• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/cpupri.c
4  *
5  *  CPU priority management
6  *
7  *  Copyright (C) 2007-2008 Novell
8  *
9  *  Author: Gregory Haskins <ghaskins@novell.com>
10  *
11  *  This code tracks the priority of each CPU so that global migration
12  *  decisions are easy to calculate.  Each CPU can be in a state as follows:
13  *
14  *                 (INVALID), NORMAL, RT1, ... RT99, HIGHER
15  *
16  *  going from the lowest priority to the highest.  CPUs in the INVALID state
17  *  are not eligible for routing.  The system maintains this state with
18  *  a 2 dimensional bitmap (the first for priority class, the second for CPUs
19  *  in that class).  Therefore a typical application without affinity
20  *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
21  *  searches).  For tasks with affinity restrictions, the algorithm has a
22  *  worst case complexity of O(min(101, nr_domcpus)), though the scenario that
23  *  yields the worst case search is fairly contrived.
24  */
25 #include "sched.h"
26 
27 /*
28  * p->rt_priority   p->prio   newpri   cpupri
29  *
30  *				  -1       -1 (CPUPRI_INVALID)
31  *
32  *				  99        0 (CPUPRI_NORMAL)
33  *
34  *		1        98       98        1
35  *	      ...
36  *	       49        50       50       49
37  *	       50        49       49       50
38  *	      ...
39  *	       99         0        0       99
40  *
41  *				 100	  100 (CPUPRI_HIGHER)
42  */
convert_prio(int prio)43 static int convert_prio(int prio)
44 {
45 	int cpupri;
46 
47 	switch (prio) {
48 	case CPUPRI_INVALID:
49 		cpupri = CPUPRI_INVALID;	/* -1 */
50 		break;
51 
52 	case 0 ... 98:
53 		cpupri = MAX_RT_PRIO-1 - prio;	/* 1 ... 99 */
54 		break;
55 
56 	case MAX_RT_PRIO-1:
57 		cpupri = CPUPRI_NORMAL;		/*  0 */
58 		break;
59 
60 	case MAX_RT_PRIO:
61 		cpupri = CPUPRI_HIGHER;		/* 100 */
62 		break;
63 	}
64 
65 	return cpupri;
66 }
67 
68 #ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
69 /**
70  * drop_nopreempt_cpus - remove likely nonpreemptible cpus from the mask
71  * @lowest_mask: mask with selected CPUs (non-NULL)
72  */
73 static void
drop_nopreempt_cpus(struct cpumask * lowest_mask)74 drop_nopreempt_cpus(struct cpumask *lowest_mask)
75 {
76 	unsigned int cpu = cpumask_first(lowest_mask);
77 	while (cpu < nr_cpu_ids) {
78 		/* unlocked access */
79 		struct task_struct *task = READ_ONCE(cpu_rq(cpu)->curr);
80 		if (task_may_not_preempt(task, cpu)) {
81 			cpumask_clear_cpu(cpu, lowest_mask);
82 		}
83 		cpu = cpumask_next(cpu, lowest_mask);
84 	}
85 }
86 #endif
87 
__cpupri_find(struct cpupri * cp,struct task_struct * p,struct cpumask * lowest_mask,int idx,bool drop_nopreempts)88 static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p,
89 				struct cpumask *lowest_mask, int idx,
90 				bool drop_nopreempts)
91 {
92 	struct cpupri_vec *vec  = &cp->pri_to_cpu[idx];
93 	int skip = 0;
94 
95 	if (!atomic_read(&(vec)->count))
96 		skip = 1;
97 	/*
98 	 * When looking at the vector, we need to read the counter,
99 	 * do a memory barrier, then read the mask.
100 	 *
101 	 * Note: This is still all racy, but we can deal with it.
102 	 *  Ideally, we only want to look at masks that are set.
103 	 *
104 	 *  If a mask is not set, then the only thing wrong is that we
105 	 *  did a little more work than necessary.
106 	 *
107 	 *  If we read a zero count but the mask is set, because of the
108 	 *  memory barriers, that can only happen when the highest prio
109 	 *  task for a run queue has left the run queue, in which case,
110 	 *  it will be followed by a pull. If the task we are processing
111 	 *  fails to find a proper place to go, that pull request will
112 	 *  pull this task if the run queue is running at a lower
113 	 *  priority.
114 	 */
115 	smp_rmb();
116 
117 	/* Need to do the rmb for every iteration */
118 	if (skip)
119 		return 0;
120 
121 	if (cpumask_any_and(&p->cpus_mask, vec->mask) >= nr_cpu_ids)
122 		return 0;
123 
124 	if (lowest_mask) {
125 		cpumask_and(lowest_mask, &p->cpus_mask, vec->mask);
126 		cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
127 
128 #ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
129 		if (drop_nopreempts)
130 			drop_nopreempt_cpus(lowest_mask);
131 #endif
132 
133 		/*
134 		 * We have to ensure that we have at least one bit
135 		 * still set in the array, since the map could have
136 		 * been concurrently emptied between the first and
137 		 * second reads of vec->mask.  If we hit this
138 		 * condition, simply act as though we never hit this
139 		 * priority level and continue on.
140 		 */
141 		if (cpumask_empty(lowest_mask))
142 			return 0;
143 	}
144 
145 	return 1;
146 }
147 
cpupri_find(struct cpupri * cp,struct task_struct * p,struct cpumask * lowest_mask)148 int cpupri_find(struct cpupri *cp, struct task_struct *p,
149 		struct cpumask *lowest_mask)
150 {
151 	return cpupri_find_fitness(cp, p, lowest_mask, NULL);
152 }
153 
154 /**
155  * cpupri_find_fitness - find the best (lowest-pri) CPU in the system
156  * @cp: The cpupri context
157  * @p: The task
158  * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
159  * @fitness_fn: A pointer to a function to do custom checks whether the CPU
160  *              fits a specific criteria so that we only return those CPUs.
161  *
162  * Note: This function returns the recommended CPUs as calculated during the
163  * current invocation.  By the time the call returns, the CPUs may have in
164  * fact changed priorities any number of times.  While not ideal, it is not
165  * an issue of correctness since the normal rebalancer logic will correct
166  * any discrepancies created by racing against the uncertainty of the current
167  * priority configuration.
168  *
169  * Return: (int)bool - CPUs were found
170  */
cpupri_find_fitness(struct cpupri * cp,struct task_struct * p,struct cpumask * lowest_mask,bool (* fitness_fn)(struct task_struct * p,int cpu))171 int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p,
172 		struct cpumask *lowest_mask,
173 		bool (*fitness_fn)(struct task_struct *p, int cpu))
174 {
175 	int task_pri = convert_prio(p->prio);
176 	int idx, cpu;
177 	bool drop_nopreempts = task_pri <= MAX_RT_PRIO;
178 
179 	BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
180 
181 #ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
182 retry:
183 #endif
184 	for (idx = 0; idx < task_pri; idx++) {
185 
186 		if (!__cpupri_find(cp, p, lowest_mask, idx, drop_nopreempts))
187 			continue;
188 
189 		if (!lowest_mask || !fitness_fn)
190 			return 1;
191 
192 		/* Ensure the capacity of the CPUs fit the task */
193 		for_each_cpu(cpu, lowest_mask) {
194 			if (!fitness_fn(p, cpu))
195 				cpumask_clear_cpu(cpu, lowest_mask);
196 		}
197 
198 		/*
199 		 * If no CPU at the current priority can fit the task
200 		 * continue looking
201 		 */
202 		if (cpumask_empty(lowest_mask))
203 			continue;
204 
205 		return 1;
206 	}
207 
208 	/*
209 	 * If we can't find any non-preemptible cpu's, retry so we can
210 	 * find the lowest priority target and avoid priority inversion.
211 	 */
212 #ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
213 	if (drop_nopreempts) {
214 		drop_nopreempts = false;
215 		goto retry;
216 	}
217 #endif
218 
219 	/*
220 	 * If we failed to find a fitting lowest_mask, kick off a new search
221 	 * but without taking into account any fitness criteria this time.
222 	 *
223 	 * This rule favours honouring priority over fitting the task in the
224 	 * correct CPU (Capacity Awareness being the only user now).
225 	 * The idea is that if a higher priority task can run, then it should
226 	 * run even if this ends up being on unfitting CPU.
227 	 *
228 	 * The cost of this trade-off is not entirely clear and will probably
229 	 * be good for some workloads and bad for others.
230 	 *
231 	 * The main idea here is that if some CPUs were over-committed, we try
232 	 * to spread which is what the scheduler traditionally did. Sys admins
233 	 * must do proper RT planning to avoid overloading the system if they
234 	 * really care.
235 	 */
236 	if (fitness_fn)
237 		return cpupri_find(cp, p, lowest_mask);
238 
239 	return 0;
240 }
241 EXPORT_SYMBOL_GPL(cpupri_find_fitness);
242 
243 /**
244  * cpupri_set - update the CPU priority setting
245  * @cp: The cpupri context
246  * @cpu: The target CPU
247  * @newpri: The priority (INVALID,NORMAL,RT1-RT99,HIGHER) to assign to this CPU
248  *
249  * Note: Assumes cpu_rq(cpu)->lock is locked
250  *
251  * Returns: (void)
252  */
cpupri_set(struct cpupri * cp,int cpu,int newpri)253 void cpupri_set(struct cpupri *cp, int cpu, int newpri)
254 {
255 	int *currpri = &cp->cpu_to_pri[cpu];
256 	int oldpri = *currpri;
257 	int do_mb = 0;
258 
259 	newpri = convert_prio(newpri);
260 
261 	BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
262 
263 	if (newpri == oldpri)
264 		return;
265 
266 	/*
267 	 * If the CPU was currently mapped to a different value, we
268 	 * need to map it to the new value then remove the old value.
269 	 * Note, we must add the new value first, otherwise we risk the
270 	 * cpu being missed by the priority loop in cpupri_find.
271 	 */
272 	if (likely(newpri != CPUPRI_INVALID)) {
273 		struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
274 
275 		cpumask_set_cpu(cpu, vec->mask);
276 		/*
277 		 * When adding a new vector, we update the mask first,
278 		 * do a write memory barrier, and then update the count, to
279 		 * make sure the vector is visible when count is set.
280 		 */
281 		smp_mb__before_atomic();
282 		atomic_inc(&(vec)->count);
283 		do_mb = 1;
284 	}
285 	if (likely(oldpri != CPUPRI_INVALID)) {
286 		struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri];
287 
288 		/*
289 		 * Because the order of modification of the vec->count
290 		 * is important, we must make sure that the update
291 		 * of the new prio is seen before we decrement the
292 		 * old prio. This makes sure that the loop sees
293 		 * one or the other when we raise the priority of
294 		 * the run queue. We don't care about when we lower the
295 		 * priority, as that will trigger an rt pull anyway.
296 		 *
297 		 * We only need to do a memory barrier if we updated
298 		 * the new priority vec.
299 		 */
300 		if (do_mb)
301 			smp_mb__after_atomic();
302 
303 		/*
304 		 * When removing from the vector, we decrement the counter first
305 		 * do a memory barrier and then clear the mask.
306 		 */
307 		atomic_dec(&(vec)->count);
308 		smp_mb__after_atomic();
309 		cpumask_clear_cpu(cpu, vec->mask);
310 	}
311 
312 	*currpri = newpri;
313 }
314 
315 /**
316  * cpupri_init - initialize the cpupri structure
317  * @cp: The cpupri context
318  *
319  * Return: -ENOMEM on memory allocation failure.
320  */
cpupri_init(struct cpupri * cp)321 int cpupri_init(struct cpupri *cp)
322 {
323 	int i;
324 
325 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
326 		struct cpupri_vec *vec = &cp->pri_to_cpu[i];
327 
328 		atomic_set(&vec->count, 0);
329 		if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
330 			goto cleanup;
331 	}
332 
333 	cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
334 	if (!cp->cpu_to_pri)
335 		goto cleanup;
336 
337 	for_each_possible_cpu(i)
338 		cp->cpu_to_pri[i] = CPUPRI_INVALID;
339 
340 	return 0;
341 
342 cleanup:
343 	for (i--; i >= 0; i--)
344 		free_cpumask_var(cp->pri_to_cpu[i].mask);
345 	return -ENOMEM;
346 }
347 
348 /**
349  * cpupri_cleanup - clean up the cpupri structure
350  * @cp: The cpupri context
351  */
cpupri_cleanup(struct cpupri * cp)352 void cpupri_cleanup(struct cpupri *cp)
353 {
354 	int i;
355 
356 	kfree(cp->cpu_to_pri);
357 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
358 		free_cpumask_var(cp->pri_to_cpu[i].mask);
359 }
360 
361 #ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
362 /*
363  * cpupri_check_rt - check if CPU has a RT task
364  * should be called from rcu-sched read section.
365  */
cpupri_check_rt(void)366 bool cpupri_check_rt(void)
367 {
368 	int cpu = raw_smp_processor_id();
369 
370 	return (cpu_rq(cpu)->rd->cpupri.cpu_to_pri[cpu] > CPUPRI_NORMAL) &&
371 	       (cpu_rq(cpu)->rt.rt_throttled == 0);
372 }
373 #endif
374