1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
4 *
5 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
6 *
7 * Copyright (C) IBM Corporation, 2004. All rights reserved.
8 * Copyright (C) Red Hat Inc., 2014. All rights reserved.
9 * Authors:
10 * Vivek Goyal <vgoyal@redhat.com>
11 *
12 */
13
14 #define pr_fmt(fmt) "kexec: " fmt
15
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/smp.h>
19 #include <linux/reboot.h>
20 #include <linux/kexec.h>
21 #include <linux/delay.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <linux/memblock.h>
28
29 #include <asm/processor.h>
30 #include <asm/hardirq.h>
31 #include <asm/nmi.h>
32 #include <asm/hw_irq.h>
33 #include <asm/apic.h>
34 #include <asm/e820/types.h>
35 #include <asm/io_apic.h>
36 #include <asm/hpet.h>
37 #include <linux/kdebug.h>
38 #include <asm/cpu.h>
39 #include <asm/reboot.h>
40 #include <asm/intel_pt.h>
41 #include <asm/crash.h>
42 #include <asm/cmdline.h>
43
44 /* Used while preparing memory map entries for second kernel */
45 struct crash_memmap_data {
46 struct boot_params *params;
47 /* Type of memory */
48 unsigned int type;
49 };
50
51 /*
52 * This is used to VMCLEAR all VMCSs loaded on the
53 * processor. And when loading kvm_intel module, the
54 * callback function pointer will be assigned.
55 *
56 * protected by rcu.
57 */
58 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
59 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
60
cpu_crash_vmclear_loaded_vmcss(void)61 static inline void cpu_crash_vmclear_loaded_vmcss(void)
62 {
63 crash_vmclear_fn *do_vmclear_operation = NULL;
64
65 rcu_read_lock();
66 do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
67 if (do_vmclear_operation)
68 do_vmclear_operation();
69 rcu_read_unlock();
70 }
71
72 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
73
kdump_nmi_callback(int cpu,struct pt_regs * regs)74 static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
75 {
76 crash_save_cpu(regs, cpu);
77
78 /*
79 * VMCLEAR VMCSs loaded on all cpus if needed.
80 */
81 cpu_crash_vmclear_loaded_vmcss();
82
83 /*
84 * Disable Intel PT to stop its logging
85 */
86 cpu_emergency_stop_pt();
87
88 disable_local_APIC();
89 }
90
kdump_nmi_shootdown_cpus(void)91 void kdump_nmi_shootdown_cpus(void)
92 {
93 nmi_shootdown_cpus(kdump_nmi_callback);
94
95 disable_local_APIC();
96 }
97
98 /* Override the weak function in kernel/panic.c */
crash_smp_send_stop(void)99 void crash_smp_send_stop(void)
100 {
101 static int cpus_stopped;
102
103 if (cpus_stopped)
104 return;
105
106 if (smp_ops.crash_stop_other_cpus)
107 smp_ops.crash_stop_other_cpus();
108 else
109 smp_send_stop();
110
111 cpus_stopped = 1;
112 }
113
114 #else
crash_smp_send_stop(void)115 void crash_smp_send_stop(void)
116 {
117 /* There are no cpus to shootdown */
118 }
119 #endif
120
native_machine_crash_shutdown(struct pt_regs * regs)121 void native_machine_crash_shutdown(struct pt_regs *regs)
122 {
123 /* This function is only called after the system
124 * has panicked or is otherwise in a critical state.
125 * The minimum amount of code to allow a kexec'd kernel
126 * to run successfully needs to happen here.
127 *
128 * In practice this means shooting down the other cpus in
129 * an SMP system.
130 */
131 /* The kernel is broken so disable interrupts */
132 local_irq_disable();
133
134 crash_smp_send_stop();
135
136 /*
137 * VMCLEAR VMCSs loaded on this cpu if needed.
138 */
139 cpu_crash_vmclear_loaded_vmcss();
140
141 cpu_emergency_disable_virtualization();
142
143 /*
144 * Disable Intel PT to stop its logging
145 */
146 cpu_emergency_stop_pt();
147
148 #ifdef CONFIG_X86_IO_APIC
149 /* Prevent crash_kexec() from deadlocking on ioapic_lock. */
150 ioapic_zap_locks();
151 clear_IO_APIC();
152 #endif
153 lapic_shutdown();
154 restore_boot_irq_mode();
155 #ifdef CONFIG_HPET_TIMER
156 hpet_disable();
157 #endif
158 crash_save_cpu(regs, safe_smp_processor_id());
159 }
160
161 #ifdef CONFIG_KEXEC_FILE
162
get_nr_ram_ranges_callback(struct resource * res,void * arg)163 static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
164 {
165 unsigned int *nr_ranges = arg;
166
167 (*nr_ranges)++;
168 return 0;
169 }
170
171 /* Gather all the required information to prepare elf headers for ram regions */
fill_up_crash_elf_data(void)172 static struct crash_mem *fill_up_crash_elf_data(void)
173 {
174 unsigned int nr_ranges = 0;
175 struct crash_mem *cmem;
176
177 walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback);
178 if (!nr_ranges)
179 return NULL;
180
181 /*
182 * Exclusion of crash region and/or crashk_low_res may cause
183 * another range split. So add extra two slots here.
184 */
185 nr_ranges += 2;
186 cmem = vzalloc(struct_size(cmem, ranges, nr_ranges));
187 if (!cmem)
188 return NULL;
189
190 cmem->max_nr_ranges = nr_ranges;
191 cmem->nr_ranges = 0;
192
193 return cmem;
194 }
195
196 /*
197 * Look for any unwanted ranges between mstart, mend and remove them. This
198 * might lead to split and split ranges are put in cmem->ranges[] array
199 */
elf_header_exclude_ranges(struct crash_mem * cmem)200 static int elf_header_exclude_ranges(struct crash_mem *cmem)
201 {
202 int ret = 0;
203
204 /* Exclude the low 1M because it is always reserved */
205 ret = crash_exclude_mem_range(cmem, 0, (1<<20)-1);
206 if (ret)
207 return ret;
208
209 /* Exclude crashkernel region */
210 ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
211 if (ret)
212 return ret;
213
214 if (crashk_low_res.end)
215 ret = crash_exclude_mem_range(cmem, crashk_low_res.start,
216 crashk_low_res.end);
217
218 return ret;
219 }
220
prepare_elf64_ram_headers_callback(struct resource * res,void * arg)221 static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
222 {
223 struct crash_mem *cmem = arg;
224
225 cmem->ranges[cmem->nr_ranges].start = res->start;
226 cmem->ranges[cmem->nr_ranges].end = res->end;
227 cmem->nr_ranges++;
228
229 return 0;
230 }
231
232 /* Prepare elf headers. Return addr and size */
prepare_elf_headers(struct kimage * image,void ** addr,unsigned long * sz)233 static int prepare_elf_headers(struct kimage *image, void **addr,
234 unsigned long *sz)
235 {
236 struct crash_mem *cmem;
237 int ret;
238
239 cmem = fill_up_crash_elf_data();
240 if (!cmem)
241 return -ENOMEM;
242
243 ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback);
244 if (ret)
245 goto out;
246
247 /* Exclude unwanted mem ranges */
248 ret = elf_header_exclude_ranges(cmem);
249 if (ret)
250 goto out;
251
252 /* By default prepare 64bit headers */
253 ret = crash_prepare_elf64_headers(cmem, IS_ENABLED(CONFIG_X86_64), addr, sz);
254
255 out:
256 vfree(cmem);
257 return ret;
258 }
259
add_e820_entry(struct boot_params * params,struct e820_entry * entry)260 static int add_e820_entry(struct boot_params *params, struct e820_entry *entry)
261 {
262 unsigned int nr_e820_entries;
263
264 nr_e820_entries = params->e820_entries;
265 if (nr_e820_entries >= E820_MAX_ENTRIES_ZEROPAGE)
266 return 1;
267
268 memcpy(¶ms->e820_table[nr_e820_entries], entry, sizeof(struct e820_entry));
269 params->e820_entries++;
270 return 0;
271 }
272
memmap_entry_callback(struct resource * res,void * arg)273 static int memmap_entry_callback(struct resource *res, void *arg)
274 {
275 struct crash_memmap_data *cmd = arg;
276 struct boot_params *params = cmd->params;
277 struct e820_entry ei;
278
279 ei.addr = res->start;
280 ei.size = resource_size(res);
281 ei.type = cmd->type;
282 add_e820_entry(params, &ei);
283
284 return 0;
285 }
286
memmap_exclude_ranges(struct kimage * image,struct crash_mem * cmem,unsigned long long mstart,unsigned long long mend)287 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
288 unsigned long long mstart,
289 unsigned long long mend)
290 {
291 unsigned long start, end;
292
293 cmem->ranges[0].start = mstart;
294 cmem->ranges[0].end = mend;
295 cmem->nr_ranges = 1;
296
297 /* Exclude elf header region */
298 start = image->elf_load_addr;
299 end = start + image->elf_headers_sz - 1;
300 return crash_exclude_mem_range(cmem, start, end);
301 }
302
303 /* Prepare memory map for crash dump kernel */
crash_setup_memmap_entries(struct kimage * image,struct boot_params * params)304 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
305 {
306 int i, ret = 0;
307 unsigned long flags;
308 struct e820_entry ei;
309 struct crash_memmap_data cmd;
310 struct crash_mem *cmem;
311
312 cmem = vzalloc(struct_size(cmem, ranges, 1));
313 if (!cmem)
314 return -ENOMEM;
315
316 memset(&cmd, 0, sizeof(struct crash_memmap_data));
317 cmd.params = params;
318
319 /* Add the low 1M */
320 cmd.type = E820_TYPE_RAM;
321 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
322 walk_iomem_res_desc(IORES_DESC_NONE, flags, 0, (1<<20)-1, &cmd,
323 memmap_entry_callback);
324
325 /* Add ACPI tables */
326 cmd.type = E820_TYPE_ACPI;
327 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
328 walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
329 memmap_entry_callback);
330
331 /* Add ACPI Non-volatile Storage */
332 cmd.type = E820_TYPE_NVS;
333 walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
334 memmap_entry_callback);
335
336 /* Add e820 reserved ranges */
337 cmd.type = E820_TYPE_RESERVED;
338 flags = IORESOURCE_MEM;
339 walk_iomem_res_desc(IORES_DESC_RESERVED, flags, 0, -1, &cmd,
340 memmap_entry_callback);
341
342 /* Add crashk_low_res region */
343 if (crashk_low_res.end) {
344 ei.addr = crashk_low_res.start;
345 ei.size = resource_size(&crashk_low_res);
346 ei.type = E820_TYPE_RAM;
347 add_e820_entry(params, &ei);
348 }
349
350 /* Exclude some ranges from crashk_res and add rest to memmap */
351 ret = memmap_exclude_ranges(image, cmem, crashk_res.start, crashk_res.end);
352 if (ret)
353 goto out;
354
355 for (i = 0; i < cmem->nr_ranges; i++) {
356 ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
357
358 /* If entry is less than a page, skip it */
359 if (ei.size < PAGE_SIZE)
360 continue;
361 ei.addr = cmem->ranges[i].start;
362 ei.type = E820_TYPE_RAM;
363 add_e820_entry(params, &ei);
364 }
365
366 out:
367 vfree(cmem);
368 return ret;
369 }
370
crash_load_segments(struct kimage * image)371 int crash_load_segments(struct kimage *image)
372 {
373 int ret;
374 struct kexec_buf kbuf = { .image = image, .buf_min = 0,
375 .buf_max = ULONG_MAX, .top_down = false };
376
377 /* Prepare elf headers and add a segment */
378 ret = prepare_elf_headers(image, &kbuf.buffer, &kbuf.bufsz);
379 if (ret)
380 return ret;
381
382 image->elf_headers = kbuf.buffer;
383 image->elf_headers_sz = kbuf.bufsz;
384
385 kbuf.memsz = kbuf.bufsz;
386 kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
387 kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
388 ret = kexec_add_buffer(&kbuf);
389 if (ret)
390 return ret;
391 image->elf_load_addr = kbuf.mem;
392 pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
393 image->elf_load_addr, kbuf.bufsz, kbuf.bufsz);
394
395 return ret;
396 }
397 #endif /* CONFIG_KEXEC_FILE */
398