 
820 enum {
821 	IORING_RSRC_FILE		= 0,
822 	IORING_RSRC_BUFFER		= 1,
823 };
824 
825 /*
826  * NOTE! Each of the iocb union members has the file pointer
827  * as the first entry in their struct definition. So you can
828  * access the file pointer through any of the sub-structs,
829  * or directly as just 'ki_filp' in this struct.
830  */
831 struct io_kiocb {
832 	union {
833 		struct file		*file;
834 		struct io_rw		rw;
835 		struct io_poll_iocb	poll;
836 		struct io_poll_update	poll_update;
837 		struct io_accept	accept;
838 		struct io_sync		sync;
839 		struct io_cancel	cancel;
840 		struct io_timeout	timeout;
841 		struct io_timeout_rem	timeout_rem;
842 		struct io_connect	connect;
843 		struct io_sr_msg	sr_msg;
844 		struct io_open		open;
845 		struct io_close		close;
846 		struct io_rsrc_update	rsrc_update;
847 		struct io_fadvise	fadvise;
848 		struct io_madvise	madvise;
849 		struct io_epoll		epoll;
850 		struct io_splice	splice;
851 		struct io_provide_buf	pbuf;
852 		struct io_statx		statx;
853 		struct io_shutdown	shutdown;
854 		struct io_rename	rename;
855 		struct io_unlink	unlink;
856 		struct io_mkdir		mkdir;
857 		struct io_symlink	symlink;
858 		struct io_hardlink	hardlink;
859 		/* use only after cleaning per-op data, see io_clean_op() */
860 		struct io_completion	compl;
861 	};
862 
863 	/* opcode allocated if it needs to store data for async defer */
864 	void				*async_data;
865 	u8				opcode;
866 	/* polled IO has completed */
867 	u8				iopoll_completed;
868 
869 	u16				buf_index;
870 	u32				result;
871 
872 	struct io_ring_ctx		*ctx;
873 	unsigned int			flags;
874 	atomic_t			refs;
875 	struct task_struct		*task;
876 	u64				user_data;
877 
878 	struct io_kiocb			*link;
879 	struct percpu_ref		*fixed_rsrc_refs;
880 
881 	/* used with ctx->iopoll_list with reads/writes */
882 	struct list_head		inflight_entry;
883 	struct io_task_work		io_task_work;
884 	/* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
885 	struct hlist_node		hash_node;
886 	struct async_poll		*apoll;
887 	struct io_wq_work		work;
888 	const struct cred		*creds;
889 
890 	/* store used ubuf, so we can prevent reloading */
891 	struct io_mapped_ubuf		*imu;
892 	/* stores selected buf, valid IFF REQ_F_BUFFER_SELECTED is set */
893 	struct io_buffer		*kbuf;
894 	atomic_t			poll_refs;
895 };
896 
897 struct io_tctx_node {
898 	struct list_head	ctx_node;
899 	struct task_struct	*task;
900 	struct io_ring_ctx	*ctx;
901 };
902 
903 struct io_defer_entry {
904 	struct list_head	list;
905 	struct io_kiocb		*req;
906 	u32			seq;
907 };
908 
909 struct io_op_def {
910 	/* needs req->file assigned */
911 	unsigned		needs_file : 1;
912 	/* hash wq insertion if file is a regular file */
913 	unsigned		hash_reg_file : 1;
914 	/* unbound wq insertion if file is a non-regular file */
915 	unsigned		unbound_nonreg_file : 1;
916 	/* opcode is not supported by this kernel */
917 	unsigned		not_supported : 1;
918 	/* set if opcode supports polled "wait" */
919 	unsigned		pollin : 1;
920 	unsigned		pollout : 1;
921 	/* op supports buffer selection */
922 	unsigned		buffer_select : 1;
923 	/* do prep async if is going to be punted */
924 	unsigned		needs_async_setup : 1;
925 	/* should block plug */
926 	unsigned		plug : 1;
927 	/* size of async data needed, if any */
928 	unsigned short		async_size;
929 };
930 
931 static const struct io_op_def io_op_defs[] = {
932 	[IORING_OP_NOP] = {},
933 	[IORING_OP_READV] = {
934 		.needs_file		= 1,
935 		.unbound_nonreg_file	= 1,
936 		.pollin			= 1,
937 		.buffer_select		= 1,
938 		.needs_async_setup	= 1,
939 		.plug			= 1,
940 		.async_size		= sizeof(struct io_async_rw),
941 	},
942 	[IORING_OP_WRITEV] = {
943 		.needs_file		= 1,
944 		.hash_reg_file		= 1,
945 		.unbound_nonreg_file	= 1,
946 		.pollout		= 1,
947 		.needs_async_setup	= 1,
948 		.plug			= 1,
949 		.async_size		= sizeof(struct io_async_rw),
950 	},
951 	[IORING_OP_FSYNC] = {
952 		.needs_file		= 1,
953 	},
954 	[IORING_OP_READ_FIXED] = {
955 		.needs_file		= 1,
956 		.unbound_nonreg_file	= 1,
957 		.pollin			= 1,
958 		.plug			= 1,
959 		.async_size		= sizeof(struct io_async_rw),
960 	},
961 	[IORING_OP_WRITE_FIXED] = {
962 		.needs_file		= 1,
963 		.hash_reg_file		= 1,
964 		.unbound_nonreg_file	= 1,
965 		.pollout		= 1,
966 		.plug			= 1,
967 		.async_size		= sizeof(struct io_async_rw),
968 	},
969 	[IORING_OP_POLL_ADD] = {
970 		.needs_file		= 1,
971 		.unbound_nonreg_file	= 1,
972 	},
973 	[IORING_OP_POLL_REMOVE] = {},
974 	[IORING_OP_SYNC_FILE_RANGE] = {
975 		.needs_file		= 1,
976 	},
977 	[IORING_OP_SENDMSG] = {
978 		.needs_file		= 1,
979 		.unbound_nonreg_file	= 1,
980 		.pollout		= 1,
981 		.needs_async_setup	= 1,
982 		.async_size		= sizeof(struct io_async_msghdr),
983 	},
984 	[IORING_OP_RECVMSG] = {
985 		.needs_file		= 1,
986 		.unbound_nonreg_file	= 1,
987 		.pollin			= 1,
988 		.buffer_select		= 1,
989 		.needs_async_setup	= 1,
990 		.async_size		= sizeof(struct io_async_msghdr),
991 	},
992 	[IORING_OP_TIMEOUT] = {
993 		.async_size		= sizeof(struct io_timeout_data),
994 	},
995 	[IORING_OP_TIMEOUT_REMOVE] = {
996 		/* used by timeout updates' prep() */
997 	},
998 	[IORING_OP_ACCEPT] = {
999 		.needs_file		= 1,
1000 		.unbound_nonreg_file	= 1,
1001 		.pollin			= 1,
1002 	},
1003 	[IORING_OP_ASYNC_CANCEL] = {},
1004 	[IORING_OP_LINK_TIMEOUT] = {
1005 		.async_size		= sizeof(struct io_timeout_data),
1006 	},
1007 	[IORING_OP_CONNECT] = {
1008 		.needs_file		= 1,
1009 		.unbound_nonreg_file	= 1,
1010 		.pollout		= 1,
1011 		.needs_async_setup	= 1,
1012 		.async_size		= sizeof(struct io_async_connect),
1013 	},
1014 	[IORING_OP_FALLOCATE] = {
1015 		.needs_file		= 1,
1016 	},
1017 	[IORING_OP_OPENAT] = {},
1018 	[IORING_OP_CLOSE] = {},
1019 	[IORING_OP_FILES_UPDATE] = {},
1020 	[IORING_OP_STATX] = {},
1021 	[IORING_OP_READ] = {
1022 		.needs_file		= 1,
1023 		.unbound_nonreg_file	= 1,
1024 		.pollin			= 1,
1025 		.buffer_select		= 1,
1026 		.plug			= 1,
1027 		.async_size		= sizeof(struct io_async_rw),
1028 	},
1029 	[IORING_OP_WRITE] = {
1030 		.needs_file		= 1,
1031 		.hash_reg_file		= 1,
1032 		.unbound_nonreg_file	= 1,
1033 		.pollout		= 1,
1034 		.plug			= 1,
1035 		.async_size		= sizeof(struct io_async_rw),
1036 	},
1037 	[IORING_OP_FADVISE] = {
1038 		.needs_file		= 1,
1039 	},
1040 	[IORING_OP_MADVISE] = {},
1041 	[IORING_OP_SEND] = {
1042 		.needs_file		= 1,
1043 		.unbound_nonreg_file	= 1,
1044 		.pollout		= 1,
1045 	},
1046 	[IORING_OP_RECV] = {
1047 		.needs_file		= 1,
1048 		.unbound_nonreg_file	= 1,
1049 		.pollin			= 1,
1050 		.buffer_select		= 1,
1051 	},
1052 	[IORING_OP_OPENAT2] = {
1053 	},
1054 	[IORING_OP_EPOLL_CTL] = {
1055 		.unbound_nonreg_file	= 1,
1056 	},
1057 	[IORING_OP_SPLICE] = {
1058 		.needs_file		= 1,
1059 		.hash_reg_file		= 1,
1060 		.unbound_nonreg_file	= 1,
1061 	},
1062 	[IORING_OP_PROVIDE_BUFFERS] = {},
1063 	[IORING_OP_REMOVE_BUFFERS] = {},
1064 	[IORING_OP_TEE] = {
1065 		.needs_file		= 1,
1066 		.hash_reg_file		= 1,
1067 		.unbound_nonreg_file	= 1,
1068 	},
1069 	[IORING_OP_SHUTDOWN] = {
1070 		.needs_file		= 1,
1071 	},
1072 	[IORING_OP_RENAMEAT] = {},
1073 	[IORING_OP_UNLINKAT] = {},
1074 	[IORING_OP_MKDIRAT] = {},
1075 	[IORING_OP_SYMLINKAT] = {},
1076 	[IORING_OP_LINKAT] = {},
1077 };
1078 
1079 /* requests with any of those set should undergo io_disarm_next() */
1080 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1081 
1082 static bool io_disarm_next(struct io_kiocb *req);
1083 static void io_uring_del_tctx_node(unsigned long index);
1084 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1085 					 struct task_struct *task,
1086 					 bool cancel_all);
1087 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1088 
1089 static void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags);
1090 
1091 static void io_put_req(struct io_kiocb *req);
1092 static void io_put_req_deferred(struct io_kiocb *req);
1093 static void io_dismantle_req(struct io_kiocb *req);
1094 static void io_queue_linked_timeout(struct io_kiocb *req);
1095 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1096 				     struct io_uring_rsrc_update2 *up,
1097 				     unsigned nr_args);
1098 static void io_clean_op(struct io_kiocb *req);
1099 static struct file *io_file_get(struct io_ring_ctx *ctx,
1100 				struct io_kiocb *req, int fd, bool fixed,
1101 				unsigned int issue_flags);
1102 static void __io_queue_sqe(struct io_kiocb *req);
1103 static void io_rsrc_put_work(struct work_struct *work);
1104 
1105 static void io_req_task_queue(struct io_kiocb *req);
1106 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1107 static int io_req_prep_async(struct io_kiocb *req);
1108 
1109 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1110 				 unsigned int issue_flags, u32 slot_index);
1111 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1112 
1113 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1114 
1115 static struct kmem_cache *req_cachep;
1116 
1117 static const struct file_operations io_uring_fops;
1118 
io_uring_get_socket(struct file * file)1119 struct sock *io_uring_get_socket(struct file *file)
1120 {
1121 #if defined(CONFIG_UNIX)
1122 	if (file->f_op == &io_uring_fops) {
1123 		struct io_ring_ctx *ctx = file->private_data;
1124 
1125 		return ctx->ring_sock->sk;
1126 	}
1127 #endif
1128 	return NULL;
1129 }
1130 EXPORT_SYMBOL(io_uring_get_socket);
1131 
io_tw_lock(struct io_ring_ctx * ctx,bool * locked)1132 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1133 {
1134 	if (!*locked) {
1135 		mutex_lock(&ctx->uring_lock);
1136 		*locked = true;
1137 	}
1138 }
1139 
1140 #define io_for_each_link(pos, head) \
1141 	for (pos = (head); pos; pos = pos->link)
1142 
1143 /*
1144  * Shamelessly stolen from the mm implementation of page reference checking,
1145  * see commit f958d7b528b1 for details.
1146  */
1147 #define req_ref_zero_or_close_to_overflow(req)	\
1148 	((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1149 
req_ref_inc_not_zero(struct io_kiocb * req)1150 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1151 {
1152 	WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1153 	return atomic_inc_not_zero(&req->refs);
1154 }
1155 
req_ref_put_and_test(struct io_kiocb * req)1156 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1157 {
1158 	if (likely(!(req->flags & REQ_F_REFCOUNT)))
1159 		return true;
1160 
1161 	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1162 	return atomic_dec_and_test(&req->refs);
1163 }
1164 
req_ref_get(struct io_kiocb * req)1165 static inline void req_ref_get(struct io_kiocb *req)
1166 {
1167 	WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1168 	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1169 	atomic_inc(&req->refs);
1170 }
1171 
__io_req_set_refcount(struct io_kiocb * req,int nr)1172 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1173 {
1174 	if (!(req->flags & REQ_F_REFCOUNT)) {
1175 		req->flags |= REQ_F_REFCOUNT;
1176 		atomic_set(&req->refs, nr);
1177 	}
1178 }
1179 
io_req_set_refcount(struct io_kiocb * req)1180 static inline void io_req_set_refcount(struct io_kiocb *req)
1181 {
1182 	__io_req_set_refcount(req, 1);
1183 }
1184 
io_req_set_rsrc_node(struct io_kiocb * req)1185 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1186 {
1187 	struct io_ring_ctx *ctx = req->ctx;
1188 
1189 	if (!req->fixed_rsrc_refs) {
1190 		req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1191 		percpu_ref_get(req->fixed_rsrc_refs);
1192 	}
1193 }
1194 
io_refs_resurrect(struct percpu_ref * ref,struct completion * compl)1195 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1196 {
1197 	bool got = percpu_ref_tryget(ref);
1198 
1199 	/* already at zero, wait for ->release() */
1200 	if (!got)
1201 		wait_for_completion(compl);
1202 	percpu_ref_resurrect(ref);
1203 	if (got)
1204 		percpu_ref_put(ref);
1205 }
1206 
io_match_task(struct io_kiocb * head,struct task_struct * task,bool cancel_all)1207 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1208 			  bool cancel_all)
1209 	__must_hold(&req->ctx->timeout_lock)
1210 {
1211 	struct io_kiocb *req;
1212 
1213 	if (task && head->task != task)
1214 		return false;
1215 	if (cancel_all)
1216 		return true;
1217 
1218 	io_for_each_link(req, head) {
1219 		if (req->flags & REQ_F_INFLIGHT)
1220 			return true;
1221 	}
1222 	return false;
1223 }
1224 
io_match_linked(struct io_kiocb * head)1225 static bool io_match_linked(struct io_kiocb *head)
1226 {
1227 	struct io_kiocb *req;
1228 
1229 	io_for_each_link(req, head) {
1230 		if (req->flags & REQ_F_INFLIGHT)
1231 			return true;
1232 	}
1233 	return false;
1234 }
1235 
1236 /*
1237  * As io_match_task() but protected against racing with linked timeouts.
1238  * User must not hold timeout_lock.
1239  */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)1240 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1241 			       bool cancel_all)
1242 {
1243 	bool matched;
1244 
1245 	if (task && head->task != task)
1246 		return false;
1247 	if (cancel_all)
1248 		return true;
1249 
1250 	if (head->flags & REQ_F_LINK_TIMEOUT) {
1251 		struct io_ring_ctx *ctx = head->ctx;
1252 
1253 		/* protect against races with linked timeouts */
1254 		spin_lock_irq(&ctx->timeout_lock);
1255 		matched = io_match_linked(head);
1256 		spin_unlock_irq(&ctx->timeout_lock);
1257 	} else {
1258 		matched = io_match_linked(head);
1259 	}
1260 	return matched;
1261 }
1262 
req_set_fail(struct io_kiocb * req)1263 static inline void req_set_fail(struct io_kiocb *req)
1264 {
1265 	req->flags |= REQ_F_FAIL;
1266 }
1267 
req_fail_link_node(struct io_kiocb * req,int res)1268 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1269 {
1270 	req_set_fail(req);
1271 	req->result = res;
1272 }
1273 
io_ring_ctx_ref_free(struct percpu_ref * ref)1274 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1275 {
1276 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1277 
1278 	complete(&ctx->ref_comp);
1279 }
1280 
io_is_timeout_noseq(struct io_kiocb * req)1281 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1282 {
1283 	return !req->timeout.off;
1284 }
1285 
io_fallback_req_func(struct work_struct * work)1286 static void io_fallback_req_func(struct work_struct *work)
1287 {
1288 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1289 						fallback_work.work);
1290 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1291 	struct io_kiocb *req, *tmp;
1292 	bool locked = false;
1293 
1294 	percpu_ref_get(&ctx->refs);
1295 	llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1296 		req->io_task_work.func(req, &locked);
1297 
1298 	if (locked) {
1299 		if (ctx->submit_state.compl_nr)
1300 			io_submit_flush_completions(ctx);
1301 		mutex_unlock(&ctx->uring_lock);
1302 	}
1303 	percpu_ref_put(&ctx->refs);
1304 
1305 }
1306 
io_ring_ctx_alloc(struct io_uring_params * p)1307 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1308 {
1309 	struct io_ring_ctx *ctx;
1310 	int hash_bits;
1311 
1312 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1313 	if (!ctx)
1314 		return NULL;
1315 
1316 	/*
1317 	 * Use 5 bits less than the max cq entries, that should give us around
1318 	 * 32 entries per hash list if totally full and uniformly spread.
1319 	 */
1320 	hash_bits = ilog2(p->cq_entries);
1321 	hash_bits -= 5;
1322 	if (hash_bits <= 0)
1323 		hash_bits = 1;
1324 	ctx->cancel_hash_bits = hash_bits;
1325 	ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1326 					GFP_KERNEL);
1327 	if (!ctx->cancel_hash)
1328 		goto err;
1329 	__hash_init(ctx->cancel_hash, 1U << hash_bits);
1330 
1331 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1332 	if (!ctx->dummy_ubuf)
1333 		goto err;
1334 	/* set invalid range, so io_import_fixed() fails meeting it */
1335 	ctx->dummy_ubuf->ubuf = -1UL;
1336 
1337 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1338 			    PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1339 		goto err;
1340 
1341 	ctx->flags = p->flags;
1342 	init_waitqueue_head(&ctx->sqo_sq_wait);
1343 	INIT_LIST_HEAD(&ctx->sqd_list);
1344 	init_waitqueue_head(&ctx->poll_wait);
1345 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
1346 	init_completion(&ctx->ref_comp);
1347 	xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1348 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1349 	mutex_init(&ctx->uring_lock);
1350 	init_waitqueue_head(&ctx->cq_wait);
1351 	spin_lock_init(&ctx->completion_lock);
1352 	spin_lock_init(&ctx->timeout_lock);
1353 	INIT_LIST_HEAD(&ctx->iopoll_list);
1354 	INIT_LIST_HEAD(&ctx->defer_list);
1355 	INIT_LIST_HEAD(&ctx->timeout_list);
1356 	INIT_LIST_HEAD(&ctx->ltimeout_list);
1357 	spin_lock_init(&ctx->rsrc_ref_lock);
1358 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1359 	INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1360 	init_llist_head(&ctx->rsrc_put_llist);
1361 	INIT_LIST_HEAD(&ctx->tctx_list);
1362 	INIT_LIST_HEAD(&ctx->submit_state.free_list);
1363 	INIT_LIST_HEAD(&ctx->locked_free_list);
1364 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1365 	return ctx;
1366 err:
1367 	kfree(ctx->dummy_ubuf);
1368 	kfree(ctx->cancel_hash);
1369 	kfree(ctx);
1370 	return NULL;
1371 }
1372 
io_account_cq_overflow(struct io_ring_ctx * ctx)1373 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1374 {
1375 	struct io_rings *r = ctx->rings;
1376 
1377 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1378 	ctx->cq_extra--;
1379 }
1380 
req_need_defer(struct io_kiocb * req,u32 seq)1381 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1382 {
1383 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1384 		struct io_ring_ctx *ctx = req->ctx;
1385 
1386 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1387 	}
1388 
1389 	return false;
1390 }
1391 
1392 #define FFS_ASYNC_READ		0x1UL
1393 #define FFS_ASYNC_WRITE		0x2UL
1394 #ifdef CONFIG_64BIT
1395 #define FFS_ISREG		0x4UL
1396 #else
1397 #define FFS_ISREG		0x0UL
1398 #endif
1399 #define FFS_MASK		~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1400 
io_req_ffs_set(struct io_kiocb * req)1401 static inline bool io_req_ffs_set(struct io_kiocb *req)
1402 {
1403 	return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1404 }
1405 
io_req_track_inflight(struct io_kiocb * req)1406 static void io_req_track_inflight(struct io_kiocb *req)
1407 {
1408 	if (!(req->flags & REQ_F_INFLIGHT)) {
1409 		req->flags |= REQ_F_INFLIGHT;
1410 		atomic_inc(&req->task->io_uring->inflight_tracked);
1411 	}
1412 }
1413 
__io_prep_linked_timeout(struct io_kiocb * req)1414 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1415 {
1416 	if (WARN_ON_ONCE(!req->link))
1417 		return NULL;
1418 
1419 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
1420 	req->flags |= REQ_F_LINK_TIMEOUT;
1421 
1422 	/* linked timeouts should have two refs once prep'ed */
1423 	io_req_set_refcount(req);
1424 	__io_req_set_refcount(req->link, 2);
1425 	return req->link;
1426 }
1427 
io_prep_linked_timeout(struct io_kiocb * req)1428 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1429 {
1430 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1431 		return NULL;
1432 	return __io_prep_linked_timeout(req);
1433 }
1434 
io_prep_async_work(struct io_kiocb * req)1435 static void io_prep_async_work(struct io_kiocb *req)
1436 {
1437 	const struct io_op_def *def = &io_op_defs[req->opcode];
1438 	struct io_ring_ctx *ctx = req->ctx;
1439 
1440 	if (!(req->flags & REQ_F_CREDS)) {
1441 		req->flags |= REQ_F_CREDS;
1442 		req->creds = get_current_cred();
1443 	}
1444 
1445 	req->work.list.next = NULL;
1446 	req->work.flags = 0;
1447 	if (req->flags & REQ_F_FORCE_ASYNC)
1448 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
1449 
1450 	if (req->flags & REQ_F_ISREG) {
1451 		if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1452 			io_wq_hash_work(&req->work, file_inode(req->file));
1453 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1454 		if (def->unbound_nonreg_file)
1455 			req->work.flags |= IO_WQ_WORK_UNBOUND;
1456 	}
1457 }
1458 
io_prep_async_link(struct io_kiocb * req)1459 static void io_prep_async_link(struct io_kiocb *req)
1460 {
1461 	struct io_kiocb *cur;
1462 
1463 	if (req->flags & REQ_F_LINK_TIMEOUT) {
1464 		struct io_ring_ctx *ctx = req->ctx;
1465 
1466 		spin_lock_irq(&ctx->timeout_lock);
1467 		io_for_each_link(cur, req)
1468 			io_prep_async_work(cur);
1469 		spin_unlock_irq(&ctx->timeout_lock);
1470 	} else {
1471 		io_for_each_link(cur, req)
1472 			io_prep_async_work(cur);
1473 	}
1474 }
1475 
io_queue_async_work(struct io_kiocb * req,bool * locked)1476 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1477 {
1478 	struct io_ring_ctx *ctx = req->ctx;
1479 	struct io_kiocb *link = io_prep_linked_timeout(req);
1480 	struct io_uring_task *tctx = req->task->io_uring;
1481 
1482 	/* must not take the lock, NULL it as a precaution */
1483 	locked = NULL;
1484 
1485 	BUG_ON(!tctx);
1486 	BUG_ON(!tctx->io_wq);
1487 
1488 	/* init ->work of the whole link before punting */
1489 	io_prep_async_link(req);
1490 
1491 	/*
1492 	 * Not expected to happen, but if we do have a bug where this _can_
1493 	 * happen, catch it here and ensure the request is marked as
1494 	 * canceled. That will make io-wq go through the usual work cancel
1495 	 * procedure rather than attempt to run this request (or create a new
1496 	 * worker for it).
1497 	 */
1498 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1499 		req->work.flags |= IO_WQ_WORK_CANCEL;
1500 
1501 	trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1502 					&req->work, req->flags);
1503 	io_wq_enqueue(tctx->io_wq, &req->work);
1504 	if (link)
1505 		io_queue_linked_timeout(link);
1506 }
1507 
io_kill_timeout(struct io_kiocb * req,int status)1508 static void io_kill_timeout(struct io_kiocb *req, int status)
1509 	__must_hold(&req->ctx->completion_lock)
1510 	__must_hold(&req->ctx->timeout_lock)
1511 {
1512 	struct io_timeout_data *io = req->async_data;
1513 
1514 	if (hrtimer_try_to_cancel(&io->timer) != -1) {
1515 		if (status)
1516 			req_set_fail(req);
1517 		atomic_set(&req->ctx->cq_timeouts,
1518 			atomic_read(&req->ctx->cq_timeouts) + 1);
1519 		list_del_init(&req->timeout.list);
1520 		io_fill_cqe_req(req, status, 0);
1521 		io_put_req_deferred(req);
1522 	}
1523 }
1524 
io_queue_deferred(struct io_ring_ctx * ctx)1525 static void io_queue_deferred(struct io_ring_ctx *ctx)
1526 {
1527 	lockdep_assert_held(&ctx->completion_lock);
1528 
1529 	while (!list_empty(&ctx->defer_list)) {
1530 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1531 						struct io_defer_entry, list);
1532 
1533 		if (req_need_defer(de->req, de->seq))
1534 			break;
1535 		list_del_init(&de->list);
1536 		io_req_task_queue(de->req);
1537 		kfree(de);
1538 	}
1539 }
1540 
io_flush_timeouts(struct io_ring_ctx * ctx)1541 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1542 	__must_hold(&ctx->completion_lock)
1543 {
1544 	u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1545 	struct io_kiocb *req, *tmp;
1546 
1547 	spin_lock_irq(&ctx->timeout_lock);
1548 	list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1549 		u32 events_needed, events_got;
1550 
1551 		if (io_is_timeout_noseq(req))
1552 			break;
1553 
1554 		/*
1555 		 * Since seq can easily wrap around over time, subtract
1556 		 * the last seq at which timeouts were flushed before comparing.
1557 		 * Assuming not more than 2^31-1 events have happened since,
1558 		 * these subtractions won't have wrapped, so we can check if
1559 		 * target is in [last_seq, current_seq] by comparing the two.
1560 		 */
1561 		events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1562 		events_got = seq - ctx->cq_last_tm_flush;
1563 		if (events_got < events_needed)
1564 			break;
1565 
1566 		io_kill_timeout(req, 0);
1567 	}
1568 	ctx->cq_last_tm_flush = seq;
1569 	spin_unlock_irq(&ctx->timeout_lock);
1570 }
1571 
__io_commit_cqring_flush(struct io_ring_ctx * ctx)1572 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1573 {
1574 	if (ctx->off_timeout_used)
1575 		io_flush_timeouts(ctx);
1576 	if (ctx->drain_active)
1577 		io_queue_deferred(ctx);
1578 }
1579 
io_commit_needs_flush(struct io_ring_ctx * ctx)1580 static inline bool io_commit_needs_flush(struct io_ring_ctx *ctx)
1581 {
1582 	return ctx->off_timeout_used || ctx->drain_active;
1583 }
1584 
__io_commit_cqring(struct io_ring_ctx * ctx)1585 static inline void __io_commit_cqring(struct io_ring_ctx *ctx)
1586 {
1587 	/* order cqe stores with ring update */
1588 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1589 }
1590 
io_commit_cqring(struct io_ring_ctx * ctx)1591 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1592 {
1593 	if (unlikely(io_commit_needs_flush(ctx)))
1594 		__io_commit_cqring_flush(ctx);
1595 	__io_commit_cqring(ctx);
1596 }
1597 
io_sqring_full(struct io_ring_ctx * ctx)1598 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1599 {
1600 	struct io_rings *r = ctx->rings;
1601 
1602 	return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1603 }
1604 
__io_cqring_events(struct io_ring_ctx * ctx)1605 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1606 {
1607 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1608 }
1609 
io_get_cqe(struct io_ring_ctx * ctx)1610 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1611 {
1612 	struct io_rings *rings = ctx->rings;
1613 	unsigned tail, mask = ctx->cq_entries - 1;
1614 
1615 	/*
1616 	 * writes to the cq entry need to come after reading head; the
1617 	 * control dependency is enough as we're using WRITE_ONCE to
1618 	 * fill the cq entry
1619 	 */
1620 	if (__io_cqring_events(ctx) == ctx->cq_entries)
1621 		return NULL;
1622 
1623 	tail = ctx->cached_cq_tail++;
1624 	return &rings->cqes[tail & mask];
1625 }
1626 
io_should_trigger_evfd(struct io_ring_ctx * ctx)1627 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1628 {
1629 	if (likely(!ctx->cq_ev_fd))
1630 		return false;
1631 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1632 		return false;
1633 	return !ctx->eventfd_async || io_wq_current_is_worker();
1634 }
1635 
1636 /*
1637  * This should only get called when at least one event has been posted.
1638  * Some applications rely on the eventfd notification count only changing
1639  * IFF a new CQE has been added to the CQ ring. There's no depedency on
1640  * 1:1 relationship between how many times this function is called (and
1641  * hence the eventfd count) and number of CQEs posted to the CQ ring.
1642  */
io_cqring_ev_posted(struct io_ring_ctx * ctx)1643 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1644 {
1645 	/*
1646 	 * wake_up_all() may seem excessive, but io_wake_function() and
1647 	 * io_should_wake() handle the termination of the loop and only
1648 	 * wake as many waiters as we need to.
1649 	 */
1650 	if (wq_has_sleeper(&ctx->cq_wait))
1651 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
1652 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1653 	if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1654 		wake_up(&ctx->sq_data->wait);
1655 	if (io_should_trigger_evfd(ctx))
1656 		eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE);
1657 	if (waitqueue_active(&ctx->poll_wait))
1658 		__wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0,
1659 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1660 }
1661 
io_cqring_ev_posted_iopoll(struct io_ring_ctx * ctx)1662 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1663 {
1664 	/* see waitqueue_active() comment */
1665 	smp_mb();
1666 
1667 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1668 		if (waitqueue_active(&ctx->cq_wait))
1669 			__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
1670 				  poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1671 	}
1672 	if (io_should_trigger_evfd(ctx))
1673 		eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE);
1674 	if (waitqueue_active(&ctx->poll_wait))
1675 		__wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0,
1676 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1677 }
1678 
1679 /* Returns true if there are no backlogged entries after the flush */
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool force)1680 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1681 {
1682 	bool all_flushed, posted;
1683 
1684 	if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1685 		return false;
1686 
1687 	posted = false;
1688 	spin_lock(&ctx->completion_lock);
1689 	while (!list_empty(&ctx->cq_overflow_list)) {
1690 		struct io_uring_cqe *cqe = io_get_cqe(ctx);
1691 		struct io_overflow_cqe *ocqe;
1692 
1693 		if (!cqe && !force)
1694 			break;
1695 		ocqe = list_first_entry(&ctx->cq_overflow_list,
1696 					struct io_overflow_cqe, list);
1697 		if (cqe)
1698 			memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1699 		else
1700 			io_account_cq_overflow(ctx);
1701 
1702 		posted = true;
1703 		list_del(&ocqe->list);
1704 		kfree(ocqe);
1705 	}
1706 
1707 	all_flushed = list_empty(&ctx->cq_overflow_list);
1708 	if (all_flushed) {
1709 		clear_bit(0, &ctx->check_cq_overflow);
1710 		WRITE_ONCE(ctx->rings->sq_flags,
1711 			   ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1712 	}
1713 
1714 	if (posted)
1715 		io_commit_cqring(ctx);
1716 	spin_unlock(&ctx->completion_lock);
1717 	if (posted)
1718 		io_cqring_ev_posted(ctx);
1719 	return all_flushed;
1720 }
1721 
io_cqring_overflow_flush(struct io_ring_ctx * ctx)1722 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1723 {
1724 	bool ret = true;
1725 
1726 	if (test_bit(0, &ctx->check_cq_overflow)) {
1727 		/* iopoll syncs against uring_lock, not completion_lock */
1728 		if (ctx->flags & IORING_SETUP_IOPOLL)
1729 			mutex_lock(&ctx->uring_lock);
1730 		ret = __io_cqring_overflow_flush(ctx, false);
1731 		if (ctx->flags & IORING_SETUP_IOPOLL)
1732 			mutex_unlock(&ctx->uring_lock);
1733 	}
1734 
1735 	return ret;
1736 }
1737 
1738 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task,int nr)1739 static inline void io_put_task(struct task_struct *task, int nr)
1740 {
1741 	struct io_uring_task *tctx = task->io_uring;
1742 
1743 	if (likely(task == current)) {
1744 		tctx->cached_refs += nr;
1745 	} else {
1746 		percpu_counter_sub(&tctx->inflight, nr);
1747 		if (unlikely(atomic_read(&tctx->in_idle)))
1748 			wake_up(&tctx->wait);
1749 		put_task_struct_many(task, nr);
1750 	}
1751 }
1752 
io_task_refs_refill(struct io_uring_task * tctx)1753 static void io_task_refs_refill(struct io_uring_task *tctx)
1754 {
1755 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1756 
1757 	percpu_counter_add(&tctx->inflight, refill);
1758 	refcount_add(refill, &current->usage);
1759 	tctx->cached_refs += refill;
1760 }
1761 
io_get_task_refs(int nr)1762 static inline void io_get_task_refs(int nr)
1763 {
1764 	struct io_uring_task *tctx = current->io_uring;
1765 
1766 	tctx->cached_refs -= nr;
1767 	if (unlikely(tctx->cached_refs < 0))
1768 		io_task_refs_refill(tctx);
1769 }
1770 
io_uring_drop_tctx_refs(struct task_struct * task)1771 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1772 {
1773 	struct io_uring_task *tctx = task->io_uring;
1774 	unsigned int refs = tctx->cached_refs;
1775 
1776 	if (refs) {
1777 		tctx->cached_refs = 0;
1778 		percpu_counter_sub(&tctx->inflight, refs);
1779 		put_task_struct_many(task, refs);
1780 	}
1781 }
1782 
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1783 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1784 				     s32 res, u32 cflags)
1785 {
1786 	struct io_overflow_cqe *ocqe;
1787 
1788 	ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1789 	if (!ocqe) {
1790 		/*
1791 		 * If we're in ring overflow flush mode, or in task cancel mode,
1792 		 * or cannot allocate an overflow entry, then we need to drop it
1793 		 * on the floor.
1794 		 */
1795 		io_account_cq_overflow(ctx);
1796 		return false;
1797 	}
1798 	if (list_empty(&ctx->cq_overflow_list)) {
1799 		set_bit(0, &ctx->check_cq_overflow);
1800 		WRITE_ONCE(ctx->rings->sq_flags,
1801 			   ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1802 
1803 	}
1804 	ocqe->cqe.user_data = user_data;
1805 	ocqe->cqe.res = res;
1806 	ocqe->cqe.flags = cflags;
1807 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1808 	return true;
1809 }
1810 
__io_fill_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1811 static inline bool __io_fill_cqe(struct io_ring_ctx *ctx, u64 user_data,
1812 				 s32 res, u32 cflags)
1813 {
1814 	struct io_uring_cqe *cqe;
1815 
1816 	trace_io_uring_complete(ctx, user_data, res, cflags);
1817 
1818 	/*
1819 	 * If we can't get a cq entry, userspace overflowed the
1820 	 * submission (by quite a lot). Increment the overflow count in
1821 	 * the ring.
1822 	 */
1823 	cqe = io_get_cqe(ctx);
1824 	if (likely(cqe)) {
1825 		WRITE_ONCE(cqe->user_data, user_data);
1826 		WRITE_ONCE(cqe->res, res);
1827 		WRITE_ONCE(cqe->flags, cflags);
1828 		return true;
1829 	}
1830 	return io_cqring_event_overflow(ctx, user_data, res, cflags);
1831 }
1832 
io_fill_cqe_req(struct io_kiocb * req,s32 res,u32 cflags)1833 static noinline void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags)
1834 {
1835 	__io_fill_cqe(req->ctx, req->user_data, res, cflags);
1836 }
1837 
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1838 static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data,
1839 				     s32 res, u32 cflags)
1840 {
1841 	ctx->cq_extra++;
1842 	return __io_fill_cqe(ctx, user_data, res, cflags);
1843 }
1844 
io_req_complete_post(struct io_kiocb * req,s32 res,u32 cflags)1845 static void io_req_complete_post(struct io_kiocb *req, s32 res,
1846 				 u32 cflags)
1847 {
1848 	struct io_ring_ctx *ctx = req->ctx;
1849 
1850 	spin_lock(&ctx->completion_lock);
1851 	__io_fill_cqe(ctx, req->user_data, res, cflags);
1852 	/*
1853 	 * If we're the last reference to this request, add to our locked
1854 	 * free_list cache.
1855 	 */
1856 	if (req_ref_put_and_test(req)) {
1857 		if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1858 			if (req->flags & IO_DISARM_MASK)
1859 				io_disarm_next(req);
1860 			if (req->link) {
1861 				io_req_task_queue(req->link);
1862 				req->link = NULL;
1863 			}
1864 		}
1865 		io_dismantle_req(req);
1866 		io_put_task(req->task, 1);
1867 		list_add(&req->inflight_entry, &ctx->locked_free_list);
1868 		ctx->locked_free_nr++;
1869 	} else {
1870 		if (!percpu_ref_tryget(&ctx->refs))
1871 			req = NULL;
1872 	}
1873 	io_commit_cqring(ctx);
1874 	spin_unlock(&ctx->completion_lock);
1875 
1876 	if (req) {
1877 		io_cqring_ev_posted(ctx);
1878 		percpu_ref_put(&ctx->refs);
1879 	}
1880 }
1881 
io_req_needs_clean(struct io_kiocb * req)1882 static inline bool io_req_needs_clean(struct io_kiocb *req)
1883 {
1884 	return req->flags & IO_REQ_CLEAN_FLAGS;
1885 }
1886 
io_req_complete_state(struct io_kiocb * req,s32 res,u32 cflags)1887 static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
1888 					 u32 cflags)
1889 {
1890 	if (io_req_needs_clean(req))
1891 		io_clean_op(req);
1892 	req->result = res;
1893 	req->compl.cflags = cflags;
1894 	req->flags |= REQ_F_COMPLETE_INLINE;
1895 }
1896 
__io_req_complete(struct io_kiocb * req,unsigned issue_flags,s32 res,u32 cflags)1897 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1898 				     s32 res, u32 cflags)
1899 {
1900 	if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1901 		io_req_complete_state(req, res, cflags);
1902 	else
1903 		io_req_complete_post(req, res, cflags);
1904 }
1905 
io_req_complete(struct io_kiocb * req,s32 res)1906 static inline void io_req_complete(struct io_kiocb *req, s32 res)
1907 {
1908 	__io_req_complete(req, 0, res, 0);
1909 }
1910 
io_req_complete_failed(struct io_kiocb * req,s32 res)1911 static void io_req_complete_failed(struct io_kiocb *req, s32 res)
1912 {
1913 	req_set_fail(req);
1914 	io_req_complete_post(req, res, 0);
1915 }
1916 
io_req_complete_fail_submit(struct io_kiocb * req)1917 static void io_req_complete_fail_submit(struct io_kiocb *req)
1918 {
1919 	/*
1920 	 * We don't submit, fail them all, for that replace hardlinks with
1921 	 * normal links. Extra REQ_F_LINK is tolerated.
1922 	 */
1923 	req->flags &= ~REQ_F_HARDLINK;
1924 	req->flags |= REQ_F_LINK;
1925 	io_req_complete_failed(req, req->result);
1926 }
1927 
1928 /*
1929  * Don't initialise the fields below on every allocation, but do that in
1930  * advance and keep them valid across allocations.
1931  */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)1932 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1933 {
1934 	req->ctx = ctx;
1935 	req->link = NULL;
1936 	req->async_data = NULL;
1937 	/* not necessary, but safer to zero */
1938 	req->result = 0;
1939 }
1940 
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)1941 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1942 					struct io_submit_state *state)
1943 {
1944 	spin_lock(&ctx->completion_lock);
1945 	list_splice_init(&ctx->locked_free_list, &state->free_list);
1946 	ctx->locked_free_nr = 0;
1947 	spin_unlock(&ctx->completion_lock);
1948 }
1949 
1950 /* Returns true IFF there are requests in the cache */
io_flush_cached_reqs(struct io_ring_ctx * ctx)1951 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1952 {
1953 	struct io_submit_state *state = &ctx->submit_state;
1954 	int nr;
1955 
1956 	/*
1957 	 * If we have more than a batch's worth of requests in our IRQ side
1958 	 * locked cache, grab the lock and move them over to our submission
1959 	 * side cache.
1960 	 */
1961 	if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1962 		io_flush_cached_locked_reqs(ctx, state);
1963 
1964 	nr = state->free_reqs;
1965 	while (!list_empty(&state->free_list)) {
1966 		struct io_kiocb *req = list_first_entry(&state->free_list,
1967 					struct io_kiocb, inflight_entry);
1968 
1969 		list_del(&req->inflight_entry);
1970 		state->reqs[nr++] = req;
1971 		if (nr == ARRAY_SIZE(state->reqs))
1972 			break;
1973 	}
1974 
1975 	state->free_reqs = nr;
1976 	return nr != 0;
1977 }
1978 
1979 /*
1980  * A request might get retired back into the request caches even before opcode
1981  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1982  * Because of that, io_alloc_req() should be called only under ->uring_lock
1983  * and with extra caution to not get a request that is still worked on.
1984  */
io_alloc_req(struct io_ring_ctx * ctx)1985 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1986 	__must_hold(&ctx->uring_lock)
1987 {
1988 	struct io_submit_state *state = &ctx->submit_state;
1989 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1990 	int ret, i;
1991 
1992 	BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1993 
1994 	if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1995 		goto got_req;
1996 
1997 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1998 				    state->reqs);
1999 
2000 	/*
2001 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
2002 	 * retry single alloc to be on the safe side.
2003 	 */
2004 	if (unlikely(ret <= 0)) {
2005 		state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
2006 		if (!state->reqs[0])
2007 			return NULL;
2008 		ret = 1;
2009 	}
2010 
2011 	for (i = 0; i < ret; i++)
2012 		io_preinit_req(state->reqs[i], ctx);
2013 	state->free_reqs = ret;
2014 got_req:
2015 	state->free_reqs--;
2016 	return state->reqs[state->free_reqs];
2017 }
2018 
io_put_file(struct file * file)2019 static inline void io_put_file(struct file *file)
2020 {
2021 	if (file)
2022 		fput(file);
2023 }
2024 
io_dismantle_req(struct io_kiocb * req)2025 static void io_dismantle_req(struct io_kiocb *req)
2026 {
2027 	unsigned int flags = req->flags;
2028 
2029 	if (io_req_needs_clean(req))
2030 		io_clean_op(req);
2031 	if (!(flags & REQ_F_FIXED_FILE))
2032 		io_put_file(req->file);
2033 	if (req->fixed_rsrc_refs)
2034 		percpu_ref_put(req->fixed_rsrc_refs);
2035 	if (req->async_data) {
2036 		kfree(req->async_data);
2037 		req->async_data = NULL;
2038 	}
2039 }
2040 
__io_free_req(struct io_kiocb * req)2041 static void __io_free_req(struct io_kiocb *req)
2042 {
2043 	struct io_ring_ctx *ctx = req->ctx;
2044 
2045 	io_dismantle_req(req);
2046 	io_put_task(req->task, 1);
2047 
2048 	spin_lock(&ctx->completion_lock);
2049 	list_add(&req->inflight_entry, &ctx->locked_free_list);
2050 	ctx->locked_free_nr++;
2051 	spin_unlock(&ctx->completion_lock);
2052 
2053 	percpu_ref_put(&ctx->refs);
2054 }
2055 
io_remove_next_linked(struct io_kiocb * req)2056 static inline void io_remove_next_linked(struct io_kiocb *req)
2057 {
2058 	struct io_kiocb *nxt = req->link;
2059 
2060 	req->link = nxt->link;
2061 	nxt->link = NULL;
2062 }
2063 
io_kill_linked_timeout(struct io_kiocb * req)2064 static bool io_kill_linked_timeout(struct io_kiocb *req)
2065 	__must_hold(&req->ctx->completion_lock)
2066 	__must_hold(&req->ctx->timeout_lock)
2067 {
2068 	struct io_kiocb *link = req->link;
2069 
2070 	if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2071 		struct io_timeout_data *io = link->async_data;
2072 
2073 		io_remove_next_linked(req);
2074 		link->timeout.head = NULL;
2075 		if (hrtimer_try_to_cancel(&io->timer) != -1) {
2076 			list_del(&link->timeout.list);
2077 			io_fill_cqe_req(link, -ECANCELED, 0);
2078 			io_put_req_deferred(link);
2079 			return true;
2080 		}
2081 	}
2082 	return false;
2083 }
2084 
io_fail_links(struct io_kiocb * req)2085 static void io_fail_links(struct io_kiocb *req)
2086 	__must_hold(&req->ctx->completion_lock)
2087 {
2088 	struct io_kiocb *nxt, *link = req->link;
2089 
2090 	req->link = NULL;
2091 	while (link) {
2092 		long res = -ECANCELED;
2093 
2094 		if (link->flags & REQ_F_FAIL)
2095 			res = link->result;
2096 
2097 		nxt = link->link;
2098 		link->link = NULL;
2099 
2100 		trace_io_uring_fail_link(req, link);
2101 		io_fill_cqe_req(link, res, 0);
2102 		io_put_req_deferred(link);
2103 		link = nxt;
2104 	}
2105 }
2106 
io_disarm_next(struct io_kiocb * req)2107 static bool io_disarm_next(struct io_kiocb *req)
2108 	__must_hold(&req->ctx->completion_lock)
2109 {
2110 	bool posted = false;
2111 
2112 	if (req->flags & REQ_F_ARM_LTIMEOUT) {
2113 		struct io_kiocb *link = req->link;
2114 
2115 		req->flags &= ~REQ_F_ARM_LTIMEOUT;
2116 		if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2117 			io_remove_next_linked(req);
2118 			io_fill_cqe_req(link, -ECANCELED, 0);
2119 			io_put_req_deferred(link);
2120 			posted = true;
2121 		}
2122 	} else if (req->flags & REQ_F_LINK_TIMEOUT) {
2123 		struct io_ring_ctx *ctx = req->ctx;
2124 
2125 		spin_lock_irq(&ctx->timeout_lock);
2126 		posted = io_kill_linked_timeout(req);
2127 		spin_unlock_irq(&ctx->timeout_lock);
2128 	}
2129 	if (unlikely((req->flags & REQ_F_FAIL) &&
2130 		     !(req->flags & REQ_F_HARDLINK))) {
2131 		posted |= (req->link != NULL);
2132 		io_fail_links(req);
2133 	}
2134 	return posted;
2135 }
2136 
__io_req_find_next(struct io_kiocb * req)2137 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2138 {
2139 	struct io_kiocb *nxt;
2140 
2141 	/*
2142 	 * If LINK is set, we have dependent requests in this chain. If we
2143 	 * didn't fail this request, queue the first one up, moving any other
2144 	 * dependencies to the next request. In case of failure, fail the rest
2145 	 * of the chain.
2146 	 */
2147 	if (req->flags & IO_DISARM_MASK) {
2148 		struct io_ring_ctx *ctx = req->ctx;
2149 		bool posted;
2150 
2151 		spin_lock(&ctx->completion_lock);
2152 		posted = io_disarm_next(req);
2153 		if (posted)
2154 			io_commit_cqring(req->ctx);
2155 		spin_unlock(&ctx->completion_lock);
2156 		if (posted)
2157 			io_cqring_ev_posted(ctx);
2158 	}
2159 	nxt = req->link;
2160 	req->link = NULL;
2161 	return nxt;
2162 }
2163 
io_req_find_next(struct io_kiocb * req)2164 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2165 {
2166 	if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2167 		return NULL;
2168 	return __io_req_find_next(req);
2169 }
2170 
ctx_flush_and_put(struct io_ring_ctx * ctx,bool * locked)2171 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2172 {
2173 	if (!ctx)
2174 		return;
2175 	if (*locked) {
2176 		if (ctx->submit_state.compl_nr)
2177 			io_submit_flush_completions(ctx);
2178 		mutex_unlock(&ctx->uring_lock);
2179 		*locked = false;
2180 	}
2181 	percpu_ref_put(&ctx->refs);
2182 }
2183 
tctx_task_work(struct callback_head * cb)2184 static void tctx_task_work(struct callback_head *cb)
2185 {
2186 	bool locked = false;
2187 	struct io_ring_ctx *ctx = NULL;
2188 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2189 						  task_work);
2190 
2191 	while (1) {
2192 		struct io_wq_work_node *node;
2193 
2194 		if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2195 			io_submit_flush_completions(ctx);
2196 
2197 		spin_lock_irq(&tctx->task_lock);
2198 		node = tctx->task_list.first;
2199 		INIT_WQ_LIST(&tctx->task_list);
2200 		if (!node)
2201 			tctx->task_running = false;
2202 		spin_unlock_irq(&tctx->task_lock);
2203 		if (!node)
2204 			break;
2205 
2206 		do {
2207 			struct io_wq_work_node *next = node->next;
2208 			struct io_kiocb *req = container_of(node, struct io_kiocb,
2209 							    io_task_work.node);
2210 
2211 			if (req->ctx != ctx) {
2212 				ctx_flush_and_put(ctx, &locked);
2213 				ctx = req->ctx;
2214 				/* if not contended, grab and improve batching */
2215 				locked = mutex_trylock(&ctx->uring_lock);
2216 				percpu_ref_get(&ctx->refs);
2217 			}
2218 			req->io_task_work.func(req, &locked);
2219 			node = next;
2220 			if (unlikely(need_resched())) {
2221 				ctx_flush_and_put(ctx, &locked);
2222 				ctx = NULL;
2223 				cond_resched();
2224 			}
2225 		} while (node);
2226 	}
2227 
2228 	ctx_flush_and_put(ctx, &locked);
2229 
2230 	/* relaxed read is enough as only the task itself sets ->in_idle */
2231 	if (unlikely(atomic_read(&tctx->in_idle)))
2232 		io_uring_drop_tctx_refs(current);
2233 }
2234 
io_req_task_work_add(struct io_kiocb * req)2235 static void io_req_task_work_add(struct io_kiocb *req)
2236 {
2237 	struct task_struct *tsk = req->task;
2238 	struct io_uring_task *tctx = tsk->io_uring;
2239 	enum task_work_notify_mode notify;
2240 	struct io_wq_work_node *node;
2241 	unsigned long flags;
2242 	bool running;
2243 
2244 	WARN_ON_ONCE(!tctx);
2245 
2246 	spin_lock_irqsave(&tctx->task_lock, flags);
2247 	wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2248 	running = tctx->task_running;
2249 	if (!running)
2250 		tctx->task_running = true;
2251 	spin_unlock_irqrestore(&tctx->task_lock, flags);
2252 
2253 	/* task_work already pending, we're done */
2254 	if (running)
2255 		return;
2256 
2257 	/*
2258 	 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2259 	 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2260 	 * processing task_work. There's no reliable way to tell if TWA_RESUME
2261 	 * will do the job.
2262 	 */
2263 	notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2264 	if (!task_work_add(tsk, &tctx->task_work, notify)) {
2265 		wake_up_process(tsk);
2266 		return;
2267 	}
2268 
2269 	spin_lock_irqsave(&tctx->task_lock, flags);
2270 	tctx->task_running = false;
2271 	node = tctx->task_list.first;
2272 	INIT_WQ_LIST(&tctx->task_list);
2273 	spin_unlock_irqrestore(&tctx->task_lock, flags);
2274 
2275 	while (node) {
2276 		req = container_of(node, struct io_kiocb, io_task_work.node);
2277 		node = node->next;
2278 		if (llist_add(&req->io_task_work.fallback_node,
2279 			      &req->ctx->fallback_llist))
2280 			schedule_delayed_work(&req->ctx->fallback_work, 1);
2281 	}
2282 }
2283 
io_req_task_cancel(struct io_kiocb * req,bool * locked)2284 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2285 {
2286 	struct io_ring_ctx *ctx = req->ctx;
2287 
2288 	/* not needed for normal modes, but SQPOLL depends on it */
2289 	io_tw_lock(ctx, locked);
2290 	io_req_complete_failed(req, req->result);
2291 }
2292 
io_req_task_submit(struct io_kiocb * req,bool * locked)2293 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2294 {
2295 	struct io_ring_ctx *ctx = req->ctx;
2296 
2297 	io_tw_lock(ctx, locked);
2298 	/* req->task == current here, checking PF_EXITING is safe */
2299 	if (likely(!(req->task->flags & PF_EXITING)))
2300 		__io_queue_sqe(req);
2301 	else
2302 		io_req_complete_failed(req, -EFAULT);
2303 }
2304 
io_req_task_queue_fail(struct io_kiocb * req,int ret)2305 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2306 {
2307 	req->result = ret;
2308 	req->io_task_work.func = io_req_task_cancel;
2309 	io_req_task_work_add(req);
2310 }
2311 
io_req_task_queue(struct io_kiocb * req)2312 static void io_req_task_queue(struct io_kiocb *req)
2313 {
2314 	req->io_task_work.func = io_req_task_submit;
2315 	io_req_task_work_add(req);
2316 }
2317 
io_req_task_queue_reissue(struct io_kiocb * req)2318 static void io_req_task_queue_reissue(struct io_kiocb *req)
2319 {
2320 	req->io_task_work.func = io_queue_async_work;
2321 	io_req_task_work_add(req);
2322 }
2323 
io_queue_next(struct io_kiocb * req)2324 static inline void io_queue_next(struct io_kiocb *req)
2325 {
2326 	struct io_kiocb *nxt = io_req_find_next(req);
2327 
2328 	if (nxt)
2329 		io_req_task_queue(nxt);
2330 }
2331 
io_free_req(struct io_kiocb * req)2332 static void io_free_req(struct io_kiocb *req)
2333 {
2334 	io_queue_next(req);
2335 	__io_free_req(req);
2336 }
2337 
io_free_req_work(struct io_kiocb * req,bool * locked)2338 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2339 {
2340 	io_free_req(req);
2341 }
2342 
2343 struct req_batch {
2344 	struct task_struct	*task;
2345 	int			task_refs;
2346 	int			ctx_refs;
2347 };
2348 
io_init_req_batch(struct req_batch * rb)2349 static inline void io_init_req_batch(struct req_batch *rb)
2350 {
2351 	rb->task_refs = 0;
2352 	rb->ctx_refs = 0;
2353 	rb->task = NULL;
2354 }
2355 
io_req_free_batch_finish(struct io_ring_ctx * ctx,struct req_batch * rb)2356 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2357 				     struct req_batch *rb)
2358 {
2359 	if (rb->ctx_refs)
2360 		percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2361 	if (rb->task)
2362 		io_put_task(rb->task, rb->task_refs);
2363 }
2364 
io_req_free_batch(struct req_batch * rb,struct io_kiocb * req,struct io_submit_state * state)2365 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2366 			      struct io_submit_state *state)
2367 {
2368 	io_queue_next(req);
2369 	io_dismantle_req(req);
2370 
2371 	if (req->task != rb->task) {
2372 		if (rb->task)
2373 			io_put_task(rb->task, rb->task_refs);
2374 		rb->task = req->task;
2375 		rb->task_refs = 0;
2376 	}
2377 	rb->task_refs++;
2378 	rb->ctx_refs++;
2379 
2380 	if (state->free_reqs != ARRAY_SIZE(state->reqs))
2381 		state->reqs[state->free_reqs++] = req;
2382 	else
2383 		list_add(&req->inflight_entry, &state->free_list);
2384 }
2385 
io_submit_flush_completions(struct io_ring_ctx * ctx)2386 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2387 	__must_hold(&ctx->uring_lock)
2388 {
2389 	struct io_submit_state *state = &ctx->submit_state;
2390 	int i, nr = state->compl_nr;
2391 	struct req_batch rb;
2392 
2393 	spin_lock(&ctx->completion_lock);
2394 	for (i = 0; i < nr; i++) {
2395 		struct io_kiocb *req = state->compl_reqs[i];
2396 
2397 		__io_fill_cqe(ctx, req->user_data, req->result,
2398 			      req->compl.cflags);
2399 	}
2400 	io_commit_cqring(ctx);
2401 	spin_unlock(&ctx->completion_lock);
2402 	io_cqring_ev_posted(ctx);
2403 
2404 	io_init_req_batch(&rb);
2405 	for (i = 0; i < nr; i++) {
2406 		struct io_kiocb *req = state->compl_reqs[i];
2407 
2408 		if (req_ref_put_and_test(req))
2409 			io_req_free_batch(&rb, req, &ctx->submit_state);
2410 	}
2411 
2412 	io_req_free_batch_finish(ctx, &rb);
2413 	state->compl_nr = 0;
2414 }
2415 
2416 /*
2417  * Drop reference to request, return next in chain (if there is one) if this
2418  * was the last reference to this request.
2419  */
io_put_req_find_next(struct io_kiocb * req)2420 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2421 {
2422 	struct io_kiocb *nxt = NULL;
2423 
2424 	if (req_ref_put_and_test(req)) {
2425 		nxt = io_req_find_next(req);
2426 		__io_free_req(req);
2427 	}
2428 	return nxt;
2429 }
2430 
io_put_req(struct io_kiocb * req)2431 static inline void io_put_req(struct io_kiocb *req)
2432 {
2433 	if (req_ref_put_and_test(req))
2434 		io_free_req(req);
2435 }
2436 
io_put_req_deferred(struct io_kiocb * req)2437 static inline void io_put_req_deferred(struct io_kiocb *req)
2438 {
2439 	if (req_ref_put_and_test(req)) {
2440 		req->io_task_work.func = io_free_req_work;
2441 		io_req_task_work_add(req);
2442 	}
2443 }
2444 
io_cqring_events(struct io_ring_ctx * ctx)2445 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2446 {
2447 	/* See comment at the top of this file */
2448 	smp_rmb();
2449 	return __io_cqring_events(ctx);
2450 }
2451 
io_sqring_entries(struct io_ring_ctx * ctx)2452 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2453 {
2454 	struct io_rings *rings = ctx->rings;
2455 
2456 	/* make sure SQ entry isn't read before tail */
2457 	return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2458 }
2459 
io_put_kbuf(struct io_kiocb * req,struct io_buffer * kbuf)2460 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2461 {
2462 	unsigned int cflags;
2463 
2464 	cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2465 	cflags |= IORING_CQE_F_BUFFER;
2466 	req->flags &= ~REQ_F_BUFFER_SELECTED;
2467 	kfree(kbuf);
2468 	return cflags;
2469 }
2470 
io_put_rw_kbuf(struct io_kiocb * req)2471 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2472 {
2473 	struct io_buffer *kbuf;
2474 
2475 	if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2476 		return 0;
2477 	kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2478 	return io_put_kbuf(req, kbuf);
2479 }
2480 
io_run_task_work(void)2481 static inline bool io_run_task_work(void)
2482 {
2483 	/*
2484 	 * PF_IO_WORKER never returns to userspace, so check here if we have
2485 	 * notify work that needs processing.
2486 	 */
2487 	if (current->flags & PF_IO_WORKER &&
2488 	    test_thread_flag(TIF_NOTIFY_RESUME)) {
2489 		__set_current_state(TASK_RUNNING);
2490 		tracehook_notify_resume(NULL);
2491 	}
2492 	if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2493 		__set_current_state(TASK_RUNNING);
2494 		tracehook_notify_signal();
2495 		return true;
2496 	}
2497 
2498 	return false;
2499 }
2500 
2501 /*
2502  * Find and free completed poll iocbs
2503  */
io_iopoll_complete(struct io_ring_ctx * ctx,unsigned int * nr_events,struct list_head * done)2504 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2505 			       struct list_head *done)
2506 {
2507 	struct req_batch rb;
2508 	struct io_kiocb *req;
2509 
2510 	/* order with ->result store in io_complete_rw_iopoll() */
2511 	smp_rmb();
2512 
2513 	io_init_req_batch(&rb);
2514 	while (!list_empty(done)) {
2515 		struct io_uring_cqe *cqe;
2516 		unsigned cflags;
2517 
2518 		req = list_first_entry(done, struct io_kiocb, inflight_entry);
2519 		list_del(&req->inflight_entry);
2520 		cflags = io_put_rw_kbuf(req);
2521 		(*nr_events)++;
2522 
2523 		cqe = io_get_cqe(ctx);
2524 		if (cqe) {
2525 			WRITE_ONCE(cqe->user_data, req->user_data);
2526 			WRITE_ONCE(cqe->res, req->result);
2527 			WRITE_ONCE(cqe->flags, cflags);
2528 		} else {
2529 			spin_lock(&ctx->completion_lock);
2530 			io_cqring_event_overflow(ctx, req->user_data,
2531 							req->result, cflags);
2532 			spin_unlock(&ctx->completion_lock);
2533 		}
2534 
2535 		if (req_ref_put_and_test(req))
2536 			io_req_free_batch(&rb, req, &ctx->submit_state);
2537 	}
2538 
2539 	if (io_commit_needs_flush(ctx)) {
2540 		spin_lock(&ctx->completion_lock);
2541 		__io_commit_cqring_flush(ctx);
2542 		spin_unlock(&ctx->completion_lock);
2543 	}
2544 	__io_commit_cqring(ctx);
2545 	io_cqring_ev_posted_iopoll(ctx);
2546 	io_req_free_batch_finish(ctx, &rb);
2547 }
2548 
io_do_iopoll(struct io_ring_ctx * ctx,unsigned int * nr_events,long min)2549 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2550 			long min)
2551 {
2552 	struct io_kiocb *req, *tmp;
2553 	LIST_HEAD(done);
2554 	bool spin;
2555 
2556 	/*
2557 	 * Only spin for completions if we don't have multiple devices hanging
2558 	 * off our complete list, and we're under the requested amount.
2559 	 */
2560 	spin = !ctx->poll_multi_queue && *nr_events < min;
2561 
2562 	list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2563 		struct kiocb *kiocb = &req->rw.kiocb;
2564 		int ret;
2565 
2566 		/*
2567 		 * Move completed and retryable entries to our local lists.
2568 		 * If we find a request that requires polling, break out
2569 		 * and complete those lists first, if we have entries there.
2570 		 */
2571 		if (READ_ONCE(req->iopoll_completed)) {
2572 			list_move_tail(&req->inflight_entry, &done);
2573 			continue;
2574 		}
2575 		if (!list_empty(&done))
2576 			break;
2577 
2578 		ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2579 		if (unlikely(ret < 0))
2580 			return ret;
2581 		else if (ret)
2582 			spin = false;
2583 
2584 		/* iopoll may have completed current req */
2585 		if (READ_ONCE(req->iopoll_completed))
2586 			list_move_tail(&req->inflight_entry, &done);
2587 	}
2588 
2589 	if (!list_empty(&done))
2590 		io_iopoll_complete(ctx, nr_events, &done);
2591 
2592 	return 0;
2593 }
2594 
2595 /*
2596  * We can't just wait for polled events to come to us, we have to actively
2597  * find and complete them.
2598  */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)2599 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2600 {
2601 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
2602 		return;
2603 
2604 	percpu_ref_get(&ctx->refs);
2605 	mutex_lock(&ctx->uring_lock);
2606 	while (!list_empty(&ctx->iopoll_list)) {
2607 		unsigned int nr_events = 0;
2608 
2609 		io_do_iopoll(ctx, &nr_events, 0);
2610 
2611 		/* let it sleep and repeat later if can't complete a request */
2612 		if (nr_events == 0)
2613 			break;
2614 		/*
2615 		 * Ensure we allow local-to-the-cpu processing to take place,
2616 		 * in this case we need to ensure that we reap all events.
2617 		 * Also let task_work, etc. to progress by releasing the mutex
2618 		 */
2619 		if (need_resched()) {
2620 			mutex_unlock(&ctx->uring_lock);
2621 			cond_resched();
2622 			mutex_lock(&ctx->uring_lock);
2623 		}
2624 	}
2625 	mutex_unlock(&ctx->uring_lock);
2626 	percpu_ref_put(&ctx->refs);
2627 }
2628 
io_iopoll_check(struct io_ring_ctx * ctx,long min)2629 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2630 {
2631 	unsigned int nr_events = 0;
2632 	int ret = 0;
2633 
2634 	/*
2635 	 * We disallow the app entering submit/complete with polling, but we
2636 	 * still need to lock the ring to prevent racing with polled issue
2637 	 * that got punted to a workqueue.
2638 	 */
2639 	mutex_lock(&ctx->uring_lock);
2640 	/*
2641 	 * Don't enter poll loop if we already have events pending.
2642 	 * If we do, we can potentially be spinning for commands that
2643 	 * already triggered a CQE (eg in error).
2644 	 */
2645 	if (test_bit(0, &ctx->check_cq_overflow))
2646 		__io_cqring_overflow_flush(ctx, false);
2647 	if (io_cqring_events(ctx))
2648 		goto out;
2649 	do {
2650 		/*
2651 		 * If a submit got punted to a workqueue, we can have the
2652 		 * application entering polling for a command before it gets
2653 		 * issued. That app will hold the uring_lock for the duration
2654 		 * of the poll right here, so we need to take a breather every
2655 		 * now and then to ensure that the issue has a chance to add
2656 		 * the poll to the issued list. Otherwise we can spin here
2657 		 * forever, while the workqueue is stuck trying to acquire the
2658 		 * very same mutex.
2659 		 */
2660 		if (list_empty(&ctx->iopoll_list)) {
2661 			u32 tail = ctx->cached_cq_tail;
2662 
2663 			mutex_unlock(&ctx->uring_lock);
2664 			io_run_task_work();
2665 			mutex_lock(&ctx->uring_lock);
2666 
2667 			/* some requests don't go through iopoll_list */
2668 			if (tail != ctx->cached_cq_tail ||
2669 			    list_empty(&ctx->iopoll_list))
2670 				break;
2671 		}
2672 		ret = io_do_iopoll(ctx, &nr_events, min);
2673 
2674 		if (task_sigpending(current)) {
2675 			ret = -EINTR;
2676 			goto out;
2677 		}
2678 	} while (!ret && nr_events < min && !need_resched());
2679 out:
2680 	mutex_unlock(&ctx->uring_lock);
2681 	return ret;
2682 }
2683 
kiocb_end_write(struct io_kiocb * req)2684 static void kiocb_end_write(struct io_kiocb *req)
2685 {
2686 	/*
2687 	 * Tell lockdep we inherited freeze protection from submission
2688 	 * thread.
2689 	 */
2690 	if (req->flags & REQ_F_ISREG) {
2691 		struct super_block *sb = file_inode(req->file)->i_sb;
2692 
2693 		__sb_writers_acquired(sb, SB_FREEZE_WRITE);
2694 		sb_end_write(sb);
2695 	}
2696 }
2697 
2698 #ifdef CONFIG_BLOCK
io_resubmit_prep(struct io_kiocb * req)2699 static bool io_resubmit_prep(struct io_kiocb *req)
2700 {
2701 	struct io_async_rw *rw = req->async_data;
2702 
2703 	if (!rw)
2704 		return !io_req_prep_async(req);
2705 	iov_iter_restore(&rw->iter, &rw->iter_state);
2706 	return true;
2707 }
2708 
io_rw_should_reissue(struct io_kiocb * req)2709 static bool io_rw_should_reissue(struct io_kiocb *req)
2710 {
2711 	umode_t mode = file_inode(req->file)->i_mode;
2712 	struct io_ring_ctx *ctx = req->ctx;
2713 
2714 	if (!S_ISBLK(mode) && !S_ISREG(mode))
2715 		return false;
2716 	if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2717 	    !(ctx->flags & IORING_SETUP_IOPOLL)))
2718 		return false;
2719 	/*
2720 	 * If ref is dying, we might be running poll reap from the exit work.
2721 	 * Don't attempt to reissue from that path, just let it fail with
2722 	 * -EAGAIN.
2723 	 */
2724 	if (percpu_ref_is_dying(&ctx->refs))
2725 		return false;
2726 	/*
2727 	 * Play it safe and assume not safe to re-import and reissue if we're
2728 	 * not in the original thread group (or in task context).
2729 	 */
2730 	if (!same_thread_group(req->task, current) || !in_task())
2731 		return false;
2732 	return true;
2733 }
2734 #else
io_resubmit_prep(struct io_kiocb * req)2735 static bool io_resubmit_prep(struct io_kiocb *req)
2736 {
2737 	return false;
2738 }
io_rw_should_reissue(struct io_kiocb * req)2739 static bool io_rw_should_reissue(struct io_kiocb *req)
2740 {
2741 	return false;
2742 }
2743 #endif
2744 
2745 /*
2746  * Trigger the notifications after having done some IO, and finish the write
2747  * accounting, if any.
2748  */
io_req_io_end(struct io_kiocb * req)2749 static void io_req_io_end(struct io_kiocb *req)
2750 {
2751 	struct io_rw *rw = &req->rw;
2752 
2753 	if (rw->kiocb.ki_flags & IOCB_WRITE) {
2754 		kiocb_end_write(req);
2755 		fsnotify_modify(req->file);
2756 	} else {
2757 		fsnotify_access(req->file);
2758 	}
2759 }
2760 
__io_complete_rw_common(struct io_kiocb * req,long res)2761 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2762 {
2763 	if (res != req->result) {
2764 		if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2765 		    io_rw_should_reissue(req)) {
2766 			/*
2767 			 * Reissue will start accounting again, finish the
2768 			 * current cycle.
2769 			 */
2770 			io_req_io_end(req);
2771 			req->flags |= REQ_F_REISSUE;
2772 			return true;
2773 		}
2774 		req_set_fail(req);
2775 		req->result = res;
2776 	}
2777 	return false;
2778 }
2779 
io_fixup_rw_res(struct io_kiocb * req,long res)2780 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
2781 {
2782 	struct io_async_rw *io = req->async_data;
2783 
2784 	/* add previously done IO, if any */
2785 	if (io && io->bytes_done > 0) {
2786 		if (res < 0)
2787 			res = io->bytes_done;
2788 		else
2789 			res += io->bytes_done;
2790 	}
2791 	return res;
2792 }
2793 
io_req_task_complete(struct io_kiocb * req,bool * locked)2794 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2795 {
2796 	unsigned int cflags = io_put_rw_kbuf(req);
2797 	int res = req->result;
2798 
2799 	if (*locked) {
2800 		struct io_ring_ctx *ctx = req->ctx;
2801 		struct io_submit_state *state = &ctx->submit_state;
2802 
2803 		io_req_complete_state(req, res, cflags);
2804 		state->compl_reqs[state->compl_nr++] = req;
2805 		if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2806 			io_submit_flush_completions(ctx);
2807 	} else {
2808 		io_req_complete_post(req, res, cflags);
2809 	}
2810 }
2811 
io_req_rw_complete(struct io_kiocb * req,bool * locked)2812 static void io_req_rw_complete(struct io_kiocb *req, bool *locked)
2813 {
2814 	io_req_io_end(req);
2815 	io_req_task_complete(req, locked);
2816 }
2817 
io_complete_rw(struct kiocb * kiocb,long res,long res2)2818 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2819 {
2820 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2821 
2822 	if (__io_complete_rw_common(req, res))
2823 		return;
2824 	req->result = io_fixup_rw_res(req, res);
2825 	req->io_task_work.func = io_req_rw_complete;
2826 	io_req_task_work_add(req);
2827 }
2828 
io_complete_rw_iopoll(struct kiocb * kiocb,long res,long res2)2829 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2830 {
2831 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2832 
2833 	if (kiocb->ki_flags & IOCB_WRITE)
2834 		kiocb_end_write(req);
2835 	if (unlikely(res != req->result)) {
2836 		if (res == -EAGAIN && io_rw_should_reissue(req)) {
2837 			req->flags |= REQ_F_REISSUE;
2838 			return;
2839 		}
2840 	}
2841 
2842 	WRITE_ONCE(req->result, res);
2843 	/* order with io_iopoll_complete() checking ->result */
2844 	smp_wmb();
2845 	WRITE_ONCE(req->iopoll_completed, 1);
2846 }
2847 
2848 /*
2849  * After the iocb has been issued, it's safe to be found on the poll list.
2850  * Adding the kiocb to the list AFTER submission ensures that we don't
2851  * find it from a io_do_iopoll() thread before the issuer is done
2852  * accessing the kiocb cookie.
2853  */
io_iopoll_req_issued(struct io_kiocb * req)2854 static void io_iopoll_req_issued(struct io_kiocb *req)
2855 {
2856 	struct io_ring_ctx *ctx = req->ctx;
2857 	const bool in_async = io_wq_current_is_worker();
2858 
2859 	/* workqueue context doesn't hold uring_lock, grab it now */
2860 	if (unlikely(in_async))
2861 		mutex_lock(&ctx->uring_lock);
2862 
2863 	/*
2864 	 * Track whether we have multiple files in our lists. This will impact
2865 	 * how we do polling eventually, not spinning if we're on potentially
2866 	 * different devices.
2867 	 */
2868 	if (list_empty(&ctx->iopoll_list)) {
2869 		ctx->poll_multi_queue = false;
2870 	} else if (!ctx->poll_multi_queue) {
2871 		struct io_kiocb *list_req;
2872 		unsigned int queue_num0, queue_num1;
2873 
2874 		list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2875 						inflight_entry);
2876 
2877 		if (list_req->file != req->file) {
2878 			ctx->poll_multi_queue = true;
2879 		} else {
2880 			queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2881 			queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2882 			if (queue_num0 != queue_num1)
2883 				ctx->poll_multi_queue = true;
2884 		}
2885 	}
2886 
2887 	/*
2888 	 * For fast devices, IO may have already completed. If it has, add
2889 	 * it to the front so we find it first.
2890 	 */
2891 	if (READ_ONCE(req->iopoll_completed))
2892 		list_add(&req->inflight_entry, &ctx->iopoll_list);
2893 	else
2894 		list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2895 
2896 	if (unlikely(in_async)) {
2897 		/*
2898 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2899 		 * in sq thread task context or in io worker task context. If
2900 		 * current task context is sq thread, we don't need to check
2901 		 * whether should wake up sq thread.
2902 		 */
2903 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2904 		    wq_has_sleeper(&ctx->sq_data->wait))
2905 			wake_up(&ctx->sq_data->wait);
2906 
2907 		mutex_unlock(&ctx->uring_lock);
2908 	}
2909 }
2910 
io_bdev_nowait(struct block_device * bdev)2911 static bool io_bdev_nowait(struct block_device *bdev)
2912 {
2913 	return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2914 }
2915 
2916 /*
2917  * If we tracked the file through the SCM inflight mechanism, we could support
2918  * any file. For now, just ensure that anything potentially problematic is done
2919  * inline.
2920  */
__io_file_supports_nowait(struct file * file,int rw)2921 static bool __io_file_supports_nowait(struct file *file, int rw)
2922 {
2923 	umode_t mode = file_inode(file)->i_mode;
2924 
2925 	if (S_ISBLK(mode)) {
2926 		if (IS_ENABLED(CONFIG_BLOCK) &&
2927 		    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2928 			return true;
2929 		return false;
2930 	}
2931 	if (S_ISSOCK(mode))
2932 		return true;
2933 	if (S_ISREG(mode)) {
2934 		if (IS_ENABLED(CONFIG_BLOCK) &&
2935 		    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2936 		    file->f_op != &io_uring_fops)
2937 			return true;
2938 		return false;
2939 	}
2940 
2941 	/* any ->read/write should understand O_NONBLOCK */
2942 	if (file->f_flags & O_NONBLOCK)
2943 		return true;
2944 
2945 	if (!(file->f_mode & FMODE_NOWAIT))
2946 		return false;
2947 
2948 	if (rw == READ)
2949 		return file->f_op->read_iter != NULL;
2950 
2951 	return file->f_op->write_iter != NULL;
2952 }
2953 
io_file_supports_nowait(struct io_kiocb * req,int rw)2954 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2955 {
2956 	if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2957 		return true;
2958 	else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2959 		return true;
2960 
2961 	return __io_file_supports_nowait(req->file, rw);
2962 }
2963 
io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int rw)2964 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2965 		      int rw)
2966 {
2967 	struct io_ring_ctx *ctx = req->ctx;
2968 	struct kiocb *kiocb = &req->rw.kiocb;
2969 	struct file *file = req->file;
2970 	unsigned ioprio;
2971 	int ret;
2972 
2973 	if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2974 		req->flags |= REQ_F_ISREG;
2975 
2976 	kiocb->ki_pos = READ_ONCE(sqe->off);
2977 	kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2978 	kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2979 	ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2980 	if (unlikely(ret))
2981 		return ret;
2982 
2983 	/*
2984 	 * If the file is marked O_NONBLOCK, still allow retry for it if it
2985 	 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2986 	 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2987 	 */
2988 	if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2989 	    ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2990 		req->flags |= REQ_F_NOWAIT;
2991 
2992 	ioprio = READ_ONCE(sqe->ioprio);
2993 	if (ioprio) {
2994 		ret = ioprio_check_cap(ioprio);
2995 		if (ret)
2996 			return ret;
2997 
2998 		kiocb->ki_ioprio = ioprio;
2999 	} else
3000 		kiocb->ki_ioprio = get_current_ioprio();
3001 
3002 	if (ctx->flags & IORING_SETUP_IOPOLL) {
3003 		if (!(kiocb->ki_flags & IOCB_DIRECT) ||
3004 		    !kiocb->ki_filp->f_op->iopoll)
3005 			return -EOPNOTSUPP;
3006 
3007 		kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
3008 		kiocb->ki_complete = io_complete_rw_iopoll;
3009 		req->iopoll_completed = 0;
3010 	} else {
3011 		if (kiocb->ki_flags & IOCB_HIPRI)
3012 			return -EINVAL;
3013 		kiocb->ki_complete = io_complete_rw;
3014 	}
3015 
3016 	/* used for fixed read/write too - just read unconditionally */
3017 	req->buf_index = READ_ONCE(sqe->buf_index);
3018 	req->imu = NULL;
3019 
3020 	if (req->opcode == IORING_OP_READ_FIXED ||
3021 	    req->opcode == IORING_OP_WRITE_FIXED) {
3022 		struct io_ring_ctx *ctx = req->ctx;
3023 		u16 index;
3024 
3025 		if (unlikely(req->buf_index >= ctx->nr_user_bufs))
3026 			return -EFAULT;
3027 		index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
3028 		req->imu = ctx->user_bufs[index];
3029 		io_req_set_rsrc_node(req);
3030 	}
3031 
3032 	req->rw.addr = READ_ONCE(sqe->addr);
3033 	req->rw.len = READ_ONCE(sqe->len);
3034 	return 0;
3035 }
3036 
io_rw_done(struct kiocb * kiocb,ssize_t ret)3037 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
3038 {
3039 	switch (ret) {
3040 	case -EIOCBQUEUED:
3041 		break;
3042 	case -ERESTARTSYS:
3043 	case -ERESTARTNOINTR:
3044 	case -ERESTARTNOHAND:
3045 	case -ERESTART_RESTARTBLOCK:
3046 		/*
3047 		 * We can't just restart the syscall, since previously
3048 		 * submitted sqes may already be in progress. Just fail this
3049 		 * IO with EINTR.
3050 		 */
3051 		ret = -EINTR;
3052 		fallthrough;
3053 	default:
3054 		kiocb->ki_complete(kiocb, ret, 0);
3055 	}
3056 }
3057 
io_kiocb_update_pos(struct io_kiocb * req)3058 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
3059 {
3060 	struct kiocb *kiocb = &req->rw.kiocb;
3061 
3062 	if (kiocb->ki_pos != -1)
3063 		return &kiocb->ki_pos;
3064 
3065 	if (!(req->file->f_mode & FMODE_STREAM)) {
3066 		req->flags |= REQ_F_CUR_POS;
3067 		kiocb->ki_pos = req->file->f_pos;
3068 		return &kiocb->ki_pos;
3069 	}
3070 
3071 	kiocb->ki_pos = 0;
3072 	return NULL;
3073 }
3074 
kiocb_done(struct kiocb * kiocb,ssize_t ret,unsigned int issue_flags)3075 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
3076 		       unsigned int issue_flags)
3077 {
3078 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3079 
3080 	if (req->flags & REQ_F_CUR_POS)
3081 		req->file->f_pos = kiocb->ki_pos;
3082 	if (ret >= 0 && (kiocb->ki_complete == io_complete_rw)) {
3083 		if (!__io_complete_rw_common(req, ret)) {
3084 			/*
3085 			 * Safe to call io_end from here as we're inline
3086 			 * from the submission path.
3087 			 */
3088 			io_req_io_end(req);
3089 			__io_req_complete(req, issue_flags,
3090 					  io_fixup_rw_res(req, ret),
3091 					  io_put_rw_kbuf(req));
3092 		}
3093 	} else {
3094 		io_rw_done(kiocb, ret);
3095 	}
3096 
3097 	if (req->flags & REQ_F_REISSUE) {
3098 		req->flags &= ~REQ_F_REISSUE;
3099 		if (io_resubmit_prep(req)) {
3100 			io_req_task_queue_reissue(req);
3101 		} else {
3102 			unsigned int cflags = io_put_rw_kbuf(req);
3103 			struct io_ring_ctx *ctx = req->ctx;
3104 
3105 			ret = io_fixup_rw_res(req, ret);
3106 			req_set_fail(req);
3107 			if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3108 				mutex_lock(&ctx->uring_lock);
3109 				__io_req_complete(req, issue_flags, ret, cflags);
3110 				mutex_unlock(&ctx->uring_lock);
3111 			} else {
3112 				__io_req_complete(req, issue_flags, ret, cflags);
3113 			}
3114 		}
3115 	}
3116 }
3117 
__io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter,struct io_mapped_ubuf * imu)3118 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3119 			     struct io_mapped_ubuf *imu)
3120 {
3121 	size_t len = req->rw.len;
3122 	u64 buf_end, buf_addr = req->rw.addr;
3123 	size_t offset;
3124 
3125 	if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3126 		return -EFAULT;
3127 	/* not inside the mapped region */
3128 	if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3129 		return -EFAULT;
3130 
3131 	/*
3132 	 * May not be a start of buffer, set size appropriately
3133 	 * and advance us to the beginning.
3134 	 */
3135 	offset = buf_addr - imu->ubuf;
3136 	iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3137 
3138 	if (offset) {
3139 		/*
3140 		 * Don't use iov_iter_advance() here, as it's really slow for
3141 		 * using the latter parts of a big fixed buffer - it iterates
3142 		 * over each segment manually. We can cheat a bit here, because
3143 		 * we know that:
3144 		 *
3145 		 * 1) it's a BVEC iter, we set it up
3146 		 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3147 		 *    first and last bvec
3148 		 *
3149 		 * So just find our index, and adjust the iterator afterwards.
3150 		 * If the offset is within the first bvec (or the whole first
3151 		 * bvec, just use iov_iter_advance(). This makes it easier
3152 		 * since we can just skip the first segment, which may not
3153 		 * be PAGE_SIZE aligned.
3154 		 */
3155 		const struct bio_vec *bvec = imu->bvec;
3156 
3157 		if (offset < bvec->bv_len) {
3158 			iov_iter_advance(iter, offset);
3159 		} else {
3160 			unsigned long seg_skip;
3161 
3162 			/* skip first vec */
3163 			offset -= bvec->bv_len;
3164 			seg_skip = 1 + (offset >> PAGE_SHIFT);
3165 
3166 			iter->bvec = bvec + seg_skip;
3167 			iter->nr_segs -= seg_skip;
3168 			iter->count -= bvec->bv_len + offset;
3169 			iter->iov_offset = offset & ~PAGE_MASK;
3170 		}
3171 	}
3172 
3173 	return 0;
3174 }
3175 
io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter)3176 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3177 {
3178 	if (WARN_ON_ONCE(!req->imu))
3179 		return -EFAULT;
3180 	return __io_import_fixed(req, rw, iter, req->imu);
3181 }
3182 
io_ring_submit_unlock(struct io_ring_ctx * ctx,bool needs_lock)3183 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3184 {
3185 	if (needs_lock)
3186 		mutex_unlock(&ctx->uring_lock);
3187 }
3188 
io_ring_submit_lock(struct io_ring_ctx * ctx,bool needs_lock)3189 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3190 {
3191 	/*
3192 	 * "Normal" inline submissions always hold the uring_lock, since we
3193 	 * grab it from the system call. Same is true for the SQPOLL offload.
3194 	 * The only exception is when we've detached the request and issue it
3195 	 * from an async worker thread, grab the lock for that case.
3196 	 */
3197 	if (needs_lock)
3198 		mutex_lock(&ctx->uring_lock);
3199 }
3200 
io_buffer_select(struct io_kiocb * req,size_t * len,int bgid,struct io_buffer * kbuf,bool needs_lock)3201 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3202 					  int bgid, struct io_buffer *kbuf,
3203 					  bool needs_lock)
3204 {
3205 	struct io_buffer *head;
3206 
3207 	if (req->flags & REQ_F_BUFFER_SELECTED)
3208 		return kbuf;
3209 
3210 	io_ring_submit_lock(req->ctx, needs_lock);
3211 
3212 	lockdep_assert_held(&req->ctx->uring_lock);
3213 
3214 	head = xa_load(&req->ctx->io_buffers, bgid);
3215 	if (head) {
3216 		if (!list_empty(&head->list)) {
3217 			kbuf = list_last_entry(&head->list, struct io_buffer,
3218 							list);
3219 			list_del(&kbuf->list);
3220 		} else {
3221 			kbuf = head;
3222 			xa_erase(&req->ctx->io_buffers, bgid);
3223 		}
3224 		if (*len > kbuf->len)
3225 			*len = kbuf->len;
3226 	} else {
3227 		kbuf = ERR_PTR(-ENOBUFS);
3228 	}
3229 
3230 	io_ring_submit_unlock(req->ctx, needs_lock);
3231 
3232 	return kbuf;
3233 }
3234 
io_rw_buffer_select(struct io_kiocb * req,size_t * len,bool needs_lock)3235 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3236 					bool needs_lock)
3237 {
3238 	struct io_buffer *kbuf;
3239 	u16 bgid;
3240 
3241 	kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3242 	bgid = req->buf_index;
3243 	kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3244 	if (IS_ERR(kbuf))
3245 		return kbuf;
3246 	req->rw.addr = (u64) (unsigned long) kbuf;
3247 	req->flags |= REQ_F_BUFFER_SELECTED;
3248 	return u64_to_user_ptr(kbuf->addr);
3249 }
3250 
3251 #ifdef CONFIG_COMPAT
io_compat_import(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3252 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3253 				bool needs_lock)
3254 {
3255 	struct compat_iovec __user *uiov;
3256 	compat_ssize_t clen;
3257 	void __user *buf;
3258 	ssize_t len;
3259 
3260 	uiov = u64_to_user_ptr(req->rw.addr);
3261 	if (!access_ok(uiov, sizeof(*uiov)))
3262 		return -EFAULT;
3263 	if (__get_user(clen, &uiov->iov_len))
3264 		return -EFAULT;
3265 	if (clen < 0)
3266 		return -EINVAL;
3267 
3268 	len = clen;
3269 	buf = io_rw_buffer_select(req, &len, needs_lock);
3270 	if (IS_ERR(buf))
3271 		return PTR_ERR(buf);
3272 	iov[0].iov_base = buf;
3273 	iov[0].iov_len = (compat_size_t) len;
3274 	return 0;
3275 }
3276 #endif
3277 
__io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3278 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3279 				      bool needs_lock)
3280 {
3281 	struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3282 	void __user *buf;
3283 	ssize_t len;
3284 
3285 	if (copy_from_user(iov, uiov, sizeof(*uiov)))
3286 		return -EFAULT;
3287 
3288 	len = iov[0].iov_len;
3289 	if (len < 0)
3290 		return -EINVAL;
3291 	buf = io_rw_buffer_select(req, &len, needs_lock);
3292 	if (IS_ERR(buf))
3293 		return PTR_ERR(buf);
3294 	iov[0].iov_base = buf;
3295 	iov[0].iov_len = len;
3296 	return 0;
3297 }
3298 
io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3299 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3300 				    bool needs_lock)
3301 {
3302 	if (req->flags & REQ_F_BUFFER_SELECTED) {
3303 		struct io_buffer *kbuf;
3304 
3305 		kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3306 		iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3307 		iov[0].iov_len = kbuf->len;
3308 		return 0;
3309 	}
3310 	if (req->rw.len != 1)
3311 		return -EINVAL;
3312 
3313 #ifdef CONFIG_COMPAT
3314 	if (req->ctx->compat)
3315 		return io_compat_import(req, iov, needs_lock);
3316 #endif
3317 
3318 	return __io_iov_buffer_select(req, iov, needs_lock);
3319 }
3320 
io_import_iovec(int rw,struct io_kiocb * req,struct iovec ** iovec,struct iov_iter * iter,bool needs_lock)3321 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3322 			   struct iov_iter *iter, bool needs_lock)
3323 {
3324 	void __user *buf = u64_to_user_ptr(req->rw.addr);
3325 	size_t sqe_len = req->rw.len;
3326 	u8 opcode = req->opcode;
3327 	ssize_t ret;
3328 
3329 	if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3330 		*iovec = NULL;
3331 		return io_import_fixed(req, rw, iter);
3332 	}
3333 
3334 	/* buffer index only valid with fixed read/write, or buffer select  */
3335 	if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3336 		return -EINVAL;
3337 
3338 	if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3339 		if (req->flags & REQ_F_BUFFER_SELECT) {
3340 			buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3341 			if (IS_ERR(buf))
3342 				return PTR_ERR(buf);
3343 			req->rw.len = sqe_len;
3344 		}
3345 
3346 		ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3347 		*iovec = NULL;
3348 		return ret;
3349 	}
3350 
3351 	if (req->flags & REQ_F_BUFFER_SELECT) {
3352 		ret = io_iov_buffer_select(req, *iovec, needs_lock);
3353 		if (!ret)
3354 			iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3355 		*iovec = NULL;
3356 		return ret;
3357 	}
3358 
3359 	return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3360 			      req->ctx->compat);
3361 }
3362 
io_kiocb_ppos(struct kiocb * kiocb)3363 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3364 {
3365 	return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3366 }
3367 
3368 /*
3369  * For files that don't have ->read_iter() and ->write_iter(), handle them
3370  * by looping over ->read() or ->write() manually.
3371  */
loop_rw_iter(int rw,struct io_kiocb * req,struct iov_iter * iter)3372 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3373 {
3374 	struct kiocb *kiocb = &req->rw.kiocb;
3375 	struct file *file = req->file;
3376 	ssize_t ret = 0;
3377 	loff_t *ppos;
3378 
3379 	/*
3380 	 * Don't support polled IO through this interface, and we can't
3381 	 * support non-blocking either. For the latter, this just causes
3382 	 * the kiocb to be handled from an async context.
3383 	 */
3384 	if (kiocb->ki_flags & IOCB_HIPRI)
3385 		return -EOPNOTSUPP;
3386 	if (kiocb->ki_flags & IOCB_NOWAIT)
3387 		return -EAGAIN;
3388 
3389 	ppos = io_kiocb_ppos(kiocb);
3390 
3391 	while (iov_iter_count(iter)) {
3392 		struct iovec iovec;
3393 		ssize_t nr;
3394 
3395 		if (!iov_iter_is_bvec(iter)) {
3396 			iovec = iov_iter_iovec(iter);
3397 		} else {
3398 			iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3399 			iovec.iov_len = req->rw.len;
3400 		}
3401 
3402 		if (rw == READ) {
3403 			nr = file->f_op->read(file, iovec.iov_base,
3404 					      iovec.iov_len, ppos);
3405 		} else {
3406 			nr = file->f_op->write(file, iovec.iov_base,
3407 					       iovec.iov_len, ppos);
3408 		}
3409 
3410 		if (nr < 0) {
3411 			if (!ret)
3412 				ret = nr;
3413 			break;
3414 		}
3415 		ret += nr;
3416 		if (!iov_iter_is_bvec(iter)) {
3417 			iov_iter_advance(iter, nr);
3418 		} else {
3419 			req->rw.addr += nr;
3420 			req->rw.len -= nr;
3421 			if (!req->rw.len)
3422 				break;
3423 		}
3424 		if (nr != iovec.iov_len)
3425 			break;
3426 	}
3427 
3428 	return ret;
3429 }
3430 
io_req_map_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter)3431 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3432 			  const struct iovec *fast_iov, struct iov_iter *iter)
3433 {
3434 	struct io_async_rw *rw = req->async_data;
3435 
3436 	memcpy(&rw->iter, iter, sizeof(*iter));
3437 	rw->free_iovec = iovec;
3438 	rw->bytes_done = 0;
3439 	/* can only be fixed buffers, no need to do anything */
3440 	if (iov_iter_is_bvec(iter))
3441 		return;
3442 	if (!iovec) {
3443 		unsigned iov_off = 0;
3444 
3445 		rw->iter.iov = rw->fast_iov;
3446 		if (iter->iov != fast_iov) {
3447 			iov_off = iter->iov - fast_iov;
3448 			rw->iter.iov += iov_off;
3449 		}
3450 		if (rw->fast_iov != fast_iov)
3451 			memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3452 			       sizeof(struct iovec) * iter->nr_segs);
3453 	} else {
3454 		req->flags |= REQ_F_NEED_CLEANUP;
3455 	}
3456 }
3457 
io_alloc_async_data(struct io_kiocb * req)3458 static inline int io_alloc_async_data(struct io_kiocb *req)
3459 {
3460 	WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3461 	req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3462 	return req->async_data == NULL;
3463 }
3464 
io_setup_async_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter,bool force)3465 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3466 			     const struct iovec *fast_iov,
3467 			     struct iov_iter *iter, bool force)
3468 {
3469 	if (!force && !io_op_defs[req->opcode].needs_async_setup)
3470 		return 0;
3471 	if (!req->async_data) {
3472 		struct io_async_rw *iorw;
3473 
3474 		if (io_alloc_async_data(req)) {
3475 			kfree(iovec);
3476 			return -ENOMEM;
3477 		}
3478 
3479 		io_req_map_rw(req, iovec, fast_iov, iter);
3480 		iorw = req->async_data;
3481 		/* we've copied and mapped the iter, ensure state is saved */
3482 		iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3483 	}
3484 	return 0;
3485 }
3486 
io_rw_prep_async(struct io_kiocb * req,int rw)3487 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3488 {
3489 	struct io_async_rw *iorw = req->async_data;
3490 	struct iovec *iov = iorw->fast_iov;
3491 	int ret;
3492 
3493 	iorw->bytes_done = 0;
3494 	iorw->free_iovec = NULL;
3495 
3496 	ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3497 	if (unlikely(ret < 0))
3498 		return ret;
3499 
3500 	if (iov) {
3501 		iorw->free_iovec = iov;
3502 		req->flags |= REQ_F_NEED_CLEANUP;
3503 	}
3504 	iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3505 	return 0;
3506 }
3507 
io_read_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3508 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3509 {
3510 	if (unlikely(!(req->file->f_mode & FMODE_READ)))
3511 		return -EBADF;
3512 	return io_prep_rw(req, sqe, READ);
3513 }
3514 
3515 /*
3516  * This is our waitqueue callback handler, registered through lock_page_async()
3517  * when we initially tried to do the IO with the iocb armed our waitqueue.
3518  * This gets called when the page is unlocked, and we generally expect that to
3519  * happen when the page IO is completed and the page is now uptodate. This will
3520  * queue a task_work based retry of the operation, attempting to copy the data
3521  * again. If the latter fails because the page was NOT uptodate, then we will
3522  * do a thread based blocking retry of the operation. That's the unexpected
3523  * slow path.
3524  */
io_async_buf_func(struct wait_queue_entry * wait,unsigned mode,int sync,void * arg)3525 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3526 			     int sync, void *arg)
3527 {
3528 	struct wait_page_queue *wpq;
3529 	struct io_kiocb *req = wait->private;
3530 	struct wait_page_key *key = arg;
3531 
3532 	wpq = container_of(wait, struct wait_page_queue, wait);
3533 
3534 	if (!wake_page_match(wpq, key))
3535 		return 0;
3536 
3537 	req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3538 	list_del_init(&wait->entry);
3539 	io_req_task_queue(req);
3540 	return 1;
3541 }
3542 
3543 /*
3544  * This controls whether a given IO request should be armed for async page
3545  * based retry. If we return false here, the request is handed to the async
3546  * worker threads for retry. If we're doing buffered reads on a regular file,
3547  * we prepare a private wait_page_queue entry and retry the operation. This
3548  * will either succeed because the page is now uptodate and unlocked, or it
3549  * will register a callback when the page is unlocked at IO completion. Through
3550  * that callback, io_uring uses task_work to setup a retry of the operation.
3551  * That retry will attempt the buffered read again. The retry will generally
3552  * succeed, or in rare cases where it fails, we then fall back to using the
3553  * async worker threads for a blocking retry.
3554  */
io_rw_should_retry(struct io_kiocb * req)3555 static bool io_rw_should_retry(struct io_kiocb *req)
3556 {
3557 	struct io_async_rw *rw = req->async_data;
3558 	struct wait_page_queue *wait = &rw->wpq;
3559 	struct kiocb *kiocb = &req->rw.kiocb;
3560 
3561 	/* never retry for NOWAIT, we just complete with -EAGAIN */
3562 	if (req->flags & REQ_F_NOWAIT)
3563 		return false;
3564 
3565 	/* Only for buffered IO */
3566 	if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3567 		return false;
3568 
3569 	/*
3570 	 * just use poll if we can, and don't attempt if the fs doesn't
3571 	 * support callback based unlocks
3572 	 */
3573 	if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3574 		return false;
3575 
3576 	wait->wait.func = io_async_buf_func;
3577 	wait->wait.private = req;
3578 	wait->wait.flags = 0;
3579 	INIT_LIST_HEAD(&wait->wait.entry);
3580 	kiocb->ki_flags |= IOCB_WAITQ;
3581 	kiocb->ki_flags &= ~IOCB_NOWAIT;
3582 	kiocb->ki_waitq = wait;
3583 	return true;
3584 }
3585 
io_iter_do_read(struct io_kiocb * req,struct iov_iter * iter)3586 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3587 {
3588 	if (req->file->f_op->read_iter)
3589 		return call_read_iter(req->file, &req->rw.kiocb, iter);
3590 	else if (req->file->f_op->read)
3591 		return loop_rw_iter(READ, req, iter);
3592 	else
3593 		return -EINVAL;
3594 }
3595 
need_read_all(struct io_kiocb * req)3596 static bool need_read_all(struct io_kiocb *req)
3597 {
3598 	return req->flags & REQ_F_ISREG ||
3599 		S_ISBLK(file_inode(req->file)->i_mode);
3600 }
3601 
io_read(struct io_kiocb * req,unsigned int issue_flags)3602 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3603 {
3604 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3605 	struct kiocb *kiocb = &req->rw.kiocb;
3606 	struct iov_iter __iter, *iter = &__iter;
3607 	struct io_async_rw *rw = req->async_data;
3608 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3609 	struct iov_iter_state __state, *state;
3610 	ssize_t ret, ret2;
3611 	loff_t *ppos;
3612 
3613 	if (rw) {
3614 		iter = &rw->iter;
3615 		state = &rw->iter_state;
3616 		/*
3617 		 * We come here from an earlier attempt, restore our state to
3618 		 * match in case it doesn't. It's cheap enough that we don't
3619 		 * need to make this conditional.
3620 		 */
3621 		iov_iter_restore(iter, state);
3622 		iovec = NULL;
3623 	} else {
3624 		ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3625 		if (ret < 0)
3626 			return ret;
3627 		state = &__state;
3628 		iov_iter_save_state(iter, state);
3629 	}
3630 	req->result = iov_iter_count(iter);
3631 
3632 	/* Ensure we clear previously set non-block flag */
3633 	if (!force_nonblock)
3634 		kiocb->ki_flags &= ~IOCB_NOWAIT;
3635 	else
3636 		kiocb->ki_flags |= IOCB_NOWAIT;
3637 
3638 	/* If the file doesn't support async, just async punt */
3639 	if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3640 		ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3641 		return ret ?: -EAGAIN;
3642 	}
3643 
3644 	ppos = io_kiocb_update_pos(req);
3645 
3646 	ret = rw_verify_area(READ, req->file, ppos, req->result);
3647 	if (unlikely(ret)) {
3648 		kfree(iovec);
3649 		return ret;
3650 	}
3651 
3652 	ret = io_iter_do_read(req, iter);
3653 
3654 	if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3655 		req->flags &= ~REQ_F_REISSUE;
3656 		/* IOPOLL retry should happen for io-wq threads */
3657 		if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3658 			goto done;
3659 		/* no retry on NONBLOCK nor RWF_NOWAIT */
3660 		if (req->flags & REQ_F_NOWAIT)
3661 			goto done;
3662 		ret = 0;
3663 	} else if (ret == -EIOCBQUEUED) {
3664 		goto out_free;
3665 	} else if (ret <= 0 || ret == req->result || !force_nonblock ||
3666 		   (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3667 		/* read all, failed, already did sync or don't want to retry */
3668 		goto done;
3669 	}
3670 
3671 	/*
3672 	 * Don't depend on the iter state matching what was consumed, or being
3673 	 * untouched in case of error. Restore it and we'll advance it
3674 	 * manually if we need to.
3675 	 */
3676 	iov_iter_restore(iter, state);
3677 
3678 	ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3679 	if (ret2)
3680 		return ret2;
3681 
3682 	iovec = NULL;
3683 	rw = req->async_data;
3684 	/*
3685 	 * Now use our persistent iterator and state, if we aren't already.
3686 	 * We've restored and mapped the iter to match.
3687 	 */
3688 	if (iter != &rw->iter) {
3689 		iter = &rw->iter;
3690 		state = &rw->iter_state;
3691 	}
3692 
3693 	do {
3694 		/*
3695 		 * We end up here because of a partial read, either from
3696 		 * above or inside this loop. Advance the iter by the bytes
3697 		 * that were consumed.
3698 		 */
3699 		iov_iter_advance(iter, ret);
3700 		if (!iov_iter_count(iter))
3701 			break;
3702 		rw->bytes_done += ret;
3703 		iov_iter_save_state(iter, state);
3704 
3705 		/* if we can retry, do so with the callbacks armed */
3706 		if (!io_rw_should_retry(req)) {
3707 			kiocb->ki_flags &= ~IOCB_WAITQ;
3708 			return -EAGAIN;
3709 		}
3710 
3711 		req->result = iov_iter_count(iter);
3712 		/*
3713 		 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3714 		 * we get -EIOCBQUEUED, then we'll get a notification when the
3715 		 * desired page gets unlocked. We can also get a partial read
3716 		 * here, and if we do, then just retry at the new offset.
3717 		 */
3718 		ret = io_iter_do_read(req, iter);
3719 		if (ret == -EIOCBQUEUED)
3720 			return 0;
3721 		/* we got some bytes, but not all. retry. */
3722 		kiocb->ki_flags &= ~IOCB_WAITQ;
3723 		iov_iter_restore(iter, state);
3724 	} while (ret > 0);
3725 done:
3726 	kiocb_done(kiocb, ret, issue_flags);
3727 out_free:
3728 	/* it's faster to check here then delegate to kfree */
3729 	if (iovec)
3730 		kfree(iovec);
3731 	return 0;
3732 }
3733 
io_write_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3734 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3735 {
3736 	if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3737 		return -EBADF;
3738 	return io_prep_rw(req, sqe, WRITE);
3739 }
3740 
io_write(struct io_kiocb * req,unsigned int issue_flags)3741 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3742 {
3743 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3744 	struct kiocb *kiocb = &req->rw.kiocb;
3745 	struct iov_iter __iter, *iter = &__iter;
3746 	struct io_async_rw *rw = req->async_data;
3747 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3748 	struct iov_iter_state __state, *state;
3749 	ssize_t ret, ret2;
3750 	loff_t *ppos;
3751 
3752 	if (rw) {
3753 		iter = &rw->iter;
3754 		state = &rw->iter_state;
3755 		iov_iter_restore(iter, state);
3756 		iovec = NULL;
3757 	} else {
3758 		ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3759 		if (ret < 0)
3760 			return ret;
3761 		state = &__state;
3762 		iov_iter_save_state(iter, state);
3763 	}
3764 	req->result = iov_iter_count(iter);
3765 
3766 	/* Ensure we clear previously set non-block flag */
3767 	if (!force_nonblock)
3768 		kiocb->ki_flags &= ~IOCB_NOWAIT;
3769 	else
3770 		kiocb->ki_flags |= IOCB_NOWAIT;
3771 
3772 	/* If the file doesn't support async, just async punt */
3773 	if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3774 		goto copy_iov;
3775 
3776 	/* file path doesn't support NOWAIT for non-direct_IO */
3777 	if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3778 	    (req->flags & REQ_F_ISREG))
3779 		goto copy_iov;
3780 
3781 	ppos = io_kiocb_update_pos(req);
3782 
3783 	ret = rw_verify_area(WRITE, req->file, ppos, req->result);
3784 	if (unlikely(ret))
3785 		goto out_free;
3786 
3787 	/*
3788 	 * Open-code file_start_write here to grab freeze protection,
3789 	 * which will be released by another thread in
3790 	 * io_complete_rw().  Fool lockdep by telling it the lock got
3791 	 * released so that it doesn't complain about the held lock when
3792 	 * we return to userspace.
3793 	 */
3794 	if (req->flags & REQ_F_ISREG) {
3795 		sb_start_write(file_inode(req->file)->i_sb);
3796 		__sb_writers_release(file_inode(req->file)->i_sb,
3797 					SB_FREEZE_WRITE);
3798 	}
3799 	kiocb->ki_flags |= IOCB_WRITE;
3800 
3801 	if (req->file->f_op->write_iter)
3802 		ret2 = call_write_iter(req->file, kiocb, iter);
3803 	else if (req->file->f_op->write)
3804 		ret2 = loop_rw_iter(WRITE, req, iter);
3805 	else
3806 		ret2 = -EINVAL;
3807 
3808 	if (req->flags & REQ_F_REISSUE) {
3809 		req->flags &= ~REQ_F_REISSUE;
3810 		ret2 = -EAGAIN;
3811 	}
3812 
3813 	/*
3814 	 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3815 	 * retry them without IOCB_NOWAIT.
3816 	 */
3817 	if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3818 		ret2 = -EAGAIN;
3819 	/* no retry on NONBLOCK nor RWF_NOWAIT */
3820 	if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3821 		goto done;
3822 	if (!force_nonblock || ret2 != -EAGAIN) {
3823 		/* IOPOLL retry should happen for io-wq threads */
3824 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3825 			goto copy_iov;
3826 done:
3827 		kiocb_done(kiocb, ret2, issue_flags);
3828 	} else {
3829 copy_iov:
3830 		iov_iter_restore(iter, state);
3831 		ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3832 		if (!ret) {
3833 			if (kiocb->ki_flags & IOCB_WRITE)
3834 				kiocb_end_write(req);
3835 			return -EAGAIN;
3836 		}
3837 		return ret;
3838 	}
3839 out_free:
3840 	/* it's reportedly faster than delegating the null check to kfree() */
3841 	if (iovec)
3842 		kfree(iovec);
3843 	return ret;
3844 }
3845 
io_renameat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3846 static int io_renameat_prep(struct io_kiocb *req,
3847 			    const struct io_uring_sqe *sqe)
3848 {
3849 	struct io_rename *ren = &req->rename;
3850 	const char __user *oldf, *newf;
3851 
3852 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3853 		return -EINVAL;
3854 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3855 		return -EINVAL;
3856 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
3857 		return -EBADF;
3858 
3859 	ren->old_dfd = READ_ONCE(sqe->fd);
3860 	oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3861 	newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3862 	ren->new_dfd = READ_ONCE(sqe->len);
3863 	ren->flags = READ_ONCE(sqe->rename_flags);
3864 
3865 	ren->oldpath = getname(oldf);
3866 	if (IS_ERR(ren->oldpath))
3867 		return PTR_ERR(ren->oldpath);
3868 
3869 	ren->newpath = getname(newf);
3870 	if (IS_ERR(ren->newpath)) {
3871 		putname(ren->oldpath);
3872 		return PTR_ERR(ren->newpath);
3873 	}
3874 
3875 	req->flags |= REQ_F_NEED_CLEANUP;
3876 	return 0;
3877 }
3878 
io_renameat(struct io_kiocb * req,unsigned int issue_flags)3879 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3880 {
3881 	struct io_rename *ren = &req->rename;
3882 	int ret;
3883 
3884 	if (issue_flags & IO_URING_F_NONBLOCK)
3885 		return -EAGAIN;
3886 
3887 	ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3888 				ren->newpath, ren->flags);
3889 
3890 	req->flags &= ~REQ_F_NEED_CLEANUP;
3891 	if (ret < 0)
3892 		req_set_fail(req);
3893 	io_req_complete(req, ret);
3894 	return 0;
3895 }
3896 
io_unlinkat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3897 static int io_unlinkat_prep(struct io_kiocb *req,
3898 			    const struct io_uring_sqe *sqe)
3899 {
3900 	struct io_unlink *un = &req->unlink;
3901 	const char __user *fname;
3902 
3903 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3904 		return -EINVAL;
3905 	if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3906 	    sqe->splice_fd_in)
3907 		return -EINVAL;
3908 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
3909 		return -EBADF;
3910 
3911 	un->dfd = READ_ONCE(sqe->fd);
3912 
3913 	un->flags = READ_ONCE(sqe->unlink_flags);
3914 	if (un->flags & ~AT_REMOVEDIR)
3915 		return -EINVAL;
3916 
3917 	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3918 	un->filename = getname(fname);
3919 	if (IS_ERR(un->filename))
3920 		return PTR_ERR(un->filename);
3921 
3922 	req->flags |= REQ_F_NEED_CLEANUP;
3923 	return 0;
3924 }
3925 
io_unlinkat(struct io_kiocb * req,unsigned int issue_flags)3926 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3927 {
3928 	struct io_unlink *un = &req->unlink;
3929 	int ret;
3930 
3931 	if (issue_flags & IO_URING_F_NONBLOCK)
3932 		return -EAGAIN;
3933 
3934 	if (un->flags & AT_REMOVEDIR)
3935 		ret = do_rmdir(un->dfd, un->filename);
3936 	else
3937 		ret = do_unlinkat(un->dfd, un->filename);
3938 
3939 	req->flags &= ~REQ_F_NEED_CLEANUP;
3940 	if (ret < 0)
3941 		req_set_fail(req);
3942 	io_req_complete(req, ret);
3943 	return 0;
3944 }
3945 
io_mkdirat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3946 static int io_mkdirat_prep(struct io_kiocb *req,
3947 			    const struct io_uring_sqe *sqe)
3948 {
3949 	struct io_mkdir *mkd = &req->mkdir;
3950 	const char __user *fname;
3951 
3952 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3953 		return -EINVAL;
3954 	if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
3955 	    sqe->splice_fd_in)
3956 		return -EINVAL;
3957 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
3958 		return -EBADF;
3959 
3960 	mkd->dfd = READ_ONCE(sqe->fd);
3961 	mkd->mode = READ_ONCE(sqe->len);
3962 
3963 	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3964 	mkd->filename = getname(fname);
3965 	if (IS_ERR(mkd->filename))
3966 		return PTR_ERR(mkd->filename);
3967 
3968 	req->flags |= REQ_F_NEED_CLEANUP;
3969 	return 0;
3970 }
3971 
io_mkdirat(struct io_kiocb * req,int issue_flags)3972 static int io_mkdirat(struct io_kiocb *req, int issue_flags)
3973 {
3974 	struct io_mkdir *mkd = &req->mkdir;
3975 	int ret;
3976 
3977 	if (issue_flags & IO_URING_F_NONBLOCK)
3978 		return -EAGAIN;
3979 
3980 	ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
3981 
3982 	req->flags &= ~REQ_F_NEED_CLEANUP;
3983 	if (ret < 0)
3984 		req_set_fail(req);
3985 	io_req_complete(req, ret);
3986 	return 0;
3987 }
3988 
io_symlinkat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3989 static int io_symlinkat_prep(struct io_kiocb *req,
3990 			    const struct io_uring_sqe *sqe)
3991 {
3992 	struct io_symlink *sl = &req->symlink;
3993 	const char __user *oldpath, *newpath;
3994 
3995 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3996 		return -EINVAL;
3997 	if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
3998 	    sqe->splice_fd_in)
3999 		return -EINVAL;
4000 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
4001 		return -EBADF;
4002 
4003 	sl->new_dfd = READ_ONCE(sqe->fd);
4004 	oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
4005 	newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4006 
4007 	sl->oldpath = getname(oldpath);
4008 	if (IS_ERR(sl->oldpath))
4009 		return PTR_ERR(sl->oldpath);
4010 
4011 	sl->newpath = getname(newpath);
4012 	if (IS_ERR(sl->newpath)) {
4013 		putname(sl->oldpath);
4014 		return PTR_ERR(sl->newpath);
4015 	}
4016 
4017 	req->flags |= REQ_F_NEED_CLEANUP;
4018 	return 0;
4019 }
4020 
io_symlinkat(struct io_kiocb * req,int issue_flags)4021 static int io_symlinkat(struct io_kiocb *req, int issue_flags)
4022 {
4023 	struct io_symlink *sl = &req->symlink;
4024 	int ret;
4025 
4026 	if (issue_flags & IO_URING_F_NONBLOCK)
4027 		return -EAGAIN;
4028 
4029 	ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
4030 
4031 	req->flags &= ~REQ_F_NEED_CLEANUP;
4032 	if (ret < 0)
4033 		req_set_fail(req);
4034 	io_req_complete(req, ret);
4035 	return 0;
4036 }
4037 
io_linkat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4038 static int io_linkat_prep(struct io_kiocb *req,
4039 			    const struct io_uring_sqe *sqe)
4040 {
4041 	struct io_hardlink *lnk = &req->hardlink;
4042 	const char __user *oldf, *newf;
4043 
4044 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4045 		return -EINVAL;
4046 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4047 		return -EINVAL;
4048 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
4049 		return -EBADF;
4050 
4051 	lnk->old_dfd = READ_ONCE(sqe->fd);
4052 	lnk->new_dfd = READ_ONCE(sqe->len);
4053 	oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
4054 	newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4055 	lnk->flags = READ_ONCE(sqe->hardlink_flags);
4056 
4057 	lnk->oldpath = getname_uflags(oldf, lnk->flags);
4058 	if (IS_ERR(lnk->oldpath))
4059 		return PTR_ERR(lnk->oldpath);
4060 
4061 	lnk->newpath = getname(newf);
4062 	if (IS_ERR(lnk->newpath)) {
4063 		putname(lnk->oldpath);
4064 		return PTR_ERR(lnk->newpath);
4065 	}
4066 
4067 	req->flags |= REQ_F_NEED_CLEANUP;
4068 	return 0;
4069 }
4070 
io_linkat(struct io_kiocb * req,int issue_flags)4071 static int io_linkat(struct io_kiocb *req, int issue_flags)
4072 {
4073 	struct io_hardlink *lnk = &req->hardlink;
4074 	int ret;
4075 
4076 	if (issue_flags & IO_URING_F_NONBLOCK)
4077 		return -EAGAIN;
4078 
4079 	ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
4080 				lnk->newpath, lnk->flags);
4081 
4082 	req->flags &= ~REQ_F_NEED_CLEANUP;
4083 	if (ret < 0)
4084 		req_set_fail(req);
4085 	io_req_complete(req, ret);
4086 	return 0;
4087 }
4088 
io_shutdown_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4089 static int io_shutdown_prep(struct io_kiocb *req,
4090 			    const struct io_uring_sqe *sqe)
4091 {
4092 #if defined(CONFIG_NET)
4093 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4094 		return -EINVAL;
4095 	if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
4096 		     sqe->buf_index || sqe->splice_fd_in))
4097 		return -EINVAL;
4098 
4099 	req->shutdown.how = READ_ONCE(sqe->len);
4100 	return 0;
4101 #else
4102 	return -EOPNOTSUPP;
4103 #endif
4104 }
4105 
io_shutdown(struct io_kiocb * req,unsigned int issue_flags)4106 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
4107 {
4108 #if defined(CONFIG_NET)
4109 	struct socket *sock;
4110 	int ret;
4111 
4112 	if (issue_flags & IO_URING_F_NONBLOCK)
4113 		return -EAGAIN;
4114 
4115 	sock = sock_from_file(req->file);
4116 	if (unlikely(!sock))
4117 		return -ENOTSOCK;
4118 
4119 	ret = __sys_shutdown_sock(sock, req->shutdown.how);
4120 	if (ret < 0)
4121 		req_set_fail(req);
4122 	io_req_complete(req, ret);
4123 	return 0;
4124 #else
4125 	return -EOPNOTSUPP;
4126 #endif
4127 }
4128 
__io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4129 static int __io_splice_prep(struct io_kiocb *req,
4130 			    const struct io_uring_sqe *sqe)
4131 {
4132 	struct io_splice *sp = &req->splice;
4133 	unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
4134 
4135 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4136 		return -EINVAL;
4137 
4138 	sp->len = READ_ONCE(sqe->len);
4139 	sp->flags = READ_ONCE(sqe->splice_flags);
4140 	if (unlikely(sp->flags & ~valid_flags))
4141 		return -EINVAL;
4142 	sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
4143 	return 0;
4144 }
4145 
io_tee_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4146 static int io_tee_prep(struct io_kiocb *req,
4147 		       const struct io_uring_sqe *sqe)
4148 {
4149 	if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4150 		return -EINVAL;
4151 	return __io_splice_prep(req, sqe);
4152 }
4153 
io_tee(struct io_kiocb * req,unsigned int issue_flags)4154 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4155 {
4156 	struct io_splice *sp = &req->splice;
4157 	struct file *out = sp->file_out;
4158 	unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4159 	struct file *in;
4160 	long ret = 0;
4161 
4162 	if (issue_flags & IO_URING_F_NONBLOCK)
4163 		return -EAGAIN;
4164 
4165 	in = io_file_get(req->ctx, req, sp->splice_fd_in,
4166 			 (sp->flags & SPLICE_F_FD_IN_FIXED), issue_flags);
4167 	if (!in) {
4168 		ret = -EBADF;
4169 		goto done;
4170 	}
4171 
4172 	if (sp->len)
4173 		ret = do_tee(in, out, sp->len, flags);
4174 
4175 	if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4176 		io_put_file(in);
4177 done:
4178 	if (ret != sp->len)
4179 		req_set_fail(req);
4180 	io_req_complete(req, ret);
4181 	return 0;
4182 }
4183 
io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4184 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4185 {
4186 	struct io_splice *sp = &req->splice;
4187 
4188 	sp->off_in = READ_ONCE(sqe->splice_off_in);
4189 	sp->off_out = READ_ONCE(sqe->off);
4190 	return __io_splice_prep(req, sqe);
4191 }
4192 
io_splice(struct io_kiocb * req,unsigned int issue_flags)4193 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4194 {
4195 	struct io_splice *sp = &req->splice;
4196 	struct file *out = sp->file_out;
4197 	unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4198 	loff_t *poff_in, *poff_out;
4199 	struct file *in;
4200 	long ret = 0;
4201 
4202 	if (issue_flags & IO_URING_F_NONBLOCK)
4203 		return -EAGAIN;
4204 
4205 	in = io_file_get(req->ctx, req, sp->splice_fd_in,
4206 			 (sp->flags & SPLICE_F_FD_IN_FIXED), issue_flags);
4207 	if (!in) {
4208 		ret = -EBADF;
4209 		goto done;
4210 	}
4211 
4212 	poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4213 	poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4214 
4215 	if (sp->len)
4216 		ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4217 
4218 	if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4219 		io_put_file(in);
4220 done:
4221 	if (ret != sp->len)
4222 		req_set_fail(req);
4223 	io_req_complete(req, ret);
4224 	return 0;
4225 }
4226 
4227 /*
4228  * IORING_OP_NOP just posts a completion event, nothing else.
4229  */
io_nop(struct io_kiocb * req,unsigned int issue_flags)4230 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4231 {
4232 	struct io_ring_ctx *ctx = req->ctx;
4233 
4234 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4235 		return -EINVAL;
4236 
4237 	__io_req_complete(req, issue_flags, 0, 0);
4238 	return 0;
4239 }
4240 
io_fsync_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4241 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4242 {
4243 	struct io_ring_ctx *ctx = req->ctx;
4244 
4245 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4246 		return -EINVAL;
4247 	if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4248 		     sqe->splice_fd_in))
4249 		return -EINVAL;
4250 
4251 	req->sync.flags = READ_ONCE(sqe->fsync_flags);
4252 	if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4253 		return -EINVAL;
4254 
4255 	req->sync.off = READ_ONCE(sqe->off);
4256 	req->sync.len = READ_ONCE(sqe->len);
4257 	return 0;
4258 }
4259 
io_fsync(struct io_kiocb * req,unsigned int issue_flags)4260 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4261 {
4262 	loff_t end = req->sync.off + req->sync.len;
4263 	int ret;
4264 
4265 	/* fsync always requires a blocking context */
4266 	if (issue_flags & IO_URING_F_NONBLOCK)
4267 		return -EAGAIN;
4268 
4269 	ret = vfs_fsync_range(req->file, req->sync.off,
4270 				end > 0 ? end : LLONG_MAX,
4271 				req->sync.flags & IORING_FSYNC_DATASYNC);
4272 	if (ret < 0)
4273 		req_set_fail(req);
4274 	io_req_complete(req, ret);
4275 	return 0;
4276 }
4277 
io_fallocate_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4278 static int io_fallocate_prep(struct io_kiocb *req,
4279 			     const struct io_uring_sqe *sqe)
4280 {
4281 	if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4282 	    sqe->splice_fd_in)
4283 		return -EINVAL;
4284 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4285 		return -EINVAL;
4286 
4287 	req->sync.off = READ_ONCE(sqe->off);
4288 	req->sync.len = READ_ONCE(sqe->addr);
4289 	req->sync.mode = READ_ONCE(sqe->len);
4290 	return 0;
4291 }
4292 
io_fallocate(struct io_kiocb * req,unsigned int issue_flags)4293 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4294 {
4295 	int ret;
4296 
4297 	/* fallocate always requiring blocking context */
4298 	if (issue_flags & IO_URING_F_NONBLOCK)
4299 		return -EAGAIN;
4300 	ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4301 				req->sync.len);
4302 	if (ret < 0)
4303 		req_set_fail(req);
4304 	else
4305 		fsnotify_modify(req->file);
4306 	io_req_complete(req, ret);
4307 	return 0;
4308 }
4309 
__io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4310 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4311 {
4312 	const char __user *fname;
4313 	int ret;
4314 
4315 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4316 		return -EINVAL;
4317 	if (unlikely(sqe->ioprio || sqe->buf_index))
4318 		return -EINVAL;
4319 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
4320 		return -EBADF;
4321 
4322 	/* open.how should be already initialised */
4323 	if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4324 		req->open.how.flags |= O_LARGEFILE;
4325 
4326 	req->open.dfd = READ_ONCE(sqe->fd);
4327 	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4328 	req->open.filename = getname(fname);
4329 	if (IS_ERR(req->open.filename)) {
4330 		ret = PTR_ERR(req->open.filename);
4331 		req->open.filename = NULL;
4332 		return ret;
4333 	}
4334 
4335 	req->open.file_slot = READ_ONCE(sqe->file_index);
4336 	if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4337 		return -EINVAL;
4338 
4339 	req->open.nofile = rlimit(RLIMIT_NOFILE);
4340 	req->flags |= REQ_F_NEED_CLEANUP;
4341 	return 0;
4342 }
4343 
io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4344 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4345 {
4346 	u64 mode = READ_ONCE(sqe->len);
4347 	u64 flags = READ_ONCE(sqe->open_flags);
4348 
4349 	req->open.how = build_open_how(flags, mode);
4350 	return __io_openat_prep(req, sqe);
4351 }
4352 
io_openat2_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4353 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4354 {
4355 	struct open_how __user *how;
4356 	size_t len;
4357 	int ret;
4358 
4359 	how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4360 	len = READ_ONCE(sqe->len);
4361 	if (len < OPEN_HOW_SIZE_VER0)
4362 		return -EINVAL;
4363 
4364 	ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4365 					len);
4366 	if (ret)
4367 		return ret;
4368 
4369 	return __io_openat_prep(req, sqe);
4370 }
4371 
io_openat2(struct io_kiocb * req,unsigned int issue_flags)4372 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4373 {
4374 	struct open_flags op;
4375 	struct file *file;
4376 	bool resolve_nonblock, nonblock_set;
4377 	bool fixed = !!req->open.file_slot;
4378 	int ret;
4379 
4380 	ret = build_open_flags(&req->open.how, &op);
4381 	if (ret)
4382 		goto err;
4383 	nonblock_set = op.open_flag & O_NONBLOCK;
4384 	resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4385 	if (issue_flags & IO_URING_F_NONBLOCK) {
4386 		/*
4387 		 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4388 		 * it'll always -EAGAIN. Note that we test for __O_TMPFILE
4389 		 * because O_TMPFILE includes O_DIRECTORY, which isn't a flag
4390 		 * we need to force async for.
4391 		 */
4392 		if (req->open.how.flags & (O_TRUNC | O_CREAT | __O_TMPFILE))
4393 			return -EAGAIN;
4394 		op.lookup_flags |= LOOKUP_CACHED;
4395 		op.open_flag |= O_NONBLOCK;
4396 	}
4397 
4398 	if (!fixed) {
4399 		ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4400 		if (ret < 0)
4401 			goto err;
4402 	}
4403 
4404 	file = do_filp_open(req->open.dfd, req->open.filename, &op);
4405 	if (IS_ERR(file)) {
4406 		/*
4407 		 * We could hang on to this 'fd' on retrying, but seems like
4408 		 * marginal gain for something that is now known to be a slower
4409 		 * path. So just put it, and we'll get a new one when we retry.
4410 		 */
4411 		if (!fixed)
4412 			put_unused_fd(ret);
4413 
4414 		ret = PTR_ERR(file);
4415 		/* only retry if RESOLVE_CACHED wasn't already set by application */
4416 		if (ret == -EAGAIN &&
4417 		    (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4418 			return -EAGAIN;
4419 		goto err;
4420 	}
4421 
4422 	if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4423 		file->f_flags &= ~O_NONBLOCK;
4424 	fsnotify_open(file);
4425 
4426 	if (!fixed)
4427 		fd_install(ret, file);
4428 	else
4429 		ret = io_install_fixed_file(req, file, issue_flags,
4430 					    req->open.file_slot - 1);
4431 err:
4432 	putname(req->open.filename);
4433 	req->flags &= ~REQ_F_NEED_CLEANUP;
4434 	if (ret < 0)
4435 		req_set_fail(req);
4436 	__io_req_complete(req, issue_flags, ret, 0);
4437 	return 0;
4438 }
4439 
io_openat(struct io_kiocb * req,unsigned int issue_flags)4440 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4441 {
4442 	return io_openat2(req, issue_flags);
4443 }
4444 
io_remove_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4445 static int io_remove_buffers_prep(struct io_kiocb *req,
4446 				  const struct io_uring_sqe *sqe)
4447 {
4448 	struct io_provide_buf *p = &req->pbuf;
4449 	u64 tmp;
4450 
4451 	if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4452 	    sqe->splice_fd_in)
4453 		return -EINVAL;
4454 
4455 	tmp = READ_ONCE(sqe->fd);
4456 	if (!tmp || tmp > USHRT_MAX)
4457 		return -EINVAL;
4458 
4459 	memset(p, 0, sizeof(*p));
4460 	p->nbufs = tmp;
4461 	p->bgid = READ_ONCE(sqe->buf_group);
4462 	return 0;
4463 }
4464 
__io_remove_buffers(struct io_ring_ctx * ctx,struct io_buffer * buf,int bgid,unsigned nbufs)4465 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4466 			       int bgid, unsigned nbufs)
4467 {
4468 	unsigned i = 0;
4469 
4470 	/* shouldn't happen */
4471 	if (!nbufs)
4472 		return 0;
4473 
4474 	/* the head kbuf is the list itself */
4475 	while (!list_empty(&buf->list)) {
4476 		struct io_buffer *nxt;
4477 
4478 		nxt = list_first_entry(&buf->list, struct io_buffer, list);
4479 		list_del(&nxt->list);
4480 		kfree(nxt);
4481 		if (++i == nbufs)
4482 			return i;
4483 		cond_resched();
4484 	}
4485 	i++;
4486 	kfree(buf);
4487 	xa_erase(&ctx->io_buffers, bgid);
4488 
4489 	return i;
4490 }
4491 
io_remove_buffers(struct io_kiocb * req,unsigned int issue_flags)4492 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4493 {
4494 	struct io_provide_buf *p = &req->pbuf;
4495 	struct io_ring_ctx *ctx = req->ctx;
4496 	struct io_buffer *head;
4497 	int ret = 0;
4498 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4499 
4500 	io_ring_submit_lock(ctx, !force_nonblock);
4501 
4502 	lockdep_assert_held(&ctx->uring_lock);
4503 
4504 	ret = -ENOENT;
4505 	head = xa_load(&ctx->io_buffers, p->bgid);
4506 	if (head)
4507 		ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4508 	if (ret < 0)
4509 		req_set_fail(req);
4510 
4511 	/* complete before unlock, IOPOLL may need the lock */
4512 	__io_req_complete(req, issue_flags, ret, 0);
4513 	io_ring_submit_unlock(ctx, !force_nonblock);
4514 	return 0;
4515 }
4516 
io_provide_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4517 static int io_provide_buffers_prep(struct io_kiocb *req,
4518 				   const struct io_uring_sqe *sqe)
4519 {
4520 	unsigned long size, tmp_check;
4521 	struct io_provide_buf *p = &req->pbuf;
4522 	u64 tmp;
4523 
4524 	if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4525 		return -EINVAL;
4526 
4527 	tmp = READ_ONCE(sqe->fd);
4528 	if (!tmp || tmp > USHRT_MAX)
4529 		return -E2BIG;
4530 	p->nbufs = tmp;
4531 	p->addr = READ_ONCE(sqe->addr);
4532 	p->len = READ_ONCE(sqe->len);
4533 
4534 	if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4535 				&size))
4536 		return -EOVERFLOW;
4537 	if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4538 		return -EOVERFLOW;
4539 
4540 	size = (unsigned long)p->len * p->nbufs;
4541 	if (!access_ok(u64_to_user_ptr(p->addr), size))
4542 		return -EFAULT;
4543 
4544 	p->bgid = READ_ONCE(sqe->buf_group);
4545 	tmp = READ_ONCE(sqe->off);
4546 	if (tmp > USHRT_MAX)
4547 		return -E2BIG;
4548 	p->bid = tmp;
4549 	return 0;
4550 }
4551 
io_add_buffers(struct io_provide_buf * pbuf,struct io_buffer ** head)4552 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4553 {
4554 	struct io_buffer *buf;
4555 	u64 addr = pbuf->addr;
4556 	int i, bid = pbuf->bid;
4557 
4558 	for (i = 0; i < pbuf->nbufs; i++) {
4559 		buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4560 		if (!buf)
4561 			break;
4562 
4563 		buf->addr = addr;
4564 		buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4565 		buf->bid = bid;
4566 		addr += pbuf->len;
4567 		bid++;
4568 		if (!*head) {
4569 			INIT_LIST_HEAD(&buf->list);
4570 			*head = buf;
4571 		} else {
4572 			list_add_tail(&buf->list, &(*head)->list);
4573 		}
4574 		cond_resched();
4575 	}
4576 
4577 	return i ? i : -ENOMEM;
4578 }
4579 
io_provide_buffers(struct io_kiocb * req,unsigned int issue_flags)4580 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4581 {
4582 	struct io_provide_buf *p = &req->pbuf;
4583 	struct io_ring_ctx *ctx = req->ctx;
4584 	struct io_buffer *head, *list;
4585 	int ret = 0;
4586 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4587 
4588 	io_ring_submit_lock(ctx, !force_nonblock);
4589 
4590 	lockdep_assert_held(&ctx->uring_lock);
4591 
4592 	list = head = xa_load(&ctx->io_buffers, p->bgid);
4593 
4594 	ret = io_add_buffers(p, &head);
4595 	if (ret >= 0 && !list) {
4596 		ret = xa_insert(&ctx->io_buffers, p->bgid, head,
4597 				GFP_KERNEL_ACCOUNT);
4598 		if (ret < 0)
4599 			__io_remove_buffers(ctx, head, p->bgid, -1U);
4600 	}
4601 	if (ret < 0)
4602 		req_set_fail(req);
4603 	/* complete before unlock, IOPOLL may need the lock */
4604 	__io_req_complete(req, issue_flags, ret, 0);
4605 	io_ring_submit_unlock(ctx, !force_nonblock);
4606 	return 0;
4607 }
4608 
io_epoll_ctl_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4609 static int io_epoll_ctl_prep(struct io_kiocb *req,
4610 			     const struct io_uring_sqe *sqe)
4611 {
4612 #if defined(CONFIG_EPOLL)
4613 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4614 		return -EINVAL;
4615 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4616 		return -EINVAL;
4617 
4618 	req->epoll.epfd = READ_ONCE(sqe->fd);
4619 	req->epoll.op = READ_ONCE(sqe->len);
4620 	req->epoll.fd = READ_ONCE(sqe->off);
4621 
4622 	if (ep_op_has_event(req->epoll.op)) {
4623 		struct epoll_event __user *ev;
4624 
4625 		ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4626 		if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4627 			return -EFAULT;
4628 	}
4629 
4630 	return 0;
4631 #else
4632 	return -EOPNOTSUPP;
4633 #endif
4634 }
4635 
io_epoll_ctl(struct io_kiocb * req,unsigned int issue_flags)4636 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4637 {
4638 #if defined(CONFIG_EPOLL)
4639 	struct io_epoll *ie = &req->epoll;
4640 	int ret;
4641 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4642 
4643 	ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4644 	if (force_nonblock && ret == -EAGAIN)
4645 		return -EAGAIN;
4646 
4647 	if (ret < 0)
4648 		req_set_fail(req);
4649 	__io_req_complete(req, issue_flags, ret, 0);
4650 	return 0;
4651 #else
4652 	return -EOPNOTSUPP;
4653 #endif
4654 }
4655 
io_madvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4656 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4657 {
4658 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4659 	if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4660 		return -EINVAL;
4661 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4662 		return -EINVAL;
4663 
4664 	req->madvise.addr = READ_ONCE(sqe->addr);
4665 	req->madvise.len = READ_ONCE(sqe->len);
4666 	req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4667 	return 0;
4668 #else
4669 	return -EOPNOTSUPP;
4670 #endif
4671 }
4672 
io_madvise(struct io_kiocb * req,unsigned int issue_flags)4673 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4674 {
4675 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4676 	struct io_madvise *ma = &req->madvise;
4677 	int ret;
4678 
4679 	if (issue_flags & IO_URING_F_NONBLOCK)
4680 		return -EAGAIN;
4681 
4682 	ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4683 	if (ret < 0)
4684 		req_set_fail(req);
4685 	io_req_complete(req, ret);
4686 	return 0;
4687 #else
4688 	return -EOPNOTSUPP;
4689 #endif
4690 }
4691 
io_fadvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4692 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4693 {
4694 	if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4695 		return -EINVAL;
4696 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4697 		return -EINVAL;
4698 
4699 	req->fadvise.offset = READ_ONCE(sqe->off);
4700 	req->fadvise.len = READ_ONCE(sqe->len);
4701 	req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4702 	return 0;
4703 }
4704 
io_fadvise(struct io_kiocb * req,unsigned int issue_flags)4705 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4706 {
4707 	struct io_fadvise *fa = &req->fadvise;
4708 	int ret;
4709 
4710 	if (issue_flags & IO_URING_F_NONBLOCK) {
4711 		switch (fa->advice) {
4712 		case POSIX_FADV_NORMAL:
4713 		case POSIX_FADV_RANDOM:
4714 		case POSIX_FADV_SEQUENTIAL:
4715 			break;
4716 		default:
4717 			return -EAGAIN;
4718 		}
4719 	}
4720 
4721 	ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4722 	if (ret < 0)
4723 		req_set_fail(req);
4724 	__io_req_complete(req, issue_flags, ret, 0);
4725 	return 0;
4726 }
4727 
io_statx_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4728 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4729 {
4730 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4731 		return -EINVAL;
4732 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4733 		return -EINVAL;
4734 	if (req->flags & REQ_F_FIXED_FILE)
4735 		return -EBADF;
4736 
4737 	req->statx.dfd = READ_ONCE(sqe->fd);
4738 	req->statx.mask = READ_ONCE(sqe->len);
4739 	req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4740 	req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4741 	req->statx.flags = READ_ONCE(sqe->statx_flags);
4742 
4743 	return 0;
4744 }
4745 
io_statx(struct io_kiocb * req,unsigned int issue_flags)4746 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4747 {
4748 	struct io_statx *ctx = &req->statx;
4749 	int ret;
4750 
4751 	if (issue_flags & IO_URING_F_NONBLOCK)
4752 		return -EAGAIN;
4753 
4754 	ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4755 		       ctx->buffer);
4756 
4757 	if (ret < 0)
4758 		req_set_fail(req);
4759 	io_req_complete(req, ret);
4760 	return 0;
4761 }
4762 
io_close_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4763 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4764 {
4765 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4766 		return -EINVAL;
4767 	if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4768 	    sqe->rw_flags || sqe->buf_index)
4769 		return -EINVAL;
4770 	if (req->flags & REQ_F_FIXED_FILE)
4771 		return -EBADF;
4772 
4773 	req->close.fd = READ_ONCE(sqe->fd);
4774 	req->close.file_slot = READ_ONCE(sqe->file_index);
4775 	if (req->close.file_slot && req->close.fd)
4776 		return -EINVAL;
4777 
4778 	return 0;
4779 }
4780 
io_close(struct io_kiocb * req,unsigned int issue_flags)4781 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4782 {
4783 	struct files_struct *files = current->files;
4784 	struct io_close *close = &req->close;
4785 	struct fdtable *fdt;
4786 	struct file *file = NULL;
4787 	int ret = -EBADF;
4788 
4789 	if (req->close.file_slot) {
4790 		ret = io_close_fixed(req, issue_flags);
4791 		goto err;
4792 	}
4793 
4794 	spin_lock(&files->file_lock);
4795 	fdt = files_fdtable(files);
4796 	if (close->fd >= fdt->max_fds) {
4797 		spin_unlock(&files->file_lock);
4798 		goto err;
4799 	}
4800 	file = fdt->fd[close->fd];
4801 	if (!file || file->f_op == &io_uring_fops) {
4802 		spin_unlock(&files->file_lock);
4803 		file = NULL;
4804 		goto err;
4805 	}
4806 
4807 	/* if the file has a flush method, be safe and punt to async */
4808 	if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4809 		spin_unlock(&files->file_lock);
4810 		return -EAGAIN;
4811 	}
4812 
4813 	ret = __close_fd_get_file(close->fd, &file);
4814 	spin_unlock(&files->file_lock);
4815 	if (ret < 0) {
4816 		if (ret == -ENOENT)
4817 			ret = -EBADF;
4818 		goto err;
4819 	}
4820 
4821 	/* No ->flush() or already async, safely close from here */
4822 	ret = filp_close(file, current->files);
4823 err:
4824 	if (ret < 0)
4825 		req_set_fail(req);
4826 	if (file)
4827 		fput(file);
4828 	__io_req_complete(req, issue_flags, ret, 0);
4829 	return 0;
4830 }
4831 
io_sfr_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4832 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4833 {
4834 	struct io_ring_ctx *ctx = req->ctx;
4835 
4836 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4837 		return -EINVAL;
4838 	if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4839 		     sqe->splice_fd_in))
4840 		return -EINVAL;
4841 
4842 	req->sync.off = READ_ONCE(sqe->off);
4843 	req->sync.len = READ_ONCE(sqe->len);
4844 	req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4845 	return 0;
4846 }
4847 
io_sync_file_range(struct io_kiocb * req,unsigned int issue_flags)4848 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4849 {
4850 	int ret;
4851 
4852 	/* sync_file_range always requires a blocking context */
4853 	if (issue_flags & IO_URING_F_NONBLOCK)
4854 		return -EAGAIN;
4855 
4856 	ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4857 				req->sync.flags);
4858 	if (ret < 0)
4859 		req_set_fail(req);
4860 	io_req_complete(req, ret);
4861 	return 0;
4862 }
4863 
4864 #if defined(CONFIG_NET)
io_net_retry(struct socket * sock,int flags)4865 static bool io_net_retry(struct socket *sock, int flags)
4866 {
4867 	if (!(flags & MSG_WAITALL))
4868 		return false;
4869 	return sock->type == SOCK_STREAM || sock->type == SOCK_SEQPACKET;
4870 }
4871 
io_setup_async_msg(struct io_kiocb * req,struct io_async_msghdr * kmsg)4872 static int io_setup_async_msg(struct io_kiocb *req,
4873 			      struct io_async_msghdr *kmsg)
4874 {
4875 	struct io_async_msghdr *async_msg = req->async_data;
4876 
4877 	if (async_msg)
4878 		return -EAGAIN;
4879 	if (io_alloc_async_data(req)) {
4880 		kfree(kmsg->free_iov);
4881 		return -ENOMEM;
4882 	}
4883 	async_msg = req->async_data;
4884 	req->flags |= REQ_F_NEED_CLEANUP;
4885 	memcpy(async_msg, kmsg, sizeof(*kmsg));
4886 	if (async_msg->msg.msg_name)
4887 		async_msg->msg.msg_name = &async_msg->addr;
4888 	/* if were using fast_iov, set it to the new one */
4889 	if (!kmsg->free_iov) {
4890 		size_t fast_idx = kmsg->msg.msg_iter.iov - kmsg->fast_iov;
4891 		async_msg->msg.msg_iter.iov = &async_msg->fast_iov[fast_idx];
4892 	}
4893 
4894 	return -EAGAIN;
4895 }
4896 
io_sendmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4897 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4898 			       struct io_async_msghdr *iomsg)
4899 {
4900 	struct io_sr_msg *sr = &req->sr_msg;
4901 	int ret;
4902 
4903 	iomsg->msg.msg_name = &iomsg->addr;
4904 	iomsg->free_iov = iomsg->fast_iov;
4905 	ret = sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4906 				   req->sr_msg.msg_flags, &iomsg->free_iov);
4907 	/* save msg_control as sys_sendmsg() overwrites it */
4908 	sr->msg_control = iomsg->msg.msg_control;
4909 	return ret;
4910 }
4911 
io_sendmsg_prep_async(struct io_kiocb * req)4912 static int io_sendmsg_prep_async(struct io_kiocb *req)
4913 {
4914 	int ret;
4915 
4916 	ret = io_sendmsg_copy_hdr(req, req->async_data);
4917 	if (!ret)
4918 		req->flags |= REQ_F_NEED_CLEANUP;
4919 	return ret;
4920 }
4921 
io_sendmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4922 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4923 {
4924 	struct io_sr_msg *sr = &req->sr_msg;
4925 
4926 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4927 		return -EINVAL;
4928 	if (unlikely(sqe->addr2 || sqe->file_index))
4929 		return -EINVAL;
4930 	if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
4931 		return -EINVAL;
4932 
4933 	sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4934 	sr->len = READ_ONCE(sqe->len);
4935 	sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4936 	if (sr->msg_flags & MSG_DONTWAIT)
4937 		req->flags |= REQ_F_NOWAIT;
4938 
4939 #ifdef CONFIG_COMPAT
4940 	if (req->ctx->compat)
4941 		sr->msg_flags |= MSG_CMSG_COMPAT;
4942 #endif
4943 	sr->done_io = 0;
4944 	return 0;
4945 }
4946 
io_sendmsg(struct io_kiocb * req,unsigned int issue_flags)4947 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4948 {
4949 	struct io_async_msghdr iomsg, *kmsg;
4950 	struct io_sr_msg *sr = &req->sr_msg;
4951 	struct socket *sock;
4952 	unsigned flags;
4953 	int min_ret = 0;
4954 	int ret;
4955 
4956 	sock = sock_from_file(req->file);
4957 	if (unlikely(!sock))
4958 		return -ENOTSOCK;
4959 
4960 	kmsg = req->async_data;
4961 	if (!kmsg) {
4962 		ret = io_sendmsg_copy_hdr(req, &iomsg);
4963 		if (ret)
4964 			return ret;
4965 		kmsg = &iomsg;
4966 	} else {
4967 		kmsg->msg.msg_control = sr->msg_control;
4968 	}
4969 
4970 	flags = req->sr_msg.msg_flags;
4971 	if (issue_flags & IO_URING_F_NONBLOCK)
4972 		flags |= MSG_DONTWAIT;
4973 	if (flags & MSG_WAITALL)
4974 		min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4975 
4976 	ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4977 
4978 	if (ret < min_ret) {
4979 		if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
4980 			return io_setup_async_msg(req, kmsg);
4981 		if (ret == -ERESTARTSYS)
4982 			ret = -EINTR;
4983 		if (ret > 0 && io_net_retry(sock, flags)) {
4984 			kmsg->msg.msg_controllen = 0;
4985 			kmsg->msg.msg_control = NULL;
4986 			sr->done_io += ret;
4987 			req->flags |= REQ_F_PARTIAL_IO;
4988 			return io_setup_async_msg(req, kmsg);
4989 		}
4990 		req_set_fail(req);
4991 	}
4992 	/* fast path, check for non-NULL to avoid function call */
4993 	if (kmsg->free_iov)
4994 		kfree(kmsg->free_iov);
4995 	req->flags &= ~REQ_F_NEED_CLEANUP;
4996 	if (ret >= 0)
4997 		ret += sr->done_io;
4998 	else if (sr->done_io)
4999 		ret = sr->done_io;
5000 	__io_req_complete(req, issue_flags, ret, 0);
5001 	return 0;
5002 }
5003 
io_send(struct io_kiocb * req,unsigned int issue_flags)5004 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
5005 {
5006 	struct io_sr_msg *sr = &req->sr_msg;
5007 	struct msghdr msg;
5008 	struct iovec iov;
5009 	struct socket *sock;
5010 	unsigned flags;
5011 	int min_ret = 0;
5012 	int ret;
5013 
5014 	sock = sock_from_file(req->file);
5015 	if (unlikely(!sock))
5016 		return -ENOTSOCK;
5017 
5018 	ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
5019 	if (unlikely(ret))
5020 		return ret;
5021 
5022 	msg.msg_name = NULL;
5023 	msg.msg_control = NULL;
5024 	msg.msg_controllen = 0;
5025 	msg.msg_namelen = 0;
5026 
5027 	flags = req->sr_msg.msg_flags;
5028 	if (issue_flags & IO_URING_F_NONBLOCK)
5029 		flags |= MSG_DONTWAIT;
5030 	if (flags & MSG_WAITALL)
5031 		min_ret = iov_iter_count(&msg.msg_iter);
5032 
5033 	msg.msg_flags = flags;
5034 	ret = sock_sendmsg(sock, &msg);
5035 	if (ret < min_ret) {
5036 		if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
5037 			return -EAGAIN;
5038 		if (ret == -ERESTARTSYS)
5039 			ret = -EINTR;
5040 		if (ret > 0 && io_net_retry(sock, flags)) {
5041 			sr->len -= ret;
5042 			sr->buf += ret;
5043 			sr->done_io += ret;
5044 			req->flags |= REQ_F_PARTIAL_IO;
5045 			return -EAGAIN;
5046 		}
5047 		req_set_fail(req);
5048 	}
5049 	if (ret >= 0)
5050 		ret += sr->done_io;
5051 	else if (sr->done_io)
5052 		ret = sr->done_io;
5053 	__io_req_complete(req, issue_flags, ret, 0);
5054 	return 0;
5055 }
5056 
__io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)5057 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
5058 				 struct io_async_msghdr *iomsg)
5059 {
5060 	struct io_sr_msg *sr = &req->sr_msg;
5061 	struct iovec __user *uiov;
5062 	size_t iov_len;
5063 	int ret;
5064 
5065 	ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
5066 					&iomsg->uaddr, &uiov, &iov_len);
5067 	if (ret)
5068 		return ret;
5069 
5070 	if (req->flags & REQ_F_BUFFER_SELECT) {
5071 		if (iov_len > 1)
5072 			return -EINVAL;
5073 		if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
5074 			return -EFAULT;
5075 		sr->len = iomsg->fast_iov[0].iov_len;
5076 		iomsg->free_iov = NULL;
5077 	} else {
5078 		iomsg->free_iov = iomsg->fast_iov;
5079 		ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
5080 				     &iomsg->free_iov, &iomsg->msg.msg_iter,
5081 				     false);
5082 		if (ret > 0)
5083 			ret = 0;
5084 	}
5085 
5086 	return ret;
5087 }
5088 
5089 #ifdef CONFIG_COMPAT
__io_compat_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)5090 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
5091 					struct io_async_msghdr *iomsg)
5092 {
5093 	struct io_sr_msg *sr = &req->sr_msg;
5094 	struct compat_iovec __user *uiov;
5095 	compat_uptr_t ptr;
5096 	compat_size_t len;
5097 	int ret;
5098 
5099 	ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
5100 				  &ptr, &len);
5101 	if (ret)
5102 		return ret;
5103 
5104 	uiov = compat_ptr(ptr);
5105 	if (req->flags & REQ_F_BUFFER_SELECT) {
5106 		compat_ssize_t clen;
5107 
5108 		if (len > 1)
5109 			return -EINVAL;
5110 		if (!access_ok(uiov, sizeof(*uiov)))
5111 			return -EFAULT;
5112 		if (__get_user(clen, &uiov->iov_len))
5113 			return -EFAULT;
5114 		if (clen < 0)
5115 			return -EINVAL;
5116 		sr->len = clen;
5117 		iomsg->free_iov = NULL;
5118 	} else {
5119 		iomsg->free_iov = iomsg->fast_iov;
5120 		ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
5121 				   UIO_FASTIOV, &iomsg->free_iov,
5122 				   &iomsg->msg.msg_iter, true);
5123 		if (ret < 0)
5124 			return ret;
5125 	}
5126 
5127 	return 0;
5128 }
5129 #endif
5130 
io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)5131 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
5132 			       struct io_async_msghdr *iomsg)
5133 {
5134 	iomsg->msg.msg_name = &iomsg->addr;
5135 
5136 #ifdef CONFIG_COMPAT
5137 	if (req->ctx->compat)
5138 		return __io_compat_recvmsg_copy_hdr(req, iomsg);
5139 #endif
5140 
5141 	return __io_recvmsg_copy_hdr(req, iomsg);
5142 }
5143 
io_recv_buffer_select(struct io_kiocb * req,bool needs_lock)5144 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
5145 					       bool needs_lock)
5146 {
5147 	struct io_sr_msg *sr = &req->sr_msg;
5148 	struct io_buffer *kbuf;
5149 
5150 	kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
5151 	if (IS_ERR(kbuf))
5152 		return kbuf;
5153 
5154 	sr->kbuf = kbuf;
5155 	req->flags |= REQ_F_BUFFER_SELECTED;
5156 	return kbuf;
5157 }
5158 
io_put_recv_kbuf(struct io_kiocb * req)5159 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
5160 {
5161 	return io_put_kbuf(req, req->sr_msg.kbuf);
5162 }
5163 
io_recvmsg_prep_async(struct io_kiocb * req)5164 static int io_recvmsg_prep_async(struct io_kiocb *req)
5165 {
5166 	int ret;
5167 
5168 	ret = io_recvmsg_copy_hdr(req, req->async_data);
5169 	if (!ret)
5170 		req->flags |= REQ_F_NEED_CLEANUP;
5171 	return ret;
5172 }
5173 
io_recvmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5174 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5175 {
5176 	struct io_sr_msg *sr = &req->sr_msg;
5177 
5178 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5179 		return -EINVAL;
5180 	if (unlikely(sqe->addr2 || sqe->file_index))
5181 		return -EINVAL;
5182 	if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
5183 		return -EINVAL;
5184 
5185 	sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5186 	sr->len = READ_ONCE(sqe->len);
5187 	sr->bgid = READ_ONCE(sqe->buf_group);
5188 	sr->msg_flags = READ_ONCE(sqe->msg_flags);
5189 	if (sr->msg_flags & MSG_DONTWAIT)
5190 		req->flags |= REQ_F_NOWAIT;
5191 
5192 #ifdef CONFIG_COMPAT
5193 	if (req->ctx->compat)
5194 		sr->msg_flags |= MSG_CMSG_COMPAT;
5195 #endif
5196 	sr->done_io = 0;
5197 	return 0;
5198 }
5199 
io_recvmsg(struct io_kiocb * req,unsigned int issue_flags)5200 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5201 {
5202 	struct io_async_msghdr iomsg, *kmsg;
5203 	struct io_sr_msg *sr = &req->sr_msg;
5204 	struct socket *sock;
5205 	struct io_buffer *kbuf;
5206 	unsigned flags;
5207 	int min_ret = 0;
5208 	int ret, cflags = 0;
5209 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5210 
5211 	sock = sock_from_file(req->file);
5212 	if (unlikely(!sock))
5213 		return -ENOTSOCK;
5214 
5215 	kmsg = req->async_data;
5216 	if (!kmsg) {
5217 		ret = io_recvmsg_copy_hdr(req, &iomsg);
5218 		if (ret)
5219 			return ret;
5220 		kmsg = &iomsg;
5221 	}
5222 
5223 	if (req->flags & REQ_F_BUFFER_SELECT) {
5224 		kbuf = io_recv_buffer_select(req, !force_nonblock);
5225 		if (IS_ERR(kbuf))
5226 			return PTR_ERR(kbuf);
5227 		kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5228 		kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5229 		iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5230 				1, req->sr_msg.len);
5231 	}
5232 
5233 	flags = req->sr_msg.msg_flags;
5234 	if (force_nonblock)
5235 		flags |= MSG_DONTWAIT;
5236 	if (flags & MSG_WAITALL && !kmsg->msg.msg_controllen)
5237 		min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5238 
5239 	ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5240 					kmsg->uaddr, flags);
5241 	if (ret < min_ret) {
5242 		if (ret == -EAGAIN && force_nonblock)
5243 			return io_setup_async_msg(req, kmsg);
5244 		if (ret == -ERESTARTSYS)
5245 			ret = -EINTR;
5246 		if (ret > 0 && io_net_retry(sock, flags)) {
5247 			sr->done_io += ret;
5248 			req->flags |= REQ_F_PARTIAL_IO;
5249 			return io_setup_async_msg(req, kmsg);
5250 		}
5251 		req_set_fail(req);
5252 	} else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
5253 		req_set_fail(req);
5254 	}
5255 
5256 	if (req->flags & REQ_F_BUFFER_SELECTED)
5257 		cflags = io_put_recv_kbuf(req);
5258 	/* fast path, check for non-NULL to avoid function call */
5259 	if (kmsg->free_iov)
5260 		kfree(kmsg->free_iov);
5261 	req->flags &= ~REQ_F_NEED_CLEANUP;
5262 	if (ret >= 0)
5263 		ret += sr->done_io;
5264 	else if (sr->done_io)
5265 		ret = sr->done_io;
5266 	__io_req_complete(req, issue_flags, ret, cflags);
5267 	return 0;
5268 }
5269 
io_recv(struct io_kiocb * req,unsigned int issue_flags)5270 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5271 {
5272 	struct io_buffer *kbuf;
5273 	struct io_sr_msg *sr = &req->sr_msg;
5274 	struct msghdr msg;
5275 	void __user *buf = sr->buf;
5276 	struct socket *sock;
5277 	struct iovec iov;
5278 	unsigned flags;
5279 	int min_ret = 0;
5280 	int ret, cflags = 0;
5281 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5282 
5283 	sock = sock_from_file(req->file);
5284 	if (unlikely(!sock))
5285 		return -ENOTSOCK;
5286 
5287 	if (req->flags & REQ_F_BUFFER_SELECT) {
5288 		kbuf = io_recv_buffer_select(req, !force_nonblock);
5289 		if (IS_ERR(kbuf))
5290 			return PTR_ERR(kbuf);
5291 		buf = u64_to_user_ptr(kbuf->addr);
5292 	}
5293 
5294 	ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5295 	if (unlikely(ret))
5296 		goto out_free;
5297 
5298 	msg.msg_name = NULL;
5299 	msg.msg_control = NULL;
5300 	msg.msg_controllen = 0;
5301 	msg.msg_namelen = 0;
5302 	msg.msg_iocb = NULL;
5303 	msg.msg_flags = 0;
5304 
5305 	flags = req->sr_msg.msg_flags;
5306 	if (force_nonblock)
5307 		flags |= MSG_DONTWAIT;
5308 	if (flags & MSG_WAITALL)
5309 		min_ret = iov_iter_count(&msg.msg_iter);
5310 
5311 	ret = sock_recvmsg(sock, &msg, flags);
5312 	if (ret < min_ret) {
5313 		if (ret == -EAGAIN && force_nonblock)
5314 			return -EAGAIN;
5315 		if (ret == -ERESTARTSYS)
5316 			ret = -EINTR;
5317 		if (ret > 0 && io_net_retry(sock, flags)) {
5318 			sr->len -= ret;
5319 			sr->buf += ret;
5320 			sr->done_io += ret;
5321 			req->flags |= REQ_F_PARTIAL_IO;
5322 			return -EAGAIN;
5323 		}
5324 		req_set_fail(req);
5325 	} else if ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
5326 out_free:
5327 		req_set_fail(req);
5328 	}
5329 	if (req->flags & REQ_F_BUFFER_SELECTED)
5330 		cflags = io_put_recv_kbuf(req);
5331 	if (ret >= 0)
5332 		ret += sr->done_io;
5333 	else if (sr->done_io)
5334 		ret = sr->done_io;
5335 	__io_req_complete(req, issue_flags, ret, cflags);
5336 	return 0;
5337 }
5338 
io_accept_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5339 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5340 {
5341 	struct io_accept *accept = &req->accept;
5342 
5343 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5344 		return -EINVAL;
5345 	if (sqe->ioprio || sqe->len || sqe->buf_index)
5346 		return -EINVAL;
5347 
5348 	accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5349 	accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5350 	accept->flags = READ_ONCE(sqe->accept_flags);
5351 	accept->nofile = rlimit(RLIMIT_NOFILE);
5352 
5353 	accept->file_slot = READ_ONCE(sqe->file_index);
5354 	if (accept->file_slot && (accept->flags & SOCK_CLOEXEC))
5355 		return -EINVAL;
5356 	if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5357 		return -EINVAL;
5358 	if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5359 		accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5360 	return 0;
5361 }
5362 
io_accept(struct io_kiocb * req,unsigned int issue_flags)5363 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5364 {
5365 	struct io_accept *accept = &req->accept;
5366 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5367 	unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5368 	bool fixed = !!accept->file_slot;
5369 	struct file *file;
5370 	int ret, fd;
5371 
5372 	if (!fixed) {
5373 		fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5374 		if (unlikely(fd < 0))
5375 			return fd;
5376 	}
5377 	file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5378 			 accept->flags);
5379 	if (IS_ERR(file)) {
5380 		if (!fixed)
5381 			put_unused_fd(fd);
5382 		ret = PTR_ERR(file);
5383 		/* safe to retry */
5384 		req->flags |= REQ_F_PARTIAL_IO;
5385 		if (ret == -EAGAIN && force_nonblock)
5386 			return -EAGAIN;
5387 		if (ret == -ERESTARTSYS)
5388 			ret = -EINTR;
5389 		req_set_fail(req);
5390 	} else if (!fixed) {
5391 		fd_install(fd, file);
5392 		ret = fd;
5393 	} else {
5394 		ret = io_install_fixed_file(req, file, issue_flags,
5395 					    accept->file_slot - 1);
5396 	}
5397 	__io_req_complete(req, issue_flags, ret, 0);
5398 	return 0;
5399 }
5400 
io_connect_prep_async(struct io_kiocb * req)5401 static int io_connect_prep_async(struct io_kiocb *req)
5402 {
5403 	struct io_async_connect *io = req->async_data;
5404 	struct io_connect *conn = &req->connect;
5405 
5406 	return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5407 }
5408 
io_connect_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5409 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5410 {
5411 	struct io_connect *conn = &req->connect;
5412 
5413 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5414 		return -EINVAL;
5415 	if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5416 	    sqe->splice_fd_in)
5417 		return -EINVAL;
5418 
5419 	conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5420 	conn->addr_len =  READ_ONCE(sqe->addr2);
5421 	return 0;
5422 }
5423 
io_connect(struct io_kiocb * req,unsigned int issue_flags)5424 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5425 {
5426 	struct io_async_connect __io, *io;
5427 	unsigned file_flags;
5428 	int ret;
5429 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5430 
5431 	if (req->async_data) {
5432 		io = req->async_data;
5433 	} else {
5434 		ret = move_addr_to_kernel(req->connect.addr,
5435 						req->connect.addr_len,
5436 						&__io.address);
5437 		if (ret)
5438 			goto out;
5439 		io = &__io;
5440 	}
5441 
5442 	file_flags = force_nonblock ? O_NONBLOCK : 0;
5443 
5444 	ret = __sys_connect_file(req->file, &io->address,
5445 					req->connect.addr_len, file_flags);
5446 	if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5447 		if (req->async_data)
5448 			return -EAGAIN;
5449 		if (io_alloc_async_data(req)) {
5450 			ret = -ENOMEM;
5451 			goto out;
5452 		}
5453 		memcpy(req->async_data, &__io, sizeof(__io));
5454 		return -EAGAIN;
5455 	}
5456 	if (ret == -ERESTARTSYS)
5457 		ret = -EINTR;
5458 out:
5459 	if (ret < 0)
5460 		req_set_fail(req);
5461 	__io_req_complete(req, issue_flags, ret, 0);
5462 	return 0;
5463 }
5464 #else /* !CONFIG_NET */
5465 #define IO_NETOP_FN(op)							\
5466 static int io_##op(struct io_kiocb *req, unsigned int issue_flags)	\
5467 {									\
5468 	return -EOPNOTSUPP;						\
5469 }
5470 
5471 #define IO_NETOP_PREP(op)						\
5472 IO_NETOP_FN(op)								\
5473 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5474 {									\
5475 	return -EOPNOTSUPP;						\
5476 }									\
5477 
5478 #define IO_NETOP_PREP_ASYNC(op)						\
5479 IO_NETOP_PREP(op)							\
5480 static int io_##op##_prep_async(struct io_kiocb *req)			\
5481 {									\
5482 	return -EOPNOTSUPP;						\
5483 }
5484 
5485 IO_NETOP_PREP_ASYNC(sendmsg);
5486 IO_NETOP_PREP_ASYNC(recvmsg);
5487 IO_NETOP_PREP_ASYNC(connect);
5488 IO_NETOP_PREP(accept);
5489 IO_NETOP_FN(send);
5490 IO_NETOP_FN(recv);
5491 #endif /* CONFIG_NET */
5492 
5493 struct io_poll_table {
5494 	struct poll_table_struct pt;
5495 	struct io_kiocb *req;
5496 	int nr_entries;
5497 	int error;
5498 };
5499 
5500 #define IO_POLL_CANCEL_FLAG	BIT(31)
5501 #define IO_POLL_RETRY_FLAG	BIT(30)
5502 #define IO_POLL_REF_MASK	GENMASK(29, 0)
5503 
5504 /*
5505  * We usually have 1-2 refs taken, 128 is more than enough and we want to
5506  * maximise the margin between this amount and the moment when it overflows.
5507  */
5508 #define IO_POLL_REF_BIAS       128
5509 
io_poll_get_ownership_slowpath(struct io_kiocb * req)5510 static bool io_poll_get_ownership_slowpath(struct io_kiocb *req)
5511 {
5512 	int v;
5513 
5514 	/*
5515 	 * poll_refs are already elevated and we don't have much hope for
5516 	 * grabbing the ownership. Instead of incrementing set a retry flag
5517 	 * to notify the loop that there might have been some change.
5518 	 */
5519 	v = atomic_fetch_or(IO_POLL_RETRY_FLAG, &req->poll_refs);
5520 	if (v & IO_POLL_REF_MASK)
5521 		return false;
5522 	return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5523 }
5524 
5525 /*
5526  * If refs part of ->poll_refs (see IO_POLL_REF_MASK) is 0, it's free. We can
5527  * bump it and acquire ownership. It's disallowed to modify requests while not
5528  * owning it, that prevents from races for enqueueing task_work's and b/w
5529  * arming poll and wakeups.
5530  */
io_poll_get_ownership(struct io_kiocb * req)5531 static inline bool io_poll_get_ownership(struct io_kiocb *req)
5532 {
5533 	if (unlikely(atomic_read(&req->poll_refs) >= IO_POLL_REF_BIAS))
5534 		return io_poll_get_ownership_slowpath(req);
5535 	return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5536 }
5537 
io_poll_mark_cancelled(struct io_kiocb * req)5538 static void io_poll_mark_cancelled(struct io_kiocb *req)
5539 {
5540 	atomic_or(IO_POLL_CANCEL_FLAG, &req->poll_refs);
5541 }
5542 
io_poll_get_double(struct io_kiocb * req)5543 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5544 {
5545 	/* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5546 	if (req->opcode == IORING_OP_POLL_ADD)
5547 		return req->async_data;
5548 	return req->apoll->double_poll;
5549 }
5550 
io_poll_get_single(struct io_kiocb * req)5551 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5552 {
5553 	if (req->opcode == IORING_OP_POLL_ADD)
5554 		return &req->poll;
5555 	return &req->apoll->poll;
5556 }
5557 
io_poll_req_insert(struct io_kiocb * req)5558 static void io_poll_req_insert(struct io_kiocb *req)
5559 {
5560 	struct io_ring_ctx *ctx = req->ctx;
5561 	struct hlist_head *list;
5562 
5563 	list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5564 	hlist_add_head(&req->hash_node, list);
5565 }
5566 
io_init_poll_iocb(struct io_poll_iocb * poll,__poll_t events,wait_queue_func_t wake_func)5567 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5568 			      wait_queue_func_t wake_func)
5569 {
5570 	poll->head = NULL;
5571 #define IO_POLL_UNMASK	(EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5572 	/* mask in events that we always want/need */
5573 	poll->events = events | IO_POLL_UNMASK;
5574 	INIT_LIST_HEAD(&poll->wait.entry);
5575 	init_waitqueue_func_entry(&poll->wait, wake_func);
5576 }
5577 
io_poll_remove_entry(struct io_poll_iocb * poll)5578 static inline void io_poll_remove_entry(struct io_poll_iocb *poll)
5579 {
5580 	struct wait_queue_head *head = smp_load_acquire(&poll->head);
5581 
5582 	if (head) {
5583 		spin_lock_irq(&head->lock);
5584 		list_del_init(&poll->wait.entry);
5585 		poll->head = NULL;
5586 		spin_unlock_irq(&head->lock);
5587 	}
5588 }
5589 
io_poll_remove_entries(struct io_kiocb * req)5590 static void io_poll_remove_entries(struct io_kiocb *req)
5591 {
5592 	struct io_poll_iocb *poll = io_poll_get_single(req);
5593 	struct io_poll_iocb *poll_double = io_poll_get_double(req);
5594 
5595 	/*
5596 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
5597 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
5598 	 * lock in the first place can race with the waitqueue being freed.
5599 	 *
5600 	 * We solve this as eventpoll does: by taking advantage of the fact that
5601 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
5602 	 * we enter rcu_read_lock() and see that the pointer to the queue is
5603 	 * non-NULL, we can then lock it without the memory being freed out from
5604 	 * under us.
5605 	 *
5606 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
5607 	 * case the caller deletes the entry from the queue, leaving it empty.
5608 	 * In that case, only RCU prevents the queue memory from being freed.
5609 	 */
5610 	rcu_read_lock();
5611 	io_poll_remove_entry(poll);
5612 	if (poll_double)
5613 		io_poll_remove_entry(poll_double);
5614 	rcu_read_unlock();
5615 }
5616 
5617 /*
5618  * All poll tw should go through this. Checks for poll events, manages
5619  * references, does rewait, etc.
5620  *
5621  * Returns a negative error on failure. >0 when no action require, which is
5622  * either spurious wakeup or multishot CQE is served. 0 when it's done with
5623  * the request, then the mask is stored in req->result.
5624  */
io_poll_check_events(struct io_kiocb * req)5625 static int io_poll_check_events(struct io_kiocb *req)
5626 {
5627 	struct io_ring_ctx *ctx = req->ctx;
5628 	struct io_poll_iocb *poll = io_poll_get_single(req);
5629 	int v;
5630 
5631 	/* req->task == current here, checking PF_EXITING is safe */
5632 	if (unlikely(req->task->flags & PF_EXITING))
5633 		io_poll_mark_cancelled(req);
5634 
5635 	do {
5636 		v = atomic_read(&req->poll_refs);
5637 
5638 		/* tw handler should be the owner, and so have some references */
5639 		if (WARN_ON_ONCE(!(v & IO_POLL_REF_MASK)))
5640 			return 0;
5641 		if (v & IO_POLL_CANCEL_FLAG)
5642 			return -ECANCELED;
5643 		/*
5644 		 * cqe.res contains only events of the first wake up
5645 		 * and all others are be lost. Redo vfs_poll() to get
5646 		 * up to date state.
5647 		 */
5648 		if ((v & IO_POLL_REF_MASK) != 1)
5649 			req->result = 0;
5650 		if (v & IO_POLL_RETRY_FLAG) {
5651 			req->result = 0;
5652 			/*
5653 			 * We won't find new events that came in between
5654 			 * vfs_poll and the ref put unless we clear the
5655 			 * flag in advance.
5656 			 */
5657 			atomic_andnot(IO_POLL_RETRY_FLAG, &req->poll_refs);
5658 			v &= ~IO_POLL_RETRY_FLAG;
5659 		}
5660 
5661 		if (!req->result) {
5662 			struct poll_table_struct pt = { ._key = poll->events };
5663 
5664 			req->result = vfs_poll(req->file, &pt) & poll->events;
5665 		}
5666 
5667 		/* multishot, just fill an CQE and proceed */
5668 		if (req->result && !(poll->events & EPOLLONESHOT)) {
5669 			__poll_t mask = mangle_poll(req->result & poll->events);
5670 			bool filled;
5671 
5672 			spin_lock(&ctx->completion_lock);
5673 			filled = io_fill_cqe_aux(ctx, req->user_data, mask,
5674 						 IORING_CQE_F_MORE);
5675 			io_commit_cqring(ctx);
5676 			spin_unlock(&ctx->completion_lock);
5677 			if (unlikely(!filled))
5678 				return -ECANCELED;
5679 			io_cqring_ev_posted(ctx);
5680 		} else if (req->result) {
5681 			return 0;
5682 		}
5683 
5684 		/* force the next iteration to vfs_poll() */
5685 		req->result = 0;
5686 
5687 		/*
5688 		 * Release all references, retry if someone tried to restart
5689 		 * task_work while we were executing it.
5690 		 */
5691 	} while (atomic_sub_return(v & IO_POLL_REF_MASK, &req->poll_refs) &
5692 					IO_POLL_REF_MASK);
5693 
5694 	return 1;
5695 }
5696 
io_poll_task_func(struct io_kiocb * req,bool * locked)5697 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5698 {
5699 	struct io_ring_ctx *ctx = req->ctx;
5700 	int ret;
5701 
5702 	ret = io_poll_check_events(req);
5703 	if (ret > 0)
5704 		return;
5705 
5706 	if (!ret) {
5707 		req->result = mangle_poll(req->result & req->poll.events);
5708 	} else {
5709 		req->result = ret;
5710 		req_set_fail(req);
5711 	}
5712 
5713 	io_poll_remove_entries(req);
5714 	spin_lock(&ctx->completion_lock);
5715 	hash_del(&req->hash_node);
5716 	spin_unlock(&ctx->completion_lock);
5717 	io_req_complete_post(req, req->result, 0);
5718 }
5719 
io_apoll_task_func(struct io_kiocb * req,bool * locked)5720 static void io_apoll_task_func(struct io_kiocb *req, bool *locked)
5721 {
5722 	struct io_ring_ctx *ctx = req->ctx;
5723 	int ret;
5724 
5725 	ret = io_poll_check_events(req);
5726 	if (ret > 0)
5727 		return;
5728 
5729 	io_tw_lock(req->ctx, locked);
5730 	io_poll_remove_entries(req);
5731 	spin_lock(&ctx->completion_lock);
5732 	hash_del(&req->hash_node);
5733 	spin_unlock(&ctx->completion_lock);
5734 
5735 	if (!ret)
5736 		io_req_task_submit(req, locked);
5737 	else
5738 		io_req_complete_failed(req, ret);
5739 }
5740 
__io_poll_execute(struct io_kiocb * req,int mask)5741 static void __io_poll_execute(struct io_kiocb *req, int mask)
5742 {
5743 	req->result = mask;
5744 	if (req->opcode == IORING_OP_POLL_ADD)
5745 		req->io_task_work.func = io_poll_task_func;
5746 	else
5747 		req->io_task_work.func = io_apoll_task_func;
5748 
5749 	trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5750 	io_req_task_work_add(req);
5751 }
5752 
io_poll_execute(struct io_kiocb * req,int res)5753 static inline void io_poll_execute(struct io_kiocb *req, int res)
5754 {
5755 	if (io_poll_get_ownership(req))
5756 		__io_poll_execute(req, res);
5757 }
5758 
io_poll_cancel_req(struct io_kiocb * req)5759 static void io_poll_cancel_req(struct io_kiocb *req)
5760 {
5761 	io_poll_mark_cancelled(req);
5762 	/* kick tw, which should complete the request */
5763 	io_poll_execute(req, 0);
5764 }
5765 
io_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)5766 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5767 			void *key)
5768 {
5769 	struct io_kiocb *req = wait->private;
5770 	struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
5771 						 wait);
5772 	__poll_t mask = key_to_poll(key);
5773 
5774 	if (unlikely(mask & POLLFREE)) {
5775 		io_poll_mark_cancelled(req);
5776 		/* we have to kick tw in case it's not already */
5777 		io_poll_execute(req, 0);
5778 
5779 		/*
5780 		 * If the waitqueue is being freed early but someone is already
5781 		 * holds ownership over it, we have to tear down the request as
5782 		 * best we can. That means immediately removing the request from
5783 		 * its waitqueue and preventing all further accesses to the
5784 		 * waitqueue via the request.
5785 		 */
5786 		list_del_init(&poll->wait.entry);
5787 
5788 		/*
5789 		 * Careful: this *must* be the last step, since as soon
5790 		 * as req->head is NULL'ed out, the request can be
5791 		 * completed and freed, since aio_poll_complete_work()
5792 		 * will no longer need to take the waitqueue lock.
5793 		 */
5794 		smp_store_release(&poll->head, NULL);
5795 		return 1;
5796 	}
5797 
5798 	/* for instances that support it check for an event match first */
5799 	if (mask && !(mask & poll->events))
5800 		return 0;
5801 
5802 	if (io_poll_get_ownership(req)) {
5803 		/*
5804 		 * If we trigger a multishot poll off our own wakeup path,
5805 		 * disable multishot as there is a circular dependency between
5806 		 * CQ posting and triggering the event.
5807 		 */
5808 		if (mask & EPOLL_URING_WAKE)
5809 			poll->events |= EPOLLONESHOT;
5810 
5811 		__io_poll_execute(req, mask);
5812 	}
5813 	return 1;
5814 }
5815 
__io_queue_proc(struct io_poll_iocb * poll,struct io_poll_table * pt,struct wait_queue_head * head,struct io_poll_iocb ** poll_ptr)5816 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5817 			    struct wait_queue_head *head,
5818 			    struct io_poll_iocb **poll_ptr)
5819 {
5820 	struct io_kiocb *req = pt->req;
5821 
5822 	/*
5823 	 * The file being polled uses multiple waitqueues for poll handling
5824 	 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5825 	 * if this happens.
5826 	 */
5827 	if (unlikely(pt->nr_entries)) {
5828 		struct io_poll_iocb *first = poll;
5829 
5830 		/* double add on the same waitqueue head, ignore */
5831 		if (first->head == head)
5832 			return;
5833 		/* already have a 2nd entry, fail a third attempt */
5834 		if (*poll_ptr) {
5835 			if ((*poll_ptr)->head == head)
5836 				return;
5837 			pt->error = -EINVAL;
5838 			return;
5839 		}
5840 
5841 		poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5842 		if (!poll) {
5843 			pt->error = -ENOMEM;
5844 			return;
5845 		}
5846 		io_init_poll_iocb(poll, first->events, first->wait.func);
5847 		*poll_ptr = poll;
5848 	}
5849 
5850 	pt->nr_entries++;
5851 	poll->head = head;
5852 	poll->wait.private = req;
5853 
5854 	if (poll->events & EPOLLEXCLUSIVE)
5855 		add_wait_queue_exclusive(head, &poll->wait);
5856 	else
5857 		add_wait_queue(head, &poll->wait);
5858 }
5859 
io_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)5860 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5861 			       struct poll_table_struct *p)
5862 {
5863 	struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5864 
5865 	__io_queue_proc(&pt->req->poll, pt, head,
5866 			(struct io_poll_iocb **) &pt->req->async_data);
5867 }
5868 
__io_arm_poll_handler(struct io_kiocb * req,struct io_poll_iocb * poll,struct io_poll_table * ipt,__poll_t mask)5869 static int __io_arm_poll_handler(struct io_kiocb *req,
5870 				 struct io_poll_iocb *poll,
5871 				 struct io_poll_table *ipt, __poll_t mask)
5872 {
5873 	struct io_ring_ctx *ctx = req->ctx;
5874 
5875 	INIT_HLIST_NODE(&req->hash_node);
5876 	io_init_poll_iocb(poll, mask, io_poll_wake);
5877 	poll->file = req->file;
5878 	poll->wait.private = req;
5879 
5880 	ipt->pt._key = mask;
5881 	ipt->req = req;
5882 	ipt->error = 0;
5883 	ipt->nr_entries = 0;
5884 
5885 	/*
5886 	 * Take the ownership to delay any tw execution up until we're done
5887 	 * with poll arming. see io_poll_get_ownership().
5888 	 */
5889 	atomic_set(&req->poll_refs, 1);
5890 	mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5891 
5892 	if (mask && (poll->events & EPOLLONESHOT)) {
5893 		io_poll_remove_entries(req);
5894 		/* no one else has access to the req, forget about the ref */
5895 		return mask;
5896 	}
5897 	if (!mask && unlikely(ipt->error || !ipt->nr_entries)) {
5898 		io_poll_remove_entries(req);
5899 		if (!ipt->error)
5900 			ipt->error = -EINVAL;
5901 		return 0;
5902 	}
5903 
5904 	spin_lock(&ctx->completion_lock);
5905 	io_poll_req_insert(req);
5906 	spin_unlock(&ctx->completion_lock);
5907 
5908 	if (mask) {
5909 		/* can't multishot if failed, just queue the event we've got */
5910 		if (unlikely(ipt->error || !ipt->nr_entries)) {
5911 			poll->events |= EPOLLONESHOT;
5912 			ipt->error = 0;
5913 		}
5914 		__io_poll_execute(req, mask);
5915 		return 0;
5916 	}
5917 
5918 	/*
5919 	 * Try to release ownership. If we see a change of state, e.g.
5920 	 * poll was waken up, queue up a tw, it'll deal with it.
5921 	 */
5922 	if (atomic_cmpxchg(&req->poll_refs, 1, 0) != 1)
5923 		__io_poll_execute(req, 0);
5924 	return 0;
5925 }
5926 
io_async_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)5927 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5928 			       struct poll_table_struct *p)
5929 {
5930 	struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5931 	struct async_poll *apoll = pt->req->apoll;
5932 
5933 	__io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5934 }
5935 
5936 enum {
5937 	IO_APOLL_OK,
5938 	IO_APOLL_ABORTED,
5939 	IO_APOLL_READY
5940 };
5941 
5942 /*
5943  * We can't reliably detect loops in repeated poll triggers and issue
5944  * subsequently failing. But rather than fail these immediately, allow a
5945  * certain amount of retries before we give up. Given that this condition
5946  * should _rarely_ trigger even once, we should be fine with a larger value.
5947  */
5948 #define APOLL_MAX_RETRY		128
5949 
io_arm_poll_handler(struct io_kiocb * req)5950 static int io_arm_poll_handler(struct io_kiocb *req)
5951 {
5952 	const struct io_op_def *def = &io_op_defs[req->opcode];
5953 	struct io_ring_ctx *ctx = req->ctx;
5954 	struct async_poll *apoll;
5955 	struct io_poll_table ipt;
5956 	__poll_t mask = EPOLLONESHOT | POLLERR | POLLPRI;
5957 	int ret;
5958 
5959 	if (!req->file || !file_can_poll(req->file))
5960 		return IO_APOLL_ABORTED;
5961 	if (!def->pollin && !def->pollout)
5962 		return IO_APOLL_ABORTED;
5963 
5964 	if (def->pollin) {
5965 		mask |= POLLIN | POLLRDNORM;
5966 
5967 		/* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5968 		if ((req->opcode == IORING_OP_RECVMSG) &&
5969 		    (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5970 			mask &= ~POLLIN;
5971 	} else {
5972 		mask |= POLLOUT | POLLWRNORM;
5973 	}
5974 
5975 	if (req->flags & REQ_F_POLLED) {
5976 		apoll = req->apoll;
5977 		kfree(apoll->double_poll);
5978 		if (unlikely(!--apoll->poll.retries)) {
5979 			apoll->double_poll = NULL;
5980 			return IO_APOLL_ABORTED;
5981 		}
5982 	} else {
5983 		apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5984 		if (unlikely(!apoll))
5985 			return IO_APOLL_ABORTED;
5986 		apoll->poll.retries = APOLL_MAX_RETRY;
5987 	}
5988 	apoll->double_poll = NULL;
5989 	req->apoll = apoll;
5990 	req->flags |= REQ_F_POLLED;
5991 	ipt.pt._qproc = io_async_queue_proc;
5992 
5993 	ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask);
5994 	if (ret || ipt.error)
5995 		return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5996 
5997 	trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5998 				mask, apoll->poll.events);
5999 	return IO_APOLL_OK;
6000 }
6001 
6002 /*
6003  * Returns true if we found and killed one or more poll requests
6004  */
io_poll_remove_all(struct io_ring_ctx * ctx,struct task_struct * tsk,bool cancel_all)6005 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
6006 			       bool cancel_all)
6007 {
6008 	struct hlist_node *tmp;
6009 	struct io_kiocb *req;
6010 	bool found = false;
6011 	int i;
6012 
6013 	spin_lock(&ctx->completion_lock);
6014 	for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
6015 		struct hlist_head *list;
6016 
6017 		list = &ctx->cancel_hash[i];
6018 		hlist_for_each_entry_safe(req, tmp, list, hash_node) {
6019 			if (io_match_task_safe(req, tsk, cancel_all)) {
6020 				hlist_del_init(&req->hash_node);
6021 				io_poll_cancel_req(req);
6022 				found = true;
6023 			}
6024 		}
6025 	}
6026 	spin_unlock(&ctx->completion_lock);
6027 	return found;
6028 }
6029 
io_poll_find(struct io_ring_ctx * ctx,__u64 sqe_addr,bool poll_only)6030 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
6031 				     bool poll_only)
6032 	__must_hold(&ctx->completion_lock)
6033 {
6034 	struct hlist_head *list;
6035 	struct io_kiocb *req;
6036 
6037 	list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
6038 	hlist_for_each_entry(req, list, hash_node) {
6039 		if (sqe_addr != req->user_data)
6040 			continue;
6041 		if (poll_only && req->opcode != IORING_OP_POLL_ADD)
6042 			continue;
6043 		return req;
6044 	}
6045 	return NULL;
6046 }
6047 
io_poll_disarm(struct io_kiocb * req)6048 static bool io_poll_disarm(struct io_kiocb *req)
6049 	__must_hold(&ctx->completion_lock)
6050 {
6051 	if (!io_poll_get_ownership(req))
6052 		return false;
6053 	io_poll_remove_entries(req);
6054 	hash_del(&req->hash_node);
6055 	return true;
6056 }
6057 
io_poll_cancel(struct io_ring_ctx * ctx,__u64 sqe_addr,bool poll_only)6058 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
6059 			  bool poll_only)
6060 	__must_hold(&ctx->completion_lock)
6061 {
6062 	struct io_kiocb *req = io_poll_find(ctx, sqe_addr, poll_only);
6063 
6064 	if (!req)
6065 		return -ENOENT;
6066 	io_poll_cancel_req(req);
6067 	return 0;
6068 }
6069 
io_poll_parse_events(const struct io_uring_sqe * sqe,unsigned int flags)6070 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
6071 				     unsigned int flags)
6072 {
6073 	u32 events;
6074 
6075 	events = READ_ONCE(sqe->poll32_events);
6076 #ifdef __BIG_ENDIAN
6077 	events = swahw32(events);
6078 #endif
6079 	if (!(flags & IORING_POLL_ADD_MULTI))
6080 		events |= EPOLLONESHOT;
6081 	return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
6082 }
6083 
io_poll_update_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6084 static int io_poll_update_prep(struct io_kiocb *req,
6085 			       const struct io_uring_sqe *sqe)
6086 {
6087 	struct io_poll_update *upd = &req->poll_update;
6088 	u32 flags;
6089 
6090 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6091 		return -EINVAL;
6092 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
6093 		return -EINVAL;
6094 	flags = READ_ONCE(sqe->len);
6095 	if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
6096 		      IORING_POLL_ADD_MULTI))
6097 		return -EINVAL;
6098 	/* meaningless without update */
6099 	if (flags == IORING_POLL_ADD_MULTI)
6100 		return -EINVAL;
6101 
6102 	upd->old_user_data = READ_ONCE(sqe->addr);
6103 	upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
6104 	upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
6105 
6106 	upd->new_user_data = READ_ONCE(sqe->off);
6107 	if (!upd->update_user_data && upd->new_user_data)
6108 		return -EINVAL;
6109 	if (upd->update_events)
6110 		upd->events = io_poll_parse_events(sqe, flags);
6111 	else if (sqe->poll32_events)
6112 		return -EINVAL;
6113 
6114 	return 0;
6115 }
6116 
io_poll_add_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6117 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6118 {
6119 	struct io_poll_iocb *poll = &req->poll;
6120 	u32 flags;
6121 
6122 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6123 		return -EINVAL;
6124 	if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
6125 		return -EINVAL;
6126 	flags = READ_ONCE(sqe->len);
6127 	if (flags & ~IORING_POLL_ADD_MULTI)
6128 		return -EINVAL;
6129 
6130 	io_req_set_refcount(req);
6131 	poll->events = io_poll_parse_events(sqe, flags);
6132 	return 0;
6133 }
6134 
io_poll_add(struct io_kiocb * req,unsigned int issue_flags)6135 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
6136 {
6137 	struct io_poll_iocb *poll = &req->poll;
6138 	struct io_poll_table ipt;
6139 	int ret;
6140 
6141 	ipt.pt._qproc = io_poll_queue_proc;
6142 
6143 	ret = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events);
6144 	if (!ret && ipt.error)
6145 		req_set_fail(req);
6146 	ret = ret ?: ipt.error;
6147 	if (ret)
6148 		__io_req_complete(req, issue_flags, ret, 0);
6149 	return 0;
6150 }
6151 
io_poll_update(struct io_kiocb * req,unsigned int issue_flags)6152 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
6153 {
6154 	struct io_ring_ctx *ctx = req->ctx;
6155 	struct io_kiocb *preq;
6156 	int ret2, ret = 0;
6157 
6158 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6159 
6160 	spin_lock(&ctx->completion_lock);
6161 	preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
6162 	if (!preq || !io_poll_disarm(preq)) {
6163 		spin_unlock(&ctx->completion_lock);
6164 		ret = preq ? -EALREADY : -ENOENT;
6165 		goto out;
6166 	}
6167 	spin_unlock(&ctx->completion_lock);
6168 
6169 	if (req->poll_update.update_events || req->poll_update.update_user_data) {
6170 		/* only mask one event flags, keep behavior flags */
6171 		if (req->poll_update.update_events) {
6172 			preq->poll.events &= ~0xffff;
6173 			preq->poll.events |= req->poll_update.events & 0xffff;
6174 			preq->poll.events |= IO_POLL_UNMASK;
6175 		}
6176 		if (req->poll_update.update_user_data)
6177 			preq->user_data = req->poll_update.new_user_data;
6178 
6179 		ret2 = io_poll_add(preq, issue_flags);
6180 		/* successfully updated, don't complete poll request */
6181 		if (!ret2)
6182 			goto out;
6183 	}
6184 	req_set_fail(preq);
6185 	io_req_complete(preq, -ECANCELED);
6186 out:
6187 	if (ret < 0)
6188 		req_set_fail(req);
6189 	/* complete update request, we're done with it */
6190 	io_req_complete(req, ret);
6191 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6192 	return 0;
6193 }
6194 
io_req_task_timeout(struct io_kiocb * req,bool * locked)6195 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
6196 {
6197 	req_set_fail(req);
6198 	io_req_complete_post(req, -ETIME, 0);
6199 }
6200 
io_timeout_fn(struct hrtimer * timer)6201 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
6202 {
6203 	struct io_timeout_data *data = container_of(timer,
6204 						struct io_timeout_data, timer);
6205 	struct io_kiocb *req = data->req;
6206 	struct io_ring_ctx *ctx = req->ctx;
6207 	unsigned long flags;
6208 
6209 	spin_lock_irqsave(&ctx->timeout_lock, flags);
6210 	list_del_init(&req->timeout.list);
6211 	atomic_set(&req->ctx->cq_timeouts,
6212 		atomic_read(&req->ctx->cq_timeouts) + 1);
6213 	spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6214 
6215 	req->io_task_work.func = io_req_task_timeout;
6216 	io_req_task_work_add(req);
6217 	return HRTIMER_NORESTART;
6218 }
6219 
io_timeout_extract(struct io_ring_ctx * ctx,__u64 user_data)6220 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
6221 					   __u64 user_data)
6222 	__must_hold(&ctx->timeout_lock)
6223 {
6224 	struct io_timeout_data *io;
6225 	struct io_kiocb *req;
6226 	bool found = false;
6227 
6228 	list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
6229 		found = user_data == req->user_data;
6230 		if (found)
6231 			break;
6232 	}
6233 	if (!found)
6234 		return ERR_PTR(-ENOENT);
6235 
6236 	io = req->async_data;
6237 	if (hrtimer_try_to_cancel(&io->timer) == -1)
6238 		return ERR_PTR(-EALREADY);
6239 	list_del_init(&req->timeout.list);
6240 	return req;
6241 }
6242 
io_timeout_cancel(struct io_ring_ctx * ctx,__u64 user_data)6243 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6244 	__must_hold(&ctx->completion_lock)
6245 	__must_hold(&ctx->timeout_lock)
6246 {
6247 	struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6248 
6249 	if (IS_ERR(req))
6250 		return PTR_ERR(req);
6251 
6252 	req_set_fail(req);
6253 	io_fill_cqe_req(req, -ECANCELED, 0);
6254 	io_put_req_deferred(req);
6255 	return 0;
6256 }
6257 
io_timeout_get_clock(struct io_timeout_data * data)6258 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6259 {
6260 	switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6261 	case IORING_TIMEOUT_BOOTTIME:
6262 		return CLOCK_BOOTTIME;
6263 	case IORING_TIMEOUT_REALTIME:
6264 		return CLOCK_REALTIME;
6265 	default:
6266 		/* can't happen, vetted at prep time */
6267 		WARN_ON_ONCE(1);
6268 		fallthrough;
6269 	case 0:
6270 		return CLOCK_MONOTONIC;
6271 	}
6272 }
6273 
io_linked_timeout_update(struct io_ring_ctx * ctx,__u64 user_data,struct timespec64 * ts,enum hrtimer_mode mode)6274 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6275 				    struct timespec64 *ts, enum hrtimer_mode mode)
6276 	__must_hold(&ctx->timeout_lock)
6277 {
6278 	struct io_timeout_data *io;
6279 	struct io_kiocb *req;
6280 	bool found = false;
6281 
6282 	list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6283 		found = user_data == req->user_data;
6284 		if (found)
6285 			break;
6286 	}
6287 	if (!found)
6288 		return -ENOENT;
6289 
6290 	io = req->async_data;
6291 	if (hrtimer_try_to_cancel(&io->timer) == -1)
6292 		return -EALREADY;
6293 	hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6294 	io->timer.function = io_link_timeout_fn;
6295 	hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6296 	return 0;
6297 }
6298 
io_timeout_update(struct io_ring_ctx * ctx,__u64 user_data,struct timespec64 * ts,enum hrtimer_mode mode)6299 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6300 			     struct timespec64 *ts, enum hrtimer_mode mode)
6301 	__must_hold(&ctx->timeout_lock)
6302 {
6303 	struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6304 	struct io_timeout_data *data;
6305 
6306 	if (IS_ERR(req))
6307 		return PTR_ERR(req);
6308 
6309 	req->timeout.off = 0; /* noseq */
6310 	data = req->async_data;
6311 	list_add_tail(&req->timeout.list, &ctx->timeout_list);
6312 	hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6313 	data->timer.function = io_timeout_fn;
6314 	hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6315 	return 0;
6316 }
6317 
io_timeout_remove_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6318 static int io_timeout_remove_prep(struct io_kiocb *req,
6319 				  const struct io_uring_sqe *sqe)
6320 {
6321 	struct io_timeout_rem *tr = &req->timeout_rem;
6322 
6323 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6324 		return -EINVAL;
6325 	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6326 		return -EINVAL;
6327 	if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6328 		return -EINVAL;
6329 
6330 	tr->ltimeout = false;
6331 	tr->addr = READ_ONCE(sqe->addr);
6332 	tr->flags = READ_ONCE(sqe->timeout_flags);
6333 	if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6334 		if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6335 			return -EINVAL;
6336 		if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6337 			tr->ltimeout = true;
6338 		if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6339 			return -EINVAL;
6340 		if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6341 			return -EFAULT;
6342 	} else if (tr->flags) {
6343 		/* timeout removal doesn't support flags */
6344 		return -EINVAL;
6345 	}
6346 
6347 	return 0;
6348 }
6349 
io_translate_timeout_mode(unsigned int flags)6350 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6351 {
6352 	return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6353 					    : HRTIMER_MODE_REL;
6354 }
6355 
6356 /*
6357  * Remove or update an existing timeout command
6358  */
io_timeout_remove(struct io_kiocb * req,unsigned int issue_flags)6359 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6360 {
6361 	struct io_timeout_rem *tr = &req->timeout_rem;
6362 	struct io_ring_ctx *ctx = req->ctx;
6363 	int ret;
6364 
6365 	if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6366 		spin_lock(&ctx->completion_lock);
6367 		spin_lock_irq(&ctx->timeout_lock);
6368 		ret = io_timeout_cancel(ctx, tr->addr);
6369 		spin_unlock_irq(&ctx->timeout_lock);
6370 		spin_unlock(&ctx->completion_lock);
6371 	} else {
6372 		enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6373 
6374 		spin_lock_irq(&ctx->timeout_lock);
6375 		if (tr->ltimeout)
6376 			ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6377 		else
6378 			ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6379 		spin_unlock_irq(&ctx->timeout_lock);
6380 	}
6381 
6382 	if (ret < 0)
6383 		req_set_fail(req);
6384 	io_req_complete_post(req, ret, 0);
6385 	return 0;
6386 }
6387 
io_timeout_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe,bool is_timeout_link)6388 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6389 			   bool is_timeout_link)
6390 {
6391 	struct io_timeout_data *data;
6392 	unsigned flags;
6393 	u32 off = READ_ONCE(sqe->off);
6394 
6395 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6396 		return -EINVAL;
6397 	if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6398 	    sqe->splice_fd_in)
6399 		return -EINVAL;
6400 	if (off && is_timeout_link)
6401 		return -EINVAL;
6402 	flags = READ_ONCE(sqe->timeout_flags);
6403 	if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6404 		return -EINVAL;
6405 	/* more than one clock specified is invalid, obviously */
6406 	if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6407 		return -EINVAL;
6408 
6409 	INIT_LIST_HEAD(&req->timeout.list);
6410 	req->timeout.off = off;
6411 	if (unlikely(off && !req->ctx->off_timeout_used))
6412 		req->ctx->off_timeout_used = true;
6413 
6414 	if (!req->async_data && io_alloc_async_data(req))
6415 		return -ENOMEM;
6416 
6417 	data = req->async_data;
6418 	data->req = req;
6419 	data->flags = flags;
6420 
6421 	if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6422 		return -EFAULT;
6423 
6424 	INIT_LIST_HEAD(&req->timeout.list);
6425 	data->mode = io_translate_timeout_mode(flags);
6426 	hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6427 
6428 	if (is_timeout_link) {
6429 		struct io_submit_link *link = &req->ctx->submit_state.link;
6430 
6431 		if (!link->head)
6432 			return -EINVAL;
6433 		if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6434 			return -EINVAL;
6435 		req->timeout.head = link->last;
6436 		link->last->flags |= REQ_F_ARM_LTIMEOUT;
6437 	}
6438 	return 0;
6439 }
6440 
io_timeout(struct io_kiocb * req,unsigned int issue_flags)6441 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6442 {
6443 	struct io_ring_ctx *ctx = req->ctx;
6444 	struct io_timeout_data *data = req->async_data;
6445 	struct list_head *entry;
6446 	u32 tail, off = req->timeout.off;
6447 
6448 	spin_lock_irq(&ctx->timeout_lock);
6449 
6450 	/*
6451 	 * sqe->off holds how many events that need to occur for this
6452 	 * timeout event to be satisfied. If it isn't set, then this is
6453 	 * a pure timeout request, sequence isn't used.
6454 	 */
6455 	if (io_is_timeout_noseq(req)) {
6456 		entry = ctx->timeout_list.prev;
6457 		goto add;
6458 	}
6459 
6460 	tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6461 	req->timeout.target_seq = tail + off;
6462 
6463 	/* Update the last seq here in case io_flush_timeouts() hasn't.
6464 	 * This is safe because ->completion_lock is held, and submissions
6465 	 * and completions are never mixed in the same ->completion_lock section.
6466 	 */
6467 	ctx->cq_last_tm_flush = tail;
6468 
6469 	/*
6470 	 * Insertion sort, ensuring the first entry in the list is always
6471 	 * the one we need first.
6472 	 */
6473 	list_for_each_prev(entry, &ctx->timeout_list) {
6474 		struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6475 						  timeout.list);
6476 
6477 		if (io_is_timeout_noseq(nxt))
6478 			continue;
6479 		/* nxt.seq is behind @tail, otherwise would've been completed */
6480 		if (off >= nxt->timeout.target_seq - tail)
6481 			break;
6482 	}
6483 add:
6484 	list_add(&req->timeout.list, entry);
6485 	data->timer.function = io_timeout_fn;
6486 	hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6487 	spin_unlock_irq(&ctx->timeout_lock);
6488 	return 0;
6489 }
6490 
6491 struct io_cancel_data {
6492 	struct io_ring_ctx *ctx;
6493 	u64 user_data;
6494 };
6495 
io_cancel_cb(struct io_wq_work * work,void * data)6496 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6497 {
6498 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6499 	struct io_cancel_data *cd = data;
6500 
6501 	return req->ctx == cd->ctx && req->user_data == cd->user_data;
6502 }
6503 
io_async_cancel_one(struct io_uring_task * tctx,u64 user_data,struct io_ring_ctx * ctx)6504 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6505 			       struct io_ring_ctx *ctx)
6506 {
6507 	struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6508 	enum io_wq_cancel cancel_ret;
6509 	int ret = 0;
6510 
6511 	if (!tctx || !tctx->io_wq)
6512 		return -ENOENT;
6513 
6514 	cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6515 	switch (cancel_ret) {
6516 	case IO_WQ_CANCEL_OK:
6517 		ret = 0;
6518 		break;
6519 	case IO_WQ_CANCEL_RUNNING:
6520 		ret = -EALREADY;
6521 		break;
6522 	case IO_WQ_CANCEL_NOTFOUND:
6523 		ret = -ENOENT;
6524 		break;
6525 	}
6526 
6527 	return ret;
6528 }
6529 
io_try_cancel_userdata(struct io_kiocb * req,u64 sqe_addr)6530 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6531 {
6532 	struct io_ring_ctx *ctx = req->ctx;
6533 	int ret;
6534 
6535 	WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6536 
6537 	ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6538 	if (ret != -ENOENT)
6539 		return ret;
6540 
6541 	spin_lock(&ctx->completion_lock);
6542 	spin_lock_irq(&ctx->timeout_lock);
6543 	ret = io_timeout_cancel(ctx, sqe_addr);
6544 	spin_unlock_irq(&ctx->timeout_lock);
6545 	if (ret != -ENOENT)
6546 		goto out;
6547 	ret = io_poll_cancel(ctx, sqe_addr, false);
6548 out:
6549 	spin_unlock(&ctx->completion_lock);
6550 	return ret;
6551 }
6552 
io_async_cancel_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6553 static int io_async_cancel_prep(struct io_kiocb *req,
6554 				const struct io_uring_sqe *sqe)
6555 {
6556 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6557 		return -EINVAL;
6558 	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6559 		return -EINVAL;
6560 	if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6561 	    sqe->splice_fd_in)
6562 		return -EINVAL;
6563 
6564 	req->cancel.addr = READ_ONCE(sqe->addr);
6565 	return 0;
6566 }
6567 
io_async_cancel(struct io_kiocb * req,unsigned int issue_flags)6568 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6569 {
6570 	struct io_ring_ctx *ctx = req->ctx;
6571 	u64 sqe_addr = req->cancel.addr;
6572 	struct io_tctx_node *node;
6573 	int ret;
6574 
6575 	ret = io_try_cancel_userdata(req, sqe_addr);
6576 	if (ret != -ENOENT)
6577 		goto done;
6578 
6579 	/* slow path, try all io-wq's */
6580 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6581 	ret = -ENOENT;
6582 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6583 		struct io_uring_task *tctx = node->task->io_uring;
6584 
6585 		ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6586 		if (ret != -ENOENT)
6587 			break;
6588 	}
6589 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6590 done:
6591 	if (ret < 0)
6592 		req_set_fail(req);
6593 	io_req_complete_post(req, ret, 0);
6594 	return 0;
6595 }
6596 
io_rsrc_update_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6597 static int io_rsrc_update_prep(struct io_kiocb *req,
6598 				const struct io_uring_sqe *sqe)
6599 {
6600 	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6601 		return -EINVAL;
6602 	if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6603 		return -EINVAL;
6604 
6605 	req->rsrc_update.offset = READ_ONCE(sqe->off);
6606 	req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6607 	if (!req->rsrc_update.nr_args)
6608 		return -EINVAL;
6609 	req->rsrc_update.arg = READ_ONCE(sqe->addr);
6610 	return 0;
6611 }
6612 
io_files_update(struct io_kiocb * req,unsigned int issue_flags)6613 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6614 {
6615 	struct io_ring_ctx *ctx = req->ctx;
6616 	struct io_uring_rsrc_update2 up;
6617 	int ret;
6618 
6619 	up.offset = req->rsrc_update.offset;
6620 	up.data = req->rsrc_update.arg;
6621 	up.nr = 0;
6622 	up.tags = 0;
6623 	up.resv = 0;
6624 	up.resv2 = 0;
6625 
6626 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6627 	ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6628 					&up, req->rsrc_update.nr_args);
6629 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6630 
6631 	if (ret < 0)
6632 		req_set_fail(req);
6633 	__io_req_complete(req, issue_flags, ret, 0);
6634 	return 0;
6635 }
6636 
io_req_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6637 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6638 {
6639 	switch (req->opcode) {
6640 	case IORING_OP_NOP:
6641 		return 0;
6642 	case IORING_OP_READV:
6643 	case IORING_OP_READ_FIXED:
6644 	case IORING_OP_READ:
6645 		return io_read_prep(req, sqe);
6646 	case IORING_OP_WRITEV:
6647 	case IORING_OP_WRITE_FIXED:
6648 	case IORING_OP_WRITE:
6649 		return io_write_prep(req, sqe);
6650 	case IORING_OP_POLL_ADD:
6651 		return io_poll_add_prep(req, sqe);
6652 	case IORING_OP_POLL_REMOVE:
6653 		return io_poll_update_prep(req, sqe);
6654 	case IORING_OP_FSYNC:
6655 		return io_fsync_prep(req, sqe);
6656 	case IORING_OP_SYNC_FILE_RANGE:
6657 		return io_sfr_prep(req, sqe);
6658 	case IORING_OP_SENDMSG:
6659 	case IORING_OP_SEND:
6660 		return io_sendmsg_prep(req, sqe);
6661 	case IORING_OP_RECVMSG:
6662 	case IORING_OP_RECV:
6663 		return io_recvmsg_prep(req, sqe);
6664 	case IORING_OP_CONNECT:
6665 		return io_connect_prep(req, sqe);
6666 	case IORING_OP_TIMEOUT:
6667 		return io_timeout_prep(req, sqe, false);
6668 	case IORING_OP_TIMEOUT_REMOVE:
6669 		return io_timeout_remove_prep(req, sqe);
6670 	case IORING_OP_ASYNC_CANCEL:
6671 		return io_async_cancel_prep(req, sqe);
6672 	case IORING_OP_LINK_TIMEOUT:
6673 		return io_timeout_prep(req, sqe, true);
6674 	case IORING_OP_ACCEPT:
6675 		return io_accept_prep(req, sqe);
6676 	case IORING_OP_FALLOCATE:
6677 		return io_fallocate_prep(req, sqe);
6678 	case IORING_OP_OPENAT:
6679 		return io_openat_prep(req, sqe);
6680 	case IORING_OP_CLOSE:
6681 		return io_close_prep(req, sqe);
6682 	case IORING_OP_FILES_UPDATE:
6683 		return io_rsrc_update_prep(req, sqe);
6684 	case IORING_OP_STATX:
6685 		return io_statx_prep(req, sqe);
6686 	case IORING_OP_FADVISE:
6687 		return io_fadvise_prep(req, sqe);
6688 	case IORING_OP_MADVISE:
6689 		return io_madvise_prep(req, sqe);
6690 	case IORING_OP_OPENAT2:
6691 		return io_openat2_prep(req, sqe);
6692 	case IORING_OP_EPOLL_CTL:
6693 		return io_epoll_ctl_prep(req, sqe);
6694 	case IORING_OP_SPLICE:
6695 		return io_splice_prep(req, sqe);
6696 	case IORING_OP_PROVIDE_BUFFERS:
6697 		return io_provide_buffers_prep(req, sqe);
6698 	case IORING_OP_REMOVE_BUFFERS:
6699 		return io_remove_buffers_prep(req, sqe);
6700 	case IORING_OP_TEE:
6701 		return io_tee_prep(req, sqe);
6702 	case IORING_OP_SHUTDOWN:
6703 		return io_shutdown_prep(req, sqe);
6704 	case IORING_OP_RENAMEAT:
6705 		return io_renameat_prep(req, sqe);
6706 	case IORING_OP_UNLINKAT:
6707 		return io_unlinkat_prep(req, sqe);
6708 	case IORING_OP_MKDIRAT:
6709 		return io_mkdirat_prep(req, sqe);
6710 	case IORING_OP_SYMLINKAT:
6711 		return io_symlinkat_prep(req, sqe);
6712 	case IORING_OP_LINKAT:
6713 		return io_linkat_prep(req, sqe);
6714 	}
6715 
6716 	printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6717 			req->opcode);
6718 	return -EINVAL;
6719 }
6720 
io_req_prep_async(struct io_kiocb * req)6721 static int io_req_prep_async(struct io_kiocb *req)
6722 {
6723 	if (!io_op_defs[req->opcode].needs_async_setup)
6724 		return 0;
6725 	if (WARN_ON_ONCE(req->async_data))
6726 		return -EFAULT;
6727 	if (io_alloc_async_data(req))
6728 		return -EAGAIN;
6729 
6730 	switch (req->opcode) {
6731 	case IORING_OP_READV:
6732 		return io_rw_prep_async(req, READ);
6733 	case IORING_OP_WRITEV:
6734 		return io_rw_prep_async(req, WRITE);
6735 	case IORING_OP_SENDMSG:
6736 		return io_sendmsg_prep_async(req);
6737 	case IORING_OP_RECVMSG:
6738 		return io_recvmsg_prep_async(req);
6739 	case IORING_OP_CONNECT:
6740 		return io_connect_prep_async(req);
6741 	}
6742 	printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6743 		    req->opcode);
6744 	return -EFAULT;
6745 }
6746 
io_get_sequence(struct io_kiocb * req)6747 static u32 io_get_sequence(struct io_kiocb *req)
6748 {
6749 	u32 seq = req->ctx->cached_sq_head;
6750 
6751 	/* need original cached_sq_head, but it was increased for each req */
6752 	io_for_each_link(req, req)
6753 		seq--;
6754 	return seq;
6755 }
6756 
io_drain_req(struct io_kiocb * req)6757 static bool io_drain_req(struct io_kiocb *req)
6758 {
6759 	struct io_kiocb *pos;
6760 	struct io_ring_ctx *ctx = req->ctx;
6761 	struct io_defer_entry *de;
6762 	int ret;
6763 	u32 seq;
6764 
6765 	if (req->flags & REQ_F_FAIL) {
6766 		io_req_complete_fail_submit(req);
6767 		return true;
6768 	}
6769 
6770 	/*
6771 	 * If we need to drain a request in the middle of a link, drain the
6772 	 * head request and the next request/link after the current link.
6773 	 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6774 	 * maintained for every request of our link.
6775 	 */
6776 	if (ctx->drain_next) {
6777 		req->flags |= REQ_F_IO_DRAIN;
6778 		ctx->drain_next = false;
6779 	}
6780 	/* not interested in head, start from the first linked */
6781 	io_for_each_link(pos, req->link) {
6782 		if (pos->flags & REQ_F_IO_DRAIN) {
6783 			ctx->drain_next = true;
6784 			req->flags |= REQ_F_IO_DRAIN;
6785 			break;
6786 		}
6787 	}
6788 
6789 	/* Still need defer if there is pending req in defer list. */
6790 	spin_lock(&ctx->completion_lock);
6791 	if (likely(list_empty_careful(&ctx->defer_list) &&
6792 		!(req->flags & REQ_F_IO_DRAIN))) {
6793 		spin_unlock(&ctx->completion_lock);
6794 		ctx->drain_active = false;
6795 		return false;
6796 	}
6797 	spin_unlock(&ctx->completion_lock);
6798 
6799 	seq = io_get_sequence(req);
6800 	/* Still a chance to pass the sequence check */
6801 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6802 		return false;
6803 
6804 	ret = io_req_prep_async(req);
6805 	if (ret)
6806 		goto fail;
6807 	io_prep_async_link(req);
6808 	de = kmalloc(sizeof(*de), GFP_KERNEL);
6809 	if (!de) {
6810 		ret = -ENOMEM;
6811 fail:
6812 		io_req_complete_failed(req, ret);
6813 		return true;
6814 	}
6815 
6816 	spin_lock(&ctx->completion_lock);
6817 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6818 		spin_unlock(&ctx->completion_lock);
6819 		kfree(de);
6820 		io_queue_async_work(req, NULL);
6821 		return true;
6822 	}
6823 
6824 	trace_io_uring_defer(ctx, req, req->user_data);
6825 	de->req = req;
6826 	de->seq = seq;
6827 	list_add_tail(&de->list, &ctx->defer_list);
6828 	spin_unlock(&ctx->completion_lock);
6829 	return true;
6830 }
6831 
io_clean_op(struct io_kiocb * req)6832 static void io_clean_op(struct io_kiocb *req)
6833 {
6834 	if (req->flags & REQ_F_BUFFER_SELECTED) {
6835 		switch (req->opcode) {
6836 		case IORING_OP_READV:
6837 		case IORING_OP_READ_FIXED:
6838 		case IORING_OP_READ:
6839 			kfree((void *)(unsigned long)req->rw.addr);
6840 			break;
6841 		case IORING_OP_RECVMSG:
6842 		case IORING_OP_RECV:
6843 			kfree(req->sr_msg.kbuf);
6844 			break;
6845 		}
6846 	}
6847 
6848 	if (req->flags & REQ_F_NEED_CLEANUP) {
6849 		switch (req->opcode) {
6850 		case IORING_OP_READV:
6851 		case IORING_OP_READ_FIXED:
6852 		case IORING_OP_READ:
6853 		case IORING_OP_WRITEV:
6854 		case IORING_OP_WRITE_FIXED:
6855 		case IORING_OP_WRITE: {
6856 			struct io_async_rw *io = req->async_data;
6857 
6858 			kfree(io->free_iovec);
6859 			break;
6860 			}
6861 		case IORING_OP_RECVMSG:
6862 		case IORING_OP_SENDMSG: {
6863 			struct io_async_msghdr *io = req->async_data;
6864 
6865 			kfree(io->free_iov);
6866 			break;
6867 			}
6868 		case IORING_OP_OPENAT:
6869 		case IORING_OP_OPENAT2:
6870 			if (req->open.filename)
6871 				putname(req->open.filename);
6872 			break;
6873 		case IORING_OP_RENAMEAT:
6874 			putname(req->rename.oldpath);
6875 			putname(req->rename.newpath);
6876 			break;
6877 		case IORING_OP_UNLINKAT:
6878 			putname(req->unlink.filename);
6879 			break;
6880 		case IORING_OP_MKDIRAT:
6881 			putname(req->mkdir.filename);
6882 			break;
6883 		case IORING_OP_SYMLINKAT:
6884 			putname(req->symlink.oldpath);
6885 			putname(req->symlink.newpath);
6886 			break;
6887 		case IORING_OP_LINKAT:
6888 			putname(req->hardlink.oldpath);
6889 			putname(req->hardlink.newpath);
6890 			break;
6891 		}
6892 	}
6893 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
6894 		kfree(req->apoll->double_poll);
6895 		kfree(req->apoll);
6896 		req->apoll = NULL;
6897 	}
6898 	if (req->flags & REQ_F_INFLIGHT) {
6899 		struct io_uring_task *tctx = req->task->io_uring;
6900 
6901 		atomic_dec(&tctx->inflight_tracked);
6902 	}
6903 	if (req->flags & REQ_F_CREDS)
6904 		put_cred(req->creds);
6905 
6906 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
6907 }
6908 
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)6909 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6910 {
6911 	struct io_ring_ctx *ctx = req->ctx;
6912 	const struct cred *creds = NULL;
6913 	int ret;
6914 
6915 	if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6916 		creds = override_creds(req->creds);
6917 
6918 	switch (req->opcode) {
6919 	case IORING_OP_NOP:
6920 		ret = io_nop(req, issue_flags);
6921 		break;
6922 	case IORING_OP_READV:
6923 	case IORING_OP_READ_FIXED:
6924 	case IORING_OP_READ:
6925 		ret = io_read(req, issue_flags);
6926 		break;
6927 	case IORING_OP_WRITEV:
6928 	case IORING_OP_WRITE_FIXED:
6929 	case IORING_OP_WRITE:
6930 		ret = io_write(req, issue_flags);
6931 		break;
6932 	case IORING_OP_FSYNC:
6933 		ret = io_fsync(req, issue_flags);
6934 		break;
6935 	case IORING_OP_POLL_ADD:
6936 		ret = io_poll_add(req, issue_flags);
6937 		break;
6938 	case IORING_OP_POLL_REMOVE:
6939 		ret = io_poll_update(req, issue_flags);
6940 		break;
6941 	case IORING_OP_SYNC_FILE_RANGE:
6942 		ret = io_sync_file_range(req, issue_flags);
6943 		break;
6944 	case IORING_OP_SENDMSG:
6945 		ret = io_sendmsg(req, issue_flags);
6946 		break;
6947 	case IORING_OP_SEND:
6948 		ret = io_send(req, issue_flags);
6949 		break;
6950 	case IORING_OP_RECVMSG:
6951 		ret = io_recvmsg(req, issue_flags);
6952 		break;
6953 	case IORING_OP_RECV:
6954 		ret = io_recv(req, issue_flags);
6955 		break;
6956 	case IORING_OP_TIMEOUT:
6957 		ret = io_timeout(req, issue_flags);
6958 		break;
6959 	case IORING_OP_TIMEOUT_REMOVE:
6960 		ret = io_timeout_remove(req, issue_flags);
6961 		break;
6962 	case IORING_OP_ACCEPT:
6963 		ret = io_accept(req, issue_flags);
6964 		break;
6965 	case IORING_OP_CONNECT:
6966 		ret = io_connect(req, issue_flags);
6967 		break;
6968 	case IORING_OP_ASYNC_CANCEL:
6969 		ret = io_async_cancel(req, issue_flags);
6970 		break;
6971 	case IORING_OP_FALLOCATE:
6972 		ret = io_fallocate(req, issue_flags);
6973 		break;
6974 	case IORING_OP_OPENAT:
6975 		ret = io_openat(req, issue_flags);
6976 		break;
6977 	case IORING_OP_CLOSE:
6978 		ret = io_close(req, issue_flags);
6979 		break;
6980 	case IORING_OP_FILES_UPDATE:
6981 		ret = io_files_update(req, issue_flags);
6982 		break;
6983 	case IORING_OP_STATX:
6984 		ret = io_statx(req, issue_flags);
6985 		break;
6986 	case IORING_OP_FADVISE:
6987 		ret = io_fadvise(req, issue_flags);
6988 		break;
6989 	case IORING_OP_MADVISE:
6990 		ret = io_madvise(req, issue_flags);
6991 		break;
6992 	case IORING_OP_OPENAT2:
6993 		ret = io_openat2(req, issue_flags);
6994 		break;
6995 	case IORING_OP_EPOLL_CTL:
6996 		ret = io_epoll_ctl(req, issue_flags);
6997 		break;
6998 	case IORING_OP_SPLICE:
6999 		ret = io_splice(req, issue_flags);
7000 		break;
7001 	case IORING_OP_PROVIDE_BUFFERS:
7002 		ret = io_provide_buffers(req, issue_flags);
7003 		break;
7004 	case IORING_OP_REMOVE_BUFFERS:
7005 		ret = io_remove_buffers(req, issue_flags);
7006 		break;
7007 	case IORING_OP_TEE:
7008 		ret = io_tee(req, issue_flags);
7009 		break;
7010 	case IORING_OP_SHUTDOWN:
7011 		ret = io_shutdown(req, issue_flags);
7012 		break;
7013 	case IORING_OP_RENAMEAT:
7014 		ret = io_renameat(req, issue_flags);
7015 		break;
7016 	case IORING_OP_UNLINKAT:
7017 		ret = io_unlinkat(req, issue_flags);
7018 		break;
7019 	case IORING_OP_MKDIRAT:
7020 		ret = io_mkdirat(req, issue_flags);
7021 		break;
7022 	case IORING_OP_SYMLINKAT:
7023 		ret = io_symlinkat(req, issue_flags);
7024 		break;
7025 	case IORING_OP_LINKAT:
7026 		ret = io_linkat(req, issue_flags);
7027 		break;
7028 	default:
7029 		ret = -EINVAL;
7030 		break;
7031 	}
7032 
7033 	if (creds)
7034 		revert_creds(creds);
7035 	if (ret)
7036 		return ret;
7037 	/* If the op doesn't have a file, we're not polling for it */
7038 	if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
7039 		io_iopoll_req_issued(req);
7040 
7041 	return 0;
7042 }
7043 
io_wq_free_work(struct io_wq_work * work)7044 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
7045 {
7046 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7047 
7048 	req = io_put_req_find_next(req);
7049 	return req ? &req->work : NULL;
7050 }
7051 
io_wq_submit_work(struct io_wq_work * work)7052 static void io_wq_submit_work(struct io_wq_work *work)
7053 {
7054 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7055 	struct io_kiocb *timeout;
7056 	int ret = 0;
7057 
7058 	/* one will be dropped by ->io_free_work() after returning to io-wq */
7059 	if (!(req->flags & REQ_F_REFCOUNT))
7060 		__io_req_set_refcount(req, 2);
7061 	else
7062 		req_ref_get(req);
7063 
7064 	timeout = io_prep_linked_timeout(req);
7065 	if (timeout)
7066 		io_queue_linked_timeout(timeout);
7067 
7068 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
7069 	if (work->flags & IO_WQ_WORK_CANCEL)
7070 		ret = -ECANCELED;
7071 
7072 	if (!ret) {
7073 		do {
7074 			ret = io_issue_sqe(req, 0);
7075 			/*
7076 			 * We can get EAGAIN for polled IO even though we're
7077 			 * forcing a sync submission from here, since we can't
7078 			 * wait for request slots on the block side.
7079 			 */
7080 			if (ret != -EAGAIN || !(req->ctx->flags & IORING_SETUP_IOPOLL))
7081 				break;
7082 			if (io_wq_worker_stopped())
7083 				break;
7084 			/*
7085 			 * If REQ_F_NOWAIT is set, then don't wait or retry with
7086 			 * poll. -EAGAIN is final for that case.
7087 			 */
7088 			if (req->flags & REQ_F_NOWAIT)
7089 				break;
7090 
7091 			cond_resched();
7092 		} while (1);
7093 	}
7094 
7095 	/* avoid locking problems by failing it from a clean context */
7096 	if (ret)
7097 		io_req_task_queue_fail(req, ret);
7098 }
7099 
io_fixed_file_slot(struct io_file_table * table,unsigned i)7100 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
7101 						       unsigned i)
7102 {
7103 	return &table->files[i];
7104 }
7105 
io_file_from_index(struct io_ring_ctx * ctx,int index)7106 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
7107 					      int index)
7108 {
7109 	struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
7110 
7111 	return (struct file *) (slot->file_ptr & FFS_MASK);
7112 }
7113 
io_fixed_file_set(struct io_fixed_file * file_slot,struct file * file)7114 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
7115 {
7116 	unsigned long file_ptr = (unsigned long) file;
7117 
7118 	if (__io_file_supports_nowait(file, READ))
7119 		file_ptr |= FFS_ASYNC_READ;
7120 	if (__io_file_supports_nowait(file, WRITE))
7121 		file_ptr |= FFS_ASYNC_WRITE;
7122 	if (S_ISREG(file_inode(file)->i_mode))
7123 		file_ptr |= FFS_ISREG;
7124 	file_slot->file_ptr = file_ptr;
7125 }
7126 
io_file_get_fixed(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd,unsigned int issue_flags)7127 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
7128 					     struct io_kiocb *req, int fd,
7129 					     unsigned int issue_flags)
7130 {
7131 	struct file *file = NULL;
7132 	unsigned long file_ptr;
7133 
7134 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
7135 
7136 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
7137 		goto out;
7138 	fd = array_index_nospec(fd, ctx->nr_user_files);
7139 	file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
7140 	file = (struct file *) (file_ptr & FFS_MASK);
7141 	file_ptr &= ~FFS_MASK;
7142 	/* mask in overlapping REQ_F and FFS bits */
7143 	req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
7144 	io_req_set_rsrc_node(req);
7145 out:
7146 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
7147 	return file;
7148 }
7149 
io_file_get_normal(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd)7150 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
7151 				       struct io_kiocb *req, int fd)
7152 {
7153 	struct file *file = fget(fd);
7154 
7155 	trace_io_uring_file_get(ctx, fd);
7156 
7157 	/* we don't allow fixed io_uring files */
7158 	if (file && unlikely(file->f_op == &io_uring_fops))
7159 		io_req_track_inflight(req);
7160 	return file;
7161 }
7162 
io_file_get(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd,bool fixed,unsigned int issue_flags)7163 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
7164 				       struct io_kiocb *req, int fd, bool fixed,
7165 				       unsigned int issue_flags)
7166 {
7167 	if (fixed)
7168 		return io_file_get_fixed(ctx, req, fd, issue_flags);
7169 	else
7170 		return io_file_get_normal(ctx, req, fd);
7171 }
7172 
io_req_task_link_timeout(struct io_kiocb * req,bool * locked)7173 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
7174 {
7175 	struct io_kiocb *prev = req->timeout.prev;
7176 	int ret = -ENOENT;
7177 
7178 	if (prev) {
7179 		if (!(req->task->flags & PF_EXITING))
7180 			ret = io_try_cancel_userdata(req, prev->user_data);
7181 		io_req_complete_post(req, ret ?: -ETIME, 0);
7182 		io_put_req(prev);
7183 	} else {
7184 		io_req_complete_post(req, -ETIME, 0);
7185 	}
7186 }
7187 
io_link_timeout_fn(struct hrtimer * timer)7188 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
7189 {
7190 	struct io_timeout_data *data = container_of(timer,
7191 						struct io_timeout_data, timer);
7192 	struct io_kiocb *prev, *req = data->req;
7193 	struct io_ring_ctx *ctx = req->ctx;
7194 	unsigned long flags;
7195 
7196 	spin_lock_irqsave(&ctx->timeout_lock, flags);
7197 	prev = req->timeout.head;
7198 	req->timeout.head = NULL;
7199 
7200 	/*
7201 	 * We don't expect the list to be empty, that will only happen if we
7202 	 * race with the completion of the linked work.
7203 	 */
7204 	if (prev) {
7205 		io_remove_next_linked(prev);
7206 		if (!req_ref_inc_not_zero(prev))
7207 			prev = NULL;
7208 	}
7209 	list_del(&req->timeout.list);
7210 	req->timeout.prev = prev;
7211 	spin_unlock_irqrestore(&ctx->timeout_lock, flags);
7212 
7213 	req->io_task_work.func = io_req_task_link_timeout;
7214 	io_req_task_work_add(req);
7215 	return HRTIMER_NORESTART;
7216 }
7217 
io_queue_linked_timeout(struct io_kiocb * req)7218 static void io_queue_linked_timeout(struct io_kiocb *req)
7219 {
7220 	struct io_ring_ctx *ctx = req->ctx;
7221 
7222 	spin_lock_irq(&ctx->timeout_lock);
7223 	/*
7224 	 * If the back reference is NULL, then our linked request finished
7225 	 * before we got a chance to setup the timer
7226 	 */
7227 	if (req->timeout.head) {
7228 		struct io_timeout_data *data = req->async_data;
7229 
7230 		data->timer.function = io_link_timeout_fn;
7231 		hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
7232 				data->mode);
7233 		list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
7234 	}
7235 	spin_unlock_irq(&ctx->timeout_lock);
7236 	/* drop submission reference */
7237 	io_put_req(req);
7238 }
7239 
__io_queue_sqe(struct io_kiocb * req)7240 static void __io_queue_sqe(struct io_kiocb *req)
7241 	__must_hold(&req->ctx->uring_lock)
7242 {
7243 	struct io_kiocb *linked_timeout;
7244 	int ret;
7245 
7246 issue_sqe:
7247 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
7248 
7249 	/*
7250 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
7251 	 * doesn't support non-blocking read/write attempts
7252 	 */
7253 	if (likely(!ret)) {
7254 		if (req->flags & REQ_F_COMPLETE_INLINE) {
7255 			struct io_ring_ctx *ctx = req->ctx;
7256 			struct io_submit_state *state = &ctx->submit_state;
7257 
7258 			state->compl_reqs[state->compl_nr++] = req;
7259 			if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
7260 				io_submit_flush_completions(ctx);
7261 			return;
7262 		}
7263 
7264 		linked_timeout = io_prep_linked_timeout(req);
7265 		if (linked_timeout)
7266 			io_queue_linked_timeout(linked_timeout);
7267 	} else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7268 		linked_timeout = io_prep_linked_timeout(req);
7269 
7270 		switch (io_arm_poll_handler(req)) {
7271 		case IO_APOLL_READY:
7272 			if (linked_timeout)
7273 				io_queue_linked_timeout(linked_timeout);
7274 			goto issue_sqe;
7275 		case IO_APOLL_ABORTED:
7276 			/*
7277 			 * Queued up for async execution, worker will release
7278 			 * submit reference when the iocb is actually submitted.
7279 			 */
7280 			io_queue_async_work(req, NULL);
7281 			break;
7282 		}
7283 
7284 		if (linked_timeout)
7285 			io_queue_linked_timeout(linked_timeout);
7286 	} else {
7287 		io_req_complete_failed(req, ret);
7288 	}
7289 }
7290 
io_queue_sqe(struct io_kiocb * req)7291 static inline void io_queue_sqe(struct io_kiocb *req)
7292 	__must_hold(&req->ctx->uring_lock)
7293 {
7294 	if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7295 		return;
7296 
7297 	if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7298 		__io_queue_sqe(req);
7299 	} else if (req->flags & REQ_F_FAIL) {
7300 		io_req_complete_fail_submit(req);
7301 	} else {
7302 		int ret = io_req_prep_async(req);
7303 
7304 		if (unlikely(ret))
7305 			io_req_complete_failed(req, ret);
7306 		else
7307 			io_queue_async_work(req, NULL);
7308 	}
7309 }
7310 
7311 /*
7312  * Check SQE restrictions (opcode and flags).
7313  *
7314  * Returns 'true' if SQE is allowed, 'false' otherwise.
7315  */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)7316 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7317 					struct io_kiocb *req,
7318 					unsigned int sqe_flags)
7319 {
7320 	if (likely(!ctx->restricted))
7321 		return true;
7322 
7323 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7324 		return false;
7325 
7326 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7327 	    ctx->restrictions.sqe_flags_required)
7328 		return false;
7329 
7330 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7331 			  ctx->restrictions.sqe_flags_required))
7332 		return false;
7333 
7334 	return true;
7335 }
7336 
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)7337 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7338 		       const struct io_uring_sqe *sqe)
7339 	__must_hold(&ctx->uring_lock)
7340 {
7341 	struct io_submit_state *state;
7342 	unsigned int sqe_flags;
7343 	int personality, ret = 0;
7344 
7345 	/* req is partially pre-initialised, see io_preinit_req() */
7346 	req->opcode = READ_ONCE(sqe->opcode);
7347 	/* same numerical values with corresponding REQ_F_*, safe to copy */
7348 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
7349 	req->user_data = READ_ONCE(sqe->user_data);
7350 	req->file = NULL;
7351 	req->fixed_rsrc_refs = NULL;
7352 	req->task = current;
7353 
7354 	/* enforce forwards compatibility on users */
7355 	if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7356 		return -EINVAL;
7357 	if (unlikely(req->opcode >= IORING_OP_LAST))
7358 		return -EINVAL;
7359 	if (!io_check_restriction(ctx, req, sqe_flags))
7360 		return -EACCES;
7361 
7362 	if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7363 	    !io_op_defs[req->opcode].buffer_select)
7364 		return -EOPNOTSUPP;
7365 	if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7366 		ctx->drain_active = true;
7367 
7368 	personality = READ_ONCE(sqe->personality);
7369 	if (personality) {
7370 		req->creds = xa_load(&ctx->personalities, personality);
7371 		if (!req->creds)
7372 			return -EINVAL;
7373 		get_cred(req->creds);
7374 		req->flags |= REQ_F_CREDS;
7375 	}
7376 	state = &ctx->submit_state;
7377 
7378 	/*
7379 	 * Plug now if we have more than 1 IO left after this, and the target
7380 	 * is potentially a read/write to block based storage.
7381 	 */
7382 	if (!state->plug_started && state->ios_left > 1 &&
7383 	    io_op_defs[req->opcode].plug) {
7384 		blk_start_plug(&state->plug);
7385 		state->plug_started = true;
7386 	}
7387 
7388 	if (io_op_defs[req->opcode].needs_file) {
7389 		req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7390 					(sqe_flags & IOSQE_FIXED_FILE),
7391 					IO_URING_F_NONBLOCK);
7392 		if (unlikely(!req->file))
7393 			ret = -EBADF;
7394 	}
7395 
7396 	state->ios_left--;
7397 	return ret;
7398 }
7399 
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)7400 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7401 			 const struct io_uring_sqe *sqe)
7402 	__must_hold(&ctx->uring_lock)
7403 {
7404 	struct io_submit_link *link = &ctx->submit_state.link;
7405 	int ret;
7406 
7407 	ret = io_init_req(ctx, req, sqe);
7408 	if (unlikely(ret)) {
7409 fail_req:
7410 		/* fail even hard links since we don't submit */
7411 		if (link->head) {
7412 			/*
7413 			 * we can judge a link req is failed or cancelled by if
7414 			 * REQ_F_FAIL is set, but the head is an exception since
7415 			 * it may be set REQ_F_FAIL because of other req's failure
7416 			 * so let's leverage req->result to distinguish if a head
7417 			 * is set REQ_F_FAIL because of its failure or other req's
7418 			 * failure so that we can set the correct ret code for it.
7419 			 * init result here to avoid affecting the normal path.
7420 			 */
7421 			if (!(link->head->flags & REQ_F_FAIL))
7422 				req_fail_link_node(link->head, -ECANCELED);
7423 		} else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7424 			/*
7425 			 * the current req is a normal req, we should return
7426 			 * error and thus break the submittion loop.
7427 			 */
7428 			io_req_complete_failed(req, ret);
7429 			return ret;
7430 		}
7431 		req_fail_link_node(req, ret);
7432 	} else {
7433 		ret = io_req_prep(req, sqe);
7434 		if (unlikely(ret))
7435 			goto fail_req;
7436 	}
7437 
7438 	/* don't need @sqe from now on */
7439 	trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7440 				  req->flags, true,
7441 				  ctx->flags & IORING_SETUP_SQPOLL);
7442 
7443 	/*
7444 	 * If we already have a head request, queue this one for async
7445 	 * submittal once the head completes. If we don't have a head but
7446 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7447 	 * submitted sync once the chain is complete. If none of those
7448 	 * conditions are true (normal request), then just queue it.
7449 	 */
7450 	if (link->head) {
7451 		struct io_kiocb *head = link->head;
7452 
7453 		if (!(req->flags & REQ_F_FAIL)) {
7454 			ret = io_req_prep_async(req);
7455 			if (unlikely(ret)) {
7456 				req_fail_link_node(req, ret);
7457 				if (!(head->flags & REQ_F_FAIL))
7458 					req_fail_link_node(head, -ECANCELED);
7459 			}
7460 		}
7461 		trace_io_uring_link(ctx, req, head);
7462 		link->last->link = req;
7463 		link->last = req;
7464 
7465 		/* last request of a link, enqueue the link */
7466 		if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7467 			link->head = NULL;
7468 			io_queue_sqe(head);
7469 		}
7470 	} else {
7471 		if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7472 			link->head = req;
7473 			link->last = req;
7474 		} else {
7475 			io_queue_sqe(req);
7476 		}
7477 	}
7478 
7479 	return 0;
7480 }
7481 
7482 /*
7483  * Batched submission is done, ensure local IO is flushed out.
7484  */
io_submit_state_end(struct io_submit_state * state,struct io_ring_ctx * ctx)7485 static void io_submit_state_end(struct io_submit_state *state,
7486 				struct io_ring_ctx *ctx)
7487 {
7488 	if (state->link.head)
7489 		io_queue_sqe(state->link.head);
7490 	if (state->compl_nr)
7491 		io_submit_flush_completions(ctx);
7492 	if (state->plug_started)
7493 		blk_finish_plug(&state->plug);
7494 }
7495 
7496 /*
7497  * Start submission side cache.
7498  */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)7499 static void io_submit_state_start(struct io_submit_state *state,
7500 				  unsigned int max_ios)
7501 {
7502 	state->plug_started = false;
7503 	state->ios_left = max_ios;
7504 	/* set only head, no need to init link_last in advance */
7505 	state->link.head = NULL;
7506 }
7507 
io_commit_sqring(struct io_ring_ctx * ctx)7508 static void io_commit_sqring(struct io_ring_ctx *ctx)
7509 {
7510 	struct io_rings *rings = ctx->rings;
7511 
7512 	/*
7513 	 * Ensure any loads from the SQEs are done at this point,
7514 	 * since once we write the new head, the application could
7515 	 * write new data to them.
7516 	 */
7517 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7518 }
7519 
7520 /*
7521  * Fetch an sqe, if one is available. Note this returns a pointer to memory
7522  * that is mapped by userspace. This means that care needs to be taken to
7523  * ensure that reads are stable, as we cannot rely on userspace always
7524  * being a good citizen. If members of the sqe are validated and then later
7525  * used, it's important that those reads are done through READ_ONCE() to
7526  * prevent a re-load down the line.
7527  */
io_get_sqe(struct io_ring_ctx * ctx)7528 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7529 {
7530 	unsigned head, mask = ctx->sq_entries - 1;
7531 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
7532 
7533 	/*
7534 	 * The cached sq head (or cq tail) serves two purposes:
7535 	 *
7536 	 * 1) allows us to batch the cost of updating the user visible
7537 	 *    head updates.
7538 	 * 2) allows the kernel side to track the head on its own, even
7539 	 *    though the application is the one updating it.
7540 	 */
7541 	head = READ_ONCE(ctx->sq_array[sq_idx]);
7542 	if (likely(head < ctx->sq_entries))
7543 		return &ctx->sq_sqes[head];
7544 
7545 	/* drop invalid entries */
7546 	spin_lock(&ctx->completion_lock);
7547 	ctx->cq_extra--;
7548 	spin_unlock(&ctx->completion_lock);
7549 	WRITE_ONCE(ctx->rings->sq_dropped,
7550 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
7551 	return NULL;
7552 }
7553 
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)7554 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7555 	__must_hold(&ctx->uring_lock)
7556 {
7557 	int submitted = 0;
7558 
7559 	/* make sure SQ entry isn't read before tail */
7560 	nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7561 	if (!percpu_ref_tryget_many(&ctx->refs, nr))
7562 		return -EAGAIN;
7563 	io_get_task_refs(nr);
7564 
7565 	io_submit_state_start(&ctx->submit_state, nr);
7566 	while (submitted < nr) {
7567 		const struct io_uring_sqe *sqe;
7568 		struct io_kiocb *req;
7569 
7570 		req = io_alloc_req(ctx);
7571 		if (unlikely(!req)) {
7572 			if (!submitted)
7573 				submitted = -EAGAIN;
7574 			break;
7575 		}
7576 		sqe = io_get_sqe(ctx);
7577 		if (unlikely(!sqe)) {
7578 			list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7579 			break;
7580 		}
7581 		/* will complete beyond this point, count as submitted */
7582 		submitted++;
7583 		if (io_submit_sqe(ctx, req, sqe))
7584 			break;
7585 	}
7586 
7587 	if (unlikely(submitted != nr)) {
7588 		int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7589 		int unused = nr - ref_used;
7590 
7591 		current->io_uring->cached_refs += unused;
7592 		percpu_ref_put_many(&ctx->refs, unused);
7593 	}
7594 
7595 	io_submit_state_end(&ctx->submit_state, ctx);
7596 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7597 	io_commit_sqring(ctx);
7598 
7599 	return submitted;
7600 }
7601 
io_sqd_events_pending(struct io_sq_data * sqd)7602 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7603 {
7604 	return READ_ONCE(sqd->state);
7605 }
7606 
io_ring_set_wakeup_flag(struct io_ring_ctx * ctx)7607 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7608 {
7609 	/* Tell userspace we may need a wakeup call */
7610 	spin_lock(&ctx->completion_lock);
7611 	WRITE_ONCE(ctx->rings->sq_flags,
7612 		   ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7613 	spin_unlock(&ctx->completion_lock);
7614 }
7615 
io_ring_clear_wakeup_flag(struct io_ring_ctx * ctx)7616 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7617 {
7618 	spin_lock(&ctx->completion_lock);
7619 	WRITE_ONCE(ctx->rings->sq_flags,
7620 		   ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7621 	spin_unlock(&ctx->completion_lock);
7622 }
7623 
__io_sq_thread(struct io_ring_ctx * ctx,bool cap_entries)7624 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7625 {
7626 	unsigned int to_submit;
7627 	int ret = 0;
7628 
7629 	to_submit = io_sqring_entries(ctx);
7630 	/* if we're handling multiple rings, cap submit size for fairness */
7631 	if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7632 		to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7633 
7634 	if (!list_empty(&ctx->iopoll_list) || to_submit) {
7635 		unsigned nr_events = 0;
7636 		const struct cred *creds = NULL;
7637 
7638 		if (ctx->sq_creds != current_cred())
7639 			creds = override_creds(ctx->sq_creds);
7640 
7641 		mutex_lock(&ctx->uring_lock);
7642 		if (!list_empty(&ctx->iopoll_list))
7643 			io_do_iopoll(ctx, &nr_events, 0);
7644 
7645 		/*
7646 		 * Don't submit if refs are dying, good for io_uring_register(),
7647 		 * but also it is relied upon by io_ring_exit_work()
7648 		 */
7649 		if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7650 		    !(ctx->flags & IORING_SETUP_R_DISABLED))
7651 			ret = io_submit_sqes(ctx, to_submit);
7652 		mutex_unlock(&ctx->uring_lock);
7653 
7654 		if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7655 			wake_up(&ctx->sqo_sq_wait);
7656 		if (creds)
7657 			revert_creds(creds);
7658 	}
7659 
7660 	return ret;
7661 }
7662 
io_sqd_update_thread_idle(struct io_sq_data * sqd)7663 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7664 {
7665 	struct io_ring_ctx *ctx;
7666 	unsigned sq_thread_idle = 0;
7667 
7668 	list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7669 		sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7670 	sqd->sq_thread_idle = sq_thread_idle;
7671 }
7672 
io_sqd_handle_event(struct io_sq_data * sqd)7673 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7674 {
7675 	bool did_sig = false;
7676 	struct ksignal ksig;
7677 
7678 	if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7679 	    signal_pending(current)) {
7680 		mutex_unlock(&sqd->lock);
7681 		if (signal_pending(current))
7682 			did_sig = get_signal(&ksig);
7683 		cond_resched();
7684 		mutex_lock(&sqd->lock);
7685 	}
7686 	return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7687 }
7688 
io_sq_thread(void * data)7689 static int io_sq_thread(void *data)
7690 {
7691 	struct io_sq_data *sqd = data;
7692 	struct io_ring_ctx *ctx;
7693 	unsigned long timeout = 0;
7694 	char buf[TASK_COMM_LEN];
7695 	DEFINE_WAIT(wait);
7696 
7697 	snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7698 	set_task_comm(current, buf);
7699 
7700 	if (sqd->sq_cpu != -1)
7701 		set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7702 	else
7703 		set_cpus_allowed_ptr(current, cpu_online_mask);
7704 	current->flags |= PF_NO_SETAFFINITY;
7705 
7706 	mutex_lock(&sqd->lock);
7707 	while (1) {
7708 		bool cap_entries, sqt_spin = false;
7709 
7710 		if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7711 			if (io_sqd_handle_event(sqd))
7712 				break;
7713 			timeout = jiffies + sqd->sq_thread_idle;
7714 		}
7715 
7716 		cap_entries = !list_is_singular(&sqd->ctx_list);
7717 		list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7718 			int ret = __io_sq_thread(ctx, cap_entries);
7719 
7720 			if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7721 				sqt_spin = true;
7722 		}
7723 		if (io_run_task_work())
7724 			sqt_spin = true;
7725 
7726 		if (sqt_spin || !time_after(jiffies, timeout)) {
7727 			cond_resched();
7728 			if (sqt_spin)
7729 				timeout = jiffies + sqd->sq_thread_idle;
7730 			continue;
7731 		}
7732 
7733 		prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7734 		if (!io_sqd_events_pending(sqd) && !current->task_works) {
7735 			bool needs_sched = true;
7736 
7737 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7738 				io_ring_set_wakeup_flag(ctx);
7739 
7740 				if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7741 				    !list_empty_careful(&ctx->iopoll_list)) {
7742 					needs_sched = false;
7743 					break;
7744 				}
7745 				if (io_sqring_entries(ctx)) {
7746 					needs_sched = false;
7747 					break;
7748 				}
7749 			}
7750 
7751 			if (needs_sched) {
7752 				mutex_unlock(&sqd->lock);
7753 				schedule();
7754 				mutex_lock(&sqd->lock);
7755 			}
7756 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7757 				io_ring_clear_wakeup_flag(ctx);
7758 		}
7759 
7760 		finish_wait(&sqd->wait, &wait);
7761 		timeout = jiffies + sqd->sq_thread_idle;
7762 	}
7763 
7764 	io_uring_cancel_generic(true, sqd);
7765 	sqd->thread = NULL;
7766 	list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7767 		io_ring_set_wakeup_flag(ctx);
7768 	io_run_task_work();
7769 	mutex_unlock(&sqd->lock);
7770 
7771 	complete(&sqd->exited);
7772 	do_exit(0);
7773 }
7774 
7775 struct io_wait_queue {
7776 	struct wait_queue_entry wq;
7777 	struct io_ring_ctx *ctx;
7778 	unsigned cq_tail;
7779 	unsigned nr_timeouts;
7780 };
7781 
io_should_wake(struct io_wait_queue * iowq)7782 static inline bool io_should_wake(struct io_wait_queue *iowq)
7783 {
7784 	struct io_ring_ctx *ctx = iowq->ctx;
7785 	int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7786 
7787 	/*
7788 	 * Wake up if we have enough events, or if a timeout occurred since we
7789 	 * started waiting. For timeouts, we always want to return to userspace,
7790 	 * regardless of event count.
7791 	 */
7792 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7793 }
7794 
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)7795 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7796 			    int wake_flags, void *key)
7797 {
7798 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7799 							wq);
7800 
7801 	/*
7802 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7803 	 * the task, and the next invocation will do it.
7804 	 */
7805 	if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7806 		return autoremove_wake_function(curr, mode, wake_flags, key);
7807 	return -1;
7808 }
7809 
io_run_task_work_sig(void)7810 static int io_run_task_work_sig(void)
7811 {
7812 	if (io_run_task_work())
7813 		return 1;
7814 	if (!signal_pending(current))
7815 		return 0;
7816 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7817 		return -ERESTARTSYS;
7818 	return -EINTR;
7819 }
7820 
current_pending_io(void)7821 static bool current_pending_io(void)
7822 {
7823 	struct io_uring_task *tctx = current->io_uring;
7824 
7825 	if (!tctx)
7826 		return false;
7827 	return percpu_counter_read_positive(&tctx->inflight);
7828 }
7829 
7830 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t * timeout)7831 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7832 					  struct io_wait_queue *iowq,
7833 					  ktime_t *timeout)
7834 {
7835 	int io_wait, ret;
7836 
7837 	/* make sure we run task_work before checking for signals */
7838 	ret = io_run_task_work_sig();
7839 	if (ret || io_should_wake(iowq))
7840 		return ret;
7841 	/* let the caller flush overflows, retry */
7842 	if (test_bit(0, &ctx->check_cq_overflow))
7843 		return 1;
7844 
7845 	/*
7846 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
7847 	 * can take into account that the task is waiting for IO - turns out
7848 	 * to be important for low QD IO.
7849 	 */
7850 	io_wait = current->in_iowait;
7851 	if (current_pending_io())
7852 		current->in_iowait = 1;
7853 	ret = 1;
7854 	if (!schedule_hrtimeout(timeout, HRTIMER_MODE_ABS))
7855 		ret = -ETIME;
7856 	current->in_iowait = io_wait;
7857 	return ret;
7858 }
7859 
7860 /*
7861  * Wait until events become available, if we don't already have some. The
7862  * application must reap them itself, as they reside on the shared cq ring.
7863  */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)7864 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7865 			  const sigset_t __user *sig, size_t sigsz,
7866 			  struct __kernel_timespec __user *uts)
7867 {
7868 	struct io_wait_queue iowq;
7869 	struct io_rings *rings = ctx->rings;
7870 	ktime_t timeout = KTIME_MAX;
7871 	int ret;
7872 
7873 	do {
7874 		io_cqring_overflow_flush(ctx);
7875 		if (io_cqring_events(ctx) >= min_events)
7876 			return 0;
7877 		if (!io_run_task_work())
7878 			break;
7879 	} while (1);
7880 
7881 	if (uts) {
7882 		struct timespec64 ts;
7883 
7884 		if (get_timespec64(&ts, uts))
7885 			return -EFAULT;
7886 		timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7887 	}
7888 
7889 	if (sig) {
7890 #ifdef CONFIG_COMPAT
7891 		if (in_compat_syscall())
7892 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7893 						      sigsz);
7894 		else
7895 #endif
7896 			ret = set_user_sigmask(sig, sigsz);
7897 
7898 		if (ret)
7899 			return ret;
7900 	}
7901 
7902 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7903 	iowq.wq.private = current;
7904 	INIT_LIST_HEAD(&iowq.wq.entry);
7905 	iowq.ctx = ctx;
7906 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7907 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7908 
7909 	trace_io_uring_cqring_wait(ctx, min_events);
7910 	do {
7911 		/* if we can't even flush overflow, don't wait for more */
7912 		if (!io_cqring_overflow_flush(ctx)) {
7913 			ret = -EBUSY;
7914 			break;
7915 		}
7916 		prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7917 						TASK_INTERRUPTIBLE);
7918 		ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7919 		finish_wait(&ctx->cq_wait, &iowq.wq);
7920 		cond_resched();
7921 	} while (ret > 0);
7922 
7923 	restore_saved_sigmask_unless(ret == -EINTR);
7924 
7925 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7926 }
7927 
io_free_page_table(void ** table,size_t size)7928 static void io_free_page_table(void **table, size_t size)
7929 {
7930 	unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7931 
7932 	for (i = 0; i < nr_tables; i++)
7933 		kfree(table[i]);
7934 	kfree(table);
7935 }
7936 
io_alloc_page_table(size_t size)7937 static void **io_alloc_page_table(size_t size)
7938 {
7939 	unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7940 	size_t init_size = size;
7941 	void **table;
7942 
7943 	table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7944 	if (!table)
7945 		return NULL;
7946 
7947 	for (i = 0; i < nr_tables; i++) {
7948 		unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7949 
7950 		table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7951 		if (!table[i]) {
7952 			io_free_page_table(table, init_size);
7953 			return NULL;
7954 		}
7955 		size -= this_size;
7956 	}
7957 	return table;
7958 }
7959 
io_rsrc_node_destroy(struct io_rsrc_node * ref_node)7960 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7961 {
7962 	percpu_ref_exit(&ref_node->refs);
7963 	kfree(ref_node);
7964 }
7965 
io_rsrc_node_ref_zero(struct percpu_ref * ref)7966 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7967 {
7968 	struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7969 	struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7970 	unsigned long flags;
7971 	bool first_add = false;
7972 	unsigned long delay = HZ;
7973 
7974 	spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7975 	node->done = true;
7976 
7977 	/* if we are mid-quiesce then do not delay */
7978 	if (node->rsrc_data->quiesce)
7979 		delay = 0;
7980 
7981 	while (!list_empty(&ctx->rsrc_ref_list)) {
7982 		node = list_first_entry(&ctx->rsrc_ref_list,
7983 					    struct io_rsrc_node, node);
7984 		/* recycle ref nodes in order */
7985 		if (!node->done)
7986 			break;
7987 		list_del(&node->node);
7988 		first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7989 	}
7990 	spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7991 
7992 	if (first_add)
7993 		mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7994 }
7995 
io_rsrc_node_alloc(struct io_ring_ctx * ctx)7996 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7997 {
7998 	struct io_rsrc_node *ref_node;
7999 
8000 	ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
8001 	if (!ref_node)
8002 		return NULL;
8003 
8004 	if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
8005 			    0, GFP_KERNEL)) {
8006 		kfree(ref_node);
8007 		return NULL;
8008 	}
8009 	INIT_LIST_HEAD(&ref_node->node);
8010 	INIT_LIST_HEAD(&ref_node->rsrc_list);
8011 	ref_node->done = false;
8012 	return ref_node;
8013 }
8014 
io_rsrc_node_switch(struct io_ring_ctx * ctx,struct io_rsrc_data * data_to_kill)8015 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
8016 				struct io_rsrc_data *data_to_kill)
8017 {
8018 	WARN_ON_ONCE(!ctx->rsrc_backup_node);
8019 	WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
8020 
8021 	if (data_to_kill) {
8022 		struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
8023 
8024 		rsrc_node->rsrc_data = data_to_kill;
8025 		spin_lock_irq(&ctx->rsrc_ref_lock);
8026 		list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
8027 		spin_unlock_irq(&ctx->rsrc_ref_lock);
8028 
8029 		atomic_inc(&data_to_kill->refs);
8030 		percpu_ref_kill(&rsrc_node->refs);
8031 		ctx->rsrc_node = NULL;
8032 	}
8033 
8034 	if (!ctx->rsrc_node) {
8035 		ctx->rsrc_node = ctx->rsrc_backup_node;
8036 		ctx->rsrc_backup_node = NULL;
8037 	}
8038 }
8039 
io_rsrc_node_switch_start(struct io_ring_ctx * ctx)8040 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
8041 {
8042 	if (ctx->rsrc_backup_node)
8043 		return 0;
8044 	ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
8045 	return ctx->rsrc_backup_node ? 0 : -ENOMEM;
8046 }
8047 
io_rsrc_ref_quiesce(struct io_rsrc_data * data,struct io_ring_ctx * ctx)8048 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
8049 {
8050 	int ret;
8051 
8052 	/* As we may drop ->uring_lock, other task may have started quiesce */
8053 	if (data->quiesce)
8054 		return -ENXIO;
8055 
8056 	data->quiesce = true;
8057 	do {
8058 		ret = io_rsrc_node_switch_start(ctx);
8059 		if (ret)
8060 			break;
8061 		io_rsrc_node_switch(ctx, data);
8062 
8063 		/* kill initial ref, already quiesced if zero */
8064 		if (atomic_dec_and_test(&data->refs))
8065 			break;
8066 		mutex_unlock(&ctx->uring_lock);
8067 		flush_delayed_work(&ctx->rsrc_put_work);
8068 		ret = wait_for_completion_interruptible(&data->done);
8069 		if (!ret) {
8070 			mutex_lock(&ctx->uring_lock);
8071 			if (atomic_read(&data->refs) > 0) {
8072 				/*
8073 				 * it has been revived by another thread while
8074 				 * we were unlocked
8075 				 */
8076 				mutex_unlock(&ctx->uring_lock);
8077 			} else {
8078 				break;
8079 			}
8080 		}
8081 
8082 		atomic_inc(&data->refs);
8083 		/* wait for all works potentially completing data->done */
8084 		flush_delayed_work(&ctx->rsrc_put_work);
8085 		reinit_completion(&data->done);
8086 
8087 		ret = io_run_task_work_sig();
8088 		mutex_lock(&ctx->uring_lock);
8089 	} while (ret >= 0);
8090 	data->quiesce = false;
8091 
8092 	return ret;
8093 }
8094 
io_get_tag_slot(struct io_rsrc_data * data,unsigned int idx)8095 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
8096 {
8097 	unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
8098 	unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
8099 
8100 	return &data->tags[table_idx][off];
8101 }
8102 
io_rsrc_data_free(struct io_rsrc_data * data)8103 static void io_rsrc_data_free(struct io_rsrc_data *data)
8104 {
8105 	size_t size = data->nr * sizeof(data->tags[0][0]);
8106 
8107 	if (data->tags)
8108 		io_free_page_table((void **)data->tags, size);
8109 	kfree(data);
8110 }
8111 
io_rsrc_data_alloc(struct io_ring_ctx * ctx,rsrc_put_fn * do_put,u64 __user * utags,unsigned nr,struct io_rsrc_data ** pdata)8112 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
8113 			      u64 __user *utags, unsigned nr,
8114 			      struct io_rsrc_data **pdata)
8115 {
8116 	struct io_rsrc_data *data;
8117 	int ret = -ENOMEM;
8118 	unsigned i;
8119 
8120 	data = kzalloc(sizeof(*data), GFP_KERNEL);
8121 	if (!data)
8122 		return -ENOMEM;
8123 	data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
8124 	if (!data->tags) {
8125 		kfree(data);
8126 		return -ENOMEM;
8127 	}
8128 
8129 	data->nr = nr;
8130 	data->ctx = ctx;
8131 	data->do_put = do_put;
8132 	if (utags) {
8133 		ret = -EFAULT;
8134 		for (i = 0; i < nr; i++) {
8135 			u64 *tag_slot = io_get_tag_slot(data, i);
8136 
8137 			if (copy_from_user(tag_slot, &utags[i],
8138 					   sizeof(*tag_slot)))
8139 				goto fail;
8140 		}
8141 	}
8142 
8143 	atomic_set(&data->refs, 1);
8144 	init_completion(&data->done);
8145 	*pdata = data;
8146 	return 0;
8147 fail:
8148 	io_rsrc_data_free(data);
8149 	return ret;
8150 }
8151 
io_alloc_file_tables(struct io_file_table * table,unsigned nr_files)8152 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
8153 {
8154 	table->files = kvcalloc(nr_files, sizeof(table->files[0]),
8155 				GFP_KERNEL_ACCOUNT);
8156 	return !!table->files;
8157 }
8158 
io_free_file_tables(struct io_file_table * table)8159 static void io_free_file_tables(struct io_file_table *table)
8160 {
8161 	kvfree(table->files);
8162 	table->files = NULL;
8163 }
8164 
__io_sqe_files_unregister(struct io_ring_ctx * ctx)8165 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
8166 {
8167 #if defined(CONFIG_UNIX)
8168 	if (ctx->ring_sock) {
8169 		struct sock *sock = ctx->ring_sock->sk;
8170 		struct sk_buff *skb;
8171 
8172 		while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
8173 			kfree_skb(skb);
8174 	}
8175 #else
8176 	int i;
8177 
8178 	for (i = 0; i < ctx->nr_user_files; i++) {
8179 		struct file *file;
8180 
8181 		file = io_file_from_index(ctx, i);
8182 		if (file)
8183 			fput(file);
8184 	}
8185 #endif
8186 	io_free_file_tables(&ctx->file_table);
8187 	io_rsrc_data_free(ctx->file_data);
8188 	ctx->file_data = NULL;
8189 	ctx->nr_user_files = 0;
8190 }
8191 
io_sqe_files_unregister(struct io_ring_ctx * ctx)8192 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
8193 {
8194 	unsigned nr = ctx->nr_user_files;
8195 	int ret;
8196 
8197 	if (!ctx->file_data)
8198 		return -ENXIO;
8199 
8200 	/*
8201 	 * Quiesce may unlock ->uring_lock, and while it's not held
8202 	 * prevent new requests using the table.
8203 	 */
8204 	ctx->nr_user_files = 0;
8205 	ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
8206 	ctx->nr_user_files = nr;
8207 	if (!ret)
8208 		__io_sqe_files_unregister(ctx);
8209 	return ret;
8210 }
8211 
io_sq_thread_unpark(struct io_sq_data * sqd)8212 static void io_sq_thread_unpark(struct io_sq_data *sqd)
8213 	__releases(&sqd->lock)
8214 {
8215 	WARN_ON_ONCE(sqd->thread == current);
8216 
8217 	/*
8218 	 * Do the dance but not conditional clear_bit() because it'd race with
8219 	 * other threads incrementing park_pending and setting the bit.
8220 	 */
8221 	clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8222 	if (atomic_dec_return(&sqd->park_pending))
8223 		set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8224 	mutex_unlock(&sqd->lock);
8225 }
8226 
io_sq_thread_park(struct io_sq_data * sqd)8227 static void io_sq_thread_park(struct io_sq_data *sqd)
8228 	__acquires(&sqd->lock)
8229 {
8230 	WARN_ON_ONCE(sqd->thread == current);
8231 
8232 	atomic_inc(&sqd->park_pending);
8233 	set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8234 	mutex_lock(&sqd->lock);
8235 	if (sqd->thread)
8236 		wake_up_process(sqd->thread);
8237 }
8238 
io_sq_thread_stop(struct io_sq_data * sqd)8239 static void io_sq_thread_stop(struct io_sq_data *sqd)
8240 {
8241 	WARN_ON_ONCE(sqd->thread == current);
8242 	WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
8243 
8244 	set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
8245 	mutex_lock(&sqd->lock);
8246 	if (sqd->thread)
8247 		wake_up_process(sqd->thread);
8248 	mutex_unlock(&sqd->lock);
8249 	wait_for_completion(&sqd->exited);
8250 }
8251 
io_put_sq_data(struct io_sq_data * sqd)8252 static void io_put_sq_data(struct io_sq_data *sqd)
8253 {
8254 	if (refcount_dec_and_test(&sqd->refs)) {
8255 		WARN_ON_ONCE(atomic_read(&sqd->park_pending));
8256 
8257 		io_sq_thread_stop(sqd);
8258 		kfree(sqd);
8259 	}
8260 }
8261 
io_sq_thread_finish(struct io_ring_ctx * ctx)8262 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
8263 {
8264 	struct io_sq_data *sqd = ctx->sq_data;
8265 
8266 	if (sqd) {
8267 		io_sq_thread_park(sqd);
8268 		list_del_init(&ctx->sqd_list);
8269 		io_sqd_update_thread_idle(sqd);
8270 		io_sq_thread_unpark(sqd);
8271 
8272 		io_put_sq_data(sqd);
8273 		ctx->sq_data = NULL;
8274 	}
8275 }
8276 
io_attach_sq_data(struct io_uring_params * p)8277 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
8278 {
8279 	struct io_ring_ctx *ctx_attach;
8280 	struct io_sq_data *sqd;
8281 	struct fd f;
8282 
8283 	f = fdget(p->wq_fd);
8284 	if (!f.file)
8285 		return ERR_PTR(-ENXIO);
8286 	if (f.file->f_op != &io_uring_fops) {
8287 		fdput(f);
8288 		return ERR_PTR(-EINVAL);
8289 	}
8290 
8291 	ctx_attach = f.file->private_data;
8292 	sqd = ctx_attach->sq_data;
8293 	if (!sqd) {
8294 		fdput(f);
8295 		return ERR_PTR(-EINVAL);
8296 	}
8297 	if (sqd->task_tgid != current->tgid) {
8298 		fdput(f);
8299 		return ERR_PTR(-EPERM);
8300 	}
8301 
8302 	refcount_inc(&sqd->refs);
8303 	fdput(f);
8304 	return sqd;
8305 }
8306 
io_get_sq_data(struct io_uring_params * p,bool * attached)8307 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8308 					 bool *attached)
8309 {
8310 	struct io_sq_data *sqd;
8311 
8312 	*attached = false;
8313 	if (p->flags & IORING_SETUP_ATTACH_WQ) {
8314 		sqd = io_attach_sq_data(p);
8315 		if (!IS_ERR(sqd)) {
8316 			*attached = true;
8317 			return sqd;
8318 		}
8319 		/* fall through for EPERM case, setup new sqd/task */
8320 		if (PTR_ERR(sqd) != -EPERM)
8321 			return sqd;
8322 	}
8323 
8324 	sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8325 	if (!sqd)
8326 		return ERR_PTR(-ENOMEM);
8327 
8328 	atomic_set(&sqd->park_pending, 0);
8329 	refcount_set(&sqd->refs, 1);
8330 	INIT_LIST_HEAD(&sqd->ctx_list);
8331 	mutex_init(&sqd->lock);
8332 	init_waitqueue_head(&sqd->wait);
8333 	init_completion(&sqd->exited);
8334 	return sqd;
8335 }
8336 
8337 #if defined(CONFIG_UNIX)
8338 /*
8339  * Ensure the UNIX gc is aware of our file set, so we are certain that
8340  * the io_uring can be safely unregistered on process exit, even if we have
8341  * loops in the file referencing.
8342  */
__io_sqe_files_scm(struct io_ring_ctx * ctx,int nr,int offset)8343 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8344 {
8345 	struct sock *sk = ctx->ring_sock->sk;
8346 	struct scm_fp_list *fpl;
8347 	struct sk_buff *skb;
8348 	int i, nr_files;
8349 
8350 	fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8351 	if (!fpl)
8352 		return -ENOMEM;
8353 
8354 	skb = alloc_skb(0, GFP_KERNEL);
8355 	if (!skb) {
8356 		kfree(fpl);
8357 		return -ENOMEM;
8358 	}
8359 
8360 	skb->sk = sk;
8361 	skb->scm_io_uring = 1;
8362 
8363 	nr_files = 0;
8364 	fpl->user = get_uid(current_user());
8365 	for (i = 0; i < nr; i++) {
8366 		struct file *file = io_file_from_index(ctx, i + offset);
8367 
8368 		if (!file)
8369 			continue;
8370 		fpl->fp[nr_files] = get_file(file);
8371 		unix_inflight(fpl->user, fpl->fp[nr_files]);
8372 		nr_files++;
8373 	}
8374 
8375 	if (nr_files) {
8376 		fpl->max = SCM_MAX_FD;
8377 		fpl->count = nr_files;
8378 		UNIXCB(skb).fp = fpl;
8379 		skb->destructor = unix_destruct_scm;
8380 		refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8381 		skb_queue_head(&sk->sk_receive_queue, skb);
8382 
8383 		for (i = 0; i < nr; i++) {
8384 			struct file *file = io_file_from_index(ctx, i + offset);
8385 
8386 			if (file)
8387 				fput(file);
8388 		}
8389 	} else {
8390 		kfree_skb(skb);
8391 		free_uid(fpl->user);
8392 		kfree(fpl);
8393 	}
8394 
8395 	return 0;
8396 }
8397 
8398 /*
8399  * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8400  * causes regular reference counting to break down. We rely on the UNIX
8401  * garbage collection to take care of this problem for us.
8402  */
io_sqe_files_scm(struct io_ring_ctx * ctx)8403 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8404 {
8405 	unsigned left, total;
8406 	int ret = 0;
8407 
8408 	total = 0;
8409 	left = ctx->nr_user_files;
8410 	while (left) {
8411 		unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8412 
8413 		ret = __io_sqe_files_scm(ctx, this_files, total);
8414 		if (ret)
8415 			break;
8416 		left -= this_files;
8417 		total += this_files;
8418 	}
8419 
8420 	if (!ret)
8421 		return 0;
8422 
8423 	while (total < ctx->nr_user_files) {
8424 		struct file *file = io_file_from_index(ctx, total);
8425 
8426 		if (file)
8427 			fput(file);
8428 		total++;
8429 	}
8430 
8431 	return ret;
8432 }
8433 #else
io_sqe_files_scm(struct io_ring_ctx * ctx)8434 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8435 {
8436 	return 0;
8437 }
8438 #endif
8439 
io_rsrc_file_put(struct io_ring_ctx * ctx,struct io_rsrc_put * prsrc)8440 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8441 {
8442 	struct file *file = prsrc->file;
8443 #if defined(CONFIG_UNIX)
8444 	struct sock *sock = ctx->ring_sock->sk;
8445 	struct sk_buff_head list, *head = &sock->sk_receive_queue;
8446 	struct sk_buff *skb;
8447 	int i;
8448 
8449 	__skb_queue_head_init(&list);
8450 
8451 	/*
8452 	 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8453 	 * remove this entry and rearrange the file array.
8454 	 */
8455 	skb = skb_dequeue(head);
8456 	while (skb) {
8457 		struct scm_fp_list *fp;
8458 
8459 		fp = UNIXCB(skb).fp;
8460 		for (i = 0; i < fp->count; i++) {
8461 			int left;
8462 
8463 			if (fp->fp[i] != file)
8464 				continue;
8465 
8466 			unix_notinflight(fp->user, fp->fp[i]);
8467 			left = fp->count - 1 - i;
8468 			if (left) {
8469 				memmove(&fp->fp[i], &fp->fp[i + 1],
8470 						left * sizeof(struct file *));
8471 			}
8472 			fp->count--;
8473 			if (!fp->count) {
8474 				kfree_skb(skb);
8475 				skb = NULL;
8476 			} else {
8477 				__skb_queue_tail(&list, skb);
8478 			}
8479 			fput(file);
8480 			file = NULL;
8481 			break;
8482 		}
8483 
8484 		if (!file)
8485 			break;
8486 
8487 		__skb_queue_tail(&list, skb);
8488 
8489 		skb = skb_dequeue(head);
8490 	}
8491 
8492 	if (skb_peek(&list)) {
8493 		spin_lock_irq(&head->lock);
8494 		while ((skb = __skb_dequeue(&list)) != NULL)
8495 			__skb_queue_tail(head, skb);
8496 		spin_unlock_irq(&head->lock);
8497 	}
8498 #else
8499 	fput(file);
8500 #endif
8501 }
8502 
__io_rsrc_put_work(struct io_rsrc_node * ref_node)8503 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8504 {
8505 	struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8506 	struct io_ring_ctx *ctx = rsrc_data->ctx;
8507 	struct io_rsrc_put *prsrc, *tmp;
8508 
8509 	list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8510 		list_del(&prsrc->list);
8511 
8512 		if (prsrc->tag) {
8513 			bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8514 
8515 			io_ring_submit_lock(ctx, lock_ring);
8516 			spin_lock(&ctx->completion_lock);
8517 			io_fill_cqe_aux(ctx, prsrc->tag, 0, 0);
8518 			io_commit_cqring(ctx);
8519 			spin_unlock(&ctx->completion_lock);
8520 			io_cqring_ev_posted(ctx);
8521 			io_ring_submit_unlock(ctx, lock_ring);
8522 		}
8523 
8524 		rsrc_data->do_put(ctx, prsrc);
8525 		kfree(prsrc);
8526 	}
8527 
8528 	io_rsrc_node_destroy(ref_node);
8529 	if (atomic_dec_and_test(&rsrc_data->refs))
8530 		complete(&rsrc_data->done);
8531 }
8532 
io_rsrc_put_work(struct work_struct * work)8533 static void io_rsrc_put_work(struct work_struct *work)
8534 {
8535 	struct io_ring_ctx *ctx;
8536 	struct llist_node *node;
8537 
8538 	ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8539 	node = llist_del_all(&ctx->rsrc_put_llist);
8540 
8541 	while (node) {
8542 		struct io_rsrc_node *ref_node;
8543 		struct llist_node *next = node->next;
8544 
8545 		ref_node = llist_entry(node, struct io_rsrc_node, llist);
8546 		__io_rsrc_put_work(ref_node);
8547 		node = next;
8548 	}
8549 }
8550 
io_sqe_files_register(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args,u64 __user * tags)8551 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8552 				 unsigned nr_args, u64 __user *tags)
8553 {
8554 	__s32 __user *fds = (__s32 __user *) arg;
8555 	struct file *file;
8556 	int fd, ret;
8557 	unsigned i;
8558 
8559 	if (ctx->file_data)
8560 		return -EBUSY;
8561 	if (!nr_args)
8562 		return -EINVAL;
8563 	if (nr_args > IORING_MAX_FIXED_FILES)
8564 		return -EMFILE;
8565 	if (nr_args > rlimit(RLIMIT_NOFILE))
8566 		return -EMFILE;
8567 	ret = io_rsrc_node_switch_start(ctx);
8568 	if (ret)
8569 		return ret;
8570 	ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8571 				 &ctx->file_data);
8572 	if (ret)
8573 		return ret;
8574 
8575 	ret = -ENOMEM;
8576 	if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8577 		goto out_free;
8578 
8579 	for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8580 		if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8581 			ret = -EFAULT;
8582 			goto out_fput;
8583 		}
8584 		/* allow sparse sets */
8585 		if (fd == -1) {
8586 			ret = -EINVAL;
8587 			if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8588 				goto out_fput;
8589 			continue;
8590 		}
8591 
8592 		file = fget(fd);
8593 		ret = -EBADF;
8594 		if (unlikely(!file))
8595 			goto out_fput;
8596 
8597 		/*
8598 		 * Don't allow io_uring instances to be registered. If UNIX
8599 		 * isn't enabled, then this causes a reference cycle and this
8600 		 * instance can never get freed. If UNIX is enabled we'll
8601 		 * handle it just fine, but there's still no point in allowing
8602 		 * a ring fd as it doesn't support regular read/write anyway.
8603 		 */
8604 		if (file->f_op == &io_uring_fops) {
8605 			fput(file);
8606 			goto out_fput;
8607 		}
8608 		io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8609 	}
8610 
8611 	ret = io_sqe_files_scm(ctx);
8612 	if (ret) {
8613 		__io_sqe_files_unregister(ctx);
8614 		return ret;
8615 	}
8616 
8617 	io_rsrc_node_switch(ctx, NULL);
8618 	return ret;
8619 out_fput:
8620 	for (i = 0; i < ctx->nr_user_files; i++) {
8621 		file = io_file_from_index(ctx, i);
8622 		if (file)
8623 			fput(file);
8624 	}
8625 	io_free_file_tables(&ctx->file_table);
8626 	ctx->nr_user_files = 0;
8627 out_free:
8628 	io_rsrc_data_free(ctx->file_data);
8629 	ctx->file_data = NULL;
8630 	return ret;
8631 }
8632 
io_queue_rsrc_removal(struct io_rsrc_data * data,unsigned idx,struct io_rsrc_node * node,void * rsrc)8633 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8634 				 struct io_rsrc_node *node, void *rsrc)
8635 {
8636 	u64 *tag_slot = io_get_tag_slot(data, idx);
8637 	struct io_rsrc_put *prsrc;
8638 
8639 	prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8640 	if (!prsrc)
8641 		return -ENOMEM;
8642 
8643 	prsrc->tag = *tag_slot;
8644 	*tag_slot = 0;
8645 	prsrc->rsrc = rsrc;
8646 	list_add(&prsrc->list, &node->rsrc_list);
8647 	return 0;
8648 }
8649 
io_install_fixed_file(struct io_kiocb * req,struct file * file,unsigned int issue_flags,u32 slot_index)8650 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8651 				 unsigned int issue_flags, u32 slot_index)
8652 {
8653 	struct io_ring_ctx *ctx = req->ctx;
8654 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8655 	bool needs_switch = false;
8656 	struct io_fixed_file *file_slot;
8657 	int ret = -EBADF;
8658 
8659 	io_ring_submit_lock(ctx, !force_nonblock);
8660 	if (file->f_op == &io_uring_fops)
8661 		goto err;
8662 	ret = -ENXIO;
8663 	if (!ctx->file_data)
8664 		goto err;
8665 	ret = -EINVAL;
8666 	if (slot_index >= ctx->nr_user_files)
8667 		goto err;
8668 
8669 	slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8670 	file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8671 
8672 	if (file_slot->file_ptr) {
8673 		struct file *old_file;
8674 
8675 		ret = io_rsrc_node_switch_start(ctx);
8676 		if (ret)
8677 			goto err;
8678 
8679 		old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8680 		ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8681 					    ctx->rsrc_node, old_file);
8682 		if (ret)
8683 			goto err;
8684 		file_slot->file_ptr = 0;
8685 		needs_switch = true;
8686 	}
8687 
8688 	*io_get_tag_slot(ctx->file_data, slot_index) = 0;
8689 	io_fixed_file_set(file_slot, file);
8690 	ret = 0;
8691 err:
8692 	if (needs_switch)
8693 		io_rsrc_node_switch(ctx, ctx->file_data);
8694 	io_ring_submit_unlock(ctx, !force_nonblock);
8695 	if (ret)
8696 		fput(file);
8697 	return ret;
8698 }
8699 
io_close_fixed(struct io_kiocb * req,unsigned int issue_flags)8700 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8701 {
8702 	unsigned int offset = req->close.file_slot - 1;
8703 	struct io_ring_ctx *ctx = req->ctx;
8704 	struct io_fixed_file *file_slot;
8705 	struct file *file;
8706 	int ret;
8707 
8708 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8709 	ret = -ENXIO;
8710 	if (unlikely(!ctx->file_data))
8711 		goto out;
8712 	ret = -EINVAL;
8713 	if (offset >= ctx->nr_user_files)
8714 		goto out;
8715 	ret = io_rsrc_node_switch_start(ctx);
8716 	if (ret)
8717 		goto out;
8718 
8719 	offset = array_index_nospec(offset, ctx->nr_user_files);
8720 	file_slot = io_fixed_file_slot(&ctx->file_table, offset);
8721 	ret = -EBADF;
8722 	if (!file_slot->file_ptr)
8723 		goto out;
8724 
8725 	file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8726 	ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8727 	if (ret)
8728 		goto out;
8729 
8730 	file_slot->file_ptr = 0;
8731 	io_rsrc_node_switch(ctx, ctx->file_data);
8732 	ret = 0;
8733 out:
8734 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8735 	return ret;
8736 }
8737 
__io_sqe_files_update(struct io_ring_ctx * ctx,struct io_uring_rsrc_update2 * up,unsigned nr_args)8738 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8739 				 struct io_uring_rsrc_update2 *up,
8740 				 unsigned nr_args)
8741 {
8742 	u64 __user *tags = u64_to_user_ptr(up->tags);
8743 	__s32 __user *fds = u64_to_user_ptr(up->data);
8744 	struct io_rsrc_data *data = ctx->file_data;
8745 	struct io_fixed_file *file_slot;
8746 	struct file *file;
8747 	int fd, i, err = 0;
8748 	unsigned int done;
8749 	bool needs_switch = false;
8750 
8751 	if (!ctx->file_data)
8752 		return -ENXIO;
8753 	if (up->offset + nr_args > ctx->nr_user_files)
8754 		return -EINVAL;
8755 
8756 	for (done = 0; done < nr_args; done++) {
8757 		u64 tag = 0;
8758 
8759 		if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8760 		    copy_from_user(&fd, &fds[done], sizeof(fd))) {
8761 			err = -EFAULT;
8762 			break;
8763 		}
8764 		if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8765 			err = -EINVAL;
8766 			break;
8767 		}
8768 		if (fd == IORING_REGISTER_FILES_SKIP)
8769 			continue;
8770 
8771 		i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8772 		file_slot = io_fixed_file_slot(&ctx->file_table, i);
8773 
8774 		if (file_slot->file_ptr) {
8775 			file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8776 			err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
8777 			if (err)
8778 				break;
8779 			file_slot->file_ptr = 0;
8780 			needs_switch = true;
8781 		}
8782 		if (fd != -1) {
8783 			file = fget(fd);
8784 			if (!file) {
8785 				err = -EBADF;
8786 				break;
8787 			}
8788 			/*
8789 			 * Don't allow io_uring instances to be registered. If
8790 			 * UNIX isn't enabled, then this causes a reference
8791 			 * cycle and this instance can never get freed. If UNIX
8792 			 * is enabled we'll handle it just fine, but there's
8793 			 * still no point in allowing a ring fd as it doesn't
8794 			 * support regular read/write anyway.
8795 			 */
8796 			if (file->f_op == &io_uring_fops) {
8797 				fput(file);
8798 				err = -EBADF;
8799 				break;
8800 			}
8801 			*io_get_tag_slot(data, i) = tag;
8802 			io_fixed_file_set(file_slot, file);
8803 		}
8804 	}
8805 
8806 	if (needs_switch)
8807 		io_rsrc_node_switch(ctx, data);
8808 	return done ? done : err;
8809 }
8810 
io_init_wq_offload(struct io_ring_ctx * ctx,struct task_struct * task)8811 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8812 					struct task_struct *task)
8813 {
8814 	struct io_wq_hash *hash;
8815 	struct io_wq_data data;
8816 	unsigned int concurrency;
8817 
8818 	mutex_lock(&ctx->uring_lock);
8819 	hash = ctx->hash_map;
8820 	if (!hash) {
8821 		hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8822 		if (!hash) {
8823 			mutex_unlock(&ctx->uring_lock);
8824 			return ERR_PTR(-ENOMEM);
8825 		}
8826 		refcount_set(&hash->refs, 1);
8827 		init_waitqueue_head(&hash->wait);
8828 		ctx->hash_map = hash;
8829 	}
8830 	mutex_unlock(&ctx->uring_lock);
8831 
8832 	data.hash = hash;
8833 	data.task = task;
8834 	data.free_work = io_wq_free_work;
8835 	data.do_work = io_wq_submit_work;
8836 
8837 	/* Do QD, or 4 * CPUS, whatever is smallest */
8838 	concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8839 
8840 	return io_wq_create(concurrency, &data);
8841 }
8842 
io_uring_alloc_task_context(struct task_struct * task,struct io_ring_ctx * ctx)8843 static int io_uring_alloc_task_context(struct task_struct *task,
8844 				       struct io_ring_ctx *ctx)
8845 {
8846 	struct io_uring_task *tctx;
8847 	int ret;
8848 
8849 	tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8850 	if (unlikely(!tctx))
8851 		return -ENOMEM;
8852 
8853 	ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8854 	if (unlikely(ret)) {
8855 		kfree(tctx);
8856 		return ret;
8857 	}
8858 
8859 	tctx->io_wq = io_init_wq_offload(ctx, task);
8860 	if (IS_ERR(tctx->io_wq)) {
8861 		ret = PTR_ERR(tctx->io_wq);
8862 		percpu_counter_destroy(&tctx->inflight);
8863 		kfree(tctx);
8864 		return ret;
8865 	}
8866 
8867 	xa_init(&tctx->xa);
8868 	init_waitqueue_head(&tctx->wait);
8869 	atomic_set(&tctx->in_idle, 0);
8870 	atomic_set(&tctx->inflight_tracked, 0);
8871 	task->io_uring = tctx;
8872 	spin_lock_init(&tctx->task_lock);
8873 	INIT_WQ_LIST(&tctx->task_list);
8874 	init_task_work(&tctx->task_work, tctx_task_work);
8875 	return 0;
8876 }
8877 
__io_uring_free(struct task_struct * tsk)8878 void __io_uring_free(struct task_struct *tsk)
8879 {
8880 	struct io_uring_task *tctx = tsk->io_uring;
8881 
8882 	WARN_ON_ONCE(!xa_empty(&tctx->xa));
8883 	WARN_ON_ONCE(tctx->io_wq);
8884 	WARN_ON_ONCE(tctx->cached_refs);
8885 
8886 	percpu_counter_destroy(&tctx->inflight);
8887 	kfree(tctx);
8888 	tsk->io_uring = NULL;
8889 }
8890 
io_sq_offload_create(struct io_ring_ctx * ctx,struct io_uring_params * p)8891 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8892 				struct io_uring_params *p)
8893 {
8894 	int ret;
8895 
8896 	/* Retain compatibility with failing for an invalid attach attempt */
8897 	if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8898 				IORING_SETUP_ATTACH_WQ) {
8899 		struct fd f;
8900 
8901 		f = fdget(p->wq_fd);
8902 		if (!f.file)
8903 			return -ENXIO;
8904 		if (f.file->f_op != &io_uring_fops) {
8905 			fdput(f);
8906 			return -EINVAL;
8907 		}
8908 		fdput(f);
8909 	}
8910 	if (ctx->flags & IORING_SETUP_SQPOLL) {
8911 		struct task_struct *tsk;
8912 		struct io_sq_data *sqd;
8913 		bool attached;
8914 
8915 		sqd = io_get_sq_data(p, &attached);
8916 		if (IS_ERR(sqd)) {
8917 			ret = PTR_ERR(sqd);
8918 			goto err;
8919 		}
8920 
8921 		ctx->sq_creds = get_current_cred();
8922 		ctx->sq_data = sqd;
8923 		ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8924 		if (!ctx->sq_thread_idle)
8925 			ctx->sq_thread_idle = HZ;
8926 
8927 		io_sq_thread_park(sqd);
8928 		list_add(&ctx->sqd_list, &sqd->ctx_list);
8929 		io_sqd_update_thread_idle(sqd);
8930 		/* don't attach to a dying SQPOLL thread, would be racy */
8931 		ret = (attached && !sqd->thread) ? -ENXIO : 0;
8932 		io_sq_thread_unpark(sqd);
8933 
8934 		if (ret < 0)
8935 			goto err;
8936 		if (attached)
8937 			return 0;
8938 
8939 		if (p->flags & IORING_SETUP_SQ_AFF) {
8940 			int cpu = p->sq_thread_cpu;
8941 
8942 			ret = -EINVAL;
8943 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8944 				goto err_sqpoll;
8945 			sqd->sq_cpu = cpu;
8946 		} else {
8947 			sqd->sq_cpu = -1;
8948 		}
8949 
8950 		sqd->task_pid = current->pid;
8951 		sqd->task_tgid = current->tgid;
8952 		tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8953 		if (IS_ERR(tsk)) {
8954 			ret = PTR_ERR(tsk);
8955 			goto err_sqpoll;
8956 		}
8957 
8958 		sqd->thread = tsk;
8959 		ret = io_uring_alloc_task_context(tsk, ctx);
8960 		wake_up_new_task(tsk);
8961 		if (ret)
8962 			goto err;
8963 	} else if (p->flags & IORING_SETUP_SQ_AFF) {
8964 		/* Can't have SQ_AFF without SQPOLL */
8965 		ret = -EINVAL;
8966 		goto err;
8967 	}
8968 
8969 	return 0;
8970 err_sqpoll:
8971 	complete(&ctx->sq_data->exited);
8972 err:
8973 	io_sq_thread_finish(ctx);
8974 	return ret;
8975 }
8976 
__io_unaccount_mem(struct user_struct * user,unsigned long nr_pages)8977 static inline void __io_unaccount_mem(struct user_struct *user,
8978 				      unsigned long nr_pages)
8979 {
8980 	atomic_long_sub(nr_pages, &user->locked_vm);
8981 }
8982 
__io_account_mem(struct user_struct * user,unsigned long nr_pages)8983 static inline int __io_account_mem(struct user_struct *user,
8984 				   unsigned long nr_pages)
8985 {
8986 	unsigned long page_limit, cur_pages, new_pages;
8987 
8988 	/* Don't allow more pages than we can safely lock */
8989 	page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8990 
8991 	do {
8992 		cur_pages = atomic_long_read(&user->locked_vm);
8993 		new_pages = cur_pages + nr_pages;
8994 		if (new_pages > page_limit)
8995 			return -ENOMEM;
8996 	} while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8997 					new_pages) != cur_pages);
8998 
8999 	return 0;
9000 }
9001 
io_unaccount_mem(struct io_ring_ctx * ctx,unsigned long nr_pages)9002 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
9003 {
9004 	if (ctx->user)
9005 		__io_unaccount_mem(ctx->user, nr_pages);
9006 
9007 	if (ctx->mm_account)
9008 		atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
9009 }
9010 
io_account_mem(struct io_ring_ctx * ctx,unsigned long nr_pages)9011 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
9012 {
9013 	int ret;
9014 
9015 	if (ctx->user) {
9016 		ret = __io_account_mem(ctx->user, nr_pages);
9017 		if (ret)
9018 			return ret;
9019 	}
9020 
9021 	if (ctx->mm_account)
9022 		atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
9023 
9024 	return 0;
9025 }
9026 
io_mem_free(void * ptr)9027 static void io_mem_free(void *ptr)
9028 {
9029 	struct page *page;
9030 
9031 	if (!ptr)
9032 		return;
9033 
9034 	page = virt_to_head_page(ptr);
9035 	if (put_page_testzero(page))
9036 		free_compound_page(page);
9037 }
9038 
io_mem_alloc(size_t size)9039 static void *io_mem_alloc(size_t size)
9040 {
9041 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
9042 
9043 	return (void *) __get_free_pages(gfp, get_order(size));
9044 }
9045 
rings_size(unsigned sq_entries,unsigned cq_entries,size_t * sq_offset)9046 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
9047 				size_t *sq_offset)
9048 {
9049 	struct io_rings *rings;
9050 	size_t off, sq_array_size;
9051 
9052 	off = struct_size(rings, cqes, cq_entries);
9053 	if (off == SIZE_MAX)
9054 		return SIZE_MAX;
9055 
9056 #ifdef CONFIG_SMP
9057 	off = ALIGN(off, SMP_CACHE_BYTES);
9058 	if (off == 0)
9059 		return SIZE_MAX;
9060 #endif
9061 
9062 	if (sq_offset)
9063 		*sq_offset = off;
9064 
9065 	sq_array_size = array_size(sizeof(u32), sq_entries);
9066 	if (sq_array_size == SIZE_MAX)
9067 		return SIZE_MAX;
9068 
9069 	if (check_add_overflow(off, sq_array_size, &off))
9070 		return SIZE_MAX;
9071 
9072 	return off;
9073 }
9074 
io_buffer_unmap(struct io_ring_ctx * ctx,struct io_mapped_ubuf ** slot)9075 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
9076 {
9077 	struct io_mapped_ubuf *imu = *slot;
9078 	unsigned int i;
9079 
9080 	if (imu != ctx->dummy_ubuf) {
9081 		for (i = 0; i < imu->nr_bvecs; i++)
9082 			unpin_user_page(imu->bvec[i].bv_page);
9083 		if (imu->acct_pages)
9084 			io_unaccount_mem(ctx, imu->acct_pages);
9085 		kvfree(imu);
9086 	}
9087 	*slot = NULL;
9088 }
9089 
io_rsrc_buf_put(struct io_ring_ctx * ctx,struct io_rsrc_put * prsrc)9090 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
9091 {
9092 	io_buffer_unmap(ctx, &prsrc->buf);
9093 	prsrc->buf = NULL;
9094 }
9095 
__io_sqe_buffers_unregister(struct io_ring_ctx * ctx)9096 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
9097 {
9098 	unsigned int i;
9099 
9100 	for (i = 0; i < ctx->nr_user_bufs; i++)
9101 		io_buffer_unmap(ctx, &ctx->user_bufs[i]);
9102 	kfree(ctx->user_bufs);
9103 	io_rsrc_data_free(ctx->buf_data);
9104 	ctx->user_bufs = NULL;
9105 	ctx->buf_data = NULL;
9106 	ctx->nr_user_bufs = 0;
9107 }
9108 
io_sqe_buffers_unregister(struct io_ring_ctx * ctx)9109 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
9110 {
9111 	unsigned nr = ctx->nr_user_bufs;
9112 	int ret;
9113 
9114 	if (!ctx->buf_data)
9115 		return -ENXIO;
9116 
9117 	/*
9118 	 * Quiesce may unlock ->uring_lock, and while it's not held
9119 	 * prevent new requests using the table.
9120 	 */
9121 	ctx->nr_user_bufs = 0;
9122 	ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
9123 	ctx->nr_user_bufs = nr;
9124 	if (!ret)
9125 		__io_sqe_buffers_unregister(ctx);
9126 	return ret;
9127 }
9128 
io_copy_iov(struct io_ring_ctx * ctx,struct iovec * dst,void __user * arg,unsigned index)9129 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
9130 		       void __user *arg, unsigned index)
9131 {
9132 	struct iovec __user *src;
9133 
9134 #ifdef CONFIG_COMPAT
9135 	if (ctx->compat) {
9136 		struct compat_iovec __user *ciovs;
9137 		struct compat_iovec ciov;
9138 
9139 		ciovs = (struct compat_iovec __user *) arg;
9140 		if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
9141 			return -EFAULT;
9142 
9143 		dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
9144 		dst->iov_len = ciov.iov_len;
9145 		return 0;
9146 	}
9147 #endif
9148 	src = (struct iovec __user *) arg;
9149 	if (copy_from_user(dst, &src[index], sizeof(*dst)))
9150 		return -EFAULT;
9151 	return 0;
9152 }
9153 
9154 /*
9155  * Not super efficient, but this is just a registration time. And we do cache
9156  * the last compound head, so generally we'll only do a full search if we don't
9157  * match that one.
9158  *
9159  * We check if the given compound head page has already been accounted, to
9160  * avoid double accounting it. This allows us to account the full size of the
9161  * page, not just the constituent pages of a huge page.
9162  */
headpage_already_acct(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct page * hpage)9163 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
9164 				  int nr_pages, struct page *hpage)
9165 {
9166 	int i, j;
9167 
9168 	/* check current page array */
9169 	for (i = 0; i < nr_pages; i++) {
9170 		if (!PageCompound(pages[i]))
9171 			continue;
9172 		if (compound_head(pages[i]) == hpage)
9173 			return true;
9174 	}
9175 
9176 	/* check previously registered pages */
9177 	for (i = 0; i < ctx->nr_user_bufs; i++) {
9178 		struct io_mapped_ubuf *imu = ctx->user_bufs[i];
9179 
9180 		for (j = 0; j < imu->nr_bvecs; j++) {
9181 			if (!PageCompound(imu->bvec[j].bv_page))
9182 				continue;
9183 			if (compound_head(imu->bvec[j].bv_page) == hpage)
9184 				return true;
9185 		}
9186 	}
9187 
9188 	return false;
9189 }
9190 
io_buffer_account_pin(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct io_mapped_ubuf * imu,struct page ** last_hpage)9191 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
9192 				 int nr_pages, struct io_mapped_ubuf *imu,
9193 				 struct page **last_hpage)
9194 {
9195 	int i, ret;
9196 
9197 	imu->acct_pages = 0;
9198 	for (i = 0; i < nr_pages; i++) {
9199 		if (!PageCompound(pages[i])) {
9200 			imu->acct_pages++;
9201 		} else {
9202 			struct page *hpage;
9203 
9204 			hpage = compound_head(pages[i]);
9205 			if (hpage == *last_hpage)
9206 				continue;
9207 			*last_hpage = hpage;
9208 			if (headpage_already_acct(ctx, pages, i, hpage))
9209 				continue;
9210 			imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
9211 		}
9212 	}
9213 
9214 	if (!imu->acct_pages)
9215 		return 0;
9216 
9217 	ret = io_account_mem(ctx, imu->acct_pages);
9218 	if (ret)
9219 		imu->acct_pages = 0;
9220 	return ret;
9221 }
9222 
io_sqe_buffer_register(struct io_ring_ctx * ctx,struct iovec * iov,struct io_mapped_ubuf ** pimu,struct page ** last_hpage)9223 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
9224 				  struct io_mapped_ubuf **pimu,
9225 				  struct page **last_hpage)
9226 {
9227 	struct io_mapped_ubuf *imu = NULL;
9228 	struct vm_area_struct **vmas = NULL;
9229 	struct page **pages = NULL;
9230 	unsigned long off, start, end, ubuf;
9231 	size_t size;
9232 	int ret, pret, nr_pages, i;
9233 
9234 	if (!iov->iov_base) {
9235 		*pimu = ctx->dummy_ubuf;
9236 		return 0;
9237 	}
9238 
9239 	ubuf = (unsigned long) iov->iov_base;
9240 	end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
9241 	start = ubuf >> PAGE_SHIFT;
9242 	nr_pages = end - start;
9243 
9244 	*pimu = NULL;
9245 	ret = -ENOMEM;
9246 
9247 	pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
9248 	if (!pages)
9249 		goto done;
9250 
9251 	vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9252 			      GFP_KERNEL);
9253 	if (!vmas)
9254 		goto done;
9255 
9256 	imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9257 	if (!imu)
9258 		goto done;
9259 
9260 	ret = 0;
9261 	mmap_read_lock(current->mm);
9262 	pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9263 			      pages, vmas);
9264 	if (pret == nr_pages) {
9265 		struct file *file = vmas[0]->vm_file;
9266 
9267 		/* don't support file backed memory */
9268 		for (i = 0; i < nr_pages; i++) {
9269 			if (vmas[i]->vm_file != file) {
9270 				ret = -EINVAL;
9271 				break;
9272 			}
9273 			if (!file)
9274 				continue;
9275 			if (!vma_is_shmem(vmas[i]) && !is_file_hugepages(file)) {
9276 				ret = -EOPNOTSUPP;
9277 				break;
9278 			}
9279 		}
9280 	} else {
9281 		ret = pret < 0 ? pret : -EFAULT;
9282 	}
9283 	mmap_read_unlock(current->mm);
9284 	if (ret) {
9285 		/*
9286 		 * if we did partial map, or found file backed vmas,
9287 		 * release any pages we did get
9288 		 */
9289 		if (pret > 0)
9290 			unpin_user_pages(pages, pret);
9291 		goto done;
9292 	}
9293 
9294 	ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9295 	if (ret) {
9296 		unpin_user_pages(pages, pret);
9297 		goto done;
9298 	}
9299 
9300 	off = ubuf & ~PAGE_MASK;
9301 	size = iov->iov_len;
9302 	for (i = 0; i < nr_pages; i++) {
9303 		size_t vec_len;
9304 
9305 		vec_len = min_t(size_t, size, PAGE_SIZE - off);
9306 		imu->bvec[i].bv_page = pages[i];
9307 		imu->bvec[i].bv_len = vec_len;
9308 		imu->bvec[i].bv_offset = off;
9309 		off = 0;
9310 		size -= vec_len;
9311 	}
9312 	/* store original address for later verification */
9313 	imu->ubuf = ubuf;
9314 	imu->ubuf_end = ubuf + iov->iov_len;
9315 	imu->nr_bvecs = nr_pages;
9316 	*pimu = imu;
9317 	ret = 0;
9318 done:
9319 	if (ret)
9320 		kvfree(imu);
9321 	kvfree(pages);
9322 	kvfree(vmas);
9323 	return ret;
9324 }
9325 
io_buffers_map_alloc(struct io_ring_ctx * ctx,unsigned int nr_args)9326 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9327 {
9328 	ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9329 	return ctx->user_bufs ? 0 : -ENOMEM;
9330 }
9331 
io_buffer_validate(struct iovec * iov)9332 static int io_buffer_validate(struct iovec *iov)
9333 {
9334 	unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9335 
9336 	/*
9337 	 * Don't impose further limits on the size and buffer
9338 	 * constraints here, we'll -EINVAL later when IO is
9339 	 * submitted if they are wrong.
9340 	 */
9341 	if (!iov->iov_base)
9342 		return iov->iov_len ? -EFAULT : 0;
9343 	if (!iov->iov_len)
9344 		return -EFAULT;
9345 
9346 	/* arbitrary limit, but we need something */
9347 	if (iov->iov_len > SZ_1G)
9348 		return -EFAULT;
9349 
9350 	if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9351 		return -EOVERFLOW;
9352 
9353 	return 0;
9354 }
9355 
io_sqe_buffers_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args,u64 __user * tags)9356 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9357 				   unsigned int nr_args, u64 __user *tags)
9358 {
9359 	struct page *last_hpage = NULL;
9360 	struct io_rsrc_data *data;
9361 	int i, ret;
9362 	struct iovec iov;
9363 
9364 	if (ctx->user_bufs)
9365 		return -EBUSY;
9366 	if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9367 		return -EINVAL;
9368 	ret = io_rsrc_node_switch_start(ctx);
9369 	if (ret)
9370 		return ret;
9371 	ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9372 	if (ret)
9373 		return ret;
9374 	ret = io_buffers_map_alloc(ctx, nr_args);
9375 	if (ret) {
9376 		io_rsrc_data_free(data);
9377 		return ret;
9378 	}
9379 
9380 	for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9381 		ret = io_copy_iov(ctx, &iov, arg, i);
9382 		if (ret)
9383 			break;
9384 		ret = io_buffer_validate(&iov);
9385 		if (ret)
9386 			break;
9387 		if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9388 			ret = -EINVAL;
9389 			break;
9390 		}
9391 
9392 		ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9393 					     &last_hpage);
9394 		if (ret)
9395 			break;
9396 	}
9397 
9398 	WARN_ON_ONCE(ctx->buf_data);
9399 
9400 	ctx->buf_data = data;
9401 	if (ret)
9402 		__io_sqe_buffers_unregister(ctx);
9403 	else
9404 		io_rsrc_node_switch(ctx, NULL);
9405 	return ret;
9406 }
9407 
__io_sqe_buffers_update(struct io_ring_ctx * ctx,struct io_uring_rsrc_update2 * up,unsigned int nr_args)9408 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9409 				   struct io_uring_rsrc_update2 *up,
9410 				   unsigned int nr_args)
9411 {
9412 	u64 __user *tags = u64_to_user_ptr(up->tags);
9413 	struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9414 	struct page *last_hpage = NULL;
9415 	bool needs_switch = false;
9416 	__u32 done;
9417 	int i, err;
9418 
9419 	if (!ctx->buf_data)
9420 		return -ENXIO;
9421 	if (up->offset + nr_args > ctx->nr_user_bufs)
9422 		return -EINVAL;
9423 
9424 	for (done = 0; done < nr_args; done++) {
9425 		struct io_mapped_ubuf *imu;
9426 		int offset = up->offset + done;
9427 		u64 tag = 0;
9428 
9429 		err = io_copy_iov(ctx, &iov, iovs, done);
9430 		if (err)
9431 			break;
9432 		if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9433 			err = -EFAULT;
9434 			break;
9435 		}
9436 		err = io_buffer_validate(&iov);
9437 		if (err)
9438 			break;
9439 		if (!iov.iov_base && tag) {
9440 			err = -EINVAL;
9441 			break;
9442 		}
9443 		err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9444 		if (err)
9445 			break;
9446 
9447 		i = array_index_nospec(offset, ctx->nr_user_bufs);
9448 		if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9449 			err = io_queue_rsrc_removal(ctx->buf_data, i,
9450 						    ctx->rsrc_node, ctx->user_bufs[i]);
9451 			if (unlikely(err)) {
9452 				io_buffer_unmap(ctx, &imu);
9453 				break;
9454 			}
9455 			ctx->user_bufs[i] = NULL;
9456 			needs_switch = true;
9457 		}
9458 
9459 		ctx->user_bufs[i] = imu;
9460 		*io_get_tag_slot(ctx->buf_data, offset) = tag;
9461 	}
9462 
9463 	if (needs_switch)
9464 		io_rsrc_node_switch(ctx, ctx->buf_data);
9465 	return done ? done : err;
9466 }
9467 
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg)9468 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9469 {
9470 	__s32 __user *fds = arg;
9471 	int fd;
9472 
9473 	if (ctx->cq_ev_fd)
9474 		return -EBUSY;
9475 
9476 	if (copy_from_user(&fd, fds, sizeof(*fds)))
9477 		return -EFAULT;
9478 
9479 	ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9480 	if (IS_ERR(ctx->cq_ev_fd)) {
9481 		int ret = PTR_ERR(ctx->cq_ev_fd);
9482 
9483 		ctx->cq_ev_fd = NULL;
9484 		return ret;
9485 	}
9486 
9487 	return 0;
9488 }
9489 
io_eventfd_unregister(struct io_ring_ctx * ctx)9490 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9491 {
9492 	if (ctx->cq_ev_fd) {
9493 		eventfd_ctx_put(ctx->cq_ev_fd);
9494 		ctx->cq_ev_fd = NULL;
9495 		return 0;
9496 	}
9497 
9498 	return -ENXIO;
9499 }
9500 
io_destroy_buffers(struct io_ring_ctx * ctx)9501 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9502 {
9503 	struct io_buffer *buf;
9504 	unsigned long index;
9505 
9506 	xa_for_each(&ctx->io_buffers, index, buf)
9507 		__io_remove_buffers(ctx, buf, index, -1U);
9508 }
9509 
io_req_cache_free(struct list_head * list)9510 static void io_req_cache_free(struct list_head *list)
9511 {
9512 	struct io_kiocb *req, *nxt;
9513 
9514 	list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9515 		list_del(&req->inflight_entry);
9516 		kmem_cache_free(req_cachep, req);
9517 	}
9518 }
9519 
io_req_caches_free(struct io_ring_ctx * ctx)9520 static void io_req_caches_free(struct io_ring_ctx *ctx)
9521 {
9522 	struct io_submit_state *state = &ctx->submit_state;
9523 
9524 	mutex_lock(&ctx->uring_lock);
9525 
9526 	if (state->free_reqs) {
9527 		kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9528 		state->free_reqs = 0;
9529 	}
9530 
9531 	io_flush_cached_locked_reqs(ctx, state);
9532 	io_req_cache_free(&state->free_list);
9533 	mutex_unlock(&ctx->uring_lock);
9534 }
9535 
io_wait_rsrc_data(struct io_rsrc_data * data)9536 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9537 {
9538 	if (data && !atomic_dec_and_test(&data->refs))
9539 		wait_for_completion(&data->done);
9540 }
9541 
io_ring_ctx_free(struct io_ring_ctx * ctx)9542 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9543 {
9544 	io_sq_thread_finish(ctx);
9545 
9546 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9547 	io_wait_rsrc_data(ctx->buf_data);
9548 	io_wait_rsrc_data(ctx->file_data);
9549 
9550 	mutex_lock(&ctx->uring_lock);
9551 	if (ctx->buf_data)
9552 		__io_sqe_buffers_unregister(ctx);
9553 	if (ctx->file_data)
9554 		__io_sqe_files_unregister(ctx);
9555 	if (ctx->rings)
9556 		__io_cqring_overflow_flush(ctx, true);
9557 	mutex_unlock(&ctx->uring_lock);
9558 	io_eventfd_unregister(ctx);
9559 	io_destroy_buffers(ctx);
9560 	if (ctx->sq_creds)
9561 		put_cred(ctx->sq_creds);
9562 
9563 	/* there are no registered resources left, nobody uses it */
9564 	if (ctx->rsrc_node)
9565 		io_rsrc_node_destroy(ctx->rsrc_node);
9566 	if (ctx->rsrc_backup_node)
9567 		io_rsrc_node_destroy(ctx->rsrc_backup_node);
9568 	flush_delayed_work(&ctx->rsrc_put_work);
9569 
9570 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9571 	WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9572 
9573 #if defined(CONFIG_UNIX)
9574 	if (ctx->ring_sock) {
9575 		ctx->ring_sock->file = NULL; /* so that iput() is called */
9576 		sock_release(ctx->ring_sock);
9577 	}
9578 #endif
9579 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9580 
9581 	if (ctx->mm_account) {
9582 		mmdrop(ctx->mm_account);
9583 		ctx->mm_account = NULL;
9584 	}
9585 
9586 	io_mem_free(ctx->rings);
9587 	io_mem_free(ctx->sq_sqes);
9588 
9589 	percpu_ref_exit(&ctx->refs);
9590 	free_uid(ctx->user);
9591 	io_req_caches_free(ctx);
9592 	if (ctx->hash_map)
9593 		io_wq_put_hash(ctx->hash_map);
9594 	kfree(ctx->cancel_hash);
9595 	kfree(ctx->dummy_ubuf);
9596 	kfree(ctx);
9597 }
9598 
io_uring_poll(struct file * file,poll_table * wait)9599 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9600 {
9601 	struct io_ring_ctx *ctx = file->private_data;
9602 	__poll_t mask = 0;
9603 
9604 	poll_wait(file, &ctx->poll_wait, wait);
9605 	/*
9606 	 * synchronizes with barrier from wq_has_sleeper call in
9607 	 * io_commit_cqring
9608 	 */
9609 	smp_rmb();
9610 	if (!io_sqring_full(ctx))
9611 		mask |= EPOLLOUT | EPOLLWRNORM;
9612 
9613 	/*
9614 	 * Don't flush cqring overflow list here, just do a simple check.
9615 	 * Otherwise there could possible be ABBA deadlock:
9616 	 *      CPU0                    CPU1
9617 	 *      ----                    ----
9618 	 * lock(&ctx->uring_lock);
9619 	 *                              lock(&ep->mtx);
9620 	 *                              lock(&ctx->uring_lock);
9621 	 * lock(&ep->mtx);
9622 	 *
9623 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9624 	 * pushs them to do the flush.
9625 	 */
9626 	if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9627 		mask |= EPOLLIN | EPOLLRDNORM;
9628 
9629 	return mask;
9630 }
9631 
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)9632 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9633 {
9634 	const struct cred *creds;
9635 
9636 	creds = xa_erase(&ctx->personalities, id);
9637 	if (creds) {
9638 		put_cred(creds);
9639 		return 0;
9640 	}
9641 
9642 	return -EINVAL;
9643 }
9644 
9645 struct io_tctx_exit {
9646 	struct callback_head		task_work;
9647 	struct completion		completion;
9648 	struct io_ring_ctx		*ctx;
9649 };
9650 
io_tctx_exit_cb(struct callback_head * cb)9651 static void io_tctx_exit_cb(struct callback_head *cb)
9652 {
9653 	struct io_uring_task *tctx = current->io_uring;
9654 	struct io_tctx_exit *work;
9655 
9656 	work = container_of(cb, struct io_tctx_exit, task_work);
9657 	/*
9658 	 * When @in_idle, we're in cancellation and it's racy to remove the
9659 	 * node. It'll be removed by the end of cancellation, just ignore it.
9660 	 * tctx can be NULL if the queueing of this task_work raced with
9661 	 * work cancelation off the exec path.
9662 	 */
9663 	if (tctx && !atomic_read(&tctx->in_idle))
9664 		io_uring_del_tctx_node((unsigned long)work->ctx);
9665 	complete(&work->completion);
9666 }
9667 
io_cancel_ctx_cb(struct io_wq_work * work,void * data)9668 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9669 {
9670 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9671 
9672 	return req->ctx == data;
9673 }
9674 
io_ring_exit_work(struct work_struct * work)9675 static void io_ring_exit_work(struct work_struct *work)
9676 {
9677 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9678 	unsigned long timeout = jiffies + HZ * 60 * 5;
9679 	unsigned long interval = HZ / 20;
9680 	struct io_tctx_exit exit;
9681 	struct io_tctx_node *node;
9682 	int ret;
9683 
9684 	/*
9685 	 * If we're doing polled IO and end up having requests being
9686 	 * submitted async (out-of-line), then completions can come in while
9687 	 * we're waiting for refs to drop. We need to reap these manually,
9688 	 * as nobody else will be looking for them.
9689 	 */
9690 	do {
9691 		io_uring_try_cancel_requests(ctx, NULL, true);
9692 		if (ctx->sq_data) {
9693 			struct io_sq_data *sqd = ctx->sq_data;
9694 			struct task_struct *tsk;
9695 
9696 			io_sq_thread_park(sqd);
9697 			tsk = sqd->thread;
9698 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9699 				io_wq_cancel_cb(tsk->io_uring->io_wq,
9700 						io_cancel_ctx_cb, ctx, true);
9701 			io_sq_thread_unpark(sqd);
9702 		}
9703 
9704 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9705 			/* there is little hope left, don't run it too often */
9706 			interval = HZ * 60;
9707 		}
9708 		/*
9709 		 * This is really an uninterruptible wait, as it has to be
9710 		 * complete. But it's also run from a kworker, which doesn't
9711 		 * take signals, so it's fine to make it interruptible. This
9712 		 * avoids scenarios where we knowingly can wait much longer
9713 		 * on completions, for example if someone does a SIGSTOP on
9714 		 * a task that needs to finish task_work to make this loop
9715 		 * complete. That's a synthetic situation that should not
9716 		 * cause a stuck task backtrace, and hence a potential panic
9717 		 * on stuck tasks if that is enabled.
9718 		 */
9719 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
9720 
9721 	init_completion(&exit.completion);
9722 	init_task_work(&exit.task_work, io_tctx_exit_cb);
9723 	exit.ctx = ctx;
9724 
9725 	mutex_lock(&ctx->uring_lock);
9726 	while (!list_empty(&ctx->tctx_list)) {
9727 		WARN_ON_ONCE(time_after(jiffies, timeout));
9728 
9729 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9730 					ctx_node);
9731 		/* don't spin on a single task if cancellation failed */
9732 		list_rotate_left(&ctx->tctx_list);
9733 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9734 		if (WARN_ON_ONCE(ret))
9735 			continue;
9736 		wake_up_process(node->task);
9737 
9738 		mutex_unlock(&ctx->uring_lock);
9739 		/*
9740 		 * See comment above for
9741 		 * wait_for_completion_interruptible_timeout() on why this
9742 		 * wait is marked as interruptible.
9743 		 */
9744 		wait_for_completion_interruptible(&exit.completion);
9745 		mutex_lock(&ctx->uring_lock);
9746 	}
9747 	mutex_unlock(&ctx->uring_lock);
9748 	spin_lock(&ctx->completion_lock);
9749 	spin_unlock(&ctx->completion_lock);
9750 
9751 	io_ring_ctx_free(ctx);
9752 }
9753 
9754 /* Returns true if we found and killed one or more timeouts */
io_kill_timeouts(struct io_ring_ctx * ctx,struct task_struct * tsk,bool cancel_all)9755 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9756 			     bool cancel_all)
9757 {
9758 	struct io_kiocb *req, *tmp;
9759 	int canceled = 0;
9760 
9761 	spin_lock(&ctx->completion_lock);
9762 	spin_lock_irq(&ctx->timeout_lock);
9763 	list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9764 		if (io_match_task(req, tsk, cancel_all)) {
9765 			io_kill_timeout(req, -ECANCELED);
9766 			canceled++;
9767 		}
9768 	}
9769 	spin_unlock_irq(&ctx->timeout_lock);
9770 	if (canceled != 0)
9771 		io_commit_cqring(ctx);
9772 	spin_unlock(&ctx->completion_lock);
9773 	if (canceled != 0)
9774 		io_cqring_ev_posted(ctx);
9775 	return canceled != 0;
9776 }
9777 
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)9778 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9779 {
9780 	unsigned long index;
9781 	struct creds *creds;
9782 
9783 	mutex_lock(&ctx->uring_lock);
9784 	percpu_ref_kill(&ctx->refs);
9785 	if (ctx->rings)
9786 		__io_cqring_overflow_flush(ctx, true);
9787 	xa_for_each(&ctx->personalities, index, creds)
9788 		io_unregister_personality(ctx, index);
9789 	mutex_unlock(&ctx->uring_lock);
9790 
9791 	io_kill_timeouts(ctx, NULL, true);
9792 	io_poll_remove_all(ctx, NULL, true);
9793 
9794 	/* if we failed setting up the ctx, we might not have any rings */
9795 	io_iopoll_try_reap_events(ctx);
9796 
9797 	/* drop cached put refs after potentially doing completions */
9798 	if (current->io_uring)
9799 		io_uring_drop_tctx_refs(current);
9800 
9801 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9802 	/*
9803 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
9804 	 * if we're exiting a ton of rings at the same time. It just adds
9805 	 * noise and overhead, there's no discernable change in runtime
9806 	 * over using system_wq.
9807 	 */
9808 	queue_work(system_unbound_wq, &ctx->exit_work);
9809 }
9810 
io_uring_release(struct inode * inode,struct file * file)9811 static int io_uring_release(struct inode *inode, struct file *file)
9812 {
9813 	struct io_ring_ctx *ctx = file->private_data;
9814 
9815 	file->private_data = NULL;
9816 	io_ring_ctx_wait_and_kill(ctx);
9817 	return 0;
9818 }
9819 
9820 struct io_task_cancel {
9821 	struct task_struct *task;
9822 	bool all;
9823 };
9824 
io_cancel_task_cb(struct io_wq_work * work,void * data)9825 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9826 {
9827 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9828 	struct io_task_cancel *cancel = data;
9829 
9830 	return io_match_task_safe(req, cancel->task, cancel->all);
9831 }
9832 
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)9833 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9834 				  struct task_struct *task, bool cancel_all)
9835 {
9836 	struct io_defer_entry *de;
9837 	LIST_HEAD(list);
9838 
9839 	spin_lock(&ctx->completion_lock);
9840 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9841 		if (io_match_task_safe(de->req, task, cancel_all)) {
9842 			list_cut_position(&list, &ctx->defer_list, &de->list);
9843 			break;
9844 		}
9845 	}
9846 	spin_unlock(&ctx->completion_lock);
9847 	if (list_empty(&list))
9848 		return false;
9849 
9850 	while (!list_empty(&list)) {
9851 		de = list_first_entry(&list, struct io_defer_entry, list);
9852 		list_del_init(&de->list);
9853 		io_req_complete_failed(de->req, -ECANCELED);
9854 		kfree(de);
9855 	}
9856 	return true;
9857 }
9858 
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)9859 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9860 {
9861 	struct io_tctx_node *node;
9862 	enum io_wq_cancel cret;
9863 	bool ret = false;
9864 
9865 	mutex_lock(&ctx->uring_lock);
9866 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9867 		struct io_uring_task *tctx = node->task->io_uring;
9868 
9869 		/*
9870 		 * io_wq will stay alive while we hold uring_lock, because it's
9871 		 * killed after ctx nodes, which requires to take the lock.
9872 		 */
9873 		if (!tctx || !tctx->io_wq)
9874 			continue;
9875 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9876 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9877 	}
9878 	mutex_unlock(&ctx->uring_lock);
9879 
9880 	return ret;
9881 }
9882 
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)9883 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9884 					 struct task_struct *task,
9885 					 bool cancel_all)
9886 {
9887 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9888 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
9889 
9890 	while (1) {
9891 		enum io_wq_cancel cret;
9892 		bool ret = false;
9893 
9894 		if (!task) {
9895 			ret |= io_uring_try_cancel_iowq(ctx);
9896 		} else if (tctx && tctx->io_wq) {
9897 			/*
9898 			 * Cancels requests of all rings, not only @ctx, but
9899 			 * it's fine as the task is in exit/exec.
9900 			 */
9901 			cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9902 					       &cancel, true);
9903 			ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9904 		}
9905 
9906 		/* SQPOLL thread does its own polling */
9907 		if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9908 		    (ctx->sq_data && ctx->sq_data->thread == current)) {
9909 			while (!list_empty_careful(&ctx->iopoll_list)) {
9910 				io_iopoll_try_reap_events(ctx);
9911 				ret = true;
9912 				cond_resched();
9913 			}
9914 		}
9915 
9916 		ret |= io_cancel_defer_files(ctx, task, cancel_all);
9917 		ret |= io_poll_remove_all(ctx, task, cancel_all);
9918 		ret |= io_kill_timeouts(ctx, task, cancel_all);
9919 		if (task)
9920 			ret |= io_run_task_work();
9921 		if (!ret)
9922 			break;
9923 		cond_resched();
9924 	}
9925 }
9926 
__io_uring_add_tctx_node(struct io_ring_ctx * ctx)9927 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9928 {
9929 	struct io_uring_task *tctx = current->io_uring;
9930 	struct io_tctx_node *node;
9931 	int ret;
9932 
9933 	if (unlikely(!tctx)) {
9934 		ret = io_uring_alloc_task_context(current, ctx);
9935 		if (unlikely(ret))
9936 			return ret;
9937 
9938 		tctx = current->io_uring;
9939 		if (ctx->iowq_limits_set) {
9940 			unsigned int limits[2] = { ctx->iowq_limits[0],
9941 						   ctx->iowq_limits[1], };
9942 
9943 			ret = io_wq_max_workers(tctx->io_wq, limits);
9944 			if (ret)
9945 				return ret;
9946 		}
9947 	}
9948 	if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9949 		node = kmalloc(sizeof(*node), GFP_KERNEL);
9950 		if (!node)
9951 			return -ENOMEM;
9952 		node->ctx = ctx;
9953 		node->task = current;
9954 
9955 		ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9956 					node, GFP_KERNEL));
9957 		if (ret) {
9958 			kfree(node);
9959 			return ret;
9960 		}
9961 
9962 		mutex_lock(&ctx->uring_lock);
9963 		list_add(&node->ctx_node, &ctx->tctx_list);
9964 		mutex_unlock(&ctx->uring_lock);
9965 	}
9966 	tctx->last = ctx;
9967 	return 0;
9968 }
9969 
9970 /*
9971  * Note that this task has used io_uring. We use it for cancelation purposes.
9972  */
io_uring_add_tctx_node(struct io_ring_ctx * ctx)9973 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9974 {
9975 	struct io_uring_task *tctx = current->io_uring;
9976 
9977 	if (likely(tctx && tctx->last == ctx))
9978 		return 0;
9979 	return __io_uring_add_tctx_node(ctx);
9980 }
9981 
9982 /*
9983  * Remove this io_uring_file -> task mapping.
9984  */
io_uring_del_tctx_node(unsigned long index)9985 static void io_uring_del_tctx_node(unsigned long index)
9986 {
9987 	struct io_uring_task *tctx = current->io_uring;
9988 	struct io_tctx_node *node;
9989 
9990 	if (!tctx)
9991 		return;
9992 	node = xa_erase(&tctx->xa, index);
9993 	if (!node)
9994 		return;
9995 
9996 	WARN_ON_ONCE(current != node->task);
9997 	WARN_ON_ONCE(list_empty(&node->ctx_node));
9998 
9999 	mutex_lock(&node->ctx->uring_lock);
10000 	list_del(&node->ctx_node);
10001 	mutex_unlock(&node->ctx->uring_lock);
10002 
10003 	if (tctx->last == node->ctx)
10004 		tctx->last = NULL;
10005 	kfree(node);
10006 }
10007 
io_uring_clean_tctx(struct io_uring_task * tctx)10008 static void io_uring_clean_tctx(struct io_uring_task *tctx)
10009 {
10010 	struct io_wq *wq = tctx->io_wq;
10011 	struct io_tctx_node *node;
10012 	unsigned long index;
10013 
10014 	xa_for_each(&tctx->xa, index, node) {
10015 		io_uring_del_tctx_node(index);
10016 		cond_resched();
10017 	}
10018 	if (wq) {
10019 		/*
10020 		 * Must be after io_uring_del_task_file() (removes nodes under
10021 		 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
10022 		 */
10023 		io_wq_put_and_exit(wq);
10024 		tctx->io_wq = NULL;
10025 	}
10026 }
10027 
tctx_inflight(struct io_uring_task * tctx,bool tracked)10028 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
10029 {
10030 	if (tracked)
10031 		return atomic_read(&tctx->inflight_tracked);
10032 	return percpu_counter_sum(&tctx->inflight);
10033 }
10034 
10035 /*
10036  * Find any io_uring ctx that this task has registered or done IO on, and cancel
10037  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
10038  */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)10039 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
10040 {
10041 	struct io_uring_task *tctx = current->io_uring;
10042 	struct io_ring_ctx *ctx;
10043 	s64 inflight;
10044 	DEFINE_WAIT(wait);
10045 
10046 	WARN_ON_ONCE(sqd && sqd->thread != current);
10047 
10048 	if (!current->io_uring)
10049 		return;
10050 	if (tctx->io_wq)
10051 		io_wq_exit_start(tctx->io_wq);
10052 
10053 	atomic_inc(&tctx->in_idle);
10054 	do {
10055 		io_uring_drop_tctx_refs(current);
10056 		/* read completions before cancelations */
10057 		inflight = tctx_inflight(tctx, !cancel_all);
10058 		if (!inflight)
10059 			break;
10060 
10061 		if (!sqd) {
10062 			struct io_tctx_node *node;
10063 			unsigned long index;
10064 
10065 			xa_for_each(&tctx->xa, index, node) {
10066 				/* sqpoll task will cancel all its requests */
10067 				if (node->ctx->sq_data)
10068 					continue;
10069 				io_uring_try_cancel_requests(node->ctx, current,
10070 							     cancel_all);
10071 			}
10072 		} else {
10073 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
10074 				io_uring_try_cancel_requests(ctx, current,
10075 							     cancel_all);
10076 		}
10077 
10078 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
10079 		io_run_task_work();
10080 		io_uring_drop_tctx_refs(current);
10081 
10082 		/*
10083 		 * If we've seen completions, retry without waiting. This
10084 		 * avoids a race where a completion comes in before we did
10085 		 * prepare_to_wait().
10086 		 */
10087 		if (inflight == tctx_inflight(tctx, !cancel_all))
10088 			schedule();
10089 		finish_wait(&tctx->wait, &wait);
10090 	} while (1);
10091 
10092 	io_uring_clean_tctx(tctx);
10093 	if (cancel_all) {
10094 		/*
10095 		 * We shouldn't run task_works after cancel, so just leave
10096 		 * ->in_idle set for normal exit.
10097 		 */
10098 		atomic_dec(&tctx->in_idle);
10099 		/* for exec all current's requests should be gone, kill tctx */
10100 		__io_uring_free(current);
10101 	}
10102 }
10103 
__io_uring_cancel(bool cancel_all)10104 void __io_uring_cancel(bool cancel_all)
10105 {
10106 	io_uring_cancel_generic(cancel_all, NULL);
10107 }
10108 
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)10109 static void *io_uring_validate_mmap_request(struct file *file,
10110 					    loff_t pgoff, size_t sz)
10111 {
10112 	struct io_ring_ctx *ctx = file->private_data;
10113 	loff_t offset = pgoff << PAGE_SHIFT;
10114 	struct page *page;
10115 	void *ptr;
10116 
10117 	switch (offset) {
10118 	case IORING_OFF_SQ_RING:
10119 	case IORING_OFF_CQ_RING:
10120 		ptr = ctx->rings;
10121 		break;
10122 	case IORING_OFF_SQES:
10123 		ptr = ctx->sq_sqes;
10124 		break;
10125 	default:
10126 		return ERR_PTR(-EINVAL);
10127 	}
10128 
10129 	page = virt_to_head_page(ptr);
10130 	if (sz > page_size(page))
10131 		return ERR_PTR(-EINVAL);
10132 
10133 	return ptr;
10134 }
10135 
10136 #ifdef CONFIG_MMU
10137 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)10138 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
10139 {
10140 	size_t sz = vma->vm_end - vma->vm_start;
10141 	unsigned long pfn;
10142 	void *ptr;
10143 
10144 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
10145 	if (IS_ERR(ptr))
10146 		return PTR_ERR(ptr);
10147 
10148 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
10149 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
10150 }
10151 
10152 #else /* !CONFIG_MMU */
10153 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)10154 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
10155 {
10156 	return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
10157 }
10158 
io_uring_nommu_mmap_capabilities(struct file * file)10159 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
10160 {
10161 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
10162 }
10163 
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)10164 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
10165 	unsigned long addr, unsigned long len,
10166 	unsigned long pgoff, unsigned long flags)
10167 {
10168 	void *ptr;
10169 
10170 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
10171 	if (IS_ERR(ptr))
10172 		return PTR_ERR(ptr);
10173 
10174 	return (unsigned long) ptr;
10175 }
10176 
10177 #endif /* !CONFIG_MMU */
10178 
io_sqpoll_wait_sq(struct io_ring_ctx * ctx)10179 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
10180 {
10181 	DEFINE_WAIT(wait);
10182 
10183 	do {
10184 		if (!io_sqring_full(ctx))
10185 			break;
10186 		prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
10187 
10188 		if (!io_sqring_full(ctx))
10189 			break;
10190 		schedule();
10191 	} while (!signal_pending(current));
10192 
10193 	finish_wait(&ctx->sqo_sq_wait, &wait);
10194 	return 0;
10195 }
10196 
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)10197 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
10198 			  struct __kernel_timespec __user **ts,
10199 			  const sigset_t __user **sig)
10200 {
10201 	struct io_uring_getevents_arg arg;
10202 
10203 	/*
10204 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
10205 	 * is just a pointer to the sigset_t.
10206 	 */
10207 	if (!(flags & IORING_ENTER_EXT_ARG)) {
10208 		*sig = (const sigset_t __user *) argp;
10209 		*ts = NULL;
10210 		return 0;
10211 	}
10212 
10213 	/*
10214 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
10215 	 * timespec and sigset_t pointers if good.
10216 	 */
10217 	if (*argsz != sizeof(arg))
10218 		return -EINVAL;
10219 	if (copy_from_user(&arg, argp, sizeof(arg)))
10220 		return -EFAULT;
10221 	if (arg.pad)
10222 		return -EINVAL;
10223 	*sig = u64_to_user_ptr(arg.sigmask);
10224 	*argsz = arg.sigmask_sz;
10225 	*ts = u64_to_user_ptr(arg.ts);
10226 	return 0;
10227 }
10228 
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)10229 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
10230 		u32, min_complete, u32, flags, const void __user *, argp,
10231 		size_t, argsz)
10232 {
10233 	struct io_ring_ctx *ctx;
10234 	int submitted = 0;
10235 	struct fd f;
10236 	long ret;
10237 
10238 	io_run_task_work();
10239 
10240 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
10241 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
10242 		return -EINVAL;
10243 
10244 	f = fdget(fd);
10245 	if (unlikely(!f.file))
10246 		return -EBADF;
10247 
10248 	ret = -EOPNOTSUPP;
10249 	if (unlikely(f.file->f_op != &io_uring_fops))
10250 		goto out_fput;
10251 
10252 	ret = -ENXIO;
10253 	ctx = f.file->private_data;
10254 	if (unlikely(!percpu_ref_tryget(&ctx->refs)))
10255 		goto out_fput;
10256 
10257 	ret = -EBADFD;
10258 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
10259 		goto out;
10260 
10261 	/*
10262 	 * For SQ polling, the thread will do all submissions and completions.
10263 	 * Just return the requested submit count, and wake the thread if
10264 	 * we were asked to.
10265 	 */
10266 	ret = 0;
10267 	if (ctx->flags & IORING_SETUP_SQPOLL) {
10268 		io_cqring_overflow_flush(ctx);
10269 
10270 		if (unlikely(ctx->sq_data->thread == NULL)) {
10271 			ret = -EOWNERDEAD;
10272 			goto out;
10273 		}
10274 		if (flags & IORING_ENTER_SQ_WAKEUP)
10275 			wake_up(&ctx->sq_data->wait);
10276 		if (flags & IORING_ENTER_SQ_WAIT) {
10277 			ret = io_sqpoll_wait_sq(ctx);
10278 			if (ret)
10279 				goto out;
10280 		}
10281 		submitted = to_submit;
10282 	} else if (to_submit) {
10283 		ret = io_uring_add_tctx_node(ctx);
10284 		if (unlikely(ret))
10285 			goto out;
10286 		mutex_lock(&ctx->uring_lock);
10287 		submitted = io_submit_sqes(ctx, to_submit);
10288 		mutex_unlock(&ctx->uring_lock);
10289 
10290 		if (submitted != to_submit)
10291 			goto out;
10292 	}
10293 	if (flags & IORING_ENTER_GETEVENTS) {
10294 		const sigset_t __user *sig;
10295 		struct __kernel_timespec __user *ts;
10296 
10297 		ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10298 		if (unlikely(ret))
10299 			goto out;
10300 
10301 		min_complete = min(min_complete, ctx->cq_entries);
10302 
10303 		/*
10304 		 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10305 		 * space applications don't need to do io completion events
10306 		 * polling again, they can rely on io_sq_thread to do polling
10307 		 * work, which can reduce cpu usage and uring_lock contention.
10308 		 */
10309 		if (ctx->flags & IORING_SETUP_IOPOLL &&
10310 		    !(ctx->flags & IORING_SETUP_SQPOLL)) {
10311 			ret = io_iopoll_check(ctx, min_complete);
10312 		} else {
10313 			ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10314 		}
10315 	}
10316 
10317 out:
10318 	percpu_ref_put(&ctx->refs);
10319 out_fput:
10320 	fdput(f);
10321 	return submitted ? submitted : ret;
10322 }
10323 
10324 #ifdef CONFIG_PROC_FS
io_uring_show_cred(struct seq_file * m,unsigned int id,const struct cred * cred)10325 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10326 		const struct cred *cred)
10327 {
10328 	struct user_namespace *uns = seq_user_ns(m);
10329 	struct group_info *gi;
10330 	kernel_cap_t cap;
10331 	unsigned __capi;
10332 	int g;
10333 
10334 	seq_printf(m, "%5d\n", id);
10335 	seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10336 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10337 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10338 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10339 	seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10340 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10341 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10342 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10343 	seq_puts(m, "\n\tGroups:\t");
10344 	gi = cred->group_info;
10345 	for (g = 0; g < gi->ngroups; g++) {
10346 		seq_put_decimal_ull(m, g ? " " : "",
10347 					from_kgid_munged(uns, gi->gid[g]));
10348 	}
10349 	seq_puts(m, "\n\tCapEff:\t");
10350 	cap = cred->cap_effective;
10351 	CAP_FOR_EACH_U32(__capi)
10352 		seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10353 	seq_putc(m, '\n');
10354 	return 0;
10355 }
10356 
__io_uring_show_fdinfo(struct io_ring_ctx * ctx,struct seq_file * m)10357 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10358 {
10359 	int sq_pid = -1, sq_cpu = -1;
10360 	bool has_lock;
10361 	int i;
10362 
10363 	/*
10364 	 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10365 	 * since fdinfo case grabs it in the opposite direction of normal use
10366 	 * cases. If we fail to get the lock, we just don't iterate any
10367 	 * structures that could be going away outside the io_uring mutex.
10368 	 */
10369 	has_lock = mutex_trylock(&ctx->uring_lock);
10370 
10371 	if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10372 		struct io_sq_data *sq = ctx->sq_data;
10373 
10374 		if (mutex_trylock(&sq->lock)) {
10375 			if (sq->thread) {
10376 				sq_pid = task_pid_nr(sq->thread);
10377 				sq_cpu = task_cpu(sq->thread);
10378 			}
10379 			mutex_unlock(&sq->lock);
10380 		}
10381 	}
10382 
10383 	seq_printf(m, "SqThread:\t%d\n", sq_pid);
10384 	seq_printf(m, "SqThreadCpu:\t%d\n", sq_cpu);
10385 	seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10386 	for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10387 		struct file *f = io_file_from_index(ctx, i);
10388 
10389 		if (f)
10390 			seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10391 		else
10392 			seq_printf(m, "%5u: <none>\n", i);
10393 	}
10394 	seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10395 	for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10396 		struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10397 		unsigned int len = buf->ubuf_end - buf->ubuf;
10398 
10399 		seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10400 	}
10401 	if (has_lock && !xa_empty(&ctx->personalities)) {
10402 		unsigned long index;
10403 		const struct cred *cred;
10404 
10405 		seq_printf(m, "Personalities:\n");
10406 		xa_for_each(&ctx->personalities, index, cred)
10407 			io_uring_show_cred(m, index, cred);
10408 	}
10409 	seq_printf(m, "PollList:\n");
10410 	spin_lock(&ctx->completion_lock);
10411 	for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10412 		struct hlist_head *list = &ctx->cancel_hash[i];
10413 		struct io_kiocb *req;
10414 
10415 		hlist_for_each_entry(req, list, hash_node)
10416 			seq_printf(m, "  op=%d, task_works=%d\n", req->opcode,
10417 					req->task->task_works != NULL);
10418 	}
10419 	spin_unlock(&ctx->completion_lock);
10420 	if (has_lock)
10421 		mutex_unlock(&ctx->uring_lock);
10422 }
10423 
io_uring_show_fdinfo(struct seq_file * m,struct file * f)10424 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10425 {
10426 	struct io_ring_ctx *ctx = f->private_data;
10427 
10428 	if (percpu_ref_tryget(&ctx->refs)) {
10429 		__io_uring_show_fdinfo(ctx, m);
10430 		percpu_ref_put(&ctx->refs);
10431 	}
10432 }
10433 #endif
10434 
10435 static const struct file_operations io_uring_fops = {
10436 	.release	= io_uring_release,
10437 	.mmap		= io_uring_mmap,
10438 #ifndef CONFIG_MMU
10439 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
10440 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
10441 #endif
10442 	.poll		= io_uring_poll,
10443 #ifdef CONFIG_PROC_FS
10444 	.show_fdinfo	= io_uring_show_fdinfo,
10445 #endif
10446 };
10447 
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)10448 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10449 				  struct io_uring_params *p)
10450 {
10451 	struct io_rings *rings;
10452 	size_t size, sq_array_offset;
10453 
10454 	/* make sure these are sane, as we already accounted them */
10455 	ctx->sq_entries = p->sq_entries;
10456 	ctx->cq_entries = p->cq_entries;
10457 
10458 	size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10459 	if (size == SIZE_MAX)
10460 		return -EOVERFLOW;
10461 
10462 	rings = io_mem_alloc(size);
10463 	if (!rings)
10464 		return -ENOMEM;
10465 
10466 	ctx->rings = rings;
10467 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10468 	rings->sq_ring_mask = p->sq_entries - 1;
10469 	rings->cq_ring_mask = p->cq_entries - 1;
10470 	rings->sq_ring_entries = p->sq_entries;
10471 	rings->cq_ring_entries = p->cq_entries;
10472 
10473 	size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10474 	if (size == SIZE_MAX) {
10475 		io_mem_free(ctx->rings);
10476 		ctx->rings = NULL;
10477 		return -EOVERFLOW;
10478 	}
10479 
10480 	ctx->sq_sqes = io_mem_alloc(size);
10481 	if (!ctx->sq_sqes) {
10482 		io_mem_free(ctx->rings);
10483 		ctx->rings = NULL;
10484 		return -ENOMEM;
10485 	}
10486 
10487 	return 0;
10488 }
10489 
io_uring_install_fd(struct io_ring_ctx * ctx,struct file * file)10490 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10491 {
10492 	int ret, fd;
10493 
10494 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10495 	if (fd < 0)
10496 		return fd;
10497 
10498 	ret = io_uring_add_tctx_node(ctx);
10499 	if (ret) {
10500 		put_unused_fd(fd);
10501 		return ret;
10502 	}
10503 	fd_install(fd, file);
10504 	return fd;
10505 }
10506 
10507 /*
10508  * Allocate an anonymous fd, this is what constitutes the application
10509  * visible backing of an io_uring instance. The application mmaps this
10510  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10511  * we have to tie this fd to a socket for file garbage collection purposes.
10512  */
io_uring_get_file(struct io_ring_ctx * ctx)10513 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10514 {
10515 	struct file *file;
10516 #if defined(CONFIG_UNIX)
10517 	int ret;
10518 
10519 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10520 				&ctx->ring_sock);
10521 	if (ret)
10522 		return ERR_PTR(ret);
10523 #endif
10524 
10525 	file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10526 					O_RDWR | O_CLOEXEC);
10527 #if defined(CONFIG_UNIX)
10528 	if (IS_ERR(file)) {
10529 		sock_release(ctx->ring_sock);
10530 		ctx->ring_sock = NULL;
10531 	} else {
10532 		ctx->ring_sock->file = file;
10533 	}
10534 #endif
10535 	return file;
10536 }
10537 
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)10538 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10539 			   struct io_uring_params __user *params)
10540 {
10541 	struct io_ring_ctx *ctx;
10542 	struct file *file;
10543 	int ret;
10544 
10545 	if (!entries)
10546 		return -EINVAL;
10547 	if (entries > IORING_MAX_ENTRIES) {
10548 		if (!(p->flags & IORING_SETUP_CLAMP))
10549 			return -EINVAL;
10550 		entries = IORING_MAX_ENTRIES;
10551 	}
10552 
10553 	/*
10554 	 * Use twice as many entries for the CQ ring. It's possible for the
10555 	 * application to drive a higher depth than the size of the SQ ring,
10556 	 * since the sqes are only used at submission time. This allows for
10557 	 * some flexibility in overcommitting a bit. If the application has
10558 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10559 	 * of CQ ring entries manually.
10560 	 */
10561 	p->sq_entries = roundup_pow_of_two(entries);
10562 	if (p->flags & IORING_SETUP_CQSIZE) {
10563 		/*
10564 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10565 		 * to a power-of-two, if it isn't already. We do NOT impose
10566 		 * any cq vs sq ring sizing.
10567 		 */
10568 		if (!p->cq_entries)
10569 			return -EINVAL;
10570 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10571 			if (!(p->flags & IORING_SETUP_CLAMP))
10572 				return -EINVAL;
10573 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
10574 		}
10575 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
10576 		if (p->cq_entries < p->sq_entries)
10577 			return -EINVAL;
10578 	} else {
10579 		p->cq_entries = 2 * p->sq_entries;
10580 	}
10581 
10582 	ctx = io_ring_ctx_alloc(p);
10583 	if (!ctx)
10584 		return -ENOMEM;
10585 	ctx->compat = in_compat_syscall();
10586 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
10587 		ctx->user = get_uid(current_user());
10588 
10589 	/*
10590 	 * This is just grabbed for accounting purposes. When a process exits,
10591 	 * the mm is exited and dropped before the files, hence we need to hang
10592 	 * on to this mm purely for the purposes of being able to unaccount
10593 	 * memory (locked/pinned vm). It's not used for anything else.
10594 	 */
10595 	mmgrab(current->mm);
10596 	ctx->mm_account = current->mm;
10597 
10598 	ret = io_allocate_scq_urings(ctx, p);
10599 	if (ret)
10600 		goto err;
10601 
10602 	ret = io_sq_offload_create(ctx, p);
10603 	if (ret)
10604 		goto err;
10605 	/* always set a rsrc node */
10606 	ret = io_rsrc_node_switch_start(ctx);
10607 	if (ret)
10608 		goto err;
10609 	io_rsrc_node_switch(ctx, NULL);
10610 
10611 	memset(&p->sq_off, 0, sizeof(p->sq_off));
10612 	p->sq_off.head = offsetof(struct io_rings, sq.head);
10613 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10614 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10615 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10616 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10617 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10618 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10619 
10620 	memset(&p->cq_off, 0, sizeof(p->cq_off));
10621 	p->cq_off.head = offsetof(struct io_rings, cq.head);
10622 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10623 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10624 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10625 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10626 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
10627 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10628 
10629 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10630 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10631 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10632 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10633 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10634 			IORING_FEAT_RSRC_TAGS;
10635 
10636 	if (copy_to_user(params, p, sizeof(*p))) {
10637 		ret = -EFAULT;
10638 		goto err;
10639 	}
10640 
10641 	file = io_uring_get_file(ctx);
10642 	if (IS_ERR(file)) {
10643 		ret = PTR_ERR(file);
10644 		goto err;
10645 	}
10646 
10647 	/*
10648 	 * Install ring fd as the very last thing, so we don't risk someone
10649 	 * having closed it before we finish setup
10650 	 */
10651 	ret = io_uring_install_fd(ctx, file);
10652 	if (ret < 0) {
10653 		/* fput will clean it up */
10654 		fput(file);
10655 		return ret;
10656 	}
10657 
10658 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10659 	return ret;
10660 err:
10661 	io_ring_ctx_wait_and_kill(ctx);
10662 	return ret;
10663 }
10664 
10665 /*
10666  * Sets up an aio uring context, and returns the fd. Applications asks for a
10667  * ring size, we return the actual sq/cq ring sizes (among other things) in the
10668  * params structure passed in.
10669  */
io_uring_setup(u32 entries,struct io_uring_params __user * params)10670 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10671 {
10672 	struct io_uring_params p;
10673 	int i;
10674 
10675 	if (copy_from_user(&p, params, sizeof(p)))
10676 		return -EFAULT;
10677 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10678 		if (p.resv[i])
10679 			return -EINVAL;
10680 	}
10681 
10682 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10683 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10684 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10685 			IORING_SETUP_R_DISABLED))
10686 		return -EINVAL;
10687 
10688 	return  io_uring_create(entries, &p, params);
10689 }
10690 
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)10691 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10692 		struct io_uring_params __user *, params)
10693 {
10694 	return io_uring_setup(entries, params);
10695 }
10696 
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)10697 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10698 {
10699 	struct io_uring_probe *p;
10700 	size_t size;
10701 	int i, ret;
10702 
10703 	size = struct_size(p, ops, nr_args);
10704 	if (size == SIZE_MAX)
10705 		return -EOVERFLOW;
10706 	p = kzalloc(size, GFP_KERNEL);
10707 	if (!p)
10708 		return -ENOMEM;
10709 
10710 	ret = -EFAULT;
10711 	if (copy_from_user(p, arg, size))
10712 		goto out;
10713 	ret = -EINVAL;
10714 	if (memchr_inv(p, 0, size))
10715 		goto out;
10716 
10717 	p->last_op = IORING_OP_LAST - 1;
10718 	if (nr_args > IORING_OP_LAST)
10719 		nr_args = IORING_OP_LAST;
10720 
10721 	for (i = 0; i < nr_args; i++) {
10722 		p->ops[i].op = i;
10723 		if (!io_op_defs[i].not_supported)
10724 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
10725 	}
10726 	p->ops_len = i;
10727 
10728 	ret = 0;
10729 	if (copy_to_user(arg, p, size))
10730 		ret = -EFAULT;
10731 out:
10732 	kfree(p);
10733 	return ret;
10734 }
10735 
io_register_personality(struct io_ring_ctx * ctx)10736 static int io_register_personality(struct io_ring_ctx *ctx)
10737 {
10738 	const struct cred *creds;
10739 	u32 id;
10740 	int ret;
10741 
10742 	creds = get_current_cred();
10743 
10744 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10745 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10746 	if (ret < 0) {
10747 		put_cred(creds);
10748 		return ret;
10749 	}
10750 	return id;
10751 }
10752 
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)10753 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10754 				    unsigned int nr_args)
10755 {
10756 	struct io_uring_restriction *res;
10757 	size_t size;
10758 	int i, ret;
10759 
10760 	/* Restrictions allowed only if rings started disabled */
10761 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10762 		return -EBADFD;
10763 
10764 	/* We allow only a single restrictions registration */
10765 	if (ctx->restrictions.registered)
10766 		return -EBUSY;
10767 
10768 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10769 		return -EINVAL;
10770 
10771 	size = array_size(nr_args, sizeof(*res));
10772 	if (size == SIZE_MAX)
10773 		return -EOVERFLOW;
10774 
10775 	res = memdup_user(arg, size);
10776 	if (IS_ERR(res))
10777 		return PTR_ERR(res);
10778 
10779 	ret = 0;
10780 
10781 	for (i = 0; i < nr_args; i++) {
10782 		switch (res[i].opcode) {
10783 		case IORING_RESTRICTION_REGISTER_OP:
10784 			if (res[i].register_op >= IORING_REGISTER_LAST) {
10785 				ret = -EINVAL;
10786 				goto out;
10787 			}
10788 
10789 			__set_bit(res[i].register_op,
10790 				  ctx->restrictions.register_op);
10791 			break;
10792 		case IORING_RESTRICTION_SQE_OP:
10793 			if (res[i].sqe_op >= IORING_OP_LAST) {
10794 				ret = -EINVAL;
10795 				goto out;
10796 			}
10797 
10798 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10799 			break;
10800 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10801 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10802 			break;
10803 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10804 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10805 			break;
10806 		default:
10807 			ret = -EINVAL;
10808 			goto out;
10809 		}
10810 	}
10811 
10812 out:
10813 	/* Reset all restrictions if an error happened */
10814 	if (ret != 0)
10815 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10816 	else
10817 		ctx->restrictions.registered = true;
10818 
10819 	kfree(res);
10820 	return ret;
10821 }
10822 
io_register_enable_rings(struct io_ring_ctx * ctx)10823 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10824 {
10825 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10826 		return -EBADFD;
10827 
10828 	if (ctx->restrictions.registered)
10829 		ctx->restricted = 1;
10830 
10831 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
10832 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10833 		wake_up(&ctx->sq_data->wait);
10834 	return 0;
10835 }
10836 
__io_register_rsrc_update(struct io_ring_ctx * ctx,unsigned type,struct io_uring_rsrc_update2 * up,unsigned nr_args)10837 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10838 				     struct io_uring_rsrc_update2 *up,
10839 				     unsigned nr_args)
10840 {
10841 	__u32 tmp;
10842 	int err;
10843 
10844 	if (check_add_overflow(up->offset, nr_args, &tmp))
10845 		return -EOVERFLOW;
10846 	err = io_rsrc_node_switch_start(ctx);
10847 	if (err)
10848 		return err;
10849 
10850 	switch (type) {
10851 	case IORING_RSRC_FILE:
10852 		return __io_sqe_files_update(ctx, up, nr_args);
10853 	case IORING_RSRC_BUFFER:
10854 		return __io_sqe_buffers_update(ctx, up, nr_args);
10855 	}
10856 	return -EINVAL;
10857 }
10858 
io_register_files_update(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)10859 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10860 				    unsigned nr_args)
10861 {
10862 	struct io_uring_rsrc_update2 up;
10863 
10864 	if (!nr_args)
10865 		return -EINVAL;
10866 	memset(&up, 0, sizeof(up));
10867 	if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10868 		return -EFAULT;
10869 	if (up.resv || up.resv2)
10870 		return -EINVAL;
10871 	return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10872 }
10873 
io_register_rsrc_update(struct io_ring_ctx * ctx,void __user * arg,unsigned size,unsigned type)10874 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10875 				   unsigned size, unsigned type)
10876 {
10877 	struct io_uring_rsrc_update2 up;
10878 
10879 	if (size != sizeof(up))
10880 		return -EINVAL;
10881 	if (copy_from_user(&up, arg, sizeof(up)))
10882 		return -EFAULT;
10883 	if (!up.nr || up.resv || up.resv2)
10884 		return -EINVAL;
10885 	return __io_register_rsrc_update(ctx, type, &up, up.nr);
10886 }
10887 
io_register_rsrc(struct io_ring_ctx * ctx,void __user * arg,unsigned int size,unsigned int type)10888 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10889 			    unsigned int size, unsigned int type)
10890 {
10891 	struct io_uring_rsrc_register rr;
10892 
10893 	/* keep it extendible */
10894 	if (size != sizeof(rr))
10895 		return -EINVAL;
10896 
10897 	memset(&rr, 0, sizeof(rr));
10898 	if (copy_from_user(&rr, arg, size))
10899 		return -EFAULT;
10900 	if (!rr.nr || rr.resv || rr.resv2)
10901 		return -EINVAL;
10902 
10903 	switch (type) {
10904 	case IORING_RSRC_FILE:
10905 		return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10906 					     rr.nr, u64_to_user_ptr(rr.tags));
10907 	case IORING_RSRC_BUFFER:
10908 		return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10909 					       rr.nr, u64_to_user_ptr(rr.tags));
10910 	}
10911 	return -EINVAL;
10912 }
10913 
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)10914 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10915 				unsigned len)
10916 {
10917 	struct io_uring_task *tctx = current->io_uring;
10918 	cpumask_var_t new_mask;
10919 	int ret;
10920 
10921 	if (!tctx || !tctx->io_wq)
10922 		return -EINVAL;
10923 
10924 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10925 		return -ENOMEM;
10926 
10927 	cpumask_clear(new_mask);
10928 	if (len > cpumask_size())
10929 		len = cpumask_size();
10930 
10931 	if (in_compat_syscall()) {
10932 		ret = compat_get_bitmap(cpumask_bits(new_mask),
10933 					(const compat_ulong_t __user *)arg,
10934 					len * 8 /* CHAR_BIT */);
10935 	} else {
10936 		ret = copy_from_user(new_mask, arg, len);
10937 	}
10938 
10939 	if (ret) {
10940 		free_cpumask_var(new_mask);
10941 		return -EFAULT;
10942 	}
10943 
10944 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10945 	free_cpumask_var(new_mask);
10946 	return ret;
10947 }
10948 
io_unregister_iowq_aff(struct io_ring_ctx * ctx)10949 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10950 {
10951 	struct io_uring_task *tctx = current->io_uring;
10952 
10953 	if (!tctx || !tctx->io_wq)
10954 		return -EINVAL;
10955 
10956 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
10957 }
10958 
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)10959 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10960 					void __user *arg)
10961 	__must_hold(&ctx->uring_lock)
10962 {
10963 	struct io_tctx_node *node;
10964 	struct io_uring_task *tctx = NULL;
10965 	struct io_sq_data *sqd = NULL;
10966 	__u32 new_count[2];
10967 	int i, ret;
10968 
10969 	if (copy_from_user(new_count, arg, sizeof(new_count)))
10970 		return -EFAULT;
10971 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
10972 		if (new_count[i] > INT_MAX)
10973 			return -EINVAL;
10974 
10975 	if (ctx->flags & IORING_SETUP_SQPOLL) {
10976 		sqd = ctx->sq_data;
10977 		if (sqd) {
10978 			/*
10979 			 * Observe the correct sqd->lock -> ctx->uring_lock
10980 			 * ordering. Fine to drop uring_lock here, we hold
10981 			 * a ref to the ctx.
10982 			 */
10983 			refcount_inc(&sqd->refs);
10984 			mutex_unlock(&ctx->uring_lock);
10985 			mutex_lock(&sqd->lock);
10986 			mutex_lock(&ctx->uring_lock);
10987 			if (sqd->thread)
10988 				tctx = sqd->thread->io_uring;
10989 		}
10990 	} else {
10991 		tctx = current->io_uring;
10992 	}
10993 
10994 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10995 
10996 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
10997 		if (new_count[i])
10998 			ctx->iowq_limits[i] = new_count[i];
10999 	ctx->iowq_limits_set = true;
11000 
11001 	ret = -EINVAL;
11002 	if (tctx && tctx->io_wq) {
11003 		ret = io_wq_max_workers(tctx->io_wq, new_count);
11004 		if (ret)
11005 			goto err;
11006 	} else {
11007 		memset(new_count, 0, sizeof(new_count));
11008 	}
11009 
11010 	if (sqd) {
11011 		mutex_unlock(&sqd->lock);
11012 		io_put_sq_data(sqd);
11013 	}
11014 
11015 	if (copy_to_user(arg, new_count, sizeof(new_count)))
11016 		return -EFAULT;
11017 
11018 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
11019 	if (sqd)
11020 		return 0;
11021 
11022 	/* now propagate the restriction to all registered users */
11023 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
11024 		struct io_uring_task *tctx = node->task->io_uring;
11025 
11026 		if (WARN_ON_ONCE(!tctx->io_wq))
11027 			continue;
11028 
11029 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
11030 			new_count[i] = ctx->iowq_limits[i];
11031 		/* ignore errors, it always returns zero anyway */
11032 		(void)io_wq_max_workers(tctx->io_wq, new_count);
11033 	}
11034 	return 0;
11035 err:
11036 	if (sqd) {
11037 		mutex_unlock(&sqd->lock);
11038 		io_put_sq_data(sqd);
11039 	}
11040 	return ret;
11041 }
11042 
io_register_op_must_quiesce(int op)11043 static bool io_register_op_must_quiesce(int op)
11044 {
11045 	switch (op) {
11046 	case IORING_REGISTER_BUFFERS:
11047 	case IORING_UNREGISTER_BUFFERS:
11048 	case IORING_REGISTER_FILES:
11049 	case IORING_UNREGISTER_FILES:
11050 	case IORING_REGISTER_FILES_UPDATE:
11051 	case IORING_REGISTER_PROBE:
11052 	case IORING_REGISTER_PERSONALITY:
11053 	case IORING_UNREGISTER_PERSONALITY:
11054 	case IORING_REGISTER_FILES2:
11055 	case IORING_REGISTER_FILES_UPDATE2:
11056 	case IORING_REGISTER_BUFFERS2:
11057 	case IORING_REGISTER_BUFFERS_UPDATE:
11058 	case IORING_REGISTER_IOWQ_AFF:
11059 	case IORING_UNREGISTER_IOWQ_AFF:
11060 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
11061 		return false;
11062 	default:
11063 		return true;
11064 	}
11065 }
11066 
io_ctx_quiesce(struct io_ring_ctx * ctx)11067 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
11068 {
11069 	long ret;
11070 
11071 	percpu_ref_kill(&ctx->refs);
11072 
11073 	/*
11074 	 * Drop uring mutex before waiting for references to exit. If another
11075 	 * thread is currently inside io_uring_enter() it might need to grab the
11076 	 * uring_lock to make progress. If we hold it here across the drain
11077 	 * wait, then we can deadlock. It's safe to drop the mutex here, since
11078 	 * no new references will come in after we've killed the percpu ref.
11079 	 */
11080 	mutex_unlock(&ctx->uring_lock);
11081 	do {
11082 		ret = wait_for_completion_interruptible(&ctx->ref_comp);
11083 		if (!ret)
11084 			break;
11085 		ret = io_run_task_work_sig();
11086 	} while (ret >= 0);
11087 	mutex_lock(&ctx->uring_lock);
11088 
11089 	if (ret)
11090 		io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
11091 	return ret;
11092 }
11093 
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)11094 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
11095 			       void __user *arg, unsigned nr_args)
11096 	__releases(ctx->uring_lock)
11097 	__acquires(ctx->uring_lock)
11098 {
11099 	int ret;
11100 
11101 	/*
11102 	 * We're inside the ring mutex, if the ref is already dying, then
11103 	 * someone else killed the ctx or is already going through
11104 	 * io_uring_register().
11105 	 */
11106 	if (percpu_ref_is_dying(&ctx->refs))
11107 		return -ENXIO;
11108 
11109 	if (ctx->restricted) {
11110 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
11111 		if (!test_bit(opcode, ctx->restrictions.register_op))
11112 			return -EACCES;
11113 	}
11114 
11115 	if (io_register_op_must_quiesce(opcode)) {
11116 		ret = io_ctx_quiesce(ctx);
11117 		if (ret)
11118 			return ret;
11119 	}
11120 
11121 	switch (opcode) {
11122 	case IORING_REGISTER_BUFFERS:
11123 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
11124 		break;
11125 	case IORING_UNREGISTER_BUFFERS:
11126 		ret = -EINVAL;
11127 		if (arg || nr_args)
11128 			break;
11129 		ret = io_sqe_buffers_unregister(ctx);
11130 		break;
11131 	case IORING_REGISTER_FILES:
11132 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
11133 		break;
11134 	case IORING_UNREGISTER_FILES:
11135 		ret = -EINVAL;
11136 		if (arg || nr_args)
11137 			break;
11138 		ret = io_sqe_files_unregister(ctx);
11139 		break;
11140 	case IORING_REGISTER_FILES_UPDATE:
11141 		ret = io_register_files_update(ctx, arg, nr_args);
11142 		break;
11143 	case IORING_REGISTER_EVENTFD:
11144 	case IORING_REGISTER_EVENTFD_ASYNC:
11145 		ret = -EINVAL;
11146 		if (nr_args != 1)
11147 			break;
11148 		ret = io_eventfd_register(ctx, arg);
11149 		if (ret)
11150 			break;
11151 		if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
11152 			ctx->eventfd_async = 1;
11153 		else
11154 			ctx->eventfd_async = 0;
11155 		break;
11156 	case IORING_UNREGISTER_EVENTFD:
11157 		ret = -EINVAL;
11158 		if (arg || nr_args)
11159 			break;
11160 		ret = io_eventfd_unregister(ctx);
11161 		break;
11162 	case IORING_REGISTER_PROBE:
11163 		ret = -EINVAL;
11164 		if (!arg || nr_args > 256)
11165 			break;
11166 		ret = io_probe(ctx, arg, nr_args);
11167 		break;
11168 	case IORING_REGISTER_PERSONALITY:
11169 		ret = -EINVAL;
11170 		if (arg || nr_args)
11171 			break;
11172 		ret = io_register_personality(ctx);
11173 		break;
11174 	case IORING_UNREGISTER_PERSONALITY:
11175 		ret = -EINVAL;
11176 		if (arg)
11177 			break;
11178 		ret = io_unregister_personality(ctx, nr_args);
11179 		break;
11180 	case IORING_REGISTER_ENABLE_RINGS:
11181 		ret = -EINVAL;
11182 		if (arg || nr_args)
11183 			break;
11184 		ret = io_register_enable_rings(ctx);
11185 		break;
11186 	case IORING_REGISTER_RESTRICTIONS:
11187 		ret = io_register_restrictions(ctx, arg, nr_args);
11188 		break;
11189 	case IORING_REGISTER_FILES2:
11190 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
11191 		break;
11192 	case IORING_REGISTER_FILES_UPDATE2:
11193 		ret = io_register_rsrc_update(ctx, arg, nr_args,
11194 					      IORING_RSRC_FILE);
11195 		break;
11196 	case IORING_REGISTER_BUFFERS2:
11197 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
11198 		break;
11199 	case IORING_REGISTER_BUFFERS_UPDATE:
11200 		ret = io_register_rsrc_update(ctx, arg, nr_args,
11201 					      IORING_RSRC_BUFFER);
11202 		break;
11203 	case IORING_REGISTER_IOWQ_AFF:
11204 		ret = -EINVAL;
11205 		if (!arg || !nr_args)
11206 			break;
11207 		ret = io_register_iowq_aff(ctx, arg, nr_args);
11208 		break;
11209 	case IORING_UNREGISTER_IOWQ_AFF:
11210 		ret = -EINVAL;
11211 		if (arg || nr_args)
11212 			break;
11213 		ret = io_unregister_iowq_aff(ctx);
11214 		break;
11215 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
11216 		ret = -EINVAL;
11217 		if (!arg || nr_args != 2)
11218 			break;
11219 		ret = io_register_iowq_max_workers(ctx, arg);
11220 		break;
11221 	default:
11222 		ret = -EINVAL;
11223 		break;
11224 	}
11225 
11226 	if (io_register_op_must_quiesce(opcode)) {
11227 		/* bring the ctx back to life */
11228 		percpu_ref_reinit(&ctx->refs);
11229 		reinit_completion(&ctx->ref_comp);
11230 	}
11231 	return ret;
11232 }
11233 
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)11234 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
11235 		void __user *, arg, unsigned int, nr_args)
11236 {
11237 	struct io_ring_ctx *ctx;
11238 	long ret = -EBADF;
11239 	struct fd f;
11240 
11241 	if (opcode >= IORING_REGISTER_LAST)
11242 		return -EINVAL;
11243 
11244 	f = fdget(fd);
11245 	if (!f.file)
11246 		return -EBADF;
11247 
11248 	ret = -EOPNOTSUPP;
11249 	if (f.file->f_op != &io_uring_fops)
11250 		goto out_fput;
11251 
11252 	ctx = f.file->private_data;
11253 
11254 	io_run_task_work();
11255 
11256 	mutex_lock(&ctx->uring_lock);
11257 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
11258 	mutex_unlock(&ctx->uring_lock);
11259 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
11260 							ctx->cq_ev_fd != NULL, ret);
11261 out_fput:
11262 	fdput(f);
11263 	return ret;
11264 }
11265 
io_uring_init(void)11266 static int __init io_uring_init(void)
11267 {
11268 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
11269 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
11270 	BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
11271 } while (0)
11272 
11273 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
11274 	__BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
11275 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
11276 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
11277 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
11278 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
11279 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
11280 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
11281 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
11282 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
11283 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
11284 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
11285 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
11286 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
11287 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11288 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
11289 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
11290 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
11291 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
11292 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
11293 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
11294 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
11295 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
11296 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
11297 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
11298 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
11299 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
11300 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
11301 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
11302 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
11303 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
11304 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
11305 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
11306 
11307 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11308 		     sizeof(struct io_uring_rsrc_update));
11309 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11310 		     sizeof(struct io_uring_rsrc_update2));
11311 
11312 	/* ->buf_index is u16 */
11313 	BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11314 
11315 	/* should fit into one byte */
11316 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11317 
11318 	BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11319 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11320 
11321 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11322 				SLAB_ACCOUNT);
11323 	return 0;
11324 };
11325 __initcall(io_uring_init);
11326