1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Processor cache information made available to userspace via sysfs;
4 * intended to be compatible with x86 intel_cacheinfo implementation.
5 *
6 * Copyright 2008 IBM Corporation
7 * Author: Nathan Lynch
8 */
9
10 #define pr_fmt(fmt) "cacheinfo: " fmt
11
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/kernel.h>
15 #include <linux/kobject.h>
16 #include <linux/list.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/percpu.h>
20 #include <linux/slab.h>
21 #include <asm/prom.h>
22 #include <asm/cputhreads.h>
23 #include <asm/smp.h>
24
25 #include "cacheinfo.h"
26
27 /* per-cpu object for tracking:
28 * - a "cache" kobject for the top-level directory
29 * - a list of "index" objects representing the cpu's local cache hierarchy
30 */
31 struct cache_dir {
32 struct kobject *kobj; /* bare (not embedded) kobject for cache
33 * directory */
34 struct cache_index_dir *index; /* list of index objects */
35 };
36
37 /* "index" object: each cpu's cache directory has an index
38 * subdirectory corresponding to a cache object associated with the
39 * cpu. This object's lifetime is managed via the embedded kobject.
40 */
41 struct cache_index_dir {
42 struct kobject kobj;
43 struct cache_index_dir *next; /* next index in parent directory */
44 struct cache *cache;
45 };
46
47 /* Template for determining which OF properties to query for a given
48 * cache type */
49 struct cache_type_info {
50 const char *name;
51 const char *size_prop;
52
53 /* Allow for both [di]-cache-line-size and
54 * [di]-cache-block-size properties. According to the PowerPC
55 * Processor binding, -line-size should be provided if it
56 * differs from the cache block size (that which is operated
57 * on by cache instructions), so we look for -line-size first.
58 * See cache_get_line_size(). */
59
60 const char *line_size_props[2];
61 const char *nr_sets_prop;
62 };
63
64 /* These are used to index the cache_type_info array. */
65 #define CACHE_TYPE_UNIFIED 0 /* cache-size, cache-block-size, etc. */
66 #define CACHE_TYPE_UNIFIED_D 1 /* d-cache-size, d-cache-block-size, etc */
67 #define CACHE_TYPE_INSTRUCTION 2
68 #define CACHE_TYPE_DATA 3
69
70 static const struct cache_type_info cache_type_info[] = {
71 {
72 /* Embedded systems that use cache-size, cache-block-size,
73 * etc. for the Unified (typically L2) cache. */
74 .name = "Unified",
75 .size_prop = "cache-size",
76 .line_size_props = { "cache-line-size",
77 "cache-block-size", },
78 .nr_sets_prop = "cache-sets",
79 },
80 {
81 /* PowerPC Processor binding says the [di]-cache-*
82 * must be equal on unified caches, so just use
83 * d-cache properties. */
84 .name = "Unified",
85 .size_prop = "d-cache-size",
86 .line_size_props = { "d-cache-line-size",
87 "d-cache-block-size", },
88 .nr_sets_prop = "d-cache-sets",
89 },
90 {
91 .name = "Instruction",
92 .size_prop = "i-cache-size",
93 .line_size_props = { "i-cache-line-size",
94 "i-cache-block-size", },
95 .nr_sets_prop = "i-cache-sets",
96 },
97 {
98 .name = "Data",
99 .size_prop = "d-cache-size",
100 .line_size_props = { "d-cache-line-size",
101 "d-cache-block-size", },
102 .nr_sets_prop = "d-cache-sets",
103 },
104 };
105
106 /* Cache object: each instance of this corresponds to a distinct cache
107 * in the system. There are separate objects for Harvard caches: one
108 * each for instruction and data, and each refers to the same OF node.
109 * The refcount of the OF node is elevated for the lifetime of the
110 * cache object. A cache object is released when its shared_cpu_map
111 * is cleared (see cache_cpu_clear).
112 *
113 * A cache object is on two lists: an unsorted global list
114 * (cache_list) of cache objects; and a singly-linked list
115 * representing the local cache hierarchy, which is ordered by level
116 * (e.g. L1d -> L1i -> L2 -> L3).
117 */
118 struct cache {
119 struct device_node *ofnode; /* OF node for this cache, may be cpu */
120 struct cpumask shared_cpu_map; /* online CPUs using this cache */
121 int type; /* split cache disambiguation */
122 int level; /* level not explicit in device tree */
123 int group_id; /* id of the group of threads that share this cache */
124 struct list_head list; /* global list of cache objects */
125 struct cache *next_local; /* next cache of >= level */
126 };
127
128 static DEFINE_PER_CPU(struct cache_dir *, cache_dir_pcpu);
129
130 /* traversal/modification of this list occurs only at cpu hotplug time;
131 * access is serialized by cpu hotplug locking
132 */
133 static LIST_HEAD(cache_list);
134
kobj_to_cache_index_dir(struct kobject * k)135 static struct cache_index_dir *kobj_to_cache_index_dir(struct kobject *k)
136 {
137 return container_of(k, struct cache_index_dir, kobj);
138 }
139
cache_type_string(const struct cache * cache)140 static const char *cache_type_string(const struct cache *cache)
141 {
142 return cache_type_info[cache->type].name;
143 }
144
cache_init(struct cache * cache,int type,int level,struct device_node * ofnode,int group_id)145 static void cache_init(struct cache *cache, int type, int level,
146 struct device_node *ofnode, int group_id)
147 {
148 cache->type = type;
149 cache->level = level;
150 cache->ofnode = of_node_get(ofnode);
151 cache->group_id = group_id;
152 INIT_LIST_HEAD(&cache->list);
153 list_add(&cache->list, &cache_list);
154 }
155
new_cache(int type,int level,struct device_node * ofnode,int group_id)156 static struct cache *new_cache(int type, int level,
157 struct device_node *ofnode, int group_id)
158 {
159 struct cache *cache;
160
161 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
162 if (cache)
163 cache_init(cache, type, level, ofnode, group_id);
164
165 return cache;
166 }
167
release_cache_debugcheck(struct cache * cache)168 static void release_cache_debugcheck(struct cache *cache)
169 {
170 struct cache *iter;
171
172 list_for_each_entry(iter, &cache_list, list)
173 WARN_ONCE(iter->next_local == cache,
174 "cache for %pOFP(%s) refers to cache for %pOFP(%s)\n",
175 iter->ofnode,
176 cache_type_string(iter),
177 cache->ofnode,
178 cache_type_string(cache));
179 }
180
release_cache(struct cache * cache)181 static void release_cache(struct cache *cache)
182 {
183 if (!cache)
184 return;
185
186 pr_debug("freeing L%d %s cache for %pOFP\n", cache->level,
187 cache_type_string(cache), cache->ofnode);
188
189 release_cache_debugcheck(cache);
190 list_del(&cache->list);
191 of_node_put(cache->ofnode);
192 kfree(cache);
193 }
194
cache_cpu_set(struct cache * cache,int cpu)195 static void cache_cpu_set(struct cache *cache, int cpu)
196 {
197 struct cache *next = cache;
198
199 while (next) {
200 WARN_ONCE(cpumask_test_cpu(cpu, &next->shared_cpu_map),
201 "CPU %i already accounted in %pOFP(%s)\n",
202 cpu, next->ofnode,
203 cache_type_string(next));
204 cpumask_set_cpu(cpu, &next->shared_cpu_map);
205 next = next->next_local;
206 }
207 }
208
cache_size(const struct cache * cache,unsigned int * ret)209 static int cache_size(const struct cache *cache, unsigned int *ret)
210 {
211 const char *propname;
212 const __be32 *cache_size;
213
214 propname = cache_type_info[cache->type].size_prop;
215
216 cache_size = of_get_property(cache->ofnode, propname, NULL);
217 if (!cache_size)
218 return -ENODEV;
219
220 *ret = of_read_number(cache_size, 1);
221 return 0;
222 }
223
cache_size_kb(const struct cache * cache,unsigned int * ret)224 static int cache_size_kb(const struct cache *cache, unsigned int *ret)
225 {
226 unsigned int size;
227
228 if (cache_size(cache, &size))
229 return -ENODEV;
230
231 *ret = size / 1024;
232 return 0;
233 }
234
235 /* not cache_line_size() because that's a macro in include/linux/cache.h */
cache_get_line_size(const struct cache * cache,unsigned int * ret)236 static int cache_get_line_size(const struct cache *cache, unsigned int *ret)
237 {
238 const __be32 *line_size;
239 int i, lim;
240
241 lim = ARRAY_SIZE(cache_type_info[cache->type].line_size_props);
242
243 for (i = 0; i < lim; i++) {
244 const char *propname;
245
246 propname = cache_type_info[cache->type].line_size_props[i];
247 line_size = of_get_property(cache->ofnode, propname, NULL);
248 if (line_size)
249 break;
250 }
251
252 if (!line_size)
253 return -ENODEV;
254
255 *ret = of_read_number(line_size, 1);
256 return 0;
257 }
258
cache_nr_sets(const struct cache * cache,unsigned int * ret)259 static int cache_nr_sets(const struct cache *cache, unsigned int *ret)
260 {
261 const char *propname;
262 const __be32 *nr_sets;
263
264 propname = cache_type_info[cache->type].nr_sets_prop;
265
266 nr_sets = of_get_property(cache->ofnode, propname, NULL);
267 if (!nr_sets)
268 return -ENODEV;
269
270 *ret = of_read_number(nr_sets, 1);
271 return 0;
272 }
273
cache_associativity(const struct cache * cache,unsigned int * ret)274 static int cache_associativity(const struct cache *cache, unsigned int *ret)
275 {
276 unsigned int line_size;
277 unsigned int nr_sets;
278 unsigned int size;
279
280 if (cache_nr_sets(cache, &nr_sets))
281 goto err;
282
283 /* If the cache is fully associative, there is no need to
284 * check the other properties.
285 */
286 if (nr_sets == 1) {
287 *ret = 0;
288 return 0;
289 }
290
291 if (cache_get_line_size(cache, &line_size))
292 goto err;
293 if (cache_size(cache, &size))
294 goto err;
295
296 if (!(nr_sets > 0 && size > 0 && line_size > 0))
297 goto err;
298
299 *ret = (size / nr_sets) / line_size;
300 return 0;
301 err:
302 return -ENODEV;
303 }
304
305 /* helper for dealing with split caches */
cache_find_first_sibling(struct cache * cache)306 static struct cache *cache_find_first_sibling(struct cache *cache)
307 {
308 struct cache *iter;
309
310 if (cache->type == CACHE_TYPE_UNIFIED ||
311 cache->type == CACHE_TYPE_UNIFIED_D)
312 return cache;
313
314 list_for_each_entry(iter, &cache_list, list)
315 if (iter->ofnode == cache->ofnode &&
316 iter->group_id == cache->group_id &&
317 iter->next_local == cache)
318 return iter;
319
320 return cache;
321 }
322
323 /* return the first cache on a local list matching node and thread-group id */
cache_lookup_by_node_group(const struct device_node * node,int group_id)324 static struct cache *cache_lookup_by_node_group(const struct device_node *node,
325 int group_id)
326 {
327 struct cache *cache = NULL;
328 struct cache *iter;
329
330 list_for_each_entry(iter, &cache_list, list) {
331 if (iter->ofnode != node ||
332 iter->group_id != group_id)
333 continue;
334 cache = cache_find_first_sibling(iter);
335 break;
336 }
337
338 return cache;
339 }
340
cache_node_is_unified(const struct device_node * np)341 static bool cache_node_is_unified(const struct device_node *np)
342 {
343 return of_get_property(np, "cache-unified", NULL);
344 }
345
346 /*
347 * Unified caches can have two different sets of tags. Most embedded
348 * use cache-size, etc. for the unified cache size, but open firmware systems
349 * use d-cache-size, etc. Check on initialization for which type we have, and
350 * return the appropriate structure type. Assume it's embedded if it isn't
351 * open firmware. If it's yet a 3rd type, then there will be missing entries
352 * in /sys/devices/system/cpu/cpu0/cache/index2/, and this code will need
353 * to be extended further.
354 */
cache_is_unified_d(const struct device_node * np)355 static int cache_is_unified_d(const struct device_node *np)
356 {
357 return of_get_property(np,
358 cache_type_info[CACHE_TYPE_UNIFIED_D].size_prop, NULL) ?
359 CACHE_TYPE_UNIFIED_D : CACHE_TYPE_UNIFIED;
360 }
361
cache_do_one_devnode_unified(struct device_node * node,int group_id,int level)362 static struct cache *cache_do_one_devnode_unified(struct device_node *node, int group_id,
363 int level)
364 {
365 pr_debug("creating L%d ucache for %pOFP\n", level, node);
366
367 return new_cache(cache_is_unified_d(node), level, node, group_id);
368 }
369
cache_do_one_devnode_split(struct device_node * node,int group_id,int level)370 static struct cache *cache_do_one_devnode_split(struct device_node *node, int group_id,
371 int level)
372 {
373 struct cache *dcache, *icache;
374
375 pr_debug("creating L%d dcache and icache for %pOFP\n", level,
376 node);
377
378 dcache = new_cache(CACHE_TYPE_DATA, level, node, group_id);
379 icache = new_cache(CACHE_TYPE_INSTRUCTION, level, node, group_id);
380
381 if (!dcache || !icache)
382 goto err;
383
384 dcache->next_local = icache;
385
386 return dcache;
387 err:
388 release_cache(dcache);
389 release_cache(icache);
390 return NULL;
391 }
392
cache_do_one_devnode(struct device_node * node,int group_id,int level)393 static struct cache *cache_do_one_devnode(struct device_node *node, int group_id, int level)
394 {
395 struct cache *cache;
396
397 if (cache_node_is_unified(node))
398 cache = cache_do_one_devnode_unified(node, group_id, level);
399 else
400 cache = cache_do_one_devnode_split(node, group_id, level);
401
402 return cache;
403 }
404
cache_lookup_or_instantiate(struct device_node * node,int group_id,int level)405 static struct cache *cache_lookup_or_instantiate(struct device_node *node,
406 int group_id,
407 int level)
408 {
409 struct cache *cache;
410
411 cache = cache_lookup_by_node_group(node, group_id);
412
413 WARN_ONCE(cache && cache->level != level,
414 "cache level mismatch on lookup (got %d, expected %d)\n",
415 cache->level, level);
416
417 if (!cache)
418 cache = cache_do_one_devnode(node, group_id, level);
419
420 return cache;
421 }
422
link_cache_lists(struct cache * smaller,struct cache * bigger)423 static void link_cache_lists(struct cache *smaller, struct cache *bigger)
424 {
425 while (smaller->next_local) {
426 if (smaller->next_local == bigger)
427 return; /* already linked */
428 smaller = smaller->next_local;
429 }
430
431 smaller->next_local = bigger;
432
433 /*
434 * The cache->next_local list sorts by level ascending:
435 * L1d -> L1i -> L2 -> L3 ...
436 */
437 WARN_ONCE((smaller->level == 1 && bigger->level > 2) ||
438 (smaller->level > 1 && bigger->level != smaller->level + 1),
439 "linking L%i cache %pOFP to L%i cache %pOFP; skipped a level?\n",
440 smaller->level, smaller->ofnode, bigger->level, bigger->ofnode);
441 }
442
do_subsidiary_caches_debugcheck(struct cache * cache)443 static void do_subsidiary_caches_debugcheck(struct cache *cache)
444 {
445 WARN_ONCE(cache->level != 1,
446 "instantiating cache chain from L%d %s cache for "
447 "%pOFP instead of an L1\n", cache->level,
448 cache_type_string(cache), cache->ofnode);
449 WARN_ONCE(!of_node_is_type(cache->ofnode, "cpu"),
450 "instantiating cache chain from node %pOFP of type '%s' "
451 "instead of a cpu node\n", cache->ofnode,
452 of_node_get_device_type(cache->ofnode));
453 }
454
455 /*
456 * If sub-groups of threads in a core containing @cpu_id share the
457 * L@level-cache (information obtained via "ibm,thread-groups"
458 * device-tree property), then we identify the group by the first
459 * thread-sibling in the group. We define this to be the group-id.
460 *
461 * In the absence of any thread-group information for L@level-cache,
462 * this function returns -1.
463 */
get_group_id(unsigned int cpu_id,int level)464 static int get_group_id(unsigned int cpu_id, int level)
465 {
466 if (has_big_cores && level == 1)
467 return cpumask_first(per_cpu(thread_group_l1_cache_map,
468 cpu_id));
469 else if (thread_group_shares_l2 && level == 2)
470 return cpumask_first(per_cpu(thread_group_l2_cache_map,
471 cpu_id));
472 else if (thread_group_shares_l3 && level == 3)
473 return cpumask_first(per_cpu(thread_group_l3_cache_map,
474 cpu_id));
475 return -1;
476 }
477
do_subsidiary_caches(struct cache * cache,unsigned int cpu_id)478 static void do_subsidiary_caches(struct cache *cache, unsigned int cpu_id)
479 {
480 struct device_node *subcache_node;
481 int level = cache->level;
482
483 do_subsidiary_caches_debugcheck(cache);
484
485 while ((subcache_node = of_find_next_cache_node(cache->ofnode))) {
486 struct cache *subcache;
487 int group_id;
488
489 level++;
490 group_id = get_group_id(cpu_id, level);
491 subcache = cache_lookup_or_instantiate(subcache_node, group_id, level);
492 of_node_put(subcache_node);
493 if (!subcache)
494 break;
495
496 link_cache_lists(cache, subcache);
497 cache = subcache;
498 }
499 }
500
cache_chain_instantiate(unsigned int cpu_id)501 static struct cache *cache_chain_instantiate(unsigned int cpu_id)
502 {
503 struct device_node *cpu_node;
504 struct cache *cpu_cache = NULL;
505 int group_id;
506
507 pr_debug("creating cache object(s) for CPU %i\n", cpu_id);
508
509 cpu_node = of_get_cpu_node(cpu_id, NULL);
510 WARN_ONCE(!cpu_node, "no OF node found for CPU %i\n", cpu_id);
511 if (!cpu_node)
512 goto out;
513
514 group_id = get_group_id(cpu_id, 1);
515
516 cpu_cache = cache_lookup_or_instantiate(cpu_node, group_id, 1);
517 if (!cpu_cache)
518 goto out;
519
520 do_subsidiary_caches(cpu_cache, cpu_id);
521
522 cache_cpu_set(cpu_cache, cpu_id);
523 out:
524 of_node_put(cpu_node);
525
526 return cpu_cache;
527 }
528
cacheinfo_create_cache_dir(unsigned int cpu_id)529 static struct cache_dir *cacheinfo_create_cache_dir(unsigned int cpu_id)
530 {
531 struct cache_dir *cache_dir;
532 struct device *dev;
533 struct kobject *kobj = NULL;
534
535 dev = get_cpu_device(cpu_id);
536 WARN_ONCE(!dev, "no dev for CPU %i\n", cpu_id);
537 if (!dev)
538 goto err;
539
540 kobj = kobject_create_and_add("cache", &dev->kobj);
541 if (!kobj)
542 goto err;
543
544 cache_dir = kzalloc(sizeof(*cache_dir), GFP_KERNEL);
545 if (!cache_dir)
546 goto err;
547
548 cache_dir->kobj = kobj;
549
550 WARN_ON_ONCE(per_cpu(cache_dir_pcpu, cpu_id) != NULL);
551
552 per_cpu(cache_dir_pcpu, cpu_id) = cache_dir;
553
554 return cache_dir;
555 err:
556 kobject_put(kobj);
557 return NULL;
558 }
559
cache_index_release(struct kobject * kobj)560 static void cache_index_release(struct kobject *kobj)
561 {
562 struct cache_index_dir *index;
563
564 index = kobj_to_cache_index_dir(kobj);
565
566 pr_debug("freeing index directory for L%d %s cache\n",
567 index->cache->level, cache_type_string(index->cache));
568
569 kfree(index);
570 }
571
cache_index_show(struct kobject * k,struct attribute * attr,char * buf)572 static ssize_t cache_index_show(struct kobject *k, struct attribute *attr, char *buf)
573 {
574 struct kobj_attribute *kobj_attr;
575
576 kobj_attr = container_of(attr, struct kobj_attribute, attr);
577
578 return kobj_attr->show(k, kobj_attr, buf);
579 }
580
index_kobj_to_cache(struct kobject * k)581 static struct cache *index_kobj_to_cache(struct kobject *k)
582 {
583 struct cache_index_dir *index;
584
585 index = kobj_to_cache_index_dir(k);
586
587 return index->cache;
588 }
589
size_show(struct kobject * k,struct kobj_attribute * attr,char * buf)590 static ssize_t size_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
591 {
592 unsigned int size_kb;
593 struct cache *cache;
594
595 cache = index_kobj_to_cache(k);
596
597 if (cache_size_kb(cache, &size_kb))
598 return -ENODEV;
599
600 return sprintf(buf, "%uK\n", size_kb);
601 }
602
603 static struct kobj_attribute cache_size_attr =
604 __ATTR(size, 0444, size_show, NULL);
605
606
line_size_show(struct kobject * k,struct kobj_attribute * attr,char * buf)607 static ssize_t line_size_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
608 {
609 unsigned int line_size;
610 struct cache *cache;
611
612 cache = index_kobj_to_cache(k);
613
614 if (cache_get_line_size(cache, &line_size))
615 return -ENODEV;
616
617 return sprintf(buf, "%u\n", line_size);
618 }
619
620 static struct kobj_attribute cache_line_size_attr =
621 __ATTR(coherency_line_size, 0444, line_size_show, NULL);
622
nr_sets_show(struct kobject * k,struct kobj_attribute * attr,char * buf)623 static ssize_t nr_sets_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
624 {
625 unsigned int nr_sets;
626 struct cache *cache;
627
628 cache = index_kobj_to_cache(k);
629
630 if (cache_nr_sets(cache, &nr_sets))
631 return -ENODEV;
632
633 return sprintf(buf, "%u\n", nr_sets);
634 }
635
636 static struct kobj_attribute cache_nr_sets_attr =
637 __ATTR(number_of_sets, 0444, nr_sets_show, NULL);
638
associativity_show(struct kobject * k,struct kobj_attribute * attr,char * buf)639 static ssize_t associativity_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
640 {
641 unsigned int associativity;
642 struct cache *cache;
643
644 cache = index_kobj_to_cache(k);
645
646 if (cache_associativity(cache, &associativity))
647 return -ENODEV;
648
649 return sprintf(buf, "%u\n", associativity);
650 }
651
652 static struct kobj_attribute cache_assoc_attr =
653 __ATTR(ways_of_associativity, 0444, associativity_show, NULL);
654
type_show(struct kobject * k,struct kobj_attribute * attr,char * buf)655 static ssize_t type_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
656 {
657 struct cache *cache;
658
659 cache = index_kobj_to_cache(k);
660
661 return sprintf(buf, "%s\n", cache_type_string(cache));
662 }
663
664 static struct kobj_attribute cache_type_attr =
665 __ATTR(type, 0444, type_show, NULL);
666
level_show(struct kobject * k,struct kobj_attribute * attr,char * buf)667 static ssize_t level_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
668 {
669 struct cache_index_dir *index;
670 struct cache *cache;
671
672 index = kobj_to_cache_index_dir(k);
673 cache = index->cache;
674
675 return sprintf(buf, "%d\n", cache->level);
676 }
677
678 static struct kobj_attribute cache_level_attr =
679 __ATTR(level, 0444, level_show, NULL);
680
681 static ssize_t
show_shared_cpumap(struct kobject * k,struct kobj_attribute * attr,char * buf,bool list)682 show_shared_cpumap(struct kobject *k, struct kobj_attribute *attr, char *buf, bool list)
683 {
684 struct cache_index_dir *index;
685 struct cache *cache;
686 const struct cpumask *mask;
687
688 index = kobj_to_cache_index_dir(k);
689 cache = index->cache;
690
691 mask = &cache->shared_cpu_map;
692
693 return cpumap_print_to_pagebuf(list, buf, mask);
694 }
695
shared_cpu_map_show(struct kobject * k,struct kobj_attribute * attr,char * buf)696 static ssize_t shared_cpu_map_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
697 {
698 return show_shared_cpumap(k, attr, buf, false);
699 }
700
shared_cpu_list_show(struct kobject * k,struct kobj_attribute * attr,char * buf)701 static ssize_t shared_cpu_list_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
702 {
703 return show_shared_cpumap(k, attr, buf, true);
704 }
705
706 static struct kobj_attribute cache_shared_cpu_map_attr =
707 __ATTR(shared_cpu_map, 0444, shared_cpu_map_show, NULL);
708
709 static struct kobj_attribute cache_shared_cpu_list_attr =
710 __ATTR(shared_cpu_list, 0444, shared_cpu_list_show, NULL);
711
712 /* Attributes which should always be created -- the kobject/sysfs core
713 * does this automatically via kobj_type->default_attrs. This is the
714 * minimum data required to uniquely identify a cache.
715 */
716 static struct attribute *cache_index_default_attrs[] = {
717 &cache_type_attr.attr,
718 &cache_level_attr.attr,
719 &cache_shared_cpu_map_attr.attr,
720 &cache_shared_cpu_list_attr.attr,
721 NULL,
722 };
723
724 /* Attributes which should be created if the cache device node has the
725 * right properties -- see cacheinfo_create_index_opt_attrs
726 */
727 static struct kobj_attribute *cache_index_opt_attrs[] = {
728 &cache_size_attr,
729 &cache_line_size_attr,
730 &cache_nr_sets_attr,
731 &cache_assoc_attr,
732 };
733
734 static const struct sysfs_ops cache_index_ops = {
735 .show = cache_index_show,
736 };
737
738 static struct kobj_type cache_index_type = {
739 .release = cache_index_release,
740 .sysfs_ops = &cache_index_ops,
741 .default_attrs = cache_index_default_attrs,
742 };
743
cacheinfo_create_index_opt_attrs(struct cache_index_dir * dir)744 static void cacheinfo_create_index_opt_attrs(struct cache_index_dir *dir)
745 {
746 const char *cache_type;
747 struct cache *cache;
748 char *buf;
749 int i;
750
751 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
752 if (!buf)
753 return;
754
755 cache = dir->cache;
756 cache_type = cache_type_string(cache);
757
758 /* We don't want to create an attribute that can't provide a
759 * meaningful value. Check the return value of each optional
760 * attribute's ->show method before registering the
761 * attribute.
762 */
763 for (i = 0; i < ARRAY_SIZE(cache_index_opt_attrs); i++) {
764 struct kobj_attribute *attr;
765 ssize_t rc;
766
767 attr = cache_index_opt_attrs[i];
768
769 rc = attr->show(&dir->kobj, attr, buf);
770 if (rc <= 0) {
771 pr_debug("not creating %s attribute for "
772 "%pOFP(%s) (rc = %zd)\n",
773 attr->attr.name, cache->ofnode,
774 cache_type, rc);
775 continue;
776 }
777 if (sysfs_create_file(&dir->kobj, &attr->attr))
778 pr_debug("could not create %s attribute for %pOFP(%s)\n",
779 attr->attr.name, cache->ofnode, cache_type);
780 }
781
782 kfree(buf);
783 }
784
cacheinfo_create_index_dir(struct cache * cache,int index,struct cache_dir * cache_dir)785 static void cacheinfo_create_index_dir(struct cache *cache, int index,
786 struct cache_dir *cache_dir)
787 {
788 struct cache_index_dir *index_dir;
789 int rc;
790
791 index_dir = kzalloc(sizeof(*index_dir), GFP_KERNEL);
792 if (!index_dir)
793 return;
794
795 index_dir->cache = cache;
796
797 rc = kobject_init_and_add(&index_dir->kobj, &cache_index_type,
798 cache_dir->kobj, "index%d", index);
799 if (rc) {
800 kobject_put(&index_dir->kobj);
801 return;
802 }
803
804 index_dir->next = cache_dir->index;
805 cache_dir->index = index_dir;
806
807 cacheinfo_create_index_opt_attrs(index_dir);
808 }
809
cacheinfo_sysfs_populate(unsigned int cpu_id,struct cache * cache_list)810 static void cacheinfo_sysfs_populate(unsigned int cpu_id,
811 struct cache *cache_list)
812 {
813 struct cache_dir *cache_dir;
814 struct cache *cache;
815 int index = 0;
816
817 cache_dir = cacheinfo_create_cache_dir(cpu_id);
818 if (!cache_dir)
819 return;
820
821 cache = cache_list;
822 while (cache) {
823 cacheinfo_create_index_dir(cache, index, cache_dir);
824 index++;
825 cache = cache->next_local;
826 }
827 }
828
cacheinfo_cpu_online(unsigned int cpu_id)829 void cacheinfo_cpu_online(unsigned int cpu_id)
830 {
831 struct cache *cache;
832
833 cache = cache_chain_instantiate(cpu_id);
834 if (!cache)
835 return;
836
837 cacheinfo_sysfs_populate(cpu_id, cache);
838 }
839
840 /* functions needed to remove cache entry for cpu offline or suspend/resume */
841
842 #if (defined(CONFIG_PPC_PSERIES) && defined(CONFIG_SUSPEND)) || \
843 defined(CONFIG_HOTPLUG_CPU)
844
cache_lookup_by_cpu(unsigned int cpu_id)845 static struct cache *cache_lookup_by_cpu(unsigned int cpu_id)
846 {
847 struct device_node *cpu_node;
848 struct cache *cache;
849 int group_id;
850
851 cpu_node = of_get_cpu_node(cpu_id, NULL);
852 WARN_ONCE(!cpu_node, "no OF node found for CPU %i\n", cpu_id);
853 if (!cpu_node)
854 return NULL;
855
856 group_id = get_group_id(cpu_id, 1);
857 cache = cache_lookup_by_node_group(cpu_node, group_id);
858 of_node_put(cpu_node);
859
860 return cache;
861 }
862
remove_index_dirs(struct cache_dir * cache_dir)863 static void remove_index_dirs(struct cache_dir *cache_dir)
864 {
865 struct cache_index_dir *index;
866
867 index = cache_dir->index;
868
869 while (index) {
870 struct cache_index_dir *next;
871
872 next = index->next;
873 kobject_put(&index->kobj);
874 index = next;
875 }
876 }
877
remove_cache_dir(struct cache_dir * cache_dir)878 static void remove_cache_dir(struct cache_dir *cache_dir)
879 {
880 remove_index_dirs(cache_dir);
881
882 /* Remove cache dir from sysfs */
883 kobject_del(cache_dir->kobj);
884
885 kobject_put(cache_dir->kobj);
886
887 kfree(cache_dir);
888 }
889
cache_cpu_clear(struct cache * cache,int cpu)890 static void cache_cpu_clear(struct cache *cache, int cpu)
891 {
892 while (cache) {
893 struct cache *next = cache->next_local;
894
895 WARN_ONCE(!cpumask_test_cpu(cpu, &cache->shared_cpu_map),
896 "CPU %i not accounted in %pOFP(%s)\n",
897 cpu, cache->ofnode,
898 cache_type_string(cache));
899
900 cpumask_clear_cpu(cpu, &cache->shared_cpu_map);
901
902 /* Release the cache object if all the cpus using it
903 * are offline */
904 if (cpumask_empty(&cache->shared_cpu_map))
905 release_cache(cache);
906
907 cache = next;
908 }
909 }
910
cacheinfo_cpu_offline(unsigned int cpu_id)911 void cacheinfo_cpu_offline(unsigned int cpu_id)
912 {
913 struct cache_dir *cache_dir;
914 struct cache *cache;
915
916 /* Prevent userspace from seeing inconsistent state - remove
917 * the sysfs hierarchy first */
918 cache_dir = per_cpu(cache_dir_pcpu, cpu_id);
919
920 /* careful, sysfs population may have failed */
921 if (cache_dir)
922 remove_cache_dir(cache_dir);
923
924 per_cpu(cache_dir_pcpu, cpu_id) = NULL;
925
926 /* clear the CPU's bit in its cache chain, possibly freeing
927 * cache objects */
928 cache = cache_lookup_by_cpu(cpu_id);
929 if (cache)
930 cache_cpu_clear(cache, cpu_id);
931 }
932
cacheinfo_teardown(void)933 void cacheinfo_teardown(void)
934 {
935 unsigned int cpu;
936
937 lockdep_assert_cpus_held();
938
939 for_each_online_cpu(cpu)
940 cacheinfo_cpu_offline(cpu);
941 }
942
cacheinfo_rebuild(void)943 void cacheinfo_rebuild(void)
944 {
945 unsigned int cpu;
946
947 lockdep_assert_cpus_held();
948
949 for_each_online_cpu(cpu)
950 cacheinfo_cpu_online(cpu);
951 }
952
953 #endif /* (CONFIG_PPC_PSERIES && CONFIG_SUSPEND) || CONFIG_HOTPLUG_CPU */
954