• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/utsname.h>
28 
29 #include <asm/alternative.h>
30 #include <asm/cmdline.h>
31 #include <asm/stackprotector.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/internal.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/memtype.h>
60 #include <asm/microcode.h>
61 #include <asm/microcode_intel.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/uv/uv.h>
65 #include <asm/set_memory.h>
66 
67 #include "cpu.h"
68 
69 u32 elf_hwcap2 __read_mostly;
70 
71 /* all of these masks are initialized in setup_cpu_local_masks() */
72 cpumask_var_t cpu_initialized_mask;
73 cpumask_var_t cpu_callout_mask;
74 cpumask_var_t cpu_callin_mask;
75 
76 /* representing cpus for which sibling maps can be computed */
77 cpumask_var_t cpu_sibling_setup_mask;
78 
79 /* Number of siblings per CPU package */
80 int smp_num_siblings = 1;
81 EXPORT_SYMBOL(smp_num_siblings);
82 
83 /* Last level cache ID of each logical CPU */
84 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
85 
get_llc_id(unsigned int cpu)86 u16 get_llc_id(unsigned int cpu)
87 {
88 	return per_cpu(cpu_llc_id, cpu);
89 }
90 EXPORT_SYMBOL_GPL(get_llc_id);
91 
92 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)93 void __init setup_cpu_local_masks(void)
94 {
95 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
96 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
97 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
98 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
99 }
100 
default_init(struct cpuinfo_x86 * c)101 static void default_init(struct cpuinfo_x86 *c)
102 {
103 #ifdef CONFIG_X86_64
104 	cpu_detect_cache_sizes(c);
105 #else
106 	/* Not much we can do here... */
107 	/* Check if at least it has cpuid */
108 	if (c->cpuid_level == -1) {
109 		/* No cpuid. It must be an ancient CPU */
110 		if (c->x86 == 4)
111 			strcpy(c->x86_model_id, "486");
112 		else if (c->x86 == 3)
113 			strcpy(c->x86_model_id, "386");
114 	}
115 #endif
116 }
117 
118 static const struct cpu_dev default_cpu = {
119 	.c_init		= default_init,
120 	.c_vendor	= "Unknown",
121 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
122 };
123 
124 static const struct cpu_dev *this_cpu = &default_cpu;
125 
126 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
127 #ifdef CONFIG_X86_64
128 	/*
129 	 * We need valid kernel segments for data and code in long mode too
130 	 * IRET will check the segment types  kkeil 2000/10/28
131 	 * Also sysret mandates a special GDT layout
132 	 *
133 	 * TLS descriptors are currently at a different place compared to i386.
134 	 * Hopefully nobody expects them at a fixed place (Wine?)
135 	 */
136 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
137 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
138 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
139 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
140 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
141 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
142 #else
143 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
144 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
145 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
146 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
147 	/*
148 	 * Segments used for calling PnP BIOS have byte granularity.
149 	 * They code segments and data segments have fixed 64k limits,
150 	 * the transfer segment sizes are set at run time.
151 	 */
152 	/* 32-bit code */
153 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
154 	/* 16-bit code */
155 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
156 	/* 16-bit data */
157 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
158 	/* 16-bit data */
159 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
160 	/* 16-bit data */
161 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
162 	/*
163 	 * The APM segments have byte granularity and their bases
164 	 * are set at run time.  All have 64k limits.
165 	 */
166 	/* 32-bit code */
167 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
168 	/* 16-bit code */
169 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
170 	/* data */
171 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
172 
173 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
174 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
175 #endif
176 } };
177 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
178 
179 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)180 static int __init x86_nopcid_setup(char *s)
181 {
182 	/* nopcid doesn't accept parameters */
183 	if (s)
184 		return -EINVAL;
185 
186 	/* do not emit a message if the feature is not present */
187 	if (!boot_cpu_has(X86_FEATURE_PCID))
188 		return 0;
189 
190 	setup_clear_cpu_cap(X86_FEATURE_PCID);
191 	pr_info("nopcid: PCID feature disabled\n");
192 	return 0;
193 }
194 early_param("nopcid", x86_nopcid_setup);
195 #endif
196 
x86_noinvpcid_setup(char * s)197 static int __init x86_noinvpcid_setup(char *s)
198 {
199 	/* noinvpcid doesn't accept parameters */
200 	if (s)
201 		return -EINVAL;
202 
203 	/* do not emit a message if the feature is not present */
204 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
205 		return 0;
206 
207 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
208 	pr_info("noinvpcid: INVPCID feature disabled\n");
209 	return 0;
210 }
211 early_param("noinvpcid", x86_noinvpcid_setup);
212 
213 #ifdef CONFIG_X86_32
214 static int cachesize_override = -1;
215 static int disable_x86_serial_nr = 1;
216 
cachesize_setup(char * str)217 static int __init cachesize_setup(char *str)
218 {
219 	get_option(&str, &cachesize_override);
220 	return 1;
221 }
222 __setup("cachesize=", cachesize_setup);
223 
x86_sep_setup(char * s)224 static int __init x86_sep_setup(char *s)
225 {
226 	setup_clear_cpu_cap(X86_FEATURE_SEP);
227 	return 1;
228 }
229 __setup("nosep", x86_sep_setup);
230 
231 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)232 static inline int flag_is_changeable_p(u32 flag)
233 {
234 	u32 f1, f2;
235 
236 	/*
237 	 * Cyrix and IDT cpus allow disabling of CPUID
238 	 * so the code below may return different results
239 	 * when it is executed before and after enabling
240 	 * the CPUID. Add "volatile" to not allow gcc to
241 	 * optimize the subsequent calls to this function.
242 	 */
243 	asm volatile ("pushfl		\n\t"
244 		      "pushfl		\n\t"
245 		      "popl %0		\n\t"
246 		      "movl %0, %1	\n\t"
247 		      "xorl %2, %0	\n\t"
248 		      "pushl %0		\n\t"
249 		      "popfl		\n\t"
250 		      "pushfl		\n\t"
251 		      "popl %0		\n\t"
252 		      "popfl		\n\t"
253 
254 		      : "=&r" (f1), "=&r" (f2)
255 		      : "ir" (flag));
256 
257 	return ((f1^f2) & flag) != 0;
258 }
259 
260 /* Probe for the CPUID instruction */
have_cpuid_p(void)261 int have_cpuid_p(void)
262 {
263 	return flag_is_changeable_p(X86_EFLAGS_ID);
264 }
265 
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)266 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
267 {
268 	unsigned long lo, hi;
269 
270 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
271 		return;
272 
273 	/* Disable processor serial number: */
274 
275 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
276 	lo |= 0x200000;
277 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
278 
279 	pr_notice("CPU serial number disabled.\n");
280 	clear_cpu_cap(c, X86_FEATURE_PN);
281 
282 	/* Disabling the serial number may affect the cpuid level */
283 	c->cpuid_level = cpuid_eax(0);
284 }
285 
x86_serial_nr_setup(char * s)286 static int __init x86_serial_nr_setup(char *s)
287 {
288 	disable_x86_serial_nr = 0;
289 	return 1;
290 }
291 __setup("serialnumber", x86_serial_nr_setup);
292 #else
flag_is_changeable_p(u32 flag)293 static inline int flag_is_changeable_p(u32 flag)
294 {
295 	return 1;
296 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)297 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
298 {
299 }
300 #endif
301 
setup_disable_smep(char * arg)302 static __init int setup_disable_smep(char *arg)
303 {
304 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
305 	return 1;
306 }
307 __setup("nosmep", setup_disable_smep);
308 
setup_smep(struct cpuinfo_x86 * c)309 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
310 {
311 	if (cpu_has(c, X86_FEATURE_SMEP))
312 		cr4_set_bits(X86_CR4_SMEP);
313 }
314 
setup_disable_smap(char * arg)315 static __init int setup_disable_smap(char *arg)
316 {
317 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
318 	return 1;
319 }
320 __setup("nosmap", setup_disable_smap);
321 
setup_smap(struct cpuinfo_x86 * c)322 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
323 {
324 	unsigned long eflags = native_save_fl();
325 
326 	/* This should have been cleared long ago */
327 	BUG_ON(eflags & X86_EFLAGS_AC);
328 
329 	if (cpu_has(c, X86_FEATURE_SMAP)) {
330 #ifdef CONFIG_X86_SMAP
331 		cr4_set_bits(X86_CR4_SMAP);
332 #else
333 		clear_cpu_cap(c, X86_FEATURE_SMAP);
334 		cr4_clear_bits(X86_CR4_SMAP);
335 #endif
336 	}
337 }
338 
setup_umip(struct cpuinfo_x86 * c)339 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
340 {
341 	/* Check the boot processor, plus build option for UMIP. */
342 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
343 		goto out;
344 
345 	/* Check the current processor's cpuid bits. */
346 	if (!cpu_has(c, X86_FEATURE_UMIP))
347 		goto out;
348 
349 	cr4_set_bits(X86_CR4_UMIP);
350 
351 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
352 
353 	return;
354 
355 out:
356 	/*
357 	 * Make sure UMIP is disabled in case it was enabled in a
358 	 * previous boot (e.g., via kexec).
359 	 */
360 	cr4_clear_bits(X86_CR4_UMIP);
361 }
362 
363 /* These bits should not change their value after CPU init is finished. */
364 static const unsigned long cr4_pinned_mask =
365 	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
366 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
367 static unsigned long cr4_pinned_bits __ro_after_init;
368 
native_write_cr0(unsigned long val)369 void native_write_cr0(unsigned long val)
370 {
371 	unsigned long bits_missing = 0;
372 
373 set_register:
374 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
375 
376 	if (static_branch_likely(&cr_pinning)) {
377 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
378 			bits_missing = X86_CR0_WP;
379 			val |= bits_missing;
380 			goto set_register;
381 		}
382 		/* Warn after we've set the missing bits. */
383 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
384 	}
385 }
386 EXPORT_SYMBOL(native_write_cr0);
387 
native_write_cr4(unsigned long val)388 void native_write_cr4(unsigned long val)
389 {
390 	unsigned long bits_changed = 0;
391 
392 set_register:
393 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
394 
395 	if (static_branch_likely(&cr_pinning)) {
396 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
397 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
398 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
399 			goto set_register;
400 		}
401 		/* Warn after we've corrected the changed bits. */
402 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
403 			  bits_changed);
404 	}
405 }
406 #if IS_MODULE(CONFIG_LKDTM)
407 EXPORT_SYMBOL_GPL(native_write_cr4);
408 #endif
409 
cr4_update_irqsoff(unsigned long set,unsigned long clear)410 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
411 {
412 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
413 
414 	lockdep_assert_irqs_disabled();
415 
416 	newval = (cr4 & ~clear) | set;
417 	if (newval != cr4) {
418 		this_cpu_write(cpu_tlbstate.cr4, newval);
419 		__write_cr4(newval);
420 	}
421 }
422 EXPORT_SYMBOL(cr4_update_irqsoff);
423 
424 /* Read the CR4 shadow. */
cr4_read_shadow(void)425 unsigned long cr4_read_shadow(void)
426 {
427 	return this_cpu_read(cpu_tlbstate.cr4);
428 }
429 EXPORT_SYMBOL_GPL(cr4_read_shadow);
430 
cr4_init(void)431 void cr4_init(void)
432 {
433 	unsigned long cr4 = __read_cr4();
434 
435 	if (boot_cpu_has(X86_FEATURE_PCID))
436 		cr4 |= X86_CR4_PCIDE;
437 	if (static_branch_likely(&cr_pinning))
438 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
439 
440 	__write_cr4(cr4);
441 
442 	/* Initialize cr4 shadow for this CPU. */
443 	this_cpu_write(cpu_tlbstate.cr4, cr4);
444 }
445 
446 /*
447  * Once CPU feature detection is finished (and boot params have been
448  * parsed), record any of the sensitive CR bits that are set, and
449  * enable CR pinning.
450  */
setup_cr_pinning(void)451 static void __init setup_cr_pinning(void)
452 {
453 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
454 	static_key_enable(&cr_pinning.key);
455 }
456 
x86_nofsgsbase_setup(char * arg)457 static __init int x86_nofsgsbase_setup(char *arg)
458 {
459 	/* Require an exact match without trailing characters. */
460 	if (strlen(arg))
461 		return 0;
462 
463 	/* Do not emit a message if the feature is not present. */
464 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
465 		return 1;
466 
467 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
468 	pr_info("FSGSBASE disabled via kernel command line\n");
469 	return 1;
470 }
471 __setup("nofsgsbase", x86_nofsgsbase_setup);
472 
473 /*
474  * Protection Keys are not available in 32-bit mode.
475  */
476 static bool pku_disabled;
477 
setup_pku(struct cpuinfo_x86 * c)478 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
479 {
480 	if (c == &boot_cpu_data) {
481 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
482 			return;
483 		/*
484 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
485 		 * bit to be set.  Enforce it.
486 		 */
487 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
488 
489 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
490 		return;
491 	}
492 
493 	cr4_set_bits(X86_CR4_PKE);
494 	/* Load the default PKRU value */
495 	pkru_write_default();
496 }
497 
498 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)499 static __init int setup_disable_pku(char *arg)
500 {
501 	/*
502 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
503 	 * runtime checks are against OSPKE so clearing the
504 	 * bit does nothing.
505 	 *
506 	 * This way, we will see "pku" in cpuinfo, but not
507 	 * "ospke", which is exactly what we want.  It shows
508 	 * that the CPU has PKU, but the OS has not enabled it.
509 	 * This happens to be exactly how a system would look
510 	 * if we disabled the config option.
511 	 */
512 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
513 	pku_disabled = true;
514 	return 1;
515 }
516 __setup("nopku", setup_disable_pku);
517 #endif /* CONFIG_X86_64 */
518 
519 /*
520  * Some CPU features depend on higher CPUID levels, which may not always
521  * be available due to CPUID level capping or broken virtualization
522  * software.  Add those features to this table to auto-disable them.
523  */
524 struct cpuid_dependent_feature {
525 	u32 feature;
526 	u32 level;
527 };
528 
529 static const struct cpuid_dependent_feature
530 cpuid_dependent_features[] = {
531 	{ X86_FEATURE_MWAIT,		0x00000005 },
532 	{ X86_FEATURE_DCA,		0x00000009 },
533 	{ X86_FEATURE_XSAVE,		0x0000000d },
534 	{ 0, 0 }
535 };
536 
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)537 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
538 {
539 	const struct cpuid_dependent_feature *df;
540 
541 	for (df = cpuid_dependent_features; df->feature; df++) {
542 
543 		if (!cpu_has(c, df->feature))
544 			continue;
545 		/*
546 		 * Note: cpuid_level is set to -1 if unavailable, but
547 		 * extended_extended_level is set to 0 if unavailable
548 		 * and the legitimate extended levels are all negative
549 		 * when signed; hence the weird messing around with
550 		 * signs here...
551 		 */
552 		if (!((s32)df->level < 0 ?
553 		     (u32)df->level > (u32)c->extended_cpuid_level :
554 		     (s32)df->level > (s32)c->cpuid_level))
555 			continue;
556 
557 		clear_cpu_cap(c, df->feature);
558 		if (!warn)
559 			continue;
560 
561 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
562 			x86_cap_flag(df->feature), df->level);
563 	}
564 }
565 
566 /*
567  * Naming convention should be: <Name> [(<Codename>)]
568  * This table only is used unless init_<vendor>() below doesn't set it;
569  * in particular, if CPUID levels 0x80000002..4 are supported, this
570  * isn't used
571  */
572 
573 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)574 static const char *table_lookup_model(struct cpuinfo_x86 *c)
575 {
576 #ifdef CONFIG_X86_32
577 	const struct legacy_cpu_model_info *info;
578 
579 	if (c->x86_model >= 16)
580 		return NULL;	/* Range check */
581 
582 	if (!this_cpu)
583 		return NULL;
584 
585 	info = this_cpu->legacy_models;
586 
587 	while (info->family) {
588 		if (info->family == c->x86)
589 			return info->model_names[c->x86_model];
590 		info++;
591 	}
592 #endif
593 	return NULL;		/* Not found */
594 }
595 
596 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
597 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
598 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
599 
load_percpu_segment(int cpu)600 void load_percpu_segment(int cpu)
601 {
602 #ifdef CONFIG_X86_32
603 	loadsegment(fs, __KERNEL_PERCPU);
604 #else
605 	__loadsegment_simple(gs, 0);
606 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
607 #endif
608 }
609 
610 #ifdef CONFIG_X86_32
611 /* The 32-bit entry code needs to find cpu_entry_area. */
612 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
613 #endif
614 
615 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)616 void load_direct_gdt(int cpu)
617 {
618 	struct desc_ptr gdt_descr;
619 
620 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
621 	gdt_descr.size = GDT_SIZE - 1;
622 	load_gdt(&gdt_descr);
623 }
624 EXPORT_SYMBOL_GPL(load_direct_gdt);
625 
626 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)627 void load_fixmap_gdt(int cpu)
628 {
629 	struct desc_ptr gdt_descr;
630 
631 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
632 	gdt_descr.size = GDT_SIZE - 1;
633 	load_gdt(&gdt_descr);
634 }
635 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
636 
637 /*
638  * Current gdt points %fs at the "master" per-cpu area: after this,
639  * it's on the real one.
640  */
switch_to_new_gdt(int cpu)641 void switch_to_new_gdt(int cpu)
642 {
643 	/* Load the original GDT */
644 	load_direct_gdt(cpu);
645 	/* Reload the per-cpu base */
646 	load_percpu_segment(cpu);
647 }
648 
649 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
650 
get_model_name(struct cpuinfo_x86 * c)651 static void get_model_name(struct cpuinfo_x86 *c)
652 {
653 	unsigned int *v;
654 	char *p, *q, *s;
655 
656 	if (c->extended_cpuid_level < 0x80000004)
657 		return;
658 
659 	v = (unsigned int *)c->x86_model_id;
660 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
661 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
662 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
663 	c->x86_model_id[48] = 0;
664 
665 	/* Trim whitespace */
666 	p = q = s = &c->x86_model_id[0];
667 
668 	while (*p == ' ')
669 		p++;
670 
671 	while (*p) {
672 		/* Note the last non-whitespace index */
673 		if (!isspace(*p))
674 			s = q;
675 
676 		*q++ = *p++;
677 	}
678 
679 	*(s + 1) = '\0';
680 }
681 
detect_num_cpu_cores(struct cpuinfo_x86 * c)682 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
683 {
684 	unsigned int eax, ebx, ecx, edx;
685 
686 	c->x86_max_cores = 1;
687 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
688 		return;
689 
690 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
691 	if (eax & 0x1f)
692 		c->x86_max_cores = (eax >> 26) + 1;
693 }
694 
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)695 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
696 {
697 	unsigned int n, dummy, ebx, ecx, edx, l2size;
698 
699 	n = c->extended_cpuid_level;
700 
701 	if (n >= 0x80000005) {
702 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
703 		c->x86_cache_size = (ecx>>24) + (edx>>24);
704 #ifdef CONFIG_X86_64
705 		/* On K8 L1 TLB is inclusive, so don't count it */
706 		c->x86_tlbsize = 0;
707 #endif
708 	}
709 
710 	if (n < 0x80000006)	/* Some chips just has a large L1. */
711 		return;
712 
713 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
714 	l2size = ecx >> 16;
715 
716 #ifdef CONFIG_X86_64
717 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
718 #else
719 	/* do processor-specific cache resizing */
720 	if (this_cpu->legacy_cache_size)
721 		l2size = this_cpu->legacy_cache_size(c, l2size);
722 
723 	/* Allow user to override all this if necessary. */
724 	if (cachesize_override != -1)
725 		l2size = cachesize_override;
726 
727 	if (l2size == 0)
728 		return;		/* Again, no L2 cache is possible */
729 #endif
730 
731 	c->x86_cache_size = l2size;
732 }
733 
734 u16 __read_mostly tlb_lli_4k[NR_INFO];
735 u16 __read_mostly tlb_lli_2m[NR_INFO];
736 u16 __read_mostly tlb_lli_4m[NR_INFO];
737 u16 __read_mostly tlb_lld_4k[NR_INFO];
738 u16 __read_mostly tlb_lld_2m[NR_INFO];
739 u16 __read_mostly tlb_lld_4m[NR_INFO];
740 u16 __read_mostly tlb_lld_1g[NR_INFO];
741 
cpu_detect_tlb(struct cpuinfo_x86 * c)742 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
743 {
744 	if (this_cpu->c_detect_tlb)
745 		this_cpu->c_detect_tlb(c);
746 
747 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
748 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
749 		tlb_lli_4m[ENTRIES]);
750 
751 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
752 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
753 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
754 }
755 
detect_ht_early(struct cpuinfo_x86 * c)756 int detect_ht_early(struct cpuinfo_x86 *c)
757 {
758 #ifdef CONFIG_SMP
759 	u32 eax, ebx, ecx, edx;
760 
761 	if (!cpu_has(c, X86_FEATURE_HT))
762 		return -1;
763 
764 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
765 		return -1;
766 
767 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
768 		return -1;
769 
770 	cpuid(1, &eax, &ebx, &ecx, &edx);
771 
772 	smp_num_siblings = (ebx & 0xff0000) >> 16;
773 	if (smp_num_siblings == 1)
774 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
775 #endif
776 	return 0;
777 }
778 
detect_ht(struct cpuinfo_x86 * c)779 void detect_ht(struct cpuinfo_x86 *c)
780 {
781 #ifdef CONFIG_SMP
782 	int index_msb, core_bits;
783 
784 	if (detect_ht_early(c) < 0)
785 		return;
786 
787 	index_msb = get_count_order(smp_num_siblings);
788 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
789 
790 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
791 
792 	index_msb = get_count_order(smp_num_siblings);
793 
794 	core_bits = get_count_order(c->x86_max_cores);
795 
796 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
797 				       ((1 << core_bits) - 1);
798 #endif
799 }
800 
get_cpu_vendor(struct cpuinfo_x86 * c)801 static void get_cpu_vendor(struct cpuinfo_x86 *c)
802 {
803 	char *v = c->x86_vendor_id;
804 	int i;
805 
806 	for (i = 0; i < X86_VENDOR_NUM; i++) {
807 		if (!cpu_devs[i])
808 			break;
809 
810 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
811 		    (cpu_devs[i]->c_ident[1] &&
812 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
813 
814 			this_cpu = cpu_devs[i];
815 			c->x86_vendor = this_cpu->c_x86_vendor;
816 			return;
817 		}
818 	}
819 
820 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
821 		    "CPU: Your system may be unstable.\n", v);
822 
823 	c->x86_vendor = X86_VENDOR_UNKNOWN;
824 	this_cpu = &default_cpu;
825 }
826 
cpu_detect(struct cpuinfo_x86 * c)827 void cpu_detect(struct cpuinfo_x86 *c)
828 {
829 	/* Get vendor name */
830 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
831 	      (unsigned int *)&c->x86_vendor_id[0],
832 	      (unsigned int *)&c->x86_vendor_id[8],
833 	      (unsigned int *)&c->x86_vendor_id[4]);
834 
835 	c->x86 = 4;
836 	/* Intel-defined flags: level 0x00000001 */
837 	if (c->cpuid_level >= 0x00000001) {
838 		u32 junk, tfms, cap0, misc;
839 
840 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
841 		c->x86		= x86_family(tfms);
842 		c->x86_model	= x86_model(tfms);
843 		c->x86_stepping	= x86_stepping(tfms);
844 
845 		if (cap0 & (1<<19)) {
846 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
847 			c->x86_cache_alignment = c->x86_clflush_size;
848 		}
849 	}
850 }
851 
apply_forced_caps(struct cpuinfo_x86 * c)852 static void apply_forced_caps(struct cpuinfo_x86 *c)
853 {
854 	int i;
855 
856 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
857 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
858 		c->x86_capability[i] |= cpu_caps_set[i];
859 	}
860 }
861 
init_speculation_control(struct cpuinfo_x86 * c)862 static void init_speculation_control(struct cpuinfo_x86 *c)
863 {
864 	/*
865 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
866 	 * and they also have a different bit for STIBP support. Also,
867 	 * a hypervisor might have set the individual AMD bits even on
868 	 * Intel CPUs, for finer-grained selection of what's available.
869 	 */
870 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
871 		set_cpu_cap(c, X86_FEATURE_IBRS);
872 		set_cpu_cap(c, X86_FEATURE_IBPB);
873 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
874 	}
875 
876 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
877 		set_cpu_cap(c, X86_FEATURE_STIBP);
878 
879 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
880 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
881 		set_cpu_cap(c, X86_FEATURE_SSBD);
882 
883 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
884 		set_cpu_cap(c, X86_FEATURE_IBRS);
885 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
886 	}
887 
888 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
889 		set_cpu_cap(c, X86_FEATURE_IBPB);
890 
891 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
892 		set_cpu_cap(c, X86_FEATURE_STIBP);
893 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
894 	}
895 
896 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
897 		set_cpu_cap(c, X86_FEATURE_SSBD);
898 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
899 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
900 	}
901 }
902 
get_cpu_cap(struct cpuinfo_x86 * c)903 void get_cpu_cap(struct cpuinfo_x86 *c)
904 {
905 	u32 eax, ebx, ecx, edx;
906 
907 	/* Intel-defined flags: level 0x00000001 */
908 	if (c->cpuid_level >= 0x00000001) {
909 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
910 
911 		c->x86_capability[CPUID_1_ECX] = ecx;
912 		c->x86_capability[CPUID_1_EDX] = edx;
913 	}
914 
915 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
916 	if (c->cpuid_level >= 0x00000006)
917 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
918 
919 	/* Additional Intel-defined flags: level 0x00000007 */
920 	if (c->cpuid_level >= 0x00000007) {
921 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
922 		c->x86_capability[CPUID_7_0_EBX] = ebx;
923 		c->x86_capability[CPUID_7_ECX] = ecx;
924 		c->x86_capability[CPUID_7_EDX] = edx;
925 
926 		/* Check valid sub-leaf index before accessing it */
927 		if (eax >= 1) {
928 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
929 			c->x86_capability[CPUID_7_1_EAX] = eax;
930 		}
931 	}
932 
933 	/* Extended state features: level 0x0000000d */
934 	if (c->cpuid_level >= 0x0000000d) {
935 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
936 
937 		c->x86_capability[CPUID_D_1_EAX] = eax;
938 	}
939 
940 	/* AMD-defined flags: level 0x80000001 */
941 	eax = cpuid_eax(0x80000000);
942 	c->extended_cpuid_level = eax;
943 
944 	if ((eax & 0xffff0000) == 0x80000000) {
945 		if (eax >= 0x80000001) {
946 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
947 
948 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
949 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
950 		}
951 	}
952 
953 	if (c->extended_cpuid_level >= 0x80000007) {
954 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
955 
956 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
957 		c->x86_power = edx;
958 	}
959 
960 	if (c->extended_cpuid_level >= 0x80000008) {
961 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
962 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
963 	}
964 
965 	if (c->extended_cpuid_level >= 0x8000000a)
966 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
967 
968 	if (c->extended_cpuid_level >= 0x8000001f)
969 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
970 
971 	if (c->extended_cpuid_level >= 0x80000021)
972 		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
973 
974 	init_scattered_cpuid_features(c);
975 	init_speculation_control(c);
976 
977 	/*
978 	 * Clear/Set all flags overridden by options, after probe.
979 	 * This needs to happen each time we re-probe, which may happen
980 	 * several times during CPU initialization.
981 	 */
982 	apply_forced_caps(c);
983 }
984 
get_cpu_address_sizes(struct cpuinfo_x86 * c)985 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
986 {
987 	u32 eax, ebx, ecx, edx;
988 
989 	if (c->extended_cpuid_level >= 0x80000008) {
990 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
991 
992 		c->x86_virt_bits = (eax >> 8) & 0xff;
993 		c->x86_phys_bits = eax & 0xff;
994 	}
995 #ifdef CONFIG_X86_32
996 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
997 		c->x86_phys_bits = 36;
998 #endif
999 	c->x86_cache_bits = c->x86_phys_bits;
1000 }
1001 
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)1002 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1003 {
1004 #ifdef CONFIG_X86_32
1005 	int i;
1006 
1007 	/*
1008 	 * First of all, decide if this is a 486 or higher
1009 	 * It's a 486 if we can modify the AC flag
1010 	 */
1011 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1012 		c->x86 = 4;
1013 	else
1014 		c->x86 = 3;
1015 
1016 	for (i = 0; i < X86_VENDOR_NUM; i++)
1017 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1018 			c->x86_vendor_id[0] = 0;
1019 			cpu_devs[i]->c_identify(c);
1020 			if (c->x86_vendor_id[0]) {
1021 				get_cpu_vendor(c);
1022 				break;
1023 			}
1024 		}
1025 #endif
1026 }
1027 
1028 #define NO_SPECULATION		BIT(0)
1029 #define NO_MELTDOWN		BIT(1)
1030 #define NO_SSB			BIT(2)
1031 #define NO_L1TF			BIT(3)
1032 #define NO_MDS			BIT(4)
1033 #define MSBDS_ONLY		BIT(5)
1034 #define NO_SWAPGS		BIT(6)
1035 #define NO_ITLB_MULTIHIT	BIT(7)
1036 #define NO_SPECTRE_V2		BIT(8)
1037 #define NO_MMIO			BIT(9)
1038 #define NO_EIBRS_PBRSB		BIT(10)
1039 
1040 #define VULNWL(vendor, family, model, whitelist)	\
1041 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1042 
1043 #define VULNWL_INTEL(model, whitelist)		\
1044 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1045 
1046 #define VULNWL_AMD(family, whitelist)		\
1047 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1048 
1049 #define VULNWL_HYGON(family, whitelist)		\
1050 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1051 
1052 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1053 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1054 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1055 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1056 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1057 
1058 	/* Intel Family 6 */
1059 	VULNWL_INTEL(TIGERLAKE,			NO_MMIO),
1060 	VULNWL_INTEL(TIGERLAKE_L,		NO_MMIO),
1061 	VULNWL_INTEL(ALDERLAKE,			NO_MMIO),
1062 	VULNWL_INTEL(ALDERLAKE_L,		NO_MMIO),
1063 
1064 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1065 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1066 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1067 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1068 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1069 
1070 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1071 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1072 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1073 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1074 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1075 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1076 
1077 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1078 
1079 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081 
1082 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1083 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1084 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1085 
1086 	/*
1087 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1088 	 * being documented as such in the APM).  But according to AMD, %gs is
1089 	 * updated non-speculatively, and the issuing of %gs-relative memory
1090 	 * operands will be blocked until the %gs update completes, which is
1091 	 * good enough for our purposes.
1092 	 */
1093 
1094 	VULNWL_INTEL(ATOM_TREMONT,		NO_EIBRS_PBRSB),
1095 	VULNWL_INTEL(ATOM_TREMONT_L,		NO_EIBRS_PBRSB),
1096 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1097 
1098 	/* AMD Family 0xf - 0x12 */
1099 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1100 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1101 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1102 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1103 
1104 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1105 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1106 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1107 
1108 	/* Zhaoxin Family 7 */
1109 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1110 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1111 	{}
1112 };
1113 
1114 #define VULNBL(vendor, family, model, blacklist)	\
1115 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1116 
1117 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1118 	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1119 					    INTEL_FAM6_##model, steppings, \
1120 					    X86_FEATURE_ANY, issues)
1121 
1122 #define VULNBL_AMD(family, blacklist)		\
1123 	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1124 
1125 #define VULNBL_HYGON(family, blacklist)		\
1126 	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1127 
1128 #define SRBDS		BIT(0)
1129 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1130 #define MMIO		BIT(1)
1131 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1132 #define MMIO_SBDS	BIT(2)
1133 /* CPU is affected by RETbleed, speculating where you would not expect it */
1134 #define RETBLEED	BIT(3)
1135 /* CPU is affected by SMT (cross-thread) return predictions */
1136 #define SMT_RSB		BIT(4)
1137 /* CPU is affected by SRSO */
1138 #define SRSO		BIT(5)
1139 /* CPU is affected by GDS */
1140 #define GDS		BIT(6)
1141 
1142 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1143 	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1144 	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1145 	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1146 	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1147 	VULNBL_INTEL_STEPPINGS(HASWELL_X,	X86_STEPPING_ANY,		MMIO),
1148 	VULNBL_INTEL_STEPPINGS(BROADWELL_D,	X86_STEPPING_ANY,		MMIO),
1149 	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1150 	VULNBL_INTEL_STEPPINGS(BROADWELL_X,	X86_STEPPING_ANY,		MMIO),
1151 	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1152 	VULNBL_INTEL_STEPPINGS(SKYLAKE_X,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1153 	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1154 	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1155 	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1156 	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1157 	VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,	X86_STEPPING_ANY,		RETBLEED),
1158 	VULNBL_INTEL_STEPPINGS(ICELAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1159 	VULNBL_INTEL_STEPPINGS(ICELAKE_D,	X86_STEPPING_ANY,		MMIO | GDS),
1160 	VULNBL_INTEL_STEPPINGS(ICELAKE_X,	X86_STEPPING_ANY,		MMIO | GDS),
1161 	VULNBL_INTEL_STEPPINGS(COMETLAKE,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1162 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPINGS(0x0, 0x0),	MMIO | RETBLEED),
1163 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1164 	VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,	X86_STEPPING_ANY,		GDS),
1165 	VULNBL_INTEL_STEPPINGS(TIGERLAKE,	X86_STEPPING_ANY,		GDS),
1166 	VULNBL_INTEL_STEPPINGS(LAKEFIELD,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1167 	VULNBL_INTEL_STEPPINGS(ROCKETLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1168 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1169 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,	X86_STEPPING_ANY,		MMIO),
1170 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1171 
1172 	VULNBL_AMD(0x15, RETBLEED),
1173 	VULNBL_AMD(0x16, RETBLEED),
1174 	VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1175 	VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1176 	VULNBL_AMD(0x19, SRSO),
1177 	{}
1178 };
1179 
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1180 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1181 {
1182 	const struct x86_cpu_id *m = x86_match_cpu(table);
1183 
1184 	return m && !!(m->driver_data & which);
1185 }
1186 
x86_read_arch_cap_msr(void)1187 u64 x86_read_arch_cap_msr(void)
1188 {
1189 	u64 ia32_cap = 0;
1190 
1191 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1192 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1193 
1194 	return ia32_cap;
1195 }
1196 
arch_cap_mmio_immune(u64 ia32_cap)1197 static bool arch_cap_mmio_immune(u64 ia32_cap)
1198 {
1199 	return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1200 		ia32_cap & ARCH_CAP_PSDP_NO &&
1201 		ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1202 }
1203 
cpu_set_bug_bits(struct cpuinfo_x86 * c)1204 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1205 {
1206 	u64 ia32_cap = x86_read_arch_cap_msr();
1207 
1208 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1209 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1210 	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1211 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1212 
1213 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1214 		return;
1215 
1216 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1217 
1218 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1219 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1220 
1221 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1222 	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1223 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1224 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1225 
1226 	if (ia32_cap & ARCH_CAP_IBRS_ALL)
1227 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1228 
1229 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1230 	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1231 		setup_force_cpu_bug(X86_BUG_MDS);
1232 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1233 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1234 	}
1235 
1236 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1237 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1238 
1239 	/*
1240 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1241 	 *	- TSX is supported or
1242 	 *	- TSX_CTRL is present
1243 	 *
1244 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1245 	 * the kernel boot e.g. kexec.
1246 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1247 	 * update is not present or running as guest that don't get TSX_CTRL.
1248 	 */
1249 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1250 	    (cpu_has(c, X86_FEATURE_RTM) ||
1251 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1252 		setup_force_cpu_bug(X86_BUG_TAA);
1253 
1254 	/*
1255 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1256 	 * in the vulnerability blacklist.
1257 	 *
1258 	 * Some of the implications and mitigation of Shared Buffers Data
1259 	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1260 	 * SRBDS.
1261 	 */
1262 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1263 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1264 	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1265 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1266 
1267 	/*
1268 	 * Processor MMIO Stale Data bug enumeration
1269 	 *
1270 	 * Affected CPU list is generally enough to enumerate the vulnerability,
1271 	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1272 	 * not want the guest to enumerate the bug.
1273 	 *
1274 	 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1275 	 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1276 	 */
1277 	if (!arch_cap_mmio_immune(ia32_cap)) {
1278 		if (cpu_matches(cpu_vuln_blacklist, MMIO))
1279 			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1280 		else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1281 			setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1282 	}
1283 
1284 	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1285 		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1286 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1287 	}
1288 
1289 	if (cpu_has(c, X86_FEATURE_IBRS_ENHANCED) &&
1290 	    !cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1291 	    !(ia32_cap & ARCH_CAP_PBRSB_NO))
1292 		setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1293 
1294 	if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1295 		setup_force_cpu_bug(X86_BUG_SMT_RSB);
1296 
1297 	/*
1298 	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1299 	 * an affected processor, the VMM may have disabled the use of GATHER by
1300 	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1301 	 * which means that AVX will be disabled.
1302 	 */
1303 	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1304 	    boot_cpu_has(X86_FEATURE_AVX))
1305 		setup_force_cpu_bug(X86_BUG_GDS);
1306 
1307 	if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1308 		if (cpu_matches(cpu_vuln_blacklist, SRSO))
1309 			setup_force_cpu_bug(X86_BUG_SRSO);
1310 	}
1311 
1312 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1313 		return;
1314 
1315 	/* Rogue Data Cache Load? No! */
1316 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1317 		return;
1318 
1319 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1320 
1321 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1322 		return;
1323 
1324 	setup_force_cpu_bug(X86_BUG_L1TF);
1325 }
1326 
1327 /*
1328  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1329  * unfortunately, that's not true in practice because of early VIA
1330  * chips and (more importantly) broken virtualizers that are not easy
1331  * to detect. In the latter case it doesn't even *fail* reliably, so
1332  * probing for it doesn't even work. Disable it completely on 32-bit
1333  * unless we can find a reliable way to detect all the broken cases.
1334  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1335  */
detect_nopl(void)1336 static void detect_nopl(void)
1337 {
1338 #ifdef CONFIG_X86_32
1339 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1340 #else
1341 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1342 #endif
1343 }
1344 
1345 /*
1346  * We parse cpu parameters early because fpu__init_system() is executed
1347  * before parse_early_param().
1348  */
cpu_parse_early_param(void)1349 static void __init cpu_parse_early_param(void)
1350 {
1351 	char arg[128];
1352 	char *argptr = arg;
1353 	int arglen, res, bit;
1354 
1355 #ifdef CONFIG_X86_32
1356 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1357 #ifdef CONFIG_MATH_EMULATION
1358 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1359 #else
1360 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1361 #endif
1362 
1363 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1364 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1365 #endif
1366 
1367 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1368 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1369 
1370 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1371 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1372 
1373 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1374 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1375 
1376 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1377 	if (arglen <= 0)
1378 		return;
1379 
1380 	pr_info("Clearing CPUID bits:");
1381 	do {
1382 		res = get_option(&argptr, &bit);
1383 		if (res == 0 || res == 3)
1384 			break;
1385 
1386 		/* If the argument was too long, the last bit may be cut off */
1387 		if (res == 1 && arglen >= sizeof(arg))
1388 			break;
1389 
1390 		if (bit >= 0 && bit < NCAPINTS * 32) {
1391 			pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1392 			setup_clear_cpu_cap(bit);
1393 		}
1394 	} while (res == 2);
1395 	pr_cont("\n");
1396 }
1397 
1398 /*
1399  * Do minimum CPU detection early.
1400  * Fields really needed: vendor, cpuid_level, family, model, mask,
1401  * cache alignment.
1402  * The others are not touched to avoid unwanted side effects.
1403  *
1404  * WARNING: this function is only called on the boot CPU.  Don't add code
1405  * here that is supposed to run on all CPUs.
1406  */
early_identify_cpu(struct cpuinfo_x86 * c)1407 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1408 {
1409 #ifdef CONFIG_X86_64
1410 	c->x86_clflush_size = 64;
1411 	c->x86_phys_bits = 36;
1412 	c->x86_virt_bits = 48;
1413 #else
1414 	c->x86_clflush_size = 32;
1415 	c->x86_phys_bits = 32;
1416 	c->x86_virt_bits = 32;
1417 #endif
1418 	c->x86_cache_alignment = c->x86_clflush_size;
1419 
1420 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1421 	c->extended_cpuid_level = 0;
1422 
1423 	if (!have_cpuid_p())
1424 		identify_cpu_without_cpuid(c);
1425 
1426 	/* cyrix could have cpuid enabled via c_identify()*/
1427 	if (have_cpuid_p()) {
1428 		cpu_detect(c);
1429 		get_cpu_vendor(c);
1430 		get_cpu_cap(c);
1431 		get_cpu_address_sizes(c);
1432 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1433 		cpu_parse_early_param();
1434 
1435 		if (this_cpu->c_early_init)
1436 			this_cpu->c_early_init(c);
1437 
1438 		c->cpu_index = 0;
1439 		filter_cpuid_features(c, false);
1440 
1441 		if (this_cpu->c_bsp_init)
1442 			this_cpu->c_bsp_init(c);
1443 	} else {
1444 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1445 	}
1446 
1447 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1448 
1449 	cpu_set_bug_bits(c);
1450 
1451 	sld_setup(c);
1452 
1453 #ifdef CONFIG_X86_32
1454 	/*
1455 	 * Regardless of whether PCID is enumerated, the SDM says
1456 	 * that it can't be enabled in 32-bit mode.
1457 	 */
1458 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1459 #endif
1460 
1461 	/*
1462 	 * Later in the boot process pgtable_l5_enabled() relies on
1463 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1464 	 * enabled by this point we need to clear the feature bit to avoid
1465 	 * false-positives at the later stage.
1466 	 *
1467 	 * pgtable_l5_enabled() can be false here for several reasons:
1468 	 *  - 5-level paging is disabled compile-time;
1469 	 *  - it's 32-bit kernel;
1470 	 *  - machine doesn't support 5-level paging;
1471 	 *  - user specified 'no5lvl' in kernel command line.
1472 	 */
1473 	if (!pgtable_l5_enabled())
1474 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1475 
1476 	detect_nopl();
1477 }
1478 
early_cpu_init(void)1479 void __init early_cpu_init(void)
1480 {
1481 	const struct cpu_dev *const *cdev;
1482 	int count = 0;
1483 
1484 #ifdef CONFIG_PROCESSOR_SELECT
1485 	pr_info("KERNEL supported cpus:\n");
1486 #endif
1487 
1488 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1489 		const struct cpu_dev *cpudev = *cdev;
1490 
1491 		if (count >= X86_VENDOR_NUM)
1492 			break;
1493 		cpu_devs[count] = cpudev;
1494 		count++;
1495 
1496 #ifdef CONFIG_PROCESSOR_SELECT
1497 		{
1498 			unsigned int j;
1499 
1500 			for (j = 0; j < 2; j++) {
1501 				if (!cpudev->c_ident[j])
1502 					continue;
1503 				pr_info("  %s %s\n", cpudev->c_vendor,
1504 					cpudev->c_ident[j]);
1505 			}
1506 		}
1507 #endif
1508 	}
1509 	early_identify_cpu(&boot_cpu_data);
1510 }
1511 
detect_null_seg_behavior(void)1512 static bool detect_null_seg_behavior(void)
1513 {
1514 	/*
1515 	 * Empirically, writing zero to a segment selector on AMD does
1516 	 * not clear the base, whereas writing zero to a segment
1517 	 * selector on Intel does clear the base.  Intel's behavior
1518 	 * allows slightly faster context switches in the common case
1519 	 * where GS is unused by the prev and next threads.
1520 	 *
1521 	 * Since neither vendor documents this anywhere that I can see,
1522 	 * detect it directly instead of hard-coding the choice by
1523 	 * vendor.
1524 	 *
1525 	 * I've designated AMD's behavior as the "bug" because it's
1526 	 * counterintuitive and less friendly.
1527 	 */
1528 
1529 	unsigned long old_base, tmp;
1530 	rdmsrl(MSR_FS_BASE, old_base);
1531 	wrmsrl(MSR_FS_BASE, 1);
1532 	loadsegment(fs, 0);
1533 	rdmsrl(MSR_FS_BASE, tmp);
1534 	wrmsrl(MSR_FS_BASE, old_base);
1535 	return tmp == 0;
1536 }
1537 
check_null_seg_clears_base(struct cpuinfo_x86 * c)1538 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1539 {
1540 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1541 	if (!IS_ENABLED(CONFIG_X86_64))
1542 		return;
1543 
1544 	/* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1545 	if (c->extended_cpuid_level >= 0x80000021 &&
1546 	    cpuid_eax(0x80000021) & BIT(6))
1547 		return;
1548 
1549 	/*
1550 	 * CPUID bit above wasn't set. If this kernel is still running
1551 	 * as a HV guest, then the HV has decided not to advertize
1552 	 * that CPUID bit for whatever reason.	For example, one
1553 	 * member of the migration pool might be vulnerable.  Which
1554 	 * means, the bug is present: set the BUG flag and return.
1555 	 */
1556 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1557 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1558 		return;
1559 	}
1560 
1561 	/*
1562 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1563 	 * 0x18 is the respective family for Hygon.
1564 	 */
1565 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1566 	    detect_null_seg_behavior())
1567 		return;
1568 
1569 	/* All the remaining ones are affected */
1570 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1571 }
1572 
generic_identify(struct cpuinfo_x86 * c)1573 static void generic_identify(struct cpuinfo_x86 *c)
1574 {
1575 	c->extended_cpuid_level = 0;
1576 
1577 	if (!have_cpuid_p())
1578 		identify_cpu_without_cpuid(c);
1579 
1580 	/* cyrix could have cpuid enabled via c_identify()*/
1581 	if (!have_cpuid_p())
1582 		return;
1583 
1584 	cpu_detect(c);
1585 
1586 	get_cpu_vendor(c);
1587 
1588 	get_cpu_cap(c);
1589 
1590 	get_cpu_address_sizes(c);
1591 
1592 	if (c->cpuid_level >= 0x00000001) {
1593 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1594 #ifdef CONFIG_X86_32
1595 # ifdef CONFIG_SMP
1596 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1597 # else
1598 		c->apicid = c->initial_apicid;
1599 # endif
1600 #endif
1601 		c->phys_proc_id = c->initial_apicid;
1602 	}
1603 
1604 	get_model_name(c); /* Default name */
1605 
1606 	/*
1607 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1608 	 * systems that run Linux at CPL > 0 may or may not have the
1609 	 * issue, but, even if they have the issue, there's absolutely
1610 	 * nothing we can do about it because we can't use the real IRET
1611 	 * instruction.
1612 	 *
1613 	 * NB: For the time being, only 32-bit kernels support
1614 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1615 	 * whether to apply espfix using paravirt hooks.  If any
1616 	 * non-paravirt system ever shows up that does *not* have the
1617 	 * ESPFIX issue, we can change this.
1618 	 */
1619 #ifdef CONFIG_X86_32
1620 	set_cpu_bug(c, X86_BUG_ESPFIX);
1621 #endif
1622 }
1623 
1624 /*
1625  * Validate that ACPI/mptables have the same information about the
1626  * effective APIC id and update the package map.
1627  */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1628 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1629 {
1630 #ifdef CONFIG_SMP
1631 	unsigned int apicid, cpu = smp_processor_id();
1632 
1633 	apicid = apic->cpu_present_to_apicid(cpu);
1634 
1635 	if (apicid != c->apicid) {
1636 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1637 		       cpu, apicid, c->initial_apicid);
1638 	}
1639 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1640 	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1641 #else
1642 	c->logical_proc_id = 0;
1643 #endif
1644 }
1645 
1646 /*
1647  * This does the hard work of actually picking apart the CPU stuff...
1648  */
identify_cpu(struct cpuinfo_x86 * c)1649 static void identify_cpu(struct cpuinfo_x86 *c)
1650 {
1651 	int i;
1652 
1653 	c->loops_per_jiffy = loops_per_jiffy;
1654 	c->x86_cache_size = 0;
1655 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1656 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1657 	c->x86_vendor_id[0] = '\0'; /* Unset */
1658 	c->x86_model_id[0] = '\0';  /* Unset */
1659 	c->x86_max_cores = 1;
1660 	c->x86_coreid_bits = 0;
1661 	c->cu_id = 0xff;
1662 #ifdef CONFIG_X86_64
1663 	c->x86_clflush_size = 64;
1664 	c->x86_phys_bits = 36;
1665 	c->x86_virt_bits = 48;
1666 #else
1667 	c->cpuid_level = -1;	/* CPUID not detected */
1668 	c->x86_clflush_size = 32;
1669 	c->x86_phys_bits = 32;
1670 	c->x86_virt_bits = 32;
1671 #endif
1672 	c->x86_cache_alignment = c->x86_clflush_size;
1673 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1674 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1675 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1676 #endif
1677 
1678 	generic_identify(c);
1679 
1680 	if (this_cpu->c_identify)
1681 		this_cpu->c_identify(c);
1682 
1683 	/* Clear/Set all flags overridden by options, after probe */
1684 	apply_forced_caps(c);
1685 
1686 #ifdef CONFIG_X86_64
1687 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1688 #endif
1689 
1690 	/*
1691 	 * Vendor-specific initialization.  In this section we
1692 	 * canonicalize the feature flags, meaning if there are
1693 	 * features a certain CPU supports which CPUID doesn't
1694 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1695 	 * we handle them here.
1696 	 *
1697 	 * At the end of this section, c->x86_capability better
1698 	 * indicate the features this CPU genuinely supports!
1699 	 */
1700 	if (this_cpu->c_init)
1701 		this_cpu->c_init(c);
1702 
1703 	/* Disable the PN if appropriate */
1704 	squash_the_stupid_serial_number(c);
1705 
1706 	/* Set up SMEP/SMAP/UMIP */
1707 	setup_smep(c);
1708 	setup_smap(c);
1709 	setup_umip(c);
1710 
1711 	/* Enable FSGSBASE instructions if available. */
1712 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1713 		cr4_set_bits(X86_CR4_FSGSBASE);
1714 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1715 	}
1716 
1717 	/*
1718 	 * The vendor-specific functions might have changed features.
1719 	 * Now we do "generic changes."
1720 	 */
1721 
1722 	/* Filter out anything that depends on CPUID levels we don't have */
1723 	filter_cpuid_features(c, true);
1724 
1725 	/* If the model name is still unset, do table lookup. */
1726 	if (!c->x86_model_id[0]) {
1727 		const char *p;
1728 		p = table_lookup_model(c);
1729 		if (p)
1730 			strcpy(c->x86_model_id, p);
1731 		else
1732 			/* Last resort... */
1733 			sprintf(c->x86_model_id, "%02x/%02x",
1734 				c->x86, c->x86_model);
1735 	}
1736 
1737 #ifdef CONFIG_X86_64
1738 	detect_ht(c);
1739 #endif
1740 
1741 	x86_init_rdrand(c);
1742 	setup_pku(c);
1743 
1744 	/*
1745 	 * Clear/Set all flags overridden by options, need do it
1746 	 * before following smp all cpus cap AND.
1747 	 */
1748 	apply_forced_caps(c);
1749 
1750 	/*
1751 	 * On SMP, boot_cpu_data holds the common feature set between
1752 	 * all CPUs; so make sure that we indicate which features are
1753 	 * common between the CPUs.  The first time this routine gets
1754 	 * executed, c == &boot_cpu_data.
1755 	 */
1756 	if (c != &boot_cpu_data) {
1757 		/* AND the already accumulated flags with these */
1758 		for (i = 0; i < NCAPINTS; i++)
1759 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1760 
1761 		/* OR, i.e. replicate the bug flags */
1762 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1763 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1764 	}
1765 
1766 	/* Init Machine Check Exception if available. */
1767 	mcheck_cpu_init(c);
1768 
1769 	select_idle_routine(c);
1770 
1771 #ifdef CONFIG_NUMA
1772 	numa_add_cpu(smp_processor_id());
1773 #endif
1774 }
1775 
1776 /*
1777  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1778  * on 32-bit kernels:
1779  */
1780 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1781 void enable_sep_cpu(void)
1782 {
1783 	struct tss_struct *tss;
1784 	int cpu;
1785 
1786 	if (!boot_cpu_has(X86_FEATURE_SEP))
1787 		return;
1788 
1789 	cpu = get_cpu();
1790 	tss = &per_cpu(cpu_tss_rw, cpu);
1791 
1792 	/*
1793 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1794 	 * see the big comment in struct x86_hw_tss's definition.
1795 	 */
1796 
1797 	tss->x86_tss.ss1 = __KERNEL_CS;
1798 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1799 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1800 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1801 
1802 	put_cpu();
1803 }
1804 #endif
1805 
identify_boot_cpu(void)1806 void __init identify_boot_cpu(void)
1807 {
1808 	identify_cpu(&boot_cpu_data);
1809 #ifdef CONFIG_X86_32
1810 	sysenter_setup();
1811 	enable_sep_cpu();
1812 #endif
1813 	cpu_detect_tlb(&boot_cpu_data);
1814 	setup_cr_pinning();
1815 
1816 	tsx_init();
1817 }
1818 
identify_secondary_cpu(struct cpuinfo_x86 * c)1819 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1820 {
1821 	BUG_ON(c == &boot_cpu_data);
1822 	identify_cpu(c);
1823 #ifdef CONFIG_X86_32
1824 	enable_sep_cpu();
1825 #endif
1826 	mtrr_ap_init();
1827 	validate_apic_and_package_id(c);
1828 	x86_spec_ctrl_setup_ap();
1829 	update_srbds_msr();
1830 	if (boot_cpu_has_bug(X86_BUG_GDS))
1831 		update_gds_msr();
1832 
1833 	tsx_ap_init();
1834 }
1835 
setup_noclflush(char * arg)1836 static __init int setup_noclflush(char *arg)
1837 {
1838 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1839 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1840 	return 1;
1841 }
1842 __setup("noclflush", setup_noclflush);
1843 
print_cpu_info(struct cpuinfo_x86 * c)1844 void print_cpu_info(struct cpuinfo_x86 *c)
1845 {
1846 	const char *vendor = NULL;
1847 
1848 	if (c->x86_vendor < X86_VENDOR_NUM) {
1849 		vendor = this_cpu->c_vendor;
1850 	} else {
1851 		if (c->cpuid_level >= 0)
1852 			vendor = c->x86_vendor_id;
1853 	}
1854 
1855 	if (vendor && !strstr(c->x86_model_id, vendor))
1856 		pr_cont("%s ", vendor);
1857 
1858 	if (c->x86_model_id[0])
1859 		pr_cont("%s", c->x86_model_id);
1860 	else
1861 		pr_cont("%d86", c->x86);
1862 
1863 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1864 
1865 	if (c->x86_stepping || c->cpuid_level >= 0)
1866 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1867 	else
1868 		pr_cont(")\n");
1869 }
1870 
1871 /*
1872  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1873  * function prevents it from becoming an environment variable for init.
1874  */
setup_clearcpuid(char * arg)1875 static __init int setup_clearcpuid(char *arg)
1876 {
1877 	return 1;
1878 }
1879 __setup("clearcpuid=", setup_clearcpuid);
1880 
1881 #ifdef CONFIG_X86_64
1882 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1883 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1884 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1885 
1886 /*
1887  * The following percpu variables are hot.  Align current_task to
1888  * cacheline size such that they fall in the same cacheline.
1889  */
1890 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1891 	&init_task;
1892 EXPORT_PER_CPU_SYMBOL(current_task);
1893 
1894 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1895 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1896 
1897 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1898 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1899 
1900 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1901 
1902 /* May not be marked __init: used by software suspend */
syscall_init(void)1903 void syscall_init(void)
1904 {
1905 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1906 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1907 
1908 #ifdef CONFIG_IA32_EMULATION
1909 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1910 	/*
1911 	 * This only works on Intel CPUs.
1912 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1913 	 * This does not cause SYSENTER to jump to the wrong location, because
1914 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1915 	 */
1916 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1917 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1918 		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1919 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1920 #else
1921 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1922 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1923 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1924 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1925 #endif
1926 
1927 	/*
1928 	 * Flags to clear on syscall; clear as much as possible
1929 	 * to minimize user space-kernel interference.
1930 	 */
1931 	wrmsrl(MSR_SYSCALL_MASK,
1932 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1933 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1934 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1935 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1936 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
1937 }
1938 
1939 #else	/* CONFIG_X86_64 */
1940 
1941 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1942 EXPORT_PER_CPU_SYMBOL(current_task);
1943 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1944 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1945 
1946 /*
1947  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1948  * the top of the kernel stack.  Use an extra percpu variable to track the
1949  * top of the kernel stack directly.
1950  */
1951 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1952 	(unsigned long)&init_thread_union + THREAD_SIZE;
1953 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1954 
1955 #ifdef CONFIG_STACKPROTECTOR
1956 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1957 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1958 #endif
1959 
1960 #endif	/* CONFIG_X86_64 */
1961 
1962 /*
1963  * Clear all 6 debug registers:
1964  */
clear_all_debug_regs(void)1965 static void clear_all_debug_regs(void)
1966 {
1967 	int i;
1968 
1969 	for (i = 0; i < 8; i++) {
1970 		/* Ignore db4, db5 */
1971 		if ((i == 4) || (i == 5))
1972 			continue;
1973 
1974 		set_debugreg(0, i);
1975 	}
1976 }
1977 
1978 #ifdef CONFIG_KGDB
1979 /*
1980  * Restore debug regs if using kgdbwait and you have a kernel debugger
1981  * connection established.
1982  */
dbg_restore_debug_regs(void)1983 static void dbg_restore_debug_regs(void)
1984 {
1985 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1986 		arch_kgdb_ops.correct_hw_break();
1987 }
1988 #else /* ! CONFIG_KGDB */
1989 #define dbg_restore_debug_regs()
1990 #endif /* ! CONFIG_KGDB */
1991 
wait_for_master_cpu(int cpu)1992 static void wait_for_master_cpu(int cpu)
1993 {
1994 #ifdef CONFIG_SMP
1995 	/*
1996 	 * wait for ACK from master CPU before continuing
1997 	 * with AP initialization
1998 	 */
1999 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
2000 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
2001 		cpu_relax();
2002 #endif
2003 }
2004 
2005 #ifdef CONFIG_X86_64
setup_getcpu(int cpu)2006 static inline void setup_getcpu(int cpu)
2007 {
2008 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2009 	struct desc_struct d = { };
2010 
2011 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2012 		wrmsr(MSR_TSC_AUX, cpudata, 0);
2013 
2014 	/* Store CPU and node number in limit. */
2015 	d.limit0 = cpudata;
2016 	d.limit1 = cpudata >> 16;
2017 
2018 	d.type = 5;		/* RO data, expand down, accessed */
2019 	d.dpl = 3;		/* Visible to user code */
2020 	d.s = 1;		/* Not a system segment */
2021 	d.p = 1;		/* Present */
2022 	d.d = 1;		/* 32-bit */
2023 
2024 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2025 }
2026 
ucode_cpu_init(int cpu)2027 static inline void ucode_cpu_init(int cpu)
2028 {
2029 	if (cpu)
2030 		load_ucode_ap();
2031 }
2032 
tss_setup_ist(struct tss_struct * tss)2033 static inline void tss_setup_ist(struct tss_struct *tss)
2034 {
2035 	/* Set up the per-CPU TSS IST stacks */
2036 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2037 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2038 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2039 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2040 	/* Only mapped when SEV-ES is active */
2041 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2042 }
2043 
2044 #else /* CONFIG_X86_64 */
2045 
setup_getcpu(int cpu)2046 static inline void setup_getcpu(int cpu) { }
2047 
ucode_cpu_init(int cpu)2048 static inline void ucode_cpu_init(int cpu)
2049 {
2050 	show_ucode_info_early();
2051 }
2052 
tss_setup_ist(struct tss_struct * tss)2053 static inline void tss_setup_ist(struct tss_struct *tss) { }
2054 
2055 #endif /* !CONFIG_X86_64 */
2056 
tss_setup_io_bitmap(struct tss_struct * tss)2057 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2058 {
2059 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2060 
2061 #ifdef CONFIG_X86_IOPL_IOPERM
2062 	tss->io_bitmap.prev_max = 0;
2063 	tss->io_bitmap.prev_sequence = 0;
2064 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2065 	/*
2066 	 * Invalidate the extra array entry past the end of the all
2067 	 * permission bitmap as required by the hardware.
2068 	 */
2069 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2070 #endif
2071 }
2072 
2073 /*
2074  * Setup everything needed to handle exceptions from the IDT, including the IST
2075  * exceptions which use paranoid_entry().
2076  */
cpu_init_exception_handling(void)2077 void cpu_init_exception_handling(void)
2078 {
2079 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2080 	int cpu = raw_smp_processor_id();
2081 
2082 	/* paranoid_entry() gets the CPU number from the GDT */
2083 	setup_getcpu(cpu);
2084 
2085 	/* IST vectors need TSS to be set up. */
2086 	tss_setup_ist(tss);
2087 	tss_setup_io_bitmap(tss);
2088 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2089 
2090 	load_TR_desc();
2091 
2092 	/* Finally load the IDT */
2093 	load_current_idt();
2094 }
2095 
2096 /*
2097  * cpu_init() initializes state that is per-CPU. Some data is already
2098  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2099  * reload it nevertheless, this function acts as a 'CPU state barrier',
2100  * nothing should get across.
2101  */
cpu_init(void)2102 void cpu_init(void)
2103 {
2104 	struct task_struct *cur = current;
2105 	int cpu = raw_smp_processor_id();
2106 
2107 	wait_for_master_cpu(cpu);
2108 
2109 	ucode_cpu_init(cpu);
2110 
2111 #ifdef CONFIG_NUMA
2112 	if (this_cpu_read(numa_node) == 0 &&
2113 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2114 		set_numa_node(early_cpu_to_node(cpu));
2115 #endif
2116 	pr_debug("Initializing CPU#%d\n", cpu);
2117 
2118 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2119 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2120 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2121 
2122 	/*
2123 	 * Initialize the per-CPU GDT with the boot GDT,
2124 	 * and set up the GDT descriptor:
2125 	 */
2126 	switch_to_new_gdt(cpu);
2127 
2128 	if (IS_ENABLED(CONFIG_X86_64)) {
2129 		loadsegment(fs, 0);
2130 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2131 		syscall_init();
2132 
2133 		wrmsrl(MSR_FS_BASE, 0);
2134 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
2135 		barrier();
2136 
2137 		x2apic_setup();
2138 	}
2139 
2140 	mmgrab(&init_mm);
2141 	cur->active_mm = &init_mm;
2142 	BUG_ON(cur->mm);
2143 	initialize_tlbstate_and_flush();
2144 	enter_lazy_tlb(&init_mm, cur);
2145 
2146 	/*
2147 	 * sp0 points to the entry trampoline stack regardless of what task
2148 	 * is running.
2149 	 */
2150 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2151 
2152 	load_mm_ldt(&init_mm);
2153 
2154 	clear_all_debug_regs();
2155 	dbg_restore_debug_regs();
2156 
2157 	doublefault_init_cpu_tss();
2158 
2159 	if (is_uv_system())
2160 		uv_cpu_init();
2161 
2162 	load_fixmap_gdt(cpu);
2163 }
2164 
2165 #ifdef CONFIG_SMP
cpu_init_secondary(void)2166 void cpu_init_secondary(void)
2167 {
2168 	/*
2169 	 * Relies on the BP having set-up the IDT tables, which are loaded
2170 	 * on this CPU in cpu_init_exception_handling().
2171 	 */
2172 	cpu_init_exception_handling();
2173 	cpu_init();
2174 	fpu__init_cpu();
2175 }
2176 #endif
2177 
2178 #ifdef CONFIG_MICROCODE_LATE_LOADING
2179 /**
2180  * store_cpu_caps() - Store a snapshot of CPU capabilities
2181  * @curr_info: Pointer where to store it
2182  *
2183  * Returns: None
2184  */
store_cpu_caps(struct cpuinfo_x86 * curr_info)2185 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2186 {
2187 	/* Reload CPUID max function as it might've changed. */
2188 	curr_info->cpuid_level = cpuid_eax(0);
2189 
2190 	/* Copy all capability leafs and pick up the synthetic ones. */
2191 	memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2192 	       sizeof(curr_info->x86_capability));
2193 
2194 	/* Get the hardware CPUID leafs */
2195 	get_cpu_cap(curr_info);
2196 }
2197 
2198 /**
2199  * microcode_check() - Check if any CPU capabilities changed after an update.
2200  * @prev_info:	CPU capabilities stored before an update.
2201  *
2202  * The microcode loader calls this upon late microcode load to recheck features,
2203  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2204  * hotplug lock.
2205  *
2206  * Return: None
2207  */
microcode_check(struct cpuinfo_x86 * prev_info)2208 void microcode_check(struct cpuinfo_x86 *prev_info)
2209 {
2210 	struct cpuinfo_x86 curr_info;
2211 
2212 	perf_check_microcode();
2213 
2214 	amd_check_microcode();
2215 
2216 	store_cpu_caps(&curr_info);
2217 
2218 	if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2219 		    sizeof(prev_info->x86_capability)))
2220 		return;
2221 
2222 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2223 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2224 }
2225 #endif
2226 
2227 /*
2228  * Invoked from core CPU hotplug code after hotplug operations
2229  */
arch_smt_update(void)2230 void arch_smt_update(void)
2231 {
2232 	/* Handle the speculative execution misfeatures */
2233 	cpu_bugs_smt_update();
2234 	/* Check whether IPI broadcasting can be enabled */
2235 	apic_smt_update();
2236 }
2237 
arch_cpu_finalize_init(void)2238 void __init arch_cpu_finalize_init(void)
2239 {
2240 	identify_boot_cpu();
2241 
2242 	/*
2243 	 * identify_boot_cpu() initialized SMT support information, let the
2244 	 * core code know.
2245 	 */
2246 	cpu_smt_check_topology();
2247 
2248 	if (!IS_ENABLED(CONFIG_SMP)) {
2249 		pr_info("CPU: ");
2250 		print_cpu_info(&boot_cpu_data);
2251 	}
2252 
2253 	cpu_select_mitigations();
2254 
2255 	arch_smt_update();
2256 
2257 	if (IS_ENABLED(CONFIG_X86_32)) {
2258 		/*
2259 		 * Check whether this is a real i386 which is not longer
2260 		 * supported and fixup the utsname.
2261 		 */
2262 		if (boot_cpu_data.x86 < 4)
2263 			panic("Kernel requires i486+ for 'invlpg' and other features");
2264 
2265 		init_utsname()->machine[1] =
2266 			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2267 	}
2268 
2269 	/*
2270 	 * Must be before alternatives because it might set or clear
2271 	 * feature bits.
2272 	 */
2273 	fpu__init_system();
2274 	fpu__init_cpu();
2275 
2276 	alternative_instructions();
2277 
2278 	if (IS_ENABLED(CONFIG_X86_64)) {
2279 		/*
2280 		 * Make sure the first 2MB area is not mapped by huge pages
2281 		 * There are typically fixed size MTRRs in there and overlapping
2282 		 * MTRRs into large pages causes slow downs.
2283 		 *
2284 		 * Right now we don't do that with gbpages because there seems
2285 		 * very little benefit for that case.
2286 		 */
2287 		if (!direct_gbpages)
2288 			set_memory_4k((unsigned long)__va(0), 1);
2289 	} else {
2290 		fpu__init_check_bugs();
2291 	}
2292 
2293 	/*
2294 	 * This needs to be called before any devices perform DMA
2295 	 * operations that might use the SWIOTLB bounce buffers. It will
2296 	 * mark the bounce buffers as decrypted so that their usage will
2297 	 * not cause "plain-text" data to be decrypted when accessed. It
2298 	 * must be called after late_time_init() so that Hyper-V x86/x64
2299 	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2300 	 */
2301 	mem_encrypt_init();
2302 }
2303